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Abstract 

The UK Biobank (UKB) is a health research resource of major international importance, 

incorporating comprehensive characterisation of over 500,000 men and women recruited between 

2006-2010 from across the UK. There is prospective tracking of health outcomes for all participants 

through linkages with national cohorts (death registers, cancer registers, electronic hospital records, 

primary care records). The dataset has been enhanced with the UKB imaging study, which aims to 

scan a subset of 100,000 participants. The imaging protocol includes magnetic resonance imaging of 

the brain, heart, and abdomen, carotid ultrasound, and whole-body dual x-ray absorptiometry (DXA). 

Since its launch in 2015, over 48,000 participants have completed the imaging study with scheduled 

completion in 2023. Repeat imaging of 10,000 participants has been approved and commenced in 

2019. The cardiovascular magnetic resonance (CMR) scan provides detailed assessment of cardiac 

structure and function comprising bright blood anatomic assessment (sagittal, coronal, axial), left and 

right ventricular cine images (long and short axis), myocardial tagging, native T1 mapping, aortic 

flow, and imaging of the thoracic aorta. The UKB is an open access resource available to health 

researchers across all scientific disciplines from both academia and industry with no preferential 

access or exclusivity. In this paper, we consider how we may best utilise the UKB CMR data to 

advance cardiovascular research and review notable achievements to date. 
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Introduction to the UK Biobank  

The UK Biobank (UKB) comprises a cohort of over 500,000 men and women aged 40-69 years at 

recruitment (2006-2010). Baseline assessment included a comprehensive series of questionnaires, 

face-to-face interviews, physical measures, and blood sampling. The full protocol is publicly 

available1 and summary data may be viewed on the UKB website: www.ukbiobank.ac.uk. Blood 

biomarker (haematology, biochemistry) and whole genome sequencing are available for all 

participants (released 2019). The UKB imaging study was launched in 2015, with the aim of scanning 

20% of the original cohort, that is, 100,000 participants2. The imaging protocol includes magnetic 

resonance imaging of the brain, heart, and abdomen, carotid ultrasound, and whole-body dual x-ray 

absorptiometry (DXA). To date (September 2020), over 48,000 participants have completed the 

imaging study with scheduled completion by the end of 2023. Repeat imaging of 10,000 participants 

commenced in 2019 and is also due for completion in 2023. Selected components of the baseline 

assessment were repeated for a subset of 20,000 participants between 2012-2013 (calibration visit) 

and at both imaging visits, permitting adjustment for random measurement error and estimation of 

longitudinal variations. 

 

Health outcomes for all UKB participants are prospectively tracked through linkages with electronic 

hospital records, cancer registers, death registers, and primary care records. The UKB has also 

produced algorithmically defined outcomes for incidence of key illnesses, such as myocardial 

infarction, through cross-checking over multiple data sources3. The scale of the UKB and the 

indefinite follow up of participants means that there should be sufficient numbers of a wide range of 

incident illnesses for adequately powered nested case-control studies (Table 1)1, and indeed for 

prospective cohort analyses for more common outcomes. The documentation of incident outcomes 

some years after assessment of exposures reduces (although does not remove completely) the chance 

of reverse causation explaining observed associations. In addition, whilst there is, as is usual with 

such cohorts, evidence of healthy selection; there is, for the majority of variables, a substantial range 

http://www.ukbiobank.ac.uk/


of risk factor levels and disease rates within the UKB population, with sufficient variation to allow 

adequately powered analyses, which may be generalisable across a range of demographics4,5.  

 

The UKB is an open access resource available to health researchers across all scientific disciplines 

from both academia and industry with no preferential access or exclusivity. New researchers can find 

details on formal access procedures (including the modest access charges based on a cost recovery 

model) on the UKB website: www.ukbiobank.ac.uk. 

 

Thus, the UKB comprises a very large sample phenotyped in great detail at multiple time-points using 

a variety of methods and linked to prospectively verified health outcomes (Figure 1), available at 

minimal cost to all bona fide researchers globally. The unique combination of this level of breadth, 

depth, and scale in a single dataset makes for a powerful research resource. In this paper, we consider 

how we may best utilise the cardiovascular magnetic resonance (CMR) data in conjunction with all 

the other information in the UKB to advance cardiovascular research and review notable 

achievements to date. 

 

The UK Biobank CMR protocol 

The UKB imaging study is conducted across four UK sites (Reading, Stockport, Newcastle, Bristol) 

using uniform equipment, staff training, and acquisition protocols. The purpose-designed CMR 

protocol consists of a 20-minute scan performed using a 1.5 Tesla scanner (MAGNETOM Aera, 

Syngo Platform VD13A, Siemens Healthcare, Erlangen, Germany). The practical and ethical 

considerations posed by the large scale and observational nature of the UKB preclude the use of 

contrast or stress agents. The rationale, challenges, and details of the CMR protocol are described in 

dedicated publications6,7. The protocol includes bright blood anatomic assessment (sagittal, coronal, 

axial), left and right ventricular cine images (long and short axis), myocardial tagging (three short axis 

slices), native T1 mapping, aortic flow, and imaging of the thoracic aorta (Table 2).  

http://www.ukbiobank.ac.uk/


 

Conventional right and left ventricular (RV, LV) indices such as chamber volumes, ejection fraction, 

and LV mass may be derived from the short axis cine stack. LV end-diastolic volume is an important 

indicator of adverse cardiac remodelling8. Ejection fraction9 and LV mass10 are established prognostic 

markers. Tagging sequences allow measurement of strain, which reflects myocardial contractile 

function at a more granular level compared to conventional indices, such as, ejection fraction11. As 

such, alterations in myocardial strain may be appreciated at earlier or subclinical disease stages12,13. 

Feature tracking techniques using long and short axis cine images are an alternative method of 

deriving measures of myocardial strain. They use block-matching algorithms to estimate myocardial 

motion by marking regions of interest along the myocardial boundaries. Feature tracking does not 

directly label tissue in the same way as tagging, however, post-processing is considerably faster, and 

estimates are adequately reliable for appreciation of associations14. The long axis cine images may 

also be used to obtain measures of atrial size and function, such as left atrial ejection fraction, which 

are reliable predictors of atrial fibrillation in the general population15. This is important, as atrial 

fibrillation is the most common cardiac arrhythmia, particularly in older populations, with significant 

clinical consequences, such as the need for anticoagulation and increased risk of stroke16. Native T1 

mapping allows for myocardial tissue characterisation without the need for contrast administration, 

specifically, identification of areas of fibrosis and/or infarction17. Myocardial fibrosis has been linked 

to a number of cardiac diseases and is a marker of adverse cardiovascular outcomes such as 

ventricular arrhythmias and death18. Infarction reflects underlying ischaemic cardiomyopathy and is 

also linked to increased cardiovascular risk19. Aortic flow sequences permit assessment of aortic valve 

anatomy and function, in particular valvular stenosis. Aortic stenosis is the most common valvular 

pathology in older individuals, with adverse prognostic consequences and potential for alteration of its 

natural history with timely intervention20. Aortic distensibility, a measure of vascular compliance, 

may be derived from transverse cine images of the thoracic aorta through consideration of the relative 

cross-sectional area change of the aorta (aortic strain) per unit pressure21. Aortic distensibility reflects 

aortic bioelastic function with lower distensibility indicating a less compliant aorta and poorer 

vascular health22. There is an inverse association between aortic distensibility and cardiovascular risk, 



specifically, ischaemic heart disease and stroke23. Thus, aortic distensibility provides a continuous 

measure of ischaemic cardiovascular risk across the population. 

 

In summary, the UKB CMR protocol provides a comprehensive assessment of cardiovascular health, 

providing measures of cardiac structure, function, and tissue characterisation alongside multiple 

prognostic indices, biomarkers of subclinical disease, and indicators of important conditions such as 

atrial fibrillation and aortic stenosis. The CMR imaging phenotypes allow objective assessment and 

quantification of exposure effects on cardiovascular health and permit finer delineation of disease 

trajectories with potential for disease-specific assertions.  

 

Manual analysis of the first 5,000 CMR scans 

Manual segmentation of all four cardiac chambers has been completed for the first 5,000 UKB CMR 

scans. Analysis was across two core laboratories (London, Oxford) according to a pre-defined 

protocol in line with international guidance24. The analysis protocol is available in a separate 

publication25. Readers across both sites received dedicated training and standardised quality control 

procedures were implemented. In this way, a 5,000 subject manual analysis ground truth database was 

created. This dataset has been utilised to derive age- and sex-specific CMR normal reference ranges 

for the LV, RV, and atria in the largest reported cohort of validated healthy adults25. The UKB CMR 

dataset has also resulted in a number of significant achievements providing novel insights into 

classical and non-classical cardiovascular risk factors, and enabling development and evaluation of 

novel CMR biomarkers and automated image analysis pipelines (Supplementary Table 1)26. 

 

Novel insights into classical cardiovascular risk factors 

A number of researchers have used the UKB CMR dataset to provide new insights into classical 

cardiovascular risk factors. For instance, Petersen et al.27 define and quantify alterations in cardiac 

structure and function associated with known modifiable cardiovascular risk factors in individuals 

without pre-existing cardiovascular disease, reporting greatest effects with systolic blood pressure and 

body mass index. Building on these observations, Jensen et al.28 present novel insights into diabetic 



cardiomyopathy, demonstrating subclinical remodelling of all four cardiac chambers in diabetics 

without known cardiovascular disease. In a study assessing the causality of previously established 

associations between increased systolic blood pressure and adverse LV remodelling, Hendriks et al.29 

use the genetic data in UKB to demonstrate a novel line of evidence supporting a causal relationship 

between elevated systolic blood pressure and higher LV mass. Linkage with the genetic data has also 

enabled discovery of 14 genetic loci corresponding to prognostically important LV phenotypes 

including end-diastolic and end-systolic volumes, mass, and ejection fraction, enhancing 

understanding of the genetic architecture of cardiac phenotypes and providing insights into potential 

novel therapeutic targets30. 

 

Investigating non-classical cardiovascular risk factors 

The scale of UKB and detailed characterisation of participants has enabled assessment of the effects 

of non-classical cardiovascular risk factors on CMR phenotypes, providing insights into novel 

determinants of cardiovascular disease. In a study of 1,406 individuals without cardio-respiratory 

disease, Thomson et al.31 report association of poorer respiratory function by spirometry with adverse 

ventricular remodelling. Somewhat linked to these observations, Aung et al.32 report association of 

adverse cardiac phenotypes with past exposure to poorer air quality in 3,920 individuals without 

clinical cardiovascular disease. Khanji et al.33 present the first study of cardiac phenotypes associated 

with recreational cannabis use, demonstrating larger LV volumes and impaired circumferential strain 

in regular cannabis users compared with never/rare users. Van Hout et al.34 consider the abdominal 

magnetic resonance images in UKB alongside the CMR data to investigate the relationship of body 

fat distribution with cardiac structure and function, demonstrating the importance of visceral obesity 

(vs. subcutaneous adiposity) and its association with smaller LV end-diastolic volumes and lower 

systolic cardiac function. In a study incorporating biochemistry, imaging, and clinical outcome data, 

Raisi-Estabragh et al.35 demonstrate association of poorer bone health with worse arterial health and 

adverse ischaemic cardiovascular outcomes and explore potential mediating mechanisms of these 

relationships. The UKB data has also been used to explore the association of cardiac health to other 



non-classical cardiovascular risk factors such as menopausal hormone therapy, spontaneous 

pregnancy loss, and resting heart rate36–38. 

 

Development of novel imaging biomarkers 

Several researchers have used the UKB CMR platform to investigate novel imaging biomarkers. 

Cardiac morphometric atlases are derived from existing CMR data and provide statistical shape 

models of the heart with highly detailed morphometric information39. LV cardiac atlas morphometrics 

have been associated with a number of important cardiovascular risk factors40. In the first study to 

compare cardiac atlases derived using different methodologies, Gilbert et al.41 use the UKB dataset to 

demonstrate robust associations between cardiac atlas shape measures and cardiovascular risk factors 

irrespective of methodology. Further, they demonstrate superior performance of cardiac atlas 

morphometric scores for detection of differences in LV shape associated with cardiovascular risk 

factors compared to conventional CMR shape indices. Building on this work, Mauger et al.42 used the 

UKB dataset to quantify reference RV morphometry and demonstrate complex relationships between 

biventricular shape and cardiovascular risk factors (Figure 2).  

 

CMR radiomics is another novel image analysis technique whereby voxel-level information is used to 

derive multiple quantifiers of shape and texture (Figure 3)43. There is no requirement for dedicated 

acquisitions or post-processing and radiomics analysis may be retrospectively applied to existing 

CMR images. Machine learning techniques are often used to incorporate the many extracted 

radiomics features (usually 100s) as covariates into clinical prediction models. CMR radiomics 

models have demonstrated incremental diagnostic and predictive value in comparison to conventional 

methods for a number of important cardiovascular conditions43. Cetin et al.44 have used data from the 

UKB to demonstrate the superior performance of CMR radiomics models, compared to conventional 

CMR indices, in discriminating individuals with hypertension from healthy comparators. 

 

Artificial intelligence technologies for automated image analysis 



The large volume of data in the UKB image bank necessitates the development of automated image 

analysis pipelines that are scalable, require minimal manual interaction, and have standardised quality 

control measures. The 5,000 reference cohort and their corresponding contours have enabled 

development and evaluation of machine learning methods for cardiac chamber segmentation with 

some promising results45. In particular, Attar et al.46 present a fully automatic pipeline performing 

end-to-end analytics from cine images to anatomic and functional quantification (LV, RV) on 20,000 

UKB CMR scans validated against the ground truth cohort of manual segmentations. A fully 

automated image analysis tool for measurement of aortic distensibility has also been developed and 

validated on a large subset of UKB studies (n=5,100); the analysis pipeline can detect and locate 

aortic areas and has in-built quality control mechanisms47. 

 

In addition to these purpose-built pipelines, fully automated LV quantification is performed as part of 

UKB image acquisitions using the Siemens syngo InlineVF software (Siemens Healthcare, Erlangen, 

Germany, version D13A). The InlineVF analysis algorithm determines the LV endocardial contours 

on the short axis slices, defines the LV base (mitral valve) and apex on long axis slices, and outputs 

standard LV indices (volumes, ejection fraction, stroke volume). Whilst raw results from this analysis 

are provided by the UKB, the InlineVF software is intended for use in clinical settings with expert 

assessment of contour quality. Therefore, it is advisable to apply quality control measures to the fully 

automated outputs of UKB. After formal evaluation of the InlineVF outputs, we recommend that 

these be used with implementation of visual assessment for quality control and linear bias 

correction48. 

 

Potential for future work 

In order to best utilise the UKB, we must consider the resource in its entirety and appreciate the 

complementary value of its different components. The scale and extensive participant phenotyping in 

UKB permits consideration of a large number of exposures and their potential interactions with many 

disease conditions. These research opportunities will increase as incident disease outcomes accrue and 

the imaging study is completed. The breadth, depth, and scale of phenotypic information in UKB also 



yields unique opportunities to investigate relationships of risk factors acting across organ systems. 

There is increasing interest in exploration of cross-system interactions with notable work exploring 

the heart-brain49 and heart-gut50 axes. Already, researchers have demonstrated links between 

cognition and structural brain MRI features and cardiac health in the UKB51. As disease outcomes 

accrue within the UKB cohort, there will be greater opportunity to explore these important cross-

system interactions. 

 

The large standardised UKB imaging datset provides an ideal platform for development and 

evaluation of automated image analysis pipelines. Artificial intelligence technologies for high volume 

image phenotype extraction could translate readily to clinical settings, improving time and resource 

efficiency. Substantial progress has been made with automated extraction of conventional ventricular 

indices and aortic distensibility in the UKB. Similar work is underway to develop scalable automated 

processes for analysis of tagging, native T1 mapping, tissue tracking, and aortic flow sequences. 

These areas have not yet been published on and are ripe for exploration. The dataset is also the ideal 

setting for development of novel CMR biomarkers. In addition to providing a platform for technical 

development, linkage to participant characteristics and outcomes uniquely enables assessment of 

clinical utility within the same sample. 

 

Conclusions 

The UKB presents the opportunity to examine prospectively, in a single, robustly powered and 

characterised cohort, a wide range of exposure-outcome relationships and the potential interactions 

between them. As incident health outcomes accrue, and the imaging study is completed, UKB will 

offer huge opportunities to undertake highly powered studies to comprehensively investigate the 

determinants of cardiovascular disease. It is now up to the imagination and expertise of researchers to 

translate this unique resource into real benefits for our patients and thus reduce the burden of 

cardiovascular disease worldwide. 
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Table 1. Estimated number of years from baseline to accrue cases of selected conditions in UK 

Biobank* 

 

Table 1 caption: COPD: chronic obstructive pulmonary disease; MI: myocardial infarction. 

*Estimated years from start of recruitment in 2006 with allowance for healthy cohort effect, overseas 

migration and comprehensive withdrawal of 1 in 500 participants. Adapted from: UK Biobank: 

Protocol for a large-scale prospective epidemiological resource (2007)1. 

 
 

 

 

 

 

 

 

 

 

 Time to achieve 

 1,000 cases 2,500 cases 5,000 cases 10,000 cases 20,000 cases 

MI and coronary death 2 years 4 years 5 years 8 years 13 years 

Stroke 5 years 8 years 12 years 18 years 28 years 

Diabetes mellitus 2 years 3 years 4 years 6 years 10 years 

COPD 4 years 6 years 8 years 13 years 23 years 

Colorectal cancer 5 years 9 years 14 years 22 years 42 years 

Hip fracture 7 years 11 years 15 years 21 years 31 years 

Alzheimer’s disease 7 years 10 years 13 years 18 years 23 years 

Parkinson’s disease 6 years 10 years 15 years 23 years 37 years 



 Table 2. Summary of UK Biobank cardiac magnetic resonance imaging protocol 

 

Table 2 footnote: AF: atrial fibrillation; bSSFP: balanced steady state free precession; GRE: gradient echo; HLA: horizontal long axis; LV: left ventricle; 

LVOT: left ventricular outflow tract; m/s: meters/second; RV: right ventricle; ShMOLLI: Shortened Modified Look-Locker Inversion recovery; VENC: 

velocity encoding; VLA: vertical long axis. 
 

 Sequence Imaging planes Related CMR indices Clinical utility 

Anatomic assessment Bright blood, bSSFP Sagittal, coronal, and transverse slices 

covering the chest and abdomen 

Modified anatomic measures e.g. 

aortic dimensions, lung diameters 

Markers of aortic/pulmonary disease 

Cardiac function bSSFP cine HLA, VLA, LVOT (sagittal, coronal), 

short axis stack covering the right and 

left ventricles 

RV/LV: volumes, ejection 

fraction, stroke volume; LV mass 

Conventional markers of cardiac 

remodelling and function with established 

prognostic significance.  

Atrial size and function Predictors of AF in the general population 

LV strain (tissue tracking) Early marker of myocardial dysfunction 

Tagging Strain CMR (GRE) Three short axis slices (base, mid, 

apex) 

LV strain (tissue tagging)  Early marker of myocardial dysfunction 

Thoracic aorta bSSFP cine Transverse cut at the level of the 

pulmonary trunk and right pulmonary 

artery 

Aortic distensibility at the 

ascending and descending aorta 

Markers of cardiovascular risk, in particular 

ischaemic disease 

Aortic flow Phase contrast flow 

(GRE), VENC set at 

2m/s with upward 

adjustment as needed 

Cut plane placed at or just above the 

sinotubular junction at end-diastole in 

LVOT views (sagittal, coronal) 

Aortic flow Aortic valve anatomy and assessment of 

aortic stenosis 

Native T1 mapping ShMOLLI 

(WIP780B) 

Mid-ventricular short axis Native T1 values  Indicator of myocardial fibrosis/infarction- 

markers of cardiovascular disease and risk.  



Figure legends  

 

Figure 1: No legend required.  

 

Figure 2: Adapted from Mauger et al. 201942. Panel A: hypertension; Panel B: no hypertension; 

models in end-diastole (left) and end-systole (right); the colours denote displacements from the mean 

in mm. Blue - inwards 3mm; red -outwards 3mm. 

 

Figure 3: Radiomics features may be extracted from a defined region of interest. In this example, the 

left (orange) and right (green) ventricular endocardial and left ventricular epicardial (blue) contours 

are drawn in end-systole on the short axis stack cine images. Thus, defining three regions of interest: 

left ventricular blood pool, right ventricular blood pool, and left ventricular myocardium. Radiomics 

shape features are extracted from a 3D image mask constructed from these contours. Histogram based 

first-order features and more complex texture features are derived from analysis of the distribution 

and pattern of voxel signal intensities in the defined regions of interest. Figure courtesy of: Dr. 

Polyxeni Gkontra and Prof. Karim Lekadir, University of Barcelona.  
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Figure 1. Approach to participant phenotyping in the UK Biobank 
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Figure 2. Cardiac atlas models demonstrating morphometric differences in UK Biobank 

participants with and without hypertension* 

 

 

 

 

 

 

 

 

 

 

 

 

*Figure 2 caption: Adapted from Mauger et al. 201939. Panel A: hypertension; Panel B: no 

hypertension; models in end-diastole (left) and end-systole (right); the colours denote displacements 

from the mean in mm. Blue - inwards 3mm; red -outwards 3mm. 
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Figure 3*. Summary of typical cardiovascular magnetic resonance radiomics feature extraction workflow 

 

 

 

 

 

 

 

 

*Figure 3 caption: Radiomics features may be extracted from a defined region of interest. In this example, the left (orange) and right (green) ventricular 

endocardial and left ventricular epicardial (blue) contours are drawn in end-systole on the short axis stack cine images. Thus, defining three regions of 

interest: left ventricular blood pool, right ventricular blood pool, and left ventricular myocardium. Radiomics shape features are extracted from a 3D image 

mask constructed from these contours. Histogram based first-order features and more complex texture features are derived from analysis of the distribution 

and pattern of voxel signal intensities in the defined regions of interest. Figure courtesy of: Dr. Polyxeni Gkontra and Prof. Karim Lekadir, University of 

Barcelona.   
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Supplementary Table 1. Summary of selected studies using UK Biobank CMR data 

 

Author, year of 

publication 

Research question/aim Methods Summary of findings 

Raisi-Estabragh et 

al. 2020 

What is the association of 

speed of sound from 

quantitative heel ultrasound 

with measures of arterial 

stiffness (AoD, ASI) and 

with ischaemic 

cardiovascular outcomes 

and what are the mediating 

factors? 

Mutivariable linear regression models of the association 

between speed of sound and ASI/AoD. Cox/competing 

risk regression models to test association of speed of sound 

with incident myocardial infarction and ischaemic heart 

disease death. Subanalysis by sex and menopause status. 

Multiple mediation analysis to examine mediating effect of 

a range of biochemical variables.  

Findings support a positive association between 

bone and vascular health with consistent patterns 

of association in men and women. The underlying 

mechanisms are complex and appear to vary by 

sex. 

Hout et al. 2020 What is the association of 

body fat distribution with 

cardiovascular structure and 

function? 

 Multivariable regression models were used to test the 

association of subcutaneous adiposity, visceral adiposity 

and body fat percentage with CMR cardiovascular 

phenotypes in 4,590 UKB participants. 

Visceral obesity was associated with a smaller LV 

EDV and subclinical lower LV systolic function 

in men, suggesting that visceral obesity might 

play a more important role compared to general 

obesity in LV remodelling. 

Supplementary Table 1



Biasiolli et al. 2019 To develop and validate a 

fully automated method to 

detect and localise the 

ascending and descending 

aorta for AoD measure with 

a quality control 

mechanism. 

The automated AA and PDA detection-localization 

algorithm followed these steps: 1) foreground 

segmentation; 2) detection of candidate ROIs by Circular 

Hough Transform; 3) spatial, histogram and shape feature 

extraction for candidate ROIs; 4) AA and PDA detection 

using Random Forest (RF); 5) quality control based on RF 

detection probability. The algorithm was tested on 3,900 

UKB CMR scans. 

The proposed method for automated AA and PDA 

localization was extremely accurate and the 

automatically derived detection probabilities 

provided a robust mechanism to detect low quality 

scans for further human review. 

Attar et al. 2019 To develop and evaluate a 

fully automated CMR 

image analysis pipeline.  

The authors present and evaluate a fully automatic scalable 

CMR  image analysis pipeline with inbuilt quality control 

using 20,000 cases from the UKB for LV/RV 

quantification. The pipeline is validated on 4,620 manually 

annotated UKB cases.  

The presented pipeline performs end-to-end image 

analytics from multi-view cine CMR to LV/RV 

quantification without need for manual user 

interactions, with quality control of image input 

and outputted segmentations. 

Jensen et al. 2019 What are the early 

alterations in cardiac 

structure and function 

associated with DM? 

Multivariable regression models were built to ascertain the 

association of DM status with CMR phenotypes in a 

subpopulation without pre-existing cardiovascular disease 

and LVEF ≥ 50% (n=3984) 

In a low-risk general population without known 

cardiovascular disease and with preserved LV 

ejection fraction, DM was associated with early 

changes in all 4 cardiac chambers.  



Hendriks et al. 2019 What are the effects of 

lifelong exposure to high 

SBP on LV structure and 

function? 

A genetic risk score to estimate genetically predicted SBP 

(gSBP) was constructed based on 107 previously 

established genetic variants. Manual CMR image analysis 

was performed for 300 individuals at the extremes of 

gSBP. Multivariable linear regression analyses of imaging 

biomarkers were performed using gSBP as continuous 

independent variable. 

This study provides a novel line of evidence for a 

causal relationship between SBP and increased 

LV mass and with increased LV global radial 

strain. 

Aung et al. 2019 What is the genetic basis of 

LV image-derived 

phenotypes? 

Genome wide association study of LVEDV, LVESV, 

LVEF, and LVM, using 16,923 CMR cases from the UK 

Biobank and genotyping data at baseline. 

14 novel genetic loci were identified for LV CMR 

phenotypes. 

Khanji et al. 2019 What is the association of 

cannabis use with 

cardiovascular structure and 

function on CMR? 

Multivariate regression models were used to test effect of 

regular, never/rare, or previous cannabis use on CMR 

cardiovascular indices in a sample of 3,407 UKB 

participants. 

Regular cannabis use was associated with larger 

LVEDV, LVESV, and impaired global 

circumferential strain compared with rare/no 

cannabis use. 

Elmahi et al. 2019 What is the association 

between history of 

pregnancy loss and imaging 

Multivariable linear regression models were used to test 

association between self-reported pregnancy loss and 

CMR measures of cardiac structure and function and 

In this analysis, women who self-report pregnancy 

loss did not have significant differences in cardiac 



measures of cardiovascular 

function? 

carotid ultrasound measures of arterial health in 2660 

women from UKB. 

structure, cardiac function, or carotid structure in 

later life. 

Gilbert et al. 2019 What are the associations of 

cardiac atlas morphometric 

measures with 

cardiovascular risk factors 

and do these vary by type of 

atlas? 

Two independent LV atlases were constructed from 4,547 

UKB CMR scans. The strength of associations between 

atlas principal components and cardiovascular risk factors 

(smoking, DM , high blood pressure, high cholesterol and 

angina) were quantified with logistic regression models. 

Comparison was made between different atlases. 

Morphometric variations associated with each risk 

factor could be quantified and visualized and were 

similar between atlases. UK Biobank LV shape 

atlases are robust to construction method and 

show stronger relationships with cardiovascular 

risk factors than mass and volume. 

Mauger et al. 2019 What are the associations 

between cardiovascular 

disease risk factors and the 

biventricular cardiac atlas 

morphometrics?   

A biventricular shape atlas was automatically constructed 

using contours and landmarks from 4,329 UKB CMR 

studies. A reference sub-cohort was identified consisting 

of 630 participants with no cardiovascular risk factors. 

Morphometric scores were computed using linear 

regression to quantify shape variations associated with 

high cholesterol, high blood pressure, obesity, smoking, 

DM, previous myocardial infarction and angina. 

Morphometric relationships between biventricular 

shape and cardiovascular risk factors in a large 

cohort show complex interactions between RV 

and LV morphology. These can be quantified by 

z-scores, which can be used to study the 

morphological correlates of disease. 



Bai et al. 2018 To develop automated 

methods for CMR cardiac 

chamber segmentation? 

Aa fully convolutional network was trained and evaluated 

on a 4,875 CMR studies from the UK Biobank to develop 

a fully an automated analysis method for segmentation of 

LV, RV, LA, and RA. 

The presented automated method achieves a 

performance on par with human experts in 

analysing CMR images and deriving clinically 

relevant measures. 

Sanghvi et al. 2018 What is the effect of 

menopausal hormonal 

therapy on CMR 

cardiovascular phenotypes? 

Multivariable linear regression was performed to examine 

the relationship between CMR cardiac parameters and 

menopausal hormonal therapy use ≥ 3 years in 1,604 

postmenopausal women from UKB. 

Menopausal hormonal therapy use was not 

associated with adverse, subclinical changes in 

cardiac structure and function 

Aung et al. 2018 What is the effect of 

exposure to ambient air 

pollution on CMR 

cardiovascular phenotypes? 

Multivariable linear models were built to test association 

of previous exposure to ambient air pollution on CMR 

indices of cardiac structure and function in 3,920 UKB 

participants without pre-existing cardiovascular disease. 

Higher past exposure to particulate matter with an 

aerodynamic diameter <2.5 µm and nitrogen 

dioxide was associated with cardiac ventricular 

dilatation, a marker of adverse remodelling. 

Thomson et al. 2018 What is the relationship 

between lung function and 

CMR cardiovascular 

phenotypes in individuals 

without respiratory disease? 

Multivariable linear models were built to test association 

of spirometry measures of lung function (obtained at 

baseline UKB visit) with CMR indices of cardiac structure 

and function in individuals without respiratory disease 

(n=1,406) 

This study shows that reduced FEV1 and FVC are 

associated with smaller ventricular vol- umes and 

reduced ventricular mass. The changes seen per 

standard deviation change in FEV1 and FVC are 

comparable to one decade of ageing. 



Petersen et al. 2017 What is the impact of 

classical cardiovascular risk 

factors on cardiac CMR 

phenotypes? 

 

Multivariable regression models were built to ascertain the 

association of risk factors (Age, sex, ethnicity, SBP, DBP, 

smoking status, exercise, BMI, high cholesterol, DM, 

alcohol intake) on LV, RV, LA and RA CMR parameters 

in 4,651 UKB participants. 

Modifiable risk factors are associated with 

subclinical alterations in structure and function in 

all four cardiac chambers. BMI and SBP were the 

most important factors affecting CMR parameters 

known to be linked to adverse outcomes. 

 

Supplementary Table 1 caption: AA: ascending aorta; AoD: aortic distensibility; ASI: arterial stiffness index; BMI: body mass index; CMR: cardiovascular 

magnetic resonance; DM: diabetes mellitus; EDV: end-diastolic volume; FEV1: forced expiratory volume 1; FVC: forced vital capacity; LA: left atrium; LV: 

left ventricle; LVEF: left ventricular ejection fraction; LVM: left ventricular mass; PDA: proximal descending aorta; RA: right atrium; ROI: region of 

interest; RV: right ventricle; SBP: systolic blood pressure; UKB: UK Biobank 


