The effect of lipids on the left ventricle: a Mendelian randomization study

Brief title: Lipids and the LV

Nay Aung^{*1,2,3} MRCP PhD (@NayAungMD) Mihir M. Sanghvi^{*1,2,3} MRCP (@Sanghvi_M) Stefan K. Piechnik⁴ PhD Stefan Neubauer⁴ FRCP FMedSci Patricia B. Munroe^{†1,2} PhD (@munroe_patsy) Steffen E. Petersen^{†1,2,3} FRCP DPhil (@s_e_petersen)

¹ William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.

² National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK

³ Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE UK

⁴ Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK.

* Equal contribution

† Equal contribution

Funding

Dr Aung recognizes the National Institute for Health Research (NIHR) Integrated Academic Training programme which supports his Academic Clinical Lectureship post Dr Sanghvi recognizes the National Institute for Health Research (NIHR) Integrated Academic Training programme which supports his Academic Clinical Fellowship post

Professor Piechnik acknowledges the British Heart Foundation for funding the manual analysis to create a cardiovascular magnetic resonance imaging reference standard for the UK Biobank imaging resource in 5000 CMR scans (PG/14/89/31194). Professor Piechnik is supported by the Oxford National Institute for Health Research Biomedical Research Centre and the Oxford British Heart Foundation Centre of Research Excellence. Professor Neubauer acknowledges the British Heart Foundation for funding the manual analysis to create a cardiovascular magnetic resonance imaging reference standard for the UK Biobank imaging resource in 5000 CMR scans (PG/14/89/31194). Professor Neubauer is supported by the Oxford National Institute for Health Research Biomedical Research Centre and the Oxford British Heart Foundation Centre of Research Excellence. Professor Munroe acknowledges support from the National Institute for Health Research Cardiovascular Biomedical Research Centre at Barts Oueen Mary University of London. Professor Petersen acknowledges the British Heart Foundation for funding the manual analysis to create a cardiovascular magnetic resonance imaging reference standard for the UK Biobank imaging resource in 5000 CMR scans (PG/14/89/31194). Prof. Petersen also acknowledges support from the "SmartHeart" Engineering and Physical Sciences Research Council programme grant (EP/P001009/1) and from the National Institute for Health Research (NIHR) Cardiovascular Biomedical Research Centre at Barts. He has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 825903 (euCanSHare project).

Corresponding author: Dr Nay Aung William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK

E: n.aung@qmul.ac.uk; T: +44 207 882 6902; F: +44 207 882 6903

Sample tweet:

@NayAungMD + @Sanghvi_M use Mendelian randomization to demonstrate LDL-chol and trigs may have causal effect on LV remodeling in addition to atherosclerosis.

Acknowledgments

This research has been conducted using the UK Biobank Resource under Application 2964. The authors wish to thank all UK Biobank participants and staff.

1 Abstract

2 Background

Cholesterol and triglycerides are amongst the most well-known risk factors for cardiovasculardisease.

- 5 **Objectives**
- 6 This study investigates whether higher LDL cholesterol and triglyceride levels, and lower
- 7 HDL cholesterol are causal risk factors for changes in prognostically-important left
- 8 ventricular parameters.

9 Methods

- 10 One-sample Mendelian randomization (MR) of 17,311 European individuals from the UK
- 11 Biobank with paired lipid and CMR data was performed. Two-sample MR was performed
- 12 using summary level data from the Global Lipid Genetics Consortium (n = 188,577) and UK
- 13 Biobank CMR sub-study (n = 16,923) for sensitivity analyses.

14 Results

- 15 In one-sample MR analysis, higher LDL cholesterol was causally associated with higher LV
- 16 end-diastolic volume (b = 1.85 ml, CI = 0.59 to 3.14, p = 0.004) and higher LV mass (b =
- 17 0.81 g, CI = 0.11 to 1.51, p = 0.023) and triglycerides with higher LV mass (b = 1.37 g, CI =
- 18 0.45 to 2.3, p = 0.004). HDL cholesterol had no significant association with any LV
- 19 parameter. Similar results were obtained using two-sample MR. Observational analyses were
- 20 frequently discordant with those derived from MR.

21 Conclusions

- 22 Mendelian randomization analysis demonstrates that LDL cholesterol and triglycerides are
- 23 associated with adverse changes in cardiac structure and function, in particular in relation to
- 24 LV mass. These findings suggest that LDL cholesterol and triglycerides may have a causal
- effect in influencing cardiac morphology in addition to their established role in
- 26 atherosclerosis.
- 27

28 Condensed abstract

- 29 This study investigates whether higher LDL cholesterol and triglyceride levels, and lower
- 30 HDL cholesterol are causal risk factors for changes in prognostically-important left
- 31 ventricular parameters. One-sample Mendelian randomization (MR) of 17,311 European
- 32 individuals from the UK Biobank with paired lipid and CMR data was performed. Two-
- 33 sample MR was performed using summary level data from the Global Lipid Genetics
- Consortium (n = 188,577) and UK Biobank CMR sub-study (n = 16,923). Mendelian
- 35 randomization analysis demonstrates that LDL cholesterol and triglycerides may cause
- adverse changes in cardiac structure and function, in particular in relation to LV mass.

38 Key words:

- 39 Lipids, cholesterol, mendelian randomization, cardiovascular risk, cardiac remodeling
- 40

41 Abbreviations

- 42 CMR = cardiovascular magnetic resonance
- 43 EDV = end-diastolic volume
- 44 EF = ejection fraction
- 45 GRS = genetic risk score
- 46 HDL = high-density lipoprotein
- 47 LDL = low-density lipoprotein
- 48 LV = left ventricle
- $49 \qquad MR = Mendelian randomization$
- 50 MR-PRESSO = Mendelian randomization pleiotropy residual sum and outlier

1 Introduction

2 Both the incidence and prevalence of ischemic heart disease, and its long-term 3 sequelae such as heart failure, are on the rise (1, 2). Cardiac imaging is an important and 4 widely-used tool in guiding the diagnosis and treatment of these patients (3). Left ventricular 5 parameters derived from cardiac imaging modalities such as end-diastolic volume, ejection 6 fraction and mass are known to be prognostically important with respect to subsequent major 7 adverse cardiovascular events and cardiovascular death (4, 5). Low-density lipoprotein 8 (LDL) cholesterol is one of the best publicized and most unequivocally implicated risk 9 factors in the development of ischemic heart disease; its causal involvement in atherosclerotic 10 plaque formation in the arterial system is well-elucidated (6). For triglycerides, a causal 11 relationship with cardiovascular disease has also been demonstrated (7) whilst for high-12 density lipoprotein (HDL) cholesterol, low levels are associated with increased risk of 13 cardiovascular disease but causality has not been established (8). No study, however, has 14 established the causative impact of lipids on the structure and function of the LV. 15 Mendelian randomization (MR) is an analysis methodology whereby genetic variants 16 associated with a proposed risk factor (e.g. raised LDL cholesterol) are utilized as surrogates 17 in order to make causal inferences about the effect of that exposure on an outcome of interest (i.e. left ventricular phenotypes). Given that none of the landmark randomized controlled 18 19 trials assessing the effect of statins on lipid lowering and cardiovascular outcomes included 20 cardiac imaging in their protocols, examining the association between cholesterol and left 21 ventricular parameters would traditionally be performed via an epidemiological observational 22 study. Through adopting an MR approach, however, typical biases encountered in 23 observational settings such as confounding and reverse causation are mitigated against. With

the availability of genotype and cardiovascular magnetic resonance (CMR) data from the UK

25 Biobank as well as large-scale genome wide association studies for lipids (9) and left

ventricular phenotypes (10), examining the causal relationship between lipid concentrations
 and prognostically-important and routinely-measured imaging phenotypes has been made
 possible.

This study investigates whether higher LDL cholesterol and triglycerides and lower
HDL cholesterol are causal for changes in left ventricular parameters via individual-level
instrumental variable analysis with subsequent sensitivity analysis using summary-level
genome-wide association data, in order to gain further understanding of lipids as
cardiovascular risk factors.

9 Methods

10 Study cohorts

The UK Biobank is a large population-based prospective cohort study of 500,000
individuals aged between 40 to 69 years at the time of initial recruitment between 2006 and
2010. It has collected information on health and lifestyle data, physical measurements,
biological samples, genotype, and cardiac phenotypes derived from CMR.

The overall study protocol has been described in detail previously (11), as has the
CMR protocol and reference ranges (12, 13). Genotypes called by the bespoke, closely
related UK BiLEVE Axiom and UK Biobank Axiom microarrays (Affymetrix) were imputed
using the Haplotype Reference Consortium and merged UK10K and 1000 Genomes phase 3
reference panels.

Biological samples for biochemical and genetic analysis were taken from participants
at their initial baseline visit between 2006 and 2010. CMR examinations, as part of the UK
Biobank imaging enhancement, have been performed from 2015 onwards.

This study was covered by the general ethical approval for UK Biobank studies from
the NHS National Research Ethics Service (17th June 2011 [Ref 11/NW/0382]; extended on
10th May 2016 [Ref 16/NW/0274]).

1 Lipid measurements

2	Direct LDL cholesterol serum concentration was measured by enzymatic protective
3	selection analysis on a Beckman Coulter AU5800 clinical chemistry analyzer (Beckman
4	Coulter, Brea, California, USA). For participants where direct measurements were missing,
5	LDL cholesterol concentration was derived using the Friedewald calculation as long as serum
6	triglyceride concentration was $\leq 155 \text{ mg/dL}$ (4 mmol/L) (14). Where participants had
7	indicated they used lipid-lowering medications (UK Biobank field ID 20003), LDL
8	cholesterol values were multiplied by a factor of 1.43 in order to estimate untreated LDL
9	cholesterol serum concentration (15).
10	Serum HDL cholesterol concentration was measured by the enzyme immune-
11	inhibition method and serum triglyceride concentration was measured using a series of
12	coupled enzymatic reactions, both on a Beckman Coulter AU5800 clinical chemistry
13	analyzer (Beckman Coulter).
14	Variant selection and genetic risk score construction
14 15	Variant selection and genetic risk score construction A weighted genetic risk score (GRS) for LDL cholesterol was built by using variants
14 15 16	Variant selection and genetic risk score construction A weighted genetic risk score (GRS) for LDL cholesterol was built by using variants associated with LDL cholesterol attaining genome-wide significance (p <5 x 10 ⁻⁸) reported in
14 15 16 17	Variant selection and genetic risk score constructionA weighted genetic risk score (GRS) for LDL cholesterol was built by using variantsassociated with LDL cholesterol attaining genome-wide significance (p <5 x 10 ⁻⁸) reported inthe data from the Global Lipids Genetic Consortium (GLGC) (9). Following linkage
14 15 16 17 18	Variant selection and genetic risk score constructionA weighted genetic risk score (GRS) for LDL cholesterol was built by using variantsassociated with LDL cholesterol attaining genome-wide significance (p <5 x 10-8) reported inthe data from the Global Lipids Genetic Consortium (GLGC) (9). Following linkagedisequilibrium clumping (at r ² <0.01), 101 independent variants were included in the GRS.
14 15 16 17 18 19	Variant selection and genetic risk score constructionA weighted genetic risk score (GRS) for LDL cholesterol was built by using variantsassociated with LDL cholesterol attaining genome-wide significance (p <5 x 10-8) reported inthe data from the Global Lipids Genetic Consortium (GLGC) (9). Following linkagedisequilibrium clumping (at r² <0.01), 101 independent variants were included in the GRS.Equivalent processes were performed in the same dataset for HDL cholesterol and
14 15 16 17 18 19 20	Variant selection and genetic risk score constructionA weighted genetic risk score (GRS) for LDL cholesterol was built by using variantsassociated with LDL cholesterol attaining genome-wide significance (p <5 x 10-8) reported inthe data from the Global Lipids Genetic Consortium (GLGC) (9). Following linkagedisequilibrium clumping (at r² <0.01), 101 independent variants were included in the GRS.Equivalent processes were performed in the same dataset for HDL cholesterol andtriglycerides yielding 125 and 73 variants, respectively (Supplementary Tables 1–3). The
14 15 16 17 18 19 20 21	Variant selection and genetic risk score constructionA weighted genetic risk score (GRS) for LDL cholesterol was built by using variantsassociated with LDL cholesterol attaining genome-wide significance (p <5 x 10-8) reported inthe data from the Global Lipids Genetic Consortium (GLGC) (9). Following linkagedisequilibrium clumping (at r ² <0.01), 101 independent variants were included in the GRS.Equivalent processes were performed in the same dataset for HDL cholesterol andtriglycerides yielding 125 and 73 variants, respectively (Supplementary Tables 1–3). Theweighted GRS was calculated for each UK Biobank participant of European ancestry by
14 15 16 17 18 19 20 21 22	Variant selection and genetic risk score constructionA weighted genetic risk score (GRS) for LDL cholesterol was built by using variantsassociated with LDL cholesterol attaining genome-wide significance (p <5 x 10-8) reported inthe data from the Global Lipids Genetic Consortium (GLGC) (9). Following linkagedisequilibrium clumping (at r² <0.01), 101 independent variants were included in the GRS.Equivalent processes were performed in the same dataset for HDL cholesterol andtriglycerides yielding 125 and 73 variants, respectively (Supplementary Tables 1–3). Theweighted GRS was calculated for each UK Biobank participant of European ancestry bysumming the product of the effect sizes and the number of effect alleles across all selected
14 15 16 17 18 19 20 21 22 23	Variant selection and genetic risk score constructionA weighted genetic risk score (GRS) for LDL cholesterol was built by using variantsassociated with LDL cholesterol attaining genome-wide significance (p <5 x 10-8) reported inthe data from the Global Lipids Genetic Consortium (GLGC) (9). Following linkagedisequilibrium clumping (at r ² <0.01), 101 independent variants were included in the GRS.Equivalent processes were performed in the same dataset for HDL cholesterol andtriglycerides yielding 125 and 73 variants, respectively (Supplementary Tables 1–3). Theweighted GRS was calculated for each UK Biobank participant of European ancestry bysumming the product of the effect sizes and the number of effect alleles across all selectedvariants. Variance explained by the weighted GRS was calculated by regressing the measured
14 15 16 17 18 19 20 21 22 23 24	Variant selection and genetic risk score construction A weighted genetic risk score (GRS) for LDL cholesterol was built by using variants associated with LDL cholesterol attaining genome-wide significance (p <5 x 10 ⁻⁸) reported in the data from the Global Lipids Genetic Consortium (GLGC) (9). Following linkage disequilibrium clumping (at r ² <0.01), 101 independent variants were included in the GRS. Equivalent processes were performed in the same dataset for HDL cholesterol and triglycerides yielding 125 and 73 variants, respectively (Supplementary Tables 1–3). The weighted GRS was calculated for each UK Biobank participant of European ancestry by summing the product of the effect sizes and the number of effect alleles across all selected variants. Variance explained by the weighted GRS was calculated by regressing the measured lipid values on their corresponding GRS. Correlation between the lipid genetic risk scores

1 Statistical analysis

2 Baseline data and observational analysis

Baseline data is presented in categorized fashion with participants grouped into unequal bins based on their serum LDL cholesterol percentile. To examine trend across the groups, Cuzick's extension of the Wilcoxon rank sum test was used for continuous variables whilst the chi-squared test for trend was used for ordinal variables. CMR parameters used as dependent variables were LV end-diastolic volume (LVEDV), LV mass and LV ejection fraction (LVEF). Non-European ancestries were excluded in order to improve homogeneity of the study population and align with the genetic analyses.

10 To observationally examine the association between phenotypic lipid concentration 11 on important LV parameters, multivariable linear regression models were fitted for each 12 dependent variable. Co-variates included age at recruitment, sex, log-transformed body mass 13 index (BMI), body surface area (BSA, calculated via Dubois and Dubois equation), systolic 14 blood pressure adjusted for anti-hypertensive medication use (by adding 15mmHg) (16), 15 physical activity as determined by log-transformed total metabolic equivalent of task (MET) 16 minutes per week, smoking status, log-transformed glycated hemoglobin (HbA1c) and 17 presence of cardiovascular disease (defined as participants diagnosed or reporting myocardial 18 infarction, angina, heart failure, arrhythmias [including atrial fibrillation], cardiomyopathy, 19 stroke or peripheral vascular disease).

20 Instrumental variable analysis

MR was performed using the two-stage least squares method (one-sample MR) as implemented in the R package "ivpack". We included age, sex, BSA and the first five genetic principal components as covariates. Data are presented as the change in LV phenotype per 39 mg/dL (1 mmol/L) increment in lifetime LDL cholesterol and HDL cholesterol exposure and per 89 mg/dL (1 mmol/L) in lifetime triglyceride exposure. Significant causal associations

1 between each lipid GRS and the LV phenotype were additionally tested for the presence of an 2 *independent* effect by including all three lipid genetic risk scores in the regression model. We 3 assessed the presence of weak instrument bias (also known as violation of *relevance* 4 assumption in MR) by calculating the F-statistic from the linear regression between GRS and 5 LV phenotype. The Durbin-Wu-Hausman test of regressor endogeneity was performed to 6 assess the consistency of the estimate of LV parameter change provided by the instrumental 7 variable analysis compared to the observational analysis. Statistical power of instrumental 8 variable analysis was estimated according to the method proposed by Brion (17). At our 9 available sample size of ~17,000 individuals, our one-sample MR analyses were powered at 10 80% (alpha=0.05) to detect the minimum effect sizes of 0.39 to 0.53 ml for LVEDV, 0.16 11 to 0.24% for LVEF and 0.31 to 0.45 g for LV mass (Supplementary Figure 1).

12 Sensitivity analyses

13 As sensitivity analysis to examine the potential causal relationship between serum lipids and prognostically-important LV parameters, two-sample MR with summary-level 14 15 genome-wide association data from the GLGC (n = 188,577) (9) and UK Biobank CMR substudy (n = 16,923) (10) was performed. An MR effect estimate for each LV parameter was 16 17 calculated by the inverse variance-weighted method with robust penalized regression to minimize the influence of genetic variants with outlying ratio estimates (18). Two-sample 18 19 MR effect sizes are presented as the change in LV parameter per one standard deviation 20 increase in LDL cholesterol (34 mg/dL [0.87 mmol/L]), HDL cholesterol (15 mg/dL [0.38 21 mmol/L]) and triglycerides (90 mg/dL [1.02 mmol/L]) respectively.

Additionally, we used the robust penalized MR-Egger, weighted median and weighted mode methods to evaluate the validity of genetic instruments (18, 19). We assessed the presence of directional horizontal pleiotropy by conducting the MR-Egger intercept test for which a p value <0.1 was considered as evidence of pleiotropic bias (20). We also

conducted the MR pleiotropy residual sum and outlier (MR-PRESSO) for further evaluation
of horizontal pleiotropy. This test applies three procedures: (i) detection of horizontal
pleiotropy with the global test; (ii) correction for horizontal pleiotropy by outlier removal
known as the outlier test; and (iii) assessing significant differences in the causal estimates
before and after correction for outliers using the distortion test. Additionally, we conducted
multivariable MR in order to establish the potential causal effect on LV parameters
independent of the effects of the other lipid fractions (21).

8 As further sensitivity analysis, we performed one-sample MR following additional 9 adjustment for all co-variates (age at recruitment, sex, BMI, BSA, systolic blood pressure 10 adjusted for anti-hypertensive medication use, physical activity, smoking status, HbA1c and 11 presence of cardiovascular disease). We built models examining the association between lipid 12 parameters and LV phenotypes using both phenotypic and genetically-determined lipid levels 13 as co-variates to examine any attenuation effect. We also interrogated the GWAS Catalog 14 database to identify the variants included in the lipid GRSs which were associated with other 15 lipid and non-lipid traits at a genome-wide significance level. We manually examined this list 16 and excluded the variants associated with traits (e.g. cardiovascular disease, cardiovascular 17 risk factors) which might influence LV remodeling (Appendix 1) and performed the analysis using a restricted GRS. 18

We investigated the direction of causality by the MR-Steiger test which is based on
the absolute correlations of the genetic variants with the exposure and outcome. The twosample MR analyses were conducted using the "MendelianRandomization" and
"TwoSampleMR" R packages.

23 Statin effect

To examine whether statin use modified the relationship of phenotypic (measured)
LDL cholesterol and the LDL GRS, interaction analysis was performed using "statin use x

standardized genetic risk score" as an interaction term. For this analysis, we used the LDL
cholesterol measurements unadjusted for statin use. We also investigated the effect
modification by statin therapy on the association between the LDL GRS and LV parameters.
The causal effects were considered significant only if supported by both one-sample
and two-sample MR analyses at p < 0.05. All analyses were conducted in the R (3.6.0)
statistical computing environment.

7 **Results**

Demographic and clinical characteristics of study participants, as well as median 8 9 CMR parameter values, are outlined in Table 1. There were 436,064 individuals for whom cholesterol data was available; of these, 17,311 had CMR examinations. Individuals in the 10 11 top decile for phenotypic LDL cholesterol were older, predominantly female and had higher 12 BMI, blood pressure and HbA1c measurements. The variances in lipid measurements 13 explained by the corresponding genetic risk scores were 10.8% (F-statistic = 2492), 7.3% (F-14 statistic = 1811), and 5.0% (F-statistic = 925) for LDL cholesterol, HDL cholesterol and triglycerides, respectively. Large F-statistic values (>10) indicated that the MR analyses were 15 16 unlikely to be affected by the weak instrument bias. The strength of correlations between lipid genetic risk scores was low (Pearson's r 0.1 to -0.26, p > 0.1, Supplementary Figure 2). 17

18 LDL cholesterol

19 In observational analysis (Table 2, Figure 1/Central Illustration), a 39 mg/dL (1 mmol/L) increase in LDL cholesterol levels were associated with lower LVEDV (b = -2.4420 21 ml, confidence interval [CI] = -2.91 to -1.97, p < 0.0001), lower LV mass (b = -0.64 g, CI = -0.9 to -0.38, p <0.0001) and higher LVEF (b = 0.13%, CI = 0.01 to 0.24, p = 0.03). In 22 contrast, in one-sample MR analysis, a 39 mg/dL (1 mmol/L) increase in lifetime LDL 23 cholesterol exposure was associated with higher LVEDV (b = 1.85 ml, CI = 0.59 to 3.14, p =24 25 0.004), higher LV mass (b = 0.81 g, CI = 0.11 to 1.51, p = 0.023); there was no significant 26 change in ejection fraction. Analyses controlling for HDL and triglycerides genetic

1	instruments did not change the significant results (Supplementary Table 4) indicating that the
2	causal relationships between LDL cholesterol and LVEDV and LV mass were robust to
3	confounding from other lipid fractions. One sample-MR was additionally performed
4	following adjustment for all co-variates and yielded similar results (these are detailed, along
5	with results for HDL and triglycerides, in Supplementary Table 5). Models examining the
6	association between LV parameters and genetically determined lipid levels where phenotypic
7	lipid levels were included as a co-variate demonstrated no significant attenuation of these
8	associations indicating an independent effect (Supplementary Table 6). Sensitivity analysis
9	performed using a restricted list of variants in the GRS following exclusion of potentially
10	pleiotropic variants (69, 81 and 50 variants remained for LDL, HDL and triglycerides,
11	respectively) yielded concordant results to the primary analysis (Supplementary Table 7).
12	In sensitivity analysis using two-sample MR (Table 3, Figure 1/Central Illustration),
13	concordant associations were noted for LVEDV (inverse-variance weighted [IVW] b = 1.62
14	ml, CI 0.32 to 2.91, p = 0.014) and LV mass (IVW b = 0.66 g, CI 0.1 to 1.22, p = 0.021).
15	Again, there was no association demonstrated for LVEF. These results were also confirmed
16	using multivariable MR (Supplementary Table 8). Based on Egger intercept p-values, no
17	directional horizontal pleiotropy was detected. Sensitivity analyses by MR-Egger, weighted
18	median and weighted mode methods produced associations with concordant effect directions
19	although the confidence intervals were much wider, as expected (Supplementary Table 9 and
20	Supplementary Figure 3). The MR-PRESSO method found evidence of horizontal pleiotropy
21	for the association between LDL cholesterol and LVEDV but upon removal of outlier
22	variants, the effect estimates were not significantly changed as per the distortion tests
23	(Supplementary Table 10). The MR-Steiger test suggested that the assumption of causal
24	directionality for the relationships between the LDL GRS and the LV parameters was correct
25	(Supplementary Table 11).

1 HDL cholesterol

2	In multivariate analysis, higher phenotypic HDL cholesterol levels were associated
3	with higher LVEDV (b = 8.27 ml, CI = 7 to 9.53, p < 0.0001) and higher LV mass (b = 1.34
4	g, CI = 0.64 to 2.04, $p = 0.0002$) with no association with LVEF. Associations demonstrated
5	in observational analysis were not borne out in one-sample MR analysis with no association
6	demonstrated between genetically higher lifetime exposure to HDL cholesterol and changes
7	in LVEDV, LVEF or LV mass. This was further demonstrated using summary data in two-
8	sample MR (Table 3, Figure 1/Central Illustration). These results were reproduced in
9	sensitivity analyses with MR-Egger, weighted median and weighted mode methods
10	(Supplementary Table 9 and Supplementary Figure 4).
11	Triglycerides
12	Examining the effect of triglycerides on CMR parameters, observational analysis
13	indicated that an 89 mg/dL (1 mmol/L) increase in triglyceride concentration was associated
14	with lower LVEDV (b = -3.98 ml, CI = -4.4 to -3.55, p <0.0001), higher LVEF (b = 0.12% ,
15	CI = 0.02 to 0.22, p = 0.024) and lower LV mass (b = -0.65 g, CI = -0.89 to -0.42, p =
16	<0.0001). One-sample MR analysis demonstrated that there was no association with changes
17	in LVEDV but an 89 mg/dL (1 mmol/L) increase in lifetime triglyceride exposure yielded a
18	reduction in LVEF (b = -0.52%, CI = -0.92 to -0.13, p = 0.011) and higher LV mass (b = 1.37)
19	g, $CI = 0.45$ to 2.3, $p = 0.004$). Additional adjustment for HDL and triglycerides genetic
20	instruments produced similar results (Supplementary Table 4). Sensitivity analysis performed
21	using a restricted list of variants in the GRS following exclusion of potentially pleiotropic
22	variants yielded concordant results to the primary analysis (Supplementary Table 7).
23	Two-sample MR sensitivity analysis demonstrated no significant association between
24	triglyceride concentration and LVEDV or LVEF; it showed concordant results for LV mass
25	(IVW b = 0.61 g, CI 0.04 to 1.18, $p = 0.036$). Similar results were observed in multivariable

1 MR analysis (Supplementary Table 8). There was evidence of horizontal pleiotropy for the 2 association between triglycerides and LVEDV but removal of the outlier variants did not 3 significantly change the effect estimates as indicated by the distortion tests (Supplementary 4 Table 10). Sensitivity analysis examining the association of triglycerides and LV mass using 5 MR-Egger, weighted median and weighted mode methods did not reach significance due to 6 wider confidence interval although they showed concordant effect directions (Supplementary 7 Table 9 and Supplementary Figure 5). The assessment of causal directionality using the MR 8 Steiger test supported what this study's hypothesis has proposed (Supplementary Table 11).

9 Statin usage

10 To ascertain the effect of statin usage, the relationship between measured 11 (phenotypic) LDL cholesterol and the standardized genetic risk score for LDL cholesterol 12 was examined based on whether an individual was a statin user or not. Statin use significantly 13 modified (p for interaction <0.0001) the relationship between measured (phenotypic) LDL 14 cholesterol and the standardized genetic risk score for LDL cholesterol with statin users 15 exhibiting a reduced measured LDL cholesterol for a given degree of genetic risk (Figure 16 2A). As demonstrated in Figure 2B, as genetic risk score percentile group increases, the 17 relative increase in measured LDL cholesterol is greater in each group in non-statin users, compared to statin users. Examination of the effect modification of statin therapy on the 18 19 relationships between genetically determined LDL and LV parameters did not yield any 20 significant results (Supplementary Table 12).

21 Discussion

This study is the first to conduct MR analyses to examine the effect of lipids in the development of changes in prognostically-important LV parameters. Using instrumental variable analysis in 17,311 individuals with paired genotype and CMR data with subsequent sensitivity analysis using summary-level data, we demonstrate an association between

increased LDL cholesterol and higher LVEDV and LV mass, triglycerides with higher LV
 mass whilst HDL cholesterol does not result in any significant alterations in LV structure and
 function. Importantly, results derived from observational analysis were frequently discordant
 from those obtained via MR.

5 Lipids as a risk factor: beyond atherosclerosis

6 The substantial body of evidence indicating a continuous, positive and graded 7 relationship between LDL cholesterol and cardiovascular mortality make cholesterol 8 measurement and prescription of lipid-lowering therapy a cornerstone of primary and 9 secondary prevention in cardiovascular disease (22). Left ventricular remodeling is a clinical 10 characterization of the development and progression of morphological changes in the LV that 11 result in ventricular dysfunction (23). These morphological changes have been shown to 12 occur in association with exposure to other important risk factors, such as hypertension (24) 13 or raised body mass index (25), and are frequently subclinical – present prior to any discrete 14 clinical event.

15 In this study, MR analysis demonstrates that both LDL cholesterol and triglycerides 16 have a potentially causal association with increased LV mass. The importance of LV mass as 17 a biomarker in cardiovascular disease is demonstrated in studies where therapeutic interventions that result in a reduction in LV mass have decreased the number of 18 19 cardiovascular events (26). Importantly, raised LV mass has also been shown to increase the 20 risk of incident heart failure even in patients free of known ischemic heart disease or previous 21 myocardial infarction – conditions which are atherosclerosis-driven (27). With LDL 22 cholesterol and triglycerides appearing to be causative of myocardial remodeling by 23 increasing LV mass, it suggests that they influence the development of cardiovascular disease not only by atherosclerosis but also by causing adverse alterations in cardiac structure and 24 function. 25

1 An insight into the potential mechanistic pathways by which lipids might generate 2 these alterations can be gleaned from work examining the pleiotropic effects of statins on the 3 mevalonate pathway. The mevalonate pathway is an ubiquitous, negative feedback-controlled 4 pathway responsible for cholesterol synthesis; statins act to inhibit cholesterol synthesis by 5 preventing conversion of HMG-CoA to mevalonate. However, since mevalonate is not the 6 immediate precursor of cholesterol and also acts as a precursor for several other molecules, 7 its inhibition leads to pleiotropic effects being observed, particularly through inhibition of 8 synthesis of isoprenoid intermediates of the mevalonate pathway such as 9 farnesylpyrophosphate and geranylgernanylphosphate. An important function of these 10 isoprenoids is the post-translational modification of many GTP-binding proteins of the Rho 11 family (28) of signaling proteins. Rho proteins have been shown to mediate the development 12 of cardiac hypertrophy via a number of mechanisms (29). For example, RhoA is involved in 13 formation of actin stress fibers and focal adhesion complexes through Rho kinase activation 14 and myosin light chain phosphorylation (30). Rac1 and Cdc42 regulate actin cytoskeletal 15 processes called lamellipodia and filopodia, which are thought to contribute to morphological 16 changes associated with LV hypertrophy (31, 32). Additionally, Rho proteins may regulate 17 the hypertrophic process by activating downstream signaling molecules such as mitogenactivated protein (MAP) kinases (33). Additional work examining non-hypercholesterolemic 18 19 transgenic rabbit models of hypertrophic cardiomyopathy demonstrated that simvastatin 20 administration was associated with regression of cardiac hypertrophy and improvement of 21 LV filling pressures (34). If lipid-lowering therapy has been shown to alter cardiac 22 phenotypes, it is possible that the reverse effect may be true with increased cholesterol 23 exposure.

A further aspect of this study is heightening the importance of raised serum
triglycerides as a cardiovascular risk factor. Despite previous contention, triglycerides have

1 emerged as a recognized causal risk factor (7). Current American guidelines recommend 2 intervention when triglycerides are >150 mg/dL (>1.7 mmol/L) (35) and European guidelines 3 recommend the use of pharmacotherapy when triglycerides are >200 mg/dL (2.3 mmol/L) in 4 high risk patients and when lifestyle measures have failed (36). By way of illustration, 40% 5 of our cohort had a serum triglyceride measurement >150 mg/dL (1.7 mmol/L). Along with 6 the recent data published by the REDUCE-IT investigators (37, 38), this study provides 7 further evidence of the importance of triglycerides as a cardiovascular risk factor and perhaps 8 will help in establishing a role for triglyceride reduction in a broader group of patients. In 9 contrast, our findings of a lack of association with any LV remodeling parameter agree with 10 the current narrative of HDL cholesterol not being associated with cardiovascular outcomes.

11 Observational analysis vs MR

12 A particularly interesting feature of this study is the discordance between the results produced from observational analysis compared to those derived from a MR approach. As 13 14 examples, after adjusting for potential confounders, LDL cholesterol was shown to be 15 observationally associated with significantly lower end-diastolic volume and LV mass. 16 However, the directionality of association was reversed in one-sample and two-sample MR. 17 Moreover, observationally HDL cholesterol was associated with higher end-diastolic volume 18 and mass whereas no significant association was demonstrated using MR. The MR approach 19 has gained much traction due its ability to permit experimental analysis free from the biases common to observational approaches. The results outlined above are tacit in highlighting the 20 21 limitations of observational methods. Of particular note are the observational results for LDL 22 cholesterol which prima facie suggest higher serum concentrations to be associated with 23 ameliorative changes in the LV. This is in contrast to previous cross-sectional studies which have suggested adverse remodeling changes in association with non-HDL cholesterol and 24 25 total cholesterol, respectively (39, 40). That this study, particularly with its large sample size

1 (n = 17,311), would deliver contrasting results in terms of both the previous literature and 2 biological expectation is surprising. However, it may be instructive in characterizing a further 3 challenge as biobank-based research becomes more common. As the degree of phenotyping 4 undertaken by biobanks becomes more extensive, the temporal gap between different 5 assessments will grow. For example, in this study, biochemistry samples for lipid 6 quantification were drawn between 2006 and 2010 whereas CMR examinations have taken 7 place since 2015. The observational analysis, therefore, is not strictly cross-sectional and it is 8 possible that the LDL cholesterol results were confounded by modulating factors which 9 occurred between the two time points. One particular and relevant confounding intervention 10 would be the introduction/continuation of statin therapy during the period before CMR 11 examination. Whilst it was reassuring that examination of the relationship of measured LDL 12 and genetically-determined LDL demonstrated that statin use was consistently associated 13 with relatively lower phenotypic LDL across the genetic LDL risk score range, a natural 14 extension of this study would have been to investigate whether statins conferred any 15 beneficial effect on LV parameters. Our examination of the effect modification by statin 16 therapy on the association between the LDL GRS and LV parameters did not yield any 17 significant results. However, a significant limitation is that data regarding commencement, duration, dosage and dosage change of pharmacological therapy (statins included) is not 18 19 available in the UK Biobank.

20 Strengths and limitations

There are a number of strengths to this work, the first to investigate the potentially
causal relationship between routinely measured lipid fractions and prognostically-important
LV parameters. Firstly, the effect estimates for building the genetic risk scores for LDL
cholesterol, HDL cholesterol and triglycerides were taken from an independent dataset
(GLGC) which is one of the largest of its kind and has helped avoid circular inferences or

overestimation in our results. Secondly, this study has sufficient sample size as confirmed by
 power calculations performed *a priori* to its commencement. Finally, both one-sample and
 two-sample MR have been performed, providing an additional level of confidence
 concerning the results provided.

5 In addition to the lack of pharmacotherapy data explained above, whilst supporting 6 data providing mechanistic insights has been outlined, this study is unable to determine the 7 specific molecular mechanism(s) for the potentially causal relationship between LDL 8 cholesterol and triglycerides and alterations in LV parameters, although it is hoped that the 9 findings presented may prompt further basic science investigations. Additional limitations 10 mostly pertain to the MR technique. It is acknowledged that MR assumptions of 11 independence and exclusion restriction cannot be fully tested nor can residual horizontal 12 pleiotropy be fully ruled out. However, as described, the MR-Egger intercepts did not deviate 13 significantly from the origin. Bidirectional MR was not performed to determine whether LV 14 genetic risk scores are causally associated with alterations in lipid measurements; this was 15 because of the limited number of significant genome-wide variants for LV parameters. 16 Nevertheless, MR-Steiger results suggested that assumptions of causal directionality were 17 accurate. Finally, our study was restricted to Europeans because of the limited number of 18 non-European participants in our CMR data. Thus, the insights gained cannot be extended to 19 other ancestries. This limitation is likely be overcome in the near future by the ongoing UK 20 Biobank CMR study with a target sample size of 100,000, as well as through collaboration 21 with other maturing national biobanks, which will increase available data for other ethnicities. 22

23 Conclusion

By performing Mendelian randomization this study has investigated the association
between lipids and CMR parameters. It provides evidence that exposure to higher levels of

LDL cholesterol and triglycerides are associated with changes in the left ventricle known to
 portend adverse prognosis. It improves our understanding of serum lipids as a risk factor for
 cardiovascular disease by demonstrating evidence of direct impact on cardiac structure and
 function.

1 Perspectives

2	Competency in medical knowledge 1: Mendelian randomization can be used as an approach
3	to infer causation in situations were randomized control trials are unable to be performed.
4	Competency in medical knowledge 2: Mendelian randomization can overcome biases
5	observed in observational studies. This is highlighted in this study where observational data
6	and MR data for LDL cholesterol show discordant effects on LV phenotypes.
7	Translational Outlook 1: The role of lipids as a cardiovascular risk factor may extend further
8	than their effects on atherogenesis to directly impacted on prognostically-important LV
9	phenotypes.

References

1. Sanchis-Gomar F, Perez-Quilis C, Leischik R, Lucia A. Epidemiology of coronary heart disease and acute coronary syndrome. Ann. Transl. Med. 2016;4:256.

2. Roger VL. Epidemiology of heart failure. Circ. Res. 2013;113:646-59.

3. Fraser AG, Buser PT, Bax JJ, et al. The future of cardiovascular imaging and non-invasive diagnosis: A joint statement from the European Association of Echocardiography, the Working Groups on Cardiovascular Magnetic Resonance, Computers in Cardiology, and Nuclear Cardiology, of the European. Eur. Heart J. 2006;27:1750–1753.

4. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N. Engl. J. Med. 1990;322:1561–6.

5. Konstam MA, Kramer DG, Patel AR, Maron MS, Udelson JE. Left Ventricular Remodeling in Heart Failure. JACC Cardiovasc. Imaging 2011;4:98–108.

6. Pekkanen J, Linn S, Heiss G, et al. Ten-year mortality from cardiovascular disease in relation to cholesterol level among men with and without preexisting cardiovascular disease.
N. Engl. J. Med. 1990;322:1700–7.

7. Rosenson RS, Davidson MH, Hirsh BJ, Kathiresan S, Gaudet D. Genetics and causality of triglyceride-rich lipoproteins in atherosclerotic cardiovascular disease. J. Am. Coll. Cardiol. 2014;64:2525–40.

Rosenson RS. Low HDL-C: a secondary target of dyslipidemia therapy. Am. J. Med.
 2005;118:1067–77.

9. Willer CJ, Schmidt EM, Sengupta S, et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 2013;45:1274–1283.

10. Aung N, Vargas JD, Yang C, et al. Genome-Wide Analysis of Left Ventricular Image-Derived Phenotypes Identifies Fourteen Loci Associated With Cardiac Morphogenesis and Heart Failure Development. Circulation 2019;140:1318–1330.

 Sudlow C, Gallacher J, Allen N, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12:e1001779.

12. Petersen SE, Aung N, Sanghvi MM, et al. Reference ranges for cardiac structure and function using cardiovascular magnetic resonance (CMR) in Caucasians from the UK Biobank population cohort. J. Cardiovasc. Magn. Reson. 2017;19:18.

13. Petersen SE, Sanghvi MM, Aung N, et al. The impact of cardiovascular risk factors on cardiac structure and function: Insights from the UK Biobank imaging enhancement study Fukumoto Y, editor. PLoS One 2017;12:e0185114.

14. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972;18:499–502.

15. Jones PH, Davidson MH, Stein EA, et al. Comparison of the efficacy and safety of rosuvastatin versus atorvastatin, simvastatin, and pravastatin across doses (STELLAR* Trial). Am. J. Cardiol. 2003;92:152–60.

 Tobin MD, Sheehan NA, Scurrah KJ, Burton PR. Adjusting for treatment effects in studies of quantitative traits: antihypertensive therapy and systolic blood pressure. Stat. Med. 2005;24:2911–2935.

17. Brion M-JA, Shakhbazov K, Visscher PM. Calculating statistical power in Mendelian randomization studies. Int. J. Epidemiol. 2013;42:1497–1501.

18. Burgess S, Bowden J, Dudbridge F, Thompson SG. Robust instrumental variable methods using multiple candidate instruments with application to Mendelian randomization. 2016.
19. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet.

Epidemiol. 2016;40:304–314.

20. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 2015;44:512–525.

21. Burgess S, Thompson SG. Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects. Am. J. Epidemiol. 2015;181:251–260.

22. Ford I, Murray H, McCowan C, Packard CJ. Long-Term Safety and Efficacy of Lowering Low-Density Lipoprotein Cholesterol With Statin Therapy: 20-Year Follow-Up of West of Scotland Coronary Prevention Study. Circulation 2016;133:1073–80.

23. Azevedo PS, Polegato BF, Minicucci MF, Paiva SAR, Zornoff LAM. CardiacRemodeling: Concepts, Clinical Impact, Pathophysiological Mechanisms and PharmacologicTreatment. Arq. Bras. Cardiol. 2016;106:62–9.

24. Maceira AM, Mohiaddin RH. Cardiovascular magnetic resonance in systemic hypertension. J. Cardiovasc. Magn. Reson. 2012;14:28.

25. Rider OJ, Lewandowski A, Nethononda R, et al. Gender-specific differences in left ventricular remodelling in obesity: insights from cardiovascular magnetic resonance imaging. Eur. Heart J. 2013;34:292–299.

26. Devereux RB, Wachtell K, Gerdts E, et al. Prognostic Significance of Left Ventricular Mass Change During Treatment of Hypertension. JAMA 2004;292:2350.

27. Bluemke DA, Kronmal RA, Lima JAC, et al. The relationship of left ventricular mass and geometry to incident cardiovascular events: the MESA (Multi-Ethnic Study of Atherosclerosis) study. J. Am. Coll. Cardiol. 2008;52:2148–55.

28. Casey PJ. Protein lipidation in cell signaling. Science 1995;268:221-225.

29. Takemoto M, Node K, Nakagami H, et al. Statins as antioxidant therapy for preventing cardiac myocyte hypertrophy. J. Clin. Invest. 2001;108:1429–1437.

30. Kimura K, Ito M, Amano M, et al. Regulation of myosin phosphatase by Rho and Rhoassociated kinase (Rho-kinase). Science 1996;273:245–248.

31. Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 1992;70:401–410.

32. Nobes CD, Hall A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 1995;81:53–62.

33. Sah VP, Hoshijima M, Chien KR, Brown JH. Rho is required for Galphaq and alpha1adrenergic receptor signaling in cardiomyocytes. Dissociation of Ras and Rho pathways. J. Biol. Chem. 1996;271:31185–31190.

34. Patel R, Nagueh SF, Tsybouleva N, et al. Simvastatin induces regression of cardiac hypertrophy and fibrosis and improves cardiac function in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation 2001;104:317–324.

35. Grundy SM, Stone NJ, Bailey AL, et al. 2018

AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines [published correction appears in J Am Coll Cardiol. 2019 Jun 25;73(24):3237-3241]. J Am Coll Cardiol. 2019;73(24):e285-e350.

36. Catapano AL, Graham I, De Backer G, et al. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. Eur. Heart J. 2016;37:2999–3058.

37. Bhatt DL, Steg PG, Miller M, et al. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N. Engl. J. Med. 2019;380:11–22.

38. Bhatt DL, Steg PG, Miller M, et al. Effects of Icosapent Ethyl on Total Ischemic Events.J. Am. Coll. Cardiol. 2019;73:2791–2802.

39. Schillaci G, Vaudo G, Reboldi G, et al. High-density lipoprotein cholesterol and left ventricular hypertrophy in essential hypertension. J. Hypertens. 2001;19:2265–70.
40. Celentano A, Crivaro M, Roman MJ, et al. Left ventricular geometry and arterial function in hypercholesterolemia. Nutr. Metab. Cardiovasc. Dis. 2001;11:312–9.

Figures

Figure 1 (Central Illustration):

Title: Change in LV parameter by lipid fraction in observational, one-sample MR and two-sample MR analysis.

Caption: There is a potentially causal association between increased LDL-cholesterol and higher LV end-diastolic volume and LV mass, and triglycerides with higher LV mass whilst HDL cholesterol does not result in any significant alterations in LV structure and function. Observational data is presented as change in LV parameter per 39 mg/dL (1 mmol/L) in LDL and HDL cholesterol and 89 mg/dL in triglycerides. One-sample Mendelian randomization (MR) data is presented as change in LV parameter per 39 mg/dL (1 mmol/L) for LDL and HDL cholesterol and 89 mg/dL for triglyceride increase in lifetime lipid parameter exposure. For two-sample MR, data is presented as the change in LV parameter per one standard deviation increase in LDL cholesterol (34 mg/dL [0.87 mmol/L]), HDL cholesterol (15 mg/dL [0.38 mmol/L]) and triglycerides (90 mg/dL [1.02 mmol/L]) respectively.

Figure 2:

Title: Relationship between genetic risk score for LDL cholesterol and phenotypic LDL cholesterol by statin usage.

Caption: Figure 2A: Statin use significantly modifies (p for interaction <0.0001) the relationship between measured (phenotypic) LDL cholesterol and the standardized genetic risk score for LDL cholesterol with statin users exhibiting a reduced measured LDL cholesterol for a given degree of genetic risk.

Figure 2B: As genetic risk score percentile group increases, the relative increase in measured LDL cholesterol is greater in each group in non-statin users, compared to statin users.

Table 1: Demographic data

Variable	Percentile group by serum LDL cholesterol concentration					
	0% - 50%	51% - 75%	76% - 90%	91% - 95%	96% - 100%	·
n	215845	109763	66350	22204	21902	-
LDL cholesterol* (mg/dL)	115 (20)	146 (19)	165 (22)	181 (25)	200 (33)	< 0.001
HDL cholesterol* (mg/dL)	56 (15)	56 (14)	56 (13)	57 (13)	57 (13)	< 0.001
Triglycerides* (mg/dL)	132 (82)	164 (89)	181 (93)	195 (96)	210 (101)	< 0.001
Age (years)*	55.5 (8.4)	57.6 (7.6)	58.1 (7.3)	58.4 (7.1)	59.0 (6.9)	<0.001
Male (%)	99700 (46.2)	51742 (47.1)	29740 (44.8)	9482 (42.7)	8721 (39.8)	< 0.001
Caucasian (%)	215845 (100.0)	109763 (100.0)	66350 (100.0)	22204 (100.0)	21902 (100.0)	
BMI [†] (kg/m ²)	26.1 [23.5, 29.3]	27.0 [24.5, 30.1]	27.4 [24.9, 30.4]	27.5 [25.1, 30.3]	27.7 [25.3, 30.7]	< 0.001
Systolic BP [†] (mmHg)	133 [123, 147]	138 [127, 151]	140 [128, 152]	141 [129, 154]	142 [130, 155]	< 0.001
On lipid-lowering medication (%)	31602 (14.6)	19081 (17.4)	13273 (20.0)	5286 (23.8)	8411 (38.4)	< 0.001
On anti-hypertensive medications (%)	47173 (21.9)	25262 (23.0)	15148 (22.8)	5071 (22.8)	5691 (26.0)	< 0.001
Diabetes mellitus (%)	13365 (6.2)	4424 (4.0)	2267 (3.4)	736 (3.3)	983 (4.5)	< 0.001
HbA1c [†] (mmol/mol)	34.6 [32.1, 37.3]	35.3 [33.0, 37.9]	35.7 [33.5, 38.1]	36.1 [33.8, 38.5]	36.4 [34.1, 38.9]	< 0.001
CMR parameters (n=17311)						
LV EDV [†] (ml)	146 [126, 171]	144 [123, 170]	142 [122, 167]	141 [120, 166]	139 [119, 161]	< 0.001
$LV ESV^{\dagger}$ (ml)	59 [49, 72]	58 [47, 72]	57 [46, 70]	56 [45, 68]	55 [44, 68]	< 0.001
LV EF [†] (%)	59 [55, 63]	59 [56, 63]	60 [56, 64]	60 [56, 64]	60 [56, 63]	< 0.001
$LV \text{ mass}^{\dagger}(g)$	82 [69, 101]	84 [69, 103]	85 [70, 103]	83 [69, 101]	86 [69, 102]	0.015

* Denotes data presented as mean (standard deviation); † denotes data presented as median [interquartile range]; LDL = low-density lipoprotein, HDL = high-density lipoprotein, BMI = body mass index, BSA = body surface area, BP = blood pressure, LV = left ventricular, EDV = end-diastolic volume, ESV = end-systolic volume, EF = ejection fraction

Lipid parameter	Phenotype	Observational effect size	Observational 95% CI	Observational p-value	MR effect size	MR 95% CI	MR p-value	Durbin-Wu -Hausman p-value	F-statistic
	LV EDV (ml)	-2.44	-2.91 to -1.97	< 0.0001	1.85	0.59 to 3.14	0.004	< 0.0001	2492.0
LDL Cholesterol	LV EF (%)	0.13	0.01 to 0.24	0.03	0.04	-0.26 to 0.34	0.8	0.22	2492.0
	LV mass (g)	-0.64	-0.90 to -0.38	< 0.0001	0.81	0.11 to 1.51	0.023	0.0005	2492.0
	LV EDV (ml)	8.27	7.0 to 9.53	<0.0001	3.48	-0.15 to 7.08	0.056	<0.0001	1811.2
HDL Cholesterol	LV EF (%)	0.04	-0.27 to 0.35	0.806	0.43	-0.43 to 1.3	0.312	0.403	1811.2
	LV mass (g)	1.34	0.64 to 2.04	0.0002	0.11	-1.91 to 2.13	0.914	0.076	1811.2
	LV EDV (ml)	-3.98	-4.4 to -3.55	< 0.0001	-0.54	-2.17 to 1.12	0.517	< 0.0001	925.1
Triglycerides	LV EF (%)	0.12	0.02 to 0.22	0.024	-0.52	-0.92 to -0.13	0.011	0.0003	925.1
	LV mass (g)	-0.65	-0.89 to -0.42	< 0.0001	1.37	0.45 to 2.3	0.004	0.0002	925.1

Table 2: Effect of phenotypic and genetically-determined lipid levels on LV parameters

Observational data is adjusted for age at recruitment, sex, BMI, BSA, systolic blood pressure adjusted for anti-hypertensive medication use, physical activity, smoking status, HbA1c and presence of cardiovascular disease; data is presented for change in LV parameter per 39 mg/dL (1 mmol/L) in LDL and HDL cholesterol and 89 mg/dL in triglycerides.

One-sample Mendelian randomization (MR) data is adjusted for age, sex, BSA and the first five principal components and data is presented as change in LV parameter per 39 mg/dL (1 mmol/L) for LDL and HDL cholesterol and 89 mg/dL for triglyceride increase in lifetime lipid parameter exposure

Lipid parameter	Phenotype	IVW effect size	IVW confidence interval	IVW p-value	Egger intercept	Egger intercept p-value
	LV EDV (ml)	1.62	0.32 to 2.91	0.014	-0.023	0.655
LDL Cholesterol	LV EF (%)	0.04	-0.17 to 0.25	0.705	-0.007	0.490
	LV mass (g)	0.66	0.1 to 1.22	0.021	0.024	0.368
	LV EDV (ml)	1.16	-0.07 to 2.39	0.065	0.013	0.820
HDL Cholesterol	LV EF (%)	0.18	-0.08 to 0.44	0.184	-0.003	0.812
	LV mass (g)	0.32	-0.26 to 0.89	0.279	-0.029	0.296
	LV EDV (ml)	-0.43	-1.73 to 0.86	0.512	-0.039	0.504
Triglycerides	LV EF (%)	-0.30	-0.66 to 0.06	0.106	-0.002	0.889
	LV mass (g)	0.61	0.04 to 1.18	0.036	0.034	0.188

Table 3: Two-sample Mendelian randomization analysis using summary level data

For two-sample MR the change in LV parameter reflects an increase per 34 mg/dL (0.87 mmol/L) 15 mg/dL (0.38 mmol/L) and 90 mg/dL (1.02 mmol/L) increase in LDL cholesterol, HDL cholesterol and triglycerides, respectively.

Mendelian randomization analysis demonstrates a potentially causal association between increased LDL-cholesterol and higher LV end-diastolic volume and LV mass, and

triglycerides with higher LV mass.

∢

Supplementary Material

Supplementary Tables

Supplementary Table 1: 101 variants included in the genetic risk score for LDL cholesterol

Supplementary Table 2: 125 variants included in the genetic risk score for HDL cholesterol

Supplementary Table 3: 73 variants included in the genetic risk score for

triglycerides

Supplementary Table 4. One-sample MR with a single instrument and additional adjustment for all three lipid instruments

Supplementary Table 5. One-sample MR adjusted for all potential confounders Supplementary Table 6: Associations between LV parameters and lipid parameter with phenotypic and genetically-determined lipid level included as covariates Supplementary Table 7: One-sample MR results using restricted list of variants in GRS

Supplementary Table 8: Two-sample single instrument and multivariable MR analysis using summary level data

Supplementary Table 9: Two-sample MR with MR-Egger, weighted median and weighted mode methods

Supplementary Table 10: MR pleiotropy residual sum and outlier (MR-PRESSO) analysis for horizontal pleiotropy

Supplementary Table 11: MR-Steiger analysis

Supplementary Table 12. Interaction analysis of the statin therapy on the relationships between the genetic risk score for LDL cholesterol and LV parameters

Supplementary Table 13: The variance of phenotypic LV parameters explained by observed lipid measurements and lipid genetic risk scores

Supplementary Figures

Supplementary Figure 1: Power analysis for one-sample MR Supplementary Figure 2. Correlation between lipid genetic risk scores assessed by Pearson's test Supplementary Figure 3. Forest plots for two-sample MR analysis of LDL cholesterol Supplementary Figure 4. Forest plots for two-sample MR analysis of HDL cholesterol Supplementary Figure 5. Forest plots for two-sample MR analysis of triglycerides

Variant ID	Effect	Other	Effect allele	Beta	SE	Р
rs2419604	A	G	0 3179	0.0302	0.004	7 49F-14
rs413380	C	T	0.9657	0.0861	0.0098	7.62E-17
rs4970834	C	Т	0.8127	0.1503	0.0047	1.00E-200
rs9804646	C	Т	0.91029	0.0454	0.007	8.60E-11
rs10893499	A	G	0.1438	0.0521	0.0053	3.86E-21
rs10832962	т	С	0.719	0.032	0.004	6.62E-14
rs267733	А	G	0.8628	0.0331	0.0053	5.29E-09
rs174583	С	Т	0.6253	0.0522	0.0038	7.00E-41
rs3184504	С	т	0.5343	0.0268	0.0038	4.20E-12
rs1169288	С	А	0.3338	0.0375	0.004	6.45E-21
rs2642438	G	А	0.7454	0.0352	0.0042	7.32E-16
rs2587534	А	G	0.5277	0.0391	0.0037	8.06E-25
rs10903129	G	А	0.5369	0.0328	0.0037	3.03E-17
rs12748152	Т	С	0.07124	0.0499	0.0066	3.21E-12
rs4942486	Т	С	0.4617	0.0243	0.0037	2.26E-11
rs8017377	А	G	0.4591	0.0303	0.0038	2.52E-15
rs11206508	А	G	0.1319	0.0434	0.0055	2.26E-14
rs17111503	G	А	0.2414	0.0662	0.0045	1.39E-45
rs11591147	G	Т	0.98285	0.497	0.018	8.60E-143
rs630431	А	G	0.6913	0.0351	0.0042	7.73E-17
rs11583974	А	G	0.03034	0.0646	0.0117	3.95E-09
rs2647281	G	А	0.05541	0.0589	0.0095	2.27E-09
rs207150	С	Т	0.91821	0.0472	0.0065	2.00E-12
rs11485618	А	G	0.6913	0.05	0.0039	3.73E-33
rs247616	С	Т	0.7071	0.0547	0.0041	2.57E-37
rs2000999	А	G	0.1847	0.065	0.0046	4.22E-41
rs6504872	Т	С	0.4723	0.0274	0.0037	3.48E-13
rs1801689	С	А	0.03694	0.1028	0.0139	9.81E-12
rs2886232	Т	С	0.1201	0.0451	0.0064	3.88E-11
rs314253	Т	С	0.6649	0.0242	0.0038	3.44E-10
rs11669133	А	G	0.04222	0.0501	0.0098	4.80E-08
rs6511720	G	Т	0.90237	0.2209	0.0061	1.00E-200
rs688	Т	С	0.4472	0.054	0.0037	1.01E-43
rs6511727	Т	G	0.3852	0.0266	0.0038	1.84E-11
rs376642	С	Т	0.715	0.0233	0.004	4.67E-10
rs10401969	Т	С	0.92876	0.1184	0.0072	2.65E-54
rs4970712	С	Α	0.8061	0.0339	0.0044	2.46E-13
rs17800760	G	А	0.8681	0.0513	0.0053	8.87E-22
rs10460181	А	G	0.8127	0.0536	0.0046	2.25E-28
rs1531517	G	Α	0.94855	0.2202	0.008	9.50E-163
rs7254892	G	Α	0.96834	0.4853	0.0119	1.00E-200

Supplementary	y Table 1: '	101 variants	included in the	genetic risk	score for LDL	cholesterol
	/			U		

rs2075650	G	А	0.1266	0.1767	0.0055	1.00E-200
rs75687619	Т	G	0.02375	0.1735	0.0161	8.05E-24
rs2287019	С	Т	0.81	0.0283	0.0048	8.36E-09
rs492602	G	А	0.4301	0.0293	0.0039	9.42E-14
rs364585	G	А	0.6332	0.0249	0.0038	4.28E-10
rs2328223	С	А	0.2493	0.0299	0.005	5.63E-09
rs7264396	С	Т	0.781	0.0246	0.0045	4.41E-08
rs6016381	Т	С	0.6398	0.0363	0.0038	6.85E-20
rs6065311	С	Т	0.4604	0.0417	0.0036	1.66E-30
rs1800961	С	Т	0.9657	0.0685	0.0106	6.03E-10
rs10490626	G	А	0.92084	0.0508	0.0069	1.70E-12
rs2030746	Т	С	0.3984	0.0214	0.0038	8.61E-09
rs16831243	Т	С	0.1807	0.0378	0.0055	9.06E-12
rs10195252	Т	С	0.5818	0.0238	0.0039	3.81E-08
rs492399	G	А	0.03562	0.0629	0.0102	1.23E-09
rs13414987	А	С	0.2177	0.0308	0.0043	9.94E-12
rs1367117	А	G	0.2876	0.1186	0.004	9.50E-183
rs12471982	С	А	0.1359	0.0365	0.0054	3.93E-11
rs520861	G	А	0.7071	0.0843	0.0042	1.78E-84
rs1250229	С	Т	0.7889	0.0243	0.0042	3.13E-08
rs5763662	Т	С	0.02507	0.0767	0.0121	1.19E-08
rs11563251	Т	С	0.1253	0.0345	0.0062	4.50E-08
rs4253776	G	А	0.124	0.0311	0.0059	3.35E-08
rs780093	Т	С	0.4129	0.0223	0.0037	2.36E-08
rs1025447	С	Т	0.1583	0.0418	0.0048	3.78E-16
rs6544713	Т	С	0.2942	0.0806	0.0041	4.84E-83
rs6709904	А	G	0.8865	0.055	0.0085	4.58E-10
rs2710642	А	G	0.6187	0.0239	0.0038	6.09E-09
rs9875338	G	А	0.6121	0.027	0.0037	2.21E-11
rs17404153	G	Т	0.8562	0.0336	0.0054	1.83E-09
rs7640978	С	Т	0.8945	0.0392	0.0069	9.84E-09
rs6818397	Т	G	0.4129	0.0224	0.004	1.68E-08
rs4530754	А	G	0.5818	0.0275	0.0036	3.58E-12
rs6882076	С	Т	0.6662	0.0456	0.0038	3.31E-31
rs12916	С	Т	0.4314	0.0733	0.0038	7.79E-78
rs6909746	С	Т	0.6082	0.0263	0.0037	7.86E-11
rs1564348	С	Т	0.1451	0.0481	0.005	2.76E-21
rs3125055	А	Т	0.1398	0.0468	0.0055	5.92E-16
rs1510226	С	Т	0.01319	0.1409	0.0214	1.71E-10
rs7770628	С	Т	0.4485	0.0258	0.0037	3.17E-11
rs3757354	С	Т	0.7902	0.0382	0.0044	2.09E-17
rs13206249	G	А	0.7836	0.0378	0.0062	4.53E-08
rs1800562	G	А	0.95383	0.0615	0.008	8.25E-14

rs2247056	С	Т	0.7823	0.0248	0.0043	1.42E-08
rs10947332	А	G	0.1319	0.0504	0.0056	6.97E-18
rs12670798	С	Т	0.2243	0.0344	0.0043	4.81E-14
rs4722551	С	Т	0.1702	0.0391	0.0049	3.95E-14
rs2073547	G	А	0.1939	0.0485	0.0049	1.92E-21
rs2737252	G	А	0.7441	0.0314	0.0041	7.04E-14
rs2954029	А	Т	0.5317	0.0564	0.0036	2.10E-50
rs7832643	Т	G	0.405	0.0339	0.0038	2.67E-17
rs10102164	А	G	0.1741	0.0316	0.0045	3.74E-11
rs13277801	С	Т	0.347	0.0338	0.0038	3.99E-17
rs9987289	G	А	0.9248	0.0714	0.0066	8.53E-24
rs1883025	С	Т	0.7573	0.0296	0.0044	6.14E-11
rs8176722	С	А	0.8892	0.0473	0.006	1.85E-14
rs579459	С	Т	0.215	0.0665	0.0045	2.42E-44
rs3780181	А	G	0.94723	0.0445	0.0074	1.76E-09
rs519113	С	G	0.786	0.0971	0.0066	1.61E-49
rs964184	G	С	0.162	0.0855	0.0078	2.01E-26
Supplement cholesterol	ary Table	e 2: 125 v	variants included	d in the genet	tic risk score	for HDL
---------------------------	---------------	--------------	-------------------------	----------------	----------------	-----------
Variant ID	Effect allele	Other allele	Effect allele frequency	Beta	SE	Р
rs2250802	G	А	0.3193	0.034	0.0038	2.02E-17
rs2148489	Т	С	0.7757	0.0283	0.0041	1.41E-10
rs970548	С	А	0.277	0.0258	0.0039	1.71E-10
rs10761771	С	Т	0.467	0.0198	0.0034	4.12E-09
rs12740374	Т	G	0.2124	0.0343	0.0041	1.69E-15
rs333947	G	А	0.8536	0.0296	0.0047	3.17E-09
rs7943309	А	G	0.03958	0.0865	0.0088	1.18E-20
rs7117842	С	Т	0.3892	0.0272	0.0035	1.06E-14
rs17135399	А	G	0.93404	0.0483	0.0077	4.26E-09
rs7128597	С	А	0.1715	0.0398	0.0065	1.82E-08
rs3847502	А	С	0.314	0.048	0.0036	3.31E-38
rs4752894	G	А	0.3984	0.0206	0.0035	1.89E-09
rs12145743	G	Т	0.3311	0.0203	0.0036	1.80E-08
rs102275	Т	С	0.628	0.0391	0.0035	6.40E-28
rs12801636	А	G	0.2243	0.0235	0.0042	3.15E-08
rs499974	С	А	0.8245	0.0263	0.0044	1.12E-08
rs4650994	G	А	0.5172	0.021	0.0034	6.70E-09
rs1689797	С	А	0.6979	0.0358	0.0036	2.85E-21
rs2241210	G	А	0.5528	0.0332	0.0035	2.49E-20
rs653178	Т	С	0.5317	0.0263	0.0035	1.06E-12
rs2454722	G	А	0.1451	0.0351	0.0044	3.31E-14
rs11057397	т	С	0.3668	0.0282	0.0036	6.77E-14
rs863750	С	т	0.4195	0.0264	0.0035	4.71E-13
rs838876	А	G	0.3259	0.0493	0.0039	7.33E-33
rs7306660	G	А	0.6306	0.0345	0.0036	3.34E-19
rs7298751	G	А	0.1187	0.0434	0.0052	2.46E-16
rs2642438	G	А	0.7454	0.0303	0.0039	7.78E-14
rs11045163	G	А	0.4063	0.0217	0.0035	3.20E-09
rs4846914	А	G	0.5844	0.0479	0.0034	3.51E-41
rs3741414	Т	С	0.1913	0.0296	0.004	6.10E-14
rs12748152	С	Т	0.92876	0.0506	0.0062	9.74E-16
rs4660293	А	G	0.7639	0.0353	0.004	2.86E-18
rs4983559	G	А	0.3773	0.0197	0.0036	9.57E-09
rs492571	т	С	0.95778	0.0663	0.009	1.27E-12
rs2899624	А	G	0.8456	0.0714	0.0049	1.39E-40
rs185481	С	т	0.529	0.0366	0.0035	1.40E-23
rs16940147	А	G	0.04617	0.0514	0.008	2.45E-10
rs10468017	т	С	0.2757	0.1179	0.0038	1.20E-188
rs1077834	С	Т	0.2111	0.1253	0.0041	7.80E-180
rs424346	т	С	0.04881	0.0679	0.0113	4.84E-08

Supplementary Table 2: 125 variants included in the genetic risk score for	r HDL
cholesterol	

rs1007076	С	Т	0.7296	0.0247	0.0041	4.43E-09
rs1121980	G	А	0.5528	0.0196	0.0034	6.79E-09
rs3790106	С	G	0.81	0.0374	0.0052	3.27E-11
rs4784659	Т	С	0.1847	0.0274	0.0049	1.02E-08
rs13336936	Т	С	0.03562	0.0717	0.0104	6.98E-11
rs7193072	А	G	0.2375	0.0498	0.0038	1.40E-34
rs1138429	А	Т	0.90237	0.1156	0.0065	9.52E-66
rs9989419	G	А	0.595	0.1473	0.0036	1.00E-200
rs4783961	А	G	0.4855	0.0997	0.0036	5.70E-162
rs289745	А	С	0.6029	0.0276	0.0041	2.28E-20
rs291040	Т	С	0.6623	0.0305	0.0037	8.21E-17
rs16942887	Α	G	0.1332	0.0831	0.0051	8.28E-54
rs4986970	А	Т	0.96702	0.0792	0.0099	1.09E-15
rs2925979	С	Т	0.7045	0.0351	0.0037	1.32E-19
rs1877031	А	G	0.6755	0.0336	0.0036	1.20E-19
rs4148005	Т	G	0.7005	0.0283	0.0036	5.74E-14
rs4969178	G	А	0.6266	0.0263	0.0035	1.53E-12
rs8093249	А	G	0.8404	0.0384	0.0051	1.80E-13
rs9955201	А	G	0.06069	0.0638	0.0081	2.40E-14
rs4939883	С	Т	0.8193	0.0799	0.0045	1.80E-66
rs9951669	G	А	0.2177	0.0408	0.0042	3.01E-21
rs6567160	Т	С	0.7691	0.0257	0.0041	2.92E-09
rs737337	Т	С	0.9314	0.0565	0.0061	4.56E-17
rs12133576	А	G	0.3549	0.0243	0.0035	6.15E-11
rs731839	А	G	0.6583	0.022	0.0037	3.44E-09
rs2075650	А	G	0.8734	0.0554	0.0051	9.72E-26
rs77301115	G	А	0.97361	0.0972	0.0157	1.03E-08
rs7412	Т	С	0.06596	0.0978	0.0097	4.44E-19
rs5167	G	Т	0.3694	0.032	0.0037	4.88E-16
rs17695224	G	А	0.7612	0.029	0.0039	2.42E-13
rs103294	Т	С	0.186	0.0523	0.0044	4.00E-30
rs2278236	А	G	0.5435	0.0331	0.0035	3.19E-18
rs3111576	Т	С	0.1372	0.0448	0.0054	1.20E-14
rs1800961	С	Т	0.9657	0.127	0.0099	1.64E-34
rs4465830	Α	G	0.7982	0.0597	0.0044	5.18E-40
rs17380117	А	G	0.8087	0.0253	0.0042	3.85E-09
rs7607980	С	Т	0.1491	0.0447	0.0052	1.81E-15
rs676210	А	G	0.2309	0.066	0.004	2.35E-54
rs1047891	С	А	0.6979	0.0269	0.0039	8.73E-10
rs181360	Т	G	0.8008	0.0376	0.0042	9.24E-18
rs1515110	G	Т	0.3813	0.0323	0.0035	8.04E-18
rs2606736	С	Т	0.3945	0.0246	0.0043	4.80E-08
rs6805251	Т	С	0.3813	0.02	0.0035	1.33E-08

rs13076253	А	С	0.8522	0.0283	0.0048	4.96E-09
rs687339	С	Т	0.2335	0.0316	0.0042	7.11E-13
rs2290547	G	А	0.7889	0.0297	0.0046	3.69E-09
rs2013208	Т	С	0.5053	0.0254	0.0036	8.92E-12
rs13326165	А	G	0.1873	0.0289	0.0043	9.04E-11
rs2602836	А	G	0.4274	0.0192	0.0034	4.96E-08
rs13107325	С	Т	0.92216	0.0708	0.0078	1.07E-15
rs10019888	А	G	0.8364	0.027	0.0046	4.90E-08
rs442177	G	Т	0.4472	0.0215	0.0034	2.19E-09
rs3822072	G	А	0.5119	0.0251	0.0034	4.06E-12
rs6450176	G	А	0.7216	0.0254	0.0039	6.88E-10
rs3936511	А	G	0.8311	0.0308	0.0046	2.96E-09
rs1936800	С	Т	0.5277	0.02	0.0034	3.06E-10
rs3861397	А	G	0.6583	0.024	0.0036	8.40E-11
rs9457931	А	G	0.9314	0.0552	0.0073	7.30E-13
rs3823417	А	G	0.2322	0.0285	0.0042	2.07E-11
rs715299	Т	G	0.7441	0.024	0.0039	6.47E-09
rs205262	А	G	0.7335	0.0283	0.0039	3.88E-13
rs998584	С	А	0.4855	0.026	0.0038	2.27E-11
rs11765979	С	А	0.4578	0.0412	0.0048	3.11E-17
rs13225097	А	G	0.7678	0.0227	0.0039	4.33E-08
rs17173637	Т	С	0.90237	0.0363	0.0057	1.90E-08
rs4142995	G	Т	0.6161	0.0263	0.0037	9.37E-12
rs4917014	G	Т	0.3404	0.0222	0.0036	1.03E-08
rs702485	G	А	0.4499	0.0243	0.0034	6.45E-12
rs17145738	Т	С	0.1174	0.0408	0.0053	4.95E-13
rs7014168	G	А	0.7586	0.0267	0.0041	9.20E-10
rs2293889	G	Т	0.5871	0.0312	0.0035	4.27E-17
rs10808546	Т	С	0.4459	0.0409	0.0034	4.11E-30
rs10087900	G	А	0.5607	0.0231	0.0036	2.17E-09
rs7016529	Т	С	0.98681	0.2186	0.0141	9.27E-45
rs13702	С	Т	0.3127	0.1058	0.0038	1.30E-160
rs13265868	А	G	0.4604	0.0478	0.0035	6.10E-40
rs16842	Т	С	0.7467	0.03	0.0038	3.82E-14
rs4240624	А	G	0.9248	0.0818	0.0058	1.32E-45
rs2230808	С	Т	0.7889	0.0385	0.004	1.59E-20
rs2853579	Т	G	0.1108	0.0499	0.0053	1.32E-19
rs11789603	Т	С	0.08971	0.06	0.006	3.70E-21
rs1883025	С	Т	0.7573	0.0698	0.0041	1.50E-65
rs686030	А	С	0.8588	0.055	0.0049	4.29E-27
rs964184	С	G	0.838	0.1065	0.0071	6.09E-48
rs6589581	Т	А	0.021	0.0845	0.0137	2.26E-09

Variant ID	Effect allele	Other allele	Effect allele frequency	Beta	SE	Р
rs2250802	А	G	0.6807	0.023	0.0037	1.21E-10
rs1832007	А	G	0.8681	0.0327	0.0047	1.72E-12
rs10761762	Т	С	0.533	0.027	0.0033	1.06E-17
rs2068888	G	А	0.5092	0.0241	0.0034	1.68E-11
rs7350481	Т	С	0.09763	0.2254	0.0066	1.00E-200
rs2187126	А	G	0.94591	0.0543	0.0069	2.90E-15
rs12294259	Т	С	0.05937	0.219	0.0069	1.80E-200
rs9804646	С	Т	0.91029	0.0524	0.0064	2.82E-17
rs5110	А	С	0.06464	0.156	0.0124	2.14E-34
rs7943309	G	А	0.96042	0.0605	0.0087	1.16E-11
rs10501321	Т	С	0.686	0.0216	0.0035	1.41E-08
rs174535	С	Т	0.3628	0.047	0.0034	1.73E-41
rs11057408	G	Т	0.6372	0.0258	0.0035	2.05E-12
rs1321257	G	А	0.4063	0.0402	0.0034	5.99E-31
rs11613352	С	Т	0.8087	0.028	0.0039	9.40E-14
rs12748152	Т	С	0.07124	0.0372	0.0059	1.10E-09
rs17513135	Т	С	0.2322	0.022	0.0039	1.63E-08
rs16948098	А	G	0.0409	0.08	0.0089	4.84E-17
rs10468017	Т	С	0.2757	0.0379	0.0039	7.56E-21
rs588136	С	Т	0.2058	0.0495	0.0041	3.37E-30
rs3198697	С	Т	0.6174	0.0198	0.0034	2.21E-08
rs4587594	G	А	0.69	0.0694	0.0035	3.50E-82
rs749671	G	А	0.6055	0.0211	0.0034	6.11E-10
rs9930333	G	Т	0.4485	0.0208	0.0037	3.25E-08
rs247616	С	Т	0.7071	0.0393	0.0037	1.12E-25
rs5880	С	G	0.05937	0.0475	0.0085	4.71E-08
rs8077889	С	А	0.2441	0.0252	0.0042	9.88E-09
rs117877390	С	Т	0.9657	0.1099	0.0141	1.53E-09
rs10401969	Т	С	0.92876	0.121	0.0065	9.70E-70
rs731839	G	А	0.3417	0.0224	0.0036	2.65E-09
rs4803750	G	А	0.05541	0.0423	0.007	9.52E-09
rs7254892	А	G	0.03166	0.1235	0.0106	1.40E-24
rs439401	С	Т	0.6201	0.0659	0.0038	1.42E-66
rs3760627	С	Т	0.4683	0.0189	0.0034	5.29E-09
rs7248104	G	А	0.5831	0.0222	0.0034	5.05E-10
rs4804311	А	G	0.8905	0.0392	0.006	1.49E-09
rs6029143	С	Т	0.94195	0.0388	0.0071	4.93E-08
rs4810479	С	Т	0.2876	0.0474	0.0038	2.07E-34
rs6066141	Т	С	0.7586	0.0297	0.0053	2.34E-08
rs13389219	С	Т	0.591	0.0271	0.0034	2.60E-15
rs676210	G	А	0.7691	0.0733	0.0039	3.28E-71

Supplementary Table 3: 73 variants included in the genetic risk score for triglycerides

rs2972146	Т	G	0.6227	0.0281	0.0034	2.97E-15
rs3761445	А	G	0.6148	0.0232	0.0034	8.06E-12
rs2304684	Т	С	0.02507	0.086	0.0127	5.00E-11
rs1260326	Т	С	0.4129	0.1148	0.0034	1.00E-200
rs11674085	А	G	0.2005	0.0251	0.0044	2.86E-08
rs10440120	С	А	0.8325	0.0306	0.0044	5.34E-11
rs645040	Т	G	0.7691	0.0293	0.004	1.83E-12
rs6831256	G	А	0.409	0.0258	0.0035	1.60E-12
rs442177	Т	G	0.5528	0.0309	0.0033	1.32E-18
rs6882076	С	Т	0.6662	0.0286	0.0035	1.51E-15
rs9686661	Т	С	0.1768	0.0379	0.0044	2.54E-16
rs719726	Т	С	0.529	0.0199	0.0035	2.49E-08
rs634869	Т	С	0.438	0.0272	0.0033	1.78E-14
rs2665357	С	А	0.5092	0.0212	0.0033	8.33E-10
rs2508015	G	А	0.6715	0.0252	0.0038	1.33E-10
rs2247056	С	Т	0.7823	0.0378	0.0039	3.86E-21
rs11752643	Т	С	0.02639	0.0802	0.0088	3.96E-19
rs998584	А	С	0.5145	0.0293	0.0037	3.42E-15
rs38855	А	G	0.5264	0.0187	0.0033	2.11E-08
rs287621	Т	С	0.2704	0.0222	0.0037	7.67E-09
rs4719841	G	А	0.3826	0.0232	0.0034	8.86E-11
rs11974409	А	G	0.8061	0.0899	0.0042	1.40E-100
rs72555385	G	А	0.06201	0.0749	0.0124	3.76E-09
rs6995541	G	А	0.3219	0.0265	0.0037	1.34E-12
rs1062219	Т	С	0.4921	0.0223	0.0034	1.69E-09
rs2954022	С	А	0.5303	0.078	0.0033	2.20E-113
rs4871624	G	Т	0.2652	0.0254	0.0037	1.07E-11
rs4921914	С	Т	0.248	0.0353	0.004	4.87E-17
rs7016529	С	Т	0.01319	0.1911	0.014	3.57E-35
rs12678919	А	G	0.8786	0.1702	0.0056	1.80E-199
rs4738684	А	G	0.3522	0.0205	0.0035	8.82E-09
rs7005265	Т	А	0.297	0.0336	0.0053	1.26E-10

Lipid parameter	Phenotype	Single instrument MR effect size	Single instrument MR 95% Cl	Single instrument MR p-value	Multiple instrument MR effect size	Multiple instrument MR 95% Cl	Multiple instrument MR p-value
LDL Cholesterol	LV EDV (ml)	1.85	0.59 to 3.14	0.004	2.12	0.08 to 3.46	0.001
	LV mass (g)	0.81	0.11 to 1.51	0.023	0.77	0.04 to 1.51	0.037
Triglycerides	LV EF (%)	-0.52	-0.92 to -0.13	0.011	-0.54	-0.99 to -0.10	0.019
	LV mass (g)	1.37	0.45 to 2.3	0.004	1.54	0.50 to 2.59	0.004

Supplementary Table 4. One-sample MR with a single instrument and additional adjustment for all three lipid instruments

Lipid parameter	CMR parameter	MR effect size	MR 95% CI	MR p-value
-	LV EDV (ml)	1.68	0.38 to 3.0	0.010
LDL Cholesterol	LV EF (%)	0.06	-0.25 to 0.37	0.710
	LV mass (g)	0.72	0.01 to 1.45	0.046
	LV EDV (ml)	3.41	-0.35 to 7.16	0.071
HDL Cholesterol	LV EF (%)	0.44	-0.47 to 1.35	0.338
	LV mass (g)	0.40	-1.68 to 2.49	0.703
	LV EDV (ml)	-0.93	-2.62 to 0.78	0.279
Triglycerides	LV EF (%)	-0.56	-0.98 to -0.15	0.008
	LV mass (g)	1.04	0.1 to 1.99	0.034

Supplementary Table 5. One-sample MR adjusted for all potential confounders

One-sample MR data following additional adjustment for age at recruitment, sex, BMI, BSA, systolic blood pressure adjusted for anti-hypertensive medication use, physical activity, smoking status, HbA1c and presence of cardiovascular disease; data is presented for change in LV parameter per 1 mmol/L increase in lifetime exposure to lipid parameter

Phenotype	Lipid parameter	Effect size	95% CI	p-value
LV EDV	Measured LDL cholesterol	-3.91	-4.39 to -3.44	1.60E-58
LV EDV	Genetically-determined LDL cholesterol	5.91	4.54 to 7.29	3.63E-17
LV EF	Measured LDL cholesterol	0.24	0.12 to 0.35	4.18E-05
LV EF	Genetically-determined LDL cholesterol	-0.20	-0.53 to 0.12	2.24E-01
LV mass	Measured LDL cholesterol	-0.52	-0.79 to -0.26	1.11E-04
LV mass	Genetically-determined LDL cholesterol	1.36	0.60 to 2.13	5.00E-04
LV EDV	Measured HDL cholesterol	12.26	11.02 to 13.50	4.30E-83
LV EDV	Genetically-determined HDL cholesterol	-8.96	-12.82 to -5.10	5.44E-06
LV EF	Measured HDL cholesterol	0.05	-0.25 to 0.35	7.55E-01
LV EF	Genetically-determined HDL cholesterol	0.39	-0.54 to 1.32	4.12E-01
LV mass	Measured HDL cholesterol	2.05	1.35 to 2.74	8.25E-09
LV mass	Genetically-determined HDL cholesterol	-1.97	-4.14 to 0.20	7.48E-02
LV EDV	Measured triglycerides	-5.18	-5.59 to -4.77	1.78E-134
LV EDV	Genetically-determined triglycerides	4.47	2.86 to 6.08	5.61E-08
LV EF	Measured triglycerides	0.23	0.13 to 0.33	5.16E-06
LV EF	Genetically-determined triglycerides	-0.73	-1.12 to -0.34	2.37E-04
LV mass	Measured triglycerides	-0.46	-0.69 to -0.23	7.73E-05
LV mass	Genetically-determined triglycerides	1.79	0.88 to 2.70	1.19E-04
Models are adjuste change in LV para	ed for age, sex, body surface area and the first 5 geneti meter for every 1 mmol/L increment in lipid concentration	ic principal compor on.	nents. The effect sizes	represent the

Supplementary Table 6: Associations between LV parameters and lipid parameter with phenotypic and genetically-determined lipid level included as covariates

Lipid parameter	Phenotype	MR effect size	MR 95% CI	MR p value
LDL Cholesterol	LV EDV (ml)	2.12	0.74 to 3.53	0.002
LDL Cholesterol	LV EF (%)	-0.06	-0.39 to 0.26	0.695
LDL Cholesterol	LV mass (g)	1.01	0.24 to 1.78	0.009
Triglycerides	LV EDV (ml)	-0.61	-2.26 to 1.08	0.469
Triglycerides	LV EF (%)	-0.40	-0.8 to 0.001	0.052
Triglycerides	LV mass (g)	1.13	0.21 to 2.08	0.018

Supplementary Table 7: One-sample MR results using restricted list of variants in GRS

One-sample MR data utilising a weighted genetic risk score built using a restricted list of variants following removal of variants which might potentially influence LV remodeling. The total number of included variants is 69, 81 and 50 for LDL, HDL and triglycerides genetic risk scores, respectively. Data is adjusted for age, sex, BSA and the first five principal components and data is presented as change in LV parameter per 39 mg/dL (1 mmol/L) for LDL and HDL cholesterol and 89 mg/dL for triglyceride increase in lifetime lipid parameter exposure.

Lipid parameter	Phenotype	Single instrument IVW beta	IVW confidence interval	IVW p-value	Multivariable MR IVW beta	Multivariable MR IVW confidence interval	Multivariable MR IVW p-value
LDL Cholesterol	LV EDV (ml)	1.62	0.32 to 2.91	0.014	1.90	1.13 to 2.67	<0.0001
	LV EF (%)	0.04	-0.17 to 0.25	0.705	0.11	-0.06 to 0.28	0.207
	LV mass (g)	0.66	0.1 to 1.22	0.021	0.55	0.13 to 0.96	0.010
Triglycerides	LV EDV (ml)	-0.43	-1.73 to 0.86	0.512	-1.1	-2.21 to 0.01	0.052
	LV EF (%)	-0.30	-0.66 to 0.06	0.106	-0.23	-0.47 to 0.01	0.060
	LV mass (g)	0.61	0.04 to 1.18	0.036	0.61	0.01 to 1.20	0.047

Supplementary Table 8: Two-sample single instrument and multivariable Mendelian randomization analysis using summary level data

For two-sample MR the change in LV parameter reflects an increase per 34 mg/dL (0.87 mmol/L) 15 mg/dL (0.38 mmol/L) and 90 mg/dL (1.02 mmol/L) increase in LDL cholesterol, HDL cholesterol and triglycerides, respectively.

Lipid parameter	CMR parameter	Egger effect size	Egger confidence interval	Egger p- value	Weighted median effect size	Weighted median confidence interval	Weighted median p- value	Weighted mode effect size	Weighted mode confidence interval	Weighted mode p- value
LDL Cholesterol	LV EDV (ml)	1.90	0.2 to 3.59	0.029	2.12	0.44 to 3.8	0.014	1.93	0.28 to 3.58	0.022
	LV EF (%)	0.12	-0.18 to 0.42	0.422	0.14	-0.19 to 0.48	0.407	0.40	-0.52 to 1.32	0.395
	LV mass (g)	0.32	-0.6 to 1.25	0.497	0.58	-0.27 to 1.43	0.182	0.14	-0.18 to 0.46	0.402
	LV EDV (ml)	1.00	-1.15 to 3.15	0.363	1.26	-0.65 to 3.17	0.195	1.48	-0.38 to 3.34	0.119
HDL Cholesterol	LV EF (%)	0.23	-0.26 to 0.73	0.359	0.26	-0.15 to 0.67	0.209	0.32	-0.12 to 0.76	0.158
	LV mass (g)	0.81	-0.12 to 1.73	0.087	0.36	-0.62 to 1.35	0.472	0.63	-0.39 to 1.65	0.227
	LV EDV (ml)	0.14	-1.82 to 2.1	0.886	-0.96	-3.04 to 1.12	0.365	-0.32	-2.41 to 1.76	0.762
Triglycerides	LV EF (%)	-0.27	-0.86 to 0.33	0.380	0.05	-0.44 to 0.53	0.851	0.11	-1.1 to 1.33	0.858
	LV mass (g)	0.09	-0.74 to 0.93	0.824	0.33	-0.75 to 1.4	0.549	-0.18	-0.67 to 0.32	0.487

Supplementary Table 9: Two-sample MR with MR-Egger, weighted median and weighted mode methods

For two-sample MR the change in LV parameter reflects an increase per 34 mg/dL (0.87 mmol/L) 15 mg/dL (0.38 mmol/L) and 90 mg/dL (1.02 mmol/L) increase in LDL cholesterol, HDL cholesterol and triglycerides, respectively.

Lipid parameter	Phenotype	Global p- value	Original beta	Original Cl	Original p- value	Corrected beta	Corrected CI	Corrected p- value	Distortion p- value
LDL Cholesterol	LV EDV	<0.0001	1.62	0.32 to 2.91	0.014	1.61	0.46 to 2.76	0.007	0.788
	LV EF	0.3824	0.04	-0.17 to 0.25	0.705	No outliers			
	LV mass	0.0314	0.66	0.1 to 1.22	0.021	No outliers			
HDL cholesterol	LV EDV	<0.0001	1.16	-0.07 to 2.39	0.065	0.98	-0.41 to 2.37	0.169	0.38
	LV EF	0.0042	0.18	-0.08 to 0.44	0.184	0.17	-0.11 to 0.44	0.233	0.764
	LV mass	0.0018	0.32	-0.26 to 0.89	0.279	0.32	-0.37 to 1.01	0.37	0.711
	LV EDV	0.0356	-0.43	-1.73 to 0.86	0.512	-0.48	-1.85 to 0.89	0.496	0.39
Triglycerides	LV EF	0.0417	-0.3	-0.66 to 0.06	0.106	No outliers			
	LV mass	0.1318	0.61	0.04 to 1.18	0.036	No outliers			

Supplementary Table 10: MR pleiotropy residual sum and outlier (MR-PRESSO) analysis for horizontal pleiotropy

Su	oplementa	y Table	11:	MR-Steiger	analysis
		j			

Exposure	Outcome	SNP r ² for exposure	SNP r ² for outcome	Directionality test	MR-Steiger p-value
	LV EDV (ml)	0.0879	0.0106	TRUE	1.30 x10 ⁻¹³⁸
LDL Cholesterol	LV EF (%)	0.0879	0.0061	TRUE	7.50 x10 ⁻¹⁷⁴
	LV mass (g)	0.0879	0.0078	TRUE	1.03 x10 ⁻¹⁵⁸
Triglycerides	LV EDV (ml)	0.0570	0.0057	TRUE	3.27 x10 ⁻⁹⁶
	LV EF (%)	0.0570	0.0057	TRUE	7.03 x10 ⁻⁹⁶
	LV mass (g)	0.0570	0.0053	TRUE	1.48 x10 ⁻⁹⁹

Lipid parameter	CMR parameter	Interaction effect size	Interaction standard error	Interaction p-value
	LV EDV (ml)	0.26	0.50	0.610
LDL Cholesterol	LV EF (%)	-0.19	0.12	0.110
	LV mass (g)	-0.07	0.27	0.788

Supplementary Table 12. Interaction analysis of the statin therapy on the relationships between the genetic risk score for LDL cholesterol and LV parameters

Lipid parameter	Phenotype	R ²
Variance of LV phenotypes	explained by mea	sured lipids
	LV EDV	0.35%
LDL Cholesterol	LV EF	0.06%
	LV mass	0.10%
	LV EDV	6.46%
HDL Cholesterol	LV EF	1.68%
	LV mass	14.48%
	LV EDV	0.60%
Triglycerides	LV EF	0.18%
	LV mass	5.42%
Variance of LV phenotypes	explained by GRS	5
	LV EDV	0.01%
LDL Cholesterol	LV EF	0.00%
	LV mass	0.00%
	LV EDV	0.01%
HDL Cholesterol	LV EF	0.01%
	LV mass	0.00%
	LV EDV	0.00%
Triglycerides	LV EF	0.04%
	LV mass	0.01%

Supplementary Table 13: The variance of phenotypic LV parameters explained by observed lipid measurements and lipid genetic risk scores

Supplementary Figure 2

Supplementary Figure 3

Supplementary Figure 4

oid parame	t SNP	Category	Trait	Excluded
LDL	rs6511720	CVD	abdominal	Yes
HDL	rs1274037	CVD	acute coror	Yes
HDL	rs7412	CVD	acute coror	Yes
LDL,Trigly	c rs1040196	CVD	atrial fibrill	Yes
LDL,HDL	rs964184	CVD	atrial fibrill	Yes
Triglycerid	ers4803750	CVD	atrial fibrill	Yes
LDL	rs780093	CVD	blood press	Yes
LDL	rs3184504	CVD	cardiovascu	Yes
LDL	rs1159114	CVD	cardiovascu	Yes
LDL	rs1367117	CVD	cardiovascu	Yes
LDL	rs780093	CVD	cardiovascu	Yes
LDL	rs12916	CVD	cardiovascu	Yes
LDL,HDL	rs964184	CVD	cardiovascu	Yes
HDL	rs1274037	CVD	cardiovascu	Yes
HDL	rs7412	CVD	cardiovascu	Yes
LDL	rs6511720	CVD	coronary ar	Yes
LDL,HDL	rs964184	CVD	coronary ar	Yes
HDL	rs102275	CVD	coronary ar	Yes
Triglycerid	ers4810479	CVD	coronary ar	Yes
Triglycerid	ers1260326	CVD	coronary ar	Yes
Triglycerid	ers1267891	CVD	coronary ar	Yes
LDL	rs3184504	CVD	, coronary ar	Yes
LDL	rs1169288	CVD	coronary ar	Yes
LDL	rs1159114	CVD	, coronary ar	Yes
LDL	rs6511720	CVD	, coronary ar	Yes
LDL	rs1250229	CVD	, coronary ar	Yes
LDL	rs6544713	CVD	, coronary ar	Yes
LDL	rs7770628	CVD	, coronary ar	Yes
LDL	rs2954029	CVD	, coronary ar	Yes
LDL,HDL	rs964184	CVD	coronary ar	Yes
HDL	rs1274037	CVD	, coronary ar	Yes
HDL	rs1280163	CVD	coronary ar	Yes
HDL	rs7412	CVD	coronary ar	Yes
HDL	rs3936511	CVD	coronary ar	Yes
Triglycerid	ers1161335	CVD	coronary ar	Yes
Triglycerid	ers2972146	CVD	coronary ar	Yes
LDL,Trigly	c rs1040196	CVD	coronary h	Yes
LDL	rs579459	CVD	coronary h	Yes
LDL,HDL	rs964184	CVD	coronary h	Yes
HDL	rs1274037	CVD	coronary h	Yes
HDL	rs7412	CVD	coronary h	Yes
Triglycerid	ers4803750	CVD	coronary h	Yes
LDL	rs3184504	CVD	, diastolic bl	Yes
LDL, Trigly	c rs1040196	CVD	diastolic bl	Yes
LDL	rs1800562	CVD	diastolic bl	Yes
LDL,HDL	rs964184	CVD	diastolic bl	Yes
HDL	rs653178	CVD	diastolic bl	Yes
HDL	rs1310732	CVD	diastolic bl	Yes
Triglycerid	(rs4803750	CVD	diastolic bl	Yes
Triglycerid	ers2972146	CVD	diastolic bl	Yes
LDL, Trigly	c rs1040196	CVD	heart failur	Yes
, 0.7				

LDL.HDL	rs964184	CVD	heart failur	Yes
Triglyceride	rs4803750	CVD	heart failur	Yes
ны	rs1310732	CVD	hypertensi	Yes
	rs3184504		Ischemic st	Vec
	rc570/50		large artery	Vac
	rc06/10/		large artery	Voc
	rc6E2170		naige aitery	Voc
	15055178	CVD	OTinternal	res
	rs1/4583	CVD	QLInterval	Yes
	rs3184504	CVD	stroke	Yes
LDL, Iriglyc	rs1040196	CVD	stroke	Yes
LDL	rs579459	CVD	stroke	Yes
LDL,HDL	rs964184	CVD	stroke	Yes
Triglyceride	rs4803750	CVD	stroke	Yes
LDL	rs3184504	CVD	systolic blo	Yes
LDL, Triglyc	rs1040196	CVD	systolic blo	Yes
LDL,HDL	rs964184	CVD	systolic blo	Yes
HDL	rs6567160	CVD	systolic blo	Yes
HDL	rs7412	CVD	systolic blo	Yes
HDL	rs1047891	CVD	systolic blo	Yes
HDL	rs2606736	CVD	systolic blo	Yes
HDL	rs1310732	CVD	systolic blo	Yes
Triglyceride	rs4803750	CVD	systolic blo	Yes
Triglyceride	rs7248104	CVD	, systolic blo	Yes
Triglyceride	rs1338921	CVD	, svstolic blo	Yes
LDL	rs579459	CVD	venous thro	Yes
	rs1019525	CV risk	age at asses	Yes
HDI	rs2925979	CV risk	age at asses	Yes
	rs998581	CVrisk	age at asses	Vec
HDI Triglyc	rs1046801	CVrisk	age-related	Vec
	rs2642438	CVrisk	alcohol cor	Vec
	rc1150111	CVrick	alcohol cor	Vac
	rc1521517	CVrick	alcohol cor	Vac
	rc72727272	CVrick	alcohol cor	Voc
	rc1000061	CVrick	alcohol cor	Voc
	151600901	CVTISK		Vec
	154722551	CV TISK		Yes
HDL	159989419	CV FISK	alconol cor	res
HDL	rs2925979	CV FISK	alconol cor	Yes
HDL	rs1047891	CV FISK	alconol cor	Yes
HDL	rs2013208	CV risk	alconol cor	Yes
HDL	rs1310/32	CV risk	alcohol cor	Yes
Triglyceride	rs1260326	CV risk	alcohol cor	Yes
HDL	rs1310732	CV risk	alcohol der	Yes
Triglycerid	rs1260326	CV risk	alcohol der	Yes
LDL,HDL	rs2642438	CV risk	alcohol dri	Yes
LDL	rs1159114	CV risk	alcohol dri	Yes
LDL	rs1531517	CV risk	alcohol dri	Yes
LDL	rs2328223	CV risk	alcohol dri	Yes
LDL,HDL	rs1800961	CV risk	alcohol dri	Yes
LDL	rs1800562	CV risk	alcohol dri	Yes
LDL	rs4722551	CV risk	alcohol dri	Yes
HDL	rs9989419	CV risk	alcohol dri	Yes
HDL	rs2925979	CV risk	alcohol dri	Yes

HDL rs1047891 CV risk alcohol drii Yes HDL rs2013208 CV risk alcohol dri: Yes HDL rs1310732 CV risk alcohol dri Yes Triglycerid(rs1260326 CV risk alcohol dri: Yes LDL rs492602 CV risk alcohol use Yes HDL rs1310732 CV risk alcohol use Yes Triglycerid(rs1260326 CV risk alcohol use Yes HDL rs1121980 CV risk appendicul Yes HDL rs1047891 CV risk appendicul Yes Triglycerid(rs1260326 CV risk appendicul Yes Triglycerid(rs1260326 CV risk bitter alcoł Yes Triglycerid(rs1260326 CV risk bitter beve Yes LDL rs1019525 CV risk BMI-adjust Yes LDL rs780093 CV risk BMI-adjust Yes LDL rs1019525 CV risk BMI-adjust Yes HDL rs1105739 CV risk BMI-adjust Yes HDL rs2925979 CV risk BMI-adjust Yes HDL rs1310732 CV risk BMI-adjust Yes HDL, Triglyc rs998584 CV risk BMI-adjust Yes Triglycerid(rs4804311 CV risk BMI-adjust Yes Triglycerid(rs634869 CV risk BMI-adjust Yes LDL, Triglyc rs1040196 CV risk BMI-adjust Yes LDL rs1019525 CV risk BMI-adjust Yes HDL rs863750 CV risk BMI-adjust Yes HDL rs2925979 CV risk BMI-adjust Yes HDL rs7607980 CV risk BMI-adjust Yes HDL rs1310732 CV risk BMI-adjust Yes HDL rs1001988 CV risk BMI-adjust Yes HDL, Triglyc rs998584 CV risk BMI-adjust Yes HDL rs7014168 CV risk BMI-adjust Yes HDL rs1080854 CV risk BMI-adjust Yes Triglycerid(rs634869 CV risk BMI-adjust Yes HDL rs6567160 CV risk body fat pe Yes HDL rs1310732 CV risk body fat pe Yes Triglycerid(rs3761445 CV risk body fat pe Yes LDL rs3184504 CV risk body mass i Yes LDL, Triglyc rs1040196 CV risk body mass i Yes LDL,HDL rs2075650 CV risk body mass i Yes LDL rs2287019 CV risk body mass i Yes LDL,HDL rs964184 CV risk body mass i Yes HDL rs1121980 CV risk body mass i Yes HDL rs6567160 CV risk body mass i Yes HDL rs7607980 CV risk body mass i Yes HDL rs1310732 CV risk body mass i Yes rs205262 CV risk HDL body mass i Yes HDL, Triglyc rs998584 CV risk body mass i Yes Triglycerid(rs9930333 CV risk body mass i Yes Triglycerid∉rs4803750 CV risk body mass i Yes Triglycerid∉rs645040 CV risk body mass i Yes HDL rs1310732 CV risk cardiovascı Yes HDL rs7412 CV risk clinical and Yes HDL rs7412 CV risk common ca Yes

HDL	rs6567160	CV risk	fat body ma Ye	es
HDL	rs6567160	CV risk	lean body n Ye	es
HDL	rs1047891	CV risk	lean body n Ye	es
Triglyceride	rs1260326	CV risk	lean body n Y	es
LDL	rs780093	CV risk	leptin meas Y	es
HDL	rs1310732	CV risk	longitudina Ye	es
Triglyceride	rs1260326	CV risk	longitudina Y	es
HDL	rs1280163	CV risk	mean arteri Y	es
HDL	rs653178	CV risk	mean arteri Y	es
HDL	rs1310732	CV risk	mean arteri Y	es
LDL.HDL	rs1800961	CV risk	metabolic : Y	es
LDL	rs780093	CV risk	metabolic : Ye	es
LDL	rs9987289	CV risk	metabolic : Y	es
LDL.HDL	rs1883025	CV risk	metabolic s Y	es
LDL.HDL	rs964184	CV risk	metabolic : Y	es
HDL	rs2925979	CV risk	metabolic (Y	es
HDI	rs1310732	CV risk	metabolic	es
HDL Triglyc	rs998584	CV risk	metabolic	es
HDI	rs1178960	CV risk	metabolic	es
Triglyceride	rs1260326	CV risk	metabolic	es
Triglyceride	rs9930333	CVrisk	obese body Y	с <u>э</u> 65
	rs247616	CVrisk	obesity V	دع مد
	rs2000000	CVrisk	obesity V	دع ۵۵
НПІ	rs6567160	CVrisk	obesity V	دع ۵۵
	rc1150111	CVrick	nhysical act V	دع مد
	rc1200061	CVrick	physical act V	C3 05
	rc12016	CVrick	physical act V	C3
	rc4722EE1	CVTISK	physical act N	C 3
	rc064104	CV IISK	physical ac 10	es
נטנ,חטנ נוסנ	rc202E070	CV IISK	physical ac 10	es
	152925979	CVTISK	physical ac 10	es
Triglycorid	rs4010470	CV FISK	physical ac Y	es
Triglyceride	rs1260226	CV FISK	physical ac Y	es
Ingrycenae	151200320	CV TISK	physical ac Y	es
	151019525	CV FISK	physical act Y	es
	151105/39	CV FISK	physical act Y	es
HDL	rs2925979	CV FISK	physical act Y	es
	rs1310/32	CV risk	physical act Y	es
HDL, Irigiyc	rs998584	CV risk	physical act Y	es
Irigiyceride	rs9930333	CV risk	physical act Y	es
LDL	rs1019525	CV risk	pulse press Y	es
HDL	rs/412	CV risk	pulse press Y	es
Triglyceride	rs7248104	CV risk	pulse press Y	es
Triglycerid	rs1260326	CV risk	resting heal Y	es
LDL	rs2287019	CV risk	smoking be Y	es
LDL	rs1019525	CV risk	smoking be Y	es
HDL	rs863750	CV risk	smoking be Y	es
HDL	rs2925979	CV risk	smoking be Y	es
HDL	rs6567160	CV risk	smoking be Y	es
HDL	rs1310732	CV risk	smoking be Y	es
HDL	rs205262	CV risk	smoking be Y	es
HDL, Triglyc	rs998584	CV risk	smoking be Y	es
LDL	rs3184504	CV risk	smoking staY	es

LDL, Triglyc rs1040196 CV risk ventricular Yes LDL,HDL rs964184 CV risk ventricular Yes Triglycerid(rs4803750 CV risk ventricular Yes LDL,HDL rs2075650 CV risk waist circu Yes LDL rs2287019 CV risk waist circu Yes HDL rs6567160 CV risk waist circu Yes LDL,HDL rs2075650 CV risk waist-hip ra Yes LDL rs2287019 CV risk waist-hip ra Yes LDL rs1019525 CV risk waist-hip ra Yes LDL,HDL rs1883025 CV risk waist-hip ra Yes HDL rs863750 CV risk waist-hip ra Yes HDL rs1121980 CV risk waist-hip ra Yes HDL rs2925979 CV risk waist-hip ra Yes HDL rs6567160 CV risk waist-hip ra Yes HDL rs7607980 CV risk waist-hip ra Yes HDL rs1310732 CV risk waist-hip ra Yes HDL rs1001988 CV risk waist-hip ra Yes HDL, Triglyc rs998584 CV risk waist-hip ra Yes Triglycerid(rs1338921 CV risk waist-hip ra Yes Triglycerid(rs645040 CV risk waist-hip ra Yes Triglycerid(rs634869 CV risk waist-hip ra Yes LDL rs4970834 CV pharma Agents acti Yes LDL,HDL rs964184 CV pharma Agents acti Yes HDL rs7412 CV pharma Agents acti Yes HDL rs1310732 CV pharma Agents acti Yes rs964184 CV pharma Antithrom! Yes LDL,HDL HDL rs1274037 CV pharma Antithroml Yes HDL rs7412 CV pharma Antithrom Yes HDL rs7412 CV pharma aspirin use Yes LDL rs4970834 CV pharma Beta blocki Yes rs3184504 CV pharma Calcium ch Yes LDL CV pharma Calcium ch Yes HDL rs7412 HDL, Triglyc rs998584 CV pharma Calcium ch Yes LDL rs1800562 DM a1c measur Yes LDL rs579459 DM a1c measur Yes LDL, Triglyc rs1040196 DM diabetes mi Yes LDL rs780093 DM diabetes m. Yes LDL,HDL rs964184 DM diabetes m. Yes HDL rs1047891 DM diabetes m. Yes Triglycerid(rs4803750 DM diabetes mi Yes LDL,HDL rs1800961 DM Drugs used Yes LDL rs780093 DM Drugs used Yes LDL rs174583 DM fasting bloc Yes Triglycerid(rs174535 DM fasting bloc Yes Triglycerid(rs1260326 DM fasting bloc Yes HDL fasting bloc Yes rs7607980 DM Triglycerid(rs174535 DM fasting bloc Yes Triglycerid rs4803750 DM fasting bloc Yes fasting bloc Yes Triglycerid(rs1260326 DM LDL, Triglyc rs1040196 DM glucose me Yes LDL,HDL rs964184 DM glucose me Yes Triglycerid (rs4803750 DM glucose me Yes

Triglycerid(rs1260326 DM glucose me Yes Triglycerid(rs1260326 DM glucose tol. Yes LDL rs3184504 DM latent auto Yes LDL rs3184504 DM type i diabe Yes HDL rs653178 DM type i diabe Yes LDL rs3184504 DM type ii diab Yes LDL rs1169288 DM type ii diab Yes LDL, Triglyc rs1040196 DM type ii diab Yes LDL,HDL rs1800961 DM type ii diab Yes LDL rs1019525 DM type ii diab Yes HDL rs2925979 DM type ii diab Yes HDL rs7607980 DM type ii diab Yes Triglycerid(rs1751313 DM type ii diab Yes Triglyceriders1338921 DM type ii diab Yes Triglycerid(rs1260326 DM type ii diab Yes Triglycerid(rs9686661 DM type ii diab Yes Triglycerid(rs174535 DM HOMA-B Yes Triglycerid(rs1260326 DM HOMA-B Yes LDL rs174583 Respiratory adult onset Yes Triglyceriders174535 Respiratory adult onset Yes HDL Respiratory allergic rhi Yes rs653178 LDL rs174583 Respiratory asthma Yes HDL rs653178 Respiratory asthma Yes Triglycerid(rs174535 Respiratory asthma Yes LDL rs492602 Respiratory FEV/FEC rat Yes Triglyceriders1751313 Respiratory FEV/FEC rat Yes Triglycerid(rs174535 Respiratory respiratory Yes rs1310732 Respiratory vital capaci Yes HDL HDL, Triglyc rs442177 Respiratory vital capaci Yes LDL rs3184504 Immune ankylosing Yes Triglycerid(rs174535 Immune ankylosing Yes Triglycerid(rs1260326 Immune ankylosing Yes LDL rs3184504 Immune beta-2 mici Yes HDL rs653178 Immune Yes Eczema HDL rs1310732 Immune Yes Eczema HDL rs653178 Immune immune sy: Yes LDL rs3184504 Immune multiple sc Yes LDL rs3184504 Immune psoriasis Yes LDL rs492602 Immune psoriasis Yes Triglycerid(rs174535 Immune psoriasis Yes Triglycerid(rs1260326 Immune psoriasis Yes HDL rs653178 Immune sarcoidosis Yes LDL rs3184504 Immune serum IgA n Yes HDL rs653178 Immune systemic lu Yes HDL rs4917014 Immune systemic lu Yes HDL rs103294 Immune Takayasu ar Yes HDL rs653178 Immune thyroid per Yes LDL,HDL rs2075650 Dementia Alzheimer's Yes LDL rs519113 Dementia Alzheimer's Yes HDL rs7730111 Dementia Alzheimer's Yes HDL rs7412 Dementia Alzheimer's Yes Triglyceriders4803750 Dementia Alzheimer's Yes Triglyceriders439401 Dementia Alzheimer's Yes LDL,HDL rs2075650 Dementia beta-amylo Yes LDL,HDL rs2075650 Dementia cerebral ar Yes HDL rs1310732 Dementia cognitive fu Yes LDL,HDL rs2075650 Dementia cognitive ir Yes HDL rs7412 Dementia family histc Yes HDL rs7412 Dementia late-onset / Yes LDL,HDL rs2075650 Dementia Mental det Yes HDL rs1310732 Dementia nucleus acc Yes LDL,HDL rs2075650 Dementia p-tau:beta-Yes LDL,HDL rs2075650 Dementia posterior c Yes LDL,HDL rs2075650 Dementia t-tau measu Yes rs2075650 Dementia t-tau:beta-¿Yes LDL,HDL HDL rs2925979 Cholesterol adiponecti Yes HDL, Triglyc rs731839 Cholesterol adiponecti Yes HDL, Triglyc rs998584 Cholesterol adiponecti Yes Triglycerid(rs1260326 Cholesterol alpha-hydr) Yes HDL rs102275 Cholesterol alpha-linol Yes rs964184 Cholesterol alpha-tocol Yes LDL.HDL LDL rs7770628 Cholesterol apolipopro Yes HDL rs7412 Cholesterol apolipopro Yes LDL rs1169288 Cholesterol ceramide rr Yes LDL rs364585 Cholesterol ceramide rr Yes LDL, Triglyc rs247616 Cholesterol cholesterol Yes LDL,HDL rs964184 Cholesterol cholesterol Yes Triglycerid(rs174535 Cholesterol cholestery) Yes LDL, Triglyc rs247616 Cholesterol cholesteryl Yes LDL rs174583 Cholesterol cis/trans-1{ Yes HDL rs102275 Cholesterol cis/trans-1{ Yes Triglycerid(rs174535 Cholesterol cis/trans-1) Yes LDL,HDL rs964184 Cholestero diacylglyce Yes LDL,HDL rs964184 Cholesterol diacylglyce Yes LDL,HDL rs964184 Cholesterol diacylglyce Yes HDL rs102275 Cholesterol docosapent Yes Triglycerid(rs174535 Cholesterol docosapent Yes Triglycerid(rs174535 Cholesterol eicosapent; Yes LDL rs780093 Cholesterol fatty acid rr Yes HDL rs102275 Cholesterol fatty acid rr Yes Triglycerid(rs174535 Cholesterol fatty acid rr Yes Triglycerid(rs1260326 Cholesterol follistatin n Yes LDL rs1169288 Cholesterol HMG CoAr Yes LDL rs1159114 Cholesterol HMG CoAr Yes LDL rs6511720 Cholesterol HMG CoAr Yes LDL rs1367117 Cholesterol HMG CoAr Yes LDL rs12916 Cholesterol HMG CoAr Yes rs1883025 Cholesterol HMG CoAr Yes LDL,HDL LDL,HDL rs964184 Cholesterol HMG CoA ri Yes HDL rs1274037 Cholesterol HMG CoAr Yes HDL, Triglyc rs1046801 Cholesterol HMG CoAr Yes HDL rs7412 Cholesterol HMG CoA ri Yes HDL, Triglyc rs998584 Cholesterol HMG CoA r Yes Triglycerid(rs2068888 Cholestero HMG CoAr) Yes

Triglycerid(rs1260326 Cholestero HMG CoAr Yes Triglycerid(rs645040 Cholestero HMG CoAr Yes LDL rs6511720 Cholesterol lipid measu Yes LDL rs1367117 Cholesterol lipid measu Yes HDL rs4939883 Cholesterol lipid measu Yes HDL rs7412 Cholesterol lipid measu Yes HDL, Triglyc rs676210 Cholesterol lipid measu Yes Triglyceriders4803750 Cholesterollipid measu Yes Triglyceriders1260326 Cholesterol lipid measu Yes LDL,HDL rs964184 Cholestero lipid or lipc Yes HDL, Triglyc rs676210 Cholesterol lipid or lipc Yes rs7770628 Cholesterol lipoproteir Yes LDL HDL rs7412 Cholestero lipoproteir Yes rs1159114 Cholesterol lipoproteir Yes LDL LDL rs2954029 Cholestero lipoproteir Yes rs964184 Cholesterol lipoprotein Yes LDL,HDL HDL Cholesterol lipoprotein Yes rs7412 HDL rs686030 Cholestero lipoproteir Yes HDL Cholestero lipoprotein Yes rs7412 LDL, Triglyc rs247616 Cholesterol lipoprotein Yes LDL rs6511720 Cholesterol lipoproteir Yes LDL,HDL rs964184 Cholestero lipoproteir Yes HDL rs1274037 Cholesterol lipoproteir Yes HDL rs7412 Cholesterol lipoprotein Yes HDL rs102275 Cholesterol oleic acid n Yes Triglyceriders174535 Cholesterol oleic acid n Yes HDL rs102275 Cholesterol omega-6 pc Yes LDL rs780093 Cholesterol palmitoleic Yes HDL rs102275 Cholestero palmitoleic Yes LDL rs1159114 Cholestero PCSK9 prot Yes HDL rs102275 Cholesterol phosphatid Yes rs964184 Cholesterol phospholic Yes LDL,HDL HDL rs102275 Cholesterol phospholic Yes HDL, Triglyc rs1046801 Cholesterol phospholic Yes LDL rs1159114 Cholesterol response tc Yes LDL, Triglyc rs247616 Cholesterol response tc Yes HDL rs7412 Cholesterol response tc Yes LDL, Triglyc rs9804646 Cholesterol total chole: Yes LDL rs1089349 Cholesterol total chole: Yes LDL rs1083296 Cholesterol total chole: Yes LDL rs174583 Cholesterol total chole: Yes rs3184504 Cholesterol total chole: Yes LDL LDL rs1169288 Cholestero total chole: Yes LDL,HDL rs2642438 Cholesterol total chole: Yes rs1090312 Cholesterol total chole: Yes LDL LDL rs8017377 Cholestero total chole: Yes LDL rs1711150 Cholesterol total chole: Yes LDL rs1159114 Cholesterol total chole: Yes LDL rs2000999 Cholesterol total chole: Yes LDL rs1801689 Cholesterol total chole: Yes LDL rs314253 Cholesterol total chole: Yes LDL rs6511720 Cholesterol total chole: Yes

LDL rs688 Cholesterol total chole: Yes LDL, Triglyc rs1040196 Cholestero total chole: Yes LDL rs1046018 Cholesterol total chole: Yes LDL rs1531517 Cholesterol total chole: Yes LDL, Triglyc rs7254892 Cholesterol total chole: Yes LDL,HDL rs2075650 Cholesterol total chole: Yes LDL rs492602 Cholesterol total chole: Yes LDL rs7264396 Cholesterol total chole: Yes LDL.HDL rs1800961 Cholesterol total chole: Yes LDL rs1049062 Cholesterol total chole: Yes LDL rs1367117 Cholesterol total chole: Yes LDL rs1250229 Cholesterol total chole: Yes LDL rs1156325 Cholesterol total chole: Yes LDL rs780093 Cholesterol total chole: Yes LDL rs6544713 Cholesterol total chole: Yes LDL rs2710642 Cholesterol total chole: Yes LDL rs7640978 Cholesterol total chole: Yes LDL rs6818397 Cholesterol total chole: Yes LDL rs4530754 Cholesterol total chole: Yes LDL, Triglyc rs6882076 Cholestero total chole: Yes LDL Cholesterol total chole: Yes rs12916 LDL rs1564348 Cholesterol total chole: Yes LDL rs3757354 Cholesterol total chole: Yes LDL rs1800562 Cholesterol total chole: Yes LDL, Triglyc rs2247056 Cholesterol total chole: Yes LDL rs1267079 Cholesterol total chole: Yes LDL rs4722551 Cholesterol total chole: Yes LDL rs2737252 Cholesterol total chole: Yes LDL rs2954029 Cholesterol total chole: Yes LDL rs7832643 Cholestero total chole: Yes LDL rs1010216 Cholesterol total chole: Yes rs1327780 Cholesterol total chole: Yes LDL LDL rs9987289 Cholesterol total chole: Yes rs1883025 Cholesterol total chole: Yes LDL,HDL LDL rs579459 Cholesterol total chole: Yes LDL rs3780181 Cholesterol total chole: Yes LDL,HDL rs964184 Cholestero total chole: Yes HDL rs970548 Cholesterol total chole: Yes rs1274037 Cholesterol total chole: Yes HDL HDL rs7117842 Cholesterol total chole: Yes rs653178 Cholesterol total chole: Yes HDL HDL, Triglyc rs1046801 Cholesterol total chole: Yes HDL rs1077834 Cholesterol total chole: Yes HDL rs9989419 Cholesterol total chole: Yes HDL rs4939883 Cholesterol total chole: Yes rs737337 Cholestero total chole: Yes HDL HDL rs7412 Cholesterol total chole: Yes HDL, Triglyc rs676210 Cholesterol total chole: Yes rs1310732 Cholestero total chole: Yes HDL HDL rs1080854 Cholesterol total chole: Yes rs2853579 Cholesterol total chole: Yes HDL HDL rs1178960 Cholestero total chole: Yes Triglycerid(rs2068888 Cholesterol total chole: Yes Triglycerid(rs7350481 Cholestero total chole: Yes Triglycerid(rs5880 Cholesterol total chole: Yes Triglycerid(rs4803750 Cholesterol total chole: Yes Triglycerid(rs1260326 Cholestero total chole: Yes Triglyceriders6831256 Cholesterol total chole: Yes Triglycerid rs2954022 Cholestero total chole: Yes Triglycerid(rs4738684 Cholestero total chole: Yes LDL rs174583 Cholesterol trans fatty ¿Yes HDL rs102275 Cholestero trans fatty ¿Yes Triglycerid(rs174535 Cholesterol trans fatty ¿Yes rs964184 Cholesterol very low de Yes LDL.HDL Triglycerid(rs1260326 Biochemist alanine mei No LDL rs3184504 Biochemist blood meta No LDL rs1159114 Biochemist blood meta No LDL, Triglyc rs247616 Biochemist blood meta No rs2954029 Biochemist blood meta No LDL LDL rs579459 Biochemist blood meta No rs964184 Biochemist blood meta No LDL.HDL HDL rs102275 Biochemist blood meta No HDL, Triglyc rs1046801 Biochemist blood meta No HDL rs7412 Biochemist blood meta No HDL rs1047891 Biochemist blood meta No HDL rs686030 Biochemist blood meta No Triglyceriders174535 Biochemist blood meta No Triglyceriders588136 Biochemist blood meta No Triglycerid(rs1260326 Biochemist blood meta No Triglyceriders4921914 Biochemist blood meta No LDL rs3184504 Biochemist blood prot No LDL rs1801689 Biochemist blood prot No LDL rs492602 Biochemist blood prot No LDL rs579459 Biochemist blood prot No LDL,HDL rs964184 Biochemist blood prot No HDL rs1274037 Biochemist blood prot No HDL rs333947 Biochemist blood prot No HDL rs7412 Biochemist blood prot No HDL rs5167 Biochemist blood prot No Triglycerid(rs1260326 Biochemist blood prot/No rs1047891 Biochemist blood urea No HDL HDL rs1936800 Biochemist blood urea No Triglycerid(rs1260326 Biochemist C-peptide n No LDL, Triglyc rs1040196 Biochemist c-reactive r Yes LDL,HDL rs2075650 Biochemist c-reactive p Yes LDL,HDL rs1800961 Biochemist c-reactive r Yes LDL rs9987289 Biochemist c-reactive p Yes rs4660293 Biochemist c-reactive p Yes HDL HDL rs1077834 Biochemist c-reactive p Yes HDL rs4465830 Biochemist c-reactive p Yes rs687339 Biochemist c-reactive p Yes HDL Triglycerid rs2068888 Biochemist c-reactive p Yes Triglycerid(rs1260326 Biochemist c-reactive r Yes Triglycerid(rs645040 Biochemist c-reactive p Yes

LDL rs1169288 Biochemist chloride m No HDL rs333947 Biochemist creatine kir No LDL rs1801689 Biochemist Dickkopf-re No HDL rs102275 Biochemist glyceropho No LDL rs9987289 Biochemist glycine mei No HDL rs1047891 Biochemist glycine mei No LDL rs2000999 Biochemist heparin col No HDL rs333947 Biochemist lactate deh No rs9987289 Biochemist lactate mea No LDL Triglycerid(rs1260326 Biochemist lactate mea No Triglycerid(rs1260326 Biochemist mannose m No Triglycerid(rs1260326 Biochemist metabolite No Triglycerid(rs4921914 Biochemist metabolite No LDL rs1801689 Biochemist NAD-depen No Triglycerid(rs1260326 Biochemist percent gly No Triglyceriders1260326 Biochemist phosphatid No Triglyceriders1260326 Biochemist phosphatid No HDL rs102275 Biochemist phosphatid No Triglyceriders174535 Biochemist phosphatid No Triglycerid(rs174535 Biochemist phosphatid No Triglycerid(rs1260326 Biochemist protein c m No LDL rs2000999 Biochemist protein me No HDL rs1047891 Biochemist protein me No Triglycerid(rs1260326 Biochemist protein me No Triglycerid(rs1694809 Biochemist serum albu No Triglyceriders1260326 Biochemist serum albu No LDL rs1800562 Biochemist serum hepc No LDL rs174583 Biochemist serum meta No LDL rs1159114 Biochemist serum met; No LDL rs6511720 Biochemist serum meta No LDL rs1367117 Biochemist serum meta No LDL rs780093 Biochemist serum meta No HDL rs102275 Biochemist serum meta No HDL, Triglyc rs676210 Biochemist serum meta No HDL rs1047891 Biochemist serum meta No HDL rs13702 Biochemist serum meta No Triglycerid(rs174535 Biochemist serum met; No Triglycerid(rs588136 Biochemist serum met; No Triglycerid(rs439401 Biochemist serum met; No Triglycerid(rs4810479 Biochemist serum met; No Triglycerid(rs1260326 Biochemist serum met; No Triglycerid(rs2954022 Biochemist serum met; No LDL rs780093 Biochemist sex hormor No Triglycerid(rs1260326 Biochemist sodium me No rs1800961 Biochemist urate meas Yes LDL,HDL LDL rs780093 Biochemist urate meas Yes HDL rs653178 Biochemist urate meas Yes HDL rs3741414 Biochemist urate meas Yes HDL rs1047891 Biochemist urate meas Yes HDL rs1714573 Biochemist urate meas Yes Triglycerid(rs1260326 Biochemist urate meas) Yes HDL rs3741414 Biochemist uric acid m No

Triglycerid(rs1260326 Biochemist uric acid m No LDL rs579459 Biochemist urinary me No HDL rs1047891 Biochemist urinary me No Triglycerid(rs4921914 Biochemist urinary me No LDL rs492602 Biochemist vitamin B1 No LDL,HDL rs964184 Biochemist vitamin D n No HDL rs1047891 Biochemist vitamin D n No LDL,HDL rs964184 Biochemist vitamin Err No HDL rs653178 Biochemist cystatin c n Yes LDL, Triglyc rs1040196 Cancer cancer No LDL,HDL rs964184 Cancer cancer No Triglycerid(rs4803750 Cancer cancer No HDL rs103294 Cancer prostate ca No LDL rs3184504 Early years birth weigh No LDL rs3184504 Endocrinol hypothyroi No rs3184504 Endocrinol Thyroid pre No LDL LDL, Triglyc rs1040196 Gastro alcoholic li No LDL,HDL rs2642438 Gastro alkaline ph No LDL rs314253 Gastro alkaline ph₁No LDL rs579459 Gastro alkaline ph₁No Triglycerid rs1260326 Gastro alkaline ph No HDL rs333947 Gastro aspartate a No LDL rs3184504 Gastro celiac disea No HDL celiac disea No rs653178 Gastro colorectal (No LDL rs3184504 Gastro LDL rs3184504 Gastro crohn's dise No LDL crohn's dise No rs780093 Gastro crohn's dise No HDL rs102275 Gastro Triglycerid(rs174535 Gastro crohn's dise No Triglycerid(rs1260326 Gastro crohn's dise No LDL rs1169288 Gastro gallstones No LDL,HDL rs1800961 Gastro gallstones No HDL rs686030 Gastro gallstones No Triglycerid(rs1260326 Gastro gallstones No LDL rs3184504 Gastro inflammatc No HDL rs653178 Gastro inflammatc No Triglycerid(rs1260326 Gastro inflammatc No Triglycerid(rs1260326 Gastro non-alcohc No LDL rs3184504 Gastro sclerosing c No Triglycerid(rs174535 Gastro sclerosing c No Triglycerid(rs1260326 Gastro sclerosing c No LDL, HDL, Tr rs1274815 Gastro serum alani No LDL rs2954029 Gastro serum alani No HDL rs1047891 Gastro serum alani No Triglycerid(rs645040 Gastro serum alani No LDL rs1169288 Gastro serum alph No Triglycerid (rs1260326 Gastro serum alph No LDL rs1169288 Gastro serum gami No Triglycerid (rs1260326 Gastro serum gami No LDL rs3184504 Gastro ulcerative c No Triglycerid(rs174535 Gastro ulcerative c No Triglycerid(rs1260326 Gastro ulcerative c No

LDL,HDL,Tr	rs1274815	Haem	acute lymp No
HDL	rs4969178	Haem	acute myel: No
HDL	rs1213357	Haem	acute myel. No
LDL	rs579459	Haem	adhesion m No
LDL	rs3184504	Haem	basophil cc No
LDL,HDL	rs1800961	Haem	basophil cc No
HDL	rs653178	Haem	basophil cc No
Triglycerid	rs1260326	Haem	basophil cc No
LDL	rs1090312	Haem	blood sedir No
LDL	rs579459	Haem	e-selectin n No
LDL	rs3184504	Haem	eosinophil No
LDL.HDL	rs1800961	Haem	eosinophil No
, LDL.HDL	rs964184	Haem	eosinophil No
HDL	rs653178	Haem	eosinophil No
Triglyceride	rs1260326	Haem	eosinophil No
ны	rs653178	Haem	eosinophil No
	rs653178	Наст	eosinophil No
	rs3184504	Haem	erythrocyt(No
	rc1200061	Наст	erythrocyte No
	rc1200501	Наст	erythrocyte No
	rcE 70/E0	Haom	erythrocyte No
	rs102275		erythrocyte No
	15102275		erythrocyte No
HDL	151213357	Haem	erythrocyte No
HDL	rs/412	Haem	erythrocyteino
HDL	rs1310/32	Haem	erythrocyte No
Triglyceride	rs1338921	Haem	erythrocyte No
Triglyceride	rs1260326	Haem	factor VII m No
LDL	rs1010216	Haem	factor VIII n No
LDL	rs1800562	Haem	ferritin mea No
LDL	rs3184504	Haem	fibrinogen I No
LDL,HDL	rs1800961	Haem	fibrinogen I No
HDL	rs5167	Haem	granulocyt: No
LDL	rs3184504	Haem	granulocyt: No
LDL,HDL	rs1800961	Haem	granulocyt: No
Triglyceride	rs1260326	Haem	granulocyt: No
LDL	rs2000999	Haem	haptoglobi No
LDL	rs3184504	Haem	hematocrit No
LDL, Triglyc	rs1040196	Haem	hematocrit No
LDL,HDL	rs1800961	Haem	hematocrit No
LDL	rs1800562	Haem	hematocrit No
LDL,HDL	rs964184	Haem	hematocrit No
Triglyceride	rs4803750	Haem	hematocrit No
Triglyceride	rs1260326	Haem	hematocrit No
LDL	rs3184504	Haem	hemoglobi No
	rs2000999	Haem	hemoglobi No
	rs1800961	Haem	hemoglobi No
	rs1800562	Haem	hemoglobi No
HDI	rs1877021	Haem	hemoglobi
HDI	rs1210722	Нает	hemoglabi
HDI Trighy	rs//0177	Нает	hemoglabi
Trialucoride	rc1220021	Haom	homoglabi
	rc1000521	Haom	hencidin fa No
LUL	131000205		nepciumie NO

LDL	rs1800562	Haem	iron bioma No
LDL	rs3184504	Haem	leukocyte c No
LDL,HDL	rs1800961	Haem	leukocyte c No
HDL	rs333947	Haem	leukocyte c No
HDL	rs291040	Haem	leukocyte c No
HDL	rs1047891	Haem	, leukocvte c No
HDL.Triglyc	rs998584	Haem	, leukocvte c No
Triglyceride	rs1260326	Haem	leukocyte c No
HDI	rs103294	Haem	leukocyte i No
	rs3184504	Haem	lymphocyti No
Triglyceride	rs1260326	Haem	lymphocyt: No
I DI	rs1800562	Haem	mean corpi No
	rs7412	Haem	mean corpi No
HDI	rs1047891	Haem	mean corpi No
	rs96/18/	Haem	mean corpi No
	rc1000E60	Haom	mean corpt No
	rc1047001	Пает	mean corpi No
	r=064194		mean plate No
	15904104		mean plate No
HDL	151047891	Haem	mean plate No
HDL	rs333947	Haem	monocyte(No
HDL	rs653178	Нает	monocyte(No
LDL	rs3184504	Haem	myeloid wr No
LDL,HDL	rs1800961	Haem	myeloid wr No
Triglyceride	rs1260326	Haem	myeloid wr No
LDL	rs3184504	Haem	neutrophil No
LDL,HDL	rs1800961	Haem	neutrophil No
Triglycerid	rs1260326	Haem	neutrophil No
HDL	rs653178	Haem	neutrophil No
LDL,HDL	rs1800961	Haem	neutrophil No
LDL,HDL	rs964184	Haem	platelet cor No
LDL	rs3184504	Haem	platelet coi No
LDL	rs1801689	Haem	platelet coi No
HDL	rs1047891	Haem	platelet coi No
Triglyceride	rs2068888	Haem	platelet coi No
Triglyceride	rs1260326	Haem	platelet coi No
LDL	rs3184504	Haem	platelet crit No
Triglycerid	rs2068888	Haem	platelet crit No
Triglycerid	rs1260326	Haem	platelet crit No
LDL	rs579459	Haem	platelet rea No
LDL,HDL	rs964184	Haem	red blood c No
HDL	rs1214574	Haem	red blood c No
HDL	rs863750	Haem	red blood c No
HDL	rs7412	Haem	red blood c No
Triglyceride	rs1260326	Haem	red blood c No
	rs3184504	Haem	reticulocyt No
	rs964184	Haem	reticulocyt No
ны	rs7/12	Haem	reticulocyt No
HDI Trighy	rs992521	Haem	reticulocyt No
Triglycerid	rs1322004	Haem	reticulocyt No
Triglyceride	rs1260221	Нает	reticulocyt No
	rc1800520	Наст	sorum iron No
	rc5701502	Haom	solublop of No
LUL	132/3433	1100111	2010016 h-26 140

LDL	rs492602	Haem	strom
LDL	rs1800562	Haem	total i
LDL	rs1800562	Haem	transf
LDL	rs1800562	Haem	transf
HDL	rs1310732	Ophth	Abnoi
HDL	rs3936511	Ophth	Abnoi
Triglyceride	rs1260326	Ophth	Abnoi
LDL	rs3184504	Ophth	glauco
HDL	rs1047891	Other	amino
Triglyceride	rs1260326	Other	amino
HDL	rs1310732	Other	baldir
LDL	rs3184504	Other	body
LDL	rs6818397	Other	body
LDL, Triglyc	rs2247056	Other	body
HDL	rs1274037	Other	body
HDL	rs6567160	Other	body
HDL	rs1047891	Other	body
HDL	rs1310732	Other	body
Triglyceride	rs1260326	Other	body
HDL	rs1310732	Other	, brain
LDL	rs267733	Other	chron
Triglyceride	rs1260326	Other	coffee
Triglyceride	rs1260326	Other	cups
Triglyceride	rs1260326	Other	diet m
Triglyceride	rs1260326	Other	gout
HDL	rs1310732	Other	grip st
LDL	rs2737252	Other	heel b
HDL.Triglyc	rs998584	Other	heel b
Triglyceride	rs4810479	Other	heel b
HDL	rs1047891	Other	homo
HDL	rs2013208	Other	intelli
HDL	rs1310732	Other	intelli
HDL	rs102275	Other	irrital
Triglyceride	rs4810479	Other	kit lig
HDI	rs1310732	Other	lifesty
Triglyceride	rs749671	Other	lifest v
	rs2075650	Other	longe
HDI	rs7412	Other	longe
	rs8176722	Other	malar
HDI	rs1310732	Other	math
	rs1040196	Other	morta
	rs964184	Other	morta
Triglyceride	rs/1803750	Other	morta
Triglycerid	rs174525	Other	Nasal
ны	rc1210722	Other	nouro
	rc1210722	Other	octoo
	rs1800560	Other	Osteo
Triglycoride	rc0020202	Other	ostoo
Triglyceride	rc0020222	Other	osteo
	rc2181501	Other	naren
	rc2104504	Other	paren
	rc6511770	Other	paren
LUL	130311/20	JUNE	paren

nelysir No iron b No ferrin No ferrin No rmalit No rmalit No rmalit No oma No o acid No o acid No ng me No heigh Yes volun No notype No e cons No of coff No neasu: No Yes trengt No one n No one n No one n No ocyste No igenc∈No igenc∈No bility No and m No /le me No yle me No vity No vity No ria No emati No ality No ality No ality No cavity No oimagi No arthri No arthri No arthri No arthri No tal ge No tal lo No tal lo No

Triglycerid	rs749671	Other	response tc No
HDL	rs4917014	Other	response tc No
LDL,HDL,Tr	rs1274815	Other	response tc No
HDL	rs7412	Other	response tc No
LDL,HDL	rs964184	Other	response tc No
LDL,HDL	rs964184	Other	response tc No
HDL	rs1310732	Other	risk-taking No
HDL	rs1310732	Other	schizophre No
HDL	rs1310732	Other	self reporte No
LDL	rs1019525	Other	sex interact No
HDL	rs2925979	Other	sex interact No
HDL, Triglyc	rs998584	Other	sex interact No
LDL	rs1711150	Other	sleep durat No
LDL	rs1367117	Other	sleep durat No
LDL	rs1564348	Other	sleep durat No
LDL,HDL	rs964184	Other	sleep durat No
HDL	rs1274037	Other	sleep durat No
HDL	rs1138429	Other	sleep durat No
HDL	rs4783961	Other	sleep durat No
HDL	rs2925979	Other	sleep durat No
HDL	rs103294	Other	sleep durat No
HDL	rs7607980	Other	sleep durat No
HDL, Triglyc	rs676210	Other	sleep durat No
HDL	rs1310732	Other	sleep durat No
HDL	rs13702	Other	sleep durat No
HDL	rs686030	Other	sleep durat No
Triglyceride	rs4810479	Other	sleep durat No
Triglyceride	rs1260326	Other	sleep durat No
HDL	rs4917014	Other	Stevens-Joł No
LDL	rs3184504	Other	tonsillecto: No
HDL	rs653178	Other	tonsillecto: No
HDL	rs4917014	Other	toxic epide No
LDL,HDL	rs964184	Other	, vitamin me No
HDL	rs1047891	Renal disea	albuminuri No
LDL	rs174583	Renal disea	chronic kid Yes
HDL	rs102275	Renal disea	chronic kid Yes
HDL	rs653178	Renal disea	chronic kid Yes
HDL	rs1047891	Renal disea	chronic kid Yes
Triglyceride	rs1260326	Renal disea	chronic kid Yes
Triglyceride	rs4921914	Renal disea	chronic kid Yes
LDL	rs780093	Renal disea	creatinine I Yes
HDL	rs1047891	Renal disea	creatinine r Yes
Triglyceride	rs1260326	Renal disea	creatinine r Yes
LDL	rs780093	Renal disea	glomerular Yes
HDL	rs3741414	Renal disea	glomerular Yes
HDL	rs1047891	Renal disea	glomerular Yes
Triglyceride	rs2068888	Renal disea	glomerular Yes
Triglyceride	rs1260326	Renal disea	glomerular Yes
LDL	rs780093	Renal disea	kidnev stor No
HDL	rs1936800	Renal disea	renal syster No
LDL	rs780093	Renal disea	urinary alb. Yes
HDL	rs1047891	Renal disea	urinary alb Yes
			,

Triglycerid(rs2068888 Renal disea urinary alb) Yes HDL rs1047891 Renal disea urinary pot No HDL rs1047891 Renal disea urinary sod No Triglycerid (rs1260326 Renal disea urinary sod No Triglyceriders1260326 Renal disea urolithiasis No LDL rs3184504 Women's h endometria No LDL rs3184504 Women's h endometria No LDL rs1159114 LDL LDL cholest No HDL rs7412 LDL LDL cholest No LDL rs1089349 LDL low density No LDL rs267733 LDL low density No low density No LDL rs174583 LDL LDL rs3184504 LDL low density No LDL rs1169288 LDL low density No low density No LDL,HDL rs2642438 LDL low density No LDL rs2587534 LDL low density No LDL rs1090312 LDL LDL, HDL, Tr rs1274815 LDL low density No LDL rs4942486 LDL low density No LDL low density No rs8017377 LDL LDL low density No rs1711150 LDL LDL rs1159114 LDL low density No LDL rs1148561 LDL low density No LDL, Triglyc rs247616 LDL low density No LDL rs2000999 LDL low density No LDL rs1801689 LDL low density No LDL rs314253 LDL low density No LDL rs1166913 LDL low density No LDL rs6511720 LDL low density No rs688 LDL LDL low density No LDL, Triglyc rs1040196 LDL low density No low density No LDL rs1046018 LDL LDL rs1531517 LDL low density No LDL, Triglyc rs7254892 LDL low density No LDL,HDL rs2075650 LDL low density No LDL rs492602 LDL low density No LDL rs364585 LDL low density No LDL rs2328223 LDL low density No LDL rs6016381 LDL low density No LDL rs6065311 LDL low density No LDL,HDL rs1800961 LDL low density No LDL rs1049062 LDL low density No LDL rs2030746 LDL low density No LDL rs1367117 LDL low density No LDL rs1250229 LDL low density No LDL rs5763662 LDL low density No LDL rs1156325 LDL low density No LDL rs6544713 LDL low density No LDL rs2710642 LDL low density No LDL rs1740415 LDL low density No LDL rs7640978 LDL low density No LDL rs6818397 LDL low density No
LDL	rs4530754	LDL	low density No
LDL,Triglyc	rs6882076	LDL	low density No
LDL	rs12916	LDL	low density No
LDL	rs6909746	LDL	low density No
LDL	rs1564348	LDL	low density No
LDL	rs3757354	LDL	low density No
LDL	rs1800562	LDL	low density No
LDL.Triglyc	rs2247056	LDL	, low density No
LDL	rs1267079	LDL	low density No
LDL	rs4722551	LDL	low density No
	rs2073547		low density No
	rs2737252		low density No
	rc205/070		low density No
	rc78276/2		low density No
	rc10102045		low density No
	rc1227700		low density No
	151327780		low density No
	159987289		Tow density No
LDL,HDL	rs1883025	LDL	low density No
LDL	rs5/9459	LDL	low density No
LDL	rs3780181	LDL	low density No
LDL,HDL	rs964184	LDL	low density No
HDL	rs1274037	LDL	low density No
HDL	rs1713539	LDL	low density No
HDL	rs653178	LDL	low density No
HDL	rs9989419	LDL	low density No
HDL	rs737337	LDL	low density No
HDL	rs7412	LDL	low density No
HDL, Triglyc	rs676210	LDL	low density No
HDL	rs1714573	LDL	low density No
HDL	rs1080854	LDL	low density No
HDL	rs4240624	LDL	low density No
Triglycerid	rs4587594	LDL	low density No
Triglycerid	rs4803750	LDL	low density No
Triglycerid	rs1260326	LDL	low density No
Triglyceride	rs6831256	LDL	low density No
Triglyceride	rs2954022	LDL	low density No
Triglyceride	rs4738684	LDL	low density No
LDL, Triglyc	rs247616	HDL	HDL choles No
LDL,HDL	rs1800961	HDL	HDL choles No
LDL,HDL	rs1883025	HDL	HDL choles No
HDL	rs2925979	HDL	HDL choles No
HDL	rs2013208	HDL	HDL choles No
Triglycerid	rs4810479	HDL	HDL choles No
LDL, Triglyc	rs9804646	HDL	high densit No
LDL	rs174583	HDL	high densit No
LDL	rs3184504	HDL	high densit No
LDL.HDL	rs2642438	HDL	high densit No
	rs1274815	HDL	high densit No
LDL.Triglyc	rs247616	HDL	high densit No
LDL.Triplyc	rs1040196	HDL	high densit No
1 DI	rs1531517	HDI	high densit No
	rs1800061	HDI	high densit No
	. 31000001		

LDL	rs1740415	HDL	high densit No
LDL	rs2954029	HDL	high densit No
LDL	rs9987289	HDL	high densit No
LDL,HDL	rs1883025	HDL	high densit No
LDL	rs519113	HDL	high densit No
LDL,HDL	rs964184	HDL	high densit No
HDL	rs970548	HDL	high densit No
HDL	rs1274037	HDL	high densit No
HDL	rs333947	HDL	high densit No
HDL	rs1214574	HDL	high densit No
HDL	rs1280163	HDL	high densit No
HDL	rs499974	HDL	high densit No
HDL	rs4650994	HDL	high densit No
HDL	rs1689797	HDL	high densit No
HDL	rs2241210	HDL	high densit No
HDL	rs863750	HDL	high densit No
HDL	rs838876	HDL	high densit No
HDL	rs7298751	HDL	high densit No
HDL	rs1104516	HDL	high densit No
HDL	rs4846914	HDL	high densit No
HDL	rs3741414	HDL	high densit No
HDL	rs4660293	HDL	high densit No
HDL	rs4983559	HDL	high densit No
HDL	rs492571	HDL	high densit No
HDL.Triglyc	rs1046801	HDL	high densit No
HDI	rs1077834	HDI	high densit No
HDL	rs1121980	HDL	high densit No
HDI	rs1138429	HDI	high densit No
HDI	rs9989419	HDI	high densit No
HDI	rs4783961	HDI	high densit No
HDI	rs1694288	HDI	high densit No
HDI	rs2925979	HDI	high densit No
HDI	rs1877031	HDI	high densit No
HDI	rs4969178	HDI	high densit No
HDI	rs4939883	HDI	high densit No
HDI	rs737337	HDI	high densit No
	rs731839	ны	high densit No
HDI	rs7730111	HDI	high densit No
HDI	rs7412	HDI	high densit No
HDI	rs5167	HDI	high densit No
HDI	rs1769522	HDI	high densit No
ны	rs103294	ны	high densit No
ны	rs2278234	ны	high densit No
ны	rs4465830	ны	high densit No
ны	rs7607980	ны	high densit No
	rs676210	ны	high densit No
HDI, MBIYC	rs10/7210	ны	high densit No
ны	rs181260	ны	high densit No
НОГ	rs6805751	НОГ	high densit No
НОГ	rs1207675	НОГ	high densit No
	rc2200E47		high donsit No
	rc2012200		high donait No
HUL	152013208	HUL	ingil densit NO

HDL	rs1332616	HDL	high densit No
HDL	rs1310732	HDL	high densit No
HDL, Triglyc	rs442177	HDL	high densit No
HDL	rs3822072	HDL	high densit No
HDL	rs6450176	HDL	high densit No
HDL	rs1936800	HDL	high densit No
HDL, Triglyc	rs998584	HDL	high densit No
HDL	rs1176597	HDL	high densit No
HDL	rs1717363	HDL	high densit No
HDL	rs4142995	HDL	high densit No
HDL	rs4917014	HDL	high densit No
HDL	rs702485	HDL	high densit No
HDL	rs1714573	HDL	high densit No
HDL	rs2293889	HDL	high densit No
HDL	rs1080854	HDL	high densit No
HDL	rs1008790	HDL	high densit No
HDL.Triglyc	rs7016529	HDL	high densit No
HDL	rs13702	HDL	high densit No
HDL	rs4240624	HDL	high densit No
HDL	rs2853579	HDL	high densit No
HDI	rs1178960	HDI	high densit No
HDI	rs686030	HDI	high densit No
Triglyceride	rs2068888	HDI	high densit No
Triglyceride	rs7350481	HDI	high densit No
Triglyceride	rs1321257	ны	high densit No
Triglyceride	rs1161335	ны	high densit No
Triglyceride	rs1751313	ны	high densit No
Triglyceride	rc588136	ны	high densit No
Triglyceride	rs5880	ны	high densit No
Triglyceride	rc/1803750	ны	high densit No
Triglycorid	rc/20/01		high donsit No
Triglycorid	rc/010/70		high donsit No
Triglyceride	rc20721/6		high densit No
Triglycorid	rc0696661		high donsit No
Triglycorid	rc624960		high donsit No
Triglycorid	rc2054009		high donsit No
Triglyceride	rs1267001		high densit No
Triglyceride	rs120/891	Triglycorid	triage densit NO
Triglyceride	rs1260320	Triglyceride	
Trialvanial	151260326	Trialvasial	
Triglyceride	rs1260326	Trigiyceride	
Irigiyceria(rs1229425	Trigiyceride	
LDL,HDL	rs964184	Iriglyceride	triacylglyce No
LDL,HDL	rs964184	Iriglyceride	triacylglyce No
LDL,HDL	rs964184	Iriglyceride	triacylglyce No
LDL,HDL	rs964184	Triglyceride	triacylglyce No
LDL,HDL	rs964184	Triglyceride	triacylglyce No
LDL,HDL	rs964184	Triglyceride	triacylglyce No
LDL	rs780093	Triglyceride	hypertrigly No
LDL,HDL	rs964184	Triglyceride	hypertrigly No
HDL	rs1714573	Triglyceride	hypertrigly No
Triglycerid	rs1260326	Triglyceride	hypertrigly No
LDL,HDL	rs964184	Triglyceride	triglycerid€ No

LDL, Triglyc rs9804646 Triglycerid etriglycerid No LDL rs174583 Triglycerid triglycerid No LDL,HDL rs2642438 Triglycerid triglycerid No LDL, HDL, Tr rs1274815 Triglycerid (triglycerid No LDL, Triglyc rs247616 Triglycerid (triglycerid No LDL rs1801689 Triglycerid triglycerid No LDL, Triglyc rs1040196 Triglycerid (triglycerid No LDL, Triglyc rs7254892 Triglycerid (triglycerid No rs492602 Triglyceride triglyceride No LDL LDL rs1019525 Triglycerid triglycerid No LDL rs1367117 Triglycerid triglycerid No rs780093 Triglyceride triglyceride No LDL LDL, Triglyc rs6882076 Triglycerid (triglycerid No LDL, Triglyc rs2247056 Triglycerid etriglycerid e No rs4722551 Triglycerid triglycerid No LDL rs2954029 Triglyceride triglyceride No LDL rs9987289 Triglycerid triglycerid No LDL LDL,HDL rs1883025 Triglycerid(triglycerid(No LDL,HDL rs964184 Triglyceride triglyceride No HDL rs863750 Triglycerid triglycerid No HDL rs4846914 Triglycerid triglycerid No HDL rs3741414 Triglycerid triglycerid No HDL, Triglyc rs1046801 Triglycerid€ triglycerid€ No HDL rs1077834 Triglycerid triglycerid No HDL rs1121980 Triglycerid triglycerid No HDL rs9989419 Triglycerid triglycerid No HDL rs2925979 Triglycerid triglycerid No HDL, Triglyc rs731839 Triglycerid triglycerid No HDL rs7412 Triglycerid triglycerid No HDL rs5167 Triglycerid € triglycerid € No HDL rs4465830 Triglycerid triglycerid No HDL rs7607980 Triglycerid triglycerid No HDL, Triglyc rs676210 Triglycerid triglycerid No rs687339 Triglycerid triglycerid No HDL HDL, Triglyc rs442177 Triglycerid (triglycerid (No HDL rs3822072 Triglycerid triglycerid No HDL rs1936800 Triglycerid triglycerid No HDL, Triglyc rs998584 Triglycerid (triglycerid (No HDL rs1176597 Triglycerid triglycerid No HDL rs1714573 Triglycerid triglycerid No HDL rs1080854 Triglycerid triglycerid No HDL, Triglyc rs7016529 Triglycerid€ triglycerid€ No HDL rs13702 Triglycerid €triglycerid €No Triglycerid(rs1832007 Triglycerid(triglyceride No Triglycerid(rs2068888 Triglycerid(triglycerid(No Triglycerid(rs7350481 Triglycerid(triglycerid(No Triglycerid(rs1105740 Triglycerid(triglyceride No Triglycerid(rs1321257 Triglycerid(triglycerideNo Triglycerid(rs1161335 Triglycerid(triglycerid(No Triglycerid(rs588136 Triglycerid(triglycerid)No Triglycerid(rs3198697 Triglycerid(triglycerideNo Triglycerid(rs4587594 Triglycerid(triglycerid)No Triglycerid(rs5880 Triglycerid € triglycerid € No Triglycerid(rs8077889 Triglycerid(triglycerid)No Triglycerid (rs4803750 Triglycerid (triglycerid €No Triglycerid(rs439401 Triglycerid(triglycerid)No Triglycerid (rs7248104 Triglycerid (triglycerid No Triglycerid (rs4810479 Triglycerid (triglycerid (No Triglycerid (rs6066141 Triglycerid (triglycerid (No Triglycerid (rs2972146 Triglycerid (triglycerid No Triglycerid (rs3761445 Triglycerid (triglycerid No Triglycerid (rs1260326 Triglycerid (triglycerid No Triglycerid(rs645040 Triglycerid(triglycerid)No Triglycerid (rs6831256 Triglycerid (triglycerid (No Triglycerid (rs9686661 Triglycerid (triglycerid (No Triglycerid (rs719726 Triglycerid (triglycerid (No Triglycerid rs38855 Triglycerid triglycerid No Triglycerid (rs4719841 Triglycerid (triglycerid (No Triglycerid (rs6995541 Triglycerid (triglycerid (No Triglycerid (rs2954022 Triglycerid (triglycerid €No Triglycerid(rs4921914 Triglycerid(triglycerid(No Triglycerid(rs1267891 Triglycerid(triglycerid)No

Supplementary Figure 5

