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Abstract 

Chronic lymphocytic leukemia (CLL) is the most frequent leukemia in adults in the West. 

An unmet need for equally curative and tolerable treatment approaches exists. Our group 

has previously shown that the PD-1/PD-L1 immune checkpoint pathway is pivotal in 

mediating CLL-associated T-cell dysfunction. Bruton’s tyrosine kinase inhibitors such as 

Ibrutinib have been shown to be able to modulate the function of T-cells and myeloid 

cells. Using the Eμ-TCL1 mouse model of CLL, we have aimed to analyse the effect of 

BTK inhibitors on expression of immune checkpoint molecules, immune phenotype and 

T-cell function as well as develop a combination approach of BTK inhibitors and anti-PD-

L1 immune checkpoint blockade. We detected a modest increase in PD-L1 expression 

among CLL B-cells and a decrease among myelomonocytic cells with both Ibrutinib and 

Acalabrutinib treatment. We have demonstrated an amelioration of the exhaustion 

phenotype of CD4+ and CD8+ T-cells with BTK-inhibitor treatment with downregulation 

of CD69, PD-1, LAG-3 and KLRG-1. We also found downregulation of inhibitory receptor 

2B4, LAG-3 and KLRG-1 on NK cells. On myeloid cells we observed downregulation of 

PD-1 and 2B4 as well as a differential effect on expression of TIM-3 with upregulation 

among myelomonocytic cells and downregulation among classical dendritic cells.  

Immunophenotypes of BTK inhibitor and BTK inhibitor/anti-PD-L1 combination treated 

animals were similar with a slightly higher expression level of PD-1 among combination 

treated animals. Both substances improved helper cell cytokine profiles, degranulation 

capacity of cytotoxic T-cells and T-cell synapse formation to a similar extent. The 

combination of BTK inhibitor treatment and PD-L1 blockade failed to achieve improved 

correction of CLL-associated T-cell exhaustion phenotype and Ibrutinib/anti-PD-L1 

combination treatment achieved only a very modest improvement of T-cell function over 

single agent treatments. Suprisingly, the combination of Acalabrutinib and anti-PD-L1 

immune checkpoint blockade was detrimental regarding both helper cell and cytotoxic T-

cell function. These findings would caution against the use of Acalabrutinib/anti-PD1 or 

anti-PD-L1 combinations in the clinical setting. 
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ATP  adenosine triphosphate 

BAD  Bcl-2-associated death promoter 

BAFF  B-cell activating factor 

BAK  Bcl-2 homologous antagonist killer 

BAT3  HLA-B-Associated Transcript 3 

BAX  Bcl-2-associated X protein 

BCL-w  B-cell lymphoma w  

BCK-XL B-cell lymphoma-XL 

BCL1  murine B cell lymphoma 

BCL-2  B-cell lymphoma 2 

BCR  B-cell receptor 

BH3  BCL-2 homology 3  

BID  BH3 domain-only death agonist protein 

BIM  Bcl-2 Interacting Mediator of cell death 

BIRC3   Baculoviral IAP repeat-containing protein 3 

Blk  B lymphocyte kinase  

BLAST-1 B-lymphocyte activation marker 1 

BM  bone marrow 

BLNK  B-cell linker protein 

BNX  beige/nude/Xid 

BR  Bendamustin, Rituximab 

Breg  regulatory B-cells 
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BSA  bovine serum albumin 

BSU  biological services unit 

BTK  Bruton’s Tyrosine Kinase 

BTKi  BTK inhibitor  

BTLA  B‐ and T‐lymphocyte attenuator (BTLA) 

CK2  casein kinase 2 

CCL  C-C motif ligand 

CCR  C-C motif receptor 

CD  Cluster of differentiation 

CDR  complementary determing region 

CDR3  complementarity determining region 3  

CDC  complement dependent cytotoxicity 

Cdc42  Cell division control protein 42 homolog  

CDC42EP3 Cdc42 effector protein 3 

CDK  Cyclin-dependent kinase 

CEACAM1 carcinoembryonic antigen cell adhesion molecule 1 

CIA  Collagen-induced arthritis  

CIITA MHC class II transactivator class II, major histocompatibility complex, 

transactivator  

CITRUS cluster identification, characterization, and regression 

CLL  Chronic lymphocytic leukemia 

CLL-IPI  CLL international prognostic index 

CMAC  7-Amino-4-Chlormethylcumarin 

CMML  Chronic myelomonocytic leukemia  

CMV  Cytomegalie Virus  

CNS  central nervous system 

CnA  Calcineurin  

CpG-ODN CpG oligodeoxynucleotide 

CR  Complete Response 

CRAC  Calcium-release activated channels 

CRC  CLL Research Consortium 

CSF-1  Colony stimulating factor 1 (CSF-1)  

CSF1R  Colony stimulating factor 1 receptor 

Csk  C-terminal Src kinase  

c-SMAC central SMAC 

CTLA-4  cytotoxic T-lymphocyte-associated protein 4 

CXCL  CXC Motif Ligand 

CXCR  CXC Motif Receptor 

C481  cysteine resiude 481 

C481S  mutation of cysteine to serine in position 481 
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DAG  Diacylglycerol 

DAMP  damage associate molecular pattern 

DAPI  4′,6-diamidino-2-phenylindole 

Del 11(q) Deletion on the long arm of chromosome 11 

Del13(q) Deletion on the long arm of chromosome 13 

Del(17p) Deletion on the short arm of chromosome 17 

DLBCL  diffuse large B-cell lymphoma 

DLEU2  deleted in lymphocytic leukemia 2 

Dlg1  Discs large homolog 1 

DMSO  dimethyl sulfoxide 

DNA  Deoxyribonucleic acid 

DNAM-1 DNAX accessory molecule-1 (DNAM-1)  

Dnmt  DNA methyltransferase 

dnRAG1 dominant-negative recombination activating gene 1 

d-SMAC distal SMAC 

EAE  experimental autoimmune encephalitis  

EAT-2  EWS-Fli1-activated transcript-2  

EBMT  European Society for Bone Marrow Transplantation 

ECOG  Eastern Cooperative Oncology Group 

EDTA  Ethylenediaminetetraacetic acid 

EdU  5-ethynyl-2´-deoxyuridine 

EFS  Event Free Survival 

EGFR  Epidermal growth factor receptor 

eNAMPT extracellular nicotinamide phosphoribosyltransferase 

ERIC  European Research Initiative on CLL 

ERK  extracellular signal–regulated kinase 

ERM family ezrin, moesin and radixin family 

ERT  EAT-2-related transducer 

ESCCA  European Society for Clinical Cell analysis 

FACS  Fluorescence-activated cell sorting 

FAK  focal adhesion kinase 

Fas  first apoptosis signal  

FasL  Fas ligand  

Fc  crystallisable fragment 

FCR  Fludarabine, cyclophosphamide, rituximab 

FCRγ  fragment, crystallizable region receptor γ 

FCS  fetal calf serum 

FCγRIII  Low affinity immunoglobulin gamma Fc region receptor III 

FDA  food and drug adminstration 

FGL1  fibrinogen-like protein 1 
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FISH  fluorescence in situ hybridisation 

FL  follicular lymphoma  

Flt3  FMS-like tyrosine kinase 3 Receptor 

FMO  fluorescence minus one 

FOXD3  Forkhead box D3 

FOXP3  forkhead box P3 

FRET  fluorescence resonance energy transfer  

Fyn  Fgr/Yes novel tyrosine kinase  

Fzd6  Frizzled-6 

GCLLSG German CLL Study Group 

GEF  Guanine nucleotide exchange factor  

GITR  glucocorticoid-induced TNFR-related protein 

GM-CSF Granulocyte-macrophage colony-stimulating factor 

GPI anchor  glycophosphatidylinositol anchor 

GPVI  Glycoprotein VI 

GPIb  Glycoprotein Ib 

GSK3  Glycogen synthase kinase 3 

GvHD  graft versus host disease 

GvL  graft-versus-leukaemia effect 

HAVCR2 hepatitis A virus cellular receptor 2 

HCDR3  heavy chain third complimentary determining region 

HL  Hodgkin lymphoma 

HLA  human leukocyte antigen 

HPBCD  Hydroxypropyl-β-cyclodextrin 

Hpf  high power field 

Hs1  Hematopoietic-Specific Protein 1 

HSCT  haematopoetic stem cell transplantation 

HVEM  herpes virus entry mediator 

ICAM-1  Intercellular Adhesion Molecule 1  

ICAM-3  Intercellular adhesion molecule 3   

ICOS  Inducible T-cell costimulator 

IDO  indoleamine 2,3-dioxygenase 

ID4  inhibitor of DNA binding 4 

IFN  Interferon 

IFNGR1  Interferon gamma receptor 1 

Ig  Immunoglobulin 

IgC  Ig constant  

IgG1  immunoglobulin G1 

IgHD  immunoglobin heavy diversity and  

IgHJ  immunoglobulin heavy joining 
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IgI  Ig intermediate 

IgV  Ig variable  

Igκ   Immunoglobulin light chain kappa 

Igλ  Immunoglobulin light chain lambda 

IgVH  immunoglobulin heavy chain variable region 

IKFZ1  Ikaros family zinc finger protein 1 

IKFZ3  Ikaros family zinc finger protein 3 

IKK  IκB kinase 

IL  Interleukin 

iMID  immunomodulatory drug 

IMS  industrial methylated spirit 

iNKT  Invariant Natural Killer T 

IP3  inositol 1,4,5-trisphosphate 

irAE  Immune-related adverse event 

IRAK1  Interleukin-1 receptor-associated kinase 1 

IRF4  Interferon regulatory factor 4 

IS  Immunological synapse 

ITAM  Immunoreceptor-based activation motifs 

ITIM  immune receptor tyrosine-based inhibitory motif 

ITK  IL-2-inducible T-cell kinase 

ITP  Immune thrombocytopenia 

ITSM  immunoreceptor tyrosine-based switch motif 

ITT  Ig tail-tyrosine 

iwCLL  International Workshop on CLL 

JAK  Janus kinase  

JNK  c-Jun N-terminal kinase  

KIR  killer cell Ig-like receptors 

KLRG-1 Killer cell lectin-like receptor subfamily G member  

LAG-3  lymphocyte activation gene 3   

LcK  lymphocyte-specific protein tyrosine kinase  

LDT  lymphocyte doubling time 

LFA-1   lymphocyte function-associated antigen 1  

LFA-3  lymphocyte function-associated antigen 3 

LIGHT lymphotoxin‐like, exhibits inducible expression, and competes with herpes 

simplex virus glycoprotein D for HVEM  

LMP2A latent membrane protein 2A  

LN  peripheral lymph nodes (LN) 

LSECtin lymph node sinusoidal endothelial cell C-type lectin  

LTα  lymphotoxin α 

Lyn  Lck/Yes novel tyrosine kinase  
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MACS  magnetic activated cell sorting 

MAPK  mitogen activated protein kinases 

MBG  Mouse beta globulin 

MBL  monoclonal B lymphocytosis 

MCL  Mantel Cell Lymphoma  

MCL-1  Myeloid Cell Leukemia 1 

MDS  Myelodysplastic Syndrome  

MDSC  myeloid derived suppressor cell 

MEK  MAPK/Erk kinase 

MIF  macrophage migration inhibitory factor 

MM  Multiple Myeloma 

MP1  HL matrix protein 1 (MP1)  

Myc  myelocytomatosis viral oncogene homolog 

NCR  natural cytotoxicity trigerring receptor 

NHL  non-Hodgkin lymphoma 

NK  natural killer 

NKT  Natural killer T 

NLC  nurse-like cell 

NOD  Non-Obese Diabetic 

NPM  nucleophosmin  

NSG  NOD SCID gamma 

mDIA1  mammalian homolog of Drosophila diaphanous 1 

MHC  major histocompatibility complex 

miR  microRNA 

MMP9  Matrix Metalloproteinase 9 

MTOC  microtubule organiying centre 

mTOR  mammalian target of rapamycin 

MYD88  Myeloid differentiation primary response 88 

NBH  neutrophil B-helper cells 

Necl5  Nectin-like protein 5 

NFAT  Nuclear factor of activated T-cells 

NIH  National Institute of Heaααh 

NKG2D  natural killer group 2 member D 

NMII  non-muscle myosin II 

NOD  nucleotide oligomerization domain  

NZB  New Zealand Black 

ORR  Overall Response Rate 

OS  Overall Survival 

PAMP  pathogen-associated-molecular patterns  

PAR complex partitioning defective polarity complex   
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PB  peripheral blood (PB) 

PBS  phosphate buffered saline  

PCNSL  primary CNS lymphoma  

PCR  Polymerase chain reaction 

PDAC  pancreatic ductal adenocarcinoma  

PES  Polyethersulfone 

PDK1  3-phosphoinositide-dependent protein kinase-1 

PD-L1  programmed death ligand 1 

PD-1  programmed cell death protein 1 

PFS  Progression free survival  

PIP2  Phosphatidylinositol 4,5-bisphosphate 

PIP3  Phosphatidylinositol 3,4,5-trisphosphate 

PI3K  Phosphoinositide 3-kinase 

PKC  Protein kinasen C 

PLCγ-1  Phospholipase C gamma 1 

PLCγ-2  Phospholipase C gamma 2 

PLL  Prolymphocytic leukemia 

PMA  Phorbol 12-Myristate 13-Acetate 

PMBL  primary mediastinal B-cell lymphoma  

PMT  photomultiplier tube 

PND  paraneoplastic neurologic degeneration 

PPA2  protein phosphatase 2 

PP2c  protein phosphatase 2C  

PRR  pattern recognition receptor 

p-SMAC peripheral SMAC 

PTCL  peripheral T-cell lymphoma 

PtdSer  Phosphatidyl serin 

PTEN  Phosphatase and Tensin homolog 

PTGR2  Prostaglandin Reductase 2 

PTL  primary testicular lymphoma  

PVRL2  Poliovirus receptor-related 2 

PVR  Poliovirus receptor 

qTOF  quadrupole-time-of-flight instrument. time of flight (TOF) 

RAB35  Ras-related protein 35  

Rac1  Ras-related C3 botulinum toxin substrate 1 

RAG  recombinase activating gene  

Rb  Retinoblastoma protein 

Rap1  Ras-related protein 1 

RAP1GAP Rap1 GTPase-activating protein 

RAS  Rat sarcoma 
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RasGRP1 RAS guanyl nucleotide-releasing protein 1 

R-CHOP Rituximab, cyclophosphamide, doxorubicin, vincristine and prednisolone 

RDX  radixin 

RGMb  Repulsive guidance molecule b 

RhoaA  Ras homolog gene family member A  

RhoH  Ras homolog gene family member H 

RIAM  Rap1-GTP-interacting adapter molecule 

RIG-I  retinoic acid inducible gene-I 

RING  Really Interesting New Gene 

ROR1  Receptor tyrosine kinase–like orphan receptor 1 

RPMI 1640 Roswell Park Memorial Institute medium 1640   

RS  Richter syndrome 

SAP  signaling lymphocytic activation molecule-associated protein 

SCF complex Skp, Cullin, F-box containing complex 

scFv  Single chain variable fragment 

SCID  Severe combined immunodeficiency 

SDF-1  stromal derived factor 1 

SDS  sodium dodecyl sulfate 

SEA  staphylococcus enterotoxin A  

SEB  staphylococcus enterotoxin B 

SEREX  serological expression cloning technique 

SF3B1  Splicing factor 3B subunit 1 

SHIP-1  Src homology 2 domain containing inositol polyphosphate 5-phosphatase 1  

SHP-1  Src homology 2-containing protein tyrosine phosphatase-1 

SHP-2  Src homology 2-containing protein tyrosine phosphatase-2 

Sh-RNA short hairpin RNA    

SH2  Src homology 2 domain 

SKAP  Src kinase-associated phosphoprotein 

Skp2  S-phase kinase-associated protein 2 

SLAMF2 Lymphocyte Activation Molecule Family 2  

SLAMF4 Signalling Lymphocyte Activation Molecule Family 4 

SLE  systemic lupus erythematodes 

SLL  Small lymphocytic lymphoma 

SMAC  supramolecular activation cluster  

SMAD3  Mothers against decapentaplegic homolog 3 

Sp1  specificity protein 1 

Src  sarcoma 

STAT  Signal transducer and activator of transcription 

SV40  simian virus 40 

Syk  Spleen tyrosine kinase 
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TACTILE T cell activation, increased late expression 

TAM  tumour associated macrophage 

TAN  tumour associated neutrophils 

TCL1  T-cell leukemia/lymphoma protein 1 

tBregs  Tumour associated regulatory B-cells 

TCRBV  T-cell receptor B variable 

TEM  effector memory T-cells  

TEMRA  CD45RA+ effector memory cells 

TGF  transforming growth factor 

Th1  T helper 1   

Th17   IL17 producing helper cells 

Th2 T helper 2  

Tie-2 tyrosine kinase that contains immunoglobulin‐like loops and epidermal‐growth‐ 

factor‐similar domains 2  

TIGIT T-cell immunoreceptor with immunoglobulin and ITIM domains  

TIL tumour infiltrating lymphocyte 

TIM-3 T-cell immunoglobulin and mucin-domain containing-3  

TLR toll-like receptor 

TLS tumour lysis syndrome 

TNF Tumour necrosis factor 

TNFRSF14 TNFR superfamily 14 

TOF time of flight 

TP53  Tumor Protein p53 

TRAF  TNF receptor associated factor 

TRAIL  TNF-related apoptosis-inducing ligand  

TRAMP  transgenic adenocarcinoma of the mouse prostate 

Treg  regulatory T-cell 

TRIS  tris(hydroxymethyl)aminomethane 

TTT  time to treatment 

ULBP  UL16-binding protein 

VCX  Venetoclax 

VEGF  vascular endothelial growth factor 

VR  Venetoclax and Rituximab 

WASp  Wiskott–Aldrich Syndrome protein  

WAVE  WASP family Verprolin-homologous protein 

Wnt  wingless-related integration site 

XBP1  X-box binding protein 1 

XID  X-linked Immune Defect 

ZAP-70  Zeta-chain-associated protein kinase 70 
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1 Introduction 

1.1 Chronic lymphocytic leukaemia 

1.1.1 Epidemiology, clinical features and diagnosis of the disease 

Chronic lymphocytic leukemia (CLL) is the most frequently occurring form of leukemia in 

adults in the West. The incidence rate is about 4 in 100,000 per year (1-3). In contrast, 

the incidence rate is about 5-10 times lower among East Asians and those of Asian 

descent (4-6). The disease has a median age of onset of 70 and thus largely affects an 

elderly patient population. The risk is slightly higher among men compared to women 

with a male to female ratio of 1.5 (3, 7). Internationally there are an estimated 191,000 

cases and 61,000 deaths per year due to CLL and the related non-leukaemic lymphoma 

Small lymphocytic lymphoma (SLL) (8). 

The hallmark of CLL is the gradual amassment of mature B-lymphocytes within 

peripheral blood (PB), spleen, bone marrow (BM) and peripheral lymph nodes (LN). The 

clinical presentation and course of the disease are highly variable. The condition is 

typically initially asymptomatic. However, subgroups of patients with a swifter disease 

onset and more aggressive course exist. Advanced CLL presents with constitutional 

symptoms including fatigue, fevers, weight loss and night sweats. Peripheral 

lymphadenopathy, hepatosplenomegaly and more rarely extranodal manifestations can 

occur as well. As the disease progresses signs of BM insufficiency occur. Other 

frequently observed phenomena are immune deficiency, manifested by chronic and 

recurring infections, as well as a reduced response to vaccinations. Autoimmune effects 

including autoimmune haemolytic anaemia (AIHA) and immune thrombocytopenia (ITP) 

occur relatively frequently (9). 

The diagnosis of CLL is made following the criteria of the International Workshop on CLL 

(iwCLL) from 2018. The diagnostic assessment is made according to lymphocyte 

morphology and immunophenotype (10). On blood smears, CLL cells appear as mature 

lymphocytes characterized by a slim rim of cytoplasm and a dense nucleus without 

nucleoli or partial chromatin aggregations. Cellular debris known as Gumprecht nuclear 

shadows are often associated with CLL. Prolymphocytes can occasionally be found 

among the mature appearing morphologically typical CLL B-cells. A percentage of 

prolymphoctes equal to or exceeding 10% has been linked to a more aggressive course 

of CLL. However, a proportion of ≥55% of prolymphocytes would suggest a diagnosis of 

prolymphocytic leukemia (PLL) (11). 
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The classical CLL immune phenotype has been described as Cluster of Differentiation 

(CD)5+/CD19+/CD20+/CD23+/Immunoglobulin(Ig)M+/IgD+. The expression levels of 

markers CD20 and CD79b are typically very low compared to physiological B-cells. 

Clonality of the CLL B-cells can be confirmed by demonstrating light chain restriction with 

exclusive expression of either Immunoglobulin light chain kappa (Igκ) or Immunoglobulin 

light chain lambda (Igλ). Expression of CD5 on B-cells is also observed in other lymphoid 

malignancies such as Mantel Cell Lymphoma (MCL).  A harmonization project by the 

European Research Initiative on CLL (ERIC) and the European Society for Clinical Cell 

analysis (ESCCA) has recently described a panel of CD19, CD5, CD20, CD23, Igκ, and 

Igλ to be satisfactory for diagnosing the disease. Additional markers such as CD43, 

CD79b, CD81, CD200, CD10 or Receptor tyrosine kinase–like orphan receptor 1 (ROR1) 

may be of use in establishing the diagnosis in more atypical cases (12). 

The diagnosis of CLL is made when >5x109/l B-cells with confirmed light chain restriction 

are observed in the peripheral blood for at least 3 month (10). The presence of 

lymphadenopathy with the typical histopathological finding and typical immune 

phenotype but with a number of B-cells in the peripheral blood of <5x109/l is indicative of 

SLL (10). An absolute count of < 5x109/l B-cells with typical immune phenotype of CLL 

in the absence of hepatosplenomegaly, cytopenia or disease related symptoms is 

defined as monoclonal B lymphocytosis (MBL) (13). The condition can be found in over 

5% of those over 60 years of age. MBL, while indolent and not causing symptoms by 

itself, can progress to CLL requiring treatment. Those with low clonal B-cell counts 

(≤0.5x109/l) progress rarely.  Among high count MBL patients (>0.5x109/l clonal B-cells), 

however, 1-2% of patients progress per year (14-16). 

1.1.2 Clinical staging and risk stratification 

Various staging systems have been developed to assess the prognosis of CLL patients 

– the most common and widely used of which are the Binet and Rai staging systems. 

(17, 18). Both use a combination of clinical parameters and standard laboratory tests to 

stratify patients (Table 1).  
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Rai Staging System 

Stage Clinical Features 

0 lymphocytosis (>15x109/l) only 

I lymphocytosis + lymphadenopathy 

II lymphocytosis + splenomegaly/ hepatomegaly 

III lymphocytosis + anaemia (haemoglobin <11g/dl) 

IV lymphocytosis + thrombocytopenia (platelets <100x109/l) 

Binet Staging System 

Stage Clinical Features 

A < 3 affected lymph node areas, no anaemia or thrombocytopenia 

B ≥ 3 affected lymph node areas, no anaemia or thrombocytopenia 

C haemoglobin <10g/dl and/or platelets <100x109/l ± lymphadenopathy/ organomegaly 

Table 2: Staging systems for CLL. 

In addition to the staging systems according to Rai and Binet a large number of 

prognostic markers have been suggested. Among these prognostic parameters 

characteristics like age, comorbidities, performance status as well as biomarkers related 

to the disease are featured. Very few of these markers have been validated in 

prospective studies including immunoglobulin heavy chain variable region (IgVH) 

mutation status (19, 20), CD38  expression, (19) Zeta-chain-associated protein kinase 

70 (ZAP-70) expression (21), serum markers like β2-microglobulin (22, 23) as well as 

cytogenetic aberrations which can be  visualized  using fluorescence in situ hybridisation 

(FISH) (24).  

CLL cells use IgVH genes that can be very similar to their germline variants or may have 

undergone somatic mutation (25-27). If CLL cells harbour an IgVH sequence that shows 

at least 98% sequence homology to the nearest germ line gene, this is defined as 

umutated IgVH. Patients that suffer from CLL with unmutated IgVH have inferior 

prognosis to those with mutated IgVH (19, 20). Presence of mutated IgVH, especially 

when found alongside other prognostic factors such as a favourable cytogenetic profile 

and achievement of minimal residual disease (MRD) negativity defines a subgroup of 

patients with very favourable outcome when treated with a chemoimmunotherapy 

composed of fludarabine, cyclophosphamide and Rituximab (28-30).  
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Expression of CD38 and ZAP-70 among CLL B-cells correlates with unmutated IgVH 

and can be associated with poor prognosis. However, exceptions exist which are found 

more frequenly among patients with high risk cytogenetics (19, 21, 31-35).  

Several serum markers such as  β2-microglobulin, thymidine kinase and soluble CD23 

have been reported to be associated with poor overall survival and progression-free 

survival among CLL patients (22, 23, 36-39). β2-microglobulin is used in several 

multiparameter scores including the CLL international prognostic index (CLL-IPI) (40). 

Cytogenetic aberrations are identified in >80% of CLL cases (24). The most common 

alteration is deletion on the long arm of chromosome 13 (del(13q)) (55% of cases). Other 

frequently occurring chromosome aberations are deletions on the long arm of 

chromosome 11 (del(11q)) (18% of cases), trisomy of chromosome 12 (16% of cases) 

and deletions on the short arm of chromosome 17 (del(17p))  (6% of cases) (24). Of 

these cytogenetic changes del(17p) is of particular prognostic significance. Patients 

suffering from CLL carrying del(17p) usually are in need of therapy within 12 months of 

disease detection and have a median overall survival (OS) of a mere 32 months, largely 

as a result of very limited responsiveness to standard chemoimmunotherapy (24). Only 

very few patients with del(17p) demonstrate an indolent course of disease (41). Trisomy 

12 and del(11q) are associated with a decreased median survival as well (114 and 79 

months respectively) while del 13(q) as the sole cytogentic aberration is associated with 

a favourable outcome (median overall survival (OS) 133 months).  

The reason for poor chemo-sensitivity of CLL cases carrying del (17p) is the lack of the 

tumour suppressor Tumor Protein p53 (TP53) which can be found on the short arm of 

chromosome 17 (42). Del(17p) often occurs in the setting of additional loss of function 

mutations of the second allele of TP53 which result in a complete loss of tumour 

suppressor function (43, 44). Critical genes associated with other commonly affected 

chromosome regions include Notch1 which is found on chromosome 9 but is frequently 

associated wit  trisomy 12 (45), radixin (RDX) and ataxia telangiectasia mutated (ATM) 

for del(11q) (46) and deleted in lymphocytic leukemia 2 (DLEU2)/microRNA(miR)-

15a/miR-16 for del13(q) (47). Other genes that have been demonstrated to be commonly 

mutated in CLL B-cells include Myeloid differentiation primary response 88 (MYD88), 

Baculoviral IAP repeat-containing protein 3 (BIRC3) and Splicing factor 3B subunit 1 

(SF3B1) (48-50), all of which have been linked to high-risk CLL and poor response to 

conventional chemoimmunotherapy (51-53).  
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Several new stratification systems taking novel prognostic markers into account have 

been developed (36, 40). Using a multivariate cox regression model Pflug et al. identified 

8 factors idenpendently associated with inferior survival in a cohort of CLL patients 

enrolled in phase III trials of the German CLL Study Group (GCLLSG): del17p, del11q, 

elevated serum thymidine kinase, β2 microglobulin, unmutated IgVH, Eastern 

Cooperative Oncology Group (ECOG) performance status greater than 0, male gender 

and age over 60 years. Based on these, they developed a prognostic index stratifying 

patients in 4 risk categories with a 5-year OS between 18.7% to 95.2% and a C-statistic 

of 0.75 (36). The CLL-IPI is based on an analysis of 3472 treatment naïve CLL patients 

from various international clinical trials and uses a weighted score including clinical 

stage, age, IGVH mutational status, β2 microglobulin and del17p. The score divides four 

diagnostic subgroups with a 5-year OS ranging from 23.3%-93.2% and a C-statistic of 

0.723 (40). 

Richter Syndrome (RS) denotes the transformation of CLL into an aggressive lymphoma, 

usually diffuse large B-cell lymphoma (DLBCL) and, more rarely, Hodgkin lymphoma 

(HL). Approximately 2-10% of CLL patients will develop Richter syndrome during their 

lifetime, the incidence rate is 0.5% per year of observation (54). In CLL cases with 

NOTCH1 mutations and TP53 abnormalities Richter transformation has been described 

to occur more commonly (55-57) as well as in those expressing certain stereotyped 

immungloblins, particularly those with IgVH4-39 and heavy chain third complimentary 

determining region (HCDR3) encoded by genes immunoglobin heavy diversity (IgHD) 6-

13 and immunoglobulin heavy joining (IgHJ) 5 (HDCR3 subset 8) (58).  Patients with 

Richter syndrome have an especially poor prognosis (59). In DLBCL type RS the 

prognosis is dependent on the clonal relationship between CLL and DLBCL clones: 

While those DLBCL cases with an unrelated clone have a median survival comparable 

to that of de novo DLBCL, the survival of patients with DLBCL of clonality related to the 

underlying CLL is significantly shorter (60). Tsimberidou et al. have developed a 

prognosis score for RS based on ECOG performance status, serum LDH, platelet count 

and number of prior therapies for CLL distinguishing 4 risk strata with an overall survival 

ranging from 1.1 years to 0.1 years (59).  

Our increasing understanding of molecular and cytogenetic aberrations in CLL continues 

to reshape risk stratification in CLL. In the era of chemoimmunotherapy “high risk” 

patients have not been defined along the lines of the classical staging systems anymore 

but as those being refractory to purine analog–based therapy, those with a short time to 

progression after therapy and those with high risk cytogenetic features such as deletions 
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on the short arm of chromosome 17 (del(17p)). A newer definition in the age of novel 

molecularly targeted therapies has distinguished a “high-risk I” category for those 

patients with TP53 abnormalities resistant to chemoimmunotherapy but responsive to a 

first line pathway inhibitor (inhibitors of Bruton’s Tyrosine Kinase (BTK) or BCL2) and a 

“high risk II” category for patients who have independent of TP53 status failed both 

chemoimmunotherapy and a firt line pathway inhibitor (61). 

1.1.3 Indications for treatment, treatment options and unmet needs 

In the absence of reliable and tolerable curative treatment approaches for CLL the 

treatment decision is made according to the onset of symptoms and the activity of the 

disease. Patients with asymptomatic early stage disease (Rai stage 0, Binet stage A) are 

usually observed closely without treatment initiation unless there is evidence of rapidly 

progressive disease (10). Treatment of these early stage patients has been 

demonstrated to not result in a survival benefit (62-64). In intermediate stage patients 

(Rai stage I and II, Binet stage B) treatment is initiated when signs of symptomatic or 

rapidly progressing disease are found. These include progressive marrow failure 

(haemoglobin <10 g/dl, thrombocytes <100x109/l), very prominent (≥ 6 cm below costal 

arch) or rapidly progressing or symptomatic splenomegaly, very prominent (≥10 cm in 

longest diameter) or rapidly progressing or symptomatic lymphadenopathy, progressive 

lymohocytosis (≥50% increase over a time of two months or lymphocyte doubling time 

(LDT) <6 months), the presence of autoimmune complications (AIHA or ITP) which do 

not respond to steroid treatment well, symptomatic extranodal manifestations and 

symptomatic disease (unintentional weight loss ≥10% within 6 months, fatigue, ECOG 

performance scale 2 or worse, fevers ≥38.0°C lasting at least 2 weeks in the absence of 

infection, night sweats ≥1 month in the absence of infecftion). Patients with a high stage 

of disease (Rai stage III and IV, Binet stage C) already have signs of BM failure and 

should be treated immediately (10).  

Leukostasis does not occur in CLL patients - elevation of the absolute lymphocyte count 

by itself is therefore not a treatment indication. Moreover, hypogammaglobulinema or 

paraproteinemia are not considered indications for treatment (10). Asymptomatic 

disease relapse alone is not considered a treatment indication. Rather initiation of 

second- or subsequent lines of treatment should follow the same indications as the initial 

treatment decision (10). 

The treatment recommendations for CLL are rapidly changing at the moment. For 

patients <65 years of age without significant comorbidities and no evidence of del(17p) 

or TP53 until very recently a chemoimmuntherapy with fludarabine, cyclophosphamide 
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and the anti-CD20 monoclonal antibody Rituximab (FCR) has been used exclusively (65, 

66). The CLL08 study reported an ORR of 90%, a PFS of 51.8 months and a 3-year OS 

of 87% in a cohort of treatment naïve physically fit CLL patients with this combination 

(66). However, this approach is increasingly being supplanted by monotherapy with the 

small molecule BTK inhibitor Ibrutinib based on the findings of the E1912 study 

presented at the annual meeting of the American Society of Hematology (ASH) in 2018. 

Here a significant improvement of progression free survival (PFS) as well as OS with 

single agent Ibrutinib over FCR was reported in patient <70 years of age (67). This, 

however, is an interim analysis with a still relatively short follow-up period of only 33.4 

months. Hence, the previous standard treatment is still commonly used as well. 

Chemoimmunotherapy with FCR, while leading to high OS and PFS, may not be 

tolerable for those with significant comorbidities or beyond 65 years of age (68). For 

these patients chlorambucil in combined with an anti-CD20 antibody can be used. 

Traditionally the combination of Chlorambucil and Rituximab was used, which is 

generally well tolerated and has been shown to have improved OR and PFS compared 

to fludarabine or chlorambucil alone (66).  

Novel CD20 targeting antibodies are now available as combination partners. The 

humanized monoclonal antibody Ofatumomab interacts with a different epitope of the 

CD20 molecule than Rituximab (69) and has been reported to result in a more efficient 

complement dependent cytotoxicity (CDC) than Rituximab (69). Ofatumomab has been 

demonstrated to have high efficacy in both previously untreated and relapsed or 

refractory CLL patients. Efficacy has been demonstrated even for patients having 

received prior Rituximab containing treatment (70-72). Another CD20 targeting 

monoclonal antibody is the glycoengineered type II antibody Obinutuzumab. A direct 

comparison of Obinutuzumab, Rituximab and Ofatumomab in a xenograft mouse model 

as well as in vitro experiments has demonstrated improved direct cell death and antibody 

dependent cellular cytoxicity (ADCC) with Obinutuzumab compared to both Rituximab 

and Ofatumomab but 10 to 10 000 times reduced portency in induction of CDC. 

Obinutuzumab also showed slower internalization and improved in vivo efficacy (73). 

The novel glycoengineered anti-CD20 antibody Ublituximab has been designed to have 

high affinitiy of Low affinity immunoglobulin gamma Fc region receptor III (FCγRIII) and 

improved ADCC compared to Rituximab (74). The agent is currently being tested in 

combination trials with Phosphoinositide 3-kinase (PI3K) inhibitor Umbralisib 

(NCT02612311), BTK inhibitor (BTKi) Ibrutinib (NCT02013128) and B-cell lymphoma 2 

(BCL-2) antagonist Venetoclax (NCT03379051).  
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The CLL11 trial evaluated chlorambucil/Rituximab and chlorambucil/Obinutuzumab 

against Chlorambucil alone and found a significantly longer median PFS for 

chlorambucil/Obinutuzumab compared to chlorambucil/Rituximab (26.7 months vs. 16.3 

months) (75). The COMPLEMENT1 trial has successfully confirmed the superiority of 

chlorambucil/Ofatumomab over single agent chlorambucil (76).  

Another option is combination treatment with Rituximab and Bendamustine (BR) which 

has been shown to result in an Overall Response Rate (ORR) of 88% and an event free 

survival (EFS) of 34 month while causing only moderate toxicities (77). Bendamustine 

treatment has also been assessed in combination with Obinutuzumab in a phase Ib trial 

with promising outcomes (78). FCR and BR treatment were directly compared in a phase 

III randomized open-label trial conducted by GCLLSG. This trial demonstrated a higher 

rate of complete response (CR) and CR without evidence of MRD and higher PFS with 

FCR in comparison to BR. However, the patients in the BR arm were significantly older 

and had a higher proportion of case with unmutated IgVH. Also, patients in the FCR arm 

had higher rates of neutropenia and infectious complications (79). The MABLE study 

found a significantly prolonged PFS but not OS with BR compared to 

Chlorambucil/Rituximab (80). BR has thus been preferred over Chlorambucil 

combinations for the physically fit patients beyond 65 years of age. 

As with FCR therapy, a shift away from classical immunochemotherapeutic approaches 

towards monotherapy with Ibrutinib for elderly and physically unfit CLL patients is 

occurring. The recently published ALLIANCE study reported an improved PFS but not 

OS with single agent Ibrutinib compared to BR in patients >65 years of age who had not 

received prior treatments. The combination of Ibrutinib-Rituximab had no added benefit 

over Ibrutinib monotherapy in this study (81). Moreover, the combination of Ibrutinib and 

Obinutuzumab was recently tested against Chlorambucil/Obinutuzumab in patients >65 

years of age or those younger than 65 with comorbidities in the iLLUMINATE study. The 

Ibrutinib combination was reported to lead to significantly prolonged PFS (82). Given the 

high efficacy of Ibrutinib as a single agent most experts interpret this as a 

recommendation for the use of Ibrutinib monotherapy as with the above findings (81). 

Results from both the ALLIANCE and iLLUMINATE study still relate to a relatively short 

follow-up period so that chemo-immuntherapy continues to be used by many 

haematologists as of early 2019.  

Patients with del(17p) or TP53 mutation have significantly lower ORR and shorter PFS 

with standard immunochemotherapy (83-85). In vitro studies have demonstrated 

reduced chemosensitivity in CLL cells harbouring aberrant TP53 (86). Combinations of 
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the CD52 targeting antibody Alemtuzumab with chlorambucil, Rituximab, FCR or high 

dose methylprednisolone have been reported to be able to overcome this lack of chemo-

sensitivity in CLL with del(17p) (87-90). However, Alemtuzumab is associated with 

severe haematological adverse effects and infectious complications and is thus usually 

not tolerable in CLL patients. The approach has largely been abandoned in the wake of 

novel molecularly targeted treatment approaches. The standard first-line treatment in 

these patients now is Ibrutinib monotherapy which has been reported to achieve 

excellent ORR, PFS and OS despite the presence of del(17p)/TP53 mutation (91, 92).  

The choice of treatment in relapsed/refractory CLL patients depends on the primary line 

of treatment, presence of del(17p) and patient characteristics like age and comorbidities. 

Patients who have been refractory to chemo-immunotherapy or have achieved only a 

short-lived response (<24 months) as well as those who relapse with del(17p) or TP53 

mutations have a particularly poor outcome with a median OS of only 1-2 years prior to 

introduction of novel molecularly targeted therapies (93). The RESONATE-1 and 

HELIOS trials have established Ibrutinib therapy in relapsed/refractory CLL patients 

showing improved outcomes compared to Ofatumomab monotherapy and BR 

respectively (94, 95). The BCL-2 inhibitor Venetoclax has been shown to have superior 

PFS and OS compared to BR (96). This treatment option can be used as an alternative 

to Ibrutinib treatment in those who are unable to tolerate Ibrutinib or in those with 

progression after Ibrutinib treatment. Importantly, Venetoclax has been shown to be 

efficacious in patients with del(17p) who progressed while on Ibrutinib (97). Direct head 

to head comparisons between Ibrutinib and Venetoclax in the setting of a relapse have 

not been conducted so far. The PI3K inhibitor Idealisib in combination with Rituximab 

can be used in relapsed/refractory patients as well. However, while having been shown 

to lead to superior PFS and OS compared to Rituximab monotherapy (98) and 

Ofatumomab monotherapy (99), it is used less commonly and usually restricted to further 

lines of treatment due to an unfavourable toxicity profile with high rates of immune-

related hepatotoxicity, colitis and pneumonitis as well as opportunistic infections such as 

Pneumocystis jiroveci (99-102). In patients with long-lasting remissions of at least 2-3 

years after chemoimmunotherapy additional cycles of chemoimmuntherapy can be 

considered as an alternative to novel treatment approaches as well. 

Treatment for RS is particularly challenging. The mainstay in DLBCL type RS is 

chemoimmunotherapy with Rituximab, cyclophosphamide, doxorubicin, vincristine and 

prednisolone (R-CHOP). While the prognosis of clonally unrelated RS is  comparable to 

de novo DLBCL with a median survival of 65 months  those with clonally related disease  
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only fair  poorly  with a median survival of 12 months (103) . In the former group stem 

cell transplantation would be reserved to those failing to achieve remission or relapsing. 

In the latter group consolidation either with reduced-intensity conditioned allogeneic stem 

cell transplantation or autologous stem cell transplantation depending on donor 

availability should be offered (104, 105). In addition, several novel agents have been 

evaluated for treatment in RS. Transient activity of Ibrutinib in RS patients has been 

reported in a small cases series achieving response in 3 out of 4 patients with a median 

duration of response of 6 months (106). In the phase I/II ACE-CL-001 trial Acalabrutinib 

was reported to achieve an ORR of 38% and a PFS of 3 months (107). In the M12-175 

phase I trial a small number of DLBCL type RS patients were treated with Venetoclax 

achieving an ORR of 43% (107). The programmed cell death protein 1 (PD-1) targeting 

antibody Pembrolizumab achieved response in 4 of 9 patients with DLBCL-type RS 

(108). In a phase II trial combining the immune checkpoint PD-1 blocking antibody 

Nivolumab and Ibrutinib showed promising signals with 3 out of 5 patients achieving 

response (109). HL-type RS is very rare compared to DLBCL type. All information on 

treatment efficacy regarding this subtype comes from small retrospective analyses. The 

standard treatment is chemotherapy with Doxorubicin, bleomycin, vinblastine and 

dacarbazine (ABVD). Among HL type RS an ORR of 40-60% and median OS of 4 years 

has been reported with this strategy (110-112). As outcomes are better than in those 

patients with DLBCL type RS consolidation stem cell transplantation is less commonly 

used in these patients (104). 

The only established treatment option for CLL offering a potential cure continues to be 

allogeneic haematopoetic stem cell transplantation (HSCT). The treatment modality is 

based on the graft-versus-leukaemia (GvL) effect which is caused by transplanted 

lymphocytes, which are able to induce an anti-tumour immune response with the 

possibility of clinical remission lasting for a long time (113). In approximately 50% of high 

risk CLL  patients treated with HSCT MRD negativity and long-term survival are achieved 

irrespective of genomic risk factors such as del(17p) (114, 115). However, given its high 

toxicity, HSCT is only applicable in a minority of young and physically fit CLL patients. 

The treatment approach is associated with significant mortality and morbidity, which is 

mainly due to graft versus host disease (GvHD) (116) and is therefore usually reserved 

for those patients with high risk CLL (i.e. those with del(17p) or TP53 mutations or a 

complex karyotype. With the advent of novel moleculary targeted treatment options, 

patients with high risk CLL now typically receive BTK inhibitors or BCL-2 antagonists 

before considering HSCT. ERIC and the European Society for Bone Marrow 

Transplantation (EBMT) have recently published revised indication criteria, 
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distinguishing between high risk CLL resistant to chemoimmunotherapy but amenable to 

BCR pathway inhibitors or BCL-2 antagonists and CLL resistant to both avenues of 

treatment. While in the first group consolidation HSCT should only be considered in 

patients with explicitly low risk of transplantation-associated mortality and morbidity (well-

matched donor, no comorbidities, <65 years of age) in the latter group HSCT should 

universally be considered. Also patients with Richter transformation should be offered 

HSCT provided the patient fitness is deemed sufficient (61). HSCT always needs to be 

carefully weighed against novel non-curative but significantly less toxic treatment 

approaches and treatment decisions need to be made on a patient-by-patient basis 

(117). 

1.1.4 BCR pathway inhibitors and BH3 mimetics 

A breakthrough in CLL therapy has been achieved with new classes of drugs targeting 

the B-cell receptor (BCR) pathway. Both antigen dependent and independent BCR 

stimulation is pivotal for proliferation and survival of CLL B-cells (118). The BCR is a 

complex consisting of a membrane bound Ig coupled with heterodimers of the 

transmembrane proteins CD79a (Igalpha) and CD79b (Igbeta) joined together by 

disulphide bridges. Physiologically, engagement of the Ig by antigen results in receptor 

aggregation, which subsequently activates the sarcoma (Src) family kinases Lck/Yes 

novel tyrosine kinase (Lyn), B lymphocyte kinase (Blk), Fgr/Yes novel tyrosine kinase 

(Fyn), Spleen tyrosine kinase (Syk) and BTK. Phosphorylation of these kinases, as well 

as phosphorylation of the immunoreceptor-based activation motifs (ITAMs) found in the 

cytoplasmic tail of CD79a/b occurs (119).The phosphorylated BCR binds to either the 

Syk or Lyn protein tyrosine kinase, which consequently activate downstream signaling 

cascades. The B-cell linker protein (BLNK) acts as a scaffold for Phospholipase C 

gamma 2 (PLCγ-2), Phosphoinositide 3-kinase (PI3K) and BTK to form a 

microsignalosome that initiates downstream signaling. Hydrolysis of membrane 

Phosphatidylinositol 4,5-bisphosphate (PIP2) by PLCγ-2 occurs which leads to the 

production of inositol 1,4,5-trisphosphate (IP3) and Diacylglycerol (DAG). IP3 activates 

the corresponding IP3 receptors leading to efflux of calcium from the endoplasmic 

reticulum (120, 121). This promotes the influx of more Ca2+ through calcium-release 

activated channels (CRAC). Free calcium in the cytosol binds to and activates the 

proteinphosphatase Calcineurin (CnA) which then dephosphorylates and activates the 

transcription factor Nuclear factor of activated T-cells (NFAT). DAG binds to and 

activates the calcium dependent protein kinase C (PKC) β which subsequently 

phosphorylates and therby activates various mitogen activated protein kinases (MAPK) 

including extracellular signal–regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and 
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p38. Moreover, IκB kinase (IKK) is activated by PKCβ leading to phosphorylation and 

subsequent ubiquination and thus degradation of the IκB. This activates the transcription 

factor NFκB which is normally bound and inactivated by IκB (122, 123). PI3K catalyzes 

the phosphorylation of PIP2 to Phosphatidylinositol (3,4,5)-trisphosphate (PIP3). The 

latter triggers phosphorylation and activation of AKT which mediates IKK activation and 

thus degradation of IκB via mammalian target of rapamycin (mTOR) (124). These 

pathways can be also be activated and enhanced through integrin signaling via focal 

adhesion kinase (FAK) (125) or chemokine receptor signaling (126, 127). In their sum, 

these various pathways achieve continuation of the cell cycle, as well as increased 

transcriptional activity, proliferation and survival through BCR signalling (128, 129) 

(Figure 1). 

 

 

Figure 2: BCR signalling pathway and targets for molecular inhibitors: Exposure of the BCR to antigen 

(Ag) causes phosphorylation of ITAMs at the cytoplasmatic portion of the complex through tyrosine kinase 

Lyn. Subsequently the tyrosine kinase Syk is recruited. When Syk is activated it forms a membrane-

associated signalosome with other tyrosine kinases including Lyn and BTK. The complex is supported by 

scaffolding molecules like B-cell linker protein (BLNK). The resulting signalosome activates downstream 

signalling pathways such as PLCγ and PI3K. PLCγ mediates the release of calcium in the cytoplasm which 

results in activation of PKCβ. PI3K generates the second messenger PIP3 which activates the Akt signalling 

cascade. These events lead to activation of MAPKs including p38, JNK and ERK as well as activation of 

transcription factors NFĸB and NFAT. These cascades can be activated and enhanced via chemokine 

receptor signalling and integrin binding. 

The most clinically successful and widely used BCR pathway inhibitor is the the small 

molecule Ibrutinib. The BTK inhibitor (BTKi) binds covalently and irreversible to cysteine 

residue 481 (C481) within the adenosine triphosphate (ATP) binding domain of BTK thus 
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rendering the tyrosine kinase inactive (130). The inhibitor has demonstrated efficacy in 

those suffering from relapsed or refractory CLL following standard 

immunochemotherapy. Due to its favourable toxicity profile and high efficacy it has 

revolutionized the treatment of the elderly or less physically fit CLL patients. Moreover, 

the efficacy of the substance is not reduced by the presence of del(17p) or TP53 

mutations. 

In a phase I/II study of Ibrutinib monotherapy in a cohort of heavily pretreated patients 

with relapsed/refractory CLL an ORR of 71%, an OS of 83% and a  PFS of 75% were 

achieved at 26 months follow-up (131). Long-term follow-up data on this trial was 

reported in 2015 showing an ORR of 89% and an impressive median progression free 

survival (PFS) of 52 months (132). These results have since been confirmed in the phase 

III RESONATE trial where 391 relapsed/refractory CLL patients were treated with either 

Ibrutinib or ofatumumab. Ibrutinib treatment resulted in a significantly improved ORR 

(90% vs. 25%) as well as prolongede median PFS (median not reached vs. 8.1 months) 

and 18-month OS (85% vs. 78%). Ibrutinib treated patients demonstrated no differences 

in PFS regardless of the presence of del(17p) (94, 133). Moreover, the phase III HELIOS 

trial compared Ibrutinib or placebo in combination with BR. The Ibrutinib group achieved 

a significantly improved ORR (86% vs. 69%) and 18-months PFS (79% vs. 24%) (95). 

The RESONATE-2 trial has established the efficacy of first line Ibrutinib in CLL/SLL 

patients ≥ 65 years of age (134). 269 patients were randomized to either single—agent 

Ibrutinib until disease progression or unacceptable adverse events or bi-weekly 

Chlorambucil up to 12 months. The median follow-up was 18.4 months. An ORR of 86% 

in the Ibrutinib cohort and 35% in the Chlorambucil cohort were reported. Moreover, 

Ibrutinib significantly increased 18-months PFS from just 52% in the Chlorambucil cohort 

to 90% in the Ibrutinib cohort. Long-term follow-up data was presented at the ASH 

meeting in 2016: With a median follow-up of 28.6 months the 24-month PFS was 89% in 

the Ibrutinib group vs. only 34% in the Chlorambucil group while the 24 month OS was 

95% vs. 84% respectively(135). In a single arm phase II study conducted by the National 

Institute of Health (NIH) the question of Ibrutinib efficacy in CLL with del(17p)/TP53 

mutation has be addressed specifically (91). 51 CLL patients with del(17p) or TP53 

mutation, 35 of whom were treatment naïve, were treated with single agent Ibrutinib. An 

ORR of 97% was achieved in the treatment naïve cohort and 80% in the R/R CLL cohort. 

The estimated 24-month PFS was 82%. An updated reported on the extend 36 months 

follow-up found the ORR not to differ significantly compared to a cohort of patients 

without del(17p) and TP 53 mutation (n=35) (136). In addition to these findings, O’Brien 

et al. reported outcomes of the phase II RESONATE-17 trial. 144 patients with del(17p) 
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relapsed/refractory CLL were treated using single agent Ibrutinib. The estimated PFS 

was 63% and the median follow-up 27.6 months (92). As mentioned above, single agent 

Ibrutinib is increasingly supplanting standard immunochemotherapy as the treatment of 

choice as a first line treatment even in younger a physically fit CLL patients. The E1912 

trial has demonstrated improved PFS and OS with single agent Ibrutinib over FCR in 

patient <70 years of age (67). The ALLIANCE study and iLLuminate study have shown 

superiority of Ibrutinib to Chlorambucil/Obinutuzumab and Bendamustine/Rituximab 

respectively (81, 82). 

Ibrutinib treatment in CLL is associated with a phase of lymphocytosis in the first weeks 

of treatment that is not due to disease progression but rather redistribution of CLL B-cells 

to the blood stream (137). Several studies have tried to elucidate the mechanism of this 

phenomenon. De Rooij et al. demonstrated inhibition of chemotaxis by CLL cells as well 

as of CLL cell adhesion mediated by Intergrins in the setting of Ibrutinib treatment (137, 

138). Ponader et al. showed reduced migration toward chemokines CXC Motif Ligand 

(CXCL)12 and CXCL13. Ibrutinib was also shown to downregulate secretion of BCR-

dependent chemokines (C-C motif ligand (CCL)3, CCL4) by CLL cells (139).  A study on 

patient CLL cells after Ibrutinib treatment showed rapidly reduced capability of CLL cells 

to adhere to fibronectin, a moderate reduction of migration towards cytokines as well as 

a reduction of adhesion surface molecules CD49d, CD29,  and CD44 (140).  In addition, 

Chen et al. showed reduced expression of CXC Motif Receptor (CXCR)4, CXCR5, 

CD49d and other homing/adhesion related surface molecules in a mouse model of CLL 

after Ibrutinib treatment (141). As the direct cytotoxic effect of Ibrutinib against CLL B-

cells in vitro is rather modest (142) it has been speculated that this egress of malignant 

B-cells from their protective microenvironment rather than its direct effects on B-cell 

survival and apoptosis may be responsible for the high clinical efficacy of the substance. 

A study by Wodarz et al. sought to correlate serial lymphocyte counts of CLL patients 

after Ibrutinib treatment with CT based volumetric assessment of lymph node and spleen 

size to address this question. However, it was estimated that only 23.3% +/- 17% of total 

CLL load in the peripheral tissues was redistributed to the peripheral blood suggesting 

that CLL cell death rather egress from nodal compartments is responsible for the clinical 

efficacy of the substance (143). Further support for these findings comes from a study 

by Burger et al. using isotopic labelling of CLL B-cells with deuterated water to directly 

measure the effects of Ibrutinib in 30 CLL patients. The CLL proliferation rate was 

reduced from 0.39% of the clone per day to 0.05% per day with treatment while death 

rates of CLL cells increased from 0.18% per day prior to treatment to 1.5% per day (144). 
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Ibrutinib is generally very well-tolerated. Adverse events include nausea, fatigue, 

myalgias and muscle spasms, as well as pyrexia, skin rashes, diarrhea and headaches. 

The majority of these untoward effects are grade 1 or 2 adverse events and they are 

usually self-limiting. Importantly, Ibrutinib is not associated with significant 

myelosuppression and in some cases has been shown to promote marrow restoration 

(145). Major adverse effects include treatment induced hypertension (145, 146) and atrial 

fibrillation (133, 147). Infection is another common adverse event during Ibrutinib 

treatment. A recent retrospective analysis on 200 patients receiving Ibrutinib for various 

hematologic malignancies found that 52% developed infection with pneumonia (30%) 

and upper airway infection (26%) being the leading courses (148). The majority of these 

infectious complications are self-limiting and are commonly observed early in the course 

of Ibrutinib treatment (94, 149-152). However, cases of severe opportunistic infections 

like invasive aspergillosis (153) and disseminated cryptococcal infection  (154) have 

recently emerged. Moreover, BTK is present on platelets and is known to play a role in 

Glycoprotein VI (GPVI)- and Glycoprotein Ib (GPIb)-mediated platelet aggregation and 

adhesion on von Willebrand factor.  Treatment associated bleeding is a common adverse 

event of Ibrutinib therapy and is mainly attributed to the drug’s off-target effects, including 

TEC kinase inhibition (155-158). 

Second generation BTK inhibitors with higher binding specificity have been developed. 

Acalabrutinib (ACP-196), like Ibrutinib, is an irreversible inhibitor of BTK. However, the 

substance has higher specificity and thus potentially less off-target effects. Unlike 

Ibrutinib, Acalabrutinib does not inhibit Epidermal growth factor receptor (EGFR), IL-2-

inducible T-cell kinase (ITK) or Tec kinases (159). Common adverse effects of 

Acalabrutinib treatment include hypertension, fatigue, headache, diarrhea, nausea, 

upper respiratory tract infections, diarrhea, petechiae and atrial fibrillation (159, 160). 

Whether the different pharmacological properties of Acalabrutinib will really translate into 

clinical differences in toxicity and efficacy in CLL patients will be determined by the 

outcome of the randomized Elevate CLL R / R trial comparing Ibrutinib and Acalabrutinib 

monotherapy head to head (NCT02477696). Results of a phase I/II multicentre study 

of Acalabrutinib monotherapy in relapsed/refractory CLL showed an ORR of 85%, 

comparable to outcomes with Ibrutinib monotherapy (159). Approval of Acalabrutinib 

for the treatment of CLL will depend on the results of several ongoing trials: The 

Elevate CLL TN study comparing Obinutuzumab/Chlorambucil, 

Acalabrutinib/Chlorambucil and single agent Acalabrutinib in CLL patients > 65 years 

of age who haven’t received any prior treatments (NCT02475681), the aforementioned 

Elevate CLL R/R study comparing single agent Ibrutinib and single agent Acalabrutinib 
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in patients with relapsed/refractory CLL (NCT02477696) and a  trial of Acalabrutinib 

monotherapy compared to Idealisib/Rituximab or BR in patients with CLL who have 

relapse after or are refractory to prior treatments (NCT02970318). 

Tirabrutinib is another irreversible BTK inihibitor with higher binding specificity 

compared to Ibrutinib. In a phase I study Tirabrutinib achieved an ORR of 96% among 

25 relapsed/refractory CLL patients with the typical reduction of lymphadenopathy and 

redistribution of lymphocytes to PB (161). The substance is evaluated for CLL in active 

clinical trials in combination with Entospletinib and Idelalisib with and without 

Obinutuzumab (NCT02983617 and NCT02968563). 

Another second generation BTK inhibitor with higher specificity is Zanubrutinib. In a 

phase I-II trial of single agent Zanubrutinib in 45 relapsed/refractory CLL/SLL patients 

an ORR of 90% was achieved with a median follow-up of 7.5 months. Adverse effects 

included atrial fibrillation and petechiae (162). A phase III trial comparing single agent 

Zanubrutinib with BR in patients with previously untreated CLL is ongoing 

(NCT03336333).  

An acquired mutation of cysteine to serine in position 481 (C481S) of BTK has been 

described as one of the main mechanisms leading to Ibrutinib resistance (163). A 

number of novel non-covalent BTK-inhibitors have been developed to overcome this 

resistance mechanism. One of these novel agents is Vecabrutinib (SNS-062). Results 

from an in vitro study support activity of the agent in the setting of BTKC481S (164). 

Clinically the substance has only been tested in a phase Ia trial in healthy volunteers 

with promising signals regarding safety, pharmacodynamics and pharmacokinetics 

(165). A Phase 1b/2, open-label dose-escalation study evaluating safety, 

pharmacokinetics, pharmacodynamics, and antitumor activity of Vecabrutinib is 

currently ongoing (NCT03037645). Another non-covalent reversible BTK inhibitor 

designed to overcome C481S mutation, LOXO-305, is currently evaluated as a single 

agent for previously treated CLL/SLL patients in a phase I/II study (NCT03740529). 

ARQ-531 is a non-covalent reversible inhibitor of BTK as well. Intermin results from 

an ongoing phase I dose escalation trial of ARQ-531 for various hematologic 

malignancies (NCT03162536) were presented at the ASH 2018 annual meeting. 3/12 

heavily pre-treated CLL patients were reported to have achieved stable disease (166). 

Idelalisib is a reversible inhibitor of PI3K regulatory subunit p110δ. The enzyme is 

involved in CLL cell survival and proliferation as well as retention in secondary lymphoid 

organs (167, 168). Similar to the BTK inhibitors, it causes redistribution of CLL B-cells to 
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the PB (169). However, as opposed to the BTK inhibitors, the resulting lymphocytosis 

does not abate over time – combinations with Rituximab to target the CLL B-cells in the 

blood stream have thus been used in subsequent trials (98). In a phase I trial of single 

agent Idelalisib doses from 50-350 mg once or twice daily were tested in 54 

relapsed/refractory CLL patients. An ORR of 72% was achieved. The overall median 

PFS was 15.8 months. The median PFS was increased to 32 months in patients 

receiving doses of 150 mg twice daily or above. This dosage was thus carried forward in 

subsequent trials (169). A phase III trial in 220 patients with relapsed/refractory CLL 

receiving Idelalisib/Rituximab or placebo/Rituximab was interrupted after the first interim 

analysis due to a markedly improved ORR (81% vs. 13%). The primary adverse effects 

were reported to be neutropenia, diarrhea and transaminitis (98). Idelalisib in 

combination with Rituximab has also been evaluated as an initial treatment in CLL 

patients >65 years of age. An ORR of 97% overall and 100% in patients with del(17p) 

was reported. The 36-months PFS was 83% (170). Idelalisib was also tested in a phase 

II trial involving 24 treatment naïve patients (median age 67, range 58 to 85) as upfront 

single agent treatment for 2 months followed by 6 months of Idelalisib/Ofatumomab. In 

this trial frequent immune-mediated hepatotoxicity was observed. 79% of patients 

experienced ≥ grade 1 transaminitis, 54% ≥ grade 3 transaminitis (102). Several 

subsequent combinations trials have since confirmed significant toxicities including 

hepatotoxicity, rashes, opportunistic infections, colitis and pneumonitis (99-101). 

Pneumonitis, colitis and hepatitis are considered to be immune-mediated due to their 

responsiveness to corticosteroids and T-cell infiltration in affected organs (102). 

Moreover, preclinical trials have demonstrated hat PI3Kδ blockade in regulatory T-cells 

leads to induction of cytotoxic T-cell responses (171). Given its unfavourable toxicity 

profile the combination of Idelalisib/Rituximab is usually only utilized in patients that 

cannot tolerate both Ibrutinib and the BCL-2 inhibitor Venetoclax or who have progressed 

while on these treatments. 

The PI3K inhibitor Duvelisib has dual activity against both PI3Kδ and PI3Kγ. A phase Ib 

trial evaluating Duvelisib monotherapy for various hematologic malignancies revealed an 

ORR of 56% in relapsed/refractory CLL patients and 83% in the treatment naïve CLL 

patients. Adverse events included febrile neutropenia, pneumonia and hepatotoxicity 

which was observed in about 30% of patients. Of note, more patients discontinued the 

treatment due to toxicity than due to disease progression (31% vs 24%) (171). The phase 

III DUO trial compared single agent Duvelisib to Ofatumomab monotherapy in 319 

relapsed/refractory CLL patients. The PFS was significantly improved with Duvelisib 

compared to Ofatumomab (13.3 months vs. 9.9 months). Moreover, the ORR was 
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improved significantly as well (74% vs. 54%). Severe immune related toxicities were 

reported in 21% of patients (colitis 12%, transaminits 6%, pneumonitis 3%) and were 

managed with dose interruptions and steroid therapy. Infectious complications occurred 

in 69% of patients including 3 cases of Pneumocystis jiroveci infection (172). Duvelisib 

has also been tested in combination with either Rituximab, Bendamustin or BR in 

relapsed/refractory CLL and indolent non-Hodgkin lymphoma (NHL) patients. At a 

median follow-up of 16.3 months an ORR of 92 % was reported for CLL patients (173). 

The combination of Duvelisib and FCR was reported to lead to MRD negativity in the 

bone marrow in 89% of 30 treatment naïve CLL patients <65 years of age (174). 

Umbralisib is a second generation PI3Kδ inhibitor which differs in its chemical structure 

from Idelalisib and Duvelisib. The agent appears to have a more favourable toxicity 

profile with less frequent hepatic toxicity and colitis. In a phase I dose escalation trial an 

ORR among CLL patients of 85% was achieved (175). An ongoing phase III trial 

evaluates Umbralisib/Ublituximab vs. Umbralisib or Ublituximab monotherapy vs. 

chlorambucil/Obinutuzumab (NCT02612311).  

Two additional novel PI3k inhibitors, Acalisib and Pilaralisib, are currently in clinical 

development. Acalisib was tested for various relapsed/refractory hematologic 

malignancies in a phase Ib study. For CLL patients an ORR of 53.3% and a median PFS 

of 16.6 months was observed (176). Pilaralisib was evaluated in patients with CLL or 

relapsed/refractory lymphoma in a phase I trial. In CLL patients an ORR of 50% and a 

6-months PFS of 70% were reported (177).   

Fostamatinib is an inhibitor of the tyrosine kinase SYK which is of central importance in 

the B-cell receptor pathway. Early preclinical data suggested that inhibition of Syk could 

lead to proliferation arrest and apoptosis in CLL B-cells (178). Fostamatinib has been 

evaluated for treatment of NHL and CLL in a phase I/II trial. Only a modest ORR rate of 

55% were achieved (179). The manufacturer has since shifted their clinical development 

strategy away from B-cell malignancies to rheumatoid arthritis and hence no follow-up 

studies have been conducted.  

Entospletinib is a SYK inhibitor with greater selectivity than Fostamatinib (180). In a 

phase II trial enrolling patients with various B-cell malignancies the agent achieved an 

ORR of 61% and a PFS of 14 months. Common adverse events included febrile 

neutropenia, pneumonia and transient transaminitis (180).  

BH3 mimetics are a novel class of substances with the ability to induce apoptosis in CLL 

B-cells. Apoptosis is regulated by a balance of anti-apototic (e.g. BCL-2, B-cell 
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lymphoma  w (BCL-w), B-cell lymphoma-XL (BCL-XL) , Myeloid Cell Leukemia 1 (MCL-

1)) and pro-apoptotic (e.g. Bcl-2-associated death promoter (BAD), Bcl-2-associated X 

protein (BAX), Bcl-2 homologous antagonist killer (BAK), Bcl-2 Interacting Mediator of 

cell death (BIM), BH3 domain-only death agonist protein (BID)) members of the BCL-2 

family of proteins (181). Anti-apoptotic proteins act by sequestering pro-apoptotic initiator 

proteins such as BIM or BID preventing them from interacting and thus activating effector 

pro-apoptotic proteins such as BAX or BAK. Interaction of BCL-2 family proteins occurs 

via a shared domain known as BCL-2 homology 3 (BH3) (181, 182). BH3 mimetics such 

as Venetoclax act by displacing initiator pro-apoptotic proteins from BCL-2 thus leading 

to activation of effector pro-apoptotic proteins. When activated, effector pro-apoptotic 

proteins form an oligomeric pore in the outer mitochondrial membrane (OMM) leading to 

permeabilization and thus allowing for efflux of cytochrome c. In the cytosol cytochrome 

c induces caspase activation and subsequently apoptosis (183) (Figure 2). BCL-2 has 

been shown to be overexpressed in CLL – expression correlates with chemo-resistance 

and poor survival (184).  

 

Figure 2: Venetoclax (VCX) mode of action: Anti-apoptotic BCL-2 prevents apoptosis in an apoptotically 

primed cell by sequestering pro-apoptotic molecules like BIM or BID. Binding of VCX to BCL-2 displaces 

BIM/BID and allows interaction with pro-apoptotic proteins BAX and BAK. BAX/BAK form an oligomeric pore 

which allows release of cyctochrome c (cyt c). In the cytosol cyt c activates caspases leading to apoptosis. 

 

The BH3 mimetic Navitoclax was tested in 25 patients with relapsed/refractory CLL in a 

phase I trial. The median PFS was 25 months, a >50% reduction of lymphocytosis was 

achieved in 19/21 patients with baseline lmyphocytosis. 9 patients (36%) achieved a 

partial response. Unfortunately, the agent was found to induce severe thrombocytopenia 

which was deemed dose-limiting. The clinical development was thus stopped (185). It is 
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believed that Navitoclax-induced thrombocytopenia is due to an on-target effect on BCL-

X, which is important for survival of platelets  (186). 

Given the haemato-toxicity of Navitoclax, significant effort was directed at developing a 

BH3 mimetic with binding specificity to BCL-2. This resulted in the synthesis of 

Venetoclax (186). In the first in-human trial of the agent 3/56 relapsed/refractory CLL 

patients developed clinical tumour lysis syndrome. Two of these patients died and one 

developed acute renal failure and eventually needed dialysis treatment. Due to this initial 

experience a slow weekly increase of doses to a recommended dose of 400mg qd was 

utilized in the expansion cohort of the subsequent phase I/II trial. Here, an ORR of 79% 

including a complete remissions (CR) rate of 20% were achieved. The estimate 15-

month PFS was 69% (187). In a phase II study of 107 patients with relapsed/refractory 

CLL with del(17p) an ORR of 77% and a 24-month PFS of 54% were achieved (97). The 

combination of Venetoclax/Rituximab (VR) was well tolerated in a phase Ib trial and 

resulted in an improved CR rate of 41% and a rate of MRD negativity of 75% in those 

patients (188). In the phase III MURANO trial of VR compared to BR in relapsed 

refractory CLL a significantly improved estimated 2-year PFS (84.9% vs. 36.3%) and 2-

year OS (91.9% and 86.6) was achieved. Importantly, the outcome was similar among 

patients with del(17p). The rate of tumour lysis syndrome (TLS) was a mere 3.1% in the 

VR group (96). Finally, a phase II trial has evaluated Venetoclax in patients with 

relapsed/refractory CLL that had progressed on Ibrutinib or Idealisib therapy. An ORR of 

65% and a median PFS of 24.7 month were achieved (189).Venetoclax is currently 

approved for use in patients with del(17p) CLL who have progressed after at least one 

prior line of treatment. The substance is frequently used in patients who have 

experienced disease progression on therapy with Ibrutinib or Idealisib.  

1.1.5 Other emerging treatment modalities 

Following the success of monoclonal antibodies targeting CD20 in CLL and other B-cell 

malignancies several therapeutic antibodies targeting different surface antigens have 

been developed. 

CLL cells, unlike physiological B-cells, express ROR-1, a transmembrane protein 

normally only found during embryogenesis (190). Functional studies have indicated that 

ROR-1 serves as a receptor for lipid modified glycoprotein wingless-related integration 

site (Wnt) 5a and promotes CLL survival and cancer stem-cell self-renewal through non-

canonical Wnt signalling (191). Cirmtuzumab (UC-961) is a humanized monoclonal 

antibody targeting ROR-1. The agent effectively inhibited Wnt signalling in CLL cells in 

vitro and showed synergistic effects when combined with Ibrutinib in a mouse model of 
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CLL (192). In a phase I trial the substance was well tolerated in patients with 

relapse/refractory CLL. Transcriptome analysis showed that the treatment inhibited CLL 

stemness gene expression profiles in those patients (193). A phase Ib/II trial evaluating 

the combination of Cirmtuzumab and Ibrutinib is currently ongoing (NCT03088878).  

MOR208 is a novel crystallisable fragment (Fc)-engineered humanized monoclonal 

antibody targeting CD19. In a phase I trial for relapsed/refractory CLL the agent 

demonstrated safety and preliminary efficacy with an ORR of 66.7% (194). A phase II 

multicentre open label trial of MOR208 combined with either Idelalisib or Venetoclax in 

relapsed/refractory CLL pre-treated with Ibrutinib is currently ongoing (NCT02639910).  

Ortlertuzumab is a humanized anti-CD37 single chain variable fragment (scFv)-based 

immunoglobulin G1 (IgG1) antibody construct. In a phase I trial single agent 

Ortlertuzumab was observed to achieve an objective response in 23% of treated CLL 

patients (195). A randomized phase II trial has evaluated the combination of 

Ortlertuzumab and Bendamustin versus bendamustin only in patients with relapsed CLL. 

The combination significantly increased the ORR (69% vs. 39%) and PFS (15.9 months 

vs. 10.2 months) (196). A phase Ib trial evaluating Ortlertuzumab in combination with 

Rituximab or Rituximab/idelalisib or Obinutuzumab or Ibrutinib in CLL patients is being 

conducted (NCT01644253).  

Daratumumab is a CD38 targeting humanized monoclonal antibody approved for the use 

in multiple myeloma (197). A phase Ib trial currently evaluates the agent in combination 

with Ibrutinib in symptomatic CLL (NCT03447808). 

The humanized monoclonal anti-CD44 antibody RG7356 has been demonstrated to be 

directly cytotoxic to CLL B-cells as well as being able to induce apoptosis mediated by 

caspases in ZAP-70 positive leukemia cells  (198). However, no clinical development for 

this agent in CLL is currently being pursued.  

REGN1979 is a bispecific antibody binding both CD20 and CD3 and thus crosslinking B-

cells and T-cells leading to T-cell activation and local cytolytic activity independent of T-

cell receptor mediated recognition. In an intermin analysis of an ongoing phase I study 

in various CD20+ B-cell malignancies 2 of 5 CLL patients achieved stable disease. The 

agent was reported to result in frequent cytokine release syndrome but no notable central 

nervous system (CNS) toxicity was observed (199). 

MCl-1 is an anti-apoptotic protein of the BCL-2 family. Similar to BCL-2 it acts by 

sequestering pro-apoptotic initiator proteins (181). Cyclin-dependent kinases (CDK) are 

a family of small protein kinases. CDKs bind to regulatory proteins called cyclins. The 

resulting CDK/cyclin complexes are involved in cell cycle regulation and transcription 
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regulation (200). MCL-1 expression has been demonstrated to be enhanced through the 

CDK9/cyclin T complex (201). CDK9 inhibition can thus induce apoptosis in CLL B-cells. 

Importantly, this mechanism is independent of the presence of del17(p)/TP53 mutations.  

Flavopiridol is a flavonoid alkaloid derived from the tree Aphanamixis polystachya native 

to south Asia. The alkaloid has natural CDK9 blocking ability. Flavopiridol has been 

demonstrated to have clinical activity in high-risk CLL by several studies (202, 203). 

However, these early phase trials were complicated by hyper-acute TLS as a dose-

limiting toxicity occurring in 46% of patients with 19% requiring dialysis (204). In a phase 

I trial combining Flavopiridol with prior cytoreductive treatment with cyclophosphamide 

and Rituximab better tolerability and no dose-limiting toxicities were observed (205).  

However, concerns regarding Flavopiridol toxicity remain and further clinical 

development seems unlikely.  

CYC065 is a novel synthetic CDK2/9 inhibitor. The combination of CYC065 and 

venetoclax has shown synergistic effects in vitro (206). The combination is currently 

assessed in a phase I trial in relapsed/refractory CLL (NCT03739554). Moreover, the 

CDK9 inhibitor Voruciclib has been demonstrated to induce apoptosis in CLL cells in vitro 

(207). A phase I trial study in several hematologic malignancies including CLL is currently 

being conducted (NCT03547115). 

MiR-155 has been reported to be overexpressed in aggressive forms of CLL (208). The 

micro-RNA is believed to promote CLL B-cell proliferation and survival through 

suppression of  its predicted target Src homology 2 domain containing inositol 

polyphosphate 5-phosphatase 1 (SHIP-1), a protein phosphatase that acts in opposition 

to kinases involved in BCR signalling (209). Cobomarsen (MRG-106) is an 

oligonucleotide inhibitor of miR-155. The agent is being evaluated in a phase 1 trial in 

Mycosis fungoides, CLL, DLBCL and adult T-cell leukemia/lymphoma (NCT02580552).  

Lenalidomide is a thalidomide derivate. This class of drugs has been dubbed 

immunomodulatory drugs (iMID). The mechanism of action of this substance is still not 

understood entirely. Lenalidomide has been reported to bind to cereblon. The protein is 

responsible for target protein recognition and binding in a multi-protein E3 ubiquitin ligase 

complex. Interaction with Lenalidomide enhances binding of cereblon to transcription 

factors Ikaros family zinc finger protein 1 (IKZF1) and Ikaros family zinc finger protein 3 

(IKZF3) resulting in ubiquination and degradation (210, 211). This leads to suppression 

of malignant B-cell proliferation through an increase in expression of p21 (212). However, 

the direct cytotoxic potential of Lenalidomide against CLL B-cells is small and the drug 

https://en.wikipedia.org/wiki/Aphanamixis_polystachya
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seems to exert its effects primarily through enhancing anti-tumour immune responses. 

Various effects on immune cells have been described including an increase in Interleukin 

(IL)-2 production by T-cells (213), an increase in dendritic cell cross-priming of CD8+ T-

cells (214), a repair of CLL induced T-cell synapse defect (215, 216) and a repair of 

impaired T-cell mobility by normalization of signalling G-proteins Ras-related C3 

botulinum toxin substrate 1 (Rac1), Ras homolog gene family member A (RhoA), and 

Cell division control protein 42 homolog (Cdc42) (217). While several trials have reported 

activity of Lenalidomide in both treatment-naïve and relapsed/refractory CLL patients 

including those with del17(p) its use in the clinical setting is impeded by dose-limiting 

toxicities including myelosuppression, tumour flare reactions and tumour lysis syndrome 

(218-226). Avadomide (CC-122) is a novel cereblon targeting agent that is currently in 

clinical development. The phase I/II ENHANCE trial evaluates Avadomide in combination 

with Ibrutinib and Obinutuzumab in CLL/SLL patients (NCT02406742). 

1.2 CLL and the immune system 

1.2.1 Remodelling of the microenvironment, disruption of immune function and 

T-cell exhaustion in CLL 

Disruption of normal immune function is one of the hallmark characteristics of CLL. 

Immune dysfunction in the setting of CLL is the most common feature (227). Clinically 

this can manifest in the form of hypogammaglobulinema, recurrent infection and poor 

response to vaccination (228). Infections are one of the major factors influencing 

morbidity and mortality in CLL patients being responsible for approximately 50% of CLL-

related deaths (229-231). Both the underlying disease as well as sequela of the 

treatment may be responsible. Immunochemotherapy for CLL is indeed a major 

contributor to disease related immunodeficiency with the number of prior lines of 

chemotherapy being an important risk factor for infections in CLL patients. (232, 233). 

Autoimmune reactions directed against haematopoetic cells are also common in CLL. 

Such autoimmune phenomena occur in 10-25% of patients at some point during the 

course of the disease and usually manifest as either AIHA or ITP (234). 

A series of qualitative and quantitative defects of the innate immune system relating to 

CLL have been described. Several authors have reported alterations in the complement 

system. Schlesinger et al. found decreased levels of serum complement proteins of both 

the classic and alternate pathway in CLL patients compared to healthy controls. 

Complements defects correlated with disease stage (235). Füst et al. described 

decreased levels of complement factors C1 and C4 in CLL. The resulting impairment in 

recruiting of C3b to the surface of bacterial pathogens may contribute to the increased 
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risk of infection in CLL (236). Deficiencies of classical pathway complement proteins 

have been confirmed by other authors and have been shown to predict poor survival in 

CLL patients (237, 238). Michelis et al. reported increased levels of terminal complement 

complex  soluble C5b-9 and complement factor C5a in the sera of CLL patients while the 

activation of the classical pathway via aggregated IgG and specifically the activity of the 

classical pathway C5 convertase were decreased (239). 

Moreover, a range of deficits of the cellular compartment of the innate immune system 

has been reported. Kontoyiannis et al. have described a decreased ability of neutrophil 

granulocytes to phagocytose non-opsonised bacteria and a reduction of C5a induced 

chemotaxis (240). In another study significant impairment of random migration, C5a 

induced chemotaxis and chemiluminescence response in neutrophils from CLL patients 

with a history of infection were found (241). A deficiency in lysozyme and 

myeloperoxidase was observed among CLL patient derived neutrophils (242). Podaza 

et al. reported an increase in CD16high CD62Ldim neutrophils in the peripheral blood of 

CLL patients, a subset that has been reported to have immunosuppressive properties 

(243). In a mouse model of CLL splenic neutrophils were reported to exhibit a gene 

expression profile reminiscent of tumour-promoting N2 differentiation of tumour 

associated neutrophils (TAN). These cells had increased expression of cytokines that 

promote CLL B-cell survival like B-cell activating factor (BAFF) and A proliferation-

inducing ligand (APRIL) as well as functional similarities to neutrophil B-helper cells (NBH) 

promoting function and differentiation of B-cells under physiological conditions. Ablation 

of neutrophils resulted in delayed leukemia development in this model (244).  

The absolute monocyte count is increased in the peripheral blood of CLL patients by 

more than 60%. In a study by Herishanu et al. the absolute monocyte count (AMC) was 

found to stratify CLL patients into 3 distinct groups: Those with high and low absolute 

monocyte count had shorter time to treatment compared to those with intermediate 

counts. Moreover, low counts were also associated with increased mortality due to 

infection (245). Friedman et al. reported elevated AMC to correlated with reduced time 

to treatment (TTT) and poor OS in a retrospective analysis of 1168 CLL patients (246). 

Monocytes in the peripheral blood of CLL patient have been reported to have a non-

classical CD14+CD16++ immunephenotype and express the angiopoetin receptor 

tyrosine kinase that contains immunoglobulin‐like loops and epidermal‐growth‐factor‐

similar domains 2 (Tie-2), a feature known to disrupt T-cells activation and promote 

regulatory T-cells (Treg). Gene expression profiles demonstrated an upregulation of 

Rap1 GTPase-activating protein (RAP1GAP) and downregulation of Cdc42 effector 

protein 3 (CDC42EP3) and tubulins which would indicate impaired phagocytotic 
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properties. In addition, down-regulation of Prostaglandin Reductase 2 (PTGR2), a 

reductase with the ability to inactivate prostaglandin E2 and thus suppress inflammatory 

reactions, was observed. In coculture experiments T-cells showed reduced proliferation 

when brought in contact to monocytes derived from patients compared to those from 

healthy controls. Healthy monocytes upregulated CD16, RAP1GAP, IL10, IL8 and Matrix 

Metalloproteinase 9 (MMP9) and down-regulate PTGR2 when brought in  contact with 

leukemic cells or leukemic-cell-conditioned media (247). In a study by Gustafason et al. 

monocytes in the peripheral blood of CLL patients were found to have a decrease in 

expression of surface protein human leukocyte antigen (HLA)-DR and CD86 which are 

important for antigen presentation and activation of T-cells. Higher numbers of HLA-

DRlowmonocytes correlated with shorter time to disease progression (248). Lapuc et al. 

reported that the number of classical CD14++CD16- monocytes in the peripheral blood 

of CLL patients negatively correlated with lymphocytosis and was markedly decreased 

in those requiring immediate therapy. Immunochemotherapy with FCR reduced the 

number of non-classical CD14+CD16++ monocytes in these patients as well as the 

surface expression of CD163 and the levels of soluble CD163, a marker that has been 

linked to the tumour promoting M2 polarization of macrophages (249). Patient derived 

monocytes were demonstrated to exhibit features of endotoxin tolerance. These include 

reduced cytokine production and poor expression of HLA-DR and DQ when challenged 

with lipopolysaccharide (LPS). This has been linked to a miR-146a mediated 

suppression of Interleukin-1 receptor-associated kinase 1 (IRAK1) and TNF receptor 

associated factor (TRAF)6  (250). Deficiences in beta-glucoronidase and 

myeloperoxidase were reported among monocytes derived from CLL patients (242). 

Jitschin et al. reported an increased frequency of CD14+HLA-DRlowcells in the peripheral 

blood of CLL patients as well. These cells were shown to suppress proliferation of 

autolougs T-cells in vitro and were also demonstrated to express CD11c, CD13, CD33, 

CD11b, CD62L, CD120b, CD115, CD124, CD163 and HLA-G, thus likening them 

functionally and phenotypically to myeloid derived suppressor cells (MDSCs), a 

heterogenous population of aberrant myeloid cells with the ability to suppress T-cell 

function. Expression of immune checkpoint protein programmed death ligand 1 (PD-L1) 

but not of co-stimulatory proteins CD80 or CD86 were found. MDSCs generated in vitro 

by coculturing of monocytes from healthy donors with CLL B-cells were able to induce 

Tregs and suppress T-cell proliferation by an indoleamine 2,3-dioxygenase (IDO) 

dependent mechanism (251). MDSC induction by CLL B-cells has been reported to be 

mediated by exosomal transfer of miR-155 (252) and non-coding y RNA hY4 via toll-like 

receptor (TLR)-7 signalling (253). 



Mark-Alexander Schwarzbich                                                                                       Introduction 

Page 48 of 279 

 

A further line of evidence for the tumour promoting role of myelomonocytic cells comes 

from reports that monocytes from the peripheral blood of CLL patients can be 

differentiated into nurse-like cells (NLC) ex vivo. NLC attract CLL cells by secretion of 

stromal derived factor 1 (SDF-1) (254) and CXCL13 (255) and thus retain them in their 

supporting microenvironment. NLC also promote survival of CLL B-cells through direct 

cell-cell contact mechanism such as LFA-3/CD2 (256)  and CD100/plexin-B1 (257) 

interaction  as well as soluble factors such as stromal derived factor 1 (SDF-1) (254), 

BAFF and APRIL (258) or indirectly via stimulation of release of CCL3 and CCL4 (259) 

or CXCL2  and CCL2 (260) from B-cells. C-C motif receptor (CCR)1-mediated 

upregulation of MCL-1 in CLL B-cells by NLCs has been demonstrated (261). Indeed, 

ablation of NLC by either liposomale clodronate or monoclonal antibody mediated 

inhibition of Colony stimulating factor 1 receptor (CSF1R) signalling reduced leukemia 

load in a mouse model of CLL (262). Moreover, NLC were found to confere resistance 

to chlorambucil and dexamethasone induced apoptosis in CLL B-cells in an in vitro co-

culture system (263). NLCs correspond to tumour associated macrophages (TAM) in 

solid malignancy. Like TAM, NLC exhibit an M2 polarization with expression of CD14, 

CD11b, CD68, major histocompatibility complex (MHC) type II, CD163, CD206 and IL10 

but not IL12 (264-267). As an in vivo correlate to in vitro generated NLCs, a population 

of CD68+CD14+ cells with similarity to TAMs has been described in proliferation centres 

of secondary lymphoid organs (266). NLCs have been demonstrated to suppress T-cell 

proliferation and promote Treg expansion which can be prevented by anti-IL10 or anti-

transforming growth factor (TGF)-β antibodies as well as IDO inhibitors (268). Several 

mechanism driving the polarization of NLCs in CLL have been suggested including 

secretion of immunoregulatory chemokine macrophage migration inhibitory factor (MIF) 

(269) and Colony stimulating factor 1 (CSF-1) (270), production of extracellular 

nicotinamide phosphoribosyltransferase (eNAMPT), which has a cytokine-like function 

independent of its enzymatic activity (271), as well as interaction of secreted hepatocyte 

growth factor with receptor c-MET on nurse like cells and monocytes (268).  

The role of dendritic cells is to process antigens and present them to resting T-

lymphocytes in order to activate them. As such they function as intermediaries between 

the innate and adaptive immune system (272). Orsini et al. have reported significant 

alterations in function and phenotype in circulating dendritic cells derived from CLL 

patients. The cells lacked CD83 and the costimulatory molecule CD80. Moreover, they 

could not induce significant levels of proliferation in allo-mixed lymphocyte reactions, 

released lower levels of interleukin 12 and had reduced capacity to induce Th1 immune 

responses (273). In addition, dendritic cells derived from monocytes from the peripheral 



Mark-Alexander Schwarzbich                                                                                       Introduction 

Page 49 of 279 

 

of CLL patients with active disease were shown to have lower CD1a expression as well 

as reduced expression of costimulatory molecules CD40 and CD80. Moreover, these 

cells retained expression of CD14, which signifies a lack of maturation.  Functionally, 

they had signifcantly reduced allostimulatory capacity as well. Dendritic cells generated 

ex-vivo in the presence of allogeneic CLL B-cells showed similar phenotypic and 

functional impairment (274). The cytokine profile of monocyte derived dendritic cells from 

CLL patients has been reported to be altered with a decrease of interferon gamma 

production and increase in IL10 production (275, 276). Plasmacytoid dendritic cells, a 

subtype pivotal in supporting T-cell reactions against viral infections and anti-tumour 

immunity, have been reported to be decreased in numbers and functionally deficient with 

reduced production of Interferon (IFN)-α. This was shown to be secondary to decreased 

expression of FMS-like tyrosine kinase 3 receptor (Flt3) and TLR9 (277). 

Qualitative and quantitative defects have also been observed among natural killer (NK) 

cells. Decreased capacity of patient-derived NK cells to induce lysis of CLL B-cells has 

been reported early on (278, 279). The functional deficit of NK cells from CLL patients 

has been associated with a lack of cytoplasmatic granules (279). Kay et al. showed that 

impaired CLL associated NK-cell activity could be restored by IL2 (280). NK cells derived 

from CLL patients have been reported to have low expression of activating receptor 

natural killer group 2 member D (NKG2D) and high expression of CD27, indicating a lack 

of maturation. In addition, lower numbers and decreased viability of NK cells with 

expression of the inhibitory killer cell Ig-like receptors (KIR)2DL1 and KIR3DL1 have 

been noted. This suggests an activation-induced apoptosis of mature NK cells (281). A 

decrease of NKG2D expression on NK cells in the peripheral blood of CLL patients was 

also described by Huergo-Zapico et al. This downregulation of NKG2D was most 

pronounced in patients with advanced and progressive disease (282). A recent study by 

Hadadi et al. noted an increased expression of inhibitory factor mucin domain-containing 

molecule-3 (Tim-3) as well as a downregulation of the NKp30 activating receptor on the 

surface of Nk cells from CLL patients (283). In a xenograft-model of CLL reduced NK-

cell activating receptor expression including NKG2D, DNAX accessory molecule-1 

(DNAM-1) and various natural cytotoxicity triggering receptors (NCR) was demonstrated. 

This was associated with transcriptional downregulation of cytotoxic pathway genes, 

including adhesion molecules, cytotoxic molecules and intracellular signalling molecules 

(284). Induction of impaired NK-cell function has been suggested to be mediated by 

soluble factors such as HLA-B-Associated Transcript 3 (BAT3) (285) as well as surface 

expression of tolerogenic factor HLA-G  (286) and 4-1BB ligand (287) on the surface of 

CLL B-cells. Moreover, pronounced expression of the glucocorticoid-induced TNFR-
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related protein (GITR) ligand on CLL B-cells was described. Upon interaction with GITR 

on the surface of NK cells the release of IL6, IL8 and TNF, which act as pro-survival 

factors for CLL cells, was observed. GITR/GITR ligand interaction also impaired 

Rituximab induced degranulation of NK cells as well as cytotoxicity and interferon 

gamma production (288). The clinical relevance of impaired NK-cell function in CLL was 

demonstrated by a series of studies. In patients with low disease stages and those with 

mutated IgVH, higher NK-cell numbers in the peripheral blood were reported. A higher 

NK/CLL ratio predicted a longer TTT (289). This was confirmed in a study by Wang et 

al. which found higher NK-cell numbers in early stage disease patients, those with <20% 

ZAP-70 expression and those with normal serum albumin and β2-Mikroglobulin levels. 

Those patients with lower NK-cell counts had significantly shorter OS (290).  

CLL associated humoral and cellular immune defects are not limited to the innate 

immune system but also affect the function of the adaptive immune system. One of the 

major clinical parameters known to correlate with risk of infection in CLL is 

hypogammaglobulinema (230, 291). Despite the low tumour load in early disease stage, 

levels of immunoglobulins tend to be decreased early on in both CLL and SLL. The 

severity of hypogammagloblinemia increases over time and with progression of the 

disease and can involve all types of immunoglobulins (IgA, IgG, IgD) (292, 293). In a 

study of 1485 newly diagnosed, treatment naïve CLL patients, 26% were reported to 

have hypogammaglobulinemia. Patients with hypogammaglobulinema were more likely 

to have advanced Rai stage and had shorter median TTT (294). Patients with Ig levels 

<700 mg/dl have been shown to have shortened survival in a study by Rozman et al. In 

the subgroup analysis reduced levels of IgG and IgA were of particular prognostic 

significance with the IgA levels being of prognostic value independent of clinical stage in 

multivariate analysis (292). A decrease in IgA level was confirmed to be an independent 

risk factor prediciting infection in one study while among IgG only subclasses IgG2 and 

IgG4 were reported to be predictive of an increased risk (295). Copson et al. showed 

significantly decreased levels of IgG3 and IgG4 among CLL patients (296). The 

frequently observed decrease in IgA levels among CLL patients may potentially explain 

the high rate of sinopulmonary infections among these patients. In addition, low levels of 

pneumococcal antibodies were reported to be more frequent among CLL patients and 

observed more often among patients with recurrent or severe infections (297). The 

mechanism of induction of hypogammaglobulinema by CLL cells is only partially 

understood. The CLL associated hypogammaglobulinema cannot simply be due to a 

dilution of physiological B-cells by defective CLL B-cells as the phenomenon can occur 

in early stage disease. It has been suggested that impaired T-helper cell activity (298) is 
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to blame, possibly due to a downregulation of surface CD40L expression  leading to 

impaired CD40/CD40L mediated antibody class switching (299). Cerutti et al. have 

demonstrate that T-helper cells upregulate surface expression of CD30 in an OX40 and 

IL4 dependent manner when activated in the presence of CLL B-cells. Interaction of 

CD30 with CD30L on the surface of CLL B-cells has been demonstrated to downregulate 

the CD3-induced expression of CD40L. Moreover, CD30/CD30L interaction interfered 

with CD40 induced TRAF signalling in non-malignant B-cells leading to impaired 

Deoxyribonucleic acid (DNA) class-switch recombination (300). Interaction of CD70 

which is constitutively expressed on the surface of a subset of CLL B-cells has been 

reported to interact with CD27 on the surface of T-cells leading to PI3K and MAPK/Erk 

kinase (MEK) mediated reduction of immunoglobulin secretion (301). CLL cells have also 

been shown to be able to directly induce apoptosis of autologous plasma cells via  first 

apoptosis signal (Fas)/Fas ligand (FasL) interaction (302).  

Antibody responses to vaccinations are often inefficient even in early stages of CLL (303, 

304). Vaccinations have been shown to be most effective in patients with preserved 

immunoglobulin levels and when conjugated vaccines are used (305). Still only 58% of 

CLL patients have been reported to respond to a 13-valent conjugated pneumococcal 

vaccine compared to 100% of healthy controls in a 2014 trial (306). It is recommended 

for standard vaccinations to be performed before treatment for CLL is initiated. 

Immunization against seasonal influenza is recommended (10). Live vaccines are 

generally contraindicated in CLL patients – severe complications, sometimes even 

leading to death, have been observed (307). Several randomized studies have been 

conducted addressing the use of intravenous immunoglobulin substitution as a 

prophylactic treatment in CLL patients in the 1980s and 1990s. While immunoglobulin 

substitution reduced the risk of severe infection, it had no appreciable effect on mortality 

(307, 308). Hence, immunoglobulin substitution is only recommended in patients with 

hypogammaglobulinemia suffering from repeated infections (10). 

CLL B-cells themselves may negatively impact immune reactions. It has been suggested 

that decreased T-cell function observed among CLL patients is due to a decreased ability 

of CLL B-cells to present antigens (309, 310), in part due to decreased levels of 

expression of costimulatory molecules CD86 and CD80 (311). The propensity of CLL B-

cells and T-cells to form activating immune synpases has been reported to be severely 

impaired (215). Surface expression of immunoinhibitory molecules  including CD200 

(312, 313), PD-L1, B7-H3 and CD270 (216) has been described and is linked to 

disruption of CLL-associated immune responses. The immune suppressive surface 

molecule cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), which is known to be 



Mark-Alexander Schwarzbich                                                                                       Introduction 

Page 52 of 279 

 

expressed on the surface of regulatory T-cells, can also be found on CLL B-cells and 

has been implicated in suppression of costimulation of T-cells (314). Moreover, CLL B-

cells have been described to share phenotypic and functional features with regulatory B-

cells (Breg) (315). Bregs are a subset of physiological B-cells that regulate immune 

responses through soluble factors, primarily IL10 (316). The anti-inflammatory cytokine 

IL10 is known to regulate immune function primarily via effects on myeloid derived 

antigen presenting cells and CD4+ helper cells. In antigen presenting cells IL10 

decreases secretion of inflammatory cytokines such as Tumour necrosis factor (TNF), 

IL-1α and β, IL6 (317, 318) and reduces the surface expression of MHC type II, 

costimulatory molecules and adhesion molecules (319-321). IL10 has been described to 

directly inhibit proliferation and cytokine secretion by both T helper 1 (Th1) and T helper 

2 (Th2) cells (322, 323). Bregs have been described to have regulatory functions in 

various animal models of autoimmune disease including experimental autoimmune 

encephalitis (EAE) (324), collagen-induced arthritis (CIA) (325) and the MRL/lpr model 

of systemic lupus erythematodes (SLE) (326). Tumour associated regulatory B-cells 

(tBregs) that promote tumour growth and suppress anti-cancer immunity have been 

described in various solid cancers (327-329). In analogy to tBregs, CLL B-cells share 

phenotypic and functional characteristics with Bregs. Like Bregs derived from the blood 

of healthy donors, CLL cells show a CD24highCD27+ immune phenotype (315). Another 

shared phenotypic feature is the surface expression of CD38, an ectoenzyme that 

promotes B-cell cytokine production and migratory capacity though production of second 

messenger cyclic adenosine dinucleotide phosphate (ADP)-ribose (330). As mentioned 

under 1.1.2, CD38 can also be used as a prognostic marker in CLL (19). Granzyme B is 

a serin protease involved in cytotoxic T-cell mediated cell death. However, it also has a 

secondary function in regulation of immune homeostasis through contact mediated 

inhibition of activated T-cells by regulatory T-cells (331) and plasmacytoid dendritic cells 

(332).  In B-cells from the peripheral blood of patients with solid cancers an IL21 induced 

outgrowth of granzyme B expressing CD19+CD38+CD1d+IgM+CD147+ B-cells that 

were able to inhibit T-cell proliferation by a granzyme B dependent reduction of T-cell 

receptor ζ-chain has been observed (329). Similarly, CLL B-cells have been described 

to express CD1d and granzyme B after activation with IL21 (333). Like Bregs CLL B-

cells have been reported to be able to secrete large amounts of IL10 (315). IL10 serum 

levels have been reported to be increased in CLL patients compared to healthy controls 

(334). CD5 has been described to control IL10 production in CLL B-cells through a Signal 

transducer and activator of transcription (STAT)3 and NFAT2 mediated mechanism 

(335). Similar to the situation in Bregs, BAFF stimulation of CLL B-cells promoted 

production of IL10 in a mouse model (336). Both granzyme B and IL10 production could 
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be enhanced via TLR9 stimulation with CpG oligodeoxynucleotides (CpG-ODN) (337, 

338). In a mouse model CLL cell growth was significantly reduced in IL10 receptor -/- 

mice, in which immune cells are unresponsive to IL10, compared to wild type animals. 

Moreover, IL10 was reported to reduce generation of effector CD4 and CD8 cells in 

responsive vs. unresponsive animals. The production of IL10 was reported to be 

regulated by BCR signalling through the Syk/MAPK pathway mediated by the 

transcription factor specificity protein 1 (Sp1) (339). 

CLL has been described to have a profound impact on phenotype and function of T-cells 

as well as T-cell numbers and composition of the T-cell compartment. Despite a 

reduction in relative numbers of CD3+ T-cells early studies have described an expansion 

of the entire T-cell compartment in terms of absolute numbers in the setting of CLL (340-

342). While both the numbers of CD4+ helper cells and CD8+ cytotoxic T-cells in the 

peripheral bloods seems to be increased, a more pronounced expansion of CD8 T-cells 

relative to CD4 T-cells with an inversion of the CD4:CD8 ratio has been described (341, 

343, 344). It has been hypothesized that this shift in CD4:CD8 ratio in the peripheral 

blood may be the result of a preferential migration of CD4+ T-cells into CLL bearing 

lymphoid organs. This notion is supported by reports that CD4+ cells are the predominant 

T-cell subset in the bone marrow of CLL patients (345). It has been suggested that 

attraction of activated CD40L+CD4+ T-cells to focal points of CLL cell accumulation in 

the tissue is mediated by the cytokine CCL22, which is secreted abundantly by CLL B-

cells (346). Several authors have demonstrated a clinical significance of the inverted 

CD4:CD8 ratio. Early studies have shown the CD4:CD8 ratio inversion to be associated 

with disease stage (343, 344) and development of CLL associated 

hypogammaglobulinemia (341). Guarini et al. have reported the presence of a CD4:CD8 

ratio >1 to be predictive of disease stability (347). These findings have been supported 

by two studies among treatment naïve early stage CLL patients that have linked inverted 

CD4:CD8 ratios to shorter TTT(348) and shorter TTT and OS (349), respectively.  

Among CLL patient derived T-cells a shift away from naïve subsets towards more antigen 

experience T effector memory (TEM) and terminally differentiated CD45RA+ effector 

memory cells (TEMRA) has been described (348, 350-355). This phenotype mimics 

replicative senescence in the sense of an accelerated ageing of the immune system 

(356). The loss of costimulatory receptors such as CD27 and CD28, the reduced cell 

proliferation and increased susceptibility to apoptosis are likely to contribute to CLL 

associated T-cell deficiency. Reported phenotypic changes also include an increased 

expression of CD57 (357-359). The CD3+CD57+ T-cells appear to be largely comprised 

of a select few clones with identical T-cell receptor B variable (TCRBV) gene usage and 
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complementarity determining region 3 (CDR3) size distribution, possibly as a result of 

chronic activation of T-cells (358, 360-362). A similar activation induced clonal expansion 

and accumulation of antigen-experienced T-cells has been described in the setting of 

chronic viral infections such as Cytomegalo Virus (CMV) (363). Indeed, several reports 

have linked the CLL associated expansion of effector memory T-cells to CMV infection 

(364-366). However, CMV positive T-cells make up  a relatively small proportion of the 

overall T-cell pool in most patients and CLL associated T-cell expansion and 

senescences still occurs in CMV-seronegative individuals (364). Moreover, the impact of 

T-cell expansion and inverted CD4:CD8 ratio on TTT and OS appears to be independent 

of the presence of CMV infection (367). Analysis of the T-cell receptor repertoire in CLL 

patients revealed shared clonotypes between patients that appear to be CLL-specific. 

This suggests that antigen drive by CLL B-cells themselves may underlie the CLL-

associated T-cell expansion (368). Several authors have stressed the role of specific T-

cell subsets in the CLL microenvironment. Regulatory T-cells (Tregs) are CD4+CD25+ 

forkhead box P3 (FOXP3)+ T-cells that serve to limit excessive immune reactions, 

maintain tolerance to self and prevent autoimmune diseases (369). In solid malignancies 

Tregs have been reported to be enriched in the tumour microenvironment and to interfere 

with anti-tumour immune responses (370). Similarly, increased frequencies of regulatory 

T-cells in the peripheral blood of CLL patients have been noted in various studies and 

have been shown to correlate with more advanced disease stages and shorter TTT (371-

380). In addition, in a study by Weerdt et al. increased frequencies of Tregs in lymph 

node biopsies from CLL patients were described (381). Another helper cell subset of 

interest is IL17 producing helper cells (Th17). Their role in the tumour microenvironment 

is controversial with potential for both tumour promoting and tumour suppressing 

properties (382). In the setting of CLL higher numbers of Th17 and serum levels of Il17A 

have been linked to less advanced clinical stage of the disease and have been shown to 

inversely correlated with Treg numbers. (383, 384). Natural killer T (NKT) cells are a 

heterogenous group of T-cells that also express NK-cell markers. They only make up 

approximately 0.1% of peripheral blood T-cells. These cells serve an intermediary role 

between the innate and adaptive immune system. Many of these cells recognize lipids 

and glycolipids presented by the surface molecule CD1d found on various antigen-

presenting cells (385). CD1d has been demonstrated to be expressed on the surface of 

CLL B-cells, particularly those with unmutated IgVH, and has been shown to be able to 

present synthetic lipid alpha-galactosylceramide to NKT cells resulting in cell death 

(386). In a mouse model of CLL NK1.1+ T-cells were found to be overrepresented. 

Moreover, CD1d expression on B-cells was demonstrated to be decreased in disease 

bearing animals and CLL patient samples compared to controls. CD1d -/- mice were 
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demonstrated to have accelerated leukemia development and decreased survival (387). 

In a study by Bojarska-Junak et al. reduced numbers of CD3+CD16+CD56+ NKT cells 

were associated with disease progression and a higher mortality (388). Similarly, Jadidi-

Niaragh et al. showed numbers of NKT cells to be significantly reduced in patients with 

progressive CLL compared to those with indolent disease and healthy controls. 

Interestingly, NKT cells numbers were inversely correlated with those of Tregs 

suggesting a Treg modulated downregulation of protective NKT cells in those patients 

(389). Invariant Natural Killer T- (iNKT) cells, a subtype of NK cells, have been 

demonstrated to significantly delay disease onset in a mouse model of CLL but ultimately 

to become functionally impaired upon disease progression. In patient samples disease 

progression correlated with impaired iNKT function. In vitro iNKT cells were shown to 

hinder CLL survival by restraining CD1d expressing NLCs (390).The ratio of Infγ+ iNKT 

: IL4+ iNKT was reported to be decreased in CLL patients and shown to correlated with 

disease progression (391). Another uncommon subtype of T-cells with an intermediary 

function between innate and adaptive immune system are γδ T-cells. In addition to the 

γδT-cell receptor they also express natural killer receptors such as NKG2D. They are 

able to respond to many different types of antigens including peptides, sulfo- and 

phospholipids independent of MHC molecules (392). In the peripheral blood of CLL 

patients γδ T-cells expressing Vδ1 and Vδ3 gene segments were shown to be 

significantly expanded. Both subsets were found significantly more frequently among 

patients with advanced stages of CLL. Moreover, a large proportion of γδ T-cells from 

CLL patients expressed Vγ9, indicating an oligoclonal expansion of certain subsets 

similar to the situation in classical T-cells (393). In another study an expansion of Vδ1 + T 

cells with increasing expression of granzyme B was noted. This phenomenon was most 

pronounced among those patients with advanced stages of disease (394). CLL patients 

with low numbers of Vδ1 T-cells and no detectable expression of UL16-binding protein 

(ULBP) 3, an important ligand for NKG2D, were more likely to progress then those with 

high numbers of Vδ1 T-cells and detectable or inducible ULBP3 expression on B-cells 

(395). Coscia et al. have evaluated the responsiveness of Vγ9Vδ2 T cells derived from 

CLL patients to stimulation by zolendronic acid. Low responder patients had higher 

baseline counts of Vγ9Vδ2 T cells and a more pronounced shift to effector memory and 

terminally differentiated effector memory phenotypes. IgVH was more frequently 

unmutated in low responder patients and higher numbers of circulating Tregs were 

detected in those patients. Low responders Vγ9Vδ2 status correlated with shorter TTT 

(396). Given the complexity of T-cells subsets in CLL and their complex and incompletely 

understood interplay, attempts have been made to summarize abundancy of these 

various subsets in a unified prognostic score. Rissiek et al. have analysed 24 circulating 
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T-cell subsets by multiparametric flow cytometry in a cohort of MBL and CLL patients of 

various stages. Multidimensional scaling analysis was applied to globally assess the 

composition of the T-cell compartment and develop a T-cell score reflecting its integrity. 

The resulting T-cell score was able to distinguish MBL as well as different stages of CLL 

development and changes were detected during disease progression and after 

chemoimmunotherapy. T-cell scores could also be utilized as a prognostic tool. Patients 

with higher scores had significantly shorter TTT. The scores also correlated with already 

established markers of prognosis inculding IgVH mutational status and cytogenetic 

abnormalities. Changes in the score were shown to be mainly due to changes in numbers 

of Tregs, NKT cells, γδ T cells and  terminally differentiated TEMRA CD8+ subsets (376).  

The development of CLL is associated with severe functional defects of T-cells in several 

areas. T-helper cell function has been described to be defective in the setting of CLL 

early on (298, 397). It has been suggested that this is due to an acquired deficiency in 

CD40L surface expression (299). Severely impaired cytotoxic T-cell function against CLL 

B-cells has been described as well (398-401). Moreover, similar to NLCs, CD4+ T-cells 

seem to be critical in boosting of growth and survival of CLL B-cells in vivo as 

demonstrated by Bagnara et al. in a xeno-transplant model of CLL (402). 

The T-helper cell polarity has been reported to be shifted away from a cellular immunity 

promoting Th1 phenotype towards a more humoral immunity and B-cell growth 

promoting Th2 phenotype in CLL (334, 403) with a decreased production of classical Th1 

cytokines such as IL2 (353, 404) and increased expression of Th2 cytokines such as IL4, 

IL5 and IL10 (334, 353, 405, 406). IL4 has been observed to promote proliferation of CLL 

B-cells and to shield CLL cells from apotosis by increasing expression of BCL-2 (407) as 

well as increased STAT6 phosphorylation and resulting NK-κB activation (408). Similarly, 

IL10 has been reported to have anti-apoptotic properties towards CLL B-cells in vitro 

(409). CLL B-cell-secreted IL6 has been shown to promote IL4 production by T-cells and 

thus further support the skewing of the helper cell polarity towards Th2 (410). Both IL6 

and IL10 have been described to be increased in the serum of CLL patients and correlate 

with poor survival (411, 412). Interestingly, there is significant evidence that secretion of 

classical Th1 cytokines IFN-γ and TNF-α is increased rather than decreased in CLL T 

cells and this has been shown to correlate with disease stage (405, 406, 413-415). Both 

cytokines have also been demonstrated to promote survival and proliferation of CLL B-

cells (416, 417). Serum levels of TNF-α have been shown to be elevated in CLL patients 

and correlate with poor survival (418). This indicates that the model of Th1/Th2 polarity 

may be insufficient to describe the complexity of cytokine profiles of T-cells in the setting 

of CLL. Rather than acting against single targets, cytokines and chemokines are likely to 
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exert their functions in a dynamic network. In order to address this level of complexity 

Yan et al. attempted to assess the prognostic significance of the serum levels of 23 

different cytokines in a cohort of 84 CLL patients and 49 age matched controls by 

applying unsupervised hierarchical cluster analysis. 3 clusters of differentially expressed 

cytokines were identified: Cluster 1 (CXCL9, CXCL10, CXCL11, CCL3, CCL4, CCL19, 

IL5, IL12 and INF-γ), cluster 2 (TNF-α, IL6, IL8 and Granulocyte-macrophage colony-

stimulating factor (GM-CSF)), cluster 3 (IL1β, IL2, IL4, IL15, IL17 and INF-α). 

Combination scores of intergrated clusters 1/2 and clusters 1/3 strongly correlated with 

TTT and OS, respectively (419).  

The formation of immunological synapses between both CD4+ and CD8+ CLL patient 

derived T-cells and superantigen pulsed CLL B-cells was shown to be severely impaired. 

Importantly, this was found to be due to defects of both the CLL B-cells and T-cells. 

Moreover, CLL B-cells have been shown to be able to induce the same functional defect 

in healthy allogeneic T-cells. The underlying mechanism was described to be a 

dysregulation of actin remodelling and impaired recruitment of key cytoskeletal signalling 

molecules such as lymphocyte-specific protein tyrosine kinase (LcK), Cdc42, Wiskott–

Aldrich Syndrome protein (WASp), filamin-A and dynamin-2 (215). CLL cells have also 

been shown to induce impaired lymphocyte function-associated antigen 1 (LFA-1) 

mediated motility of T-cells by downregulating Rho GTPases RhoA and Rac1 and 

upregulating CdC42 (217). Our own group has studied the molecular mechanisms of 

CLL induced T-cell dysfunction in detail by analysing the gene expression profile of CLL 

patient derived T-cells. CD4+ and CD8+ T-cells from CLL patients showed numerous 

genes with differential expression patterns when compared to those derived from healthy 

controls. Dysregulated genes were mainly involved in processes such as T-cell 

proliferation and differentiation, vesicle trafficking and actin cytoskeleton remodelling 

including CdC42, Ras-related protein 35 (RAB35) and Actin-related protein 2/3 complex 

subunit 1B (ARPC1B). In analogy to the findings in T-cell synapse assays, these profiles 

of gene expression could also be induced in T-cells derived from healthy donors in a cell-

contact depended fashion by co-culturing with allogeneic CLL B-cells (420). These 

findings have since been confirmed in a study by Di Ianni et al. who reported a similar 

pattern of dysregulated genes involved in cell differentiation and proliferation, survival, 

apoptosis, cystoskeleton remodelling, vesicle trafficking and T-cell activation in CLL 

patients (421). The functional defects in actin remodelling and consequently synapse 

formation and T-cell migratory activity described above have been shown by our group 

to be directly induced by CLL B-cells via inhibitory surface receptors CD200, PD-L1, B7-

H3 and CD270 by modulating RhoA, Rac1, and Cdc42 Rho-GTPases (216). 
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As the studies referenced above demonstrate, development of CLL is association with a 

chronic activation induced functional deficit of both helper and cytotoxic T-cells.  A similar 

state of T-cells dysfunction has been described to occur in chronic viral infections and 

has been dubbed “T-cell exhaustion”. This condition is caused by persistent exposure of 

T-cells to antigen-stimulation or inflammatory stimuli leading to progressive loss of 

effector CD8+ and CD4+ T-cell function. The condition has been attributed to 

overexpression of co-inhibitory immune checkpoint molecules such as PD-1, lymphocyte 

activation gene 3  (LAG-3), T-cell immunoglobulin and mucin-domain containing-3 (TIM-

3), 2B4, CD160, Killer cell lectin-like receptor subfamily G member 1 (KLRG1), CTLA4 

and T-cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT) (422, 423). 

We have been able to demonstrate that, similar to the situation in chronic viral infection, 

the functional T-cell impairment induced by CLL coincidences with an overexpression of 

immune checkpoint molecules such as 2B4, CD160 and PD-1. This condition is similar 

to chronic viral infection induced T-cell exhaustion in many ways such as impaired 

capacity for proliferation and cytotoxic activity of CD8+ T-cells but also differs 

significantly in some regards such as increased rather than decreased production of 

cytokines TNF-α and INF-γ. Hence, this functional state has been referred to as “pseudo 

T-cell exhaustion”. Importantly, this has been shown to be independent of CMV sero- 

status (424). Overexpression of other known immune checkpoint molecules on CD8+ T-

cells in the setting of CLL such as LAG-3 and KLRG-1 have been described (352, 425). 

The development of CLL has been linked to decreased DNA methylation and hence 

potential for increased expression in gene loci coding for PD-1 and KLRG-1 among CD8 

T-cells (349). In the realm of CD4+ T-cells the presence of an exhaustion phenotype with 

overexpression of TIM-3 and PD-1 has also been documented (426). Catakovic et al. 

reported an increase of TIGIT expressing CD4+ T-cells in CLL patients correlating with 

the disease stage. Depleting CD4+TIGIT+ cells or blockade of TIGIT- poliovirus receptor 

(PVR)/CD226 interaction by TIGIT-Fc fusion protein decreased CLL cell viability in vitro, 

indicating an additional role in promoting CLL cell survival (427). Overexpression of 

CTLA4 has been demonstrated on both patient derived CD4+ and CD8+ T-cells (372). 

It has been suggested that PD-L1 expression in CLL cells and PD-1 expression in CLL 

associated T-cells and thus the exhaustion phenotype is promoted by direct cell-cell 

interaction via CD84 (428).  
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1.2.2 T-cell receptor signaling, Co-stimulation, Immune synapse and Immune 

Checkpoints 

Figure 3 summarizes T-cell receptor signaling, co-stimulation and mechanisms of 

inhibtion by immune checkpoint molecules CTLA-4 and PD-1.  

 

Figure 3: T-cell receptor signaling, co-stimulation and mechanism of inhibtion by immune 
checkpoint molecules CTLA-4 and PD-1: The T-cell receptor complex is an octomeric complex 
of TCR α/β, CD3 δ/ε, CD3 γ/ε and CD247ζ/ζ. Engagement of the TCR complex together with co-
receptor CD4/CD8 by the specific  peptide antigen presented by MHC leads to T-cell receptor 
signalling. Lck/Fyn phosphorylate and activate ζ chain bound ZAP-70 which phosphorylates and 
activates adaptor proteins LAT and SLP-76. They serve as a scaffold for further effector 
molecules such as ITK, GRB2, Vav1 and PLCγ. Vav1 mediates remodelling of the actin 
cytoskeleton via small GTPases Rac, RhoA and Cdc42. PLCγ activates the downstream IP3-Ca+2-
NFAT, PKCθ-IKK-NFκB and Ras-Erk1/2-AP1 pathways. Costimulation via CD28/CD80/CD86 is 
necessary for T-cell activation. CD28 activates the PI3K/AKT pathway and directly activates 
effectors of the TCR signalling complex such as GRB2, Vav1 and Lck. CTLA-4 mediates negative 
signals by competitive binding and sequestering of CD80/CD86 and inhibits AKT signalling via 
PPA2. PD-1 inhibts T-cell activation via SHP-2 mediate inhibition of PI3K, ZAP-70, RAS and 
PKCθ. 

The primary signal necessary for T-cell activation is transmitted though the T-cell 

receptor complex which recognizes specific peptides presented by MHC molecules on 

the surface of antigen presenting cells (APC) or target cells. The T-cell receptor is a 

disulfide-bond-linked membrane-anchored heterodimer of two highly variable proteins. 

In human beings 95% of T-cells contain T-cell receptors consisting of an α and β chain 

whereas 5% of T-cell contain T-cell receptors made up of a γ and δ chain (392, 429). 

Each chain is composed of two immunoglobulin superfamily domains, the variable and 

constant region.  The variable region contains three hypervariable or complementary 

determing regions (CDR) of which CDR3 has been demonstrated to be the main region 
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responsible for recognition of processed antigen (430). The T-cell receptor is associated 

via a network of polar ineractions with three adjunct dimeric signaling molecules forming 

the T-cell receptor complex: CD3 δ/ε, CD3 γ/ε and CD247 ζ/ζ (431). The cytosolic 

domains of CD3 and CD247 contain ITAMs which are responsible for transmitting the 

TCR signal (432). The T-cell receptor complex signal is further promoted by binding of 

MHC molecules by their respective co-receptor: CD4 on helper T-cells interacts with 

MHC class II on APCs while CD8 on cytotoxic T-cells interacts with MHC class I on  

target cells (433). Antigen engagement by the T-cell receptor leads to phopsphorylation 

of CD3 ITAMs by several Src-family protein kinases such as Lck (434) and Fyn (435).  

Activation of Lck is promoted by dephorsphorylation via tyrosine phosphatase CD45 

(436). The phosphorylation of ITAMs at the ζ chain leads to binding of ZAP-70 via its Src 

homology 2 (SH2) domains and phosphorylation of ZAP-70 by LcK (437, 438). ZAP-70 

in turn phorphorylates and activates adaptor proteins such as  transmembrane protein 

Linker for the activation of T cells (LAT) and cytosolic protein SH2 containing leukocyte 

phosphoprotein of 76 kDa (SLP-76) which act as a scaffold for recruitment of various 

downstream effector proteins (439, 440). Binding of Vav1 to SLP-76 via its SH2 domain 

leads to activation of Rho-family GTPases inculding Rac1, RhoA and Cdc42 promoting 

actin cytoskeleton reorganization (441). Similarly, LAT interacts with GRB2 via its SH2 

domain (442). Activated GRB2 promotes Rat sarcoma (RAS) activation by binding of 

Guanine nucleotide exchange factor (GEF) son of sevenless (SOS) via its Src homology 

3 (SH3) domain (443, 444). GRB2 has also been shown to bind to and promote function 

of Vav1 via SH3 (445). A key event in the signalling cascade is binding and activation of 

Phospholipase C gamma 1 (PLCγ-1) by both LAT and SLP-76. Activated PLCγ-1 

hydrolyzes membrane-bound PIP2 into second messengers IP3 and DAG linking the 

proximal T-cell receptor signalling complex to various downstream signalling cascades 

such as the IP3-Ca+2-NFAT pathway, the PKCθ-IKK-NFκB pathway and the the Ras-

Erk1/2-AP1 pathway (446, 447). Both reorganization of the actin cytoskeleton and PLCγ-

1 activation as well as  downstream signalling have been shown to be dependent on the 

tyrosine kinase ITK (448-450).  

IP3 generated by PLCγ-1 binds to its receptor on the endoplasmatic reticulum leading to 

efflux of Calcium in the cytoplasm. This triggers further calcium influx through CRAC 

(451, 452). Calcium activates the protein phosphatase calcineurin which leads to 

dephosphorylation and subsequent transport of transcription factor NFAT to the nucleus 

(453). PLCγ-1 derived DAG triggers PKCθ signalling. This leads to activation of IKK 

which in turns phosphorylates IκB leading to its ubiquination and degradation. This 

results in the release of NF-κB which is subsequently transported into the nucleus (454). 
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In addition to SOS another GEF called RAS guanyl nucleotide-releasing protein 1 

(RasGRP1) is known to induce RAS activation. RasGRP1 binds DAG leading to its 

membrane translocation and activation (455). GDP bound RAS is inactive. GEFs 

modulate release of GDP and replacement with GTP. Activated RAS-GTP triggers a 

cascade of phosphorylating protein kinases including Raf, Mek1/2 and Erk 1/2 leading 

to formation of transcription factor AP-1, a dimeric complex of JUN/FOS  that is pivotal 

in regulating activation induced modulation of gene expression in T-cells (456, 457).  

Initial immunological models postulated that the adaptive immune system was working 

via a simple distinction between self and non-self (458). In 1989 Charles Janeway 

introduced a new concept, the infectious non-self model (459). He postulated that APCs 

are activated by pathogen-associated-molecular patterns (PAMPs) through pattern 

recognition receptors (PRRs) which thus can distinguish infectious non-self  from non-

infectious self. In 1994 a novel model was conceived by Poly Matzinger, the so called 

danger model, which would supplanted these earlier conceptions. Martzinger proposed 

that the immune system does not function by discerning between self and non-self but 

by detecting states of safety or danger through sensing of the presence of pathogens or 

alarm signals from injured or stressed cells (460). “Danger signals”, the so called 

alarmins, include PAMPs but also damage associated molecular patterns (DAMPs) such 

as heat shock proteins, DNA, hyaluronic acid, RNA, uric acid, serum amyloid A protein, 

ATP and cytokines like IFN-α and IL-1β (461). Alarmins are recognized by APCs through 

PPRs such as TLRs, nucleotide oligomerization domain(NOD)-like receptors, retinoic 

acid inducible gene-I (RIG-I)-like receptors and c-type lectins (462-465). Stimulation of 

APCs through PPRs leads to activation of the molecular machinery to process and 

present antigen but also to expression of secondary, “co-stimulatory” molecules 

necessary for T-cell activation. This co-stimulatory signal is primarily mediated via CD28, 

which is constitutively expressed on the surface of T-cells, in interaction with its ligands 

CD80 (B7.1) and CD86 (B7.2) on the surface of APCs and B-cells (466). Other 

costimulatory pathways include Inducible T-cell costimulator (ICOS)/ICOS ligand (467), 

CD70/CD27 (468), 4-1BB/4-1BB ligand and OX40/OX40 ligand (469). After binding of 

CD28 to its ligands it is able to interact with various downstream  signalling cascades 

through interaction of immunotyrosine motifs with SH2 or proline rich regions with SH3 

domains. Activated CD28 binds to and activates PI3K in an SH2 dependent manner 

(470). PI3K derived PIP3 triggers phosphorylation and activation of AKT which promotes 

NFκB signaling via mTOR (124). Moreover, AKT mediated phosphorylation inhibits 

Glycogen synthase kinase 3 (GSK3) (471). At steady state GSK3 prevents nuclear 

translocation of NFAT which is thus promoted by AKT signaling (472). In addition to PI3k 
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mediated signalling CD28 is also able to directly bind to and activate adaptor proteins of 

the proximal signalisome of the T-cell receptor. Ras signaling has been shown to be 

promoted by interaction with GRB2/SOS (473). CD28 also promotes actin cytoskeleton 

remodeling in a Vav1/SLP-76 dependent fashion (474). Lck binding and activation has 

been shown to mediate PKCθ phosphorylation and thus enhance downstream NFκB 

signaling (475, 476).  

The interface area between T-cell and APC or target cell is referred to as the 

immunological synapse (IS). Within the area of contact the distribution of receptor 

surface molecules as well as intracellular signaling molecules is not random. Rather, the 

immune synapse is organized in concentric rings containing segregated cluster of 

proteins, the supramolecular activation clusters (SMACs). At the centre of the synapse 

is the central SMAC (c-SMAC) containing the components of the T-cell receptor complex 

such as TCR and CD3 (477) as well as co-receptors CD4, CD8 and CD28 (478), 

components of the proximal signalosome such as LcK, Fyn, ZAP-70 and PKCθ (479, 

480) and cell adhesion molecule CD2 (481). The c-SMAC is surrounded by the 

peripheral SMAC (p-SMAC) within which the cell adhesion molecule LFA-1 and the 

cytoskeletal protein talin are clustered (477). This is followed by the distal SMAC (d-

SMAC) which is enriched in adjunctive transmembrane proteins CD43 and CD45 as well 

as polymerized F-actin  (482-484). However, aberrations from this model pattern do 

exist. In DC/T-cell interaction a multifocal pattern of separate but partially overlapping 

TCR/CD3 and LFA1 containing clusters resembling the microcluster architecture of the 

nascent IS has been reported (485-487). The formation of the IS is a complex multi-step 

process. An initial phase of exploratory contact is mediated by low affinity protein/protein 

interactions between LFA-1 and Intercellular adhesion molecule 3 (ICAM-3) (488) as well 

as lymphocyte function-associated antigen 3 (LFA-3) and CD2 (489). If successful 

interaction between the TCR complex and a peptide loaded MHC molecule is 

established, processes are initiated that overcome opposing charge dependent repulsive 

glycocalyx interactions (490) and galectin mediated TCR inhibition (491). Moreover, TCR 

engagement has been demonstrated to halt motility of migrating T-cells to allow for 

synapse formation (492). After successful engagement and crosslinking, TCRs are 

immobilized and clustered in the area of contact (478). Electron-microscopic imaging 

revealed that this initial phase of contact is via actin rich lamellopodia extending from the 

surface of the T-cell and penetrating deep into the opposing cell. With consolidation of 

the synapse the area of contact is flattened and smoothed out (493-495). TCR-containing 

microclusters/lipid rafts are continually produced in the periphery of the contact site and 

coalesce to the centre to form the c-SMAC (487). The mechanism of coalescence is 
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incompletey understood but appears to depend on continuous TCR ligation and F-actin 

flow (496) as well as on dynein driven microtuble movement (497). As mentioned above, 

signaling through the T-cell receptor complex leads to phosphorylation and activation of 

scaffolding proteins such as SLP-76 which in turn associates with Vav1 through SH2 

interaction leading to activation of downstream GTPases (441). The small GTPase RhoA 

activates the protein mammalian homolog of Drosophila diaphanous 1 (mDIA1), a 

member of the formin family which mediates the nucleation and unbranched extension 

of actin filaments (498). The actin-related protein (Arp)2/3 complex mediates nucleation 

and branched actin filament extension. In order to function it needs to associated with 

nucleation-promoting factors from the Wiskott-Aldrich syndrome family of proteins (499). 

Interaction of small GTPase Cdc42 with WASp discloses its binding site for the Arp2/3 

complex (500).  WASP family Verprolin-homologous protein (WAVE) is activated by 

Rac1 in association with non-catalytic region of tyrosine kinase adaptor protein (Nck) 

and subsequently associates with the Arp2/3 complex (501). The Arp2/3 complex works 

together with filamins, large multidomain proteins which mediate actin crosslinking, to 

build the actin structure. Filamin-A has been shown to directly interact with CD28 and be 

recruited to the IS following CD28 ligation. Knockdown of filamin-A resulted in impaired 

Cdc42 activitiy and CD28 mediated lipid raft accumulation (502). The large GTPase 

dynamin-2 has also been shown to be required for actin polymerization at the IS (503). 

Dynamin-2 interacts directly with Vav1. While it has been shown to interact with several 

actin-binding proteins, its mechanism of action is not understood (504). Actin 

depolymerization occurs passively but is promoted by actin-depolymerization factor 

(ADF) and cofilin (505). In T-cells co-stimulation via CD2, CD4, CD8 and CD28 but not 

TCR-signalling itself has been shown to promote cofilin phosphorylation and activation 

(506). The TCR signal mediates LFA-1 trans-activation, leading to conformational 

extension and binding to Intercellular Adhesion Molecule 1 (ICAM-1), which is the basis 

for the formation of the p-SMAC ring (507). Ras-related protein 1 (Rap1), a small RAS-

like GTPase is activated by TCR signalling through GEFs. It activates Rap1-GTP-

interacting adapter molecule (RIAM) which targets talin, a protein linking the actin-

cytoskeleton to integrins, to the plasma membrane leading to LFA-1 transactivation 

(508). A complex consisting of SLP-76, Adhesion- and Degranulation-promoting Adapter 

Protein (ADAP) and Src kinase-associated phosphoprotein (SKAP) links RIAM to the 

TCR complex and Rap1, thus participating in the delivery of talin to LFA-1(509). 

Transactivation of LFA-1 is further promoted by Kindlin-3 (510). TCR- and integrin 

signaling promote redistribution of the microtubule organizing centre (MTOC), golgi 

apparatus and microvesicles within the T-cell towards the contact area with the APC or 

target cell (511, 512). T-cell polarization has been shown to be dependent on 
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components of the proximal TCR receptor signaling complex such as Lck, ZAP-70, SLP-

76 and LAT (513, 514). Further downstream, DAG produced by PLCγ (515) and 

cascades of various PKC isoenzymes (516) have been shown to be essential for MTOC 

polarization. PKCθ has been demonstrated to mediate accumulation of motor protein 

dynein in the area of the IS, which pulls the MTOC forward, and of non-muscle myosin 

II (NMII) at the opposing pole of the cell, which pushes the MTOC towards the synapse 

(517). PKCζ, another TCR activated but DAG independent PKC isoform, which forms 

part of the partitioning defective polarity complex (PAR complex)  has also been 

described to modulate T-cell polarity (518). Interestingly, formins like mDIA1 have also 

been implicated in microtuble network organization and MTOC polarization (519). Ezrin, 

a member of the ezrin, moesin and radixin family (ERM family) of proteins, is able to  

bind F-actin via its c-terminal domain and plasma membrane proteins via its n-terminal 

domain (520). Ezrin has been described to interact with microtubles via Discs large 

homolog 1 (Dlg1) and integrate regulation of the various components of the cytoskeleton 

and the TCR signaling cascade (521). In cytotoxic T-cells the final step is a clearance of 

a part of the central actin accumulation forming a secretory domain. The mechanisms 

mediating this process are poorly understood (522). Formation of the secretory domain 

allows for target cell killing via secretion of granzymes, perforin and granulysin or direct 

Fas/FasL interaction. T helper cells, on the other hand, create an activating 

microenvironment for other immune cells by paracrine secretion of cytokines. 

Increasing evidence suggests that T-cell anergy and tolerance to self are not simply due 

to the absence of co-stimulatory signals but rather actively induced by a series of “co-

inhibitory” surface molecules, the so-called “immune-checkpoints”. The two immune 

checkpoint pathways that are most prominent and best understood are CTLA-4 and PD-

1. Both PD-1 and CTLA-4 delivery co-inhibitory signals to T-cells. However, they exert 

their functions at different stages of the induction of the T-cell response. While CTLA-4 

exerts  its function early on during T-cell priming within lymphoid organs and has a more 

generalized impact on the immune system, PD-1 suppresses T-cell function in the 

peripheral tissues containing the target cells (523). This fact is also illustrated by the 

differential effects of immune checkpoint knockout in mouse models. CTLA-4 -/- mice 

suffer from early onset autoimmune multiorgan tissue destruction mediated by 

uncontrolled CD4+ costimulation-dependent lymphoproliferation that is lethal at 3-4 

weeks of age (524-526). In contrast, PD-1 deficient animals develop more organ specific 

symptoms with a more protracted onset. C57BL/6 PD-1 -/- mice have been shown to 

develop lupus-like autoimmune phenomena such as  proliferative arthritis and 

glomerulonephritis and exhibited increased T-cell receptor mediated proliferation of 



Mark-Alexander Schwarzbich                                                                                       Introduction 

Page 65 of 279 

 

CD8+ T-cells in response to stimulation with specific antigen presenting cells (527). 

Similarly, spontaneous development of auto-immune induced dilatative cardiomyopathy 

was reported with PD-1 knockout in BALB/c mice (528).  

CTLA-4 was the first immune-checkpoint to be discovered by Brunet et al. in 1987 (529). 

It is a protein encoded by the CTLA-4 gene on chromosome 2q33.2. Just like CD28, 

CD80 and CD86 it belongs to the immunoglobulin superfamily of proteins. In resting 

naïve T-cells CTLA-4 is primarily found in the cytoplasm. Surface expression is detected 

1 to 2 days following T-cell activation (530). More rapid induction and longer lasting 

surface expression is found in memory T-cells (531). The protein is constitutively 

expressed by Tregs (532). CTLA-4 transmits an inhibitory signal to T-cells. This is 

illustrated by the fact that antibody blockade of CTLA-4 increases T-cell proliferation in 

allogeneic mixed lymphocyte reactions (533) as well as with anti-CD3/anti-CD28 induced 

T-cell proliferation in vitro (534). CTLA-4 ligation has also been demonstrated to block 

IL2 production, IL2 receptor expression and cell cycle progression in T-cells in vitro (535). 

Moreover, CTLA-4 has been shown to promote T-cell motility and disrupt synapse 

formation with APCs by overriding the TCR mediated stop-signal (536). CTLA-4 has 

been demonstrated to induce a polarized morphology typical of more mobile T-cells 

(537). The reverse-stop effect on T-cells appears to be limited to conventional T-cells 

while regulatory T-cells are unaffected (538). In addition, increased T-cell motility 

secondary to CTLA-4 induced upregulation of chemokine receptors CCR5 and CCR7 as 

well as increased sensitivity for signaling though CCL4, CXCL12, CCL19 and CXCL9 

has been described (539). CD28 and CTLA-4 exhibit a large degree of homology: both 

share the MYPPPY motif for ligand binding and are able to interact with both CD80 and 

CD86 (540). However, CTLA-4 binds both ligands with greater affinity than CD28 and 

thus can outcompete the co-stimulatory molecule for its binding partners (534). 

Moreover, it has been demonstrated that CTLA-4 is able to capture CD80 and CD86 

molecules from the surface of the opposing cell through trans-endocytosis, thus 

removing them as binding partners for CD28 (541). Unlike other immune checkpoint 

molecules, the cytoplasmatic tail of CTLA-4 does not contain an immune receptor 

tyrosine-based inhibitory motif (ITIM) and does not have catalytic activity of its own. 

CTLA-4 has been shown to bind protein phosphatase 2 (PPA2) at baseline rendering 

CTLA-4 inactive. Upon receptor co-ligation PPA2 is phosphorylated and dissociates from 

CTLA-4. PPA2 inhibits PI3k signaling via inhibition of AKT (542). A potential interaction 

of CTLA-4 with protein tyrosine phosphatase Src homology 2-containing protein tyrosine 

phosphatase-1 (SHP-1) (543) and Src homology 2-containing protein tyrosine 

phosphatase-2 (SHP-2) (544) has been suggested but remains controversial. 
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Subsequent studies have failed to demonstrate direct interaction of CTLA-4 with either 

SHP-1 or SHP-2 (545, 546). 

Another member of the immunoglobulin superfamily is PD-1 (CD279). PD-1 was first 

discovered by Ishida et al. in 1992 in search of genes inducing apoptosis (547). In human 

beings the PD-1 gene is located on chromosome 2q37.3. It codes for a type I 

transmembrane protein of 288 amino acids that is comprised of an immunoglobulin V set 

domain, a transmembrane domain and an intracellular domain that contains an ITIM as 

well as an immunoreceptor tyrosine-based switch motif (ITSM) (548, 549). Expression 

of PD-1 is found on effector T-cells, Tregs, naïve and activated B-cells, NK cells, myeloid 

dendritic cells and activated monocytes. Resting T-cells do not express PD-1 but 

expression can be induced by T-cell activation within 24 hours (550).  

PD-1 binds two ligands, PD-L1 and PD-L2. The first ligand to be discovered was PD-L1. 

The protein is encoded by the CD274 gene on chromosome 9p24.1. The ligand was first 

discovered under the name of B7-H1 in 1999 by Dong et al. The group identified the 

protein as a novel member of the B7 family but was at first unaware of its role as a ligand 

for PD-1 (551). Later Freeman et al. demonstrated that B7-H1 acts as a ligand for PD-1 

and coined the term PD-L1. They were able to show that PD-1/PD-L1 interaction inhibits 

CD3-mediated T-cell proliferation. In these experiments the effect of PD-1/PD-L1 

interaction depended on the intensity of both the T-cell receptor signal as well as the 

strength of the CD28 costimulation signal. Suboptimal T-cell receptor stimulation by CD3 

beads in the presence of PD-L1 resulted in 80% reduction of proliferation that could only 

be rescued with maximal CD28 stimulation. However, when maximum T-cell receptor 

stimulation was achieved, PD-L1 mediated inhibition of T-cell proliferation was only 

reported when no CD28 mediated costimulation was present. This indicates that PD-1 

mediated T-cell suppression can be overcome by an appropriate degree of co-

stimulation (552). PD-L1/PD-1 interaction has also been shown to attenuated secretion 

of IL2 by T-cells (553). Similar to CTLA-4, PD-L1/PD-1 interaction has also been shown 

to disrupt synapse formation by blocking the TCR-induced stop signal for T-cell motility 

(554). PD-L1 expression is found ubiquitously in many tissues. On the mRNA level 

constitutive PD-L1 expression could be detected in non-lymphoid organs. Inducible 

mRNA expression in peripheral blood CD14+ monocytes, dendritic cells, activated B-

cells and on CD3+ T-cells themselves could be demonstrated (551, 552). On the protein 

level PD-L1 expression has been described in a small subset of splenic T and B-cells, in 

most pre-B-cells and myeloid cells in the BM as well as on a subset of thymocytes. 

Moreover, a larger proportion of immature linage marker negative and c-Kit positive bone 
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marrow cells were found positive for PD-L1 (555). Expression of PD-L1 has been shown 

to be primarily promoted and regulated  by IFN γ through Janus kinase (JAK)1/JAK2-

STAT1/STAT2/STAT3 via interaction of Interferon regulatory factor 1 (IRF-1) with its 

response element in the PD-L1 promotor region (556, 557). In the mouse constitutive 

PD-L1 expression on splenic T- and B-cells, macrophages and dendritic cells was 

confirmed. Expression on T-cells was shown to be upregulated by anti-CD3 stimulation, 

expression on  macrophages by LPS, IFN-γ, GM-CSF and IL4 and expression on dendric 

cells by IFN-γ, GM-CSF and IL4 (558). In PD-L1 -/- mice an accumulation of CD8+ T-

cells but not CD4+ T-cells could be observed that was spontaneously occuring. This was 

shown to lead to accelerated hepatocyte damage with induction of experimental 

autoimmune hepatitis (559). In another study both CD4+ and CD8+ T-cell responses 

were shown to be enhanced in PD-L1 -/- mice in vitro and in vivo. Moreover, PD-L1 

deficiency was reported to lead to greater susceptibility to EAE (560). 

PD-L2 (CD273, B7-DC) is the second ligand known to interact with PD-1. In humans it 

is encoded by the PDCD1LG2 gene found in close proximity to the CD274 gene on 

chromosome 9p24.1. It was first discovered in 2001 independently by Latchman et al. 

(561) as well as Tseng et al. (562). PD-L2/PD-1 interaction, similarly to engagement of 

PD-1 by PD-L1, has been demonstrated to inhibit T-cell receptor mediated proliferation 

of and cytokine production by CD4+ T-cells. The effect was shown to be dependent on 

antigen dose. Previously activated CD4+ T-cells derived from D011.10 mice expressing 

a transgenic TCR specific for ovalbumin were re-stimulated. At low ovalbumin 

concentrations PD-L2/PD-1 interaction led to pronounced cell cycle arrest while at higher 

ovalbumin concentrations PD-L2/PD-1 interaction inhibited cytokine production but not 

T-cell proliferation. This may indicate a role in preferentially attenuating weaker immune 

responses  (561, 563).  In comparison to PD-L1, PD-L2 is expressed on a much more 

limited number of cell types. Expression has only been observed in activated CD4+ and 

CD8+ T-cell subsets, myeloid dendritic cells, macrophages, monocytes, endothelial cells 

and syncytiotrophoblasts of the placenta (564). One study has even suggested no PD-

L2 expression at all among lymphohaematopoetic cells (555). Among mouse 

splenocytes expression of PD-L2 was not detect among resting B- and T-cell and could 

only marginally be induced with T-cell- but not B-cell-stimulation. On macrophages and 

dendritic cells expression could be induced by stimulation with IFN-γ, GM-CSF or IL-4 

(558).  Experiments with mice lacking PD-L1, PD-L2 or a combination of both have 

demonstrated that both PD-1 ligands have very similar functions in inhibiting IL2 and 

INF-γ production following T-cell activation. However, PD-L1 expression on parenchymal 

as opposed to haematopoetic cells appeared to be of greater importance in promoting 
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tolerance to self and preventing autoimmune disease such as autoimmune diabetes 

(565).  

Paradoxically, both PD-L1 and PD-L2 have been demonstrated to be able to transmit 

co-stimulatory rather than co-inhibitory signals under certain conditions (562, 566-568). 

Several studies suggest that costimulatory capacity of PD-L1 and PD-L2 is mediated via 

a second yet undiscovered receptor. A structure-based mutational analysis of PD-L1 and 

PD-L2 revelead PD-1 binding residues that, when mutated, resulted in molecules without 

PD-1 binding capacity but retained potential for co-stimulation (569). In a separate study 

dendritic cells from PD-L2 -/- animals were shown to have diminished capacity to 

stimulate CD4+ T-cells. Immobilized PD-L2 was shown to be able to stimulate IL-2 and 

INF-γ production in T-cells, even when derived from PD-1 -/- animals (570). Butte et al. 

have demonstrated that PD-L1 is also able to interact with CD80 but not CD86 with an 

affinity greater than that of CD28 but less than that of CTLA-4 (571). However, the 

functional relevance of this interaction remains controversial. While some studies 

indicate that T-cell/APC PD-L1/CD80 interaction may transmit a negative signal limiting 

T-cell expansion and promoting T-cell anergy (572, 573) newer studies suggest that cis-

interaction of PD-L1 and CD80 on the same cell surface may interfere with PD-1/PD-L1 

mediated T-cell inhibition (574, 575). The complex nature of the functional properties of 

PD-L1 and PD-L2 becomes especially apparent in animal models of allergic asthma. A 

shift of helper cell polarity away from Th1 towards Th2 has been suggested to be involved 

in the pathogenesis of asthma (576). In PD-L2 -/- animals airway hyperreactivity and IL4 

production by iNKT cells are increased compared to wildtype animals after experimental 

induction of asthma while PD-L1 -/- animals show decreased airway hyperreactivity and 

increased INF-γ production by iNKT cells. This may indicate that PD-L2 preferentially 

promotes Th1 responses and has protective properties in the pathogenesis of asthma  

(577).  Repulsive guidance molecule b (RGMb) has recently been described to be a 

novel bindings partner of PD-L2 and mediator of Th1 promoting co-stimulation and 

amelioration of airway hyperreactivity in animal models of asthma (578). 

Several studies have shed light on the molecular mechanism leading to PD-1 mediate 

T-cell inhibition. Ligand-bound PD-1 interacts with SHP-2 via its ITSM and ITIM domain 

leading to SHP-2 phosphorylation. Mutational studies have shown that SHP-2 binding to 

PD-1 is primarily mediated though the ITSM domain (579). While both SHP-1or SHP-2 

could associated with PD-1 when artificially moved to T-cell receptor microclusters, live 

cell-imaging confirmed that only SHP-2 will interact with the immune checkpoint molecule 

under physiological conditions (580). PD-1 has been shown to suppress ZAP-70 and 
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PKCθ phosphorylation through a SHP-2 dependent mechanism (581). PD-1 has also 

been shown to facilitate inhibitory phosphorylation of LcK by C-terminal Src kinase (Csk) 

though SHP-2 (582). In addition, PD-1 has been shown to interfere with PI3K signaling. 

This is mediated through increased phosphatase activity of Phosphatase and Tensin 

homolog (PTEN) which antagonizes PI3K. PD-1 was shown to inhibit casein kinase 2 

(CK2) which under physiological conditions phosphorylates PTEN leading to decreased 

phosphatase activity (583). In addition, Patsoukis et al. have shown an inhibition of the 

RAS/MEK/ERK pathway by PD-1 (584). Both PI3K/AKT and RAS/MEK/ERK inhibition 

were shown to lead to cell cycle arrest. This was demonstrated to be due to 

transcriptional down regulation of S-phase kinase-associated protein 2 (Skp2). The 

enzyme acts as the substrate recognition factor of the ubiquitin E3 ligase complex Skp, 

Cullin, F-box containing complex (SCF complex). PD-1 mediated down-regulation of 

Skp2 hinders ubiquitination and thus degradation of Cyclin-dependent kinase inhibitor 

1B (p27kip1) which prevents activation of cyclinE-CDK2 and cyclin D-CDK4 complexes 

and thus interferes with cell cycle progression. This was shown to lead to impaired 

phosphorylation of two important CDK2 substrates, Retinoblastoma protein (Rb) and 

transcription factor Mothers against decapentaplegic homolog 3 (SMAD3). Supression 

of E2F target genes but increased transactivation of SMAD3 has been demonstrated. In 

consequence, increased expression of G1 phase cell cycle inhibitor p15INK4B and 

decreased expression of CDK-acitvating phosphatase Cdc25A leading to further 

disruption of CDK2, CDK4 and CDK6 dependent cell cycle progression was observed 

(584). PD-1 mediated PI3K inhibition was also described to result in repression of anti-

apototic BCL2 family member BCL-XL (585). Moreover, CD8+ T-cells derived from PD-

L1 -/- mice were shown to have lower levels of pro-apoptotic protein Bim. Binding of 

activated CD8+ T-cells to plate-bound PD-L1 led to increased Bim expression and cell 

death. These findings may indicated that a PD1/PD-L1 mediated disruption of the 

balance of pro- and anti-apoptotic proteins could result in the depletion of CD8+ effector 

T-cells (586). PD-L1/PD-1 interaction has also been shown to increase TCR-

downregulation by internalization via increased expression of E3 ubiquitin-protein ligase 

Casitas B-lineage Lymphoma b (Cbl-b) (587). In a planar bilayer the translocation of PD-

1 to TCR microclusters upon PD-L1 ligation and subsequent SHP-2 mediated TCR 

signalling inhibition could be demonstrated (580).  

PD-1 appears to mediate T-cell inhibition not only directly but also indirectly via Tregs. 

Fransciso et al. have demonstrated that PD-L1 is able to transform naïve CD4+ T-cells 

in vitro to CD4+FOXP3+ regulatory T-cells. In vivo, the conversion of CD4+T-cells to 

Tregs was inhibited and a swiftly progressing inflammation could be observed in PD-L1 
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-/- PD-L2 -/- Rag -/- aimals when transplanted with naïve CD4 T-cells. PD-L1 induced 

Treg development was shown to be mediated through down-regulation of phosphor-

AKT, mTOR, ribosomal protein S6 and ERK2 as well as upregulation of PTEN (588).  

1.2.3 Other Immune Checkpoint Pathways  

Following the clinical success of CTLA-4 and PD-1/PD-L1 immune checkpoint inhibitors 

other co-inhibitors pathways have received increasing attention. LAG-3 was discovered 

by Triebel et al. in 1990 (589). The protein is a member of the immunoglobulin 

superfamily. It is encoded for by the LAG-3 gene on chromosome 12p13.31 and has 

structural homology to CD4. The extracellular region contains 4 Ig-like domains. The 

intracellular region contains the KIEELE motif, which has been shown to be essential for 

LAG-3 mediated T-cell inhibition (590). However, the precise mechanism of action is not 

understood to this point. Expression of LAG-3 has been observed on activated T-cells, 

NK-cells, activated B-cells and plamacytoid dendritic cells (589, 591, 592).  LAG-3 

primarily binds to MHC type II with greater affinity than CD4 (593). Other ligands have 

been reported to be lymph node sinusoidal endothelial cell C-type lectin (LSECtin) 

expressed on melanoma cells (594) as well as fibrinogen-like protein 1 (FGL1), a liver 

secreted protein also found in hepato-cellular carcinoma and gastric cancer (595). LAG-

3 negatively regulates activation, proliferation, effector functions and homeostasis of 

both CD4+ and CD8+ T-cells (590, 596-600). LAG-3 is also constitutively expressed on 

a subset of Tregs and has been implicated in their suppressive functions (601-603). LAG-

3 has been linked to maturation processes of dendritic cells (604). Co-expression of 

LAG-3 and PD-1 has been noted on tumour infiltrating lymphocytes (TILs) from both 

patient samples and mouse models indicating a similar role of both (605, 606). 

TIM-3, also known as hepatitis A virus cellular receptor 2 (HAVCR2), was first discovered 

in 2002 by Monney et al. (607). The HAVCR2 gene is located on chromosome 5q33.3. 

The encoded protein is a type I transmembrane protein consisting of an Ig domain and 

glycosylated mucin domain in the extracellular region, a single transmembrane domain 

and an intracellular region containing five conserved tyrosine residues that have been 

shown to interact with multiple components of the TCR complex (608, 609). Expression 

of TIM-3 has been described on CD4+ Th1 (607) and Th17 cells (610), Tregs (611), NK 

cells (612), DCs (613), monocytes and macrophages (614). Expression on CD8+ T-cells 

has been described in the setting of T-cell exhaustion in the tumour microenvironment 

and with chronic viral infections (615-617). Similar to LAG-3, co-expression with PD-1 

was described in CD8+ TILs (616, 618). Some of the functions of TIM-3 relate to 

phagocytic cells like macrophages and DCs. Phosphatidyl serin (PtdSer) is enriched on 
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the surface of apoptotic cells. Interaction of TIM-3 with PtdSer has been shown to 

promote phagocytosis of apoptotic cells and cross-presentation of antigens by CD8+ 

DCs (619). Chiba et al. have shown that TIM-3 in tumour infiltrating dendritic cells 

suppresses recognition of nucleic acids by TLRs through interaction with high mobility 

group protein 1 (HMGB1), which attenuated recruitment of DNA into DC endosomes 

(620). The TIM-3 ligand for modulation of T-cell function has been shown to be Galectin-

9 (Gal-9) (621). The available data on T-cell function has been conflicting - both positive 

and negative effects have been reported. It has been suggested that upon binding of 

TIM-3 to Gal-9 members of the Src family of kinases such as LcK, Fyn and ITK are able 

to bind to a phosphorylate tyrosine residues in the cytoplasmic tail of TIM-3. This has 

been shown to result in recruitment of adaptor protein p85 and subsequent activation of 

PI3K (608, 609). On the other hand, a plethora of data suggest a negative regulation of 

T-cell function by TIM-3. Binding of TIM-3 to Gal-9 has been shown to increase the 

apoptotic potential of INF-γ secreting murine Th1 but not Th2 cells. TIM-3/Gal-9 

interaction thus leads to suppression of Th1 immune responses (621). Moreover, TIM-3 

has been shown to suppress secretion of IFN-γ, IL17, IL2 and IL6 by T-cells (610). In 

another study, TIM-3 has been demonstrated to suppress CD3/CD28 induced 

NFκB/NFAT activation, CD69 expression and IL2 secretion in both Jurkat cells and 

primary human CD8+ T-cells (622). TIM-3 was found within lipid rafts at the IS of primary 

human CD8+ T-cells and antibody blockade of TIM-3 led to a significant increase in 

synapse formation and stability between CD8+ T-cells and target cells. The same study 

showed that Tim-3 co-localizes with both CD45, which promotes TCR-signalling through 

dephosphorylation and activation of Lck, and CD148, a protein tyrosine phosphatase 

that negatively regulates T-cell receptor signalling though dephosphorylation of effector 

molecules such as PLCγ and LAT. The interaction with both phosphatases was 

increased by Gal-9 binding (623). In mouse models, blockade of TIM-3 with antibody or 

TIM-3-Ig fusion protein was shown to enhance EAE (607), autoimmune diabetes (624, 

625) and transplant rejection (625, 626). In a mouse model of GvHD, Tim-3 blockade by 

TIM-3-Ig or transplantation of T-cells from a Tim-3 -/- donor increased T-cell proliferation 

and resulted in higher mortality from GvHD. Paradoxically, in the absence of Tregs, TIM-

3 inhibition resulted in decreased GvHD (627). It has been suggested that Tim-3 

mediated T-cell inhibition is dependent on co-expression of carcinoembryonic antigen 

cell adhesion molecule 1 (CEACAM1). TIM-3 has been shown to bind to CEACAM1 

through both cis- and trans interactions which has been shown to enable TIM-3 mediated 

T-cell inhibition and increase TIM-3 expression (628). BAT3 has been shown to bind to 

and repress function of TIM-3, protecting Th1 cells from apoptosis and promoting 
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proliferation and proinflammatory cytokine production (629). The precise mechanism of 

action of TIM-3 remains to be elucidated.  

KLRG-1 is a homodimeric member of the killer cell lectin-like family, a group of 

transmembrane proteins preferentially expressed in NK-cells. It is a C-type lectin 

inhibitory receptor with an ITIM in its cytoplasmic tail (630). The KLRG-1 gene is found 

on chromosome 12p13.31. Expression has been reported on NK-cells, antigen 

experienced T-cells and a subset of γδ T-cells (631-633). In young adults, KLRG-1 is 

expressed in approximately 40% of CD8+ T-cells and 20% of CD4+ T-cells. The 

expression increases strongly with age. Greater than 90% of CD8+ T-cells have been 

reported to express KLRG-1 in individuals greater than 65 years of age – as such KRLG-

1 is being considered a marker of T-cell senescence (634). Expression not only 

increases with age but also with increased levels of antigen experience. The highest 

levels of expression have been observed in memory and terminally differentiated effector 

T-cells (632). Like other immune checkpoint molecules, KLRG-1 has been implicated in 

T-cell exhaustion related to malignancy and chronic viral infection(635, 636). KLRG-1 

has been demonstrated to be a receptor for E-, N- and R-cadherin (637-639). Cadherins 

are class of transmembrane glycoproteins. Their function is the mediation of 

Ca2+dependent cell-cell adhesion. They consist of an extracellular domain subdivided 

into 5 repetitive subdomains, which mediate Ca2+ dependent cell adhesion, a 

transmembrane domain and a C-terminal cytoplasmic domain. While expression of N- 

and R- cadherin is limited to the nervous system, expression of E-cadherin is found on 

epithelial cells (640). In addition, E-cadherin expression has been observed on classical 

APCs such as monocytes, macrophages, dendritic cells and Langerhans cells (641). 

Mutational studies have shown the first and second extracellular domain of E-cadherin 

to be essential for interaction with KLRG-1 (642). KLRG-1 has been demonstrated to 

have an inhibitory role in NK cells. Antibody mediated cross-linking of KLRG-1 on mouse 

NK-cells resulted in a decreased cytolytic activity and INF-γ production (643). Similarly, 

antibody mediated blockade of KLRG-1 increased cytolytic activity in human NK-cells 

and ligation with E-cadherin inhibited degranulation and INF-γ production of polyclonal 

human KLRG-1+ NK-cells (639). It has been suggested that KLRG-1 inhibits NK cell 

function through activation of metabolic sensor AMP-activated protein kinase (AMPK) by 

prevention of its inhibitory dephosphorylation by protein phosphatase 2C (PP2C) (644). 

In activated murine T-cells, the cross-linking of KLRG-1 by plate bound antibodies 

significantly lowered Ca2+ flux and IL2 production (645, 646). In vitro, ectopic expression 

of E-cadherin by B16.BL6 melanoma cells was shown to inhibit the proliferation of  

KLRG-1 transgenic murine CD8+ T-cells (637). In a CD4+T-cell hybridoma line 
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transduced with KLRG-1 co-engagement of KLRG-1 and CD3/TCR was shown to inhibit 

NFAT signalling and Fas/FasL mediated lysis (642). Disruption of KLRG-1/cadherin-E 

interaction by anti-cadherin-E antibodies resulted in increased T-cell receptor mediated 

AKT phosphorylation and proliferation in human CD8+ T-cells (647). KLRG1+ T-cell were 

found to be enriched in the peripheral blood of cancer patients. Those T-cells were 

shown to have decreased proliferative activity. Moreover, KLRG1+ CD4+ T-cell showed 

reduced production of IL17 while KLRG1+ CD8 T-cells showed decreased production of 

IFN-γ, granzyme B and TNF-α (648). KLRG-1 mediates its downstream effects through 

association of its ITIM motif with phosphatases SHIP-1 and SHP-2 and downstream 

inhibiton of PI3K/AKT signalling (646, 647, 649). KLRG-1 exists in both a monomeric and 

dimeric form with a substantial fraction of molecules on the cell surface found as 

disulphide-bond- linked trimeric or tetrameric complexes. KLRG-1 monomers compared 

to tetrameric complexes show little binding potential for E-cadherin, suggesting that 

KLRG-1 binding occurs with relatively low affinity. Multimerisation appears to increase 

avidity and the associated potential for inhibition (642). 

2B4, also known as CD244 or Signalling Lymphocyte Activation Molecule Family 4 

(SLAMF4), was first described as an activating receptor on NK cells (650). Later on, 

expression has also been described on monocytes, basophils, eosinophils, γδT-cells and 

a subpopulation of CD8+ T-cells (651-654). In mice, expression has been shown on NK-

cells, γδT-cells, monocytes, mast cells and a subset of memory CD8+ T-cells (655-657). 

The 2B4 gene is found on chromosome1q23.3. The resulting gene product is a type I 

transmembrane protein. Like with other members of the SLAM family, the extracellular 

domain of 2B4 is made up of one Ig variable (IgV) and one Ig constant (IgC) domain 

while the intracellular domain contains 4 ITSMs (658). In both humans and mice 2B4 

binds to another member of the SLAM family - CD48, also known as Signalling 

Lymphocyte Activation Molecule Family 2 (SLAMF2) and B-lymphocyte activation 

marker 1 (BLAST-1) (659, 660). CD48 is ubiquitously expressed on haematopoetic cells 

(661-663). The CD48 gene is found on chromosome 1q23.3, in close proximity to 2B4. 

The CD48 protein, like other members of the SLAM family, contains an IgV and IgC 

domain. However, it does not have a transmembrane domain but is anchored in the 

plasma membrane through a glycophosphatidylinositol anchor (GPI anchor). As with 

other GPI-anchored proteins, a membrane bound and a soluble form exist (658). The 

interaction of 2B4 and CD48 can induce both activating and inhibitory signals. 2B4 

mediated activation of NK cells has been suggested by various studies (664-666). 

Another study by Mooney et al. has shown 2B4 mediated NK-cell inhibition (667). 

Moreover, experiments in 2B4 -/- mice indicate that the cytotoxic and secretory function 
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of NK cells are increased when NK cells lack 2B4 or their target cells lack CD48 (668, 

669). Similarly, some studies suggest an activating role of 2B4 on T-cells (657, 666, 670) 

while others provide evidence for an inhibitory role (671, 672). The dual function of 2B4 

in mice is further complicated by the presence of two splice variants – the full length 

protein that contains all 4 ITSMs and a truncated version that contains only 1 ITSM (673). 

While overexpression of the full-length form was shown to inhibit NK-cell function, 

overexpression of the truncated splice variant was shown to promote target cell lysis 

(674). 2B4 mediated signal transduction remains incompletely understood. NK cell 

activation through 2B4 leads to phosphorylation of the cytoplasmatic ITIMs and 

recruitment of Fyn and signalling lymphocytic activation molecule-associated protein 

(SAP) (675, 676). Patients suffering from X-linked lymphoproliferative disease, a severe 

inherited immune deficiency characterized by inability to mount a sufficient immune 

response to EBV infection, carry a mutation of SAP rendering the protein dysfunctional. 

In these patients, cross-linking of 2B4 instead of inducing NK-cell activation inhibits NK-

cell mediated cytotoxicity (677). This indicates that SAP is essential in determining 

activating or inhibitory function of 2B4. The third ITSM of the 2B4 cytoplasmatic tail is 

also able to recruit SHP-1, SHP-2, SHIP-1 and Csk. Binding of these inhibitory 

phosphatases or SAP have been shown to be mutually exclusive (676). The related 

adaptor proteins EWS-Fli1-activated transcript-2 (EAT-2) and EAT-2-related transducer 

(ERT) appear to serve comparable functions to SAP (678). Recruitment of 2B4 to lipid 

rafts has been shown to be essential for downstream signaling (679). In lipid rafts 2B4 

becomes associated with LAT and this appears to be essential for its activating function 

(680). Similar to other immune checkpoint receptors, 2B4 has been implicated in chronic 

viral infection and malignancy associated T-cell exhaustion (681, 682). 

TIGIT is a member of the PVR/nectin family, a subset of the Ig superfamily. It was first 

discovered in 2009 in a genomic search for genes specifically expressed in T-cells that 

had protein structures indicative of a potential inhibitory role (683). The TIGIT gene is 

found on chromosome 3q13.31. The protein has an extracellular IgV domain, a 

transmembrane domain and a cytoplasmatic tail containing an ITIM and an Ig tail-

tyrosine (ITT)-like motif (684). CD96, also known as T cell activation, increased late 

expression (TACTILE), is a similar protein that also belongs to the PVR/nectin family and 

was first described in 1992 (685). The associated gene is found on chromosome 3q13.13 

in close proximity to TIGIT. Compared to TIGIT, the CD96 extracellular domain is more 

complex with three Ig-like domains linked by conserved cysteines and a membrane-

proximal stalk domain rich in serine, threonine and proline. Exon 4 is alternatively spliced, 

generating two isoforms that differ in the second Ig domain. The more abdundant variant 
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1 contains an Ig intermediate (IgI) domain, the less abundant variant 2 contains an IgV 

domain (686). The cytoplasmic domain of CD96 contains an ITIM motif and, similar to 

CD28, a YXXM motif with the ability to interact with SH2 domains (685). TIGIT, CD96 

and CD226, also known as DNAM-1, form a system similar to CD28/CTLA-4. CD226 has 

been shown to mediate co-stimulation via interaction with its ligands CD155 (PVR, 

Nectin-like protein 5(necl5)) and CD112 (Poliovirus receptor-related 2 (PVRL2), nectin-

2) (687, 688). Similar to CTLA-4, TIGIT has been shown to bind both CD155 and CD112. 

Binding of CD155 occurs with much higher affinity than that of CD266 while affinity for 

CD112 is comparably low. Human CD96 binds selectively to CD155 with an intermediary 

affinity between that of TIGIT and CD226 (683). Murine CD96 has also been reported to 

interact with CD111 (nectin-1) (689). TIGIT is expressed on conventional T-cells upon 

activation (684), on memory T-cells, regulatory T-cells, follicular helper T-cells and NKT 

cells and NK cells (683, 684, 690-692). Expression of CD96 is found on conventional T-

cells, γδ T-cells, NK-cells and NKT-cells (685). CD155 and CD112 are expressed on 

DCs, T-cells and tumour cells (693-695). TIGIT has been shown to function as an 

inhibitor of NK-cells. The cytotoxic activity of the human YTS NK-cell line transfected with 

TIGIT was inhibited by CD155 (691). TIGIT/ CD155 interaction inhibited cell killing by 

both human and mouse primary NK-cells (691, 696). In human NK-cells, TIGIT 

expression was inversely correlated with INF-γ production, degranulation and cytotoxic 

potential (697). MDSC mediated suppression of NK-cell function was shown to be 

dependent on CD155/TIGIT interaction (697). The data on influence of CD96 on NK-cell 

function is somewhat conflicting with positive effects reported in human NK-cells (698) 

and negative effects in mouse NK-cells (695). Among T-cells, TIGIT has been shown to 

mediate inhibitory functions, especially in the setting of malignancy. TIGIT expression 

has been shown to be enriched in CD8+ TILs derived from various solid malignancies 

(694, 699). Among CD8+ TILs, TIGIT+ cells were found to be especially poor producers 

of TNF-α and IL2. Moreover, they were found to have decreased cytotoxic capacity 

compared to TIGIT- cells. CD8+ TILs from TIGIT -/- mice were shown to have increased 

proliferative and cytotoxic capacity (700). Knockdown of TIGIT in CD8+ T-cells derived 

from the peripheral blood of acute myeloid leukemia (AML) patients resulted in a reversal 

of the functional deficits associated with the development of AML (701). TIGIT 

expression was found to be upregulated on Tregs in the tumour microenvironment. 

Expression of immomodulatory effector molecules such as IL10, perforin and TGF-β was 

increased in TIGIT+ Tregs. Deletion of TIGIT in Tregs alone was found to be sufficient 

to delay tumour growth and promote IFN-γ, TNF-α and IL2 production by CD8+ TILs in 

this study (700). Several mechanisms of action have been proposed for TIGIT. As it binds 

CD115 with higher affinity than CD226, it could potentially outcompete CD226 for its 
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binding partner, therby disrupting co-stimulation (683). Experiments using fluorescence 

resonance energy transfer (FRET) have suggest that TIGIT is able to interfere with cis-

homodimerization of CD226. However, it remains unclear how this affects CD226 

signaling (699). Engagement of TIGIT on T-cells by CD155 on dendritic cells resulted in 

phorsphorylation of CD155 and downstream MAPKs ERK and p38. This resulted in 

increased production of IL10 and decreased production of pro-inflammatory cytokines 

such as IL12, which could affect T-cells indirectly via a cell-extrinsic mechanism (683). 

In NK-cells TIGIT/CD155 interaction was shown to lead to recruitment of GRB2 and β-

Arrestin-2 via its TTT motif, leading to activation of SHIP-1 and SHP-2 and subsequent 

inhibition of PI3K and NFκB signalling (702, 703). Cell-intrinsic signalling of TIGIT in T-

cells remains poorly understood.  

Another receptor/ligand system with dual stimulatory/inhibitory role is the herpes virus 

entry mediator (HVEM) network. HVEM, also known as TNFR superfamily 14 

(TNFRSF14), was first identified as a molecule that is used by herpes viruses to facilitate 

viral entry into the cell (704). In humans the HVEM gene is located on chromosome 

1p36.32. Expression has been reported on T-cells, B-cells, NK-cells, dendritic cells and 

other myeloid cell subsets (705-708). HVEM is a type I transmembrane protein 

containing 4 pseudo-repeats of cysteine-rich domains in its extracellular domain. The 

cytoplasmatic tail contains a TRAF binding site. Engagement of HVEM by two different 

ligands, lymphotoxin‐like, exhibits inducible expression, and competes with herpes 

simplex virus glycoprotein D for HVEM (LIGHT) and lymphotoxin α (LTα), has been 

shown to mediate a co-stimulatory signal (709-711). Two other ligands, B‐ and T‐

lymphocyte attenuator (BTLA) and CD160 have been shown to mediate a co-inhibitory 

signal. The BTLA gene is found on chromosome 3q13.2. The resulting protein is a type 

I transmembrane protein. Binding of BTLA to HVEM occurs through interaction with an 

extended β-strand in the membrane-distal region of a cysteine rich domain  forming an 

intramolecular anti-parallel β-sheet with the extracellular domain of BTLA (712). The 

cytoplasmatic tail contains two ITIMs and a GRB2 recognition site (713). BTLA is 

expressed in naïve T-cells, both naïve and activated B-cells, DCs, macrophages, NK-

cells and NKT-cells (714-716). Several lines of evidence show an inhibitory role of 

BTLA/HVEM interaction. BTLA deficient mice have been demonstrated to have 

enhanced T-cell proliferation in response to mitogenic stimulation or activation with anti-

CD3 antibodies (714, 715). These animals also show increased propensity to develop 

autoimmune diseases like EAE (714). Stimulatory antibodies to BTLA inhibit T-cell 

proliferation and production of IL2, IL4, IL10 and IFN-γ(717, 718). It has been suggested 

that co-inhibition by BTLA is mediated through recruitment of SHP-1 and SHP-2 to the 
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cytoplasmatic tail (719). The CD160 gene is located on chromosome 1q21.1. The protein 

contains a single IgV domain and is bound to the plasma membrane through a GPI 

anchor (720). Like BTLA, CD160 binds HVEM through interaction with its cysteine rich 

domain (721). The CD160 expression pattern is highly restricted to NK-cells, T-cells and 

NKT-cells (720, 722, 723). Cross-linking of CD160 with stimulatory antibodies has shown 

a strong inhibition of CD3/CD28 induced T-cell activation(724). A soluble form has also 

been shown to inhibit NK-cell cytotoxicity (725). How CD160 mediates T- and NK-cell 

inhibition remains unclear. It has only been shown that cross-linking of CD160 interferes 

with ζ-chain phosphorylation (724). As LTα and LIGHT bind to different HVEM cysteine 

rich domains compared to CD160 and BTLA, competitive inhibition seems unlikely as a 

mechanism of action (724, 726). CD160 has been implicated in T-cell exhaustion due to 

chronic viral infection or malignancy (727, 728). 

1.2.4 Cancer Immunosurveillance, Cancer Immunoediting and Adaptive Immune 

Resistance 

The concept, that the immune system has the capacity to identify and eliminate primary 

developing malignancy and thus protect the body from malignant diseases was first 

suggest by Ehrlich in 1909 (729). This notion could not be experimentally tested at the 

time, though. More than 50 years later, on the background of an emerging understanding 

of transplant and cancer immunity, the concept was formally introduced as the “cancer 

immunosurveillance hypothesis” by Sir Frank Macfarlane Burnet and Lewis Thomas 

(730, 731). They had speculated that healthy lymphocytes would eliminating constantly 

forming newly transformed malignant cells. When this hypothesis was put to the test in 

a series of experiments in nude mice, the most immundeficient mouse model available 

at the time, by Strutman in the 1970s no evidence of such a process could be obtained  

(732-734). However, in hindsight the nude mice have been recognized as an inexact 

model of immunodeficiency. These animals do produce functional T-cells, albeit in very 

low numbers, (735) and also normal numbers of fully functional NK-cells (736). The 

profound influence of the innate immune system on the adaptive immune system had 

not been understood at the time (459). Moreover, the CBA/H strain of mice used by 

Stutman et al. expressed a highly active isoform of the enzyme aryl hydroxylase, which 

is required for activation of  3-methylcholanthrene, thus making chemical carcinogensis 

overly effective and potentially masking protective effects of the immune system (737). 

Still, at the time the experiments of Strutman et al. were deemed so convincing that the 

cancer immunosurveillance hypothesis was largely abandonded until the early 1990s, 

when interest in the concept was reignited by mouse experiments demonstrating that 
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endogenous INF-γ can protect the host against transplanted, chemically induced and 

spontaneous tumours (738-741). Similarly, mice lacking perforin were shown to have a 

higher susceptibility to chemically induced and spontaneous tumour development (740-

744). Definitive evidence of a lymphocyte dependent mechanism of cancer 

immunosurveillance was finally provided by experiments with mice deficient for 

recombinase activating gene (RAG)-2. The gene is essential for the process of V(D)J 

recombination underlying the formation of the highly diverse repertoire of 

immunoglobulins and T-cell receptors. RAG-2 -/- mice thus lack T-, B- and NKT-cells. 

This transgenic mouse was found to be the ideal model to study the effects of the immune 

system on development and elimination of cancer since the expression of RAG-2 is only 

found in cells of the immune system and its absence does not result in impaired DNA 

repair in non-lymphoid tissues unlike with other models of immunodeficiency (745). 

Application of 3-methylcholanthrene resulted in a higher frequency and more rapid 

development of sarcoma in RAG-2 -/- animals compared to wild-type mice (746). 

Moreover, a similar effect was observed in RAG-1 -/- animals  (747). The connection of 

IFN-γ dependent and lymphocyte dependent tumour suppressor mechanisms was 

illustrated by experiments with mice lacking IFN-γ responsiveness (Interferon gamma 

receptor 1 (IFNGR1) -/- or STAT1 -/-), lymphocytes (RAG-2 -/-) or both (RAG-2 -/- X 

STAT1 -/-). Each of these strains were approximately 3 times more likely to develop 

chemically induced tumours compared to syngenic wild-type mice. Since no significant 

differences were detected between these strains the IFN-γ and lymphocyte dependent 

mechanisms of tumour suppression were concluded to be overlapping (746). Other 

effector and recognition pathways that have been shown to be critical in cancer 

immunosurveillance are type I Interferons (748, 749), TNF-related apoptosis-inducing 

ligand (TRAIL) (750-752), IL12 (753), TNF-α (754), Fas/FasL (755) and DNAM-1 (756). 

Interestingly, the treatment of wild-type mice with antibodies blocking receptor NKG2D, 

an activating receptor on CD8+ T-cells but also γδ T-cells and NK-cells, was also 

reported to increase chemically induced sarcoma development (757). Moreover, mice 

deficient of NKG2D are more susceptible to Eγ-myelocytomatosis viral oncogene 

homolog (myc) driven B-cell lymphomas. In the same study, transgenic adenocarcinoma 

of the mouse prostate (TRAMP) mice developed more aggressive tumours in NKG2D 

deficient animals compared to wild type animals (757). In terms of cellular components, 

several studies have found that mice lacking either αβ- or γδ-T-cells have increased 

susceptibility to tumour induction, indicating that both lymohocyte populations are critical 

for cancer immunosurveillance (758, 759). In addition, innate-like lymphocyte subsets 

have been shown to be critical in elimination of transformed cells. Mice lacking NKT-cells 

were shown to be more susceptible to chemically induced sarcoma development (760, 
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761). Similarly, mice depleted of NK-cells display an increased tumour incidence of 

chemically induced sarcoma (747). In a mouse model of liver carcinoma, NK cell were 

demonstrated to be able to kill senescent tumour cells via a NKG2D mediate mechanism 

in a manner dependent on TP53 (762). 

Several lines of evidence suggest that a mechanism of cancer immunosurveillance 

similar to that observed in mouse models does exist in human beings as well. Analysis 

of patients with either congential or acquired immunodeficiency has shown a highly 

increased rate of virally induced malignancies such as Kaposi’s sarcoma, NHL or 

urogenital cancer like cervical cancer (763-765). The study of the incidence of tumours 

of non-viral origin in these patients has proven to be more challenging. Still, a role of the 

immune system in control of these malignancies is illustrated by several observations. 

First of all, an increased rate of a broad range of tumours of non-viral origin has been 

observed in patients on immunosuppressive therapy due to organ transplantation (766-

769). In addition, substantial evidence supports the notion that cancer patients can 

develop responses of the adaptive immune system against tumour antigens. Starting in 

the 1970s the approach of autologous typing allowed for the discovery of patients who 

bear antibodies or T-cells that recognize autologous tumour antigens (770, 771). The 

identification of molecular targets recognized by CD8+ T-cells has been achieved by 

application of the gene cloning and expression systems developed by Thierry Boon’s lab 

(772). Michael Pfreundschuh’s lab has developed the serological expression cloning 

technique (SEREX), a similar approach to identify antibody-recognized tumour antigens 

(773). A large number of human tumour antigens with the potential to elicit adaptive 

immune response has since been identified (774-777). The presence of cancer specific 

adaptive immune responses is also suggested by the phenomenon of paraneoplastic 

neurologic degenerations (PNDs), a class of rare autoimmune diseases arising in cancer 

patients caused by autoantibodies or cytotoxic T-cells cross-reacting with antigens 

expressed in both nervous tissue and cancer (778, 779). The sporadically occurring 

spontaneous regression of  melanoma lesions in the setting of a clonal expansion of T-

cells is one of the most prominent pieces of evidence for cancer immunosurveillance in 

human beings (780, 781). Another line of evidence comes from studies showing that the 

presence of TILs in the tumour microenvironment predicts an improved clinical outcome. 

The first studies suggesting this correlation have been conducted in malignant melanoma 

patients and dates to the 1990s (782, 783). Similar correlations have since been shown 

in other entities including ovarian cancer (784), colorectal cancer (785) and esophageal 

cancer (786). Similar positive correlations have also been demonstrated between NK-

cell infiltration and patient survival in various types of malignancy (787-789).  
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Despite strong evidence for the presence of cancer immunosurveillance malignancy 

does still occur, even in the setting of the immunocompetent host. Evidence points to an 

immune mediated mechanism that allows the outgrowth of tumours that are less 

immunogenic or have developed mechanism to evade immune rejection by the host. 

This idea is epitomized by studies showing that a large number of sarcomas derived from 

RAG-2 -/- mice are rejected when transplanted into wild type animals. On the other hand, 

sarcomas derived from wild type mice grow readily when transplanted into either wild 

type or RAG-2 -/- animals (746). Genomic analysis of sarcoma cell lines derived from 3-

methylcholanthrene treated RAG2 -/- animals showed a point mutation in Spectin-β2 as 

a highly immunogenic neo-epitope. Enforced expression of this epitope in sarcoma cell 

lines was shown to be sufficient for rejection in wild type animals, suggesting that T-cell 

dependent immunoselection results in an outgrowth of less immunogenic sarcoma cells 

in these animals (790). Similar results were obtained in a separate study that used both 

immunocompetent and immunodeficient mice expressing an oncogenic form of K-RAS 

to induce sarcomagenesis. Intramuscular injection of lentiviral vectors transferring strong 

class I model epitopes (SIINFEKL and SIYRYYGL) led to development of sarcomas 

expressing these epitopes in immunodeficient mice. However, in immunocompetent 

animals the occurrence of sarcomas was delayed and when they did occur, they lacked 

the model antigens. This suggests a mechanism of T-cell dependent immunoselection 

(791). These and other studies demonstrated that the classical concept of cancer 

immunosurveillance is insufficient to describe the complex interaction between a nascent 

malignancy and the host immune system. Robert Schreiber and colleagues have thus 

suggest a new model of cancer immunology known as  “cancer immunoediting” (792). 

The process has been suggested to be comprised of three phases known as the “three 

Es of cancer immunoediting”: Elimination, Equilibrium and Escape. 

The elimination phase is represented by the classical model of cancer 

immunosurveillance. The anti-tumour immune response is launched when the innate 

immune system becomes alarmed by local stromal remodeling, neo-angiogenesis and 

tissue invasive growth (793) resulting in formation of alarmins signalling a source of local 

“danger”(460). NK-cells, NKT-cells, γδ T-cells, macrophages and dendritic cells are 

recruited to the tumour mass. Contact of macrophages with extracellular matrix 

components results in their activation. They can then cross-activate NK-cells through 

secretion of cytokines such as IL12 and CD40/CD40L interaction (794-796). Similarly, 

DCs can cross-activate innate lymphocytes through IL12 and CD40/CD40L (797, 798). 

INF-γ release and CD40/CD40L interaction by innate lymphoctes in turn promotes 

differentiation and activation of DCs and macrophages forming a positive feedback loop 
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(799, 800). Engagement of NK-cell receptors with their respective ligands on tumour 

cells further promotes INF-γ secretion (801). The cytokine mediates killing of tumour cells 

through direct anti-proliferative, pro-apoptotic and angiostatic effects (802-804) as well 

as indirectly through reactive oxygen and nitrogen species secreted by activated 

macrophages (805) and via NK cells through TRAIL- (806) and perforin-dependent 

mechanisms (807). Tumour antigens released in this process are taken up, processed 

and presented by dendritic cells. Immature dendritic cells become activated by the 

cytokine cocktail released by the innate immune response or via direct interaction with 

NK or NKT cells (808). Activated mature antigen bearing DCs move to the draining lymph 

nodes where they induce naïve tumour specific CD4+ Th1 cells which subsequently 

promote the development of tumour specific CD8+ cytotoxic T-cells though cross-

presentation of antigens on DC MHC type I molecules (809-811). Th1 cells secret, 

among other cytokines, IL2 which helps to maintain CD8 T-cell function and IFN-γ to 

perpetuate the immune reaction (812). CD8+ T-cells kill tumour cells by release of 

cytotoxins like perforin, granzyme and granulysin but also secret cytokines such as IFN-

γ and TNF-α (813). 

The elimination phase is followed by the equilibrium phase, which is probably the longest 

phase and can last many years in human beings. A small but heterogenous and 

genetically unstable fraction of tumour cells may survive elimination by the immune 

system and remain in the tumour bed. These cells, however, are kept in constant check 

by the ongoing immune response. It has been suggested that the associated genetic 

instability may be the driving force that eventually allows the tumour to evade the host 

immune rejection (814). The molecular mechanisms driving the immune-mediated 

tumour dormancy are only partially understood as they are difficult in model in mice. 

Early experiments using transfer of murine B cell lymphoma (BCL1) into animals 

immunized against BCL1 to create dormancy have shown a role of IFNγ and CD8+ T-

cells to maintain dormancy (815). It has been suggested that a balance between 

elimination promoting IL12 and persistence promoting IL23 is key in maintain tumours in 

equilibrium (816). Another study of mouse sarcoma found that tumours in equilibrium 

versus those who esacape are characterized by high relative numbers of CD8+ T-cells, 

NK-cells, γδ T-cells and low relative numbers of NKT-cells, Tregs and MDSCs (817). In 

a mouse model of experimentally induced pancreatic cancer, antigen specific T-cells 

were shown to arrest tumour growth via concomitant action of cytokines IFN-γ and TNF. 

In the absence of TNF receptor or IFN-γ the very same T-cells led to increased 

angiogenesis and carcinogenesis (818). In a mouse model Simian virus 40 large T 

antigen (Tag) expressed under the control of the rat insulin promoter was used to induce 



Mark-Alexander Schwarzbich                                                                                       Introduction 

Page 82 of 279 

 

neoplasma trough the resulting suppression TP53- and Rb-mediated cell cycle control. 

In this model,  the combination of IFN-γ and TNF was shown to drive tumours into growth 

arrest through activation of p16INK4a, a cyclin-dependent kinase Inhibitor, and down-

stream hypophosphorylation of Rb (819). In human beings the presence of the 

equilibrium phase may be evidenced by cases of transmission of malignancies from 

organ donor to recipients. Here, organs that a macroscopically normal and free of 

malignancy at the time of harvest lead to donor derived malignancy in the recipient years 

later (820). 

In the escape phase, tumour cells that have acquired the ability to circumvent host 

immune defence emerge as a progressively growing and clinically detectable tumour. 

Many different mechanisms of cancer immune evasion have been described. These 

include modes of reduced immune recognition such as loss of powerful tumour antigens, 

loss of MHC type I or costimulatory molecules, increased tumour cell survival such as 

overexpression of STAT3 or BCL-2 and formation of an immunosuppressives niches in 

the microenvironment through cytokines such as IL10, TGF-β, vascular endothelial 

growth factor (VEGF) or expression of immunosuppressive molecules such as IDO and 

immune checkpoints such as PD-1/PD-L1 (821). Overexpression of the immune 

checkpoint molecule PD-L1 is now recognized as one of the major mechanisms of 

cancer immune evasion. Expression of PD-L1 has been observed on tumour cells from 

various solid malignancies (822-825). Aberrant PD-L1 expression is also used as a 

means of immune escape by hematologic malignancies. Our group has previously 

shown upregulation in primary tumour cells of CLL, follicular lymphoma (FL) and DLBCL 

patients (216). Aberrant expression has also been described in MCL (826), primary 

mediastinal B-cell lymphoma (PMBL) (827), HL (828) and Multiple Myeloma (MM) (829) 

as well as on CD34+ blasts from patients with Myelodysplastic Syndrome (MDS) (830), 

Chronic myelomonocytic leukemia (CMML) and AML (831). PD-L1 is not only found on 

tumour cells themselves but also on myeloid cells in the tumour microenvironment of 

various malignancies including CLL (832-835). The first piece of evidence supporting a 

functional role of PD-L1 in toumour microenvironment comes from a study that showed 

that cancer associated PD-L1 increases the apotosis of antigen-specific T-cells in vitro 

(823). Moreover, in vivo experiments have demonstrated that PD-L1 deficient mice have 

increased rates of proliferation of CD8+ T-cells and more protracted patterns of T-cell 

expansion when immunized. In these animals a  CD8+ T-cells clone with the ability to 

reject metastatic tumour foci could be demonstrated (586). Similar results were obtained 

with regards to hematologic malignancies. In a PMBL cell line overexpression of wildtype 

PD-L1 as well as a fusion protein of MHC class II transactivator class II, major 
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histocompatibility complex, transactivator (CIITA) and PD-L1 were able to suppress 

Jurkat T-cell activation (827). In MCL cell lines both antibody blockade of PD-L1 and 

knockdown of PD-L1 by short hairpin RNA (sh-RNA) was shown to increase the 

proliferation of cocultured allogeneic T-cells (826). As described above, our own group 

has reported a functional relevance of PD-L1 in CLL associated T-cell dysfunction (216). 

Moreover, in a mouse model of CLL we were able to show that PD-L1 blockade results 

in prevention of T-cell dysfunction and leukemia growth (836).  

Studies on tumour cell lines have greatly helped to advance our understanding of the 

molecular mechanisms involved in controlling PD-L1 mediated immune evasion. In some 

malignancies, overexpression of PD-L1 has been shown to be driven by constitutive 

oncogenic signalling pathways in the tumour cell itself – a mechanism described by the 

term “innate immune resistance”. For example, in human glioma PD-L1 expression is 

increased by loss of the tumour suppressor PTEN which increases translation of the PD-

L1 gene (837). Both PMBL and HL frequently have cytogenetic aberrations of chrosome 

9p, which contains the genes for PD-L1 and PD-L2 as well as JAK2 which promotes PD-

L1 expression. Indeed, one study has shown increased expression of PD-L1 and PD-L2 

to be a very common in PMBL cases with 9p aberrations (838). In cell lines derived from 

nodular sclerosing HL PD-L1 and PD-L2 were demonstrated to be increased as a result 

of an amplification of 9p24.1  (839). In EBV positive HL matrix protein 1 (MP1) and latent 

membrane protein 2A (LMP2A) were shown to increase transcription of PD-L1 indicating 

a latent virus infection mediated upregulation of the immune checkpoint (828). In T-cell 

lymphoma, a regulation by the oncogenic chimeric nucleophosmin (NPM)/ anaplastic 

lymphoma kinase (ALK) has been described. NPM/ALK+ T-cell lymphoma was shown 

to increase expression of PD-L1 in a STAT3 dependent manner (840). Disruptions of the 

3’ untranslated region leading to overexpression of a truncated form of PD-L1 have been 

reported in DLBCL and T-cell lymphomas (841). An alternative mechanism of increased 

PD-L1 expression is “adaptive immune resistance”. Here the upregulation reflects an 

adaption of the immune system to endogenous tumour specific immune responses, 

primarily via secretion of IFN-γ by T-cells themselves – i.e. the tumour abuses 

mechanisms in place to prevent immune-mediated tissue damage from continous 

unabated local T-cell activation to protect itself form immunosurveillance. Such an IFN-

γ dependent upregulation of PD-L1 expression was first described by Taube et al. in the 

setting of malignant melanoma (842).  Similar IFN-γ driven upregulation of PD-L1 

expression has also been described in hematologic malignancies such as MCL (826), 

multiple myeloma (829), AML(843) and MDS blasts (830). PD-L1 upregulation has also 
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been observed in response to IL10 in MCL (826) and TLR ligands in MM and AML (829, 

843).  

1.2.5 Immune checkpoint blockade in hematologic malignancies and CLL 

The concept of immune checkpoint blockade was conceived following the discovery and 

increasing understanding of the role of immune checkpoint molecules in 

immunoregulation and maintenance of the immune homeostasis. We now have 

recognized the role of immune checkpoint molecules in cancer immune evasion and their 

potential as therapeutic targets. The first monoclonal antibody blocking an immune 

checkpoint molecule to be developed was Ipilimumab, which targets CTLA-4 (844). The 

substance was shown to lead to greatly improved survival in patients with metastatic 

melanoma and was approved by the food and drug adminstration (FDA) in 2011 as the 

first ever immune checkpoint inhibitor (845). Development of novel immune checkpoint 

inhibitors has focused on the PD-1/PD-L1 pathway yielding the PD-1 blockers Nivolumab 

and Pembrolizumab and the PD-L1 blockers Durvalumab and Atezolizumab. Immune 

checkpoint blockade is now used as a treatment strategy in a plethora of solid 

malignancies (846-852). 

 A first attempt to implement immune checkpoint blockade in the treatment of 

hematologic malignancies was made in 2009 in a phase I study of Ipilimumab in 18 

patients with relapsed /refractory B-cell NHL including cases of FL, DLBCL and MCL. 

The ORR was disappointing at only 11% (853). Inspired by the concept of 

Ipilimumab/Nivolumab combination treatment in malignant melanoma the combination 

was investigated in a phase I/Ib trial in patients with various lymphatic and myeloid 

hematologic malignancies who had relapsed following allogeneic stem cell 

transplantation. In patients receiving a dose of 10 mg/kg an ORR of 32% with a CR rate 

of 23% and a PR rate of 9% were achieved. With a median follow-up of 15 months the 

1-year OS rate was 49% (854). Preliminary data on a phase I study of 

Ipilimumab/Nivolumab in relapsed refractory lymphoma was reported in 2016. ORRs of 

74%, 20% and 9% were observed among HL, B-cell lymphomas and T-cell lymphoma 

patients, respectively. The study also involved 7 patients with relapsed/refractory MM. 

While a single patient achieved stable disease, four others died from disease progression 

(855). In a phase I study Ipilimumab was evaluated in 29 MDS patients who were 

refractory to hypomethylating agents. 1 patient achieved CR, prolonged stable disease 

was seen in 7 patients (24%) (856).  In 2015 a phase Ib study demonstrated an 

acceptable safety profile and significant clinical activitiy of Nivolumab in 

relapsed/refractory HL (857). These results were confirmed in a subsequent phase II 
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study (CheckMate 205) showing an ORR of 69% with a median follow-up of 18 months. 

Overall, the median duration of response was 16.6 months and the median PFS was 

14.7 months (858, 859). In 2016 Nivolumab was approved by the FDA for treatment of 

HL. The substance has also been tested in various relapsed/refractory B- and T-cell 

lymphomas in a phase Ib study. With a median follow-up of 66.6 weeks an ORR of 40%, 

36%, 15% and 40% was reported for FL, DLBCL, mycosis fungoides and peripheral T-

cell lymphoma (PTCL), respectively. The study also included 27 patients with MM. Stable 

disease was achieved in 63% of these patients lasting a median of 11.4 weeks (860). A 

pilot study of nivolumab single agent in 5 patients with relapsed/refractory primary CNS 

lymphoma (PCNSL) and primary testicular lymphoma (PTL) found objective response in 

all patients with four CRs and 1 PR (861). A single centre phase Ib/II study of 

Nivolumab/azacytidine in patients with relapsed AML showed superior survival 

compared to a historical cohort of relpased AML patients treated with azacytidine based 

salvage therapy (862). Preliminary results were reported on a phase II study in MDS 

patients involving various combinations of Nivolumab, Ipilimumab and azacytidine. In 

treatment naïve patients an ORR 0f 69% was achieved with Nivolumab/azacytidine. In 

MDS patients refractory to hypomethylating agents Ipilumumab showed some activity 

with an ORR of 22% while Nivolumab single agent showed no response (863). Similar 

to Nivolumab, Pembrolizumab has shown safety and activity in HL in a phase I trial 

(KEYNOTE-013) (864). Its activity was confirmed in a phase II study (KEYNOTE-087): 

The ORR was 69% with a CR rate of 22% in all cohorts (865). The FDA approved the 

substance for treatment of HL in 2017. The KEYNOTE-013 trial also enrolled 19 patients 

with relapsed/refractory PMBL in an independent cohort. The median follow-up of these 

patients was 11.3 months. An ORR of 50% was achieved (866). In MDS patients 

refractory to hypomethylating agents participating in the KEYNOTE-013 trial an ORR of 

4% was reported (867). In a phase I trial of Pembrolizumab in combination with 

Lenalidomide and low-dose dexamethasone in patients with relapsed/refractory MM 

20/40 patients (50%) achieved an objective response (868). Similarly, in a phase II trial 

of Pembrolizumab, Pomalidomide and dexamethasone in 48 patients with 

relapsed/refractory MM an ORR of 56% was achieved (869). A similar phase III study 

with less participants found comparable results (870). The combination of Ateolizumab 

and Obinutuzumab was evaluated in a phase Ib trial in patients with relapsed/refractory 

DLBCL and FL. Preliminary results reported the combination to be very well tolerable 

and yielded promising signs of clinical efficacy (871). 

Despite clear evidence of efficacy in other hematologic malignancies and promising pre-

clinical studies (836) attempts to utilize immune checkpoint blockade in CLL have been 
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disappointing. In 2017 results of a phase II trial on Pembrolizumab in relapsed CLL and 

RT have been reported. While objective responses were described in 4/9 RT patients 

(44%) none of the 16 CLL patients were reported to respond to the treatment (108). 

Single agent Durvalumab is currently being assessed in NHL and CLL patients 

(NCT02733042). Interestingly, pre-clinical data has shown impressive results with 

combinations of Ibrutinib inhibitors and PD-1/PD-L1 immune checkpoint blockade in the 

A20 mouse model of lymphoma, which is normally insensitive to Ibrutinib (872). Indeed, 

a phase I/IIa study of Nivolumab/Ibrutinib in patients with relapse NHL and CLL/SLL 

recently showed an ORR of 61% of high risk CLL/SLL patients and 65% in RT patients 

enrolled (873). Several clinical trials evaluating various combinations of BTK inhibitors 

and PD-1/PD-L1 immune checkpoint blockade are currently ongoing (NCT03204188, 

NCT03153202, NCT03514017, NCT02362035, NCT02846623).  

Immune checkpoint blockade, like any other mode of treatment, is associated with 

sometimes serious adverse effects. Immune-related adverse events (irAEs) are a 

spectrum of immune-mediated phenomena involving endocrine, gastrointestinal, hepatic 

and dermatologic events. Patients with irAEs of grade 3 or higher are usually treated with 

systemic glucocorticoids (intravenous methylprednisolone 1-2 mg/kg/day or equivalent). 

Treatment with Infliximab 5mg/kg or mycofenolate mofetil in case of immune mediated 

hepatitis should be considered if symptoms persist beyond 3 days. Infliximab treatment 

should be repeated after 2 weeks should symptoms persist further (874). IrAEs related 

to anti-CTLA-4 therapy are generally more common than those related to PD-1/PD-L1 

blockade. In a study involving 298 melanoma patients treated with Ipilimumab irAEs of 

any grade occurred in 85% of patients. IrAEs grade 3 or higher were seen in 38% of 

patients (875). In contrast, in an analysis involving 576 melanoma patients treated with 

Nivolumab, 71% of patients were reported to expierence irAEs of any grade with irAEs 

of grade 3 or higher in a mere 10% (876).   

1.2.6 Immune modulation using novel agents 

It has been suggested that modulation of T-cell and myeloid cell function by Ibrutinib 

contributes to increased malignant cell death after Ibrutinib treatment. Indeed, Dubovsky 

et al. were able to demonstrate that Ibrutinib has the potential to shift T-helper cell polarity 

away from Th2 towards Th1 by targeting ITK and could thereby correct malignancy 

associated T-cell defects (877). Moreover, Kondo et al. have reported downregulation of 

PD-L1 on the surface of CLL B-cells in the peripheral blood of Ibrutinib treated CLL 

patients as well as downregulation of expression of PD-1 on the surface of CD4+ and 

CD8+ T-cells, both in a STAT3 dependent manner (878). Stiff et al. demonstrated 
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expression of BTK in both human and murine MDSCs and showed that Ibrutinib 

treatment is able to decrease BTK phosphorylation resulting in impaired nitrous oxide 

production, cell migration, expression of IDO as well as impaired in vitro generation of 

human MDSCs. Ibrutinib treatment led to a decrease in numbers of MDSCs in both 

spleen and tumours of mouse models of mammary cancer and melanoma (879).  A study 

by Ping et al. demonstrated decreased production of CXCL12, CXCL13, CCL19 and 

VEGF by human macrophages after Ibrutinib treatment. Moreover, adhesion, migration 

and invasion of co-cultured lymphoid cells was significantly impaired (880). Finally, 

Gunderson et al. reported that tumour growth in a model of pancreatic ductal 

adenocarcinoma (PDAC) was dependent on a cross-talk between B-cells and fragment, 

crystallizable region receptor γ (FcRϒ) + tumour associated macrophages resulting in a 

Th2-permissive macrophage phenotype via BTK activation in a PI3Kϒ dependent 

manner. Ibrutinib treatment result in a shift towards a more Th1-permissive macrophage 

phenotype and fostered CD8+ T-cell cytotoxicity (881). 

Idelalisib was described to modulate cytokine production by T-cells. T-cells derived from 

CLL patients were shown to have decreased production of IL10, IL6 and IL4 when 

treated with Idelalisib. Similarly, NK cells treated with Idelalisib showed a modest but 

significant decrease in IFN-γ production (882). PI3Kδ deficient Tregs were shown to 

produce lower levels of IL10 and expressed lower levels of CD38 correlating to defective 

immunsuppressive function (883). Disruption of Treg function was shown to significantly 

contribute to anti-tumour effects of PI3Kδ inactivation. However, PI3Kδ inactivation was 

also demonstrated to interfere with the anti-tumour effects of cancer vaccines and 

immune checkpoint blockade (884). In a mouse model of CLL, genetic inactivation of 

PI3Kδ was shown to impair Treg expansion with associated disease clearance but also 

result in rectal prolapse resembling colitis observed in human Idelalisib patients (885). In 

human Tregs, PI3Kδ inactivation by Idelalisib was shown to inhibit proliferation, alter the 

immune phenotype and impair the suppressive function towards CD4+ and CD8+ 

effector T-cells (886). Idelalisib was also shown to promote an undifferentiated 

phenotype in mouse CD8+ T-cells. These Idelalisib treated T-cells had improved 

engraftment and persisted longer after transfer into tumour bearing animals. They also 

showed an increased anti-tumour immunity compared to traditionally expanded T-cells 

(887). In another study using a CLL mouse model, pharmacological inhibition of PI3Kδ 

was shown to decrease Treg numbers and their proliferation and activation status but 

did not result in improved CD8+ T-cell function due to concomitant inhibition of CD8+ 

effector T-cell differentiation, activation and effector function (888).  
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1.3 Murine models of CLL 

1.3.1 The Eμ-TCL1 mouse model 

Today the Eμ-TCL1 mouse model is the most commonly used animal model of human 

CLL. The T-cell leukemia/lymphoma protein 1 (TCL1) locus consists of two genes, 

TCL1A and TCL1B, located on chromosome 14q32.1 (889, 890). TCL1 was first 

discovered as the oncogene which causes T-prolymphocytic leukemia (T-PLL). In this 

disease, overexpression of TCL1 has been reported in almost 100% of cases due to 

t(14;14)(q11;q32) translocation or an inv(14)(q11;q32) inversion (891). Physiological 

functions of TCL1 related to embryonic development, B-cell maturation and stem cell 

regulation (892-894). In adults, expression is limited to early stage CD4-/CD8- double 

negative thymocytes, pre-B-cells, surface IgM expressing virgin B-cells, mantle cells and 

germinal center B-cells under physiological conditions (891). TCL1 is also expressed in 

nearly  100% of CLL cases. Here, high protein levels have been shown to correlate with 

markers of poor prognosis such as unmutated IgVH, ZAP-70 expression and del(11q) 

(895). TCL1 is a low molecular weight protein that functions by activating the PI3K 

cascade through direct interaction with AKT1/2 (896). TCL1 also interacts with other 

signaling proteins, the most important of which for their role in CLL are ROR1, 

transcription factor p300, components JUN and FOS of transcription factor AP1, IκB, 

transcription factor X-box binding protein 1 (XBP1) and DNA methyltransferase 

(Dnmt)3A and Dnmt3B (897-900). In 2002 the Eμ-TCL1 mouse model was created in 

Carlo M. Croce’s lab by expressing the entire human TCL1 locus under control of the 

VH-promoter-IgH-Eμ-enhancer resulting in expression of human TCL1 in both mature 

and immature murine B-cells (901). In these initial experiments, transgenic mice were 

shown to develop a B220low/IgM+ clonal B-cell population coexpressing CD5 in the 

peripheral blood at around 6 monhs of age. This population could also be detected in the 

peritoneal cavity, bone marrow and spleen and was shown to expanded in an 

exponential fashion over time. (Table 2).  
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 % IgM+CD5+ B cells 

Eμ-TCL1, age bone marrow spleen peritoneal cavity 

2 months 
1 4 45 

4 months 
2 9 46 

8 months 
43 68 74 

Wild type, age  

4 months 
1 1 20 

 

Table 2: Progressive accumulation of an IgM+CD5+ B-cell population in various organs of 
Eμ-TCL1 mice. Adapted from Bichi et al. Proceedings of the National Academy of Sciences. 
2002;99(10):6955-60. (901). 

All transgenic mice around the age of 13 to 18 months became visibly ill presenting with 

hepatosplenomegaly, peripheral lymphadenopathy and markedly increased WBC 

counts. This indicates a phenotype similarity to human CLL. Transgenic mice reaching 

the endpoint had spleen weights ranging from 1.5 – 2.3 g compared to 0.07g ± 0.01g 

among wildtype animals and a mean WBC count of 180.0x106 /ml compared to 2.8x106 

among wild type mice. The penetrance of leukemia development was described to be 

100% (901). The long latency to development of TCL-1 driven B-cell leukemia in these 

animals is a major obstacle to their use as platforms for the study of the biology of CLL 

and for drug development. Adoptive transfer of B-cells derived from leukemia bearing 

Eμ-TCL1 mice into syngeneic animals has been shown to lead to development of 

leukemia over the course of several weeks and can thus overcome this hinderance (902-

904).  

Numerous studies have demonstrated that the Eμ-TCL1 mouse model accurately 

depicts the biology of human CLL. Yan et al. have shown that the model replicates the 

B-cell receptor V-region characteristic of aggressive, unmutated human CLL. The study 

demonstrated minimal Ig heavy chain and light chain somatic mutation, use of 

stereotyped VHDJH and VLJL rearrangements resulting in equally stereotyped CDR3 

characteristics and BCR usage. Immunoglobulins used by CLL bearing animals were 

shown to be very similar to auto-antibodies and antibodies to microbial antigens. This 

may by a sign of  an antigen driven stimulation of the BCR signalling cascade in  Eμ-

TCL1, similar to human CLL patients (905). Moreover, a study by Chen et. al. was able 

to demonstrate that the Eμ-TCL1 mouse model recapitulates the epigenetic changes 

observed in human CLL patients, e.g. methylation of promoter sequences with binding 

sites for transcription factor Forkhead box D3 (FOXD3) (906). CLL B-cells derived from 
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Eμ-TCL1 mice were also shown to resemble IL10 producing Bregs phenotypically and 

functionally similar to human CLL (315). Hofbauer et al. have shown that development 

of leukaemia in Eμ-TCL1 mice results in skewing of T-cell subsets from naïve to more 

antigen-experienced, similar to findings in human CLL. Adoptive transfer of CLL B-cells 

could reproduce these alterations in recipients. In both spontaneously developing 

leukemia and adoptively transferred CLL a loss of T-cell receptor diversity with 

development of clonal T-cell populations was observed (903). Our group has previously 

demonstrated that the Eμ-TCL1 mouse model recapitulates the T-cell defects observed 

in human CLL patients. T-cell derived from CLL bearing Eμ-TCL1 mice showed various 

functional defects such as reduced gp33 antigen-specific T-cell activation, decreased 

mitogen induced T-cell proliferation and and impaired induction of idiotype-specific CD8 

T-cells capable of killing CLL cells. Moreover, T-cell from leukemic mice had 

dysfunctional cytokine production with increased levels of IL1, IL4 and IL6 but decreased 

levels of IL2, INF-γ and IL12-β (907). Gene expression profiles from CD4+ and CD8+ T-

cells from tumour bearing animals revealed alterations in gene expression that became 

more pronounced with increasing tumour load and correlated with findings in human CLL 

patients. Comparative anlysis of gene- expression profiles of human CLL patients and 

leukemic mice detected 45 overlapping differentially expressed genes in CD8+ T-cells 

and 50 overlapping genes in CD4+ T-cells which were primarily involved in pathways of 

cell activation and proliferation, vesicle formation and trafficking as well as cytoskeleton 

formation. Similar to findings in human CLL, development of leukemia in animals resulted 

in defects of T-cell synapse formation that could be repaired with lenalidomide treatment. 

When adoptively transferring CLL B-cells from leukemic mice into young transgenic 

animals without disease, gene-expression profiles comparable to those from ageing CLL 

bearing Eμ-TCL1 animals developed within 8 days (907). We have also demonstrated 

the importance of myeloid cells in the microenvironment of CLL bearing Eμ-TCL1 mice 

in promoting B-cell survival and shaping an immunosuppressive niche in analogy to 

human NLCs (908) and have demonstrated that the role of the PD-L1/PD-1-axis in 

induction of CLL-associated T-cell defects is replicate in both ageing Eμ-TCL1 mice as 

well as following adoptive transfer of CLL B-cells (904).  

Several studies have validated the Eμ-TCL1 model as a platform for the preclinical 

testing of new modes of treatment for CLL. Johnson et al. have demonstrated that 

transformed B-cells derived from Eμ-TCL1 mice express important therapeutic targets 

such as DNMT1, MCL-1, BCL-2, AKT and 3-phosphoinositide-dependent protein kinase-

1 (PDK1). The TP53 status has been reported to be wild type. Treatment with low dose 

fludarabine was shown to lead to a survival advantage and reduce lymphocytosis in the 
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animals. However, fludarabine resistance developed eventually (909). Other studies 

have shown  Eμ-TCL1 mice to be amenable to novel substances such as inhibitors of 

the BCR signalling cascade including Ibrutinib and Acalabrutinib (910, 911) as well as 

agents targeting other pathways (912-915).  

1.3.2 Other genetically engineered mouse models of CLL 

A number of other genetically engineered mouse models of CLL has been developed. 

These include mouse models mimicking commonly occurring genetic lesion as well as 

animals overexpressing oncogenes or having targeted deletions of tumour suppressors. 

Del(13q) is the most common cytogenetic lesion found in CLL and is associated with a 

favourable prognosis. Transgenic mouse models with targeted deletions on murine 

chromosome 14qC3 mimicking those of the del(13q) minimal deleted region including 

DLEU2 and miR-15a/16-1 (916) and the del(13q) common deleted region (917) have 

been developed. Both models manifest a range of B-cell malignancies including MBL, 

CLL and CD5- NHL.  In both minimal deleted region and common deleted region animals 

clonal B-cell populations first develop at around 6-18 months of age with clinically 

manifest disease at around 12-18 months, similar to the Eμ-TCL1 model. The ratio of 

CLL-like disease compared to other B-cell malignancies dependent on the type of the 

deletion with approximately 50% of common deleted region animals developing a CLL-

like clonal B-cell expansion compared to only 22% of minimal deleted region animals. 

The targeted deletion of the miR-15a/16-1 locus led to a CLL like disease with a longer 

latency (12-18 months) and a penetrance of only 20% compared to minimal deleted 

region animals. (916). The importance of the miR-15a/16-1 locus is also illustrated by 

the inbred New Zealand Black (NZB) strain of mice which are primarily used for the study 

of autoimmune diseases such as SLE but also develop sporadic late onset CLL-like B-

cell proliferations due to a naturally occurring point mutation in the miR16-1 sequence  

(918-920). Another model used miR-29a overexpression to obtain a model of CLL a 

latency of 12-24 months but a penetrance of only 20% (921). Other genetically 

engineered mouse models of CLL include double transgenic animals for a TRAF2 

mutatant lacking the N-terminal Really Interesting New Gene (RING)- and zinc finger 

domains (TRAF2DN) and BCL2 (922) which develop CLL-like B-cell proliferations at 

around 9-15 months of age with a penetrace of approximately 80%, animals transgenic 

for APRIL (923) which develop CLL-like disease at around 9 months of age with a 

penetrance of 40% and animals double transgenic for myc and BAFF who develop CLL 

like disease at around 3 months of age  in 78% of male animals but only 3% of female 

animals (924). A model using overexpression of ROR1 has been reported to display 
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CLL-like B-cell proliferations but only a very poor penetrance of 5% (897). All of the above 

models are inferior to Eμ-TCL-1 mice in terms of disease penetrance. This has been 

attributed to the strong oncogenic functions of TCL1 in numerous singnalling pathways.  

Two other models approaching a 100% disease penetrance have been described:  

Interferon regulatory factor 4 (IRF4) knock-out immunoglobulin heavy chain Vh11 knock-

in animals (925) and simian virus 40 (SV40) T antigen transgenic mice (926). However, 

both models have highly skewed IgVH repertoires and thus mimicking human CLL poorly 

in terms of phenotype. Moreover, IRF4 deficiency in itself leads to severe 

immunodeficiency due to its critical function in various types of immune cells and the 

IRF4-/-/Vh11 mice thus are not suitable to model CLL induced alterations of the immune 

microenvironment.  

 

1.3.3 Eμ-TCL1 model-based crosses with other murine models 

In order to study the role of specific molecules involved in cell signaling, cytoskeleton 

formation and cell trafficking, proliferation and cell survival as well as microenvironmental 

interactions in the pathobiology of CLL Eμ-TCL1 mice have been crossed with a number 

of other genetically engineered mouse models yielding unique mouse strains. Table 3 

gives an overview of these models and the resulting characteristics.  
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Model  Characterisitcs 

Signaling 

Eμ- TCL1 x xbp1 fl/fl CD19-Cre (927) Delayed progession, compromised BCR signalling 

Eμ- TCL1 x Toll/IL-1R 8 (TIR8)-/- (928) Faster disease progression, prolymphocytoid transformation 

Eμ- TCL1 x pkcβ-/- or pkcβ+/- (929) pkcβ+/-: Delayed onset 

pkcβ-/-: Disease prevention 

Eμ- TCL1 x X-linked Immune Defect 

(XID) (930) 

Delayed onset, 18% T-cell leukemia 

Eμ- TCL1 x dominant-negative 

recombination activating gene 1 

(dnRAG1) tg (931) 

Early onset, more aggressive course 

Cytoskeleton and cell trafficking 

Eμ- TCL1 x Hematopoietic-Specific 

Protein 1 (hs1) -/- (932) 

Early onset 

Eμ- TCL1 x Ras homolog gene family, 

member H (RhoH) -/-(933) 

Delayed onset, reduced bone marrow homing 

Proliferation and cell survival 

Eμ- TCL1 x inhibitor of DNA binding 4 

(ID4) -/- (934) 

Early onset, more aggressive course 

Eμ- TCL1 x TP53-/- (935) Early onset, more aggressive course 

Eμ- TCL1 x miR29a/b-tg (921) Disease acceleration 

Microenvironmental interactions 

Eμ- TCL1 x Frizzled-6 (fzd6) -/- (936) Delayed onset, reduced expression of β-catenin 

Eμ- TCL1 x CD44-/-(937) Reduced tumour load, prolonged survival, increased apoptosis 

Eμ- TCL1 x MIF-/- (269) Delayed onset, reduced number of TAMs, increased apoptosis 

Eμ- TCL1 x ROR1 tg (897) Early onset, increased proliferation and reduced apoptosis of 

leukemic cells 

Eμ- TCL1 x APRIL tg (938) Early onset, increased survival of leukemic cells 

Eμ- TCL1 x BAFF tg (939) Early onset, more aggressive course 

 

Table 3: Characterisitcs of genetically engineered mouse models crossed with Eμ TCL1 
mice. Adapted from Simonetti et al. Blood. 2014.(940). Abbreviations: tg – transgenic. 
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1.3.4 Xenograft models of CLL 

Several xenograft models using transplantation of human CLL cells into mice have been 

described (941). The generation of xenograft models for CLL is obstructed by the fact 

that these cells are rejected when implanted into immunocompetent animals. Use of 

immunocompromised animals such as Severe combined immunodeficiency (SCID) mice 

on the other hand does not allow for the study of CLL-immune cell interactions. 

Moreover, these animals can develop CD5- EBV driven B-cell malignancies not related 

to human CLL limiting the utility of the model  (942, 943). 

Initial studies used intraperitoneal injection of CLL cells into BALB/c or beige/nude/Xid 

(BNX) mice which had been lethally irradiated and transplanted with bone marrow from 

Non-Obese Diabetic (NOD)/SCID mice (944, 945). These protocols were later optimized 

by use of concomitant intravenous and intraperitoneal injections of CLL cells resulting in 

improved engraftment (946, 947). Interestingly, the engraftment of CLL cells appears to 

be dependent on the presence of T-cells. Bagnara et al. used NOD SCID gamma (NSG) 

mice (NOD/SCID x IL2Rγ-/-) and reported that engraftment of CLL cells in these animals 

was only feasible when co-tranferred with autologous T-cells while in vivo elimination of 

CD3+ or CD4+ cells abrogated CLL cell survival and proliferation. However, the 

transplanted CLL B-cells could not be observed after 3 months time. Around the same 

time a severe GvHD reaction mediated by transplanted human T-cell occurred. Thus T-

cells had both CLL promoting and anti-tumour properties in this model (948). Kikushige 

et al. injected immature CD34+CD38- stem cells derived from the bone marrow of CLL 

patients into newborn NSG mice. The cells were shown to develop into clonal CLL-like 

B-cells with a clonality independent of the original CLL clone. It could thus be speculated 

that the potential to generate clonal B-cell proliferations may already be present on the 

level of stem cells in the pathogenesis of CLL (949). The NSG xenograft model of CLL 

has been utilized in preclinical studies of Ibrutinib efficacy and maybe useful as a platform 

for testing of other substances as well (950).  

Xenograft models, while being adequate to study the genetic basis and evolution of CLL 

as well as being useful platforms for drug testing, cannot mirror the complex interactions 

between CLL cells and the surrounding immune microenvironment. The Eμ-TCL1 with 

its 100% penetrance and ability model the biology of human CLL as well as CLL 

associated remodelling of the microenvironment and CLL mediated immune evasion 

thus remains the most useful model to study potential immunotherapeutic strategies.  
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1.4 Summary  

CLL is a very common form of hematologic malignancy primarily affecting the elderly.  

The disease remains incurable using standard immunochemotherapy as well as novel 

treatment strategies targeting the B-cell receptor pathway or anti-apoptotic mechanisms. 

The only established potentially curative treatment approach remains allogeneic stem 

cell transplantation which can only be applied in a small subset of the patient population. 

Its high toxicity is often prohibitive in elderly patients suffering from relevant 

comorbidities. A significant unmet need for equally curative and tolerable treatment 

strategies remains. CLL is associated with a pronounced immunodefiency which is a 

result of a combination of various humoural and cellular immune defects. Resulting 

infections are a major source of morbidity and mortality in CLL. Moreover, CLL 

associated immunodeficiency also is a reflection of immune evasion mechanisms. CLL 

cells are now understood to be closely interacting with their microenvironment which 

promotes CLL B-cell survival and provides immunosuppressive niches. Correction of 

immune evasion mechanism could, according to the cancer immunoediting hypothesis, 

provide a potentially curative approach. Overexpression of immune checkpoint 

molecules has been established as a major mechanism of cancer immune evasion in 

recent years. PD-1 and its ligand PD-L1 have been demonstrated to be pivotal in 

mediating CLL associated T-cell deficiency. Despite promising pre-clinical data and 

successful application in other malignancies including Hodgkin lymphoma, attempts at 

establishing PD-1/PD-L1 immune checkpoint blockade as a treatment modality in CLL 

have been disappointing so far. Interestingly, BTK inhibitors such as Ibrutinib and 

Acalabrutinib have also been shown to have the ability to modulate T-cell function and 

partially correct CLL associated immune defects. Recent pre-clinical data suggests a 

potential syngergistic effect in combining BTK inhibition and immune checkpoint 

blockade. Today the Eμ-TCL1 mouse model is the most commonly used animal model 

of human CLL. Its hallmark characteristics are a high penetrance and a faithful replication 

of phenotype and biology of human CLL including remodelling of the microenvironment 

and CLL induced immune defects. Eμ-TCL1 mice also mirror the role of PD1/PD-L1 in 

mediating CLL associated T-cell defects and the effects of BTK inhibitor treatment. The 

model is thus suitable to assess the effects of BTK-inhibition on T-cell function and as 

platform to develop combination approaches of immune checkpoint blockade and BTK 

inhibition.  
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1.5 Hypothesis and Aims 

Based on the available literature and preliminary data of our group we hypothesize that 

the clinical efficacy of BTK-inhibitors is based on a synergism between direct anti-tumour 

effects and correction of CLL-associated functional T-cell defects. We have previously 

shown that PD-1/PD-L1 is pivotal in mediating CLL-associated T-cell exhaustion (216). 

We speculate that repair of CLL associated T-cell defects is achieved by a modulation 

of expression of PD-1 and its ligands.  Due to their differences in selectivity these effects 

may be differential between Ibrutinib and second generation BTK inhibitors like 

Acalbrutinib. We hypothesize that combinations of anti-PD-L1 immune checkpoint 

blockade and BTK inhibitors may have synergistic effects towards improved T-cell 

function. 

Aim (1) 

We hypothesize that PD-L1 expression on CLL B-cells is driven by B-cell receptor 

signalling. We would therefore like to investigate whether treatment with either Ibrutinib 

or Acalabrutinib leads to downregulation of PD-L1 expression among CLL B-cells. We 

further speculate that treatment with either agent could lead to downregulation of PD-1 

and other exhaustion associated immune checkpoint molecules among T-cells subsets. 

Given the well-known expression of BTK among myeloid cell subsets and Ibrutinib ability 

to modulate myeloid derived suppressor cell function in other forms of malignancy we 

would further like to investigate whether an influence of either Ibrutinib or Acalabrutinib 

on phenotype and immune checkpoint expression of myeloid cell subsets exists. (879) 

Aim (2) 

We speculate that BTK inhibitors have the potential to repair CLL associated T-cell 

defects and would therefore like to investigate the influence of Ibrutinib and Acalabrutinib 

on T-helper cell function, cytotoxic T-cell function and capability of T-cell synpase 

formation in the splenic microenvironment of CLL bearing animals. 

Aim (3) 

We would like to investigate whether combinations of Ibrutinib or Acalabrutinib with anti-

PD-L1 immune checkpoint blockade have syngestic effects towards repair of CLL-

associated T-cell dysfunction.  As we have previously shown a reversal of exhaustion- 

phenotype of T-cells with anti-PD-L1 treatment in the splenic microenvironment of CLL 

bearing  TCL-1 mice (836) we would further like to investigate whether BTK-inhibitor/anti-

PD-L1 combinations have synergistic effects in correcting the exhaustion phenotype of 

CLL-associated T-cells. 
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2 Materials and Methods 

2.1 Mice and animal procedures 

2.1.1 Ethical considerations  

The principles of the “Three Rs” – replacement, reduction and refinement – first 

described by W.M.S Russel and R.L Burch in 1959 have been designed as a guidance 

framework for scientific research using animals (951).The goal of these guiding principles 

is to make sure that animals are used only afer thorough ethical consideration, to protect 

the welfare of the animals used and to improve the quality of research. The principle of 

replacement asks for the use of non-animal-based procedures over animal testing 

wherever possible to achieve the scientific goal. Reduction refers to the obligation of the 

researcher to use the smallest number of animals possible to achieve valid results in 

order to answer the research question at hand.  Finally, refinement refers to the use of 

methods that mitigate or minimize pain and distress of research animals. In the EU and 

USA this framework of principles has been written into laws and guidelines governing 

animal-based research. 

The research project at hand was conducted closely following the principles of the “Three 

Rs”. CLL cell lines or in vitro model systems are unable to mirror the complex interactions 

between CLL cells and their surrounding microenvironment and are thus unsuitable to 

answer questions regarding the reciprocal effects of CLL treatment and immune function 

(replacement). The number of animals used in this project was reduced as far as possible 

by only applying therapeutic interventions that have been proven effective ex vivo. For 

each experiment the number of animals needed to obtain at least 80% power in detecting 

a 1.25 standard deviation difference in a Fisher exact test performed at the one-sided 

0.05 significance level was calculated (reduction). Physical signs of disease activity such 

as lymphocytosis, lymphadenopathy and organomegaly arising with the onset of CLL in 

mice usually do not cause pain or suffering. Adverse effects such as dyspnoea or 

restricted movement which negatively affect the wellbeing of the animals are rare. The 

substances and application routes used in this project are usually well tolerated and only 

result in minimal and short-term discomfort. Mice were inspected daily and monitored for 

signs of poor health such as piloerection, squatting posture, sunken eyes, reduced 

activity, reduced grip strength and weight loss.  Physical examination and assessment 

of disease status and CLL load was conducted regularly and strict endpoint criteria 

(spleen size >3cm in diameter, WBC count in blood smear >100 WBC/high power field 

(hpf) (40x objective), >90% of lymphocytes CD19+CD5+ cells) applied to minimize 

suffering from leukemia or interventions (refinement).  
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2.1.2 Breeding and maintenance of mice 

Four breeding pairs of Eμ-TCL1 mice on the C3H/Hej genetic background were obtained 

from Dr. Carlo Croce, Ohio State University, Columbus Ohio, USA via our collaboration 

within the CLL Research Consortium (CRC) and then backcrossed on the C57BL/6 

background. Wild type C57BL/6 animals for the purpose of breeding or for the use in 

experiments were purchased from Charles River laboratories, Margate, UK. The animals 

were housed using a barrier system in the biological services unit (BSU) at Charterhouse 

Square, London, UK. All in vivo procedures were conducted under sterile conditions in 

special procedure rooms within the BSU. Breeding of Eμ-TCL1 mice was achieved by 

pairing transgenic males with 2 syngeneic C57BL/6 wild type females. Pairing of the 

breeders occurred at the age of 6 to 8 weeks and breeding was conducted for as long 

as 10 months or when no more new litters had been produced for at least 2 months. 

Weaning of the litters was performed at 3 to 4 weeks of age. The animals were ear-

notched, genotyped and subsequently housed with a maxium of 5 littermates in the same 

cage. Animals were monitored once a day for signs of poor health. The status and activity 

of CLL was assessed by physical examination of spleen size as well as by blood smears 

and immunophenotyping of peripheral blood. The animals were culled when signs of 

poor health were observed or when they fulfilled one of the following endpoint criteria: 

spleen size >3cm in diameter, WBC count in blood smear >100 WBC/hpf (40x objective), 

>90% of lymphocytes CD19+CD5+ CLL cells. Animals were euthanized using cervical 

dislocation.  

2.1.3 Genotyping of mouse litters  

Animals were ear notched for identification and to obtain material for genotyping. The 

material was digested at 55 °C overnight in „tail buffer“ (50mM 

tris(hydroxymethyl)aminomethane (TRIS) pH 8.0 (Sigma, UK), 25mM 

Ethylenediaminetetraacetic acid (EDTA) disodium salt pH 8.0 (Sigma, UK), 100mM NaCl 

(Fisher Scientific, UK), 1% sodium dodecyl sulfate (SDS) (Sigma,UK) and Proteinase K 

20mg/ml (Roche Diagnostics, UK)). DNA was extracted using alcohol precipitation. 

Polymerase chain reactions (PCRs) were performed using the TCL1 primers (5’-3’) 

GCCGAGTGCCCGACACTC (TCL1 Forward) and CATCTGGCAGCAGCTCGA (TCL1 

Reverse). The Mouse beta globulin (MBG) gene was used as an internal positive control 

(5’-3’) CAGCTCCTGGGCAATATGAT (MBG Forward) and 

TTGTTCACAGGCAAGAGCAG (MBG Reverse). A negative control not containing DNA 

was also utilized. 1μl of DNA, 2μl of TCL1 Forward and Reverse and 2μl of MBG Forward 
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and Reverse each were filled up with megamix blue PCR mix (Clent Life Science, UK) 

to a total volume of 25μl. The following PCR conditions were used for both reactions: 

Activation at 95°C (5 min), denaturation at 95°C (30 sec), annealing at 58°C (30 sec) and 

extension at 72°C (30 sec) for 35 cycles followed by final extension at 72°C (5 min). The 

obtained products, the corresponding controls and a 100bp DNA ladder (Life 

Technologies, UK) were applied on a 2% agarose gel containing 1x gel red at 80 V for 

45 minutes for separation.  

2.1.4 Haematology testing 

In ageing Eμ-TCL1 mice haematology testing was routinely initiated at the age of 6 

months and conducted monthly to biweekly. Experimental animals were tested weekly 

from the day of adoptive transfer of CLL B-cells. The animals were heated under a heat 

lamp and put in a restrainer. To obtain blood, a 19G needle (BD, UK) was used to 

puncture the lateral tail vein. Approximately 100μl of peripheral blood were collected in 

a 0,5 ml microcentrifuge tube (VWR, UK) containing 10 μL of 0.5 M EDTA (Sigma, UK). 

For preparation of blood smears 10 μl of peripheral blood were pipetted on a microscope 

slide (VWR, UK) and smeared using an additional slide. Slides were fixed in methanol 

(Fisher scientific, UK) for 30s, then stained in modified Wright stain (Sigma, UK) for 40s 

and washed in deionized water (Milipore, Merck, UK) for 45s. Slides were rinsed in 

deionized water (Milipore, Merck, UK) and allowed to air dry. For hematologic 

assessment the WBC count was estimated by counting 5- 10 hpf using a 40x objective 

of a bright field microscope (Zeiss, UK).  For flow cytometry-based analysis 20μl of 

peripheral blood were filled up with fluorescence activated cell sorting (FACS) buffer 

(phosphate buffered saline (PBS) (Sigma, UK) with 2% fetal calf serum (FCS) (Gibco, 

UK)) to 100μl in 15 ml centrifuge tube (VWR, UK). The following flurochrome-labelled 

antibodies were added at a ratio of 1:100: Anti mouse CD45 APC (clone 30-F11, 

eBioscience, UK), anti-mouse CD19 FITC (clone 1D3, ebioscience, UK) and anti-mouse 

CD5 PE-Cy7 (clone 53-7.3, biolegend, UK). Cells were incubated for 30 minutes at 4°C. 

1ml of FACS buffer was added and cells were centrifuged at 300g for 10 minutes at 4°C. 

The supernatant was decanted and the washing step repeated. Erythrocytes were then 

lysed in 5ml 1X ammonium-chloride-based RBC lysis buffer (NH4CL 8.3g/l (Sigma, UK), 

KHCO3 1g/l (Sigma, UK), EDTA 0.037g/l (Sigma, UK)). After 7 minutes incubation, 10 ml 

of PBS were added and centrifuged at 300g for 10 minutes at 4°C, resuspended in 300μl 

FACS buffer containing 1:1000 4′,6-diamidino-2-phenylindole (DAPI) (ebioscience, UK) 

and transferred to 5 ml polypropylene round bottom tubes (Corning, UK). Cellular events 
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were then recorded on a BD LSR Fortessa flow cytometer (BD Biosciences, UK). The 

analysis was conducted using Cytobank (Cytobank Inc, USA). 

2.1.5 Processing of mouse spleens into a single cell suspension 

Mouse spleens were removed immediately after euthanizing the animals by cervical 

dislocation. The removal of the organ was performed under sterile conditions in a BSU 

procedure room. Spleens were transported in PBS (Sigma, UK) containing 20% FCS 

(Gibco, UK) and kept on ice.  The GentleMACS tissue dissociator (Miltenyi, UK) was 

utilized for preparation of single suspension according to the manufacturer’s 

recommendations for mouse spleen processing without enzymatic treatment. 

Subsequently the lysis of erythrocytes with an ammonium-chloride-based RBC lysis 

buffer (NH4CL 8.3g/l (Sigma, UK), KHCO3 1g/l (Sigma, UK), EDTA 0.037g/l (Sigma, 

UK)) was performed. Centrifugation of cell suspensions was generally performed at 300g 

for 10 minutes at 4°C. The cells in the obtained single cell solutions were quantified using 

a Luna fl automated cell counter (Logos bioysstems, USA) after dilution of a 10μl aliquot 

with an equal amount of 0.4% Tryphan blue (Sigma, UK). Splenocytes were then 

cryopreserved at a maximum density of 200x106cells/ml in FCS (Gibco, UK) containing 

10% dimethyl sulfoxide (DMSO) (Fisher Scientific, UK) and kept in a suitable liquid 

nitrogen storage tank. 

2.1.6 Adoptive transfer of CLL B-cells 

4x107 syngeneic mouse CLL B-cells derived from cryopreservation were injected by tail 

vein injection in accordance to standard procedures (952). Prior to the injection the 

content of CD19+CD5+ CLL B-cells in the splenocytes suspensions was measure using 

flow-cytometry. A maximum volume of 5ml/kg was injected per animal. We used 

C57BL/6 wild type animals 2.5 months of age as recipients Following the adoptive 

transfer procedure, animals were closely monitored by inspection and physical 

examination. The CLL disease status was quantified weekly using peripheral blood 

smears and flow cytometry. The animals where culled once they showed sign of poor 

health or fulfilled one of the following endpoint criteria: spleen size >3cm in diameter, 

WBC count in blood smear >100 WBC/hpf (40x objective), >90% of lymphocytes 

CD19+CD5+ CLL cells. Euthanization was performed using cervical dislocation. 
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2.1.7 Application of experimental substances by water bottle preparation or i.p. 

injection 

Ibrutinib (kindly provided by Janssen pharmaceuticals) and Acalabrutinib (kindly 

provided by Acerta pharma) were applied via water bottle preparation at a concentration 

of 0.15mg/ml in 2% Hydroxypropyl-β-cyclodextrin (HPBCD) (Sigma, UK). Water bottle 

preparations were prepared under sterile conditions and sterile filtered through a 0.2 μm 

Polyethersulfone (PES) filter top (Thermofisher scientific, UK) before application. Anti 

mouse PD-L1 clone 80 mIgG1 D265A (equivalent to Durvalumab, kindly provided by 

Astra-Zeneca) or isotype control NIP228 mIgG1 D265A (kindly provided by Astra-

Zeneca) were applied by i.p. injection at a dose of 10mg/kg every 3 days. A maximum 

volume of 10 ml/kg was used for i.p. injections. Prior to i.p. injections aqueous stock 

solutions of antibodies were obtained by dissolving the antibody in sterile PBS and under 

sterile conditions. During the treatment periods the animals were assessed daily by 

physical examination and culled at predefined endpoints.  

2.2 Manipulation of mouse splenocyte single cell suspensions 

2.2.1 Cell thawing procedure 

Thawing of cryopreserved splenocyte samples was performed in a water bath at 37oC. 

To avoid contamination the vials were disinfected using 70% industrial methylated spirit 

(IMS) (Fisher Scientific, UK) and subsequently opened in a class II biosafety cabinet. 

The cell suspension was pipetted into 10ml Roswell Park Memorial Institute medium 

1640 (RPMI 1640) (Gibco, UK) supplemented with 10% FCS (Gibco, UK), 1% Penicillin-

Streptomycin (Sigma, UK) at a temperature of 37°C. Subsequently the suspension was 

centrifuged at 300 x g for 10 minutes at room temperature and resuspended in a volume 

suitable for number of cells contained in the pellet. Automated cell counting was 

conducted on a Luna fl automated cell counter (Logos bioystems, USA) after dilution of 

a 10μl aliquot with an equal amount of 0.4% Tryphan blue (Sigma, UK). 

2.2.2 Negative selection of CLL and B cells 

CLL and B cells where isolated from splenocytes suspensions using the pan-B-cell 

isolation kit (Miltenyi, UK) which uses magnetic activated cell sorting (MACS). The 

suspension were centrifuged at 300 x g for 10 minutes at 4°C, the supernatant 

completely aspirated and the pellet resuspendend in 40 μL of ice-cold MACS buffer (PBS 

(Sigma, UK) pH 7.2, 0.5% bovine serum albumin (BSA) (Sigma, UK), 2mM EDTA 

(Sigma, UK)) per 10⁷ total cells. 10 μL of Pan B Cell Biotin-Antibody Cocktail (Miltenyi, 
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UK) per 10⁷ total cells were added. The cells were well mixed and incubated for 5 minutes 

at 4°C. A further 30 μL of ice-cold MACS buffer per 10⁷ total cells and 20 μL of Anti-Biotin 

MicroBeads (Miltenyi, UK) per 10⁷ cells were added. Cells were mixed well and incubated 

for another 10 minutes at 4°C. Finally, the volume was adjusted to 500μl per 108 cells 

(minimum 500μl). For separation, a LD column (Miltenyi, UK) was placed in the magnetic 

field of a MACS separator (Miltenyi, UK) and primed with 2 ml of MACS buffer. The cell 

suspension was applied to the column and flushed through by applying 1ml MACS buffer 

twice. The effluent, which was collected in a 15 ml centrifuge tube (VWR, UK), contained 

the unlabelled pan-B-cell fraction.  

2.2.3 Negative selection of T cells 

T-cells where isolated from splenocytes suspensions using the pan-T-cell isolation kit II 

(Miltenyi, UK) which uses MACS. The suspension were centrifuged at 300 x g for 10 

minutes at 4°C, the supernatant completely aspirated and the pellet resuspendend in 40 

μL of ice-cold MACS buffer (PBS (Sigma, UK) pH 7.2, 0.5% BSA (Sigma, UK), 2mM 

EDTA (Sigma, UK)) per 10⁷ total cells. 10 μL of Pan T Cell Biotin-Antibody Cocktail 

(Miltenyi, UK) per 10⁷ total cells were added. The cells were well mixed and incubated 

for 5 minutes at 4°C. A further 30 μL of ice-cold MACS buffer per 10⁷ total cells and 20 

μL of Anti-Biotin MicroBeads (Miltenyi, UK) per 10⁷ cells were added. Cells were mixed 

well and incubated for another 10 minutes at 4°C. Finally, the volume was adjusted to 

500μl per 108 cells (minimum 500μl). For separation, a LD column (Miltenyi, UK) was 

placed in the magnetic field of a MACS separator (Miltenyi, UK) and primed with 2 ml of 

MACS buffer. The cell suspension was applied to the column and flushed through by 

applying 1ml MACS buffer twice. The effluent, which was collected in a 15 ml centrifuge 

tube (VWR, UK), contained the unlabelled pan-T-cell fraction. 

2.3 BTK occupancy assays 

96 well microplates (PerkinElmer, UK) were coated overnight at 4°C with 125 ng/well 

anti-BTK antibody (Clone 53/BTK, BD Biosciences) and blocked with BSA (Gibco, UK) 

the following day for 2 to 3 hours at room temperature. Lysis buffer containing protease 

inhibitor cocktail (Sigma, UK) was used to lyse frozen splenocyte cell pellets. Lysates 

were incubated for 1 hour on ice in the presence or absence of a saturating concentration 

of Ibrutinib or Acalabrutinib (10−6 mol/L) followed by an incubation of a biotinylated 

derivate (ACP-4016; 10−7 mol/L) serving as a probe. The equivalent of 5 × 105 cells of 

lysate/well, in replicates of three, were added to the coated OptiPlates and incubated for 

2 hours. After a 1-hour incubation with streptavidin–horse radish peroxidase (HRP) 
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(Invitrogen, UK; ELISA grade; 120 ng/mL), a SuperSignal ELISA Femto Substrate 

(Thermo Fisher Scientific, UK) was added, and chemiluminescence was measured on a 

multiplate reader (PerkinElmer, UK). The percentage of BTK occupancy for the drug-

treated mice was calculated relative to the average signal from the vehicle control group. 

The samples without exogenous Ibrutinib or Acalabrutinib represented 100% free BTK 

(or 0% occupied BTK), and the samples with exogenous BTK inhibitor represented 0% 

free BTK (or 100% occupied BTK). 

2.4 Flow cytometry based functional T-cell assays 

2.4.1 EdU incorporation 

Incorportation of 5-ethynyl-2´-deoxyuridine (EdU) was used for assessment of in vivo 

proliferation of T-cells subsets. The substance is utilized during DNA synthesis in lieu of 

physiological nucleosides. It can subsequently be visualized by convalent binding to an 

azide coupled to a flurochrome via an alkyne moiety. The reaction is catalysed by copper  

(953, 954). The EdU assay can be used alongside traditional flow cytometry staining for 

both surface and intracellular markers. EdU (Life Technologies, UK) was applied to 

experimental annimals by i.p. injection at a dose of 100µg/g body weight 20 hours before 

being culled. Priot to the injection an EDU stock solution was prepared by dissolving the 

substance in sterile PBS (Sigma, UK) under sterile conditions. 

2.4.2 Cell stimulation 

1x106 splenocytes were incubated in 250µl RPMI 1640 with 10% FCS (Gibco, UK), 1% 

Penicillin/Streptomycin (Life Technologies, UK) in round-bottom 96-well-plates (VWR, 

UK). 5µg/ml CD107a per well (Clone 1D4B biolegend, UK) was added. The splenocytes 

were stimulated with Phorbol 12-Myristate 13-Acetate (PMA)/ionomycin/brefeldin 

A/monensin cell stimulation cocktail (eBioscience, UK) for 6 hours at 37ºC/5% CO2. 

Controls were treated with transport inhibitor cocktail brefeldin A/monensin 

(eBioscience), but no cell stimulation cocktail.  

2.4.3 Surface, intracellular and intranuclear flow cytometry staining 

1x106 PMA/ionomycin/brefeldin A/monensin stimulated splenocytes, 1x106 unstimulated 

splenocytes and their corresponding controls were used per animal and transferred into 

5ml polystyrene round-bottom tubes (Corning, UK). All staining steps were performed at 

a temperature of 2-8°C to avoid internalisation or capping of the antibodies. Unstimulated 

cells were split for intracellular EDU stain and intranuclear ki67 stains. Cells were 
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resuspended in 100 μl of FACS buffer containing viability stain (fixable viability efluor 

506, ebioscience, UK) at a concentration of 1:1000. Surface antibodies (CD3e APC/CY 

7, clone 145-2C11, biolegend, UK; CD8a BV605, clone 53-6.7, biolegend, UK; CD44 

AF700, clone IM7, ebioscience, UK) were added at a dilution of 1:100 and cells incubated 

at 4 ºC for 30 minutes. Fixation using IC fixation buffer (ebioscience,UK) and 

permeabilisation using permeabilisation buffer (ebioscience,UK) for intracellular stains 

or FOXP3 fixation/permeabilisation buffer (ebioscience,UK) and permeabilisation buffer 

(ebioscience,UK) for intranuclear stains were performed according to the manufacturer’s 

recommendations. Cells were stained with intracellular antibodies (Interferon gamma 

AF488, clone XMG1.2, biolegend, UK; IL2 PE/Cy7, clone JES6-5H4, biolegend, UK; IL4 

PerCPefluor 710, clone 11B11, ebioscience, UK) and intranuclear antibodies (Ki67 

PE/Cy7, clone 16A8, biolegend, UK) for 1h at 4ºC at a 1:100 dilution. Compensation 

controls consisted of ABC total compensation beads (Thermo fisher scientific, UK). In 

order to obtain compensation controls one drop each of both negative control beads and 

positive antibody binding beads were added to 80µl FACS buffer in a 5ml polystyrene 

round-bottom tube (Corning, UK). One tube per flurochrome included in the panel was 

prepared. Subsequently a dose appropriate for one test of pre-conjugated flow cytometry 

antibody was added and the sample incubated at 4°C for 30 minutes in the dark. The 

solution was then washed in 2ml FACS buffer twice and resuspended in 300μl PBS ready 

for acquisition. Beads could not be used for compensation control of the viability stain- 

here single-stained cells were used. For EDU staining, cells were fixed in 100µl of “Click 

it” fixative (life technologies,UK) for 15 minutes at room temperature in the dark. After 2 

washes with FACS buffer cells were resuspended in 100µl of 1x “Click it” 

permeabilization buffer (life technologies,UK) and incubated for an additional 15 minutes 

at room temperature in the dark. 500 µl of reaction cocktail (2% CUSO4, 0.5% Alexa 

Fluor 488 azide, 10% 1x “Click it” reaction buffer additive in PBS, all life technologies, 

UK) were added and cells thoroughly mixed. For the fluorescence minus one (FMO) 

control the cocktail was prepared without fluorescent dye azide. After incubation for 30 

minutes at room temperature in the dark cells were washed twice  in permeabilization 

buffer and carried forward for acquisition. Acquisiton was performed on a BD LSR 
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Fortessa flow cytometer (BD, UK). The recorded .FCS files were analysed using 

Cytobank (Cytobank Inc., USA). 

2.5 Immune synapse formation assay 

2.5.1 Synapse formation and actin staining 

1x10E6 B-cells are resuspended in serum free RPMI 1640 (Gibco, UK) with 1% 

Penicillin/Streptomycin (Life Technologies, UK), and labelled using 7-Amino-4-

Chlormethylcumarin (CMAC) (Thermofisher, UK) at a concentration of 2µg/ml for 30 

minutes at 37 ºC 5%CO2. B-cells were activated using 2ug/ml staphylococcus enterotoxin 

A (SEA)/ staphylococcus enterotoxin B (SEB) (Sigma, UK) for 30 minutes at 37 ºC 

5%CO2 in RPMI 1640 (Gibco, UK) with 10% FCS (Gibco, UK), 1% 

Penicillin/Streptomycin (Life Technologies). 1x10E6 T-cells were added in serum free 

medium and allowed to conjugate to B-cells pelleted for 20 minutes at 37 ºC 5%CO2. 

Cells were transferred into a 3 well-cell concentrator and plated on a Poly-l-lysine coated 

microscope slide (VWR, UK) using a Cytofuge (Beckman Coulter, UK) at 1000 rpm for 6 

minutes. Cells were preserved in 3% methanol-free formaldehyde/PBS (TAAB 

laboratories, UK) for 15 minutes, permeabilized in 0.3% Tritonx100/PBS (Sigma, UK) for 

5 minutes and stained using Rhodamine phalloidin (Thermo Fisher, UK) in 5% Goat 

Serum Buffer (Sigma, UK) at a dilution of 1:40. Slides were mounted using H-1500 Hard 

set mounting medium for fluorescence (Vectashield, UK).  

2.5.2 Confocal microscopy and image analysis 

A Zeiss 710 confocal laser-scanning microscope with a 63x/1.40 oil objective and 

Version 2.6 Zen imaging software (Zeiss, UK) was used in order to record confocal 

microscopy images. Per condition assessed al least 10 images were recorded. The 

resulting .LSM files were analysed using Zen lite analysis software (Zeiss, UK). The 

synapse area was defined using the Zen outline tool by marking the edges of the actin 

accumulation between T cells and B cells. The area of T-cell F-actin immune synapse 

(μm2) was used as the readout. A minimum of 100 randomly chosen synapses per 

condition were analysed.  

2.6 Immune phenotyping by mass cytometry 

2.6.1 Mass cytometry staining 

Mass cytometry is a method of “single cell technology” that allows for the parallel 

assessment of at least 40 markers. This approach utilises stable isotopes of non-
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biological rare earth metals (usually lanthanides) tagged to monoclonal antibodies.  

3x106 splenocytes from single cell preparations were carried forward for staining. All 

staining steps are performed in 5 ml polypropylene round bottom tubes (Corning, UK). 

Cell were resuspended in “Cell-ID” Cisplatin (Fluidigm, UK) in PBS (Sigma, UK) at a 

concentration of 5µM and incubate for 5 minutes at room temperature. The reaction was 

quenched with 5x the volume of “Maxpar” cell staining buffer (Fluidigm, UK) and the 

samples centrifuged. Cells were resuspended in 50µl of “Maxpar” cell staining buffer 

containing 1 µl of anti-mouse CD16/CD32 monoclonal antibody (clone 93, ebioscience, 

UK) and incubated for 10 minutes. The volume was then filled up to 100 µl with “Maxpar” 

cell staining buffer (Fluidigm, UK) containing mass cytometry antibodies for a final 

concentration of 1:100. Cell were incubated for 30 minutes at room temperature and then 

washed 2x in “Maxpar” cell staining buffer (Fluidigm, UK). The samples were then 

resuspended in 1ml of “Maxpar” Fix and Perm buffer (Fluidigm, UK) containing “Cell-ID” 

Intercalator-Ir (Fluidigm, UK) at a concentration of 125 nM and incubated over night at 

4°C. Cells were washed 2x in “Maxpar” Cell staining buffer (Fluidigim, UK) and 1x in 

“Maxpar” water (Fluidigm, UK). Cells were left dry-pelleted at 4°C until immediately prior 

to acquisition on a “cytof 2” mass cytometer (Fluidigm, UK). For a list of mass cytometry 

antibodies used please refer to table 4. 

2.6.2 Acquisition and analysis of mass cytometry data 

A “cytof 2” mass cytometer (Fluidigm, UK) was used for acquisition of mass cytometry 

data. The suspension of stained cells was nebulized in order to create single cell droplets 

and was subsequently exposed to a high temperature plasma. This breaks the molecular 

bonds and ionizes the atoms. The resulting charged atomic ion clouds are transferred 

into the mass spectrometer. The mass cytometer is configured as a quadrupole-time-of-

flight (qTOF) instrument. The two radiofrequency quadrupoles are tuned to filter out 

naturally occuring low mass ions. The enriched higher mass reporter ions are quantitated 

by time of flight (TOF) mass analysis. Normalization of the recorded data is achieved via 

a standardized bead solution containing known concentrations of the metal isotopes 

140/142Ce, 151/153Eu, 165Ho, and 175/176Lu. A correction algorithm in the software 

of the mass cytometer normalizes the recorded data to correct for signal variation that 

may occur over protracted periods of use. 

2.6.3 Citrus analysis of high dimensional single cell immune phenotypic data 

For analysis of mass cytometry data, the algorithm cluster identification, characterization, 

and regression (CITRUS) was used. The algorithm was designed to detect statistically 
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significant differences between experimental groups in highly dimensional data sets. 

CITRUS performs multiple sequential steps in order to achieve this. First, unsupervised 

hierarchical clustering of cellular events across multiple samples by phenotypic similarity 

along the lines of a defined set of markers is performed. Then biologically relevant 

features within these clusters of cellular events are calculated on a per file basis and the 

resulting tree of clusters annotated with this information. CITRUS then interrogates this 

dataset as to whether these clusters differ on a statistically significant level in terms of 

median expression of a defined set of markers different from the subset used to create 

the tree of clusters. This is achieved by the use of a correlative linearized regression 

model, significance analysis of microarrays. The analysis uses non-parametric statistics 

to test differences along the lines of user defined experimental groups. Repeated 

permutations of the data are used to determine whether the expression of any of these 

markers is significantly related to any of the experimental groups (955). The result is 

reported not by use of classical p-values but by utilizing false discovery rate. This 

approach is chosen because due to the multiple testing problem an adjustment of p-

values is necessary. The use of more traditional techniques such as Bonferroni-

correction reduces the number of false positives at the cost of also reducing the number 

of correctly identified true positive differences. The calculation of a false discovery rate 

thus has a higher power to detect truly significant differences.  After excluding debris and 

B-cell subsets by manual gating 10000 events per individual were clustered. A minimum 

cluster size of 1% was chosen. To avoid the detection of false positives only differences 

with a false discovery rate <1% were reported. The medians were subsequently exported 

and analysed with the more classical Kruskal-Wallis test with Dunn’s post test and 

correction for multiplicity. 

 

2.7 Statistical considerations 

Normality testing of the obtained data was performed using the D’Agostino-Pearson k2 

omnibus test. When a data was deemed to be normally distributed a one-way ANOVA 

with Turkey’s post test and correction for multiplicity was used. In data sets not showing 

normal distribution the Kruskal-Wallis test with Dunn’s post test and correction for 

multiplicity was used. A p value cutoff of less the .05 was used to define statistically 

significant findings. Prism Version 7.04 software (GraphPad, USA) was used for all 

statistical analyses 
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Target Clone Lanthanide Tag 

F4/80  BM8 146Nd 

Ly6G  1A8        141Pr 

Ly6C  HK1.4      150Nd 

CD11c    N418    142Nd 

CD69  H1.2F3    145Nd 

CD45  30-F11      89Y 

CD11b  M1/70  147Sm 

CD19  6D5   166 Er 

CD25  3C7    151Eu 

CD3e 145-2C11 165Ho 

CTLA4  UC10-4B9 154Sm 

CD62L  MEL14 160Gd 

CD8a   53-6.7  168Er 

TCRb  H57597     169Tm 

NK1.1  PK136      170Er 

CD44  IM7    171Yb 

CD4  RM4-5     172Yb 

B220  RA3-6B2    144 Nd 

PD-1  J43      159Tb 

PD-L1  10F.9G2     153Eu 

LAG-3  C9B73   174Yb 

Tim-3   RMT3-23   162Dy 

Nkp46  29A1.4    167Er 

KLRG-1  2F1    176Yb   

PD-L2  122       156Gd    

2B4  eBio244F4  149Sm   

NKG2D  MI6 175Lu 
 

Table 4: List of anti-mouse mass cytometry antibodies used. 

 

.  
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3 Breeding and maintenance of TCL1 mice, BTK occupancy achieved by 

water bottle treatment with Ibrutinib or Acalabrutinib, induction of disease by 

adoptive transfer 

3.1 Specific introduction 

The Eμ-TCL1 model is the most commonly used mouse model of human CLL. The model 

is characterized by a penetrance of 100% (901). Eμ-TCL1 mice closely mirror the 

biology, microenvironment interactions, CLL associated T-cell dysfunction and role of 

PD-1/PD-L1 in induction of CLL associated T-cell deficiency (903-905, 907, 908). 

Moreover, Eμ-TCL1 mice have been shown to be a suitable platform to study the effects 

of BTK-inhibitors such as Ibrutinib and Acalabrutinib in the setting of CLL (910, 911). 

Transgenic animals generally develop full blown leukemia after 12 to 16 months making 

the use of ageing Eμ-TCL1 animals very time-consuming and costly. It is therefore very 

important to identify transgenic mice early on to avoid ageing false positive animals and 

to accurately assess disease load to avoid sacrificing animals prematurely. Adoptive 

transfer of CLL B-cells from a pool of ageing Eμ-TCL1 animals into syngeneic wildtype 

animals has been shown to be a reproducible platform to study the pathobiology of CLL 

and test novel treatment strategies (903, 907, 909, 956).   

3.2 Goals and objectives 

Our goal was to obtain a suitable pool of CLL-B-cells from ageing Eμ-TCL1 mice to be 

adoptively transferred into syngeneic wildtype animals. These animals were 

subsequently used to test the influence of Ibrutinib and Acalabrutinib treatment on T-cell 

function and assess the immunophenotype of the CLL microenvironment and develop a 

combination strategy of BTK inhibitor treatment and anti-PD-L1 immune checkpoint 

blockade with the goal of achieving optimal T-cell function in the microenvironment. We 

were aiming to demonstrate that by continuously applying either Ibrutinib or Acalabrutinib 

by water bottle at a concentration of 0.15 mg/ml in 2% HPBCD full occupancy of BTK 

could be achieved and this route of application was thus suitable to study the effects of 

these BTK inhibitors in vivo.  

3.3 Specific methods 

3.3.1 Genotyping 

Animals were ear notched for identification and to obtain material for genotyping. The 

material was digested at 55 °C overnight in „tail buffer“ (50mM TRIS pH 8.0 (Sigma, UK), 

25mM EDTA disodium salt pH 8.0 (Sigma, UK), 100mM NaCl (Fisher Scientific, UK), 1% 
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sodium dodecyl sulfate (SDS) (Sigma,UK) and Proteinase K 20mg/ml (Roche 

Diagnostics, UK)). DNA was extracted using alcohol precipitation. Polymerase chain 

reactions (PCRs) were performed using the TCL1 primers (5’-3’) 

GCCGAGTGCCCGACACTC (TCL1 Forward) and CATCTGGCAGCAGCTCGA (TCL1 

Reverse). The Mouse beta globulin (MBG) gene was used as an internal positive control 

(5’-3’) CAGCTCCTGGGCAATATGAT (MBG Forward) and 

TTGTTCACAGGCAAGAGCAG (MBG Reverse). A negative control not containing DNA 

was also utilized. 1μl of DNA, 2μl of TCL1 Forward and Reverse and 2μl of MBG Forward 

and Reverse each were filled up with megamix blue PCR mix (Clent Life Science, UK) 

to a total volume of 25μl. The following PCR conditions were used for both reactions: 

Activation at 95°C (5 min), denaturation at 95°C (30 sec), annealing at 58°C (30 sec) and 

extension at 72°C (30 sec) for 35 cycles followed by final extension at 72°C (5 min). The 

obtained products, the corresponding controls and a 100bp DNA ladder (Life 

Technologies, UK) were applied on a 2% agarose gel containing 1x gel red at 80 V for 

45 minutes for separation. 

3.3.2 Haematology testing 

In ageing Eμ-TCL1 mice haematology testing was routinely initiated at the age of 6 

months and conducted monthly to biweekly. Experimental animals were tested weekly 

from the day of adoptive transfer of CLL B-cells. The animals were heated under a heat 

lamp and put in a restrainer. To obtain blood, a 19G needle (BD, UK) was used to 

puncture the lateral tail vein. Approximately 100μl of peripheral blood were collected in 

a 0,5 ml microcentrifuge tube (VWR, UK) containing 10 μL of 0.5 M EDTA (Sigma, UK). 

For preparation of blood smears 10 μl of peripheral blood were pipetted on a microscope 

slide (VWR, UK) and smeared using an additional slide. Slides were preserved in 

methanol (Fisher scientific, UK) for 30s, then stained in modified Wright stain (Sigma, 

UK) for 40s and washed in deionized water (Milipore, Merck, UK) for 45s. Slides were 

rinsed in deionized water (Milipore, Merck, UK) and allowed to air dry. For hematologic 

assessment the WBC count was estimated by counting 5- 10 hpf using a 40x objective 

of a bright field microscope (Zeiss, UK).  For flow cytometry-based analysis 20μl of 

peripheral blood were filled up with FACS buffer (PBS (Sigma, UK) with 2% FCS (Gibco, 

UK)) to 100μl in 15 ml centrifuge tube (VWR, UK). The following flurochrome-labelled 

antibodies were added at a ratio of 1:100: Anti mouse CD45 APC (clone 30-F11, 

eBioscience, UK), anti-mouse CD19 FITC (clone 1D3, ebioscience, UK) and anti-mouse 

CD5 PE-Cy7 (clone 53-7.3, biolegend, UK). Cells were incubated for 30 minutes at 4°C. 

1ml of FACS buffer was added and cells were centrifuged at 300g for 10 minutes at 4°C. 
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The supernatant was decanted and the washing step repeated. Erythrocytes were then 

lysed in 5ml 1X ammonium-chloride-based RBC lysis buffer (NH4CL 8.3g/l (Sigma, UK), 

KHCO3 1g/l (Sigma, UK), EDTA 0.037g/l (Sigma, UK)). After 7 minutes incubation, 10 

ml of PBS were added and centrifuged at 300g for 10 minutes at 4°C, resuspended in 

300μl FACS buffer containing 1:1000 DAPI (ebioscience, UK) and transferred to 5 ml 

polypropylene round bottom tubes (Corning, UK). Cellular events were then recorded on 

a BD LSR Fortessa flow cytometer (BD Biosciences, UK). The analysis was conducted 

using Cytobank (Cytobank Inc, USA). 

3.3.3 Processing of mouse spleens into a single cell suspension 

Mouse spleens were removed immediately after euthanizing the animals by cervical 

dislocation. The removal of the organ was performed under sterile conditions in a BSU 

procedure room. Spleens were transported in PBS (Sigma, UK) containing 20% FCS 

(Gibco, UK) and kept on ice.  The GentleMACS tissue dissociator (Miltenyi, UK) was 

utilized for preparation of single suspension according to the manufacturer’s 

recommendations for mouse spleen processing without enzymatic treatment. 

Subsequently the lysis of erythrocytes with an ammonium-chloride-based RBC lysis 

buffer (NH4CL 8.3g/l (Sigma, UK), KHCO3 1g/l (Sigma, UK), EDTA 0.037g/l (Sigma, 

UK)) was performed. Centrifugation of cell suspensuions was generally performed at 

300g for 10 minutes at 4°C. The cells in the obtained single cell solutions were quantified 

using a Luna fl automated cell counter (Logos bioysstems, USA) after dilution of a 10μl 

aliquot with an equal amount of 0.4% Tryphan blue (Sigma, UK). Splenocytes were then 

cryopreserved at a maximum density of 200x106cells/ml in FCS (Gibco, UK) containing 

10% dimethyl sulfoxide (DMSO) (Fisher Scientific, UK) and kept in a suitable liquid 

nitrogen storage tank. 

3.3.4 Cell thawing procedure 

Thawing of cryopreserved splenocyte samples was performed in a water bath at 37°C. 

To avoid contamination the vials were disinfected using 70% industrial methylated spirit 

(IMS) (Fisher Scientific, UK) and subsequently opend in a class II biosafety cabinet. The 

cell suspension was pipetted into 10ml RPMI 1640 (Gibco, UK) supplemented with 10% 

FCS (Gibco, UK), 1% Penicillin-Streptomycin (Sigma, UK) at 37°C. Subsequently the 

suspension was centrifuged at 300 x g for 10 minutes at room temperature and 

resuspended in a volume suitable for number of cells contained in the pellet. Automated 

cell counting was conducted on a Luna fl automated cell counter (Logos bioystems, USA) 

after dilution of a 10μl aliquot with an equal amount of 0.4% Tryphan blue (Sigma, UK). 
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3.3.5 Negative selection of CLL and B cells 

T-cells where isolated from splenocytes suspensions using the pan-B-cell isolation kit II 

(Miltenyi, UK) which uses MACS. The suspension were centrifuged at 300 x g for 10 

minutes at 4°C, the supernatant completely aspirated and the pellet resuspendend in 40 

μL of ice-cold MACS buffer (PBS (Sigma, UK) pH 7.2, 0.5% BSA (Sigma, UK), 2mM 

EDTA (Sigma, UK)) per 10⁷ total cells. 10 μL of Pan B Cell Biotin-Antibody Cocktail 

(Miltenyi, UK) per 10⁷ total cells were added. The cells were well mixed and incubated 

for 5 minutes at 4°C. A further 30 μL of ice-cold MACS buffer per 10⁷ total cells and 20 

μL of Anti-Biotin MicroBeads (Miltenyi, UK) per 10⁷ cells were added. Cells were mixed 

well and incubated for another 10 minutes at 4°C. Finally, the volume was adjusted to 

500μl per 108 cells (minimum 500μl). For separation, a LD column (Miltenyi, UK) was 

placed in the magnetic field of a MACS separator (Miltenyi, UK) and primed with 2 ml of 

MACS buffer. The cell suspension was applied to the column and flushed through by 

applying 1ml MACS buffer twice. The effluent, which was collected in a 15 ml centrifuge 

tube (VWR, UK), contained the unlabelled pan-T-cell fraction..  

3.3.6 Adoptive transfer of CLL B-cells 

4x107 syngeneic mouse CLL B-cells derived from cryopreservation were injected by tail 

vein injection in accordance to standard procedures (952). Prior to the injection the 

content of CD19+CD5+ CLL B-cells in the splenocytes suspensions was measure using 

flow-cytometry. A maximum volume of 5ml/kg was injected per animal. We used 

C57BL/6 wild type animals 2.5 months of age as recipients Following the adoptive 

transfer procedure animals were closely monitored by inspection and physical 

examination. The CLL disease status was quantified weekly using peripheral blood 

smears and flow cytometry. The animals where culled once the showed sign of poor 

health or fulfilled one of the following endpoint criteria: spleen size >3cm in diameter, 

WBC count in blood smear >100 WBC/hpf (40x objective), >90% of lymphocytes 

CD19+CD5+ CLL cells. Euthanization was performed using cervical dislocation. 

3.3.7 Application of experimental substances by water bottle preparation or i.p. 

injection 

Ibrutinib (kindly provided by Janssen pharmaceuticals) and Acalabrutinib (kindly 

provided by Acerta pharma) were applied via water bottle preparation at a concentration 

of 0.15mg/ml in 2% HPBCD (Sigma, UK). Water bottle preparations were prepared under 

sterile conditions and sterile filtered through a 0.2 μm PES filter top (Thermofisher 

scientific, UK) before application. Anti mouse PD-L1 clone 80 mIgG1 D265A (equivalent 
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to Durvalumab, kindly provided by Astra-Zeneca) or isotype control NIP228 mIgG1 

D265A (kindly provided by Astra-Zeneca) were applied by i.p. injection at a dose of 

10mg/kg every 3 days. A maximum volume of 10 ml/kg was used for i.p. injections. Prior 

to i.p. injections aqueous stock solutions of antibodies were obtained by dissolving the 

antibody in sterile PBS and under sterile conditions. During the treatment periods the 

animals were assessed daily by physical examination and culled at predefined 

endpoints.  

3.3.8 BTK occupancy assays 

96 well microplates (PerkinElmer, UK) were coated overnight at 4°C with 125 ng/well 

anti-BTK antibody (Clone 53/BTK, BD Biosciences) and blocked with BSA (Gibco, UK) 

the following day for 2 to 3 hours at room temperature. Lysis buffer containing protease 

inhibitor cocktail (Sigma, UK) was used to lyse frozen splenocyte cell pellets. Lysates 

were incubated for 1 hour on ice in the presence or absence of a saturating concentration 

of Ibrutinib or Acalabrutinib (10−6 mol/L) followed by an incubation of a biotinylated 

derivate (ACP-4016; 10−7 mol/L) serving as a probe. The equivalent of 5 × 105 cells of 

lysate/well, in replicates of three, were added to the coated OptiPlates and incubated for 

2 hours. After a 1-hour incubation with HRP (Invitrogen, UK; ELISA grade; 120 ng/mL), 

a SuperSignal ELISA Femto Substrate (Thermo Fisher Scientific, UK) was added, and 

chemiluminescence was measured on a multiplate reader (PerkinElmer, UK). The 

percentage of BTK occupancy for the drug-treated mice was calculated relative to the 

average signal from the vehicle control group. The samples without exogenous Ibrutinib 

or Acalabrutinib represented 100% free BTK (or 0% occupied BTK), and the samples 

with exogenous BTK inhibitor represented 0% free BTK (or 100% occupied BTK). 

3.4 Results 

3.4.1 Breeding of Eμ-TCL1 animals and genotyping of mouse litters 

All animals resulting from the breeding of Eμ-TCL1 animals were genotyped to identify 

transgenic animals early on. Figure 4 shows an example of genomic PCR results from 9 

different littermates. The housekeeping gene MBG was utilized to confirmed the quality 

of the extracted genomic DNA. MBG is visualized as a 194 bp band in gel 

electrophoresis. The bands at 350 bp illustrate the presence or absence of the TCL1 

trangene. Eμ-TCL1 transgenic males were bred with a harem of 2 C57BL/6 transgenic 

females. Pairing of the breeders occurred at 6-8 weeks of age and breeding was 

continued for a maximum of 10 months or until no new litters were born for at least 2 

months. The mouse littes were weaned when reaching 3-4 weeks of age, ear notched 
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and genotyped. The animals were housed in groups of a maximum of 5 littermates. 

Pairing a transgenic Eµ-TCL-1 male with syngeneic wildtype females usually yielded 

approximately 50% transgenic pups. Theoretically Eμ-TCL1 mice could also be bred with 

each other as transgene homozygosity is not fatal. We did, however, refrain from this 

strategy as to prevent the occurance of sub-strains over time and and ascertain control 

of TCL1 lines derived from specific index animals as suggested by the good practise 

guidelines on the maintenance of transgenic mouse strains (957). Wildtype littermates 

were culled after obtaining genotyping results while transgenic animals were allowed to 

age and closely monitored for the development of CLL. Animals were culled when found 

to be fully leukemic at around 12-16 months of age, the spleens harvested, processed 

to single cell suspensions and cryopreserved in liquid nitrogen for subsequent adoptive 

transfer experiments.  

 

Figure 4: Genotyping procedure to maintain the Eμ-TCL1 colony. Genomic DNA was 
expanded with TCL1 and MBG primers. MBG bands at 194 bp demonstrate the quality of the 
extracted DNA, TCL1 bands at 350 bp demonstrated the presence of the Eμ-TCL1 transgene. A 
positive control with known presence (+) and a negative control with known absence (-) of the 
transgene as well as a no-template control containing only water (H) were included. 

 

3.4.2 BTK occupancy achieved by water bottle treatment with Ibrutinib and 

Acalabrutinib 

We aimed to determine whether treatment of mice with Ibrutinib and Acalabrutinib by 

water bottle preparation would yield adequate occupancy of BTK for further experiments. 

The animal experiment conducted is summarized in Figure 5. Briefly, 4 C57BL/6 wildtype 

animals (2 males, 2 females) per group with an age of 2.5 months were treated with 

Ibrutinib or Acalabrutinib by water bottle preparation at a concentration of 0.15 mg/ml in 

2% Hydroxpropyl beta-cyclodextrin or vehicle control only for 5 days. Animals were then 

sacrificed, spleens harvested and single cell splenocyte preparations obtained.  
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Figure 5: Animals experiment for measurement of BTK occupancy using water bottle 
preparations of Ibrutinib and Acalabrutinib. 4 animals per group 2.5 months of age were 
treated with 0.15 mg/ml Ibrutinib in 2% HPBCD, Acalabrutinib (ACP-196) in 2% HPBCD or 2% 
HPBCD (vehicle) only for 5 days. Abbreviations: WT- wild type.  

 
 
 
The single cell splenocyte preparations were subsequently subjugated to the BTK 

occupancy assay described under 3.3.8. Figure 6 illustrates the BTK occupancy 

achieved with Ibrutinib or Acalabrutinib treatment by water bottle preparation. The 

readout of the assay is % of free BTK.  The percentage of BTK occupancy was calculated 

relative to the average signal from the vehicle control group. The samples without 

exogenous Ibrutinib or Acalabrutinib represent 100% free BTK (or 0% occupied BTK), 

and the samples with exogenous Ibrutinib or Acalabrutinib represent 0% free BTK (or 

100% occupied BTK). A BTK occupancy of 90% and 95.9% respectively were reached 

after 5 days of treatment with Ibrutinib and Acalabrutinib. ≥90% of occupancy of available 

target is generally considered full occupancy of the receptor (958).  
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Figure 6: BTK occupancy after 5 days of Ibrutinib or Acalabrutinib treatment by water 
bottle preparation. The readout of the assay is % of free BTK.  The percentage of BTK 
occupancy was calculated relative to the average signal from the vehicle control group.3 groups 
n=4 each.  Abbreviations: SD – standard deviation. 
 

3.4.3 Adoptive transfer experiments for assessment of influence of Ibrutinib and 

Acalabrutinib on T-cell function and immunephenotype 

Animal experiments in order to obtain samples for subsequent immunophenoypic and 

functional analysis were conducted as summarized in Figure 7. In short C57BL/6 

wildtype animals 2.5 months of age were injected with 4x107 syngeneic CLL B-cells from 

the same donor pool of syngeneic CLL B-cells purified from Eμ-TCL1 transgenic spleens 

of CLL bearing ageing individuals. Groups were equally split into male and female 

individuals. Peripheral blood was analysed by blood smears for estimation of the WBC 

and flowcytometry once weekly. Peripheral blood load of CD5+CD19+ CLL cells 

exceeded 10% after 2 weeks. At this point animals were randomized to 3 treatment 

groups consisting of 17 animals each: vehicle treatment (2% HPBCD), Ibrutinib treatment 

(0.15 mg/ml Ibrutinib in 2% HPBCD) or Acalabrutinib (0.15 mg/ml ACP-196 in 2% 

HPBCD). Animals were sacrificed after 3 weeks of treatment and spleens harvested. 
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Figure 7: Adoptive transfer experiments for assessment of influence of Ibrutinib and 
Acalabrutinib on T-cell function and immunephenotype. C57BL/6 wildtype animals 2.5 
months of age were adoptively transferred with 4x107 CLL B-cells. Peripheral blood CLL B-cell 
load was assessed weekly by flow cytometry. When peripheral blood CLL load exceeded 10% 
(day14) animals were randomized to 3 groups (17 animals each): 0.15 mg/ml Ibrutinib in 2% 
HPBCD, Acalabrutinib (ACP-196) in 2% HPBCD or 2% HPBCD (vehicle) for 3 weeks. 
Abbreviations: wt- wild type, PB – peripheral blood. 
 
 

Figure 8A illustrates the flowcytometry assessment of peripheral blood CLL load. 

CD5+CD19+ events constitute the CLL B-cell population. CLL B-cell load exceeded 10% 

14 days after adoptive transfer. Figure 8 B is depicting the load of CD5+CD19+ CLL cells 

in the peripheral blood from animals of all 3 treatment groups on day 14. Peripheral blood 

CLL loads were comparable in all 3 groups (no statistically significant differences 

detected, p=0.5218) demonstrating an equal disease burden at treatment initiation. 

Blood smears from CLL bearing adoptively transferred animals showed elevated 

numbers of mature appearing, enlarged lymphocytes with dense nuclear chromatin 

structure. Similar to blood smears in human CLL patients, smudge cells were seen as 

an artefact of the smear preparation (Figure 9A). Figure 9B demonstrates the course of 

peripheral blood WBC in all 3 treatment groups. Intially an exponential increase in WBC 

in the peripheral blood occured. This continued unabated in the vehicle treated animals 

while in both Ibrutinib and Acalabrutinib treated animals a plateau around 20/hpf was 

reached after 1 week of treatment corresponding to approximately 25000-35000 WBC/μl. 

On day 28 of the experiment a statiscally significant difference was reached between 

vehicle treated and Ibrutinib/Acalabrutinib treated animals (p<0.0001).  
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Figure 8: Disease burden in all 3 treatment groups on the day of treatment initiation (d14) 
assessed by flow cytometry.  (A) Example of flow cytometry graphs in peripheral blood C57BL/6 
mice adoptively transferred with syngeneic CLL B-cells. Whole blood was stained with anti-CD45, 
anti-CD19, anti-CD5 and DAPI. Cells were gated on CD45+ viable lymphocytes (B) CD19+CD5+ 
CLL B-cell load at day 15 following adoptive transfer. No statistically significant differencens were 
detected between treatment groups (p=0.5218). Statistical analysis by 1way Anova. 3 groups 
n=17 each. Abbreviations:  Ns – not significant, p > 0.05; * - p ≤ 0.05; ** - p ≤ 0.01; *** - p ≤ 0.001; 
**** - p≤ 0.0001. 
 

 

 
Figure 9: Course of WBC in peripheral blood of vehicle treated, Ibrutinib treated and 
Acalabrutinib treated animals. (A) Peripheral blood smear of a CLL bearing animal. Smears 
were stained with a modified Wright stain and leukocytes were counted using a bright field 
microscope in 5-10 hpf of a 40x objective in a suitable portion of the smear. CLL B-cells were 
characterized by large size and dense cluttered chromatin structure. Smudge cells could be 
found. (B) Illustration of the course of peripheral blood WBC in all 3 treatment groups. In vehicle 
treated animals exponential increase of WBC continues unabated. In Ibrutinib and Acalabrutinib 
treated animals a plateau ~ 20/hps is reached. (p<0.0001). Statistical analysis by Kruskal-Wallis 
test. 3 groups n=17 each.  Abbreviations:  Ns – not significant, p > 0.05; * - p ≤ 0.05; ** - p ≤ 0.01; 
*** - p ≤ 0.001; **** - p≤ 0.0001; PB – peripheral blood.  
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The morphology of the abdominal situs of untreated mice with fully developed CLL 

following adoptive transfer on day 35 is depicted in Figure 10A. Similar to human CLL 

patients marked hepatosplenomegaly was observed. Figure 10 B demonstrates spleen 

weight and spleen size on day 35 after adoptive transfer when animals were sacrificed. 

Both Ibrutinib and Acalabrutinib treatment reduced spleen size and spleen weight to a 

similar extent following 3 weeks of treatment compared to vehicle treated animals. The 

detected differences were statistically significant (p<0.0001). 

 

 

 
 
Figure 10: Spleen size and spleen weight at d 35 in vehicle treated and BTK inhibtor treated 
animals.  (A) Mice developed hepatomegaly and splenomegaly with the onset of CLL (B) Spleen 
size and spleen weight on day 35 after adoptive transfer in all 3 treatment groups. Both Ibrutinib 
and Acalabrutinib treatment decreases spleen size and weight to a similar extent compared to 
vehicle treated animals. The findings were statiscally significant (p < 0.0001). Statistical analysis 
by 1way Anova.3 groups n=17 each.  Abbreviations:  Ns – not significant, p > 0.05; * - p ≤ 0.05; 
** - p ≤ 0.01; *** - p ≤ 0.001; **** - p≤ 0.0001. 
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3.4.4 Adoptive transfer experiments for development of a BTK inhibitor anti-PD-

L1 combination strategy 

In a second adoptive transfer experiment we aimed to obtain splenocyte samples to 

assess the effect of BTK inhibitor and anti-PD-L1 immune checkpoint blockade on T-cell 

function and immune phenotype of the CLL microenvironment. The experiment is 

summarized in Figure 11. In short, C57BL/6 wildtype animals 2.5 months of age were 

injected with 4x107 syngeneic CLL B-cells from the same donor source of syngeneic CLL 

B-cells derived from ageing Eμ-TCL1 animals. Haematology testing of peripheral blood 

was conducted once weekly. Peripheral blood load of CD5+CD19+ CLL cells assessed 

by flow cytometry exceeded 10% after 2 weeks – animals were randomized to 6 

treatment groups consisting of 17 animals each: vehicle treatment (2% Hydropropyl beta-

cyclodextrin) Ibrutinib treatment (0.15 mg/ml Ibrutinib) or Acalabrutinib (0.15mg/ml) in 

combination with either antibody isotype control (NIP228 mIgG1 D265A) or anti-PDL1 

antibody (anti mouse PD-L1 clone 80 mIgG1 D265A) at a dose of 10 mg/kg every 3 days 

(q3d) i.p. Animals were sacrificed after 3 weeks of treatment and spleens harvested. 

 

Figure 11: Adoptive transfer experiments for development of a BTK inhibitor anti-PD-L1 
combination strategy. C57BL/6 wildtype animals 2.5 months of age were adoptively transferred 
with 4x107 CLL B-cells. Peripheral blood CLL B-cell load was assessed weekly by flow cytometry. 
When peripheral blood CLL load exceeded 10% (day14) animals were randomized to 6 groups 
(17 animals each): 2% HPBCD (vehicle) + NIP228 mIgG1 D265A 10mg/kg q3d, 0.15 mg/ml 
Ibrutinib in 2% HPBCD + NIP228 mIgG1 D265A 10mg/kg q3d, Acalabrutinib (ACP-196) in 2% 
HPBCD + NIP228 mIgG1 D265A 10mg/kg q3d, 2% HPBCD (vehicle) + anti mouse PD-L1 clone 
80 mIgG1 D265A 10 mg/kg q3d, 0.15 mg/ml Ibrutinib in 2% HPBCD + anti mouse PD-L1 clone 
80 mIgG1 D265A 10 mg/kg q3d, Acalabrutinib (ACP-196) in 2% HPBCD + anti mouse PD-L1 
clone 80 mIgG1 D265A 10 mg/kg q3d for 3 weeks. Abbreviations: wt- wild type, PB – peripheral 
blood. 
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Figure 12 shows the peripheral blood CLL B-cell load as assessed by flow cytometry on 

day 15 following adoptive transfer, right before treatment initiation. No statistically 

significant differences between treatment groups were detected at this point in time, 

indicating an equal disease burden before treatment initiation.  

  
Figure 12: Disease burden in all 6 treatment groups on the day of treatment initiation (d14) 
assessed by flow cytometry. CD19+CD5+ CLL B-cell load at day 15 following adoptive transfer. 
Statistical analysis by Kruskal-Wallis-test.  6 groups n=17 each. No statistically significant 
differencens were detected between treatment groups (p=0.1593). Abbreviations:  Ns – not 
significant, p > 0.05; * - p ≤ 0.05; ** - p ≤ 0.01; *** - p ≤ 0.001; **** - p≤ 0.0001; PB – peripheral 
blood; aPD-L1 – anti PD-L1. 

Figure 13 shows the development of WBC in the peripheral blood of adoptively 

transferred animals in all 6 treatment groups. As with the initial experiment, in vehicle 

treated animals the exponential increase of WBC continued unbated while in Ibrutinib 

and Acalabrutinib treated animals a plateau around 20/hpf (corresponding to 25000-

35000 WBC/μl) was reached. In animals treated with single agent anti-PD-L1 immune 

checkpoint blockade, an exponential increase with a slightly lower slope compared to 

vehicle treated animals was observed. Mice treated with combinations of Ibrutinib or 

Acalabrutinib and anti-PD-L1 antibodies did not differ from those treated with single 

agent BTK inhibitors in terms of the course of peripheral blood WBC. All differences 

reached statistical significance on day 28 following adoptive transfer (p<0.0001).  
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Figure 13: Course of WBC in peripheral blood of BTK inhibitor/anti-PD-L1 combination 
treated animals.  Illustration of the course of peripheral blood WBC in all 6 treatment groups. In 
vehicle/isotype control treated animals expontenial increase of WBC continues unabated. In 
Ibrutinib and Acalabrutinib treated animals a plateau ~ 20/hps is reached. In single agent anti-
PD-L1 treated animals the slope of the increase is decreased. Combinations of BTK inhibitor and 
anti-PD-L1 do not differ from single agent BTK inhibitor (p<0.0001). Statistical analysis by Kruskal 
wallis test. 6 groups n=17 each. Abbreviations:  Ns – not significant, p > 0.05; * - p ≤ 0.05; ** - p 
≤ 0.01; *** - p ≤ 0.001; **** - p≤ 0.0001; PB – peripheral blood.  
 
 

Spleen weights and sizes have been documented in all animals after being sacrificed on 

day 35 following adoptive transfer. Results are visualized in Figure 14 A and B. Single 

agent anti-PD-L1 treatment did not significantly affect spleen size or spleen weight 

compared to vehicle/isotype control treatment. Ibrutinib and Acalabrutinib decreased 

spleen size and weight to similar extent. The combinations of Ibrutinib or Acalabrutinib 

and anti-PD-L1 antibody did not result in a further reduction of spleen size and weight (p 

< 0.0001). However, it should be noted that disease control with single agent Ibrutinib or 

Acalabrutinib was already quite far reaching with spleen weight and size approaching 

those of wild type animals in this experiment. A further clinically appreciable effects may 

thus be difficult to obtain with the treatment combinations.   
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Figure 14: Spleen size and spleen weight at d 35 in BTK inhibitor/anti-PD-L1 combination 
treated animals.    (A) Illustration of spleen sizes of animals in all 6 treatment groups. Single 
agent anti-PD-L1 does not affect spleen size significantly. Single agent Ibrutinib or Acalabrutinib 
as well as BTK inhibitor/anti-PD-L1 combinations decrease spleen size to a similar extent (p < 
0.0001) (B) Illustration of spleen weights of animals in all 6 treatment groups. Single agent anti-
PD-L1 does not affect spleen size significantly. Single agent Ibrutinib or Acalabrutinib as well as 
BTK inhibitor/anti-PD-L1 combinations decrease spleen weights to a similar extent (p < 0.0001). 
Statistical analysis by Kruskal-Wallis test. 6 groups n=17 each.  Abbreviations:  Ns – not 
significant, p > 0.05; * - p ≤ 0.05; ** - p ≤ 0.01; *** - p ≤ 0.001; **** - p≤ 0.0001. 
 

3.5 Discussion 

Our efficient colony of ageing Eμ-TCL1 transgenic mice as well as our well-established 

procedures for genotyping, hematology assessment of animals and splenocyte 

manipulation allowed us to quickly obtain a sufficiently large pool of splenocytes from 

CLL bearing transgenic individuals for the adoptive transfer experiments planned. Before 

initiation of these pre-clinical intervention trials we sought to confirm that oral 

administration of Ibrutinib and Acalabrutinib by water bottle would lead to sufficient BTK 

blockade in vivo. Our BTK occupancy experiments in C57BL/6 wildtype animal showed 

a BTK occupancy of 95.9% and 90% respectively for water bottle treatment with Ibrutinib 

and Acalabrutinib at a concentration of 0.15 mg/ml. The average occupancy measured 

was somewhat higher for Acalabrutinib compared to Ibrutinib treatment, however. 

Indeed, in the literature higher first past metabolism and lower oral bioavailability has 
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been described for Ibrutinib compared to Acalabrutinib (959, 960). This may explain the 

slightly lower BTK occupancy observed for Ibrutinib treatment in these experiments. Still, 

as ≥90% of occupancy of available target is generally considered full occupancy of the 

receptor we have confirmed adequate BTK blockade for oral administration of both 

substances by water bottle at the reported dose (958). 

We have previously established optimized and standardized adoptive transfer 

procedures that reliably replicate the CLL disease phenotype in previously disease-free 

syngeneic wildtype animals. By using a cell dose of 4x107 CLL B-cells injected 

intravenously via the tail vein we have achieved a latency of disease development of 

approximately 2 weeks while fully developed leukemia is observed at approximately 7 

weeks after adoptive transfer. This leaves a suitable window to study the influence of 

novel CLL treatments on the immune microenvironment. Animals 2.5 months of age were 

chosen to avoid ageing related changes of T-cell phenotype and function which could 

interfere with the outcome of the subsequent functional and phenotypic assessment. In 

a first adoptive transfer experiment animals were treated with either Ibrutinib or 

Acalabrutinib at a concentration of 0.15 mg/ml via water bottle treatment. Both BTK 

inhibitors showed similar potential to control peripheral blood as well as spleen CLL load 

in these experiments. In a second round of adoptive transfer experiments animals were 

treated with single agent Ibrutinib, Acalabrutinib or anti-PD-L1 immune checkpoint 

blockade as well as combinations of the BTK inhibitors and anti-PD-L1 antibodies. 

Similar to the initial experiments both Ibrutinib and Acalabrutinib showed efficacy in 

controlling the peripheral blood and spleen CLL load. Single agent anti-PD-L1 antibody 

demonstrated no effects on spleen sizes and weights and only a modest effect on 

peripheral blood CLL B-cell load. This is in contrast to our previous study showing a 

complete blockade of CLL development in the Eμ-TCL1 adoptive transfer model with 

anti-PD-L1 immune checkpoint blockade (836). However, it should be noted that anti-

PD-L1 immune checkpoint blockade was applied from the day of adoptive transfer in this 

earlier study. The observed effect was thus a prevention of CLL implantation following 

adoptive transfer rather than resulting from treatment of established disease. The 

applicability of these results to the clinical situation in human CLL patients where the 

disease is usually discovered at more advanced stages and treatment is only initiated in 

symptomatic patients is thus questionable. The modest effect in the current experiments 

where treatment was initiated only after established disease could be detected much 

more closely mirrors the lack of efficacy of single agent Pembrolizumab in CLL patients 

in early clinical trials (108). Combinations of either Ibrutinib or Acalabrutinib and anti-PD-

L1 immune checkpoint blockade have failed to show improved CLL clearance in the 
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adoptive transfer experiments at hand. However, it should be noted the the current study 

was neither powered to detect differences in clinical outcomes in these animals nor was 

the treatment period long enough to appreciate potentially subtle and protracted changes 

in CLL load with immunotherapy. Moreover, disease control with single agent Ibrutinib 

or Acalabrutinib was already quite far reaching with spleen weight and size approaching 

those of wild type animals in this experiment. A further clinically appreciable effect may 

thus be difficult to obtain with the treatment combinations.   The lack of short-term clinical 

effects does thus not preclude improved disease control in the long run should improved 

T-cell function be achieved with the combination treatment. 
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4 Design of a mass cytometry panel for assessment of immune phenotype 

and immune checkpoint expression in the splenic microenvironment of CLL 

bearing TCL-1 mice 

4.1 Specific introduction 

As described in 1.2.1 development of CLL is associated with a pronounced remodeling 

of the microenvironment to support growth and survival of the CLL B-cells as well as 

provide an immunosuppressive niche to allow for immune evasion. Overexpression of 

immune checkpoint molecules such as PD-1/PD-L1, LAG-3, TIM-3 and CTLA-4 

contribute to this immunosuppression (216, 352, 372, 425, 426). The BTK inhibitor 

Ibrutinib has been described to be able to modulate the function of CLL associated T-

cells (877, 878). In order to improve the understanding of the underlying mechanisms we 

sought to detail the influence of BTK inhibitors Ibrutinib and Acalabrutinib on the 

composition of the CLL microenvironment and the expression of important immune 

checkpoint molecules. Over the past decades, studies of complex cellular networks have 

relied on flow cytometry. However, this method is limited by spectral overlap (961). Given 

the complexity of CLL microenvironment interactions we chose to use mass cytometry 

for the analysis of the immune phenotype of the CLL microenvironment of the Eμ-TCL1 

adoptive transfer model.  

Mass cytometry is a method of “single cell technology” that allows for the parallel 

assessment of at least 40 markers. Mass Cytometry has been developed as a 

combination of flow cytometry and mass spectrometry. This approach utilises stable 

isotopes of non-biological rare earth metals (usually lanthanides) tagged to monoclonal 

antibodies (962). Cells are stained with antibodies labelled with lanthanide metal ions 

(963, 964) and iridium-conjugated DNA intercalators (965). Chemical labelling with 

chelated metals such as Cisplatin (966-968) can be used as a viability measure. Single 

cell droplets are created by nebulization and brought into contact with a high temperature 

(~7000 K) plasma. This breaks the molecular bonds and ionizes the atoms. This results 

in clouds of charged ions which can then be analysed using mass spectrometry. The 

mass cytometer is configured as a qTOF instrument (969). The two radiofrequency 

quadrupoles are tuned to filter out naturally occurring low mass ions. The enriched higher 

mass reporter ions are quantitated by time of flight mass analysis (Figure 15).  

In order to quantify the amount of each target protein the antibody panel used in mass 

cytometry must provide sufficient sensitivity (the ratio of signal derived from the target 

and background signal derived from undesired sources). Although mass cytometry 

eliminates the issues arising from spectral overlap of fluorochromes in classical flow 
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cytometry the possibility of interference as a result of of impurities of the mass tags used 

as well as from oxidation of the reporter ions exists (970). Moreover, small variations in 

initial position and velocity of ions result in broadening of the apparent mass peak 

resulting in some signal being measurable in adjacent channels (less than 0.3%) (971). 

A careful design of mass cytometry panels along the lines of known percent signal 

overlap, target signal intensity and spillover tolerance using the Maxpar Panel Designer 

(Fluidigim, UK) should be used to avoid issues with data quality. The Panel Designer 

assigns a signal and tolerance value to each target based on an included database. 

Signal is the expected 75th percentile dual count value of the population expressing the 

highest amount of a given target. The Maxpar Panel Designer calculates the background 

(in counts) derived from signal overlap expected in all channels of the panel using the 

following formula:     

Signal Overlap = Signal x (percent overlap/100)  

The tolerance value is 20% of the 75th percentile for the population expressing the lowest 

amount of a given target. This value is compared to the cumulative signal overlap within 

the channel to gauge the appropriateness of the channel for the target. 

 

 

Figure 15: Work-flow summary of mass cytometry analysis. Staining is performed with 
antibodies attached to heavy metal ion reporters. Single-cell droplets are created by nebulization, 
and an elemental mass spectrum is acquired on a single cell basis. The integrated signals can 
then be analysed by traditional gating approaches as well as using advanced analysis algorithms 
such as tree plots. This Figure was repoduced from Trends in Immunology, A deep profiler's guide 
to cytometry, 323-32, Bendall SC, Nolan GP, Roederer M, Chattopadhyay PK, copyright Elsevier 
(2012) (972). 
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4.2 Goals and objectives 

Our goal was to develop a mass cytometry panel that allows for identification of important 

immune cell subsets in the CLL microenvironment as well as expression of immune 

checkpoint molecules, PD-1, PD-L1, PD-L2, LAG-3, TIM-3, KLRG-1 and 2B4. 

4.3 Specific methods  

4.3.1 Antibody labelling for mass cytometry 

The following Maxpar X8 antibody labelling kits (Fluidigm, UK) were used: 175Lu, 

149Sm, 156Gd, 176Yb, 147Sm. The following antibodies have been labelled: anti-

mouse NKG2D mIgG2a clone  MI6 (ebioscience, UK), anti-mouse PD-L2 mIgG2a clone 

122 (ebioscience, UK), anti-mouse 2B4 mIgG2a clone ebio244F4 (ebioscience, UK), 

anti-mouse KLRG-1 mIgG2a clone 2F1 (BD biosciences, UK), anti-mouse CD11b 

mIgG2a clone M1/70 (biolegend, UK). For polymer metal loading Maxpar polymer 

(Fluidigm, UK) was resuspended in 95 μl of L-Buffer (Fluidigm, UK). 5μl of the 

appropriate Lathanide metal solution (Fluidigm, UK) were added and the mixture was 

incubated at 37°C for 40 minutes. 200 μl of L-Buffer (Fluidigm, UK) and the metal-loaded 

polymer mixture were added to a 3 kDA Amicon Ultra-500 μl V bottom filter unit (Merck, 

UK) and centrifuged at 12000g for 25 minutes at room temperature. For antibody buffer 

exchange 300 μl of R-Buffer (Fluidigm, UK) and 100 μg of the appropriate antibody were 

added to a 50 kDA Amicon Ultra-500 μl V bottom filter unit (Merck, UK) and centrifuged 

at 12000g for 10 minutes at room temperature. 100 μl of R-buffer containing 4mM Tris(2-

carboxyethyl)phosphine hydrochloride (TCEP) (Sigma, UK) were added to the 50 kDA 

filter and incubated at 37°C for 30 minutes to allow for partial reduction of the antibody. 

The polymer was purified by adding 300μl of C-Buffer (Fluidigm, UK) to the 3kDA filter 

ant centrifuging at 12000g for 30 minutes at room temperature. Similarly, the partially 

reduced antibody was purified by adding 300μl of C-Buffer (Fluidigim, UK) to the 50 kDA 

filter and centrifuging at 12000g for 10 minutes at RT. This purification step was repeated 

with another 400 μl of C-Buffer (Fluidigm, UK). The lanthanide-loaded polymer was 

resuspended in 60μl of C-Buffer (Fluidigm, UK) and transferred to the corresponding 

partially reduced antibody in the 50 kDA filter. The antibody-polymer mix was incubated 

at 37°C for 90 minutes. Subsequently the metal-conjugated antibody was washed by 

adding 400 μl of W-Buffer (Fluidigm, UK) and centrifuging at 12000g for 8 minutes. A 

total of 6 washes were performed. Finally, the metal-conjugated antibody was recovered 

by adding 50μl of W-Buffer (Fluidigm, UK) and spinning the inverted filter unit over a 

fresh collection tube at 1000g for 2 minutes twice. The antibody concetration was 
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measured with a Nanodrop 2000 spectrophotometer at 280 nm against a W-Buffer blank. 

The antibodies were stored at a concentration of 0.5 mg/ml in PBS based antibody 

stabilizer (Candor Bioscience, Germany) supplemented with 0.05% sodium azide 

(Sigma, UK).   

4.3.2 Mass cytometry staining 

3x106 splenocytes from single cell preparations were carried forward for staining. All 

staining steps are performed in 5 ml polypropylene round bottom tubes (Corning, UK). 

Cell were resuspended in “Cell-ID” Cisplatin (Fluidigm, UK) in PBS (Sigma, UK) at a 

concentration of 5µM and incubate for 5 minutes at room temperature. The reaction was 

quenched with 5x the volume of “Maxpar” cell staining buffer (Fluidigm, UK) and the 

samples centrifuged. Cells were resuspended in 50µl of “Maxpar” cell staining buffer 

containing 1 µl of anti-mouse CD16/CD32 monoclonal antibody (clone 93, ebioscience, 

UK) and incubated for 10 minutes. The volume was then filled up to 100 µl with “Maxpar” 

cell staining buffer (Fluidigm, UK) containing mass cytometry antibodies at various 

concentrations. Cells were incubated for 30 minutes at room temperature and then 

washed 2x in “Maxpar” cell staining buffer (Fluidigm, UK). The samples were then 

resuspended in 1ml of “Maxpar” Fix and Perm buffer (Fluidigm, UK) containing “Cell-ID” 

Intercalator-Ir (Fluidigm, UK) at a concentration of 125 nM and incubated over night at 

4°C. Cells were washed 2x in “Maxpar” Cell staining buffer (Fluidigim, UK) and 1x in 

“Maxpar” water (Fluidigm, UK). Cells were left dry-pelleted at 4°C until immediately prior 

to acquisition on a “cytof 2” mass cytometer (Fluidigm, UK). 

4.3.3 Acquisition and analysis of mass cytometry data 

A “cytof 2” mass cytometer (Fluidigm, UK) was used for acquisition of mass cytometry 

data. The suspension of stained cells was nebulized in order to create single cell droplets 

and was subsequently exposed to a high temperature plasma. This breaks the molecular 

bonds and ionizes the atoms. The resulting charged atomic ion clouds are transferred 

into the mass spectrometer. The mass cytometer is configured as a qTOF instrument. 

The two radiofrequency quadrupoles are tuned to filter out naturally occuring low mass 

ions. The enriched higher mass reporter ions are quantitated by TOF mass analysis. 

Normalization of the recorded data is achieved via a standardized bead solution 

containing known concentrations of the metal isotopes 140/142Ce, 151/153Eu, 165Ho, 

and 175/176Lu. A correction algorithm in the software of the mass cytometer normalizes 

the recorded data to correct for signal variation that may occur over protracted periods 

of use. 



Mark-Alexander Schwarzbich                                                                                           Chapter 4 

Page 130 of 279 

 

4.4 Results  

4.4.1 Design of a mass cytometry panel and optimization of tagged metals using 

the Maxpar Panel Designer 

We designed to use the following 27 targets in our mass cytometry panel in order to 

delineate important immune cell populations of the microenvironment and analyse 

expression of immune checkpoint molecules: CD45 (identification of leukocytes); CD19, 

CD45R (B220) (identification in B-cells, differentiation of physiological B-cells and CLL 

B-cells); TCRb, CD3e, CD4, CD8a, CD25 (IL-2R) (identification of T-cell subsets); CD69 

(T-cell activation, BTK inhibitor efficacy); CD62L (L-selectin), CD44 (antigen experience 

of T-cells); CD161 (NK1.1), NKG2D, CD335 (Nkp46) (identification of NK cells, functional 

status of NK cells); CD11b (Mac-1), Ly-6C, Ly6G, CD11c, F4/80 (identification of 

monocytes, macrophages, dendritic cells and granulocytes); CD244.2 (2B4), PD-L2, 

KLRG-1, CD366 (Tim-3), CD223 (LAG-3), CD274 (PD-L1), CD279 (PD-1), CD152 

(CTLA-4) (immune checkpoint molecules). We aimed to utilise commercially available 

pre-conjugated mass cytometry antibodies where possible and minimize the number of 

custom conjugated antibodies in the panel. Table 5 gives on overview of targets, 

optimized mass tag as suggested by the Maxpar Panel designer and assigned signal 

and tolerance values.  

Table 6 summarizes the signal overlap in the utilized mass channels from the various 

lanthanide tags used in the mass cytometry panel. The cumulative signal overlap is 

compared to the anticipated tolerance of the target antigen. In general, the calculated 

signal overlap is well below the tolerance values. Only in the 167 mass channel 

corresponding to NKp46 167Er the maximum tolerance is reached.  
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Label Target Signal Tolerance 

175Lu* NKG2D 30 6 

149Sm* CD244.2 (2B4) 55 11 

156Gd* PD-L2 120 20 

176Yb* KLRG-1 15 3 

167Er CD335 (Nkp46) 30 6 

162Dy CD366 (Tim-3) 16 3 

174Yb CD223 (LAG-3) 13 3 

153Eu CD274 (PD-L1) 125 25 

159Tb CD279 (PD-1) 10 3 

144Nd CD45R (B220) 30 6 

172Yb CD4 133 27 

171Yb CD44 333 67 

170Er CD161 (NK1.1) 20 4 

169Tm TCRb 30 6 

168Er CD8a 333 67 

160Gd 
CD62L (L-
selectin) 10 2 

154Sm CD152 (CTLA-4) 39 2 

165Ho CD3e 210 42 

151Eu CD25 (IL-2R) 600 12 

166Er CD19 160 32 

147Sm* CD11b (Mac-1) 500 100 

89Y CD45 736 147 

145Nd CD69 33 2 

150Nd Ly-6C 333 14 

142Nd CD11c 15 3 

146Nd F4/80 50 10 

141Pr Ly-6G 200 40 

 

Table 5: Overview of targets, selected mass tag and assigned signal and tolerance values 
for mass cytometry panel. Signal and tolerance values derived from Maxpar Panel designer 
data bank.  * - custom conjugated antibodies. 
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Table 6: Comparison of signal overlap from lanthanide mass tags and maximum tolerance 
anticipated for target. Overlap calculated by Maxpar Panel designer software. 

 

 

 

channels 89 141 142 144 145 146 147 149 150 151 153 154 156 159 160 162 165 166 167 168 169 170 171 172 174 175 176 

 

146Nd 
0 0 0.25 0.35 0.40  0.15 0 0.05 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

141Pr 0  0.60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

150Nd 0 0 1.67 2.33 0.67 1.67 0 1.00  1.00 0 0 0 0 0 0 0 6.66 0.33 0 0 0 0 0 0 0 0 

142Nd 0 0.04  0.04 0 0.01 0 0 0 0 0 0 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 

145Nd 0 0 0.10 0.49  1.39 0 0 0 0 0 0 0 0 0 0.03 0 0 0 0 0 0 0 0 0 0 0 

89Y  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

147Sm 0 0 0 0 0 1.50  2.50 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

166Er 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.48  2.72 0.80 0 0 0 0 0 0 0 

151Eu 0 0 0 0 0 0 0 0 1.80  4.80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

165Ho 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0.63 0 0 0 0 0 0 0 0 0 

154Sm 0 0 0 0 0 0 0 0.08 0 0 0.12  0 0 0 0 0 0 0 0 0 0.16 0 0 0 0 0 

160Gd 0 0 0 0 0 0 0 0 0 0 0 0 0.02 0.03  0 0 0 0 0 0 0 0 0 0 0 0.13 

168Er 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 3.33  1.00 1.67 0 0 0 0 0 

169Tm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.09  0.09 0 0 0 0 0 

170Er 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.12 0.10 0.16 0.06  0.06 0 0 0 0 

171Yb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00  13.65 1.33 0 0 

172Yb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.67  0.67 0 0 

144Nd 0 0 0.06  0.27 0.09 0 0 0 0 0 0 0 0 0.90 0 0 0 0 0 0 0 0 0 0 0 0 

159Tb 0 0 0 0 0 0 0 0 0 0 0 0 0  0.03 0 0 0 0 0 0 0 0 0 0 0.12 0 

153Eu 0 0 0 0 0 0 0 0 0 1  0.38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

174Yb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0.04 0.04 

162Dy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 

167Er 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.45  1.05 0 0.06 0 0 0 0 0 

176Yb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.04 0.04  

156Gd 0 0 0 0 0 0 0 0 0 0 0 0  0 0.24 0 0 0 0 0 0 0 0 1.56 0 0 0 

149Sm 0 0 0 0 0 0 0.11  0.94 0 0 0.11 0 0 0 0 0.22 0 0 0 0 0 0 0 0 0 0 

175Lu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.09  0.15 

Cumulative Signal 
Overlap 

0.00 0.04 2.68 3.21 1.34 4.66 0.26 3.58 3.79 2.00 4.92 1.49 0.02 0.04 1.17 1.03 0.70 8.86 6.48 2.10 1.06 2.98 0.73 15.21 2.13 0.20 0.32 
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4.4.2 Custom conjugation of antibodies with lanthanide metal tag and titration of 

mass cytometry antibodies  

Anti-KLRG-1 176Yb, anti-2B4 149Sm, anti-NKG2D 175Lu, anti-CD11b 147Sm and anti-

PD-L2 156Gd mass cytometry antibodies were custom conjugated as described in 4.3.1. 

Wildtype C57/BL6 splenocytes were stained with anti CD45 89Y as recommended by 

the manufacturer and the custom conjugated antibodies in dilutions of 1:400, 1:200, 

1:150, 1:100 and 1:50. Median signal intensity of positive and negative leukocyte 

populations were recorded for each dilution. Figures 16 – 20 illustrate the titration curves 

obtained for each antibody. The maximum separation of positive and negative 

populations was generally achieved at a dilution of 1:100 with the exception of CD11b 

147Sm were separation could be further improved with higher concentrations. However, 

at a dilution of 1:100 CD11b+ and CD11b- separation was already deemed excellent.  
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Figure 16: Titration of anti-KLRG-1 176Yb. (A) Median signal intensity measured with various 
concentration of anti-KLRG-1 176Yb in positive and negative populations (B) Illustration of 
titration curves.  
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Figure 17: Titration of anti-2B4 149Sm. (A) Median signal intensity measured with various 
concentration of anti-2B4 149Sm in positive and negative populations (B) Illustration of titration 
curves.  
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Figure 18: Titration of anti-NKG2D 175Lu. (A) Median signal intensity measured with various 
concentration of anti-NKG2D 175Lu in positive and negative populations (B) Illustration of titration 
curves.  
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Figure 19: Titration of anti-CD11b 147Sm. (A) Median signal intensity measured with various 
concentration of anti-CD11b 147Sm in positive and negative populations (B) Illustration of titration 
curves.  
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Figure 20: Titration of anti-PD-L2 156Gd. (A) Median signal intensity measured with various 
concentration of anti-PD-L2 156Gd in positive and negative populations (B) Illustration of titration 
curves.  
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4.4.3 Application of the mass cytometry panel on splenocyte samples from wild 

type and CLL bearing animals  

In order to confirm the suitability of the developed mass cytometry panel to identify 

important immune cell populations among mouse splenocytes and assess the 

expression of immune checkpoint pathways, we applied the panel to a splenocyte 

sample of a CLL bearing Eμ-TCL1 transgenic animal and an age matched C57BL/6 

wildtype animal. Figure 21 illustrates the gating strategy and identification of 

physiological B-cell, CLL B-cell and non-B-cell populations. Cellular events were 

separated from calibration beads by gating on 191Ir DNA-intercalator and excluding 

Ce140 signal only found on the calibration beads. From the population of cellular events 

single cells as opposed to cell doublets were isolated by gating on 191Ir and 193Ir DNA 

intercalator and by excluding events with high event lengths, which tend to be cell 

doublets or high order multiplets .From the purified population of single cell events viable 

leukocytes were identified by expression of CD45 and low cisplatin incorporation. The 

population of viable leukocytes was then further subdivided into CD19+B220+ 

physiological B-cells, CD19+B220 low CLL cells and CD19-B220- non- B-cells.  In the 

sample derived from the CLL beraing animal a highly abundant population of 

CD19+B220low  CLL B-cells was apparent compared to the wild type sample.  

 

 

Figure 21: Gating strategy and identification of B-cell subsets: Cellular events were 
separated from calibration beads by gating on 191Ir DNA-intercalator and excluding Ce140 
signal, cell doublets were excluded by gating on 191Ir and 193Ir DNA intercalator and by exluding 
events with high event lengths, viable leukocytes were identified by expression of CD45 and low 
cisplatin incorportation. B-cells were separated into CD19+B220+ physiological B-cells and 
CD19+B220- CLL B-cells. N=2. 
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Figure 22 illustrates the separation of CD19-B220- non-B-cells from figure 21 into 

immune cell subsets. CD3 and TCR beta expression identified T-cells. From the T-cell 

population T helper cells and cytotoxic T-cells can be differentiated through expression 

of CD4 and CD8. From the CD4+ T-cell population the CD4+CD25+ T- regulatory subset 

can be differentiated. Among non-T-cells NK1.1 expression was used to identify NK-

cells. The Non-T-NK-cell subset was then further subdivided into CD11c high classical 

dendritic cells and non-T-NK-DCs. In the latter population Ly6G expression denotes the 

granulocyte subset. The remaining non-T-NK-DC-granulocytes can then be classified 

according to CD11b and F4/80 expression into CD11b low/- F4/80 high red pulp 

macrophages and CD11b+ F4/80 intermediate white pulp myelomonocytic cells as 

illustrated in figure 23. Ly6C expression separates the white pulp myelomonocytic cells 

into Ly6C high inflammatory monocytes, Ly6C intermediate monocytes and Ly6C low 

patrolling monocyte/macrophage like cells. The composition of the white pulp 

myelomonocytic cells is shifted towards the Ly6C low population with the development 

of CLL. Figure 24 shows the identification of the degree of antigen experience among 

the T-cell subset from figure 22. Naïve, central memory and effector/effector memory T-

cell can be identified via expression of CD44 and CD62L. With the onset of CLL the T-

cell compartment is shifted towards a more antigen experienced phenotype.  

 

 
Figure 22: Gating strategy for identification of immune cell subsets. CD3 and TCRbeta 
expression identifies T-cells. T helper cells and cytotoxic T-cells are identified via expression of 
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CD4/CD8, CD4+CD25+ expression identifies regulatory T-cells, NK1.1 expression identifies NK-
cells, CD11c high cells denote the classical dendritic cells and Ly6G expression the granulocyte 
subset. N=2. 

 

Figure 23:  Idenfication of myelomonocytic immune cell populations. CD11b and F4/80 
expression classifies myelomonocytic cells into CD11b low/- F4/80 high red pulp macrophages 
and CD11b+ F4/80 intermediate white pulp myelomonocytic cells. Ly6C expression separates the 
white pulp myelomonocytic cells into Ly6C high inflammatory monocytes, Ly6C intermediate 
monocytes and Ly6C low patrolling monocyte/macrophage-like cells. White pulp myelomonocytic 
cells are shifted towards the Ly6C low population with the development of CLL. N=2 

 

 

Figure 24: Identification of the degree of antigen experience of T-cells in the splenic 
microenvironment. CD44 and CD62L expression is used to identify the degree of antigen-
experience of T-cells in the splenic microenvironment. With development of CLL T-cell are shifted 
towards a more antigen-experience phenotype. Abbreviations: CM – central memory, E/EM – 
effector/effector memory. N=2 
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Figures 25 compares the expression of immune checkpoint receptors PD-1, TIM-3, 

KLRG-1, LAG-3 and 2B4 on T-cells derived from spleens of CLL bearing and a wildtype 

animal. Expression of PD-1, LAG-3, 2B4 and KLRG-1 was markedly increased on T-

cells from CLL bearing animals compared to wildtype animals. We also found a modest 

increase in expression of TIM-3 on T-cells from spleen of CLL bearing Eμ-TCL1 animals. 

This was more pronounced among CD4+ T-cells.  

 

 

Figure 25: Expression of immune checkpoint molecules on T-cells in CLL bearing and wild 
type animals. N=2. 

 

Figure 26 illustrates expression of activating and inhibitory NK-cells receptors on NK1.1+ 

cells derived from spleens of wildtype and CLL bearing animals. More NKp46 low NK-

cells were found among splenocytes of CLL bearing animals compared to wild type 

animal while the expression of NKG2D remained largely unchanged. Expression of dual 

function receptor 2B4 was found to be increased on NK-cells from CLL bearing animals. 

Similarly, expression of inhibitory receptor LAG-3 and KLRG-1 was found to be increased 

in CLL bearing animals compared to wild type animals. Figure 27 illustrates the 

expression of immune checkpoint molecule PD-L1, PD-L2 and PD-1 among B-cells and 

white pulp myelomonocytic cells from wild type and CLL bearing animals. On B-cells 

expression of PD-L1, PD-L2 and PD-1 was found to be increased in the setting of CLL. 

Among white pulp myelomonocytic cells PD-L1 expression was markedly increased in 

CLL bearing animals while PD-L2 expression remained largely unchanged. 
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Figure 26: Expression of activating and inhibitory receptors on NK-cells in CLL bearing 
and wild type animals. N=2 

 

 

Figure 27: Expression of PD-L1, PD-L2 and PD-1 on B-cells and white pulp myelomonocytic 
cells in CLL bearing and wildtype animals. N=2. 
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4.5 Discussion 

We optimized a mass cytometry panel to analyse the most important immune cell 

populations and expression of immune checkpoint receptors in splenocyte samples from 

experimental animals using the MAXPAR panel designer taking into account expected 

signal intensity and tolerance for signal overlap for prospective targets. A panel of 27 

markers was carried forward. Calculated signal overlap was well below the expected 

tolerance threshold for all of the markers included in the panel except for the 167 mass 

channel corresponding to NKp46 167Er where the maximum tolerance was reached. 

These preliminary calculations suggested that the selected mass cytometry panel was 

adequate to study changes in immunophenotype and immune checkpoint molecule 

expression in the splenic microenvironment of CLL bearing animals and the influence of 

BTK inhibitors on the factors.  

When designing the panel, we sought to use commercially available tested pre-

conjugated mass cytometry antibodies wherever available and limit the need for custom 

conjugated antibodies as far as possible. With the panel at hand custom conjugation of 

5 antibodies for use in mass cytometry was necessary: Anti-KLRG-1 176Yb, anti-2B4 

149Sm, anti-NKG2D 175Lu, anti-CD11b 147Sm and anti-PD-L2 156Gd. Commercially 

available pre-conjugated antibodies were used as recommended by the manufacturer. 

For custom conjugated antibodies titration curves were recorded in order to identify the 

optimal dilution for use of immune phenotypic analysis of mouse splenocytes. For anti-

KLRG-1 176Yb, anti-2B4 149Sm, anti-NKG2D 175Lu anti-PD-L2 156Gd the maximum 

separation of positive and negative populations was found at a concentration of 1:100. 

For anti-CD11b 147Sm the separation further improved beyond concentration of 1:100. 

However, separation was already deemed excellent at a concentration of 1:100 – this 

dilution was therefore chosen for finally application in the mass cytometry panel. A 

validation of this panel by flow cytometry is necessary and currently ongoing. 

In order to confirm the appropriateness of the panel to identify important immune cell 

populations in the microenvironment and assess expression of immune checkpoint 

pathways the panel for applied to splenocytes from ageing CLL bearing Eμ-TCL1 mice 

and age matched C57BL/6 wild type animals. We were able to demonstrate that the 

panel is capable of identify the major immune cell populations in the splenocyte samples. 

Moreover, the panel was able to identify changes in antigen experience of T-cell subsets 

and changes in expression of immune checkpoint receptors and NK-cell receptors in the 

setting of CLL. 
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As opposed to the situation in human beings where only 1-2% of CD4+CD25+ T-cell with 

very high expression of CD25 expression consistently show suppressive function and 

FOXP3 is necessary for reliable identification of regulatory T-cells   (973-975) in mice 

CD4+CD25+ T-cells are a homogenous population of cells with regulatory function and 

FOXP3 staining is thus not strictly necessary for identification of Tregs (976, 977). 

However, moderate suppressive function has been shown for some subsets of 

CD4+CD25- T-cells (978, 979). The panel at hand thus is limited in its ability to 

completely identify the mouse regulatory T-cell subsets. Nevertheless, we chose to use 

the panel in its present form as CD4+CD25+ is a good approximate for identification of 

the regulatory T-cell subset and a more complete identification would have made the use 

of intranuclear marker and thus permeabilization of the splenocyte samples necessary. 

We were reluctant to utilize permeabilization as this is known to disrupt surface staining 

and thus interfere with staining for immune checkpoint molecules which is major 

objective of this study.   

One potential limitation of the panel is its inability to fully distinguish between white pulp 

monocyte and macrophages in the splenic microenvironment. In earlier studies using 

flow cytometry myelomonocytic cells of wild type animals were segregated into two 

populations based on expression of CD11b and F4/80: CD11b high F4/80- monocytes 

and CD11b intermediate F4/80 macrophages (908). Our mass cytometry panel on the 

other hand delineated a small CD11b- F4/80 high population and a larger CD11b+ F4/80 

intermediate population of about 10fold magnitude. Rose et al. have previously 

suggested that F4/80 expression does not reliably separate spleen monocytes and 

macrophages (980). It has been suggested that this is due to steric hinderance between 

F4/80 and GR-1 (Ly6C/G) binding antibodies. However, neither strategies of sequential 

incubation with F4/80 and Ly6C/G binding anbtibodies nor completely leaving out 

Ly6C/G binding antibodies from the panel improved separation of white pulp monocytes 

and macrophages. We attempted to expanded the panel with CD115 binding antibodies 

to allow for separation of white pulp myelomonocytic cell populations. However, neither 

commercially available CD115 antibodies nor custom conjugated CD115 antibodies 

showed any staining among splenocyte samples. It has been suggested that CD115 

expression among monocytes may be too ephemeral to be reliably detected (981). 

Attempts to expanded the panel with MHC type II Bi209 antibodies to improve 

identification of myelomonocytic cell subsets failed due to unexpected spillover of signal 

into all Yb channels. In depth literature search revealed that the findings of our mass 

cytometry panel are in reality in line with the natural heterogeneity of spleen 

myelomonocytic cells: CD11b-/F4/80++ red pulp macrophages, CD11b+ F4/80 
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intermediate monocytes, monocyte derived white pulp macrophages and marginal zone 

macrophages that cannot be separate based on staining with these markers, calling into 

question the findings of previous flow cytometry based studies that have claimed to 

accurately delineate the populations based on the staining of these markers (982, 983). 

Separation could still have been achieved by use of primarily intracellular markers such 

as CD68. However, we were reluctant to apply permeabilization on splenocyte samples 

out of fear of interference with surface staining for immune checkpoint molecules as 

stated above. Staining of white pulp myelomonocytic cells with Ly6C still allows for a 

limited separation into Ly6C high inflammatory monocytes and Ly6C low patrolling 

monocytes and monocytic phagocytes/macrophages-like cells. Given the above issues 

and considerations we chose to utilize the panel in its present form and forgo precise 

separation of white pulp myelomonocytic cell populations.  
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5 Influence of BTK inhibition on immune phenotype and immune checkpoint 

expression in the splenic microenvironment of CLL bearing animals 

5.1 Specific introduction 

The onset of CLL is association with the development of a chronic activation induced 

functional impairment of both helper and cytotoxic T-cells. A similar state of chronic 

activation induced T-cell dysfunction has been observed in chronic viral infections and 

has been called “T-cell exhaustion”. The condition is caused by persistent exposure of 

T-cells to antigen-stimulation or inflammatory stimuli leading to progressive loss of 

effector CD8+ and CD4+ T-cell function. Overexpression of co-inhibitory immune 

checkpoint molecules has been implicated in the pathogenesis of this secondary immune 

deficiency (422, 423).  

We have been able to demonstrate that, similar to the situation in chronic viral infection, 

the functional T-cell impairment induced by CLL coincidences with an overexpression of 

immune checkpoint molecules such as 2B4, CD160 and PD-1 (401). Overexpression of 

other known immune checkpoint molecules on CD8+ T-cells in the setting of CLL such 

as LAG-3 and KLRG-1 have been described (352, 425).  In CD4+ T-cells the presence 

of an exhaustion phenotype with overexpression of TIM-3 and PD-1 has also been 

documented (426). Catakovic et al. described an increase of TIGIT expressing CD4+ T-

cells in CLL patients (427). Overexpression of CTLA4 has been demonstrated on both 

patient derived CD4+ and CD8+ T-cells (372). We have previously demonstrated that 

CLL associated T-cell defects can be directly induced by CLL B-cells via inhibitory 

surface receptors CD200, CD274 (PD-L1), CD276 (B7-H3) and CD270. The PD-1/PD-

L1 axis has been demonstrated to be of particular importance in inducing CLL associated 

T-cell defects (216). Moreover, the CLL microenvironment has been shown to be rich in 

PD-L1 expressing myeloid-derived cells that have been  demonstrated to suppress T-

cell effector function and promote T reg mediated immunosuppression (835). In a mouse 

model of CLL we were able to shown that PD-L1 blockade resulted in prevention of T-

cell dysfunction and leukemia growth (836).  

A correction of CLL associated T-cell defects could, according to the “cancer 

immunoediting” hypothesis, help to obtain durable remissions and may offer a path to a 

cure of the disease (792). Various studies have obtained evidence suggesting that the 

BTK inhibitor Ibrutinib has the potential to modulate function of T-cells and myeloid cells 

in the tumour microenvironment. In T-cells derived from the peripheral blood of CLL 

patients, Ibrutinib has been shown to have the potential to shift T-helper cell polarity 
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away from Th2 towards Th1 by targeting ITK (877). In a separate study the agent has 

been reported to downregulate expression of PD-L1 on the surface of patient derived 

CLL B-cells and expression of PD-1 on the surface of patient derived CD4+ and CD8+ 

T-cells (878). Stiff et al. have demonstrate expression of BTK in both human and murine 

MDSCs and showed that Ibrutinib treatment has the ability to suppress BTK 

phosphorylation in MDSCs resulting in impaired nitrous oxide production, cell migration, 

expression of IDO as well as impaired in vitro generation of human MDSCs. Ibrutinib 

treatment resulted in reduced numbers of MDSCs in both spleen and tumours of mouse 

models of mammary cancer and melanoma (879).  Moreover, Ibrutinib treatment has 

been shown decreased production of CXCL12, CXCL13, CCL19 and VEGF in human 

macrophages after Ibrutinib treatment resulting in impaired adhesion, migration and 

invasion of co-cultured lymphoid cells (880). In a mouse model of PDAC, Ibrutinib 

treatment has been shown to shift the immunophenotype of macrophages towards a 

more Th-1 permissive state resulting in increased CD8+ T-cell cytotoxicity (881). 

5.2 Goals and objectives 

We speculate that PD-L1 expression by CLL B-cells is driven by B-cell receptor signalling 

as has recently been demonstrated in DLBCL (984). BTK inhibitor treatment may 

therefore decrease PD-1/PD-L1 expression.  Using the Eμ TCL-1 mouse model we 

sought to demonstrate that BTK inhibitor treatment using both Ibrutinib and Acalabrutinib 

is able to modulate expression of PD-1 and its ligand PD-L1 in the splenic 

microenvironment of CLL bearing animals 

 

5.3 Specific methods 

5.3.1 Cell thawing procedure 

Thwaing of cryopreserved splenocyte samples was performed in a water bath at 37oC. 

To avoid contamination the vials were disinfected using 70% IMS (Fisher Scientific, UK) 

and subsequently opend in a class II biosafety cabinet. The cell suspension was pipetted 

into 10ml RPMI 1640 (Gibco, UK) supplemented with 10% FCS (Gibco, UK), 1% 

Penicillin-Streptomycin (Sigma, UK) at 37°C. Subsequently the suspension was 

centrifuged at 300 x g for 10 minutes at room temperature and resuspended in a volume 

suitable for number of cells contained in the pellet. Automated cell counting was 

conducted on a Luna fl automated cell counter (Logos bioystems, USA) after dilution of 

a 10μl aliquot with an equal amount of 0.4% Tryphan blue (Sigma, UK). 
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5.3.2 Mass cytometry staining 

3x106 splenocytes from single cell preparations were carried forward for staining. All 

staining steps are performed in 5 ml polypropylene round bottom tubes (Corning, UK). 

Cell were resuspended in “Cell-ID” Cisplatin (Fluidigm, UK) in PBS (Sigma, UK) at a 

concentration of 5µM and incubate for 5 minutes at room temperature. The reaction was 

quenched with 5x the volume of “Maxpar” cell staining buffer (Fluidigm, UK) and the 

samples centrifuged. Cells were resuspended in 50µl of “Maxpar” cell staining buffer 

containing 1 µl of anti-mouse CD16/CD32 monoclonal antibody (clone 93, ebioscience, 

UK) and incubated for 10 minutes. The volume was then filled up to 100 µl with “Maxpar” 

cell staining buffer (Fluidigm, UK) containing mass cytometry antibodies for a final 

concentration of 1:100. Cells were incubated for 30 minutes at room temperature and 

then washed 2x in “Maxpar” cell staining buffer (Fluidigm, UK). The samples were then 

resuspended in 1ml of “Maxpar” Fix and Perm buffer (Fluidigm, UK) containing “Cell-ID” 

Intercalator-Ir (Fluidigm, UK) at a concentration of 125 nM and incubated over night at 

4°C. Cells were washed 2x in “Maxpar” Cell staining buffer (Fluidigim, UK) and 1x in 

“Maxpar” water (Fluidigm, UK). Cells were left dry-pelleted at 4°C until immediately prior 

to acquisition on a “cytof 2” mass cytometer (Fluidigm, UK). For a list of mass cytometry 

antibodies used please refer to table 4. 

5.3.3 Acquisition and analysis of mass cytometry data 

A “cytof 2” mass cytometer (Fluidigm, UK) was used for acquisition of mass cytometry 

data. The suspension of stained cells was nebulized in order to create single cell droplets 

and was subsequently exposed to a high temperature plasma. This breaks the molecular 

bonds and ionizes the atoms. The resulting charged atomic ion clouds are transferred 

into the mass spectrometer. The mass cytometer is configured as a qTOF instrument. 

The two radiofrequency quadrupoles are tuned to filter out naturally occuring low mass 

ions. The enriched higher mass reporter ions are quantitated by TOF mass analysis. 

Normalization of the recorded data is achieved via a standardized bead solution 

containing known concentrations of the metal isotopes 140/142Ce, 151/153Eu, 165Ho, 

and 175/176Lu. A correction algorithm in the software of the mass cytometer normalizes 

the recorded data to correct for signal variation that may occur over protracted periods 

of use. 
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5.3.4 CITRUS analysis of high dimensional single cell immune phenotypic data 

For analysis of mass cytometry data, the algorithm cluster identification, characterization, 

and regression (CITRUS) was used. The algorithm was designed to detect statistically 

significant differences between experimental groups in highly dimensional data sets. 

CITRUS performs multiple sequential steps in order to achieve this. First, unsupervised 

hierarchical clustering of cellular events across multiple samples by phenotypic similarity 

along the lines of a defined set of markers is performed. Then biologically relevant 

features within these clusters of cellular events are calculated on a per file basis and the 

resulting tree of clusters annotated with this information. CITRUS then interrogates this 

dataset as to whether these clusters differ on a statistically significant level in terms of 

median expression of a defined set of markers different from the subset used to create 

the tree of clusters. This is achieved by the use of a correlative linearized regression 

model, significance analysis of microarrays. The analysis uses non-parametric statistics 

to test differences along the lines of user defined experimental groups. Repeated 

permutations of the data are used to determine whether the expression of any of these 

markers is significantly related to any of the experimental groups (955). The result is 

reported not by use of classical p-values but by utilizing false discovery rate. This 

approach is chosen because due to the multiple testing problem an adjustment of p-

values is necessary. The use of more traditional techniques such as Bonferroni-

correction reduces the number of false positives at the cost of also reducing the number 

of correctly identified true positive differences. The calculation of a false discovery rate 

thus has a higher power to detect truly significant differences.  After excluding debris and 

B-cell subsets by manual gating 10000 events per individual were clustered. A minimum 

cluster size of 1% was chosen. To avoid the detection of false positives only differences 

with a false discovery rate <1% were reported. The medians were subsequently exported 

and analysed with the more classical Kruskal-Wallis test with Dunn’s post test and 

correction for multiplicity. 

5.4 Results 

Using our custom 27 marker mass cytometry panel described in chapter 4 we analysed 

immune checkpoint expression on various immune cell subsets in the splenic CLL 

microenvironment. The generation of samples for analysis of immune checkpoint 

expression in vehicle, Ibrutinib and Acalabrutinib treated CLL bearing animals is 

described in 3.4.3. Figure 28 gives an overview of the gating strategy applied. In short, 

calibration beads were excluded by gating on Ir191 containing DNA intercalator and 

Ce140, which is contained in the calibration beads only. Doublets were then excluded 
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by gating on Ir191 and Ir193 DNA intercalators and event lengths. Viable leukocytes are 

identified by CD45 staining and cisplatin signal, which enriches in dead cells. Finally, 

cells are sub-setted into physiological B-cells, CLL-B-cells and other immune cells of the 

microenvironment based on CD19 and B220 staining. 

 

 

Figure 28: Gating strategy for elimination of cell doublets and dead cells, defining 
physiological B-cell and CLL-B-cell subsets and other immune cells of the splenic 
microenvironment. 

 

Figure 29 demonstrates the median PD-L1 153Eu signal intensity on CLL B-cells and 

physiological B-cells from these samples. We found a statistically significant increase in 

PD-L1 marker expression on CLL-B-cells in the splenic microenvironment of these 

animals. Expression on physiological B-cells remained unaltered.  
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Figure 29: Median PD-L1 153Eu Signal intensity on CLL-B-cells and physiological B-cells 
of the splenic microenvironment with and without BTKi treatment. Statistical analysis by 
1way Anova, 3 groups n=17 each.  Abbreviations Ns p > 0.05; *p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; 
**** p≤ 0.0001. 
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Cellular events in the gate comprising the non-B-cell populations were subsequently 

subjugated to analysis by the CITRUS algorithm as described above. Figures 31-35 

display the tree of citrus clusters and demonstrate the identification of major immune cell 

populations. There were still residual CD19 low B-cells present in this gate, as they are 

difficult to completely exclude by manual gating due to their sheer abundance.  

 

Figure 30 illustrates the tree of clusters produced by the algorithm. The CITRUS tree will 

be displayed multiple times and represents all the cellular events from all experimental 

groups clustered together. Each time the CITRUS tree is displayed the clusters are 

coloured by different channels to illustrate which clusters are positive for certain markers 

and allow for the identification of cellular subpopulations. The colour scale indicates the 

intensity of marker expression per cluster. The size of the clusters represents the relative 

abundancy of cellular events in that cluster. Each cluster is marked with an ascension 

number. This number can be used to access the median feature plots generated by the 

algorithm and the raw median values used for the calculation. The tree structure is 

reduant. The analysis starts with the central cluster, the largest cluster which has no 

parent and contains all the cellular events in the analysis. Each cluster has two and 

sometimes only one daughter cluster. All the cellular events in daughter clusters are also 

contained in the parent cluster. The following markers were chosen to create the cluster 

tree: F4/80 146Nd, Ly6G 141Pr, Ly6C 150Nd, CD11c 142Nd, CD11b 147Sm, CD19 166 

Er, CD25 151Eu, CD3e 165Ho, CD62L 160Gd, CD8a 168Er, TCRb 169Tm, NK1.1 

170Er, CD44 171Yb, CD4 172Yb, B220 144 Nd.  The median expression of the following 

markers was compared within the clusters: CD69 145Nd, CTLA4 154Sm, PD-1 159Tb,  

PD-L1 153Eu, LAG-3 174Yb, Tim-3 162Dy, Nkp46 167Er, KLRG-1 176Yb, PD-L2 

156Gd, 2B4 149Sm, NKG2D 175Lu. Medians of clusters of interest were subsequently 

exported and anlyzed using a more classical Kruskal-Wallis test with Dunn’s post test 

and correction for multiplicity. 
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Figure 30: Illustration of citrus cluster tree structre, ascension number, indication of 
marker expression by colour scale and feature plots.  
 

 

Figure 31: CITRUS cluster tree and identification of residual B-cells. Phenotypically similar 
events are grouped together in clusters. The distance of clusters is thus a measure of their 
similarity. The Size of the circles denotes the abundance of cells in the cluster, the colour scale 
the median marker intensity (red-high expression, blue-low expression). The tree structure is 
redundant with proximal parent clusters in the centre of the plot containing all events of distal 
children clusters. 
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Figure 32: CITRUS cluster tree and identification of CD4+ and CD8+ T-cells. Size of the 
circles denotes the abundance of cells in the cluster, colour scale the median marker intensity 
(red-high expression, blue-low expression). The tree structure is redundant with proximal clusters 
containing all distal events. 
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Figure 33: CITRUS cluster tree and identification of memory and naïve T-cells, regulatory 
T-cells. Size of the circles denotes the abundance of cells in the cluster, colour scale the median 
marker intensity (red-high expression, blue-low expression). The tree structure is redundant with 
proximal clusters containing all distal events. 
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Figure 34: CITRUS cluster tree and identification of Granulocytes and NK-cells. Size of the 
circles denotes the abundance of cells in the cluster, colour scale the median marker intensity 
(red-high expression, blue-low expression). The tree structure is redundant with proximal clusters 
containing all distal events. 
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Figure 35: CITRUS cluster tree and identification of dendritic cells and myelomonocytic 
cells. Size of the circles denotes the abundance of cells in the cluster, colour scale the median 
marker intensity (red-high expression, blue-low expression). The tree structure is redundant with 
proximal clusters containing all distal events. 
 

Figure 36 illustrates the comparison of median PD-L1 expression on splenocyte subsets 

from spleens of both vehicle and BTKi treated animals. We found a statistically significant 

increase in PD-L1 expression on residual B-cells with BTKi treatment comparable to our 

findings above. However, the effect on other immune cell subsets was differential with a 

statistically significant decrease in expression with BTKi treatment on inflammatory 

monocytes, patrolling monocytes and macrophages. Moreover, we detected a 

statistically significant but rather modest decrease on overall CD4+ T-cells. Figure 37 

demonstrates CD69 expression in the splenic microenvironment. Comparing the 

expression on immune cell subsets from spleens of BTKi and vehicle treated animals we 

found a decrease in CD69 expression with BTKi treatment on memory T-cells and on 

two separate subsets of NK cells. Figure 38 shows expression of PD-1 among 

splenocyte subsets. We detected a statistically significant decrease of PD-1 expression 
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on memory CD4+ T-cells and T regulatory cells with BTK inhibitor treatment. Figure 38 

illustrates differences in surface LAG-3 expression on immune cell subsets from 

splenocytes of vehicle and BTK inhibitor treated animals. We found a statistically 

significant decrease in LAG-3 expression on memory CD4+ T-cells and regulatory T-

cells. Figure 40 demonstrates expression of KLRG-1 on immune cell subsets of spleen 

samples from vehicle and BTK inhibitor treated animals. We showed a decrease in 

KLRG-1 expression with Ibrutinib treatment on NK cells, memory CD4+ T-cells and 

regulatory T-cells. 

In conclusion we have discovered a differential effect on PD-L1 expression with BTK 

inhibitor treatment. While the expression on CLL B-cells seems to be increased 

expression on myeloid cells subsets is decreased. On T-cells we found that the 

exhaustion phenotype is ameliorate, especially on memory CD4+ T-cells and regulatory 

T-cells with a decrease in expression of PD-1, LAG-3 and KLRG-1. Interestingly we also 

found evidence of modulation of NK-cell phenotype with a decrease in expression KLRG-

1. CD69 expression was decreased among both CD4+ T-cells and NK-cells.  
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Figure 36: CITRUS cluster tree, comparison of median PD-L1 expression on splenocyte 
subsets from BTK inhibitor and vehicle treated animals. (A) CITRUS cluster tree, statistical 
analysis by “statistical analysis of microarrays”, clusters with statistically significant differences in 
marker expression highlighted in red, false discovery <1%. * denotes cluster displayed in B. (B) 
Median signal intensity of selected clusters compared in BTK inhibitor and vehicle treated 
animals. Statistical anaylsis by Kruskal-Wallis test, 3 groups n=17 each, Abbreviations; * - p ≤ 
0.05; ** - p ≤ 0.01; *** - p ≤ 0.001; **** - p≤ 0.0001. 
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Figure 37: CITRUS cluster tree, comparison of median CD69 expression on splenocyte 
subsets from BTK inhibitor and vehicle treated animals. (A) CITRUS cluster tree, statistical 
analysis by “statistical analysis of microarrays”, clusters with statistically significant differences in 
marker expression highlighted in red, false discovery <1%. * denotes cluster displayed in B. (B) 
Median signal intensity of selected clusters compared in BTK inhibitor and vehicle treated 
animals. Statistical anaylsis by Kruskal-Wallis test, 3 groups n=17 each, Abbreviations; * - p ≤ 
0.05; ** - p ≤ 0.01; *** - p ≤ 0.001; **** - p≤ 0.0001. 
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Figure 38:CITRUS cluster tree, comparison of median PD-1 expression on splenocyte 
subsets from BTK inhibitor and vehicle treated animals. (A) CITRUS cluster tree, statistical 
analysis by “statistical analysis of microarrays”, clusters with statistically significant differences in 
marker expression highlighted in red, false discovery <1%. * denotes cluster displayed in B. (B) 
Median signal intensity of selected clusters compared in BTK inhibitor and vehicle treated 
animals.  Statistical anaylsis by Kruskal-Wallis test, 3 groups n=17 each, Abbreviations: * - p ≤ 
0.05; ** - p ≤ 0.01; *** - p ≤ 0.001; **** - p≤ 0.0001. 
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Figure 39: CITRUS cluster tree, comparison of median LAG-3 expression on splenocyte 
subsets from BTK inhibitor and vehicle treated animals. (A) CITRUS cluster tree, statistical 
analysis by “statistical analysis of microarrays”, clusters with statistically significant differences in 
marker expression highlighted in red, false discovery <1%. * denotes cluster displayed in B. (B) 
Median signal intensity of selected clusters compared in BTK inhibitor and vehicle treated 
animals. Statistical anaylsis by Kruskal-Wallis test, 3 groups n=17 each, Abbreviations; * - p ≤ 
0.05; ** - p ≤ 0.01; *** - p ≤ 0.001; **** - p≤ 0.0001. 
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Figure 40: CITRUS cluster tree, comparison of median KLRG-1 expression on splenocyte 
subsets from BTK inhibitor and vehicle treated animals. (A) CITRUS cluster tree, statistical 
analysis by “statistical analysis of microarrays”, clusters with statistically significant differences in 
marker expression highlighted in red, false discovery <1%. * denotes cluster displayed in B. (B) 
Median signal intensity of selected clusters compared in BTK inhibitor and vehicle treated 
animals. Statistical anaylsis by Kruskal-Wallis test, 3 groups n=17 each, Abbreviation; * - p ≤ 0.05; 
** - p ≤ 0.01; *** - p ≤ 0.001; **** - p≤ 0.0001. 
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5.5 Discussion 

We have here described a differential effect on PD-L1 expression with BTK inhibitor 

treatment among various immune cell subsets in the splenic microenvironment of CLL 

bearing animals. While the expression on CLL B-cells seems to be increased modestly 

with both Ibrutinib and Acalabrutinib treatment, expression on myeloid cells subsets is 

decreased. The increase of PD-L1 on CLL B-cells in the splenic microenvironment with 

BTK inhibitor treatment comes as a surprise given their inhibitory effect towards BCR 

signalling, especially in the light of recent reports suggesting that PD-L1 expression is 

driven by BCR signalling in the setting of DLBCL (984). A recent publication by Wierz et 

al. (985) has suggested that PD-L1 high CLL B-cells express higher levels of adhesion 

molecules. We therefore speculate that these cells are more readily retained in the 

microenvironment while PD-L1 low CLL B-cells will be mobilized to the peripheral blood 

by Ibrutinib. We are planning to analyse the levels of PD-L1 expression on peripheral 

blood B-cells from these animals in a next step – the respective PBMC samples have 

been cryopreserved. Analysis of dynamics of expression over time and analysis of PD-

L1 expression on peripheral blood B-cells may be warranted. PD-L1 expression on 

infiltrating myeloid derived cells has also been implicated in CLL associated 

immunosuppression (835). Indeed, we do find a decrease in expression with both 

Ibrutinib and Acalabrutinib treatment among white pulp inflammatory monocytes as well 

as white pulp patrolling monocytes and macrophages like cells. Myeloid cells may thus 

be the driving force in induction of CLL associated T-cell deficiency and the major target 

for BTK inhibitor mediated T-cell modulation, comparable to the situation in PDAC (881). 

On T-cells we find, that the exhaustion phenotype is ameliorated, especially on memory 

CD4+ T-cells and regulatory T-cells, with a decrease in expression of PD-1, LAG-3 and 

KLRG-1. Interestingly we also find evidence of modulation of NK-cell phenotype with a 

decrease in expression KLRG-1. The influence of BTK inhibitor treatment on phenotype 

and function of NK cells in the CLL microenvironment has so far been explored little.  

Especially in the light of reduced cytolytic activity of NK cells towards CLL B-cells (278, 

279) and reports of an influence of NK cells numbers on clinical outcomes in CLL patients 

(289, 290) a further investigations of these effects of BTK inhibitors seems warranted. 

CD69 expression, an early activation marker in lymphocytes, was found to be decreased 

among both CD4+ T-cells and NK-cells. However, in this experiment we did not detect 

an influence on immunophenotype of CD8+ cytotoxic T-cells. Still, the combination of 

decreased CD4+ T-cell exhaustion phenotype and decreased expression of inhibitory 

NK-cell receptors in the setting of a more permissive myeloid cell immune phenotype 
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could potentially translate into improved immunosurveillance and elimination of CLL B-

cells.   
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6 Influence of BTK inhibition on T-cell function and immune synapse 

formation 

6.1 Specific introduction 

The absolute number of T-cells is expanded in the setting of CLL (340-342). T-cells 

derived from CLL patients have been observed to be shifted away from naïve subsets 

towards more antigen experienced subsets (348, 350-355). CLL associated T-cells 

appear to be enriched for a select few clones with identical TCRBV gene usage and 

CDR3 size distribution, possibly as a result of chronic activation of T-cells (358, 360-

362). Analysis of the T-cell receptor repertoire in CLL patients demonstrated the use of 

shared clonotypes between patients that appear to be CLL-specific, suggesting that 

antigen drive by CLL B-cells themselves may underlie the CLL-associated T-cell 

expansion (368). The onset of CLL is associated with severe functional defects of both 

T helper and cytotoxic T-cell function (298, 397-401). Moreover, CLL associated T helper 

cells have been shown to be critical in promoting growth and survival of CLL B-cells in 

vivo (402). With the onset of CLL, T helper cell polarity has been demonstrated to shift 

away from a Th1 phenotype towards a more humoral immunity and B-cell growth 

promoting Th2 phenotype (334, 403) with a decreased production of classical Th1 

cytokines such as IL2 (353, 404) and increased expression of Th2 cytokines such as IL4, 

IL5 and IL10 (334, 353, 405, 406). Th2 cytokines such as IL4 and IL10 have been shown 

to promote proliferation of leukemic cells and keep CLL B-cells safe from apoptosis (407-

409). Secretion of classical Th1 cytokines IFN-γ and TNF-α on the other hand has been 

observed to be increased rather than decreased in CLL T cells and this has been shown 

to correlate with disease stage (405, 406, 413-415). Both cytokines have also been 

demonstrated to promote survival and proliferation of CLL B-cells (416, 417). In addition, 

continuous endogenous tumour specific immune responses have been described to lead 

to a secondary T-cell deficiency and tumour immune escape via upregulation of PD-L1 

expression in the tumour microenvironment through IFN-γ secreted by tumour 

associated T-cells themselves – a process dubbed “adaptive immune resistance” (842). 

Moreover, the formation of immunological synapses between both CD4+ and CD8+ CLL 

patient derived T-cells and superantigen pulsed CLL B-cells has been shown to be 

severely impaired due to a dysregulation of actin remodelling and recruitment of 

important signaling molecules of the cytoskeleton like LcK, Cdc42, WASp, filamin-A and 

dynamin-2 (215). Gene expression profiling of CLL patient derived T-cells has 

demonstrated dysregulation of proteins involved in T-cell proliferation and differentiation, 

T-cell activation, vesicle trafficking and actin cytoskeleton remodelling (420, 421). The 
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functional defects in actin remodelling and synapse formation of CLL associated T-cells 

have been shown to be directly induced by CLL B-cells via inhibitory surface receptors 

CD200, PD-L1, B7-H3 and CD270 (216). We have previously been able to demonstrate 

that T-cell dysfunction in the setting of CLL shares many functional similarities to chronic 

activation induced  T-cell exhaustion in the setting of chronic viral infections such as 

impaired capacity for proliferation and cytotoxic activity of CD8+ T-cells but also differs 

significantly in some regards such as increased rather than decreased production of 

cytokines TNF-α and INF-γ. This functional state has therefore been dubbed “pseudo T-

cell exhaustion” (424).  

Various studies have suggested that the BTK inhibitor Ibrutinib has the ability to modulate 

T-cell and myeloid cell function and this contributes to the clinical efficacy of the agent. 

Stiff et al. demonstrated expression of BTK in both human and murine MDSCs and 

showed that Ibrutinib treatment has the ability to suppress BTK phosphorylation in 

MDSCs resulting in impaired nitrous oxide production, cell migration, expression of IDO 

as well as impaired in vitro generation of human MDSCs. Ibrutinib treatment resulted in 

reduced numbers of MDSCs in both spleen and tumours of mouse models of mammary 

cancer and melanoma (879). Ping et al. demonstrated decreased production of CXCL12, 

CXCL13, CCL19 and VEGF by human macrophages after Ibrutinib treatment. Moreover, 

adhesion, migration and invasion of co-cultured lymphoid cells was significantly impaired 

(880). Gunderson et al. reported that tumour growth in a model of PDAC was dependent 

on a cross-talk between B-cells and FcRϒ+ tumour associated macrophages resulting 

in a Th2-permissive macrophage phenotype via BTK activation in a PI3Kϒ dependent 

manner. Ibrutinib treatment resulted in a shift towards a more Th1-permissive 

macrophage phenotype and fostered CD8+ T-cell cytotoxicity (881). Dubovsky et al. 

were able to demonstrate that Ibrutinib has the potential to shift T-helper cell polarity 

away from Th2 towards Th1 by targeting ITK and could thereby correct malignancy 

associated T-cell defects (877). Moreover, Kondo et al. have reported downregulation of 

PD-L1 on the surface of CLL B-cells in the peripheral blood of Ibrutinib treated CLL 

patients as well as downregulation of expression of PD-1 on the surface of CD4+ and 

CD8+ T-cells, both in a STAT3 dependent manner (878). Importantly, as Acalabrutinib 

does not have inhibitory activity towards ITK there is a potential for differential effects on 

T-cell function between the two BTK inhibitors (986). 

6.2 Goals and objectives 

Based on the available literature and preliminary data of our group we hypothesize that 

the clinical efficacy of BTK-inhibitors is based on a synergism between direct anti-tumour 
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effects and correction of CLL-associated functional T-cell defects. Using the Eμ-TCL1 

mouse model we sought to demonstrate that BTK inhibitors have the potential to correct 

CLL associated T-cell defects. It has been suggested that the major mechanism of T-cell 

modulation by Ibrutinib is via targeting of ITK. Acalabrutinib does not have inhibitory 

capacity toward ITK. We therefore sought to investigate whether a differential effect on 

T-cell function in the setting of CLL can be detected between Ibrutinib and Acalabrutinib. 

6.3 Specific methods and materials 

6.3.1 Manipulation of mouse splenocyte single cell suspensions 

6.3.1.1 Cell thawing procedure 

Thawing of cryopreserved splenocyte samples was performed in a water bath at 37oC. 

To avoid contamination the vials were disinfected using 70% IMS (Fisher Scientific, UK) 

and subsequently opend in a class II biosafety cabinet. The cell suspension was pipetted 

into 10ml RPMI 1640 (Gibco, UK) supplemented with 10% FCS (Gibco, UK), 1% 

Penicillin-Streptomycin (Sigma, UK) at 37°C. Subsequently the suspension was 

centrifuged at 300 x g for 10 minutes at room temperature and resuspended in a volume 

suitable for number of cells contained in the pellet. Automated cell counting was 

conducted on a Luna fl automated cell counter (Logos bioystems, USA) after dilution of 

a 10μl aliquot with an equal amount of 0.4% Tryphan blue (Sigma, UK). 

6.3.1.2 Negative selection of CLL and B cells 

CLL and B cells where isolated from splenocytes suspensions using the pan-B-cell 

isolation kit (Miltenyi, UK) which uses magnetic activated cell sorting (MACS). The 

suspension were centrifuged at 300 x g for 10 minutes at 4°C, the supernatant 

completely aspirated and the pellet resuspendend in 40 μL of ice-cold MACS buffer (PBS 

(Sigma, UK) pH 7.2, 0.5% bovine serum albumin (BSA) (Sigma, UK), 2mM EDTA 

(Sigma, UK)) per 10⁷ total cells. 10 μL of Pan B Cell Biotin-Antibody Cocktail (Miltenyi, 

UK) per 10⁷ total cells were added. The cells were well mixed and incubated for 5 minutes 

at 4°C. A further 30 μL of ice-cold MACS buffer per 10⁷ total cells and 20 μL of Anti-Biotin 

MicroBeads (Miltenyi, UK) per 10⁷ cells were added. Cells were mixed well and incubated 

for another 10 minutes at 4°C. Finally, the volume was adjusted to 500μl per 108 cells 

(minimum 500μl). For separation, a LD column (Miltenyi, UK) was placed in the magnetic 

field of a MACS separator (Miltenyi, UK) and primed with 2 ml of MACS buffer. The cell 

suspension was applied to the column and flushed through by applying 1ml MACS buffer 
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twice. The effluent, which was collected in a 15 ml centrifuge tube (VWR, UK), contained 

the unlabelled pan-B-cell fraction.  

6.3.1.3 Negative selection of T cells 

T-cells where isolated from splenocytes suspensions using the pan-T-cell isolation kit II 

(Miltenyi, UK) which uses MACS. The suspension were centrifuged at 300 x g for 10 

minutes at 4°C, the supernatant completely aspirated and the pellet resuspendend in 40 

μL of ice-cold MACS buffer (PBS (Sigma, UK) pH 7.2, 0.5% BSA (Sigma, UK), 2mM 

EDTA (Sigma, UK)) per 10⁷ total cells. 10 μL of Pan T Cell Biotin-Antibody Cocktail 

(Miltenyi, UK) per 10⁷ total cells were added. The cells were well mixed and incubated 

for 5 minutes at 4°C. A further 30 μL of ice-cold MACS buffer per 10⁷ total cells and 20 

μL of Anti-Biotin MicroBeads (Miltenyi, UK) per 10⁷ cells were added. Cells were mixed 

well and incubated for another 10 minutes at 4°C. Finally, the volume was adjusted to 

500μl per 108 (minimum 500μl). For separation, a LD column (Miltenyi, UK) was placed 

in the magnetic field of a MACS separator (Miltenyi, UK) and primed with 2 ml of MACS 

buffer. The cell suspension was applied to the column and flushed through by applying 

1ml MACS buffer twice. The effluent, which was collected in a 15 ml centrifuge tube 

(VWR, UK), contained the unlabelled pan-T-cell fraction..  

6.3.2 Flow cytometry based functional T-cell assays 

6.3.2.1 EdU incorporation 

EdU was used for assessment of in vivo proliferation of T-cells subsets. The substance 

is utilized during DNA synthesis in lieu of physiological nucleosides. It can subsequently 

be visualized by convalent binding to an azide coupled to a flurochrome via an alkyne 

moiety. The reaction is catalysed by copper  (953, 954). The EdU assay can be used 

alongside traditional flow cytometry staining for both surface and intracellular markers. 

EdU (Life Technologies, UK) was applied to experimental annimals by i.p. injection at a 

dose of 100µg/g body weight 20 hours before being culled. Priot to the injection an EDU 

stock solution was prepared by dissolving the substance in sterile PBS (Sigma, UK) 

under sterile conditions. 

6.3.2.2 Cell stimulation 

1x106 splenocytes were incubated in 250µl RPMI 1640 with 10% FCS (Gibco, UK), 1% 

Penicillin/Streptomycin (Life Technologies, UK) in round-bottom 96-well-plates (VWR, 

UK). 5µg/ml CD107a per well (Clone 1D4B biolegend, UK) was added. The splenocytes 



Mark-Alexander Schwarzbich                                                                                           Chapter 6 

Page 171 of 279 

 

were stimulated with PMA/ionomycin/brefeldin A/monensin cell stimulation cocktail 

(eBioscience, UK) for 6 hours at 37ºC/5% CO2. Controls were treated with transport 

inhibitor cocktail brefeldin A/monensin (eBioscience), but no cell stimulation cocktail.  

6.3.2.3 Surface, intracellular and intranuclear flow cytometry staining 

1x106 PMA/ionomycin/brefeldin A/monensin stimulated splenocytes, 1x106 unstimulated 

splenocytes and their corresponding controls were used per animal and transferred into 

5ml polystyrene round-bottom tubes (Corning, UK). All staining steps were performed at 

a temperature of 2-8°C to avoid internalisation or capping of the antibodies. Unstimulated 

cells were split for intracellular EDU stain and intranuclear ki67 stains. Cells were 

resuspended in 100 μl of FACS buffer containing viability stain (fixable viability efluor 

506, ebioscience, UK) at a concentration of 1:1000. Surface antibodies (CD3e APC/CY 

7, clone 145-2C11, biolegend, UK; CD8a BV605, clone 53-6.7, biolegend, UK; CD44 

AF700, clone IM7, ebioscience, UK) were added at a dilution of 1:100 and cells incubated 

at 4 ºC for 30 minutes. Fixation using IC fixation buffer (ebioscience,UK) and 

permeabilisation using permeabilisation buffer (ebioscience,UK) for intracellular stains 

or FOXP3 fixation/permeabilisation buffer (ebioscience,UK) and permeabilisation buffer 

(ebioscience,UK) for intranuclear stains were performed according to the manufacturer’s 

recommendations. Cells were stained with intracellular antibodies (Interferon gamma 

AF488, clone XMG1.2, biolegend, UK; IL2 PE/Cy7, clone JES6-5H4, biolegend, UK; IL4 

PerCPefluor 710, clone 11B11, ebioscience, UK) and intranuclear antibodies (Ki67 

PE/Cy7, clone 16A8, biolegend, UK) for 1h at 4ºC at a 1:100 dilution. Compensation 

controls consisted of ABC total compensation beads (Thermo fisher scientific, UK). In 

order to obtain compensation controls one drop each of both negative control beads and 

positive antibody binding beads were added to 80µl FACS buffer in a 5ml polystyrene 

round-bottom tube (Corning, UK). One tube per flurochrome included in the panel was 

prepared. Subsequently a dose appropriate for one test of pre-conjugated flow cytometry 

antibody was added and the sample incubated at 4°C for 30 minutes in the dark. The 

solution was then washed in 2ml FACS buffer twice and resuspended in 300μl PBS ready 

for acquisition. Beads could not be used for compensation control of the viability stain- 

here single-stained cells were used. For EDU staining, cells were fixed in 100µl of “Click 

it” fixative (life technologies,UK) for 15 minutes at room temperature in the dark. After 2 

washes with FACS buffer cells were resuspended in 100µl of 1x “Click it” 

permeabilization buffer (life technologies,UK) and incubated for an additional 15 minutes 

at room temperature in the dark. 500 µl of reaction cocktail (2% CUSO4, 0.5% Alexa 

Fluor 488 azide, 10% 1x “Click it” reaction buffer additive in PBS, all life technologies, 
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UK) were added and cells thoroughly mixed. For the fluorescence minus one (FMO) 

control the cocktail was prepared without fluorescent dye azide. After incubation for 30 

minutes at room temperature in the dark cells were washed twice  in permeabilization 

buffer and carried forward for acquisition. Acquisiton was performed on a BD LSR 

Fortessa flow cytometer (BD, UK). The recorded .FCS files were analysed using 

Cytobank (Cytobank Inc., USA). 

6.3.3 Immune synapse formation assay 

6.3.3.1 Synapse formation and actin staining 

1x10E6 B-cells are resuspended in serum free RPMI 1640 (Gibco, UK) with 1% 

Penicillin/Streptomycin (Life Technologies, UK), and labelled using 7-Amino-4-

Chlormethylcumarin (CMAC) (Thermofisher, UK) at a concentration of 2µg/ml for 30 

minutes at 37 ºC 5%CO2. B-cells were activated using 2ug/ml SEA/SEB (Sigma, UK) for 

30 minutes at 37 ºC 5%CO2 in RPMI 1640 (Gibco, UK) with 10% FCS (Gibco, UK), 1% 

Penicillin/Streptomycin (Life Technologies). 1x10E6 T-cells were added in serum free 

medium and allowed to conjugate to B-cells pelleted for 20 minutes at 37 ºC 5%CO2. 

Cells were transferred into a 3 well-cell concentrator and plated on a Poly-l-lysine coated 

microscope slide (VWR, UK) using a Cytofuge (Beckman Coulter, UK) at 1000 rpm for 6 

minutes. Cells were fixed in 3% methanol-free formaldehyde/PBS (TAAB laboratories, 

UK) for 15 minutes, permeabilized in 0.3% Tritonx100/PBS (Sigma, UK) for 5 minutes 

and stained using Rhodamine phalloidin (Thermo Fisher, UK) in 5% Goat Serum Buffer 

(Sigma, UK) at a dilution of 1:40. Slides were mounted using H-1500 Hard set mounting 

medium for fluorescence (Vectashield, UK).  

6.3.3.2 Confocal microscopy and image analysis 

A Zeiss 710 confocal laser-scanning microscope with a 63x/1.40 oil objective and 

Version 2.6 Zen imaging software (Zeiss, UK) was used in order to record confocal 

microscopy images. Per condition assessed al least 10 images were recorded. The 

resulting .LSM files were analysed using Zen lite analysis software (Zeiss, UK). The 

synapse area was defined using the Zen outline tool by marking the edges of the actin 

accumulation between T cells and B cells. The area of T-cell F-actin immune synapse 

(μm2) was used as the readout. A minimum of 100 randomly chosen synapses per 

condition were analysed.  
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6.4 Results 

6.4.1 Effects of Ibrutinib and Acalabrutinib on T-cell cytokine profile and 

propensity of CD8+ T-cells to degranulate in the setting of CLL 

We were interested in investigating whether BTK inhibitors could be demonstrated to 

improve T-cell function in the setting of CLL hand in hand with the observed amelioration 

of the exhaustion phenotype above. Splenocytes of Ibrutinib and Acalabrutinib treated 

samples were obtained from experiment 4.4.3. Cells were stimulated with 

PMA/Ionomycin for 6 hours and differences in cytokine profile and ability to degranulate 

have been recorded. Figure 41 and 42 illustrate the gating strategy. Single cells were 

identified by gating on FSC-H/FSC-A. Viable cells were identified by focusing on viability 

dye ef506 low events. Cells were enriched for mononuclear cells by gating FSC-A vs. 

SSC-A, and T-cells an CD3+CD8+ T-cells by expression of then respective markers 

(Figure 40). Figure 41 illustrates the gating strategy for assessment of IL2. IL4 and INF. 

The markers of interest we plotted against CD8.The unstimulated control defines the cut-

off point.  

 

Figure 41: Gating strategy for identification of single cell T-cell population and single cell 
CD8+ T-cell population: Single cell were identified by gating on FSC-H and FCS-A, viable cells 
by gating on viability dye efluor506 low cells. Cells were further enriched from the mononuclear 
cell population and CD3 andn subsequent CD8 staining used to identify overall T-cells and 
CD8+CD3+ T-cells 
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Figure 42:  Gating strategy for assessment of IL2, IL4 and INFγ production: In total T-cell 
population IL2, IL4 and IFNγ are plotted against CD8. Unstimulated samples are used to define 
the cut-off. 
 

 
Figure 43 illustrated the gating strategy for assessment of degranulation of cytotoxic T-

cells. Among CD3+CD8+ cells events were gated for CD107a and CD44. The 

unstimulated samples were used to define the cut-off.  

 

 

Figure 43:  Gating strategy for assessment of CD170a accumulation as a surrogate marker 
for degranulation: Among CD3+CD8+ T-cells CD107a was platted against CD44 to assess the 
proponesity to degranuloate compared to the antigen experienced phenotype of these cells. 
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Figure 44 illustrates the production of IL2 following stimulation of PMA/Ionomycin for 6 

hours in various T-cell subsets. IL2 production is statistically significantly increased with 

both Ibrutinib and Acalabrutinib treatment in overall CD3+ T-cells over vehicle treatment. 

(p=0.0002). No difference was detected between Ibrutinib and Acalabrutinib treated 

individuals. In CD3+CD8- helper cells an even stronger statistically significant increase 

in IL2 production with both Ibrutinib and Acalabrutinib was detected (p<0.0001) while no 

difference between Ibrutinib and Acalabrutinib treated animals was apparent. In 

CD3+CD8+ no statistically significant difference in IL2 production could be observed 

between groups. 

 Figure 45 demonstrates IL4 production in T-cell subsets following stimulation. We found 

a statistically significant decrease with both Ibrutinib and Acalabrutinib treatment over 

vehicle treatment (p<0.0001) while the difference between Ibrutinib and Acalabrutinib 

was not statistically significant. The situation was the same among CD3+CD8- cells 

where both Ibrutinib and Acalabrutinib led to a statistically significant decrease in IL4 

production (p=0.0043) over vehicle treatment but no detectable difference between 

Ibrutinib and Acalabrutinib treatment. Among CD3+ CD8+ only Ibrutinib treatment led to 

a statistically significant suppression of IL4 production while in Acalabrutinib treated 

animals this remained unaltered compared to wildtype animals (p<0.00001). 
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Figure 44: Illustration of IL2 production in overall CD3+, CD3+ CD8+ amd CD3+CD8- 
following stimulation with PMA/Ionomycin for 6 hrs in Ibrutinib/Acalabrutinib and vehicle 
treated animals. Statistical analysis by 1way Anova .3 groups, n=17 each Abbreviations: Ns p > 
0.05; *p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** p≤ 0.0001. 
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Figure 45: Illustration of IL4 production in overall CD3+, CD3+ CD8+ amd CD3+CD8- 
following stimulation with PMA/Ionomycin for 6 hrs in Ibrutinib/Acalabrutinib and vehicle 
treated animals. Statistical analysis by 1way Anova. 3 groups n=17 each. Abbreviations: Ns p > 
0.05; *p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** p≤ 0.0001. 

 

 

 

 



Mark-Alexander Schwarzbich                                                                                           Chapter 6 

Page 178 of 279 

 

Figure 46 illustrates INF-γ production among Ibrutinib/Acalabrutinib and vehicle treated 

animals. We found that INF-γ production was decreased in overall CD3+ T-cells by both 

Ibrutinib and Acalabrutinib treatment to a similar extent over vehicle treatment 

(p=0.0023). The situation was similar in CD3+CD8- helper cells (p=0.0043). In 

CD3+CD8+ cytotoxic T-cells there was a trend towards decreased IFN-γ with both 

Ibrutinib and Acalabrutinib treatment. However, a statistically significant decrease was 

reached only with Ibrutinib (p=0.0042). 

Figure 76 illustrates the ratio of CD107a+/CD107a- CD3+CD8+ T-cells, both in the 

antigen experience CD44+ and less antigen experience CD44- compartments. The ratio 

of CD107a+/CD017a- cells is a surrogate for degranulation of cytotoxic T-cells and 

hence their cytolytic function. We found a statistically significant increase of 

CD107a+/CD107a- with Ibrutinib treatment and even stronger so with Acalabrutinib 

treatment (p<0.0001) in the antigen experience CD44+ compartment. In the less antigen 

experience CD44- compartment there was also a trend towards increased 

CD107a+/CD107a- ratio with Ibrutinib and Acalabrutinib treatment. However, only the 

increase observed with Acalabrutinib treatment was found to be statistically significant. 

(p=0.0006).  
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Figure 46: Illustration of IFN-γ production in overall CD3+, CD3+ CD8+ amd CD3+CD8- 
following stimulation with PMA/Ionomycin for 6 hrs in Ibrutinib/Acalabrutinib and vehicle 
treated animals. Statistical analysis by 1way Anova. 3 groups n=17 each. Abbreviations: Ns p > 
0.05; *p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** p≤ 0.0001. 
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Figure 47: Illustration of CD107a+/CD107- ratio in CD3+CD8+CD44+ and CD3+CD8+CD44- 
T-cells following stimulation with PMA/Ionomycin for 6 hrs in Ibrutinib/Acalabrutinib and 
vehicle treated animals. Statistical test: CD3+CD8+CD44+ 1way Anova, CD3+CD8+CD44+ 
Kruskal wallis test. 3 groups n=17 each. Abbreviations: Ns p > 0.05; *p ≤ 0.05; ** p ≤ 0.01; *** p 
≤ 0.001; **** p≤ 0.0001. 

6.4.2 Effects of Ibrutinib and Acalabrutinib on T-cell proliferation in the CLL 

microenvironment 

Given the expansion of the overall T-cell compartment with the onset of CLL we were 

interested whether treatment with Ibrutinib or Acalabrutinib had any effect on proliferation 

of T cells in the CLL microenvironment. For this purpose, experimental animals were 

injected with EDU 100μg/kg bodyweight 24 hours prior to sacrificing the animals. EDU 

incorporation was then made visible using AF488 in the “click it” reactions. In addition, 

intranuclear Ki67 staining was performed on unstimulated splenocytes to identify 

proliferating T-cells. Figure 48 illustrates the gating strategy for assessment of ki67 

staining or EDU incorporation. 
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Figure 48:  Gating strategy for assessment of ki67 staining and EDU incorportation 
compared to FMO. CD3+ T-cell were gated with CD8 and EDU AF488 or Ki67 PECY7 against 
FMO control.  
 

Figure 49 illustrates staining of T-cell subsets for ki67. Ibrutinib treatment reduced 

proliferation of overall CD3+ T-cells at a statistically significant level and Acalabrutinib 

did even more so. The trends were similar among CD8- helper cells, however the 

difference between Ibrutinib and Acalabrutinib treated animals was not statistically 

significant here. Among CD8+ cytotoxic T-cells only Acalabrutinib treatment suppressed 

proliferation significantly while among Ibrutinib treated animals the level of intranuclear 

Ki67 remained largely constant compared to vehicle treated animals.  
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Figure 49: Illustration if intranuclear ki67 staining in T-cells from CLL bearing mice 
receiving Ibrutinib. Acalabrutinib or vehicle treatment. Statistical analysis by 1way Anova. 3 
groups n=17 each. Ns p > 0.05; *p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** p≤ 0.0001. 

 

 

 



Mark-Alexander Schwarzbich                                                                                           Chapter 6 

Page 183 of 279 

 

The analysis of in vivo EDU incorporation in T-cells from Ibrutinib/Acalabrutinib or vehicle 

treated CLL bearing animals is illustrated in Figure 50. The findings were similar to those 

obtained by staining for Ki67. Among overall CD3+ T-cell the EDU-incorporation was 

reduced by Ibrutinib and even more so by Acalabrutinib. Among CD8- helper cells both 

Ibrutinib and Acalabrutinib treatment reduced EDU incorporation compared to vehicle 

treatment at a statistically significant level but no statistically significance was detected 

between Ibrutinib and Acalabrutinib treatment. Among CD8+ cytotoxic T-cells there was 

a trend to reduction with both agents but only Acalabrutinib treatment leads to statistically 

significant reduction of EDU incorporation. 
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Figure 50: Illustratiion of in vivo EDU incorporaration in T-cells derived from cll bearing 
animals treared with Ibrutinib, Acalabutinib or vehicle treatment. Statistical analysis by 1way 
Anova, 3 groups n=17 each. Abbreviations Ns p > 0.05; *p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** 
p≤ 0.0001. 
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6.4.3 Effects of Ibrutinib and Acalabrutinib on T-cell synapse fromation 

The splenocyte samples obtained in 4.4.3 were subjugated to a T-cell synapse formation 

assay as described above. 100 synapse per animal were analysed and medians 

calculated. Figure 51 demonstrates the results of this experiment. Both Ibrutinib and 

Acalabrutinib treatment seemed to boost immune synapse formation between T-cells 

and B-cells isolated from spleens of these animals to a comparable level. 

 

 

Figure 51: Influence of Ibrutinib and Acalabrutinib treatment on immune synapse 
formation. (A): Example of T-cell synapse area as measured by confocal microscopy. Red: 
Rhodamine-Phalloidin staining polymerized F-actin, Blue: CMAC staining B-cells. (B): Median 
Area of T-cell synapse F-action in µm2 measured by confocal microscopy in vehicle treated, 
Ibrutinib treated and Acalabrutinib treated animals. Statistical analysis by 1way Anova. 3 groups 
n=17 each. Abbreviations Ns p > 0.05; *p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** p≤ 0.0001. 



Mark-Alexander Schwarzbich                                                                                           Chapter 6 

Page 186 of 279 

 

 

6.5 Discussion 

Our goal in this part of the project was to investigate whether the BTK-inhibitors Ibrutinib 

and Acalabrutinib have the same or different ability to modulate and improve T-cell 

function in the setting of CLL. Our group has recently demonstrated that the Eμ-TCL1 

mouse model recapitulates the T-cell defects observed in human CLL patients such as 

decreased mitogen induced proliferation of T-cells and reduced capacity to induce 

idiotype-specific CD8 T-cell with the ability of killing CLL cells. Moreover, T-cell from 

leukemic mice had dysfunctional cytokine production and CLL bearing animals revealed 

alterations in gene expression that became more pronounced with increasing tumour 

load and correlated with findings in human CLL patients. When adoptively transferring 

CLL B-cells from leukemic mice into young transgenic animals without disease, gene-

expression profiles comparable to those from ageing CLL bearing Eμ-TCL1 animals 

developed within 8 days (907). Several studies have addressed the question of 

modulation of T-cell function by BTK inhibitors.  

Most prominently, Dubosvky et al. have suggested that Ibrutinib has the potential to shift 

T-helper cell polarity by targeting ITK. As demonstrated above, ITK has a pivotal role in 

mediating downstream T-cell receptor signalling. When inhibited, however, it’s function 

can be rescued by the redundant enzyme “resting lymphocyte kinase” (RLK) which is 

expressed in Th1 cells but not Th2 cells thus effectively resulting in a preferential 

inhibition of Th2 cells (877). As Acalabrutinib does not have inhibitory activity towards 

ITK it should affect T-cell function in the setting of CLL differentially (986). To our 

surprise, we did not find evidence of such an effect in the experiments at hand: both 

Ibrutinib and Acalabrutinib appeared to improve T-cell function in the microenvironment 

of CLL bearing Eμ-TCL1 animals in almost identical ways. Both substances increased 

the production of IL2 by overall CD3+ T-cell and CD3+CD8- helper cells to the same 

extent as well as decreased IL4 production by overall CD3+ T-cells and CD3+CD8- 

helper cell to a similar extent. The only detectable difference was a reduction of IL4 

production in CD3+CD8+ cytotoxic T-cells with Ibrutinib that could not be observed with 

Acalabrutinib treatment. Moreover, both substances were shown to reduce INFγ 

secretion by T-cell subsets in quite a similar fashion. A reduction of IFNγ by BTK inhibitor 

treatment may seem counterintuitive at first, as the substance is an important Th1 

cytokine and mediator of cancer immunosurveillance. On the other hand, one should 

keep in mind that continuous T-cell stimulation has been described to lead to a 

secondary T-cell dysfunction via IFNγ driven overexpression of PD-L1 (adaptive immune 

resistance) (842). Moreover, IFNγ is also known to promote survival and proliferation of 
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CLL B-cells (417). As such, the observed reduction of IFNγ secretion is a step toward 

normalization of the immune microenvironment. We observed an increase of the ratio of 

CD107a+/CD107a- among antigen-experienced CD44+CD8+ T-cells with Ibrutinib 

treatment. This effect is even more pronounced with Acalabrutinib treatment. Among less 

antigen experienced CD44- CD8 T-cells we have noted a similar trend, however, only 

the effect of Acalabrutinib treatment compared to vehicle treatment reached statistical 

significance. It should be noted that surface accumulation of CD107a is merely a 

surrogate marker for the cytolytic capacity of CD8+ T-cells. Still, it is known that surface 

CD107a accumulation directly correlates with the ability of cytotoxic T-cells to lyse target 

cells as measured in chromium release assays (987). CD107a accumulation is thus an 

adequate tool to assess T-cell cytolytic capacity. Last but not least we have quantified 

the ability of T-cell and B-cells from splenocytes of CLL bearing animals by analysing the 

area of F-Actin polymerization at the contact zone via a well established assay originally 

developed at our lab (216). We found an increased ability for T-cell synapse formation 

that was similar after both Ibrutinib and Acalabrutinib treatment.  

In conclusion, we find that both BTK inhibitors have the ability to normalize T-cell cytokine 

profile with increased T-helper cell IL2 production and decreased IL4 production. INF-γ 

production is decreased to a similar extent in line with a decreased pro-survival signal to 

CLL B-cells and reduce adaptive immune resistance. Effector functions in the form of 

CD8+ T-cell degranulation and synapse formation between spleen derived T- and B-

cells are increased with both Ibrutinib and Acalabrutinib treatment. We thus have little 

evidence that direct modulation of T-cells via ITK/RLK is the leading mechanism in 

improved T-cell function in the splenic microenvironment of CLL bearing animals as 

effects are similar between Ibrutinib and Acalabrutinib, which is known not to have 

inhibitory capacity towards ITK (986). While this mechanism may contribute in part to 

Ibrutinib-mediated correction of CLL-associated T-cell function it does not seem to be of 

central importance. We speculate that an indirect mechanism may play a greater role. A 

downregulation of PD-L1 expression on the surface of CLL B-cells in the peripheral blood 

of Ibrutinib treated patients has been reported in one study, suggesting a potential role 

in direct  cell contact mediated suppression of T-cells  by CLL B-cells themselves and 

modulation therefore as a potential mechanism of correction of T-cells function by BTK 

inhibitors (878). Moreover, myeloid cells are well known to express BTK and modulation 

of myeloid cell function, especially of MDSCs in the setting of malignancy has been 

suggested.  Ibrutinib has been reported to be able to decrease production of important 

B-cell attracting chemokines such as CXCL12, CXCL13, CCL19 in human macrophages 

and thus directly influence the composition of the microenvironment of CLL 
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manifestations (880). Ibrutinib treatment of MDSCs has been reported to result in 

reduction of T-cell suppressive mechanisms such as IDO expression and impairment of 

generation of MDSCs (879). Other authors have suggested enhanced myeloid dendritic 

cell maturation and co-stimulatory capacity following Ibrutinib treatment (988). 

Modulation of myeloid cell function in the immunosuppressive microenvironment of CLL 

may thus be a possible mechanism of improved CLL-associated T-cell function as well. 

This notion is also supported by findings of Gunderson who reported a skewed 

immunophenptype of macrophages in the microenvironment of PDAC resulting in a more  

Th2-permissive environment which was correctable by Ibrutinib administration resulting 

in impoved  CD8+ T-cell cytotoxicity (881).  

Based on the data presented above, both Ibrutinib and Acalabrutinib appear to be 

promising combination partners for a combined BTK inhibition/immune checkpoint 

blockade strategy. 

 

 



Mark-Alexander Schwarzbich                                                                                           Chapter 7 

Page 189 of 279 

 

7 Influence of BTK inhibitor/anti-PD-L1 combinations on immune phenotype 

in the splenic microenvironment 

7.1 Specific introduction 

The PD-1/PD-L1 axis is a pathway that is commonly utilized in the microenvironment of 

malignant diseases to mediate tumour immune escape. We have been able to 

demonstrate that the functional T-cell impairment induced by CLL is associated with an 

overexpression of immune checkpoint molecules including PD-1 (401). Aberrant PD-L1 

expression has been reported to be used as a means of immune escape by various 

hematologic malignancies. Our group has previously shown upregulation in primary 

tumour cells of CLL, FL and DLBCL patients (216). Aberrant expression has also been 

described in MCL (826), PMBL (827), HL (828) and MM (829) as well as on CD34+ blasts 

from patients with MDS (830), CMML and AML (831). PD-L1 is not only found on tumour 

cells but also frequently expressed on myeloid derived cells in the tumour 

microenvironment of various malignancies including CLL (832-835). Various studies 

have demonstrated the functional relevance of the PD1/PD-L1 axis in mediating 

malignancy associated immune dysfunction in the setting of hematologic malignancies. 

Overexpression of both wild type PD-L1 as well as a fusion protein of CIITA and PD-L1 

was able to suppress Jurkat T-cell activation in a PMBL cell line (827). In MCL cell lines 

both anti-PD-L1 antibody blockade and knockdown of PD-L1 by sh-RNA was shown to 

increase the proliferation of cocultured allogeneic T-cells (826). Our own group has been 

able to demonstrate that PD-L1 is pivotal in mediating CLL associated T-cell dysfunction 

(216). In the Eμ-TCL1 adoptive transfer mouse model we have shown that PD-L1 

blockade results in prevention of T-cell dysfunction and leukemia growth when given 

from the day of adoptive transfer (836).  

Despite these findings and a clearly demonstrable clinical activity in other hematologic 

malignancies, attempts to utilize blockade of the PD-1/PD-L1 axis in patients with CLL 

have largely been disappointing (108). The BTK inhibitor Ibrutinib has been reported to 

be able to modulate function of T-cell and myeloid cell subsets (877-881). It has been 

suggested that the clinical efficacy of the agent is due to a combination of direct effects 

on CLL B-cells via the BCR pathway as well as correction of CLL associated immune 

defects. Above we have demonstrated that both Ibrutinib and the second generation BTK 

inhibitor Acalabrutinib have the ability to correct CLL associated T-cell defects. Moreover, 

we have shown the ability of both agents to modulate expression of PD-1 and its ligand 

PD-L1. We speculate that combinations of the BTK-inhibitors and PD-L1 immune 

checkpoint blockade may have synergistic effects in overcoming CLL associated 
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immune dysfunction and may help to induce durable remissions in the clinical setting. 

Results in the A20 mouse model of lymphoma support this hypothesis (872). Given our 

above findings we believe that both Ibrutinib and Acalabrutinib are promising candidates 

for a combination approach with PD-L1 immune checkpoint blockade in the setting of 

CLL. A phase I/IIa study of Nivolumab/Ibrutinib in patients with relapse NHL and CLL/SLL 

has  recently reported a promising ORR of 61% of high risk CLL/SLL further advocating 

for the use of combination approaches (873). 

7.2 Goals and objectives 

We aimed to develop a combination strategy of BTK inhibitors and anti-PD-L1 immune 

checkpoint blockade using the Eμ-TCL1 mouse model of CLL. Our goal in this section 

was to analyse the effect of combinations of Ibrutinib or Acalabrutinib and anti-PD-L1 

immune checkpoint blockade on the immune phenotype and expression of immune 

checkpoint molecules in the splenic microenvironment of CLL bearing animals.   

7.3 Specific methods 

7.3.1 Cell thawing procedure 

Thawing of cryopreserved splenocyte samples was performed in a water bath at 37oC. 

To avoid contamination the vials were disinfected using 70% IMS (Fisher Scientific, UK) 

and subsequently opend in a class II biosafety cabinet. The cell suspension was pipetted 

into 10ml RPMI 1640 (Gibco, UK) supplemented with 10% FCS (Gibco, UK), 1% 

Penicillin-Streptomycin (Sigma, UK) at 37°C. Subsequently the suspension was 

centrifuged at 300 x g for 10 minutes at room temperature and resuspended in a volume 

suitable for number of cells contained in the pellet. Automated cell counting was 

conducted on a Luna fl automated cell counter (Logos bioystems, USA) after dilution of 

a 10μl aliquot with an equal amount of 0.4% Tryphan blue (Sigma, UK). 

7.3.2 Mass cytometry staining 

3x106 splenocytes from single cell preparations were carried forward for staining. All 

staining steps are performed in 5 ml polypropylene round bottom tubes (Corning, UK). 

Cell were resuspended in “Cell-ID” Cisplatin (Fluidigm, UK) in PBS (Sigma, UK) at a 

concentration of 5µM and incubate for 5 minutes at room temperature. The reaction was 

quenched with 5x the volume of “Maxpar” cell staining buffer (Fluidigm, UK) and the 

samples centrifuged. Cells are resuspended in 50µl of “Maxpar” cell staining buffer 

containing 1 µl of anti-mouse CD16/CD32 monoclonal antibody (clone 93, ebioscience, 
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UK) and incubated for 10 minutes. The volume was then filled up to 100 µl with “Maxpar” 

cell staining buffer (Fluidigm, UK) containing mass cytometry antibodies for a final 

concentration of 1:100. Cells were incubated for 30 minutes at room temperature and 

then washed 2x in “Maxpar” cell staining buffer (Fluidigm, UK). The samples were then 

resuspended in 1ml of “Maxpar” Fix and Perm buffer (Fluidigm, UK) containing “Cell-ID” 

Intercalator-Ir (Fluidigm, UK) at a concentration of 125 nM and incubated over night at 

4°C. Cells were washed 2x in “Maxpar” Cell staining buffer (Fluidigim, UK) and 1x in 

“Maxpar” water (Fluidigm, UK). Cells were left dry-pelleted at 4°C until immediately prior 

to acquisition on a “cytof 2” mass cytometer (Fluidigm, UK). For a list of mass cytometry 

antibodies used please refer to table 4. 

7.3.3 Acquisition and analysis of mass cytometry data 

A “cytof 2” mass cytometer (Fluidigm, UK) was used for acquisition of mass cytometry 

data. The suspension of stained cells was nebulized in order to create single cell droplets 

and was subsequently exposed to a high temperature plasma. This breaks the molecular 

bonds and ionizes the atoms. The resulting charged atomic ion clouds are transferred 

into the mass spectrometer. The mass cytometer is configured as a qTOF instrument. 

The two radiofrequency quadrupoles are tuned to filter out naturally occuring low mass 

ions. The enriched higher mass reporter ions are quantitated by TOF mass analysis. 

Normalization of the recorded data is achieved via a standardized bead solution 

containing known concentrations of the metal isotopes 140/142Ce, 151/153Eu, 165Ho, 

and 175/176Lu. A correction algorithm in the software of the mass cytometer normalizes 

the recorded data to correct for signal variation that may occur over protracted periods 

of use. 

7.3.4 Citrus analysis of high dimensional single cell immune phenotypic data 

For analysis of mass cytometry data, the algorithm cluster identification, characterization, 

and regression (CITRUS) was used. The algorithm was designed to detect statistically 

significant differences between experimental groups in highly dimensional data sets. 

CITRUS performs multiple sequential steps in order to achieve this. First, unsupervised 

hierarchical clustering of cellular events across multiple samples by phenotypic similarity 

along the lines of a defined set of markers is performed. Then biologically relevant 

features within these clusters of cellular events are calculated on a per file basis and the 

resulting tree of clusters annotated with this information. CITRUS then interrogates this 

dataset as to whether these clusters differ on a statistically significant level in terms of 

median expression of a defined set of markers different from the subset used to create 
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the tree of clusters. This is achieved by the use of a correlative linearized regression 

model, significance analysis of microarrays. The analysis uses non-parametric statistics 

to test differences along the lines of user defined experimental groups. Repeated 

permutations of the data are used to determine whether the expression of any of these 

markers is significantly related to any of the experimental groups (955). The result is 

reported not by use of classical p-values but by utilizing false discovery rate. This 

approach is chosen because due to the multiple testing problem an adjustment of p-

values is necessary. The use of more traditional techniques such as Bonferroni-

correction reduces the number of false positives at the cost of also reducing the number 

of correctly identified true positive differences. The calculation of a false discovery rate 

thus has a higher power to detect truly significant differences.  After excluding debris and 

B-cell subsets by manual gating 10000 events per individual were clustered. A minimum 

cluster size of 1% was chosen. To avoid the detection of false positives only differences 

with a false discovery rate <1% were reported. The medians were subsequently exported 

and analysed with the more classical Kruskal-Wallis test with Dunn’s post test and 

correction for multiplicity. 

7.4 Results 

We have here aimed to develop a combination strategy of BTK inhibitors and anti-PD-

L1 immune checkpoint blockade. Animal experiments conducted to derive splenocyte 

samples are described under 3.4.4. We have used our 27-marker mass cytometry panel 

to investigate the influence of combinations of Ibrutinib or Acalabrutinib with anti-PD-L1 

in comparison to single agent BTK inhibitor or anti-PD-L1 treatment on the immune 

phenotype of the splenic microenvironment in CLL bearing animals. As detailed in 

chapter 5.4 manual gating was used to separate CLL B-cell, physiological B-cells and 

non-B-cells. The gating strategy is illustrated in figure 28. Figure 52 demonstrates 

expression of PD-L1 in B-cell subsets across single agent treated, combination treated 

and vehicle treated animals. Unfortunately, application of anti-PD-L1 immune checkpoint 

blockade masked staining for PD-L1 and thus expression could not be assessed in the 

PD-L1 treatment arms. Assessing the expression of PD-L1 in the remaining treatment 

groups, we confirmed the statistically significant increase in PD-L1 expression with BTK 

inhibitor treatment described in chapter 5.  Interestingly, as opposed to the previous 

experiment, treatment with both Ibrutinib and Acalabrutinib resulted in a reduced 

expression of PD-L1 among physiological B-cells.  

Non-B-cell events where subsequently analysed using the CITRUS clustering algorithm. 

Compared to the earlier animal experiment described in chapter 5, a better overall 
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disease control was achieved with both single agent and combination treatments 

(compare 3.4.3 and 3.4.4). This led to a better separation of CLL B-cells and non-B-cells 

with only minute residual CD19 low infiltrating B-cells in the non- B-cells population.  

Figures 53 – 56 illustrate the resulting CITRUS clustering tree and identification of major 

immune cell subsets.  
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Figure 52: Median PD-L1 153Eu signal intensity on overall B-cells, CLL-B-cells and 
physiological B-cells of the splenic microenvironment with BTK inhibitor, anti-PD-L1 and 
BTK inhibitor/anti-PD-L1 combination treatment. Statistical analysis by Kruskal Wallis test. 3 
groups, n=10 each. Abbreviations Ns p > 0.05; *p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** p≤ 0.0001. 
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Figure 53: CITRUS cluster tree and identification of CD4+ and CD8+ T-cells. Phenotypically 
similar events are grouped together in clusters. The distance of clusters is thus a measure of their 
similarity. The Size of the circles denotes the abundance of cells in the cluster, the colour scale 
the median marker intensity (red-high expression, blue-low expression). The tree structure is 
redundant with proximal parent clusters in the centre of the plot containing all events of distal 
children clusters. 
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Figure 54: CITRUS cluster tree and identification of memory and naïve T-cells, regulatory 
T-cells. Size of the circles denotes the abundance of cells in the cluster, colour scale the median 
marker intensity (red-high expression, blue-low expression). The tree structure is redundant with 
proximal parent clusters containing all events of distal children clusters.  Abbreviations: CM – 
central memory, EM – effector memory.  
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Figure 55: CITRUS cluster tree and identification of Granulocytes and NK-cells. Size of the 
circles denotes the abundance of cells in the cluster, colour scale the median marker intensity 
(red-high expression, blue-low expression). The tree structure is redundant with proximal parent 
clusters containing all events of distal children clusters. 
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Figure 56: CITRUS cluster tree and identification of dendritic cells and myelomonocytic 
cells. Size of the circles denotes the abundance of cells in the cluster, colour scale the median 
marker intensity (red-high expression, blue-low expression). The tree structure is redundant with 
proximal parent clusters containing all events of distal children clusters. 
 
 

Figures 57 and 58 illustrate differences in median CD69 expression among cell subsets 

as analysed using the CITRUS algorithm. We found a decrease in expression with both 

BTK inhibitor single agent treatments as well as BTK inhibitor/anti-PD-L1 immune 

checkpoint blockade combinations over vehicle treatment and single agent anti-PD-L1 

treatment among NK cells, regulatory T-cells and a subset of effector CD8+ T-cells .A 

similar trend was observed among naïve and effector CD4+ with statistical signifance 

reached only for a limited subset of comparisons in those groups.. The effect was similar 

with single agent BTK inhibitor treatment and both BTK inhibitor/anti-PD-L1 

combinations.  
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Figure 57: CITRUS cluster tree, comparison of median CD69 expression on splenocyte 
subsets from BTK inhibitor and BTK inhibitor/anti-PD-L1 combination treated animals.  
CITRUS cluster tree, statistical analysis by “statistical analysis of microarrays”, clusters with 
statistically significant differences in marker expression highlighted in red, false discovery <1%. * 
denotes cluster displayed in figures 58. Abbreviations: CM – central memory, EM – effector 
memory.  
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Figure 58: Comparison of median CD69 expression on lymphocyte and NK cell subsets 
from spleens of BTK inhibitor and BTK inhibitor/anti-PD-L1 combination treated animals.  
Median signal intensity of selected clusters marked to contain statistically significant differences 
of expression by “statistical analysis of microarrays, false discovery <1%. For clusters displayed 
please refer to figure 57. Statistical anaylsis by Kruskal-Wallis test, 6 groups n=10 each, 
Abbreviations; * - p ≤ 0.05; ** - p ≤ 0.01; *** - p ≤ 0.001; **** - p≤ 0.0001. 
 
 

Figures 59-61 demonstrate differences in PD-1 expression among splenocyte subsets 

in the microenvironment of CLL bearing animals following various modes of treatment. 

We observed a decrease of PD-1 expression among naïve CD4+ T-cells, regulatory T-

cells, effector memory CD4+ T-cells, effector CD4+ T-cells, a subset of effector CD8+ T-

cells with both single agent BTK inhibitor treatment and BTK inhibitor/anti-PD-L1 

combinations but not with single agent anti-PD-L1 immune checkpoint blockade. Among 

effector memory CD8+ T-cells a similar trend was observed with only the comparison 

between single agent PD-L1 inhibitor and single agent Acalabrutinib reaching statiscal 

significance. Interestingly there was a trnd towards slightly higher expression in animals 

treated with BTK inhibitor/anti-PD-L1 immune checkpoint inhibitor combinations 

compared to single agent BTK inhibitor treatment.  
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Among myeloid cell subsets we found a similar decrease in PD-1 expression. In 

inflammatory monocytes and classical dendritic cells this effect was similar with both 

single agent BTK inhibitor treatment and combination treatments. The observed effect in 

dendritic cells was only very modest albeit statiscally significant. In patrolling 

monocytes/macrophages expression levels were reduced with both single agent BTK 

inhibitor and combination treatments over vehicle treatment and single agent anti-PD-L1 

immune checkpoint blockade. However, there was trend towards slightly higher 

expression in single agent BTK treated animals compared to combination treated 

animals.  

 

 
 
 
Figure 59: CITRUS cluster tree, comparison of median PD-1 expression on splenocyte 
subsets from BTK inhibitor and BTK inhibitor/anti-PD-L1 combination treated animals.  
CITRUS cluster tree, statistical analysis by “statistical analysis of microarrays”, clusters with 
statistically significant differences in marker expression highlighted in red, false discovery <1%. * 
denotes cluster displayed in figures 60 and 61. Abbreviations: CM – central memory, EM – 
effector memory.  
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Figure 60: Comparison of median PD-1 expression on lymphocyte subsets from spleens 
of BTK inhibitor and BTK inhibitor/anti-PD-L1 combination treated animals.  Median signal 
intensity of selected clusters marked to contain statistically significant differences of expression 
by “statistical analysis of microarrays, false discovery <1%. For clusters displayed please refer to 
figure 59. Statistical anaylsis by Kruskal-Wallis test, 6 groups n=10 each, Abbreviations; * - p ≤ 
0.05; ** - p ≤ 0.01; *** - p ≤ 0.001; **** - p≤ 0.0001. 
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Figure 61: Comparison of median PD-1 expression on myeloid cell subsets from spleens 
of animals treated with BTK inhibitor and BTK inhibitor/anti-PD-L1 combination. Median 
signal intensity of selected clusters marked to contain statistically significant differences of 
expression by “statistical analysis of microarrays, false discovery <1%. For clusters displayed 
please refer to figure 59. Statistical anaylsis by Kruskal-Wallis test, 6 groups n=10 each, 
Abbreviations; * - p ≤ 0.05; ** - p ≤ 0.01; *** - p ≤ 0.001; **** - p≤ 0.0001. 

 
 
Figures 62 and 63 demonstrate differences in median expression of KLRG-1. We found 

a very pronounced decrease of expression single agent Acalabrutinib, 

Acalabrutininib/anti-PD-L1 and Ibrutinib/anti-PD-L1 treatment while a trend towards 

decreased expression in single agent anti-PD-L1 treatment did not reach statiscal 

significance. Moreover, a similar but only slight reduction was observed among regulator 

T-cells. In central memory CD8+ T-cells a statistically significant difference in expression 

was suggested by the algorithm. However, on inspection of the expression levels no 

relevant alterations in strength of expression could be appreciated. Only the comparisons 

between vehicle treatment and anti-PD-L1 treatment as well as anti-PD-L1 treatment 

and single agent Acalabrutinib treatment reached statiscal significance. This feature, 

while deemed statistically significant by the algorithm is likely not of functional relevance.  
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Figure 62: CITRUS cluster tree, comparison of median KLRG-1 expression on splenocyte 
subsets from BTK inhibitor and BTK inhibitor/anti-PD-L1 combination treated animals.  
CITRUS cluster tree, statistical analysis by “statistical analysis of microarrays”, clusters with 
statistically significant differences in marker expression highlighted in red, false discovery <1%. * 
denotes cluster displayed in figures 63. Abbreviations: CM – central memory, EM – effector 
memory.  
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Figure 63: Comparison of median KLRG-1 expression on NK cell and T-cell subsets from 
spleens of animals treated with BTK inhibitor and BTK inhibitor/anti-PD-L1 combination. 
Median signal intensity of selected clusters marked to contain statistically significant differences 
of expression by “statistical analysis of microarrays, false discovery <1%. For clusters displayed 
please refer to figure 62. Statistical anaylsis by Kruskal-Wallis test, 6 groups n=10 each, 
Abbreviations; * - p ≤ 0.05; ** - p ≤ 0.01; *** - p ≤ 0.001; **** - p≤ 0.0001. 

 
 
 

Figures 64-66 show median expression of 2B4 among splenocyte subsets of CLL 

bearing animals following treatment with single agent BTK inhibitor or anti-PD-L1 

immune checkpoint blockade as well as BTK inhibitor/anti-PD-L1 combinations. The 

CITRUS algorithm detected a statistically significant decrease in expression among NK 

cells following treatment with single agent BTK inhibitor or BTK inhibitor/anti-PD-L1 

combinations. Differences highlighted among a subset of effector and effector memory 

CD8+ T-cells show a very modest increase in expression following single agent anti-PD-

L1 treatment only starting from a very low baseline and only very few of these 

comparisons reached statistical significance.  

Other highlighted alterations concern myeloid cell subsets. We have found statistically 

significant reductions in 2B4 expression among granulocytes, both inflammatory and 

patrolling monocyte/macrophages subsets as well as among classical dendritic cells 

among BTK inhibitor treated and combination treated animals.  
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Figure 64: CITRUS cluster tree, comparison of median 2B4 expression on splenocyte 
subsets from BTK inhibitor and BTK inhibitor/anti-PD-L1 combination treated animals.  
CITRUS cluster tree, statistical analysis by “statistical analysis of microarrays”, clusters with 
statistically significant differences in marker expression highlighted in red, false discovery <1%. * 
denotes cluster displayed in figures 65 and 66. Abbreviations: CM – central memory, EM – 
effector memory.  

 
 
Figure 65: Comparison of median 2B4 expression on NK cell and T-cell subsets from 
spleens of animals treated with BTK inhibitor and BTK inhibitor/anti-PD-L1 combination. 
Median signal intensity of selected clusters marked to contain statistically significant differences 
of expression by “statistical analysis of microarrays, false discovery <1%. For clusters displayed 
please refer to figure 64. Statistical anaylsis by Kruskal-Wallis test, 6 groups n=10 each, 
Abbreviations; * - p ≤ 0.05; ** - p ≤ 0.01; *** - p ≤ 0.001; **** - p≤ 0.0001. 
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Figure 66: Comparison of median 2B4 expression on myeloid cell subsets from spleens of 
animals treated with BTK inhibitor and BTK inhibitor/anti-PD-L1 combination treated. 
Median signal intensity of selected clusters marked to contain statistically significant differences 
of expression by “statistical analysis of microarrays, false discovery <1%. For clusters displayed 
please refer to figure 64. Statistical anaylsis by Kruskal-Wallis test, 6 groups n=10 each, 
Abbreviations; * - p ≤ 0.05; ** - p ≤ 0.01; *** - p ≤ 0.001; **** - p≤ 0.0001. 

 
 

Figures 67 and 68 illustrate alterations in TIM-3 expression among splenocyte subsets 

of treated and untreated CLL bearing animals as detected by the CITRUS algorithm. 

Interestingly, we did not observe statistically significant differences across treatment 

groups in lymphocyte subsets but rather in myeloid cell subsets. Expression was found 

to be increased with BTK inhibitor treatment and combinations of BTK inhibitor and anti-

PD-L1 immune checkpoint blockade but not with single agent anti-PD-L1 among 

patrolling monocytes/macrophag. A similar trend was observed among a subset of 

inflammatory monocytes. However, statiscal significance was not reached for all 

comparisons.  Among classical dendritic cells only a proximal cluster but not more distal 

clusters were highlighted as statistically significant. Here, the observed change was 

inverse with decreased TIM-3 expression with single agent BTK inhibitor and treatment 

combinations but not single agent anti-PD-L1. Only the comparisons between vehicle 

treatment and Acalabrutinib containing regimens and single agent anti-PD-L1 treatment 

and Acalabrutinib containing regimens reached statistical significance. 
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Figure 67: CITRUS cluster tree, comparison of median TIM-3 expression on splenocyte 
subsets from animals treated with BTK inhibitor and BTK inhibitor/anti-PD-L1 combination 
treated.  CITRUS cluster tree, statistical analysis by “statistical analysis of microarrays”, clusters 
with statistically significant differences in marker expression highlighted in red, false discovery 
<1%. * denotes cluster displayed in figure 68. Abbreviations: CM – central memory, EM – effector 
memory.  

 

 

Figure 68: Comparison of median TIM-3 expression on myeloid cell subsets from spleens 
of animls treated with BTK inhibitor and BTK inhibitor/anti-PD-L1 combination. Median 
signal intensity of selected clusters marked to contain statistically significant differences of 
expression by “statistical analysis of microarrays, false discovery <1%. For clusters displayed 
please refer to figure 67. Statistical anaylsis by Kruskal-Wallis test, 6 groups n=10 each, 
Abbreviations; * - p ≤ 0.05; ** - p ≤ 0.01; *** - p ≤ 0.001; **** - p≤ 0.0001. 
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Figures 68 and 69 illustrate changes observed in median LAG-3 expression in the splenic 

microenvironment of CLL bearing animals across treatment groups. We observed a 

decrease in expression of LAG3 with BTK inhibitor treatment and BTK inhibitor/anti-PD-

L1 combinations compared with levels seen in vehicle treated and single agent anti-PD-

L1 treated animals among a subset of naïve. effector CD4+ T-cells and effector memory 

CD4+ T-cells. Similarly, slight reductions could be appreciated among a subset of 

effector and effector memory CD8+ T-cells. Similar trends were observed among NK-

cells and central memeory CD8+ T-cells- However, statistically significant reductions 

were only achieved with Acalabrutinib cointaing regimens or the Acalabrutinib/anti-PD-

L1 combination, respectively.  

 

 

Figure 69: CITRUS cluster tree, comparison of median LAG-3 expression on splenocyte 
subsets in anoimals treated with from BTK inhibitor and BTK inhibitor/anti-PD-L1 
combination.  CITRUS cluster tree, statistical analysis by “statistical analysis of microarrays”, 
clusters with statistically significant differences in marker expression highlighted in red, false 
discovery <1%. * denotes cluster displayed in figures70. Abbreviations: CM – central memory, 
EM – effector memory.  
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Figure 70: Comparison of median LAG-3 expression on lymphocyte and NK-cell subsets 
from spleens animals treated with BTK inhibitor and BTK inhibitor/anti-PD-L1 combination. 
Median signal intensity of selected clusters marked to contain statistically significant differences 
of expression by “statistical analysis of microarrays, false discovery <1%. For clusters displayed 
please refer to figure 69. Statistical anaylsis by Kruskal-Wallis test, 6 groups n=10 each, 
Abbreviations; * - p ≤ 0.05; ** - p ≤ 0.01; *** - p ≤ 0.001; **** - p≤ 0.0001 

 

In summary we found various effects of BTK inhibitors and BTK inhibitor anti-PD-L1 

combinations in this experiment. While PD-L1 staining could not be assessed in anti-PD-

L1 treated animals due to masking of staining by the anti-PD-L1 immune checkpoint 

blockade in BTK inhibitor only treated animals we have confirmed the upregulation of 
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PD-L1 among CLL B-cells reported in chapter 5. Among T-cells we report a correction 

of the exhaustion phenotype with downregulation of CD69, PD-1 and LAG-3. These 

alterations where very similar between BTK-inhibitor only treated and combination 

treated animals. We did, however, observe a trend towards slightly higher expression 

levels of PD-1 among anti-PD-L1 treated animals. Compared to the experiment reported 

in chapter 5 we found more extensive alterations of the immunophenotype of NK cells. 

These include a downregulation of KLRG-1 and 2B4. We have also observed extensive 

alterations of the immunophenotype of myelomonocytic cell subsets with downregulation 

of PD-1 and 2B4 and upregulation of TIM-3. The changes were similar between single 

agent BTK inhibitor treated and combination treated animals. 

7.5 Discussion 

We have here sought to investigate the effects of BTK inhibitor/anti-PD-L1 immune 

checkpoint blockade combinations compared to single agent BTK inhibitor or anti-PD-L1 

on the immune phenotype in the splenic microenvironment of CLL bearing animals.  

Similar to the findings reported above in chapter 5, we found a downregulation of CD69 

expression among T-cell and NK-cell subsets. This effect was similar comparing BTK 

inhibitor treated and BTK inhibitor/anti-PD-L1 combination treated animals. In the T-cell 

subsets the observed changes are more centered around less antigen experienced 

effector cell subsets compared to the experiment reported above in chapter 5. In this 

regard it is important to note that in comparison to this experiment, animals had a slower 

initial onset of disease and better overall disease control. This has resulted in a lower 

overall abundance of memory T-cells and possibly a stronger focus of the observable 

effects on the effector cell subsets.  

On the other hand, we do find comparable alterations in PD-1 expression with a marked 

downregulation primarily among regulatory T-cells, effector memory CD4+ and CD8+ T-

cells but also extending to naïve CD4+ T-cells and effector CD4+ and CD8+ T-cells. A 

striking difference is, that this downregulation of PD-1 did also affect CD8+ T-cell subsets 

compared to the earlier experiment where the effect appeared to be focused on CD4+ 

T-cells. Again, a better overall disease control in the experiment at hand may explain the 

observed differences. Interestingly, we found that the expression levels of PD-1 were 

decreased at statistically significant levels in BTK inhibitor/anti-PD-L1 treated animals 

compared to vehicle and single agent anti-PD-L1 treated animals but there was a trend 

towards slightly higher expression compared to single-agent BTK inhibitor treated 

animals. This potentially points to a counterregulatory mechanism of upregulation of PD-
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1 in the anti-PD-L1 treatment groups. Moreover, we observed a similar pattern among 

both inflammatory monocyte and patrolling monocyte/macrophage subsets. Indeed, PD-

1 expression has been reported on monocyte and macrophage subsets. In renal cell 

carcinoma, higher levels of PD-1 expression among classical monocytes in the 

peripheral blood have been shown to have an association with inferior outcome (989). 

Higher levels of PD-1 expressing monocytes have been linked to the 

immunosuppressive phase of sepsis and higher mortality from sepsis in preterm 

neonates (990). In samples from patients with colorectal cancer and mouse models of 

the disease increased levels of PD-1 expressing TAMs could be observed. The PD-1 

expression increased over time in the research animals and correlates with the stage of 

the disease in patient samples. TAM PD-1 expression negatively correlated with 

phagocytic capacity of macrophages against tumour cells and blockade of the PD-1/PD-

L1 axis increased phagocytic activity of macrophages, reduced tumour growth and 

increased survival in mouse models (991). A very modest downregulation of PD-1 

expression was observed among classical dendritic cells. Here no differential effect 

between single agent BTK inhibitor and combination treated animals could be 

appreciated. Inducible PD-1 expression on splenic dendritic cells has been described in 

mouse models of bacterial infection and has been reported to impede innate immunity 

(992). The existence of PD-1 expressing dendritic cells has been demonstrated in both 

patient samples and mouse models of hepatocellular carcinoma. Intratumoural transfer 

of DCs lacking PD-1 led to resistance against tumour growth in recipient animals via 

activation of CD8+ effector T-cells suggesting that PD-1+ dendritic cells may contribute 

to suppression of CD8+ T-cell function and cancer immune evasion in this disease (993). 

We believe that similar to the above studies the downregulation of PD-1 among myeloid 

cell subsets in the splenic microenvironment of CLL bearing animals treated with BTK 

inhibitor and BTK inhibitor/anti-PD-L1 combinations may contribute to an improved 

immunosurveillance. 

In terms of KLRG-1 expression we find a downregulation with single agent BTK inhibitors 

and combination treatment centred around NK cells and regulatory T-cells. The changes 

were very similar in both single agent BTK inhibitor treated and combination treated 

animals. A further statistically significant feature among central memory CD8+ T-cells 

did not yield a relevant alteration in expression levels upon closer inspection and is, 

despite being statistically significant, likely not of functional relevance. 

We found 2B4 expression to be decreased both with combinations of BTK inhibitors and 

anti-PD-L1 immune checkpoint blockade and single agent BTK inhibitor treatment in NK 
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cells, granulocytes, inflammatory monocytes, patrolling monocytes/macrophages and 

classical dendritic cells. Highlighted features among subsets of effector and effector 

memory CD8+ T-cells appeared to be limited to a slightly higher expression among single 

agent anti-PD-L1 treated animals. As 2B4 expression among lymphocytes has been 

linked to their activation this may point to an increased CD8+ T-cell activation with anti-

PD-L1 treatment. Expression of 2B4 among NK cells is well known and has been 

reported to have both activating and inhibitory functions. While 2B4 expression is 

required for optimal activation of CD8+ T-cells and NK cells via interaction with CD48 on 

neighbouring lymphocytes the interaction of 2B4 on NK cells with CD48 on target cells 

has been reported to inhibit cytolytic activity of NK cells (994). As high levels of CD48 

expression have been described on CLL B-cells the observed downregulation in NK-cell 

subsets with BTK inhibitor containing treatments could thus also signal an improved NK-

cell effector function with these treatments in the splenic microenvironment (995). While 

CD244 expression has not been reported on the surface of neutrophilic granulocytes, its 

expression has been suggested to be a hallmark characteristic of granulocytic MDSCs. 

Its expression on granulocytic cells in the splenic microenvironment of CLL bearing 

animals and its downregulation with BTK inhibitor containing treatments could point to a 

reversal of the granulocytic MDSCs phenotype among these animals (996). In dendritic 

cells expression of 2B4 has been linked to suppression of their pro-inflammatory 

functions. Dendritic cells derived from the spleens of CD244 -/- animals produced higher 

levels of pro-inflammatory cytokines and when stimulated with lipopolysaccharide or 

CpG and DCs from CD244 -/- mice elicited higher NK cell activation in vitro. The 

downregulation found with BTK inhibitor containing treatment regimens in the splenic 

microenvironment could thus also contribute to improved immunosurveillance in these 

animals (997). Expression of 2B4 among monocytes has been described extensively. 

However, little is known about its function in this cell type (655). Decreased expression 

has been noted on monocytes derived from the peripheral blood of SLE patients thus 

suggesting a role in immune tolerance (998). We speculate that the observed 

downregulation in myelomonocytic cell subsets with BTK inhibitor containing treatment 

regimens may signal an immunophenotype more permissive of adaptive immune 

responses.  

TIM-3 has been described to act as an immune checkpoint molecule on the surface of 

T-lymphocytes as well as a marker of T-cell exhaustion (615-617). Surprisingly, we did 

not find alterations of expression among T-cells with treatment strategies using BTK 

inhibitors, anti-PD-L1 immune checkpoint blockade or combinations thereof but rather 

among myeloid cell subsets. Expression was increased among inflammatory monocytes 
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as well as among patrolling monocyte/macrophage subsets using Ibrutinib, Acalabrutinib 

or combinations of these BTK inhibitors with anti-PD-L1 immune checkpoint blockade. 

Among classical dendritic cells, expression was decreased using these regimens. 

Expression of the surface molecule has previously been described among these cell 

subsets (613, 614). The functional role of TIM-3 in myeloid cells is still poorly understood. 

Expression in macrophages has been suggested to help limit the expansion of 

intracellular pathogens such as Mycobacterium tuberculosis by activation of 

macrophages (999, 1000). Moreover, evidence suggests that TIM-3 can act as a 

receptor for PtdSer by phagocytic cells and thus facilitating the clearance of apoptotic 

cells and cross-presentation of antigens by phagocytic cells (619). Experiments with the 

monocyte cell line THP-1 as well as CD14+ cells from the peripheral blood of healthy 

donors have shown that monocyte/macrophages in a quiescent state express high levels 

of TIM-3 and show low cytokine production while after activation in vitro with LPS or R848 

results in reduced TIM-3 expression and increased IL12 production (1001). Antibody 

mediated blockade of TIM-3 resulted in increased production of IL12 but decreased 

expression of PD-1. Similarly, silencing of TIM-3 expression in THP-1 cells using si-RNA 

resulted in increased production of IL12 (1001, 1002). In murine models of hepatocellular 

carcinoma an increased expression on peripheral blood monocytes and TAMs 

correlating with disease progression has been noted (1003). As such, the increased 

expression in myelomonocytic cell subsets following BTK inhibitor containing treatments 

may signal either improved phagocytosis and cross-presenting capacity of these cells, a 

decreased activation of monocyte/macrophages or even be detrimental to innate 

immunity directed against CLL. In tumour infiltrating dendritic cells, TIM-3 has been 

shown to suppress nucleic-acid-mediated innate immune responses through interaction 

with the alarmin HMGB-1 (620). The downregulation observed in classical dendritic cells 

from the splenic microenvironment of CLL bearing animals following treatment with BTK 

inhibitor containing regimens may thus be a sign of a more innate immunity permissive 

phenotype. The varied functions of the molecule across these various myeloid cell 

subsets may also explain the differential effect on the expression profile observed.  

With regards to LAG-3 expression, we found a downregulation of median marker 

expression with both single agent BTK inhibitor treatment and BTK inhibitor/anti-PD-L1 

combinations on NK cells, effector memory CD4+ T-cells, effector memory CD8+ T-cells 

and a subset of effector CD8+ T-cells. In addition, we found a modest downregulation 

among subsets of effector CD4+ T-cells, and naïve CD4+ T-cells. A feature highlighted 

among central memory CD8+T-cells did not show relevant alterations in expression 

levels and is likely not of functional relevance.  
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In conclusion, we have here demonstrated an amelioration of the exhaustion phenotype 

among CD4+ and CD8+ T-cells with both single agent BTK-inhibitor treatment and BTK 

inhibitor/anti-PD-L1 combinations. This is demonstrated by downregulation of CD69, PD-

1, LAG-3 and KLRG-1 expression. In addition, we found downregulation of inhibitory 

receptor 2B4, LAG-3 and KLRG-1 on the surface of NK cells. We also found evidence of 

a phenotype more permissive of myeloid cell effector function with downregulation of PD-

1 and 2B4. We reported differential effects on expression of TIM-3 among myeloid cell 

subsets with upregulation among myelomonocytic cells and downregulation among 

classical dendritic cells. While the decreased expression among DCs is in line with 

reports suggesting a suppressive effect on innate immune responses of TIM-3 in this 

context the increased expression among myelomonocytic cells is less clear with both 

positive and negative effects on innate immune response being described in the 

literature. Marker expression was very similar when directly comparing single agent BTK 

inhibitor treated and combination treated animals. The most pronounced difference a 

trend towards a slightly higher expression level of PD-1 among animals treated with BTK 

inhibitor/anti-PD-L1 combinations compared to single agent BTK inhibitor, possibly 

signalling a compensatory mechanism in the splenic microenvironment of CLL bearing 

animals. Differences observed between the experiment reported in chapter 5 and this 

experiment could potentially be explained with an improved overall disease control and 

lower levels of infiltrating CLL B-cells achieved in the experiment at hand.  

Despite our earlier experiments suggesting a potential for correction of the T-cell 

exhaustion phenotype with anti-PD-L1 treatment (836) in the present experiments we 

neither find evidence of an improved T-cell phenotype with single-agent anti-PD-L1 

treatment nor evidence of a synergistic effect of combined BTK-Inhibitor and anti-PD-L1 

treatment. The current set of experiments and our earlier findings mainly differ in the 

time-point of anti-PD-L1 application. The treatment seemed to be effective at controlling 

the disease only when applied from the day of adoptive transfer while application in the 

setting of already established disease seemed to have little effect clinically and in terms 

of T-cell exhaustion phenotype. In clinical practice the often initially indolent disease is 

usually discovered at more advanced stages and an efficacious use of PD-L1 blockade 

in CLL may thus meet a difficult to surmount obstacles in clinical reality. This notion is 

also supported by earlier failed attempts to appy PD-1 blockade in CLL patients  (108).  

Of note the anti-PD-L1 antibody applied in our earlier study (836) also had higher 

capability to directly stimulate ADCC against target cells while the antibody used in the 

current set of experiments was chosen to include  the D265A alteration of the Fc region 

to more closely model the mode of action of clinically applied PD-L1 inhibitors. It thus 
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seems possible that clinical success in the earlier study may have at least in part been 

due to a Rituximab-like direct FCγ-receptor mediated cytotoxicity against PD-L1 bearing 

CLL B-cells rather than due to modulation of CLL-induced T-cell exhaustion.    
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8 Influence of BTK inhibitor/anti-PD-L1 combinations on T-cell function 

8.1 Specific introduction 

According to the cancer immunoediting hypothesis, correction of malignancy associated 

immune deficiency and development of tools to help counter mechanism of cancer 

immune escape should provide improved disease control and produce more durable 

remissions (792). Immune checkpoints pathways are of pivotal importance in limiting T-

cell responses under physiological conditions and ensuring tolerance to self. 

Overexpression of immune checkpoint molecules such as CTLA-4 and PD-1/PD-L1 is 

frequently utilised in the microenvironment of malignancies to mediate cancer immune 

evasion (1004). Blockade of immune checkpoint molecules has been successfully used 

as a means of cancer immunotherapy not only in numerous solid malignancies (846-

852) but also, to some extent, in hematologic malignancies such as HL (858, 859). 

CLL is a malignant disease that is highly dependent on its supportive microenvironment 

and the immunosuppressive niche provided by it. Specialized myeloid cells in the CLL 

microenvironment, so called nurse like cells (NLCs), have been shown to retain CLL B-

cells in their supportive microenvironment and confer important stimuli in promoting B-

cell proliferation and preventing apoptosis of CLL cells (254-261). Ablation of NLC by 

either liposomal clodronate or monoclonal antibody mediated inhibition CSF1R signalling 

reduced leukaemia load in a mouse model of CLL (262). NLCs have been demonstrated 

to suppress T-cell proliferation and promote Treg expansion which can be prevented by 

anti-IL10 or anti-TGF-β antibodies as well as IDO inhibitors (268). The development of 

CLL is associated with severe global defects of both T-helper and cytotoxic T-cell 

function (298, 397-401). The T-helper cell polarity has been reported to be shifted away 

from a cellular immunity promoting Th1 phenotype towards a more humoral immunity 

and B-cell growth promoting Th2 phenotype in CLL (334, 403). Moreover CD4+ T-cells 

appear to be critical in promoting growth and survival of CLL B-cells in vivo (402).  

The high dependency on microenvironmental interactions and marked associated T-cell 

dysfunction makes CLL an ideal candidate for cancer immunotherapy. 

Immunotherapeutic strategies are of particularly appeal in this setting, as they may 

provide a tolerable and potentially even curative treatment approach in a disease that 

continues to be incurable using standard treatment strategies. Moreover, the disease 

mainly affects an elderly patient population frequently suffering from relevant 

comorbidities, thereby limiting treatment options. We have previously shown that CD4 

and CD8 T cells from CLL patients show phenotypic and functional similarities to T-cell 
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in the setting of exhaustion, a chronic activation induced T-cell dysfunction found in 

chronic viral infections, but retain the ability to produce cytokines such as INF-γ and TNF-

α. CLL T cells showed an increased expression of exhaustion markers such as CD244, 

CD160, and PD1, and these markers were most prominently found in a population of 

expanded effector T cells (401). PD-1/PD-L1 interaction has been shown to be of pivotal 

role in CLL associated T-cell defects. In a functional si-RNA screening we could 

demonstrate a dominant role of PD-L1 in induction of impaired actin-dynamics in CLL 

(216). This is of particular clinical importance given the role of PD-1/PD-L1 interaction in 

tumour induced T-cell exhaustion (422).  Despite clear evidence of efficacy in other 

haematologic malignancies and promising pre-clinical studies (836) attempts to utilize 

PD-1/PD-L1 immune checkpoint blockade in CLL have so far been disappointing (108).  

Recent evidence has suggested that the BTK inhibitor Ibrutinib has the ability to 

modulate T-cell and myeloid cell function (877-881). It has been suggested that the 

clinical efficacy of the agent is due to a combination of direct effects on CLL B-cells via 

the BCR pathway as well as correction of CLL associated immune defects. Traditionally 

modulation of T-cell function by Ibrutinib has been linked to differential suppression of 

tyrosine kinases ITK and RLK leading to selective pressure favouring Th1 helper cell 

polarity (877). As the second generation BTK inhibitor Acalabrutinib does not have 

inhibitory activity towards ITK the agent should theoretically differ in its potential to 

correct CLL associated T-cell defects (986). In the experiments previously described we 

have confirmed correction of T-helper cell cytokine profile as well as cytotoxic T-cell 

effector function using Ibrutinib in the Eμ-TCL1 adoptive transfer model of CLL. 

Interestingly, we have confirmed very similar effects using Acalabrutinib. We speculate 

that, rather as by direct modulation of T-cell function via ITK, the effects of BTK-inhibitors 

are mediated largely via an indirect effect, possibly through modulation of myeloid cell in 

the CLL microenvironment. Above we have confirmed the potential of both BTK inhibitors 

to alleviate the exhaustion phenotype of CLL associated T-cell and decrease expression 

of immune checkpoint molecules such as PD-1, LAG-3 and KLRG-1. We therefore 

speculate that combinations of the BTK-inhibitors and PD-L1 immune checkpoint 

blockade may have a synergistic effect. Results in the A20 mouse model of lymphoma 

support this hypothesis (872). Given our above findings we believe that both Ibrutinib 

and Acalabrutinib are promising candidates for a combination approach with PD-L1 

immune checkpoint blockade in the setting of CLL. A phase I/IIa study of 

Nivolumab/Ibrutinib in patients with relapse NHL and CLL/SLL has  recently reported a 

promising ORR of 61% of high risk CLL/SLL further advocating for the use of combination 

strategies (873). 



Mark-Alexander Schwarzbich                                                                                           Chapter 8 

Page 219 of 279 

 

8.2 Goals and objectives 

Our goal was to establish a combination strategy of BTK inhibitors and PD-L1 immune 

checkpoint blockade. We sought to demonstrate improved T-cell function with Ibrutinib 

or Acalabrutinib in combination with PD-L1 immune checkpoint blockade in the Eμ-TCL1 

adoptive transfer model of CLL. The best combination of agents could then be 

subsequently be carried forward in survival experiments to demonstrate superior efficacy 

in a pre-clinical model. 

8.3 Specific methods and materials 

8.3.1 Cell thawing procedure 

Thawing of cryopreserved splenocyte samples was performed in a water bath at 37oC. 

To avoid contamination the vials were disinfected using 70% IMS (Fisher Scientific, UK) 

and subsequently opend in a class II biosafety cabinet. The cell suspension was pipetted 

into 10ml RPMI 1640 (Gibco, UK) supplemented with 10% FCS (Gibco, UK), 1% 

Penicillin-Streptomycin (Sigma, UK) at 37°C. Subsequently the suspension was 

centrifuged at 300 x g for 10 minutes at room temperature and resuspended in a volume 

suitable for number of cells contained in the pellet. Automated cell counting was 

conducted on a Luna fl automated cell counter (Logos bioystems, USA) after dilution of 

a 10μl aliquot with an equal amount of 0.4% Tryphan blue (Sigma, UK). 

8.3.2 Flow cytometry based functional T-cell assays 

8.3.2.1 Cell stimulation 

1x106 splenocytes were incubated in 250µl RPMI 1640 with 10% FCS (Gibco, UK), 1% 

Penicillin/Streptomycin (Life Technologies, UK) in round-bottom 96-well-plates (VWR, 

UK). 5µg/ml CD107a per well (Clone 1D4B biolegend, UK) was added. The splenocytes 

were stimulated with PMA/ionomycin/brefeldin A/monensin cell stimulation cocktail 

(eBioscience, UK) for 6 hours at 37ºC/5% CO2. Controls were treated with transport 

inhibitor cocktail brefeldin A/monensin (eBioscience), but no cell stimulation cocktail.  

8.3.2.2 Surface and intracellular flow cytometry staining 

1x106 PMA/ionomycin/brefeldin A/monensin stimulated splenocytes, 1x106 unstimulated 

splenocytes and their corresponding controls were used per animal and transferred into 

5ml polystyrene round-bottom tubes (Corning, UK). All staining steps were performed at 

a temperature of 2-8°C to avoid internalisation or capping of the antibodies. Cells were 
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resuspended in 100 μl of FACS buffer containing viability stain (fixable viability efluor 

506, ebioscience, UK) at a concentration of 1:1000. Surface antibodies (CD3e APC/CY 

7, clone 145-2C11, biolegend, UK; CD8a BV605, clone 53-6.7, biolegend, UK; CD44 

AF700, clone IM7, ebioscience, UK) were added at a dilution of 1:100 and cells incubated 

at 4 ºC for 30 minutes. Fixation using IC fixation buffer (ebioscience,UK) and 

permeabilisation using permeabilisation buffer (ebioscience,UK) were performed 

according to the manufacturer’s recommendations. Cells were stained with intracellular 

antibodies (Interferon gamma AF488, clone XMG1.2, biolegend, UK; IL2 PE/Cy7, clone 

JES6-5H4, biolegend, UK; IL4 PerCPefluor 710, clone 11B11, ebioscience, UK) for 1h 

at 4ºC at a 1:100 dilution. Compensation controls consisted of ABC total compensation 

beads (Thermo fisher scientific, UK). In order to obtain compensation controls one drop 

each of both negative control beads and positive antibody binding beads were added to 

80µl FACS buffer in a 5ml polystyrene round-bottom tube (Corning, UK). One tube per 

flurochrome included in the panel was prepared. Subsequently a dose appropriate for 

one test of pre-conjugated flow cytometry antibody was added and the sample incubated 

at 4°C for 30 minutes in the dark. The solution was then washed in 2ml FACS buffer 

twice and resuspended in 300μl PBS ready for acquisition. Beads could not be used for 

compensation control of the viability stain- here single-stained cells were used. 

Acquisiton was performed on a BD LSR Fortessa flow cytometer (BD, UK). The recorded 

.FCS files were analysed using Cytobank (Cytobank Inc., USA). 

8.4 Results 

 

We analysed cytokine production and degranulation of T-cells as described above in the 

splenic microenvironment of CLL bearing animals treated with either single agent 

Ibrutinib, Acalabrutinib, PD-L1 immune checkpoint blockade or combinations of BTK 

inhibitors and PD-L1 immune checkpoint blockade. Animal experiments conducted to 

derive splenocyte samples are described under 3.4.4. Figures 71 and 72 illustrate IL2 

production among T-cell subsets following stimulation with PMA/Ionomycin. Among 

overall CD3+ T-cells a statistically significant increase in IL2 production is detected with 

Acalabrutinib treatment, single agent anti PD-L1 and Ibrutinib/anti-PD-L1 combination to 

a similar extent. The combination of Acalabrutinib/anti-PD-L1 was observed to lead to a 

strong decrease in IL2 production.  
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Figure 71: Illustration of IL2 production in CD3+ T- cells in single agent and BTKi/anti-PD-
L1 combination treated CLL bearing animals. Statistical analysis by 1way Anova. 6 groups 
n=17 each. Abbreviations: * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** p≤ 0.0001. 
 

IL2 production among T-helper cells was increased with BTKi and anti-PD-L1 single 

agent treatment and slightly more with Ibrutinib/anti-PD-L1 combination treatment. 

However, Acalabrutinib/anti-PD-L1 decreased IL 2 production. Among cytotoxic T-cells 

only single agent anti-PD-L1 increased IL2 production at a statistically significant level 

while Acalabrutinib/anti-PD-L1 decreased production (Figure 72).  
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Figure 72: Illustration of IL2 production in CD8+ and CD8- T- cell subsets in single agent 
and BTKi/anti-PD-L1 combination treated CLL bearing animals. Statistical analysis by 1way 
Anova. 6 groups n=17 each. Abbreviations: * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** p≤ 0.0001 

 

Figures 73 and 74 illustrate IL4 production among T-cell subsets. In overall CD3+ T-cells 

the IL4 production is reduced to a similar extent and at a statistically significant level with 

both single agent Ibrutinib or Acalabrutinib as well as with Ibrutinib/anti-PD-L1 and 

Acalabrutinib/anti-PD-L1 combinations. Both single agent BTK inhibitor and BTK 

inhibitor/anti-PD-L1 combinations decreased IL4 production among helper T-cells while 

only BTK inhibitor/anti-PD-L1 combinations decreases IL4 production among cytotoxic 

T-cells at a statistically significant level.  

 



Mark-Alexander Schwarzbich                                                                                           Chapter 8 

Page 223 of 279 

 

  

Figure 73: Illustration of IL4 production in CD3+ T- cells in single agent and BTKi/anti-PD-
L1 combination treated CLL bearing animals. Statistical analysis by 1way Anova. 6 groups 
n=17 each. Abbreviations: * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** p≤ 0.0001. 
 

 

Figure 74: Illustration of IL4 production in CD8+ and CD8- T- cell subsets in single agent 
and BTKi/anti-PD-L1 combination treated CLL bearing animals. Statistical analysis by 1way 
Anova. 6 groups n=17 each. Abbreviations: * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** p≤ 0.0001. 
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Figures 75 and 76 illustrate IFNγ production among T-cell subsets derived from the 

spleens of treated CLL bearing animals following PMA/Ionomycin simulation. Among the 

overall CD3+ T-cells both single agent BTK inhibitor as well as BTK inhibitor/anti-PD-L1 

combinations but not single agent anti-PD-L1 were observed to lead to decreased IFNγ 

secretion. This is reflected by the situation in cytotoxic T-cells where the same pattern 

was observed. In the helper cell compartment only Ibrutinib but not Acalabrutinib 

treatment resulted in a statistically significant decrease of IFNγ production. Both Ibrutinib 

and Acalabrutinib in combination with anti-PD-L1 resulted in reduced intracellular IFNγ 

staining in helper cells compared to single agent anti-PD-L1 but not in comparison to 

vehicle treatment.  

 

  

Figure 75: Illustration of IFN-γ production in CD3+ T- cells in single agent and BTKi/anti-
PD-L1 combination treated CLL bearing animals. Statistical analysis by Kruskal Wallis test. 6 
groups n=17 each. Abbreviations: * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** p≤ 0.0001. 
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Figure 76: Illustration of IFN-γ production in CD8+ and CD8- T- cell subsets in single agent 
and BTKi/anti-PD-L1 combination treated CLL bearing animals. Statistical analysis by 
Kruskal Wallis test. 6 groups n=17 each. Abbreviations: * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** 
p≤ 0.0001. 

 

Figure 77 shows the CD107a+/CD107a- ratio among CD44+ antigen experienced T-cells 

as well as naïve CD44- T-cells. The CD107a+/CD107a- ratio in CD3+CD8+CD44+ T-

cells is increased further over BTKi single treated animals with the Ibrutinib/anti-PD-L1 

combination but not with the Acalabrutinib/anti-PD-L1 combination which fairs worse 

than single agent treatment. Only single agent anti-PD-L1 increased CD107a+/CD107a- 

ration in CD3+CD8+CD44- T-cells while the ratio is even decreased in Acalabrutinib/anti-

PD-L1 combination treated animals. 
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Figure 77: Comparison of the ratio of CD107a+/CD107a- in CD3+CD8+CD44+ and 
CD3CD8+CD44- T-cells in BTKi and BTKi/anti-PD-L1 combination treated CLL bearing 
animals. Statistical analysis: CD3+CD8+CD44+ 1way Anova, CD3+CD8+CD44- Kruskal Wallis 
test. 6 groups n=17 each. Abbreviations: * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** p≤ 0.0001. 

 

8.5 Discussion 

Here we aimed to assess the impact of a combination approach of BTK inhibitor 

treatment and anti-PD-L1 immune checkpoint blockade. Based on our findings in 

previous chapters we speculated that a combination of these two classes of agents may 

act synergistically in repairing CLL associated functional defects of T-helper cells and 

cytotoxic T-cells in the CLL microenvironment.  Our findings confirm the correction of 

helper cell cytokine profile and cytotoxic T-cell degranulation observed with Ibrutinib and 

Acalabrutinib treatment as reported in chapter 6. Single agent anti-PD-L1 immune 

checkpoint blockade on the other hand had no statistically significant effect on helper 

cell IL4 and IL2 production but increased IL2 production among cytotoxic T-cells. 

Moreover, there was a trend towards increased rather than decreased INFγ production 

with single agent anti PD-L1. The combination of Ibrutinib and anti PD-L1 seemed to 

result in a slight but very modest improvement of overall T-cell function compared to 

single agent BTK inhibitor treatment.  IL2 production among T helper cells was increased 

further above the levels observed with single agent Ibrutinib and anti-PD-L1 and on the 

same level as single agent Acalabrutinib. A similar degree of IL4 suppression compared 

to single agent BTK inhibitor treatment was achieved. INFγ production was normalized 
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to an extent similar to that observed with wither BTK inhibitor. Cytotoxic T-cell 

degranulation among CD3+CD8+CD44+ was increased to the same extent as with 

single agent anti-PD-L1 treatment while there was no effect on degranulation of 

CD3+CD8+CD44-.  

In conclusion, we find evidence of only very limited additional improvement of T-cell 

function with combination treatment using Ibrutinib and anti-PD-L1 immune checkpoint 

blockade over single agent Ibrutinib treatment. A study assessing the impact on survival 

would be a necessary next step in order to investigate the influence of the combination 

on the clinical course of the disease. However, given the data presented here and in 

chapter 7 above, improved CLL disease control with combination treatment even over 

an extended time course seems unlikely. 

 Interestingly, while single agent Acalabrutinib was shown to improve T-cell function, the 

combination of Acalabrutinib and anti-PD-L1 immune checkpoint blockade was 

detrimental in terms of both helper cell and cytotoxic T-cell function. The drug 

combination resulted in a similar degree of IL4 suppression among helper cells and IFNγ 

suppression among cytotoxic T-cells but was found to lead to dramatically decreased 

capacity of both T-cell subsets to produce IL2 and reduced degranulation upon 

stimulation among CD44+ and CD44- cytotoxic T-cells. This finding is in spite of a similar 

immune phenotype and immune checkpoint expression of T-cells in the 

microenvironment as shown in chapter 7. The mechanism of this phenomenon remains 

obscure. We speculate that an unforeseen interaction of intracellular signalling 

mechanisms may underlie this process and propose further investigations into cell 

signalling in these samples. Complementary pathways could potentially be aberrantly 

activated or repressed by this combination. This also comes in light of a recent report on 

a pre-clinical study at the MD Anderson Cancer Centre using a combination of 

Acalabrutinib and anti-PD-1 immune checkpoint blockade in the Eμ-TCL1 mouse model. 

Here the occurrence of a CLL clone with a hyperproliferative phenotype among the 

animals treated with the combination was described. Similar to our own findings, 

unforeseen interactions of intracellular signalling events have been suggested to 

contribute to this deleterious effect (1005).   

The results presented above would caution against the use of Acalabrutinib/anti-PD1 or 

anti-PD-L1 combinations in the clinical setting. Suppressive effects on T-cell function 

could potentially negatively affect treatment results and the findings of our colleagues at 

the MD Anderson Cancer Centre foster fears of causing or unmasking of 

hyperproliferative CLL phenotypes. Ongoing trials evaluating such combinations should 
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be evaluated carefully to ensure no such detrimental effect on T-cell function and CLL 

B-cell proliferation occurs.   
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9 Overall Discussion 

CLL is a very prevalent form of hematologic malignancy primarily affecting an elderly 

patient population often suffering from relevant comorbidities. The disease remains 

incurable using standard chemoimmunotherapy as well as new treatment approaches 

suppressing the B-cell receptor pathway or anti-apoptotic pathways. As a result, there is 

an unmet need for truly curative and tolerable treatment approaches. The onset of CLL 

is associated with the development of a pronounced immunodeficiency of both humoral 

and cell mediated systems resulting in infections as a major source of morbidity and 

mortality in the setting of the disease. CLL associated immunodeficiency also contributes 

to evasion of CLL B-cells from mechanisms of cancer immunosurveillance (228, 298, 

397-401).  In addition, CLL cells have been shown to depend on their surrounding 

microenvironment to provide signals that promote B-cell survival and for protection from 

elimination by the host immune system (254-261, 402). Correction of immune evasion 

mechanisms could, according to the cancer immunoediting hypothesis, provide a viable 

treatment strategy (792). The high dependency on microenvironment interaction and 

marked associated T-cell dysfunction makes CLL an ideal candidate for cancer 

immunotherapy. Immunotherapeutic strategies are of particularly appeal in this setting 

as they may provide a tolerable and potentially even curative treatment approach. 

Overexpression of immune checkpoint molecules has been established as a major 

mechanism of cancer immune evasion in recent years.  Our group has previously shown 

that PD-1/PD-L1 is pivotal in mediating CLL-associated T-cell dysfunction (216). Despite 

promising pre-clinical data (836) and successful application in other hematologic 

malignancies, attempts at establishing PD-1/PD-L1 immune checkpoint blockade as a 

treatment modality in CLL have been disappointing so far (108). BTK inhibitors such as 

Ibrutinib have been shown to have the ability to modulate T-cell function and myeloid cell 

and partially correct CLL associated immune defects (877-881). Recent pre-clinical data 

suggests a potential synergistic effect in combining BTK inhibition and immune 

checkpoint blockade (872). Based on the available literature and preliminary data of our 

group we hypothesized that the clinical efficacy of BTK-inhibitors is based on a 

synergism between direct anti-tumour effects and correction of CLL-associated 

functional T-cell defects. We speculated that the correction of CLL associated T-cell 

dysfunction using Ibrutinib is in part achieved by modulation of the expression of PD-1 

or it’s ligand PD-L1. We aimed to assess the effect of Ibrutinib and Acalabrutinib on T-

cell function, expression of PD-1, PD-L1, PD-L2 and other important immune checkpoint 

molecules as well as the immunophenotype  Combinations of PD-L1 immune checkpoint 

blockade and BTK inhibition may have synergistic effects in correcting CLL mediated T-
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cell defects and may provide improved disease control. We thus sought to develop a 

combination strategy of such treatment strategies. 

Today the Eμ-TCL1 mouse model is the most commonly used animal model of human 

CLL. Its hallmark characteristics are a high penetrance (901), and a faithful replication of 

phenotype and biology of human CLL including remodelling of the microenvironment 

,CLL induced immune defects, the role of PD1/PD-L1 in mediating CLL associated T-cell 

defects and the effects of BTK inhibitor treatment. (903-905, 907, 908). Moreover, Eμ-

TCL1 mice have been shown to be a suitable platform to study the effects of BTK-

inhibitors such as Ibrutinib and Acalabrutinib in the setting of CLL (910, 911). The model 

is thus suitable to assess the effects of BTK-inhibition on T-cell function and as a platform 

to develop combination approaches of immune checkpoint blockade and BTK inhibition. 

We have previously established optimized and standardized adoptive transfer 

procedures that reliably replicate the CLL disease phenotype in previously disease-free 

syngeneic wildtype animals. Using a cell dose of 4x107 CLL B-cells injected intravenously 

via the tail vein we have achieved a latency of disease development of approximately 2 

weeks. Fully developed leukaemia is observed at approximately 7 weeks after adoptive 

transfer. This leaves a suitable window to study the influence of new treatment 

approaches on the immune microenvironment. Animals 2.5 months of age were chosen 

to avoid ageing related changes of T-cell phenotype and function which could interfere 

with the outcome of the subsequent functional and phenotypic assessment.  

Before the initiation of pre-clinical experiments assessing the effect of single agent BTK 

inhibitor treatment and combinations of BTK inhibitors and anti-PD-L1 immune 

checkpoint blockade we sought to confirm that oral administration of Ibrutinib and 

Acalabrutinib by water bottle would lead to sufficient BTK blockade in vivo. BTK 

occupancy experiments in C57BL/6 wildtype animal showed a BTK occupancy of 95.9% 

and 90% respectively for water bottle treatment with Ibrutinib and Acalabrutinib at a 

concentration of 0.15 mg/ml. The average occupancy measured was thus slightly higher 

for Acalabrutinib compared to Ibrutinib treatment. The available literature describes a 

higher first past metabolism and lower oral bioavailability for Ibrutinib compared to 

Acalabrutinib (959, 960). This may explain the slightly lower BTK occupancy observed 

for Ibrutinib treatment in these experiments. Still, as ≥90% of occupancy of available 

target is generally considered full occupancy of the receptor, we have confirmed 

adequate BTK blockade for oral administration of both substances by water bottle at the 

reported dose (958).  
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In an initial adoptive transfer experiment, animals were given vehicle treatment or either 

Ibrutinib or Acalabrutinib at a concentration of 0.15 mg/ml via water bottle. Both BTK 

inhibitors showed similar potential to control peripheral blood as well as spleen CLL load 

in these experiments. Subsequently we conduct further in vivo experiments to assess 

the effect of BTK inhibitor/anti-PD-L1 combinations on immunophenotype of the splenic 

microenvironment and T-cell function. Animals were treated with single agent Ibrutinib, 

Acalabrutinib or anti-PD-L1 immune checkpoint blockade as well as combinations of the 

BTK inhibitors and anti-PD-L1 antibodies. Similar to the initial experiment, both Ibrutinib 

and Acalabrutinib showed efficacy in controlling the peripheral blood and spleen CLL 

load. Single agent anti-PD-L1 antibody demonstrated no effects on spleen sizes and 

weights and only a modest effect on peripheral blood CLL B-cell load. These findings are 

contrasted by a previous study conducted by our group which showed a complete 

blockade of CLL development in the Eμ-TCL1 adoptive transfer model with anti-PD-L1 

immune checkpoint blockade (836). In this study, however, anti-PD-L1 immune 

checkpoint blockade was applied from the day of adoptive transfer. It thus seems likely, 

that the complete prevention of CLL development in this study was due to disruption of 

CLL implantation following adoptive transfer rather than treatment of an established 

disease. As such, these results are difficult to apply to the situation in human CLL 

patients where disease is usually discovered in more advanced stages and treatment is 

only initiated in symptomatic patients. As a matter of fact, the modest effect in the current 

experiments, where treatment was initiated only after established disease could be 

detected, much more closely resemble the results from early clinical studies assessing 

the efficacy of single agent Pembrolizumab in CLL patients (108). Combinations of either 

Ibrutinib or Acalabrutinib and anti-PD-L1 immune checkpoint blockade have failed to 

show improved CLL clearance in the adoptive transfer experiments at hand. However, it 

should be noted the current study was powered to detect a difference of at least 10% in 

PD-1 expression of T-cells and not of clinical outcomes. A prolonged treatment period 

may help to unmask more nuaced differences in clinical course. Moreover, disease 

control with single agent Ibrutinib or Acalabrutinib was already quite far reaching with 

spleen weight and size approaching those of wild type animals in this experiment. A 

further clinically appreciable effect may thus be difficult to obtain with the treatment 

combinations. Generally, in this second set of animal experiments the initial increase of 

CLL load was slower and the overall disease control achieved in all treatment groups 

more pronounced compared to the initial set of animal experiments despite the same 

dose of CLL B-cell applied. This may be due to biological differences of CLL-B-cell clones 

in two separate pools of CLL B-cells applied across these experiments.  
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We have designed a 27-marker mass cytometry panel to analyse the expression of PD-

1, PD-L1, PD-L2 and the immunophenotype of the splenic microenvironment of CLL 

bearing animals receiving various forms of treatment. The calculated signal overlap was 

well below the expected tolerance threshold for the markers included with the exception 

of NKp46 167Er where the maximum tolerance as reached. We have subsequently 

confirmed the suitability of our panel to identify changes in immunophenotype in the 

splenic microenvironment as well as changes in expression of immune checkpoint 

receptors and NK-cell receptors in the setting of CLL. In contrast to human beings, where 

only a fraction of CD4+CD25+ T-cells with the highest level of CD25 expression show 

suppressive function (973-975), in mice CD4+CD25+ T-cells are a homogenous 

population of cells with regulatory function and FOXP3 staining us thus not strictly 

necessary for identification of Tregs (976, 977). However, moderate suppressive function 

has been shown for some subsets of CD4+CD25- T-cells (978, 979). The panel at hand 

thus is limited in its ability to completely identify the mouse regulatory T-cell subsets. 

Nevertheless, we chose to use the panel in its present form as CD4+CD25+ is a good 

approximate for identification of the regulatory T-cell subset and a more complete 

identification would have made the use of intranuclear marker and thus permeabilization 

of the splenocyte samples necessary. We were reluctant to utilize permeabilization as 

this is known to disrupt surface staining and thus interfere with staining for immune 

checkpoint molecules which is major objective of this study.  Another limitation of our 

panel is its inability to fully distinguish white pulp monocyte and macrophages in the 

splenic microenvironment. Neither strategies of subsequential Ly6C/G and F4/80 

staining based on reports of a steric hindrance between these markers (980) nor 

attempts of additional CD115 or MHC type II staining were able to improve separation of 

monocyte and macrophage populations. In depth literature search revealed that the 

findings of our mass cytometry panel are in line with the natural heterogeneity of spleen 

myelomonocytic cells: CD11b-/F4/80++ red pulp macrophages, CD11b+ F4/80 

intermediate monocytes, monocyte derived white pulp macrophages and marginal zone 

macrophages that cannot be separate based on staining with these markers, calling into 

question the findings of previous flow cytometry based studies that have claimed to 

accurately delineate these populations based on the staining of these markers (982, 

983).  As above, we were reluctant to apply permeabilization to allow for staining of 

intracellular markers such as CD68 as to not disrupt staining of surface markers. A 

validation of the mass cytometry panel at hand using flow cytometry in necessary and 

currently ongoing. 
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By applying our mass cytometry panel to splenocyte samples of vehicle, Ibrutinib or 

Acalabrutinib treated animals we have identified a differential effect on PD-L1 expression 

among various immune cell subsets in the splenic microenvironment. We detected a 

modest increase in PD-L1 expression among CLL B-cells with both Ibrutinib and 

Acalabrutinib treatment while its expression among myelomonocytic cells was 

decreased. The observed increase in PD-L1 expression following BTK inhibitor 

treatment among CLL B-cells was unexpected as some authors have suggested that 

PD-L1 expression in driven by B-cell receptor signalling in B-cell malignancies (984). A 

recent study has shown that PD-L1 high CLL B-cells express higher levels of adhesion 

molecules (985). We therefore speculate that these cells are more readily retained in the 

microenvironment while PD-L1 low CLL B-cells will be mobilized to the peripheral blood 

by BTK inhibitors. The decreased expression of PD-L1 on myelomonocytic cells following 

BTK inhibitor treatment is in line with studies suggesting a role of PD-L1 expression on 

infiltrating myeloid derived cells in mediating CLL associated immunosuppression (835). 

Myeloid cells may thus be the driving force in induction of CLL associated T-cell 

deficiency and the major target for BTK inhibitor mediated T-cell modulation, comparable 

to the situation in PDAC (881). Among T-cells we found an amelioration of the exhaustion 

phenotype, primarily among memory CD4+ T-cells and regulatory T-cells with a 

downregulation of expression PD-1, LAG-3 and KLRG-1. In addition, we have detected 

a modulation of the NK-cell phenotype with a downregulation of KLRG-1 expression. The 

expression of CD69, an early marker for activation of lymphocytes which is also known 

to be increased in the setting of T-cell exhaustion, was found to be decreased among 

CD4+ T-cells and NK-cells. The combination of decreased CD4+ T-cell exhaustion 

phenotype and decreased expression of inhibitory NK-cell receptors in the setting of a 

more permissive myeloid cell immune phenotype could potentially translate into 

improved immunosurveillance and elimination of CLL B-cells.   

Several studies have addressed the question of modulation of T-cell function by BTK 

inhibitor Ibrutinib. Most prominently, Dubosvky et al. have suggested that Ibrutinib has 

the potential to shift T-helper cell polarity by targeting ITK, an enzyme that has a pivotal 

role in mediating downstream T-cell receptor signalling. When inhibited, it’s function can 

be rescued by the redundant enzyme “resting lymphocyte kinase” (RLK) which is 

expressed in Th1 cells but not Th2 cells thus effectively resulting in a preferential 

inhibition of Th2 cells (877). As Acalabrutinib does not have inhibitory activity towards 

ITK it should affect T-cell function in the setting of CLL differentially (986). However, 

when analysing cytokine profile and function of T-cells derived from the spleens of the 

above animals treated with vehicle, Ibrutinib or Acalabrutinib we found very similar 
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alterations with both BTK inhibitors.  Both substances increased the production of IL2 by 

overall CD3+ T-cell and CD3+CD8- helper cells and decreased IL4 production by overall 

CD3+ T-cells and CD3+CD8- helper cell to a similar extent. The only detectable 

difference was a reduction of IL4 production in CD3+CD8+ cytotoxic T-cells with Ibrutinib 

that could not be observed with Acalabrutinib treatment. Moreover, both substances 

were shown to reduce INFγ secretion by T-cell subsets in quite a similar fashion. A 

reduction of IFNγ by BTK inhibitor treatment may seem counterintuitive at first, as the 

substance is an important Th1 cytokine and mediator of cancer immunosurveillance. On 

the other hand, one should keep in mind that continuous T-cell stimulation has been 

described to lead to a secondary T-cell dysfunction via IFNγ driven overexpression of 

PD-L1 (adaptive immune resistance) (842). IFNγ is also known to increase survival and 

proliferation of CLL B-cells (417). As such, the observed reduction of IFNγ secretion is a 

step toward normalization of the immune microenvironment. We also noticed an increase 

in the ratio of CD107a+/CD107a- antigen experienced CD44+CD8+ T-cells with both 

Ibrutinib and Acalabrutinib treatment. Among less antigen experienced CD44- CD8 T-

cells we have observed a similar trend. However, only the effect of Acalabrutinib 

treatment compared to vehicle treatment reached statistical significance in this cell 

subset. It should be noted that surface accumulation of CD107a is merely a surrogate 

marker for the cytolytic capacity of CD8+ T-cells. Still, it is known that surface CD107a 

accumulation directly correlates with the ability of cytotoxic T-cells to lyse target cells as 

measured in chromium release assays (987). CD107a accumulation is thus an adequate 

tool to assess T-cell cytolytic capacity. Lastly, we have quantified the ability of T-cell and 

B-cells isolated from the spleens of CLL bearing animals to form immune synapses by 

analysing the area of F-Actin polymerization at the contact zone via a well-established 

assay originally developed at our lab (216). We found an increased ability for T-cell 

synapse formation that was similar after both Ibrutinib and Acalabrutinib treatment. In 

summary, we find no evidence that direct modulation of T-cells via ITK/RLK is the leading 

mechanism in improved T-cell function in the splenic microenvironment of CLL bearing 

animals as effects are similar between Ibrutinib and Acalabrutinib, which is known not to 

have inhibitory capacity towards ITK (986). Rather, we speculate that an indirect 

mechanism, possibly via modulation BTK expressing myeloid cells in the CLL 

microenvironment may be underlying the improved T-cell function following BTK inhibitor 

treatment.  

We have also applied our mass cytometry panel to splenocyte samples of animals 

treated with single agent BTK inhibitor or BTK inhibitor/anti-PD-L1 combinations in the 

setting of the second animal experiment.  Unfortunately, anti-PD-L1 antibodies masked 
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staining for PD-L1. Expression of the marker could therefore not be assessed in these 

animals. Analysis of expression among B-cells derived from the single agent BTK-

inhibitor treated and vehicle treated animals confirmed the increase in PD-L1 expression 

reported with both Ibrutinib and Acalabrutinib treatment reported above. Similar to the 

findings reported above, we found a downregulation of CD69 expression among T-cell 

and NK-cell subsets. This effect was similar in single agent BTK-inhibitor treated and 

combination treated animals.  In contrast to the above experiment the alterations among 

T-cells were more centered around effector cell subsets. We have also observed a 

downregulation of PD-1 expression among T-cell subsets with both single agent BTK 

inhibitor and combination treatment. In contrast to the initial animal experiment these 

changes extended beyond memory CD4+ and regulatory T-cells and could also be found 

in memory CD8+ T-cells, naïve and effector CD4+ and CD8+ T-cells. Interestingly, we 

found that the expression levels of PD-1 were decreased in BTK inhibitor/anti-PD-L1 

treated animals compared to vehicle and single agent anti-PD-L1 treated animals but 

slightly higher compared to single-agent BTK inhibitor treated animals. This potentially 

points to a counterregulatory mechanism of upregulation of PD-1 in the anti-PD-L1 

treatment groups. Moreover, we observed a similar pattern among both inflammatory 

monocyte and patrolling monocyte/macrophage subsets and a modest decrease of 

expression among classical dendritic cells. High levels of PD-1 expression among 

myelomonocytic cells has been linked to inferior outcome in renal cell carcinoma (989) 

and colorectal carcinoma (991). High expression levels in myelomonocytic cells have 

also been found in the immunosuppressive phase of sepsis (990). In dendritic cells high 

levels of expression have been reported to impede innate immunity (992). In 

hepatocellular carcinoma PD-1 expression dendritic cells have been linked to 

suppression of CD8+ T-cell function and cancer immune evasion (993). We believe that 

similar to the above studies the downregulation of PD-1 among myeloid cell subsets in 

the splenic microenvironment of CLL bearing animals treated with BTK inhibitor and BTK 

inhibitor/anti-PD-L1 combinations may contribute to an improved immunosurveillance. In 

terms of KLRG-1 expression we find a downregulation with single agent BTK inhibitors 

and combination treatment centred around NK cells and regulatory T-cells. The changes 

were very similar in both single agent BTK inhibitor treated and combination treated 

animals. We found 2B4 expression to be decreased to a similar extent with both 

combinations of BTK inhibitors and anti-PD-L1 immune checkpoint blockade and single 

agent BTK inhibitor treatment in NK cells, granulocytes, inflammatory monocytes, 

patrolling monocytes/macrophages and classical dendritic cells. Highlighted features 

among subsets of effector and effector memory CD8+ T-cells appeared to be limited to 

a slightly higher expression among single agent anti-PD-L1 treated animals. As 2B4 
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expression among lymphocytes has been linked to their activation this may point to an 

increased CD8+ T-cell activation with single agent anti-PD-L1 treatment. Among NK-

cells 2B4 expression has been reported to have both positive and negative functions with 

2B4/CD48 interaction between neighbouring NK-cells being required for optimal 

activation while the interaction of 2B4 on NK cells with CD48 on target cells has been 

reported to inhibit cytolytic activity of NK cells (994). As high levels of CD48 expression 

have been described on CLL B-cells the observed downregulation in NK-cell subsets 

with BTK inhibitor containing treatments could thus also signal an improved NK-cell 

effector function with these treatments in the splenic microenvironment (995). 2B4 

expression has not been reported on the surface of neutrophilic granulocytes, but its 

expression is a characteristic of granulocytic MDSCs. Its expression on granulocytic cells 

in the splenic microenvironment of CLL bearing animals and its downregulation with BTK 

inhibitor containing treatments could point to a reversal of the granulocytic MDSCs 

phenotype among these animals (996). In dendritic cells expression of 2B4 has been 

linked to suppression of their pro-inflammatory functions. Dendritic cells derived from the 

spleens of CD244 -/- animals produced higher levels of pro-inflammatory cytokines and 

when stimulated with lipopolysaccharide or CpG and DCs from CD244 -/- mice elicited 

higher NK cell activation in vitro. The downregulation found with BTK inhibitor containing 

treatment regimens in the splenic microenvironment could thus also contribute to 

improved immunosurveillance in these animals (997). Expression of 2B4 among 

monocytes has been described extensively. However, little is known about its function in 

this cell type (655). Decreased expression has been noted on monocytes derived from 

the peripheral blood of SLE patients thus suggesting a role in immune tolerance (998). 

We speculate that the observed downregulation in myelomonocytic cell subsets with BTK 

inhibitor-containing treatment regimens may signal an immunophenotype more 

permissive of adaptive immune responses. Surprisingly, we did not find alterations of 

expression of TIM-3 among T-cells with single agent BTK inhibitor or combination 

treatment. Expression was increased among inflammatory monocytes as well as among 

patrolling monocyte/macrophage subsets to a similar extent using Ibrutinib, Acalabrutinib 

or combinations of these BTK inhibitors with anti-PD-L1 immune checkpoint blockade. 

Among classical dendritic cells, expression was decreased using these regimens. The 

functional role of TIM-3 in myeloid cells is still poorly understood. In macrophages TIM-

3 has been described to act as a receptor for PtdSer by phagocytic cells and thus 

facilitating the removal of cells which have undergone apoptosis and cross-presentation 

of antigens by phagocytic cells (619). Experiments with the monocyte cell line THP-1 as 

well as CD14+ cells from the peripheral blood of healthy donors have shown that 

monocyte/macrophages in a quiescent state express high levels of TIM-3 and show low 
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cytokine production while after activation in vitro with LPS or R848 results in reduced 

TIM-3 expression and increased IL12 production (1001). Antibody mediated blockade of 

TIM-3 resulted in increased production of IL12 but decreased expression of PD-1. 

Similarly, silencing of TIM-3 expression in THP-1 cells using si-RNA resulted in increased 

production of IL12 (1001, 1002). In murine models of hepatocellular carcinoma an 

increased expression on peripheral blood monocytes and TAMs correlating with disease 

progression has been noted (1003). As such, the increased expression in 

myelomonocytic cell subsets following BTK inhibitor containing treatments may signal 

either improved phagocytosis and cross-presenting capacity of these cells, a decreased 

activation of monocyte/macrophages or could even be detrimental to innate immunity 

directed against CLL. In tumour infiltrating dendritic cells, TIM-3 has been shown to inhibt 

nucleic-acid-mediated innate immune responses through interaction with the alarmin 

HMGB-1 (620). The downregulation observed in classical dendritic cells from the splenic 

microenvironment of CLL bearing animals following treatment with BTK inhibitor 

containing regimens may thus be a sign of a more innate immunity permissive 

phenotype. The varied functions of the molecule across these various myeloid cell 

subsets may also explain the differential effect on the expression profile observed. With 

regards to LAG-3 expression we found statistically significant downregulation of median 

marker expression with both single agent BTK inhibitor treatment and BTK inhibitor/anti-

PD-L1 combinations on NK cells, effector memory CD4+ T-cells, effector memory CD8+ 

T-cells and a subset of effector CD8+ T-cells. In addition, we found a modest 

downregulation among subsets of effector CD4+ T-cells, and naïve CD4+ T-cells. In 

conclusion we have here demonstrated an amelioration of the exhaustion phenotype 

among CD4+ and CD8+ T-cells with both single agent BTK-inhibitor treatment and BTK 

inhibitor/anti-PD-L1 combinations. This is demonstrated downregulation of CD69, PD-1, 

LAG-3 and KLRG-1 expression. In addition, we found downregulation of inhibitory 

receptor 2B4, LAG-3 and KLRG-1 on the surface of NK cells. We also found evidence of 

a phenotype more permissive of myeloid cell effector function with downregulation of PD-

1 and 2B4. We reported differential effects on expression of TIM-3 among myeloid cell 

subsets with upregulation among myelomonocytic cells and downregulation among 

classical dendritic cells. While the decreased expression among DCs is in line with 

reports suggested a suppressive effect on innate immune responses of TIM-3 in this 

context the increased expression among myelomonocytic cells is less clear with both 

positive and negative effects on innate immune response being described in the 

literature. Marker expression was very similar when directly comparing single agent BTK 

inhibitor treated and combination treated animals. The most pronounced difference was 

a slightly higher expression level of PD-1 among animals treated with BTK inhibitor/anti-
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PD-L1 combinations compared to single agent BTK inhibitor, possibly signalling a 

compensatory mechanism in the splenic microenvironment of CLL bearing animals. 

Differences observed between this and the earlier animal experiment could potentially 

be explained with an improved overall disease control and lower levels of infiltrating CLL 

B-cells achieved in the experiment at hand.  

Despite our earlier experiments suggesting a potential for correction of the T-cell 

exhaustion phenotype with anti-PD-L1 treatment (836) in the present experiments we 

neither find evidence of an improved T-cell phenotype with single-agent anti-PD-L1 

treatment nor evidence of a synergistic effect of combined BTK-Inhibitor and anti-PD-L1 

treatment. The current set of experiments and our earlier findings mainly differ in the 

time-point of anti-PD-L1 application. The treatment seemed to be effective at controlling 

the disease only when applied from the day of adoptive transfer while application in the 

setting of already established disease seemed to have little effect clinically and in terms 

of T-cell exhaustion phenotype. In clinical practice the often initially indolent disease is 

usually discovered at more advanced stages and an efficacious use of PD-L1 blockade 

in CLL may thus meet a difficult to surmount obstacles in clinical reality. This notion is 

also supported by earlier failed attempts to appy PD-1 blockade in CLL patients  (108).  

Of note the anti-PD-L1 antibody applied in our earlier study (836) also had higher 

capability to directly stimulate ADCC against target cells while the antibody used in the 

current set of experiments was chosen to include  the D265A alteration of the Fc region 

to more closely model the mode of action of clinically applied PD-L1 inhibitors. It thus 

seems possible that clinical success in the earlier study may have at least in part been 

due to a Rituximab-like direct FCγ-receptor mediated cytotoxicity against PD-L1 bearing 

CLL B-cells rather than due to modulation of CLL-induced T-cell exhaustion.    

Functional assessment of T-cells derived from the spleens of animals treated with single 

agent Ibrutinib, Acalabrutinib, anti-PD-L1 or combinations of BTK inhibitor and anti-PD-

L1 immune checkpoint blockade confirmed the correction of helper cell cytokine profile 

and cytotoxic T-cell degranulation observed with Ibrutinib and Acalabrutinib treatment 

reported above. Single agent anti-PD-L1 immune checkpoint blockade, however, had no 

statistically significant effect on helper cell IL4 and IL2 production but increased IL2 

production among cytotoxic T-cells. There was a trend towards increased rather than 

decreased INFγ production with single agent anti PD-L1. The combination of Ibrutinib 

and anti PD-L1 resulted only in a very modest increase in T-cell function over single 

agent Ibrutinib treatment. IL2 production among T helper cells was increased futher 

above the levels observed with single agent Ibrutinib and anti-PD-L1 and on the same 
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level as single agent Acalabrutinib. A similar degree of IL4 suppression compared to 

single agent BTK inhibitor treatment was achieved. INFγ production was normalized to 

an extent similar to that observed with either BTK inhibitor. Cytotoxic T-cell degranulation 

among CD3+CD8+CD44+ was increased to the same extent as with single agent anti-

PD-L1 treatment while there was no effect on degranulation of CD3+CD8+CD44-. To our 

surprise the combination of Acalabrutinib and anti-PD-L1 immune checkpoint blockade 

was detrimental in terms of both helper cell and cytotoxic T-cell function. The drug 

combination resulted in a similar degree of IL4 suppression among helper cells and IFNγ 

suppression among cytotoxic T-cells but was found to lead to dramatically decreased 

capacity of both T-cell subsets to produce IL2 and reduced degranulation upon 

stimulation among CD44+ and CD44- cytotoxic T-cells. This finding is in spite of a similar 

immune phenotype and immune checkpoint expression of T-cells in the 

microenvironment as discussed above. The mechanism of this phenomenon remains 

obscure. We speculate that an unforeseen interaction of intracellular signaling 

mechanisms may underly this process and propose further investigations into cell 

signaling in these samples. Complementary pathways could potentially be aberrantly 

activated or repressed by this combination. This also comes in light of a recent report on 

a pre-clinical study at the MD Anderson Cancer Centre using a combination of 

Acalabrutinib and anti-PD-1 immune checkpoint blockade in the Eμ-TCL1 mouse model. 

Here the occurrence of a CLL clone with a hyperproliferative phenotype among the 

animals treated with the combination was described. Similar to our own findings, 

unforeseen interactions of intracellular signaling events have been suggested to 

contribute to this deleterious effect (1005).  

 In conclusion we have found evidence of only very modestly improved T-cell function 

with Ibrutinib/anti-PD-L1 treatment over single agent Ibrutinib treatment. Moreover, no 

evidence of a further improvement of T-cell exhaustion phenotype with BTK inhibitor/anti-

PD-L1 combinations over single agents BTK inhibitor treatment could be detected. A 

study assessing the impact on survival would be a necessary next step in order to 

investigate the influence of the combination on the clinical course of the disease. 

However, given the data presented here improved CLL disease control with combination 

treatment even over an extended time course seems unlikely. The results presented 

above would caution against the use of Acalabrutinib/anti-PD1 or anti-PD-L1 

combinations in the clinical setting. Suppressive effects on T-cell function could 

potentially negatively affect treatment results and the findings of our colleagues at the 

MD Anderson Cancer Centre foster fears of causing or unmasking of hyperproliferative 

CLL phenotypes. Ongoing trials evaluating such combinations should be evaluated 
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carefully to ensure no such detrimental effect on T-cell function and CLL B-cell 

proliferation occurs.  We are also planning to assess the reasons for the suprising 

increase rather than decrease in PD-L1 expression among CLL B-cells following BTK 

inhibitor treatment. A recent publication by Wierz et al. (985) has suggested that PD-L1 

high CLL B-cells express higher levels of adhesion molecules. We therefore speculate 

that these cells are more readily retained in the microenvironment while PD-L1 low CLL 

B-cells will be mobilized to the peripheral blood by BT&K inhibitors. We are planning to 

analyse the levels of PD-L1 expression on peripheral blood B-cells from these animals 

in a next step – the respective PBMC samples have been cryopreserved. Analysis of 

dynamics of expression over time may be warranted in a further step. 
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