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Abstract

Conjugate Heat Transfer (CHT) problems are typically solved using a partitioned ap-
proach where separate solvers for the fluid and structure are loosely coupled through bound-
ary conditions. These boundary conditions need to be updated iteratively until the temper-
ature and heat flux are continuous between the two domains. In this thesis, CHT problems
are solved by coupling the in-house flow solver with the open-source heat conduction solver,
CalculiX. Three coupling algorithms are used, which involve a combination of Neumann,
Dirichlet, and Robin boundary conditions.

The interest in shape optimisation has increased the need for efficient optimisation
techniques. Consequently, gradient based optimisation using adjoint methods are preferred
due to the reduced computational cost of obtaining gradients. Currently, the use of ad-
joint methods in CHT shape optimisation problems mostly favours the continuous adjoint
method which suffers from high developmental costs. This thesis advocates for the use
of the discrete adjoint via Automatic Differentiation (AD) as a cost-effective alternative
to the continuous adjoint. This is done by differentiating the fluid and solid solvers with
respect to the coupling boundary conditions using AD. A fully differentiated partitioned
coupling approach is achieved by differentiating the three coupling algorithms used. The
differentiation of the Robin boundary conditions results in two new differentiated coupling
algorithms and the accuracy of the differentiated coupling algorithms is demonstrated by
comparing with gradients obtained through finite differences.

The efficacy of the developed methods is then demonstrated on three CHT optimisation
problems: An inverse design problem related to a flat plate and a thermal optimisation of
the MarkII turbine blade and an internal cooling channel U-Bend. The gradient verification
and optimisation results revealed that the use of Robin boundary conditions in the flow
solver reduces computational runtime.
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Chapter 1

Introduction

1.1 Multidisciplinary Design Analysis

When a fluid at a certain temperature flows past a solid of differing temperature, heat is
transferred between both media due to the temperature difference. The nature of the heat
transfer is dependent on factors such as the fluid velocity, flow conditions (e.g. laminar or
turbulent), the material properties of the fluid and solid (e.g. solid thermal conductivity),
and the temperature difference between both media.

As the hotter medium, e.g a solid plate, heats up the cooler medium, e.g the air flowing
past, the hotter medium is simultaneously being cooled down by the cooler medium. Con-
sequently, the final temperature at the boundary between these two media is a result of the
heat transfer between the media. This means a simultaneous solution of the heat transfer
between both media is required to accurately predict the temperature at the fluid-solid
interface. This simultaneous solution, which accounts for the interaction and dependency
between both the solid plate and the air flowing past, is known as Conjugate Heat Transfer
(CHT).

Conjugate Heat Transfer has several important applications in the modern world. For
example, the electrical loads in power transformers and in the micro electronics in modern
computers result in high temperatures in these devices. Similarly, environmental require-
ments and policy changes in the aerospace industry result in the need for more efficient
jet engines and higher temperatures in their turbines. Consequently, some form of cool-
ing is needed in these components and CHT is required to accurately predict the local
temperature and heat transfer.

1
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CHT is an example of a multidisciplinary problem and considers the transfer of heat
between a fluid and solid. Another example is Fluid-Structure Interaction (FSI) which
considers the interaction of aerodynamics and structural mechanics, e.g. how fluid flow
bends/deforms the wings of an aircraft. The maturity of tools for Computational Fluid
Dynamics (CFD) and Computational Structural Mechanics (CSM) enable the solution to
multidisciplinary problems to be obtained through the use of numerical simulations. This
is known as Multidisciplinary Design Analysis (MDA). MDA is used to provide insight on
the fitness for purpose of a given design and provide information about how each discipline
interacts with the other [1].

The accuracy of MDA is important as incorrect analysis will hamper the ability to
obtain good designs. MDA can be done using a monolithic or partitioned approach. The
monolithic approach uses a single numerical solver for the equations of all disciplines while
the partitioned approach uses separate solvers for each discipline. The partitioned approach
(also called segregated approach) is more common due to its flexibility and requires the
iterative exchange of boundary conditions between numerical solvers.

1.2 Multidisciplinary Design Optimisation

The use of numerical simulation tools for MDA has helped to shorten and cheapen the
design cycle by reducing the number of prototypes which are built and tested. Although
MDA enables one to test designs in a few hours, it does not solve the problem of the
iterative nature of the design process. The classical process of combining experiments or
numerical analysis with trial and error or educated guesses from experienced designers is
highly inefficient and provides no guarantee that the final design is truly optimal. This
process can be improved upon through the use of numerical optimisation.

As the optimum is quantifiable in most engineering design problems, numerical opti-
misation can be used to rationally and objectively find optimal designs [1]. Numerical
optimisation is more efficient than trial and error as it makes use of logical methods to
evaluate designs and enables the automation of the design process. This helps to further
reduce the cost and time of the design process.

The optimisation goal is to provide the best design which meets a given requirement.
For example, minimising an objective function, J , (e.g. drag), with respect to some de-
sign variables, α, (e.g. the shape of the wing), subject to some constraints, X, such as
maintaining the cross-sectional area of the wing.
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Multidisciplinary Design Optimisation (MDO) is the application of numerical optimi-
sation methods to solve multidisciplinary design problems [2]. Examples of MDO include,
for instance the aero-structural optimisation of aircrafts in [3] [4] [5] and the aero-thermal
optimisation of turbine blades [6] and microelectronic coolers [7].

In order to optimise numerous engineering problems of interest, several disciplines need
to be considered if a true optimum is to be attained. However, the consideration of inter-
acting systems greatly increases the complexity of the MDO problem. By considering the
individual performance of the disciplines as well as their interactions, MDO results in better
designs than those obtained by optimising each discipline sequentially [8]. This approach is
more efficient, does not require simplification of the constrains imposed by other disciplines,
and is more likely to attain the best design (global minimum) [9][6].

1.3 Gradient based optimisation

As the number of design variables increases, the ability of a designer to rely on intuition
and experience diminishes. Conversely, the use of a large number of design variables is
often more desirable in numerical optimisation as it provides a rich design space. Conse-
quently, the use of optimisation algorithms is essential for MDO. Optimisation algorithms
can broadly be grouped into either gradient free or gradient based methods.

The output of MDA is a quantitative assessment of performance which is known as the
objective function. Gradient free methods rely solely on the results of the analysis to drive
the optimisation. The disadvantage of gradient free methods is that as the number of design
variables increases, the required number of function evaluations increases significantly and
soon becomes prohibitive [3]. Some examples of gradient free optimisation in literature
include grid searching, evolutionary algorithms, and particle swarm optimisation. Although
gradient free methods are easier to use, gradient based methods are the most feasible way
to solve problems with 102 or more design variables [1].

Gradient based methods use the objective function value and gradient (with respect to
design variables) to drive the optimisation process. They generally require fewer evaluations
than gradient free methods, especially for large design spaces, hence they are preferred.
However, their effectiveness is limited to functions which vary smoothly, and they only
guarantee convergence to a local minimum/optimum [3].

Gradient based MDO requires the computation of gradients of the objective function
with respect to the design variables which is also known as sensitivity analysis (see Figure
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Figure 1.1: A generic gradient based MDO procedure.

1.1). Obtaining accurate derivatives is of paramount importance for gradient based meth-
ods. This is because the accuracy of the obtained gradients affects the path to obtaining
an optimal design. For example, inaccurate gradients may lead to less direct routes to the
optimum being taken, which may also require more design iterations, thereby elongating
the design process.

Although gradient based methods are computationally cheaper to use, their cost can still
be prohibitive in optimisation problems with a large number of design variables. Therefore
it is necessary develop methods which result in efficient derivative computations, however,
this requires some level of expertise as gradient computations are rarely included in design
analysis tools.

1.4 Adjoint methods

The main methods for computing derivatives include finite-differences, complex step meth-
ods, tangent linearisation, and adjoint methods. Finite-difference methods are the easiest
to use, however accuracy issues arise due to their dependence on the step-width and large
computational effort is required for a large number of design variables. Complex step meth-
ods and tangent linearisation eliminate the accuracy issues faced by finite-differences but
they still require large amount of computational resources for a large number of design
variables [10]. This is because, for these three methods, the cost of the gradient calculation
scales linearly with the number of design variables.

Adjoint methods are particularly attractive because accurate derivatives can be com-
puted at a cost which is almost independent of the number of design variables. Therefore,
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adjoint methods are the most efficient way to obtain derivatives when the number of de-
sign variables is greater than the number of objective functions. Adjoint methods can be
grouped into continuous or discrete methods. In the continuous method the adjoint equa-
tions are analytically derived before being discretised while the discrete method discretises
the state equations before formulating the discrete adjoint equations.

Both the continuous and discrete adjoint have their advantages, however, the continuous
approach involves lengthy hand derivation of the adjoint Partial Differential Equations
(PDEs) which can be error-prone. In contrast, the use of a Automatic Differentiation (AD)
for developing discrete adjoint codes eases the burden of code development and maintenance.
Automatic Differentiation works by differentiating each line of computer code and using
the chain rule to calculate the required gradients. This results in analytically accurate
gradients with significantly less effort. Furthermore, discrete adjoint gradients are able to
be verified using the analytically accurate tangent linearisation, an option unavailable for
the continuous adjoint [11]. This makes the discrete adjoint a more attractive option and
this is what is used in the current work.

The use of adjoint methods in CHT optimisation is recent field of study and has been
dominated by the continuous adjoint formulation [12] [13] [14] [15] [16]. On the other hand,
the use of discrete adjoints for CHT is more rare and recent [17] [18], and the application
of AD in the development of adjoint codes for CHT has not been explored.

1.5 Motivation of thesis

Gradient free methods are currently the most popular methods used for CHT optimisation.
For example, they have been successfully applied to turbo-machinery optimisation problems
in [6] [19] [20] [21]. However, these methods are not the most efficient as they can be
computationally expensive, especially when large design spaces are being considered. The
use of adjoint methods for the optimisation of CHT problems is relatively new and requires
further development.

Moreover, when adjoint methods have been used for CHT shape optimisation problems,
they have been limited to the continuous adjoint formulation. Furthermore, these often
include several simplifications to the problem such as, not developing the solid adjoint
Partial Differential Equations (PDEs) [12], not solving the solid governing equations [13],
not developing the fluid adjoint PDEs [15], or not differentiating the turbulence models [14].
Only recently a fully coupled continuous adjoint was developed without any simplifications
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made in both domains [16]. This may be a consequence of the labour-intensive nature of
developing the continuous adjoint as it requires derivation of the adjoint PDEs by hand. The
continuous adjoint method also makes code maintenance tedious as newly added features
(such as boundary conditions and objective functions) also need to be derived.

The use of the discrete adjoint for CHT optimisation is yet to be explored and developed
in depth. Recently, the discrete adjoint was used in a CHT optimisation by He et al [17].
However, a partitioned approach using separate solvers for each domain was not used and
finite differences were used to calculate gradients. Burghardt and Gauger [18] also use the
discrete adjoint but with a monolithic solver. To the author’s knowledge, no work has
been done using discrete adjoint methods for partitioned CHT optimisation. Moreover,
even when partitioned continuous adjoint formulations are considered [15] [16], a limited
selection of coupling algorithms have been considered.

The advantages provided by the use of Automatic Differentiation in the development
of discrete adjoint codes is yet to be fully exploited in CHT problems. The application of
AD significantly alleviates the difficulty of code maintenance as new boundary conditions
and objective functions are automatically differentiated by the AD tool. Consequently, the
following problems can be identified:

1. Adjoint methods for CHT problems require developments free from simplifications
and which consider all aspects of the coupled problem.

2. The effort of developing and maintaining adjoint codes needs to be reduced and the
continuous adjoint is unable to solve this as it requires the hand derivation of adjoint
PDEs.

3. The selection of boundary conditions used for CHT optimisation needs to be expanded
to keep abreast of recent advancements in CHT coupling algorithms. Current work
has not focused enough on the coupling boundary conditions. Particularly, how the
multidisciplinary derivatives are obtained and how these derivatives are exchanged
between domains.

4. Adjoint methods for CHT should enable the use of partitioned coupling methods and
should be generic enough to be applied to most numerical solvers.

To this end, the current work addresses these issues through the following contributions:
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1. The development of a coupled discrete adjoint method for partitioned coupling ap-
proaches which fully considers both the solid and fluid governing equations.

2. The application of Automatic Differentiation (AD) to open-source codes to obtain
adjoint solvers without pain-staking hand derivation of the adjoint PDEs. This also
includes the automation of the process and accounts for the easy addition of new
boundary conditions and objective functions.

3. The consideration and differentiation of three coupling algorithms, including two re-
cently developed coupling algorithms.

4. The development of a framework for CHT optimisation, using to two open-source
solvers, to highlight the generic nature of the proposed methods.

5. Application of developed methods and solvers to challenging optimisation problems
to highlight the effectiveness of the proposed methods.

1.6 Thesis outline

This thesis is organised as follows: Chapter 2 discusses Multidisciplinary Design Analysis
with a focus on Conjugate Heat Transfer and methods of solving coupled CHT problems are
discussed. The coupling algorithms and numerical solvers used as well as implementation
details are presented. The selected coupling methods and solvers are then evaluated in
Chapter 3 where MDA is performed on three CHT problems and the results are compared
to analytical and experimental data.

Chapter 4 discusses the derivation of adjoint equations for single disciplines, the ad-
joint solvers developed in this work are presented, and the gradients verified. Chapter 5
focuses on obtaining accurate gradients and the coupling algorithms used are differentiated.
The accuracy of the differentiated algorithms is then evaluated by comparing with finite
differences.

In Chapters 6 & 7, the developed adjoint method is then used to solve three CHT
optimisation problems. Finally, the results and contributions are summarised in Chapter 8
and recommendations are made for further research.



Chapter 2

Governing equations and Numerical
methods

Conjugate Heat Transfer (CHT) refers to situations in which strong thermal interactions
between fluids and solids occur [22]. An example of this is in electrical components such
as transformers used for power distribution, and in the microchips/micro-elctronics used
for modern computing [7]. The electrical loads in these devices result in energy losses in
the form of heat and cooling fluids may be used in order to keep temperatures down to a
reasonable value. This requires a CHT problem to be solved in order to accurately predict
the thermal interaction between the cooling fluid and hot components.

Figure 2.1: Left: GE9X engine (source: GE Aviation). Right: Cross sectional view of gas
path.

Another interesting application of CHT is in the engines of modern aircrafts. In order

8
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to provide thrust, jet engines typically function by sucking in and compressing air through
the use of a fan and several compressor stages. The compressed air is then mixed with fuel
and ignited in the combustion chamber. The ignited gas then expands outwards from the
combustion chamber towards the turbine blades and exist through the exhaust nozzle to
provide the required thrust (see Figure 2.1).

In order to improve efficiency, higher turbine inlet temperatures are favourable because
this improves the specific thrust and specific fuel consumption of the engine. Consequently,
turbine blades are subjected to turbine inlet temperatures up to 2000 K which often exceeds
the melting point of the materials they are made of [23] [24]. As a result, cooling is required
to preserve the integrity of the blades. A common method of cooling involves passing cooler
air through the inside of the blades and is known as convection cooling. This results in a
CHT problem involving heat transfer between the turbine blade, cooling internal flow, and
hot external flow [25] [6].

Analytic methods for solving CHT problems are limited to simple configurations, while
experiments, although essential for validation, are expensive. Moreover, in the design of
new components, it is not always clear how new designs may affect the thermal interactions
between the fluid and solid. Consequently, numerical solutions using MDA are key to
solving CHT problems [22].

This chapter discusses the governing equations and numerical methods for CHT analysis.
The numerical solvers used to solve the governing equations are introduced and details of
the implementation of the necessary boundary conditions in the flow solver are provided.
The three coupling algorithms used for solving CHT problems are also described.

2.1 Conjugate Heat Transfer

Heat transfer is the transit of thermal energy and can be categorised into three different
modes namely: Conduction, Convection, and Radiation.

Conduction is the transfer of thermal energy from higher to lower temperature regions
within a medium due to atomic and molecular activity. Conduction is governed by Fouriers
law:

q = −λ · ∇T, (2.1)

where q is the heat flux, λ is the material thermal conductivity, and T is the temperature.
Convection is energy transfer due to a combination of the bulk motion of a fluid and
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the diffusion of molecules. It can be modelled globally by Newton’s law of cooling:

q = h(Tw − T∞), (2.2)

where h is the heat transfer coefficient, while Tw and T∞ are the wall and fluid freestream
temperatures respectively. The heat transfer coefficient represents the thermal resistance
of the boundary layer and can be influenced by the fluid properties and the nature of the
flow.

Radiation is energy emission by matter with non zero temperature. Radiation energy is
transported in the form of electromagnetic waves and does not require a material medium
to be present. Radiation is governed by the Stefan-Boltzmann law:

q = σT 4 (2.3)

where σ is the Stefan-Boltzmann constant σ = 5.67 · 10−8 W/m2K4, q is the heat flux, and
T is the absolute temperature [26].

This thesis focuses on Conjugate Heat Transfer meaning problems in which only con-
duction and convection are considered.

2.2 Solid governing equations and numerical solver

The solid domain is governed by the steady state heat conduction equation

λ∇2T = 0. (2.4)

The heat conduction solver used is CalculiX (2.13) developed by Dhondt and Wittig [27],
written in a mix of C and Fortran 77. CalculiX uses the Finite Element Method (FEM)
to solve the heat equation and supports the use of a wide variety of element types such as
wedge, hexahedral, and tetrahedral elements. The FEM discretises the solid domain (Ωs)
into finite elements which are all connected at the nodes. The temperature in each element
is interpolated between the nodal values through the use of shape functions

T (x, y, z) =
M∑
i=1

Ni(x, y, z)Ti, (2.5)

T = [N ]{T}, (2.6)
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1

2

3
Linear Quadratic

Figure 2.2: Solid domain discretisation and a three node element with linear and quadratic
shape functions.

where M is the number of mesh points, {T} is the vector of nodal temperatures and
[N ] is the matrix of shape functions (see figure 2.2). Similarly, the temperature gradient
interpolation is obtained though the temperature gradient matrix (which is analogous to
the strain matrix for FEM stress calculations). The x component of temperature gradient
can be calculated as [

dT

dx

]
=

[
∂N

∂x

]
{T}, (2.7)[

dT

dx

]
= [B]{T}, (2.8)

where [B] is the temperature gradient interpolation matrix. In this work, only steady state
analysis is performed, therefore by multiplying (Equation 2.4) by the shape functions, the
weak form of the heat equation can be represented as∫

Ωs

(∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

)
NidΩs = 0, (2.9)
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Applying integration by parts transforms the volume integral into surface integral∫
Ωs

(∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

)
NidΩs =

∫
s
{q}T {n}NidS, (2.10)

where {n} represents the three components of the surface normal and and {q}T = [qx, qy, qz].
Introducing the boundary conditions yields the governing set of finite element equations∫

Ωs

(∂Ni

∂x
+
∂Ni

∂y
+
∂Ni

∂z

)
{q}dΩs = −

∫
s1
{q}T {n}NidS︸ ︷︷ ︸
Dirichlet

+

∫
s2
qfwNidS︸ ︷︷ ︸

Neumann

+

∫
s3
h(Tsw − Tsink)NidS︸ ︷︷ ︸

Robin

,

(2.11)
where qfw is the heat flux from the fluid domain Ωf into the solid domain Ωs, Tsw is the
temperature on the solid side of the interface, and Tsink is the ambient fluid temperature.
The integrals over surfaces s1, s2, and s3 refer to Dirichlet (temperature), Neumann (heat
flux), and Robin (mixed) boundary conditions respectively as shown in Figure 2.3. The final
boundary condition is a zero temperature gradient (adiabatic) boundary condition which
is imposed by setting the s1 surface integral to zero. Equation (2.11) can be numerically

s1

s2

s3

Figure 2.3: Boundary conditions in the solid domain Ωs.

integrated using Gaussian quadrature to obtain

[K]{T} = {Q}, (2.12)
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where K is the conduction matrix (consisting of the conduction and convective coefficients)
and Q is the driving flux from the boundary conditions. CalculiX offers a choice of linear
solvers to solve the system of equations in Equation (2.12) and the SPOOLES linear solver
is used.

In CalculiX, the Dirichlet condition is imposed by specifying the nodal values of the tem-
perature while the Robin boundary condition requires facial values of the sink temperature
Tsink and heat transfer coefficient h̃ to be specified by the user [28].

2.3 Fluid governing equations and flow solver

The fluid domain (Ωf in Figure 2.3) is governed by the Reynolds-Averaged Navier-Stokes
(RANS) equations given by

∂

∂t

∫
Ωf

~UdΩ +

∮
∂Ωf

(~Fc − ~Fv) · dS =

∫
Ωf

~QdΩf , (2.13)

where t denotes pseudo time and Q the source term. The vector of conservative variables
U , and the convective and viscous flux vectors ~Fc and ~Fv are defined as

~U =


ρ

ρ~v

ρe

ν̃

 , ~Fc =


ρ~v · ~n

(ρ~v~v + p) · ~n
ρ(e+ p)~v · ~n

ν̃~v · ~n

 , ~Fv =


0

τ · ~n
~Θ · ~n

1
σ (νL + ν̃)(∇ν · ~n)ν̃

 . (2.14)

Where, ρ, p, and ~v are the fluid density, pressure, and velocity vector respectively, ~n the
surface normal vector, e the internal energy per unit mass, ν̃ is the modified eddy viscosity,
and

~Θ = τ · ~v + κ∇T, (2.15)

τ = µ(∇~v +∇~vT ) + δijλ∇ · ~v, (2.16)

k = kL + kT = cp

(
µL
PrL

+
µT
PrT

)
, (2.17)

µ = µL + µT , (2.18)

where laminar dynamic viscosity µL is calculated using Sutherland’s Law, kL and kT are the
laminar and turbulent thermal conductivities respectively, µT the turbulent eddy viscosity,



CHAPTER 2. GOVERNING EQUATIONS AND NUMERICAL METHODS 14

δij is the Kronecker delta, and the ideal gas law and the Spalart-Allmaras turbulence model
are used to close the fluid system of equations [29].

The fluid analysis is performed using the in-house mgOpt flow solver which is written
in Fortran 90 and has been developed during previous PhD programs. mgOpt is a vertex
centred, finite volume solver, which solves the 3-D compressible RANS equation using
unstructured grids. Median dual control volumes are constructed from the original grid
and a second order accurate spatial discretisation is used with JT-KIRK implicit time
stepping [30]. mgOpt also uses geometric multigrid algorithms for convergence acceleration
in which the fluid equations are solved on a hierarchy of coarsened grid levels. This allows
the use of larger time steps on the coarser grids and for low frequency solution errors to be
reduced more efficiently [11] [31] [32].

The spatial integral of Equation (2.13) is represented by a residual vector

~R(~U) =

∮
∂Ωi

(~Fc − ~Fv) · dSi −
∫

Ωi

~QdΩi (2.19)

where Ωi refers to a control volume (see Figure 2.4). The convective flux is obtained using

Figure 2.4: Left: 2D dual control volume, Right: Left and Right faces of a control volume.

the Roe approximate Reimann solver [33]. The total convective flux is obtained by summing
the fluxes through the faces of the control volumes

~Fface,i =
1

2
[~Fc,i(~UR) + ~Fc,i(~UL)− |Aroe|(~UR − ~UL)], (2.20)
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where Aroe is the Roe dissipation matrix. The left (UL) and right (UR) states are recon-
structed using

UL = Ui + (∇Ui) · ~ri,c
UR = Uj + (∇Uj) · ~rj,c

where i, j refer to the indices of the left and right nodes, ~ri,c and ~rj,c are the edge vectors
pointing to the face centre, and Green-Gauss theorem is used to calculate the gradients.
Harten’s entropy correction is used to deal with non-physical solutions which may occur.
mgOpt also has the AUSMup

+ convective flux scheme implemented [34].
For viscous walls, the relative velocity between the wall and fluid in contact with the

wall is zero. Therefore the contribution to the convective flux is reduced to the pressure
terms of the momentum equation

~Fc =


0

~n · p
0

0

 · dS. (2.21)

For a strongly specified no-slip boundary condition, the momentum equations do not need
to be solved at the wall and no wall fluxes need to be calculated. However, the viscous
flux contribution cannot be treated in a similar way for CHT problems. The development
of the heat transfer capabilities of the solver is the main contribution of the author. This
involves extending the solver to accommodate non-adiabatic walls. On the fluid side of
CHT problems, the main equation of concern is the RANS energy equation which is given
as

∂

∂t

∫
Ωf

ρedΩf+

∮
dΩf

ρH(~v·~n)dS−
∮
dΩf

k(∇T ·~n)dS−
∮
dΩf

(τ ·~v)·~ndS =

∫
dΩf

ρ~fedΩf , (2.22)

where, ρ, p, and ~v are the fluid density, pressure, and velocity respectively, e the internal
energy per unit mass, H the total enthalpy, τ the viscous stress tensor, ~fe is the body
force which is set as zero. At the fluid-solid interface (dSf ), the viscous flux component of
Equation (2.22) reduces to ∮

dSf

k(∇T · ~n)dS (2.23)
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where k is the fluid thermal conductivity which is the sum of the laminar (kL) and turbulent
(kT ) conductivities

k = kL + kT , (2.24)

kL = cp
µL
PrL

,

kT = cp
µT
PrT

,

and PrL = 0.713 and PrT = 0.85. For adiabatic walls, the temperature gradient normal to
the wall is zero therefore viscous fluxes do not need to be calculated. For CHT problems
however, the fluid-solid interface would be non-adiabatic meaning the wall normal temper-
ature gradient would be non-zero. The heat flux through the fluid-solid interface is then
specified using either Neumann or Robin boundary conditions and the implementation of
these boundary conditions are described next.

2.3.1 Neumann boundary implementation

Neumann boundaries refer to boundaries at which the solid interface heat flux (qsw) is
imposed as a boundary condition in the fluid domain. The heat conduction solver outputs
the heat flux in cartesian coordinates and the wall normal component is added to the energy
residual of Equation (2.19)∫

dSf

k(∇T · ~n) = qsw, (2.25)

qsw = qx · nx + qy · ny + qz · nz, (2.26)

R(e) = R(e) + qsw · ds. (2.27)

2.3.2 Robin boundary implementation

This boundary condition requires a solid ambient temperature (T̃s), and the solid conduc-
tivity (R̃) as inputs. The contribution to the energy residual (Equation (2.19)) is then
calculated as ∫

dSf

k(∇T · ~n) = R̃(Tfw − T̃s), (2.28)

R(e) = R(e) + R̃(Tfw − T̃s) · ds, (2.29)



CHAPTER 2. GOVERNING EQUATIONS AND NUMERICAL METHODS 17

Figure 2.5: Definition of boundary condition terms at the Fluid-Solid interface.

where Tfw is the fluid wall temperature at the current flow solver iteration.

2.4 Coupling algorithms

CHT problems may be solved using a monolithic or partitioned approach. In the monolithic
approach, both fluid and solid equations are solved simultaneously by one numerical solver
and the continuity of temperature and heat flux is imposed implicitly. The main advantage
of this approach is that no iterations have to be carried out between the solution of the
governing equations of the fluid and solid domains. However, monolithic codes are only
limited to the particular combination of problems for which they were developed and require
a high level of expertise to develop [35] [36].

In the segregated or partitioned approach, separate solvers are used for the fluid and
structure which are loosely coupled through interface boundary conditions. These boundary
conditions need to be updated iteratively until the temperature and heat flux are continuous
between the two domains (see Figure 2.5). That is until

Tsw = Tfw, (2.30)

λs

∣∣∣∂T
∂n

∣∣∣
s︸ ︷︷ ︸

qsw

= λf

∣∣∣∂T
∂n

∣∣∣
f︸ ︷︷ ︸

qfw

,

where Tfw is the interface temperature in the fluid domain Ωf , Tsw the interface temperature
in the solid domain Ωs, λf and λs the thermal conductivity of the fluid and solid respectively,
n the surface normal, and qfw and qsw the interface heat flux in the fluid and solid domains
respectively.

One advantage of the partitioned approach is the flexibility of using different existing
solvers for both domains [37] [38]. The partitioned approach also allows the use of non-
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matching grids at the fluid-solid interface. However, this leads to a need for interpolation of
interface values between domains [36] [37] [39]. In this thesis, only matching grids are used
at the interface, in order to avoid the need for interpolation. Moreover, it is computationally
inexpensive to solve the solid domain and fine meshes can be used without issue.

Different coupling algorithms exist depending on which boundary conditions are ex-
changed between both domains. Boundary conditions in both domains could either be
Dirichlet (Equation (2.31)), Neumann (Equation (2.32)), or Robin (Equation (2.33)).

T = g1, (2.31)

λ
∂T

∂n
= g2, (2.32)

λ
∂T

∂n
= h · (T − Tsink), (2.33)

where n is the surface normal and Tsink is the ambient temperature in the domain. A
Dirichlet boundary conditions refers to an imposed temperature, while a Neumann condition
is an imposed heat flux, and a Robin boundary condition is a mixture of the Dirichlet and
Neumann. These three boundary conditions can be combined to form a variety of coupling
algorithms as shown in Table 2.1.

Fluid-Solid Name Nomenclature
Dirichlet-Neumann Flux Forward Temperature Back FFTB
Dirichlet-Robin heat transfer coefficient Forward Temperature Back hFTB

Neumann-Dirichlet Temperature Forward Flux Back TFFB
Neumann-Robin heat transfer coefficient Forward Flux Back hFFB
Robin-Dirichlet Temperature Forward solid coefficient Back TFRB
Robin-Neumann Flux Forward solid coefficient Back FFRB
Robin-Robin heat transfer coefficient Forward solid coefficient Back hFRB

Table 2.1: Types of coupling algorithms. Forward refers to the boundary condition sent by
the fluid domain while Back refers to the boundary condition it receives.

The easiest algorithm for partitioned coupling approaches is the fixed-point/Gauss-
Seidel iteration in which solvers exchange boundary conditions iteratively until convergence.
That is, until there is no change in the value of exchanged boundary conditions between
subsequent iterations and the heat flux and temperature is continuous between domains.
This is also known as the primal loop/primal coupling iteration. However, fixed-point
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methods converge slowly and may even fail to converge sometimes.
The stability and convergence behaviour of each fixed-point algorithm is different and

several stability analysis studies for partitioned methods have been done. Giles [40] per-
forms a stability analysis on a 1D heat transfer problem using Dirichlet-Neumann coupling
concluding that the FFTB is required for stability. However, the conclusions do not apply
to steady state problems. Verstraete et al. provide a stability criteria based on Biot number
for four coupling algorithms [6]. The work of Verstraete et al. is extended by Scholl et al.
who add the Biot number stability criteria for the final three coupling algorithms [7].

The Biot number gives the ratio between the conductive and convective thermal resis-
tance and is defined as

Bi =
hL

λs
=

Conductive resistance
Convective resistance

, (2.34)

where L is the characteristic length of the solid. The Biot number provides insight into the
relationship of the heat transfer between both domains. A low Biot number implies a larger
temperature gradient in the fluid while a high Biot number implies a larger temperature
gradient in the solid.

Other stability studies have been performed in [41] [42] [39]. Based on the work of
Verstraete and Scholl, the current work uses the Biot number to ensure the stability of the
partitioned method where possible.

A common approach to speed up the convergence time of fixed-point methods is to
only partially converge the flow equations. However, this requires more coupling iterations
between solvers. Verstraete and Van den Braembussche [43] show that when this is done,
imposing Dirichlet conditions in the fluid domain should be avoided and that the stability of
coupling algorithms which impose Neumann conditions in the fluid domain will be improved.
This is because imposing a Dirichlet (temperature) boundary condition in the fluid domain
leads to a sudden change in the wall heat flux between coupling iterations. This leads to an
over-prediction of the heat flux value as the thermal boundary layer is not fully converged.
This over-prediction of the heat flux could then lead to instability of the coupling algorithm.
Alternatively, if a Neumann boundary condition is imposed in the fluid domain, the wall
temperature will be under-predicted resulting in an increase in the stability of the coupling
algorithm [38]. A similar advantage of partial convergence of the flow equation using Robin
boundary conditions was recently demonstrated by Scholl [7].

Alternative to Gauss-Seidel iterations, other coupling algorithms used to accelerate the
convergence of partitioned methods include Aitken relaxation, Newton-Krylov methods,
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and Anderson mixing methods [37]. Despite the stability and convergence limitations of
fixed-point iterations, their ease of implementation remains an advantage. Furthermore,
time saving benefits from partial fluid convergence ensure that fixed-point coupling algo-
rithms remain a competitive option with regard to partitioned methods for CHT problems.

Consequently, this thesis focuses on the use of fixed-point coupling algorithms which use
Neumann or Robin boundary conditions in the fluid domain. Computational time savings
are obtained by partially converging the flow equations while the solid is solved to full
convergence at each coupling iteration. The three coupling algorithms used for the primal
solve in the present work are described below.

2.4.1 TFFB

In the Temperature Forward Flux Back (TFFB) method [44], the solid interface heat flux
distribution, qisw (where i is the current coupling iteration), is imposed as a boundary
condition to the fluid domain. The fluid solver F solves the flow equations resulting in a fluid
interface temperature distribution, T ifw. This temperature is then imposed as boundary
condition for the solid domain and the solid conduction solver, S, provides an updated
heat flux distribution qi+1

sw . This loop is continued until there is no change in the boundary
conditions exchanged by both solvers (see Figure 2.6).

T ifw = F(qisw), (2.35)

qi+1
sw = S(T ifw). (2.36)

2.4.2 TFRB

The Temperature Forward solid coefficient Back (TFRB) coupling algorithm imposes a
Dirichlet boundary condition in the solid domain and uses a Robin boundary condition in
the fluid domain. The method also requires a virtual conductivity R̃ to be specified. Where
R̃ = λ̃

L , λ̃ is the virtual solid conductivity, and L is a solid length scale. The values of λ̃
and L are non-physical quantities chosen by the user which affect the speed of convergence
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and stability of the method [7].

qisw = S(T isw), (2.37)

T̃ is =
qisw
R̃

+ T isw, =⇒ (calc. T̃s) (2.38)

T ifw = F(T̃ is , R̃), (2.39)

qifw = R̃(T̃ is − T ifw), =⇒ (Robin BC in fluid) (2.40)

T i+1
sw = T ifw. (2.41)

Assuming the algorithm begins in the solid domain, an initial guess for the wall temperature
Tsw is imposed on the solid and used to obtain the heat flux qsw. Next, the virtual solid sink
temperature T̃s is calculated using Equation (2.38). The virtual conductivity and solid sink
temperature are used for a robin boundary condition in the fluid domain. The flow solver
then retunes an update of the interface temperature which is given to solid as a Dirichlet
boundary condition (see Figure 2.6).

2.4.3 hFRB

The heat transfer coefficient Forward solid coefficient Back (hFRB) method uses Robin
boundary conditions in both domains and is the same as TFRB on the fluid side (see
Figure 2.6). Similar to the TFRB method, the algorithm can start with an initial guess of
the interface temperature on the solid side. Next, the virtual solid temperature T̃s can be
calculated and passed to the flow solver along with the virtual conductivity R̃.

qisw = S(T isw), (2.42)

T̃ is =
qisw
R̃

+ T isw, =⇒ (calc. T̃s) (2.43)

T ifw, q
i
fw = F(T̃ is , R̃), (2.44)

T isink = T ifw −
qifw

h̃
, =⇒ (calc. Tsink) (2.45)

qi+1
sw , T i+1

sw = S(T isink, h̃). (2.46)

The outputs from the flow solver are the interface temperature and heat flux (Tfw, qfw).
These are used in Equation (2.45) to calculate the ambient fluid temperature (T isink) for
a given value of the virtual heat transfer coefficient (h̃). The solid solver then returns an
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Figure 2.6: CHT coupling algorithms. Left:TFFB, Centre: TFRB, Right:hFRB.

update on the interface temperature and heat flux and the exchange is continued until
convergence [7].

Figure 2.7: Interface (Tfw) and ambient/sink (Tsink) temperatures on the fluid side. Solid
lines represent the mesh while dashed lines represent the fluid control volumes.

T isink = T ifw +
qifw

h̃
. (2.47)
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Although any user specified value of h̃ can be used, it is difficult to estimate appropriate
values of h̃. Therefore, in the present work, the first off-wall node (see Figure 2.7) is used
as the ambient fluid temperature (Tsink). h̃ is then calculated using the fluid thermal
conductivity λf as

h̃ =
λf
∆y

. (2.48)

This makes h̃ closer to the actual value of the heat transfer coefficient. As CalculiX requires
facial values for the Robin boundary conditions, the facial values are obtained by averaging
the values of Tsink and h̃ at the nodes forming the face.

2.5 Summary

This chapter describes the fluid and solid governing equations for CHT and methods for
solving CHT problems. CHT problems can be solved using either a monolithic or partitioned
approach, however, the partitioned approach is preferred as it allows the use of separate
solvers for each domain. The partitioned approach results in the need for coupling iterations
between solvers to ensure the continuity of heat flux and temperature between the fluid
and solid domain. In this work, fixed-point coupling iterations will be used to iteratively
exchange boundary conditions until this continuity is achieved.

The convergence speed of fixed-point methods can be improved by only partially con-
verging the flow equations. Previous studies have shown that imposing Dirichlet boundary
conditions in the fluid domain undermines the stability of coupling algorithms when the
flow equations are partially converged. Alternatively, when the flow equations are partially
converged, Neumann or Robin boundary conditions in the fluid domain improve the stabil-
ity of the coupling algorithm. Consequently, three fixed-point coupling algorithms used in
this work avoid the use of a Dirichlet boundary condition in the fluid domain.

Finally, the numerical solvers to be used for MDA were introduced and the implementa-
tion of Neumann and Robin boundary conditions in the in-house CFD solver was described.
The described coupling algorithms can now be combined with the numerical solvers to solve
CHT problems and this is shown in the next chapter.



Chapter 3

Numerical analysis and Solver
validation

In this chapter, Multidisciplinary Design Analysis (MDA) is carried out on a variety of CHT
problems. As MDA is used to determine the fitness of purpose of a design, it is essential
that the solvers and coupling algorithms used are accurate. Moreover, the accuracy of
the gradients required for gradient based optimisation is dependent on the accuracy of the
coupling algorithms and their solver implementation. Consequently, the coupling algorithms
described in Chapter 2 as well as the numerical solvers used are validated using test cases
with analytic or experimental results.

3.1 Flat plate

The first problem considered is laminar flow over a flat plate with finite thickness. The free
stream flow is at temperature T∞, while the bottom of the plate is maintained at a cooler
temperature Tb. Due to the temperature difference between the solid plate and the hot air,
there is heat transfer between the solid plate and the fluid.

The aim is to accurately compute the wall temperature Tw at the interface between the
fluid and solid, which is unknown a priori and can only be computed by considering the
coupled problem. This test case is chosen as a benchmark to verify the numerical solvers
and all coupling algorithms by comparing the results with the Luikov analytic solution [45].
The thermal conductivity of the plate is determined through the average Biot number over

24
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Figure 3.1: Flat plate problem description.

Parameter Value units
b 0.01 m
L 0.2 m
M∞ 0.1

P∞ 1.03 · 105 Pa
T∞ 1000 K
Tb 600 K
λs 0.2222 W/mK
λf 0.05568 W/mK
µ 3.95 · 10−5 Pa · s
ReL 1.132 · 105

Pr 0.713

Table 3.1: Flat plate test case table of
parameters.

the plate which is calculated as

Bi =
h · b
λs

. (3.1)

Where h is the average heat transfer coefficient over the length of the plate calculated as

h =
1

L
0.664λf

3
√
Pr
√
ReL. (3.2)

Using the values in Table 3.1, the average heat transfer coefficient, h, over the plate is 55.55

W/m2K. The thermal conductivity of the solid can then be calculated for a user defined
value of the average Biot number as

λs =
0.5556

Bi
. (3.3)

An average Biot number of 2.5 is chosen leading to a solid thermal conductivity of 0.2222

W/mK. However, the actual value of the Biot number varies along the length of the plate.
Matching grids are used in both the fluid and solid domains and the flow boundary condi-
tions are shown in Figure 3.2. The fluid domain is discretised using a grid of 137x97 nodes
with a total of 226 interface nodes while the solid domain is discretised with 1808 nodes.
For the TFRB and hFRB coupling algorithms, R̃ is taken as λs

b .
The Luikov differential heat transfer equation is given as
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Figure 3.2: Flat plate fluid and solid meshes and computational setup.

Tf(x,y) − Tb
T∞ − Tb
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λs
λs

y

b

]
· erfc

(
K − 1

2
B +

1

2

λs
λf

y

Kb

)
+

1

2
erfc
(1

2
B − 1

2

λs
λf

y

Kb

)

−1

2

exp
[B
K

λs
λs

y

b

]
1− B

K

· erfc
(1

2
B +

1

2

λs
λf

y

Kb

)
. (3.4)

where erfc is the error function,K = λs
λf

x
bPr

0.5Re
−0.5
x , B =

v̄y
v̄x

√
PrRex, v̄y = 0.43v∞(xv∞ν )−0.5,

v̄x = 0.66v∞, and Rex = v̄xx
ν .

3.1.1 Results

The obtained temperature distribution from all three coupling algorithms is shown in Figure
3.3a. All three algorithms obtain the same solution however the CHT solutions slightly
under-predict the interface temperature compared to the analytic profile.

To further investigate the discrepancy between the analytic and CHT temperature dis-
tribution, a mesh convergence study was performed. Figure 3.3b shows the results for a
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Figure 3.3: Flat plate interface temperature distribution.

medium mesh with 137x97 points and the fine mesh with 274x194 point. Both meshes
obtain the same results showing that the discrepancy is not a result of the discretisation.

One assumption for this discrepancy is that the Luikov solution is only an approximate
solution where lateral heat transfer in the solid is not modelled. Consequently, the solid
was modelled as an orthotropic material using a longitudinal conductivity of λf |y = 0.2222

W/mK and a lateral conductivity of λf |x = 10−6 W/mK. The results in Figure 3.3b for
Fine:Ortho show that no significant difference between modelling the solid as an isotropic
or orthotropic material. Although the cause of the discrepancy could not be determined,
similar under-prediction of the interface temperature has been reported in [7].

3.2 Convergence of coupling algorithms

The convergence behaviour of all three algorithms on the flat plate test case was evaluated.
A coupling residual which quantifies the change in interface temperature between coupling
iterations is defined as

ResT = log10

(√√√√ 1

N

N∑
j=1

(T ij − T
i−1
j )2

)
, (3.5)

where i denotes the coupling iteration and N the number of interface nodes. All runs were
ended as soon as ResT fell below -12. Figure 3.4a shows that the methods which use Robin
boundary require less coupling iterations to converge with Robin-Robin method requiring
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Figure 3.4: Comparison of coupling convergence on the Flat plate test case.

Furthermore, the computational runtime of the fixed-point methods was decreased by
only partially converging the flow equations between coupling iterations (see Figure 3.4b).
For runs with partial fluid convergence, the flow solver was interrupted every 50 fluid itera-
tions to get the fluid interface conditions. The solid solver was then run to full convergence
(using the unconverged fluid interface conditions) to produce an update of the solid in-
terface conditions. The fluid solver then used the updated solid interface conditions and
continued for the next fifty fluid iterations. This is what causes the spikes in the fluid
residual every 50 iterations seen in Figure 3.4b. On the other hand, during runs with full
fluid convergence, the flow solver was run to full convergence (typically 350 fluid iterations),
before the exchange of boundary conditions.

Coupling Full fluid convergence Partial fluid convergence
method No its. Time [min] No its. Time [min]
TFFB 37 435.4 34 69.1
TFRB 23 211.1 21 49.9
hFRB 18 144.6 18 30.8

Table 3.2: Comparison of runtimes and number of coupling iterations for all coupling
algorithms.

The results presented in Table 3.2 show that the Robin-based coupling algorithms re-
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quired less wall-clock time to converge with the hFRB algorithm being the fastest. For
all three algorithms, the partial convergence of the flow equations leads to a significant
reduction in computational time without a compromise in accuracy. Full fluid convergence
lead to an increase in the number of coupling iterations required for the TFFB and TFRB
algorithms. This might be explained by the results presented by Verstraete and Scholl [38]
[7] which show that partial convergence of the fluid solver increases the stability of coupling
algorithms.

For the hFRB method, using 30 fluid iterations between boundary condition updates
reduced the computational time to 17.2 minutes for a total number of 18 coupling itera-
tions. However, reducing to 10 fluid iterations between updates increased the time to 28.8
minutes for a total of 35 coupling iterations. This suggests there is an optimum number
fluid iterations which produces the least computational time and similar results have been
reported by Scholl [7]. As a result of the findings in Table 3.2 and Figure 3.4a, the hFRB
algorithm is favoured in this thesis and computational time savings are obtained by only
partially converging the flow equations between coupling iterations.

Although it was shown by Ganine et al. [37] that significant computational time saving
can be obtained through the use of several acceleration techniques, the results were not
benchmarked against standard fixed-point methods and the use of Robin boundary con-
ditions in the fluid domain was not considered. Consequently, the advantage, in terms of
compute time, of more sophisticated coupling algorithms over fixed-point methods remains
unclear.

3.3 C3X & MarkII turbine blades

The C3X turbine blade is chosen as it has been investigated experimentally by Hylton et
al. [46]. Similar to modern turbine blades, the blade is convectively cooled by ten cooling
channels and a 2D simulation of the problem is carried out. The test case is used to validate
the effect of turbulence on the accuracy of the CHT solution. The Spalart-Allmaras one-
equation turbulence model is implemented in the flow solver. The MarkII test from the
same experimental study as the C3X is also chosen due to the presence of weak and strong
shockwaves on the suction side of the blade. A full description of the blade geometries is
available in [46].

Both blades are made of ASTM 310 stainless steel and the thermal conductivity is a
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function of temperature taken as

λs = 6.811 + 0.020176 · T, (3.6)

where T is the temperature at a point in the solid. The density and heat capacity are taken
as 7900 kgm−3 and 586.5 J kg−1 K−1 respectively.

PTin

TTin
Poutperiodic

PTin

TTin Pout
periodic

Figure 3.5: Turbine blades geometry and domain (Left: C3X, Right: MarkII).

3.3.1 Boundary conditions

On the fluid side, the total temperature TT , total pressure PT , and mach number M are
specified at the inlet, while the static pressure is specified at the outlet. The isentropic
equations for total pressure (PT ) and total temperature (TT ) ratios are given by

PT
Ps

=
(

1 +
γ − 1

2
M2
) γ
γ−1

, (3.7)

TT
Ts

= 1 +
(γ − 1

2
M2
)
, (3.8)

where Ps and Ts are static pressure and static temperature respectively and γ is the
heat capacity ratio for air which is taken as 1.4. The fluid boundary conditions for each
run are shown in Table 3.3 and the computational domain is shown in Figure 3.5.

Robin boundary conditions are specified on each cooling channel by supplying the heat
transfer coefficient, h, and average temperature of the cooling fluid Tc. The heat transfer
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Test case C3X 4521 MarkII 5411
PTin [Pa] 413286 337100
TTin [K] 818 788
Pout [Pa] 254172 167000
Min 0.17 0.19
Mout 0.89 1.04

Table 3.3: Turbine blades fluid boundary conditions

coefficient is calculated from the Nusselt number given by

Nu = 0.022CrRe0.8
D Pr0.5, (3.9)

h =
λf ·Nu

d
, (3.10)

Re =
ρvd

µ
. (3.11)

Where Re is the Reynolds number shown in Equation (3.11), d is the channel diameter, µ
and ρ are the viscosity and density, and v is the velocity of the fluid. Cr is the corrective
coffecient which is given for each cooling channel while Pr is the Prandtl number taken
as 0.7. Combining Equations (3.9) and (3.10), the heat transfer coefficient can then be
calculated as

h =
λf
d
· 0.022 · Cr · Pr0.5 ·

(
ṁ · 4

πd

µ

)0.8

(3.12)

Where ṁ is the mass flow rate through the channel and is given in the experimental
data. The viscosity and thermal conductivity for each channel are calculated using the
Sutherland formula

µ = µ0

(
Tc
T0

) 3
2 T0 + S

Tc + S
, (3.13)

λf = λ0

(
Tc
T0

) 3
2 T0 + S

Tc + S
. (3.14)

Where µ0 = 1.7894 · 10−5 Pa/s, T0 = 273.11 K, S = 110.56, and λ0 = 0.0261 W/(mK).
The cooling channel boundary conditions for both runs are shown in Table 3.4.

The hFRB coupling algorithm is used and to the best of the authors’ knowledge, this
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C3X: 4521 MarkII: 5411
ID. d [m] Cr ṁ [Kg/s] Tc [K] h [W/m2/K] ṁ [Kg/s] Tc [K] h [W/m2/K]
1 0.0063 1.118 0.0222 352.14 1848.925763 0.0246 336.39 1993.570538
2 0.0063 1.118 0.0221 354.54 1844.108669 0.0237 326.27 1926.157139
3 0.0063 1.118 0.0218 345.62 1817.188554 0.0238 332.68 1938.314169
4 0.0063 1.118 0.0228 346.72 1884.462461 0.0247 338.86 2002.237365
5 0.0063 1.118 0.0225 340.7 1859.750452 0.0233 318.95 1893.604378
6 0.0063 1.118 0.0225 366.21 1879.68760 0.0228 315.58 1858.029672
7 0.0063 1.118 0.0216 351.48 1808.338204 0.0238 326.26 1932.647274
8 0.0031 1.056 0.00744 376.24 2635.689007 0.00775 359.83 2705.486664
9 0.0031 1.056 0.00477 406.97 1867.93929 0.00511 360.89 1939.672853
10 0.00198 1.025 0.00256 446.69 2502.441424 0.00334 414.85 3063.69078

Table 3.4: Turbine blades cooling channel conditions (d, Cr, ṁ, and Tc obtained from
experiment).

is the first time Robin-Robin coupling boundary conditions have been used on the MarkII
and C3X cases. The solid length scale is taken as 2% of the chord length and the virtual

conductivity was calculated as R̃ =
λs

0.02 · xc
. As the solid conductivity is a function

of temperature described in Equation (3.6), the value of R̃ changes with each coupling
iteration.

Figure 3.6: C3X mesh with matching grids in both domains.

The C3X domain is discretised using 36,744 nodes in the fluid and 5,412 nodes in the
solid. The MarkII fluid domain is discretised using 49,532 nodes while the solid has 5,714
nodes. The solid domains both use wedge (C3D6) elements. A near wall spacing y+ of less
than 1 is used and 2 levels of multigrid meshes are used in the fluid domain to accelerate
convergence. Matching grids are used for both domains as shown in Figures 3.6 and 3.7.
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Figure 3.7: MarkII mesh with matching grids in both domains.

3.3.2 Results

The simulation is terminated once ResT drops below -6 and the obtained Mach number
and temperature distribution are shown in Figures 3.8 and 3.9 respectively. The MarkII
results show the presence of two shock waves on the suction side of the blade. The C3X
case which has a lower exit Mach number only shows a mild shock at the trailing edge of
the suction side.

Figure 3.8: Mach number distribution (Left: C3X 4521, Right: MarkII 5411).

Figures 3.10 - 3.12 show plots of the static pressure (Ps), static temperature (T ), and
heat transfer coefficient (H) distributions. The values are normalised as was done in the
experiment in order to compare the numerical and experimental results. Good agreement
is seen between the CHT simulations and the experimental data for the surface pressure
distribution while the surface temperature and heat transfer coefficient distributions show
some discrepancy on the suction side.

The presence of shockwaves can be seen in the sudden increase and decrease of values
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Figure 3.9: Static temperature distribution (Left: C3X 4521, Right: MarkII 5411).
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Figure 3.10: Surface pressure distribution (Left: C3X 4521, Right: MarkII 5411).
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Figure 3.11: Surface temperature distribution (Left: C3X 4521, Right: MarkII 5411).

on the suction side (x/c > 0) of the blades. The effect of cooling channels can also be
seen in the oscillations of the temperature distribution at the trailing edge of the blades.
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Figure 3.12: Surface heat transfer coefficient (Left: C3X 4521, Right: MarkII 5411).

The obtained CHT results are similar to those obtained by Tetsuya et al. [47] using the
Spalart-Allmaras (SA) turbulence model. The literature shows that transition turbulence
models are required to accurately capture the flow behaviour on the suction side of the
blade [47] [48] [49] [50] [51]. This is because the SA model assumes fully turbulent flow and
is unable to predict the point of transition from laminar to turbulent flow.

3.4 Summary

In this chapter the validity and accuracy of the numerical solvers and coupling algorithms
used for MDA was evaluated. The obtained results show good agreement between analytic
and experimental data and the CHT simulations for all three test cases. The results of
the turbine blades match the experiments to the level expected of the Spallart-Allmaras
turbulence model as reported in literature. These results could be improved through the
use of transition models, however, this is beyond the scope of this work.

The rate of convergence of the three coupling algorithms used was compared on the
flat plate test case and it was seen that the Robin-Robin (hFRB) method converges fastest
and computational cost savings can be obtained through partial convergence of the flow
equations between coupling iterations.

The results of the multidisciplinary CHT analysis give confidence that the numerical
solvers and coupling algorithms can effectively be used to asses the fitness of purpose of a
design. The solvers and coupling algorithms can now be used for Multidisciplinary Design
Optimisation.



Chapter 4

Sensitivity analysis

The main aim of Multidisciplinary Design Analysis (MDA) is to provide an assessment of
the performance of a design. This performance is typically measured by a singular value,
referred to as the objective function (e.q. the lift produced by an aerofoil), and provides
a quantitative way to compare several designs and decide which design performs better.
Rather than merely measuring the performance of several designs, it is more desirable to
find an optimum design which results in the best performance. This can be done through
the use of numerical optimisation.

Optimisation algorithms can broadly be grouped into gradient free or gradient based
methods. Gradient free methods rely solely on the value of the objective function to drive
the optimisation process. The main disadvantage of gradient free methods is that they
require a large number of function evaluations to find the optimum. This quickly becomes
prohibitive in cases with a large number of design variables and in cases where the cost of
obtaining the objective function is very high (e.g. in multidisciplinary problems).

On the other hand, gradient based methods are ideal in cases where the cost of evalu-
ating the objective function is very high because they require fewer function evaluations.
These methods make use of the value and gradient of the objective function w.r.t to design
variables (e.g the surface of the aerofoil) to drive the optimisation process.

Sensitivity analysis refers to the process of obtaining gradients by assessing how the
inputs to a model affect its outputs. Some methods of obtaining gradients include: finite
differences, complex step methods, and tangent linearisation [3]. These three methods
obtain gradients at a cost linearly dependent on the number of degrees of freedom, which
is often prohibitive for industrial problems. Contrarily, adjoint methods obtaining obtain

36
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gradients at a cost which does not scale with the number of design variables and this
principle is demonstrated in this chapter. Adjoint methods have been developed and used
extensively for shape optimisation of single disciplinary problems [11] [30] [52].

This chapter discusses how analytically accurate derivatives are calculated and the ad-
joint equations are derived. The discrete adjoint method is used in this thesis as it lends
itself to the use of Automatic Differentiation [53]. The main advantage of Automatic Dif-
ferentiation (AD) is that it eases the effort of obtaining accurate derivatives from numerical
solvers, thereby circumventing one of the developmental cost of the continuous adjoint. Fi-
nally, AD is applied to the two numerical solvers used for partitioned coupling resulting in
two independent adjoint solvers. These solvers are able to efficiently obtain relevant CHT
gradients and the accuracy of the gradients are verified.

4.1 Tangent linearisation

Tangent linearisation is one method of obtaining exact derivatives and can be done as fol-
lows; Let the parameter to be minimised be represented by an objective function J(U(α), α)

where U and α represents the state and design variables respectively. The value of interest
for gradient based optimisation is the derivative of the objective function with respect to
the design variable which is known as the sensitivity. That is

dJ

dα
=

∂J

∂α
+
∂J

∂U

dU

dα
, (4.1)

dJ

dα
≡ ∂J

∂α
+ gTu. (4.2)

The term dU
dα can be obtained from the equation of state (e.g. Navier-Stokes) represented

by a function R.
R(U(α), α) = 0. (4.3)

Through tangent linearization, the derivative with respect to the design variable is

∂R

∂U

dU

dα
+
∂R

∂α
= 0 (4.4)

this can be re-written as
Au = f, (4.5)
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where A is the Jacobian, u is derivative of the state variables with respect to the design
variables, and f is the negative partial derivative of the residual, R,with respect to the
design variables.

While the term f is computationally inexpensive to obtain, the term dU
dα requires N

solutions of the linear system for N design variables. This quickly becomes computationally
prohibitive as the number of design variables increases. Adjoint methods can be used to
reduce this cost by avoiding the calculation of this term.

4.2 Discrete Adjoint for single disciplines

It can be shown that the cost of evaluating gradients using the adjoint method is nearly
independent of the number of design variables. Consequently, this method is highly recom-
mended for problems with numerous design variables. The two main approaches to deriving
adjoint equations are the discrete and continuous methods [11].

The continuous method analytically derives the adjoint equations before being discre-
tised while the discrete method discretises the primal equations before formulating the
discrete adjoint equations. This thesis uses the discrete method as it allows the use of
Automatic Differentiation in order to avoid the tedious analytic derivation of the adjoint
equations. This is discussed in more detail in section 4.3. First, the formulation of the dis-
crete adjoint equations is presented in order to show the advantage of the adjoint method.

Assuming u satisfies Equation(4.5) which is a linear system of equations, the term gTu

(in Equation (4.2)) can be evaluated in dual form as vT f [54]. Where the adjoint variable,
v, is the solution to the set of equations(∂R

∂U

)T
v =

( ∂J
∂U

)T
, (4.6)

AT v = g. (4.7)

The equivalence of the two terms is shown as:

gTu = (AT v)Tu = vTAu = vT f. (4.8)

Due to the adjoint equivalence, Equation (4.2) can be made independent of u

dJ

dα
≡ ∂J

∂α
+ vT f. (4.9)
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The advantage of the adjoint approach can be seen as Equation (4.7) only needs to be
solved once for all design variables as opposed to solving Equation (4.2), N times for N
design variables. Hence, the adjoint method computes the sensitivity at a cost which is
linear in the number of cost functions and independent of the number of design variables
[10].

4.3 Adjoint via Automatic Differentiation (AD)

Automatic Differentiation is a method for obtaining derivatives from computational models
through the application of the chain rule. Consider a cost function (JT = [J1, J2]) which is a
function of three design variables (xT = [x1, x2, x3] ) and which is calculated in a computer
program through a series of function calls and intermediate variables. AD obtains the
gradient of the cost function with respect to the design variables by applying the chain rule
to each line of the program. Each operation can be seen as a function which is dependent
on the previous operations and can be analytically differentiated. By assembling each
intermediate derivative using the chain rule, the total derivative can then be obtained.

AD can be used to compute gradients in either forward mode or reverse mode. The
forward mode computes the gradient as

J̇ =
dJ

dx
ẋ, (4.10)

J̇1

J̇2

 =


∂J1

∂x1

∂J1

∂x2

∂J1

∂x3

∂J2

∂x1

∂J2

∂x2

∂J2

∂x3


ẋ1

ẋ2

ẋ3

 . (4.11)

The process of retrieving gradients is done through seeding. For example, by seeding
ẋT = [1, 0, 0] we extract the first column of the Jacobian (dJdx). Therefore, for N design
variables, N number of computations need to be done. This makes Forward mode AD
equivalent to the tangent linear method of computing exact derivatives.

On the other hand, Reverse mode A.D. computes the gradient as
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x =
(dJ
dx

)T
J (4.12)

x1

x2

x3

 =



∂J1

∂x1

∂J2

∂x1

∂J1

∂x2

∂J2

∂x2

∂J1

∂x3

∂J2

∂x3


[
J1

J2

]
. (4.13)

By seeding JT = [1, 0] we extract the gradient of one cost function with respect to all design
variables. This makes the reverse mode equivalent to the adjoint method of obtaining
derivatives. Therefore, Forward mode AD is more efficient when there are more outputs
than inputs while Reverse mode AD is more efficient when there are more inputs than
outputs.

In this thesis, the adjoint solvers are obtained using source transformation AD tool Tape-
nade [55]. Tapenade parses and analyses the original source code and produces a differen-
tiated version. This process can also be automated to ensure that accurately differentiated
code can be obtained with minimal code maintenance. Consequently, the developmental
cost of obtaining the adjoint solvers can be significantly lower than the continuous adjoint
method. As a partitioned coupling method is used, each solver is individually differentiated
with respect to the boundary conditions it receives. The accuracy of the gradients obtained
from both solvers is also evaluated individually.

The accuracy of the obtained gradients is of great importance as this affects the perfor-
mance of gradient based methods. Inaccurate gradients can lead to less direct routes being
taken to the optimum design, consequently, it is important the gradients obtained through
AD are verified. This is done by comparing AD gradients with those obtained through
Finite-Difference (FD). Although FD gradients suffer from accuracy issues, they still give
a good indication of the expected values for gradients.
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4.4 Adjoint CalculiX: Heat conduction solver

Based on the types of coupling algorithms used in this thesis, the solid solver outputs
the solid heat flux, qsw, and receives the fluid interface temperature, Tfw, as a boundary
condition for the TFFB and TFRB coupling algorithms. For the hFRB method, the sink
temperature, Tsink, and heat transfer coefficient, h, are specified as boundary conditions
while the solid interface temperature, Tsw, and solid heat flux, qsw, are returned.

S S S S S S

Figure 4.1: Input and output variables for all coupling algorithms (primal = black, adjoint
= blue); Left:TFFB, Centre: TFRB, Right:hFRB.

As a result the gradient required from the solid solver is the gradient of the values output
to the fluid domain w.r.t. the received boundary conditions. These gradients describe how
the solid state is affected by the fluid state. This is summarised in Table 4.1.

Coupling algorithm Input Output Gradient Tangent Adjoint
seed seed

Neumann-Dirichlet Tfw qsw
∂qsw
∂Tfw

Ṫfw qsw

(TFFB)

Robin-Dirichlet Tfw qsw
∂qsw
∂Tfw

Ṫfw qsw

(TFRB)

Robin-Robin Tsink qsw
∂qsw
∂Tsink

,
∂qsw
∂h

Ṫsink qsw

(hFRB) h Tsw ḣ T sw
∂Tsw
∂Tsink

,
∂Tsw
∂h

Table 4.1: Gradients obtained from CalculiX.
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Automatic Differentiation is used (in both forward and reverse mode) to obtain the
gradient matrix in column 4 of Table 4.1 and the required derivatives are obtained using a
1×N seed vector (where N is the number of nodes/faces in which the boundary conditions
are applied). The seed vectors for each coupling algorithm are shown in column 5 for the
tangent mode and column 6 for the adjoint mode.

In order to differentiate CalculiX, extensive code preparation was required before Tape-
nade (version 3.13) could be used. At the current time, the development of Tapenade
to handle a mix of C and Fortran is still on going. The C-Fortran code was able to be
differentiated in Forward/Tangent mode with several modifications to the original source
code. In particular, Multithreading in the solver had to be removed as it was not supported
by Tapenade. New macros also needed to be defined for variable allocations and reallo-
cations and files containing #IFDEF directives needed to be preprocessed before calling
Tapenade. Furthermore, CalculiX is partly written in Fortran77 which allows the use of
arrays of arbitrary length. The sizes of numerous arrays needed to be explicitly specified in
order for Tapenade to create differentiated variables and initialise them with zero. Several
legacy statements had to be removed and several intrinsic functions had to be differentiated
separately after differentiating the main routine.

Despite these modifications, it was not possible to differentiate the C-Fortran code in
Reverse/Adjoint mode using Tapenade. These problems would be significantly reduced if
the code was written in only one programming language and better yet, if it was written
with the intention to be differentiated using AD. Therefore, the top routine and other
relevant C routines were converted to Fortran and successfully differentiated using AD.
The differentiation of the linear solver was done manually as this is the recommended way
of differentiating linear solvers and more details are provided in Appendix A.

The adjoint code initially consumed a huge amount memory due to the need to store
intermediate variables for the gradient calculation. In particular, for some three dimensional
arrays where only a subset was required for intermediate calculations, Tapenade stored the
whole array each time. This lead to a prohibitive increase in the memory consumption of
the code. This problem was resolved by manually editing the differentiated code to store
only the subset it required rather than storing the whole array.
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4.4.1 Sensitivity verification

The gradients obtained through AD of CalculiX are verified by comparing the values to
those obtained through finite differences. The finite difference gradients are obtained by
perturbing the value of the boundary conditions in a few random nodes as a selection of
design variables (α) and measuring the change in the heat flux at a point on the interface.
Sensitivity verification is carried out on a the flat plate test case (see Figure 4.2).

qw

Tb
Tb+δTb

Tb

(a) TFFB and TFRB perturbation.

qw

(h,Tsink)
((h+δh),Tsink)

(h,Tsink)

(b) hFRB perturbation.

(c) Solid mesh with 348 nodes.

Figure 4.2: Perturbation of solid domain design variables for finite differences.

For the TFFB and TFRB coupling algorithms, the boundary condition to be perturbed
is the imposed temperature at the bottom of the plate Tb while for the hFRB algorithm,
either the heat transfer coefficient h or sink temperature Tsink is perturbed. A perturbation
of the boundary condition of one node leads to a new temperature and heat flux distribution
in the entire solid domain. For example, by perturbing the bottom temperature Tb and
measuring the change in heat flux at a point (blue node in figure 4.2), the central difference
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gradient can then be calculated as

dqw
dTb

=
q

(Tb+δTb)
w − q(Tb−δTb)

w

2 · δTb
, (4.14)

where q(Tb+δTb)
w is the interface heat flux obtained for a positive perturbation of magnitude

δTb to the temperature at the bottom of the plate. For the hFRB method, a perturbation
in the sink temperature or heat transfer coefficient at one node leads to a new temperature
and heat flux distribution and the central difference gradient can then be calculated in a
similar way.

CalculiX is also differentiated to obtain the gradients of the boundary conditions w.r.t.
coordinates ~x, where ~x represents the cartesian coordinates x, y, z. This enables the solver
to be used for shape optimisation problems.

The comparison of tangent, adjoint, and central difference gradients for all coupling
algorithms is shown in Tables 4.2 - 4.5 below.

Gradient Design variable
method 1 [E-07] 2 [E-07] 3 [E-07]
Tangent 3.5485219015784849 7.1842117605076197 7.4222539856771185
Adjoint 3.5485219015784918 7.1842117605076208 7.4222539856771386

CD [∆ = 0.6K] 3.548439053702168 7.184492763675128 7.422067938023246

Table 4.2: TFFB & TFRB: Gradient of heat flux qw w.r.t temperature
( ∂qw
∂Tw

)
.

Gradient Design variable
method 1 2 3
Tangent -6.2354055932226018 -0.15740871006555840 -0.71552157932750082
Adjoint -6.2354055932226009 -0.15740871006556009 -0.71552157932749982

CD [∆ = 100 K] -6.2354055932540176 -0.15740871006850285 -0.71552157931657345

Table 4.3: hFRB: Gradient of heat flux qw w.r.t sink temperature
( ∂qw
∂Tsink

)
.

The adjoint and tangent gradient match to machine precision as expected for two ana-
lytically accurate methods. They also show good agreement with Central Difference (CD)
gradients. The CD gradients match the adjoint gradients to a precision of 10 decimal places
for both the temperature ( dqwdTw

) and sink temperature ( dqw
dTsink

). Therefore the gradients are
considered accurate.
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Gradient Design variable
method 1 [E-06] 2 [E-07] 3 [E-08]
Tangent -2.3181592565718062 -2.0916730807518237 8.2597755942820205
Adjoint -2.3181592565718172 -2.0916730807518353 8.2597755942822984

CD [∆ = 10 W/m2/K] -2.3181609321909490 -2.0916777430102231 8.2597944128792731

Table 4.4: hFRB: Gradient of heat flux qw w.r.t heat transfer coefficient
(∂qw
∂h̃

)
.

Gradient Design variable
method x y z

Tangent -106418.70632210534 -277295.88814791810 -8012.9018316539241
Adjoint -106418.70632210553 -277295.88814791851 -8012.9018316539232

CD [∆ = 10−7m] -106418.70640029083 -277295.88803595107 -8012.9018897423521

Table 4.5: Gradient of heat flux qw w.r.t coordinates
(∂qw
∂x

)
.

4.5 Adjoint mgOpt: Flow solver

The gradients required from the flow solver are the gradients of the fluid interface variables
which are passed to the solid domain (i.e. Tfw, Tsink, h̃) w.r.t to the received fluid boundary
inputs (qsw and T̃s) as shown in Figure 4.3. These gradients describe how the fluid state
is affected by the solid state through the CHT boundary conditions. The gradient of the
virtual solid conductivity (R̃) is not considered as this is a user defined number which does
not affect the solution. The required gradients from the flow solver are summarised in Table
4.6.

F F F F F F

Figure 4.3: Input and output variables for all coupling algorithms (primal = black, adjoint
= blue); Left:TFFB, Centre: TFRB, Right:hFRB.

The adjoint flow solver has been developed during previous PhD programs [11] [31] [32].
This thesis extends the capabilities of the flow solver to include CHT applications. This was
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Coupling algorithm Input Output Gradient Tangent Adjoint
seed seed

Neumann-Dirichlet qsw Tfw
∂Tfw
∂qsw

q̇sw T fw

(TFFB)

Robin-Dirichlet T̃s, R̃ Tfw
∂Tfw

∂T̃s
Ṫs T fw

(TFRB)

Robin-Robin T̃s, R̃ Tsink, h
∂Tsink

∂T̃s
,
∂h

∂T̃s
Ṫs h

(hFRB) T sink

Table 4.6: Gradients obtained from the flow solver.

done by implementing and differentiating the CHT boundary conditions. The flow solver
is written in Fortran 90/95 and was developed with the intention to be differentiated using
AD. Consequently, extensive code modifications were unnecessary and the development of
the tangent and adjoint versions of the solver was successfully automated.

4.5.1 Sensitivity verification

The gradients obtained from the flow solver are also verified by comparing the values to
those obtained through Central Difference (CD) and the flat plate test case is used for
sensitivity verification.

Gradient Design variable
method 1 [E-05] 2 [E-04] 3 [E-05]
Tangent 2.3097248962793258 6.3502573306171983 5.6107213331107320
Adjoint 2.3097248962792699 6.3502573306171387 5.6107213331105077

CD [∆ = 10−4 W/m2 ] 2.3013342342892429 6.3306970332632773 5.6497242439945694

Table 4.7: TFFB: Gradient of temperature Tw w.r.t heat flux qw
(
∂Tw
∂qw

)
.

The results in Table 4.7 - 4.10 show that the CD gradients agree with the Tangent and
Adjoint gradients, and the Adjoint and Tangent match to machine precision therefore the
adjoint gradients are considered accurate.
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Gradient Design variable
method 1 [E-04] 2 [E-02] 3 [E-04]
Tangent 3.6148975960527868 1.0645524268832867 6.0493031610819674
Adjoint 3.6148975960527847 1.0645524268832864 6.0493031610819653

CD [∆ = 10−4 K] 3.6091781415355700 1.0629397214264221 6.0780773007233313

Table 4.8: TFRB: Gradient of temperature Tw w.r.t heat flux T̃s
(
∂Tw
∂T̃s

)
.

Gradient Design variable
method 1 [E-04] 2 [E-02] 3 [E-04]
Tangent 3.6160160427450139 1.0648803581849980 6.0511427987232629
Adjoint 3.6160160427450128 1.0648803581849981 6.0511427987232640

CD [∆ = 10−6 K ] 3.6102202708813513 1.0632665710848718 6.0797826032891555

Table 4.9: hFRB: Gradient of sink Temperature Tsink w.r.t T̃s
(
∂Tsink
∂T̃s

)
.

Gradient Design variable
method 1 [E-02] 2 3 [E-02]
Tangent 1.4404560651703811 0.42420039828245443 2.4105123857311173
Adjoint 1.4404560651703809 0.42420039828245437 2.4105123857311169

CD [∆ = 10−6 K] 1.4382142884035904 0.42355956490306801 2.4219237578411896

Table 4.10: hFRB: Gradient of heat transfer coefficient h̃ w.r.t. T̃s
(
∂h̃
∂T̃s

)
.

4.6 Summary

This chapter discussed the principles and methods of obtaining adjoint gradients. The
derivation of the adjoint equations and the computational efficiency of adjoint methods
was shown. It was shown that the adjoint method was the most ideal method of obtaining
gradients as the cost does not scale with the number of design variables. It was also shown
that Automatic Differentiation is a useful tool for the discrete adjoint method and how it
was used to differentiate the numerical solvers was discussed.

The adjoint gradients obtained were verified by comparing with finite difference gradi-
ents. The two adjoint solvers developed are representative of individual but co-dependent
parts of a multidisciplinary system. The two adjoint solvers can now be combined to obtain
the full gradients of the multidisciplinary system and how this is done is discussed in the
following chapter.



Chapter 5

Differentiation of coupling algorithms

In the previous chapter, two independent adjoint solvers, which can be used for single
disciplinary optimisation, were developed. For these to be used for Multidisciplinary Design
Optimisation (MDO), the fluid and solid adjoint solvers have to be coupled in a similar
manner as the primal coupling algorithms. However, rather than exchanging state variables
such as temperature and heat flux, gradients need to be exchanged to obtain gradients from
the coupled system. This chapter describes the process of coupling two discrete adjoint
solvers in order to obtain the gradients of the coupled system w.r.t the design variables.

The use of adjoint methods for MDO have been proposed in [9] [10] and Martins [3] [8]
uses the continuous adjoint methods for Fluid-Structure Interaction (FSI) which is analo-
gous to CHT. Continuous adjoint methods have also been utilised for CHT optimisation
problems in [12] [13] [14] [15] [16]. As discussed in Chapter 1, the discrete adjoint method
is adopted in the current work and Automatic Differentiation (as described in Chapter 4)
is used to reduce the effort of adjoint solver development.

The previous studies on adjoint CHT optimisation have also been limited to coupling
algorithms which combine Dirichlet and Neumann boundary conditions. By differentiating
the three coupling algorithms described in Chapter 2, Dirichlet, Neumann, and Robin
boundary conditions are all considered. This results in a discrete method for differentiated
Neuman-Dirichlet coupling algorithms and 2 newly differentiated Robin-based coupling
algorithms. Moreover, the generic manner of the differentiation allows for straightforward
extension to other coupling algorithms than the three considered.

The accuracy of the three differentiated algorithms is tested using the coupled flat plate
problem discussed in Section 3.1. The objective is to compute the gradient of the interface

48
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temperature with respect to a change in the solid temperature boundary condition.

x,T

y

V
�

T
�

Tw

Tb Tb + δTb Tb

(a) Temperature perturbation.

x,T

y

V
�

T
� Tw

δx

(b) ~x coordinate perturbation

(c) Fluid and Solid meshes for gradient verification.

Figure 5.1: Design variable perturbations for central difference.

The plate has a fixed temperature Tb at the bottom and comes in contact with fluid of a
different temperature (see Section 3.1). A perturbation in the temperature of a node at the
bottom results in a change in the heat flux into the fluid domain. This perturbation travels
through the coupling and results in a new interface temperature Tw. Similarly, a coordinate
perturbation (x, y, z) changes the volume of the plate and leads to a change in the heat
flux at the fluid-solid interface and consequently alters the solution of the coupled problem.
Therefore, the effect of these perturbations on the interface temperature is described by
two gradients dTw

dTb
and dTw

d~x where ~x = [x, y, z].
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5.1 Finite Difference

The effect of a perturbation on the coupled solution (i.e gradient) can be calculated using
Central Differences (CD) as

dTw
dTb

=
T

(Tb+δTb)
w − T (Tb−δTb)

w

2δTb
. (5.1)

To compute the gradient in Equation (5.1), the temperature at the blue node in Figure
5.1a is selected as the point to measure the interface temperature (Tw) while several nodes
at the bottom of the plate are chosen as design variables. The temperature of only one of
the design variables (red nodes) is perturbed while all others nodes are are held constant.
Equation (5.1) can then be used to calculate the gradient for the perturbed node. Similarly,
to calculate the gradients w.r.t to a coordinate perturbation, the red node at the bottom
left corner of the plate in Figure 5.1b is perturbed and the central difference is used to
calculate dTw

d~x . However, this has to be done N times for N design variables, which soon
becomes computationally expensive.

To highlight this point, in the flat plate test case in Section 3.1, approximately twenty
coupling iterations were needed to obtain the interface temperature Tw. Therefore, in order
to calculate dTw

dTb
for only five design variables, one would need to run a total of a hundred

coupling iterations just to obtain Tb + δTb and another hundred for Tb− δTb. For industrial
cases where days might be needed to converge the flow equations to a reasonable level and
the number of design variables might be of the order 102, the use of divided soon becomes
unfeasible.

Due to the high computational cost of central differences, and the fact that the accuracy
of the obtained gradient suffers from truncation and round-off errors, more efficient methods
of computing gradients are required.

5.2 Discrete adjoint for coupled problems

As discussed in Chapter 4, the adjoint method can be used to obtain the desired gradients
in one adjoint solution, as opposed to solving N times for N design variables when finite
difference or Tangent linear methods are used. In Chapter 4, the derivation of adjoint
equations was shown for only single disciplinary problems. This section applies the same
principle to coupled problems.
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The derivation of adjoint equations for coupled problems is similar to the process de-
scribed in Section(4.2), the main difference being that scalars become matrices. A coupled
CHT optimisation problem will be used to outline the procedure. Let the objective function
be denoted as I(α,U,W ) where α denotes the design variables, and U and W represent the
fluid and solid state variables respectively. The sensitivity of the cost function can then be
written as

dI

dα
=

∂I

∂α
+
∂I

∂U

dU

dα
+

∂I

∂W

dW

dα
, (5.2)

dI

dα
=

∂I

∂α
+

[
∂I

∂U

∂I

∂W

]
dU

dα

dW

dα

 . (5.3)

This can be re-written as
dI

dα
=
∂I

∂α
+ gTu. (5.4)

As mentioned in Chapter 4, the term gTu is expensive to solve. Hence, it is advantageous
to use the adjoint formulation to solve this problem. The derivatives of the state variables
for fluid and solid with respect to the design variables

(
dU
dα ,

dW
dα

)
can be obtained from the

state equations

F (α,U,W ) = 0, (5.5)

S(α,U,W ) = 0. (5.6)

Where F is used to represent the RANS equations, and S represents the heat equation.
The derivative of the state equations with respect to the design variables which are required
to solve Equation (5.2) are obtained from

∂F

∂α
+
∂F

∂U

dU

dα
+
∂F

∂W

dW

dα
= 0 (5.7)

∂S

∂α
+
∂S

∂U

dU

dα
+

∂S

∂W

dW

dα
= 0. (5.8)
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This can be re-written as 
∂F

∂U

∂F

∂W

∂S

∂U

∂S

∂W



∂U

∂α

∂W

∂α

 =

−
dF

dα

−dS
dα

 . (5.9)

The diagonal terms are the Jacobians of each discipline while the off-diagonal terms show
how the states of one discipline affect the state of the other e.g. how the fluid temperature
affects the solid flux and vice-versa. Equation (4.5) is written below for convenience.

Au = f,

u =


∂F

∂U

∂F

∂W

∂S

∂U

∂S

∂W


−1 −

∂F

∂α

−∂S
∂α

 . (5.10)

Therefore the sensitivity of the cost function, Equation (5.3), for the coupled problem can
be written as

dI

dα
=
∂I

∂α
+

[
∂I

∂U

∂I

∂W

]
∂F

∂U

∂F

∂W

∂S

∂U

∂S

∂W


−1 −

∂F

∂α

−∂S
∂α

 . (5.11)

This can be shortened to
dI

dα
=
∂I

∂α
+ (gTA−1)f. (5.12)

The cost of calculating the gradient can be reduced through the adjoint method. The
adjoint variables are the solution to the adjoint equation

∂F

∂U

∂F

∂W

∂S

∂U

∂S

∂W


T [

ψ

φ

]
=


∂I

∂U

∂I

∂W

 , (5.13)

AT v = g. (5.14)

Where vT = [ψ, φ] represents the fluid and solid adjoint variables respectively.

v = (AT )−1g, (5.15)

vT = gT (A−1). (5.16)
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Therefore, after only one solve of Equation (5.14) for the adjoint variable v, the sensitivity
can be calculated as

dI

dα
=

∂I

∂α
+ vT f, (5.17)

dI

dα
=

∂I

∂α
+
[
ψ φ

]−
∂F

∂α

−∂S
∂α

 . (5.18)

5.3 Differentiating the partitioned approach

In the partitioned coupling approach, the Jacobian of the coupled system in Equation (5.14)
is not calculated. Therefore, the adjoint solution is obtained through an iterative approach,
similar to the primal coupling, to compensate for the missing off-diagonals. The same
approach used by Martins for FSI [3], called the lagged-coupled adjoint, is applied here to
solve the coupled adjoint system of equations. The adjoint of system of each discipline is
solved using the adjoint solution of the other discipline from the previous iteration.

(
∂F

∂U

)i
ψi =

(
∂I

∂U

)i
−
(
∂S

∂U
φ

)i−1

(5.19)(
∂S

∂W

)i
φi =

(
∂I

∂W

)i
−
(
∂F

∂W
ψ

)i−1

, (5.20)

where i is the current coupling iteration. The partial derivatives ( ∂S∂U ,
∂F
∂W ) in Equations

(5.19) and (5.20) depend on the type of coupling algorithm used (see Table 5.1) and are
obtained by differentiating the solvers w.r.t. the coupling boundary conditions as described
in Sections 4.4 and 4.5.

Partial Coupling algorithm
derivative TFFB TFRB hFRB

∂S
∂U

∂qsw
∂Tfw

∂qsw
∂Tfw

∂qsw
∂Tsink

, ∂qsw∂h , ∂Tsw
∂Tsink

, ∂Tsw∂h
∂F
∂W

∂Tfw
∂qsw

∂Tfw
∂T̃s

∂Tsink
∂T̃s

, ∂h
∂T̃s

Table 5.1: Description of multidisciplinary partial derivative terms.

The iterative approach to solving Equations (5.19) and (5.20) requires the differen-
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tiation of the coupling algorithms and this is described in the following sections of this
chapter. Pseudocode of the differentiation of the three coupling algorithms is also provided
in Appendix B. Once the differentiated coupling algorithms converge, the total sensitivity
in Equation (5.18) can then be computed.

5.4 TFFB

The Temperature Forward Flux Back tangent run is initialised by seeding a vector of Ṫb
(or ẋ) which has a unitary value only at the node of interest (e.g one of the red nodes in
Figure 5.1). The solid tangent solver (Sd) is then run to obtain q̇sw which is the gradient of
the wall heat flux qsw w.r.t bottom temperature Tb at the seeded node. q̇sw is then passed
to the fluid tangent solver (Fd) which is used to obtain Ṫfw. Ṫfw is the gradient of the
interface temperature w.r.t the seeded bottom temperature after a single coupling iteration.
The same number of coupling iterations as the primal are then performed.

q̇isw = Sd(Ṫb, Ṫ
i
fw), (5.21)

Ṫ i+1
fw = Fd(q̇isw). (5.22)

During the tangent coupling iterations, the primal variables are also computed and used to
calculate the relevant tangent variables. The final result obtained is the gradient dTw

dTb
for

the converged coupled solution. In order to compute dTw
d~x , three separate tangent coupling

iterations have to be run for the three degrees of freedom (x, y, z) for each perturbed point.
This shows the disadvantage of the tangent linear method when there are more inputs than
outputs.

The adjoint run of the TFFB algorithm, starts with seeding a vector T ifw which is set
to 1 for the blue node in Figure 5.1 while all others are set to 0. T fw is used by the adjoint
flow solver (Fb) to obtain the adjoint heat flux qsw. This is then passed directly to the
adjoint solid (Sb) solver to obtain an update of the adjoint temperature.

qisw = Fb(T
i
fw), (5.23)

~x
i
, T

i
b, T

i−1
fw = Sb(qisw). (5.24)

As shown in listing B.5, the reverse coupling requires the intermediate state variables.
During the primal run, the solid and fluid states are saved after each iteration. These are
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then retrieved for the adjoint solvers during each reverse coupling iteration. For example,
if 20 primal iterations were run, during reverse iteration 5, the fluid and solid solutions for
iteration 15 are retrieved for the adjoint solvers.

The reverse loop is performed for the same number of iterations as for the primal solution
and at the end of each coupling iteration, the gradient T b is accumulated. This single adjoint
solve obtains the gradient of the interface temperature at the blue node w.r.t to all design
variables (red nodes). A block structure representation of the reverse differentiated coupling
algorithm is shown in Figure 5.2. In fact, both dTw

dTb
and dTw

d~x are obtained in one reverse
solve highlighting the advantage and cost savings of the adjoint method.

Gradient Design variable
method 1 [E-04] 2 [E-02] 3 [E-04]
Tangent 3.5742499655677586 1.0915639124275244 6.2298230582871555
Adjoint 3.5742499655677591 1.0915639124275237 6.2298230582871479

CD [∆ = 10−4 K ] 3.5665266295836773 1.0898488085331337 6.2618937590741552

Table 5.2: TFFB gradient of temperature Tw w.r.t bottom temperature Tb (dTwdTb
) after 20

reverse coupling iterations.

Table 5.2 shows gradients for dTw
dTb

while Table 5.3 shows the gradients for dTw
d~x . Both

Tables show good agreement between the tangent, adjoint, and central difference methods.

Gradient Design variable
method x y z

Tangent 16.353754663042668 -13.270758597756023 0.41017185855131066
Adjoint 16.353754647042667 -13.270758610753868 0.41017185829135394

CD [∆ = 10−7m] 16.321095586135925 -13.244326737549272 0.40858196825865889

Table 5.3: TFFB gradient of temperature Tw w.r.t coordinates.

5.5 TFRB

To compute dTw
dTb

, the Temperature Forward solid coefficient Back method would also start
with a seed vector for Ṫb as described for the TFFB algorithm. However, to compute dTw

dy ,
a seed 3×N seed matrix (where N is the number of mesh points) is required which has a
unitary value only for the y−component of one design variable (i.e. red node in Figure 5.1).
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This matrix is passed to the tangent solid solver, which returns q̇sw. q̇sw is the gradient
of the heat flux ~qsw w.r.t to a y perturbation of the design node. q̇sw is then used by
the tangent differentiated version of the routine which calculates Equation (2.38) to obtain
T̃sd. T̃sd is then passed to the tangent flow solver to obtain Ṫfw which is the gradient of
the interface temperature w.r.t to the y perturbation of the design node after one coupling
iteration.

q̇isw = Sd(Ṫb|ẏ, Ṫ isw), (5.25)

T̃ isd = f(q̇sw, Ṫsw, R̃), =⇒ (calc. T̃sd) (5.26)

Ṫ ifw = Fd(T̃ isd, R̃), (5.27)

Ṫ i+1
sw = Ṫ ifw. (5.28)

This loop is done for the same number of iterations as the primal. The final result is
only dTw

dy , and separate tangent solutions are required for dTw
dx ,

dTw
dz , and dTw

dTb
.

The adjoint TFRB run is started by passing the adjoint fluid temperature T fw to the
flow solver to obtain T̃sb. The reverse differentiated routine for Equation (2.38) is also
required to obtain the adjoint heat flux and temperature as shown in Equations (5.30).
The solid solver then uses the adjoint heat flux to obtain T sw. The two adjoint interface
temperatures then summed to provide an update for the next iteration.

T̃ isb = Fb(T
i
fw), (5.29)

qisw, T sw = f(T̃ isb, R̃) =⇒ (calc. T̃sb), (5.30)

~x
i
, T

i
b, T

i
fw = Sb(qisw), (5.31)

T
i−1
fw = T

i
fw + T sw. (5.32)

The loop is done for the same number of coupling iterations and T b and ~x are accumulated.
The final result returns dTw

dTb
and dTw

d~x and is shown in Tables 5.4 and 5.5. Good agreement
is seen between the tangent, adjoint, and central difference methods.

5.6 hFRB

The tangent heat transfer coefficient Forward solid coefficient Back (hFRB) algorithm fol-
lows the same procedure as the TFFB and TFRB algorithms. The algorithm begins with
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Gradient Design variable
method 1 [E-04] 2 [E-02] 3 [E-04]
Tangent 3.5735550558001070 1.0914304240387199 6.2333366050062219
Adjoint 3.5735550558001043 1.0914304240387196 6.2333366050062176

CD [∆ = 10−4 K ] 3.5665607356349938 1.0898481832555262 6.2619392338092439

Table 5.4: TFRB gradient of temperature Tw w.r.t bottom temperature Tb.

Gradient Design variable
method x y z

Tangent 16.370061472907469 -13.283993573142387 0.41096593285022071
Adjoint 16.370061462907479 -13.283993581266039 0.41096593268774745

CD [∆ = 10−7m ] 16.321095586135925 -13.244325032246707 0.40858196825865889

Table 5.5: TFRB gradient of temperature Tw w.r.t coordinates.

a seed vector for the design variable (Ṫb or ~̇x) which is passed to the tangent solid solver to
obtain q̇sw. This is then used by the differentiated version of the routine which calculates T̃s
to compute T̃sd. T̃sd is used by the tangent flow solver to obtain Ṫfw and q̇fw which are in
turn used to calculate Ṫ isink and h̃d. If h̃ is a user specified value like R̃, then the gradient
h̃d would be zero. However, due to the present implementation of the hFRB algorithm
(described in section 2.3.2), h̃ is a function of the fluid state (h = f(λ(µ(Tw)))) therefore
h̃d is non-zero. During the primal run, nodal values of h and Tsink are converted into facial
values for CalculiX and the routine which does this is also differentiated using AD.

q̇isw = Sd(Ṫb), (5.33)

T̃ isd = f(q̇sw, Ṫsw, R̃), =⇒ (calc. T̃sd) (5.34)

Ṫ ifw, q̇
i
fw = Fd(T̃ isd, R̃), (5.35)

Ṫ isink, h̃d = f(Ṫfw, q̇fw) =⇒ (calc. Ṫsink) (5.36)

qi+1
sw , T i+1

sw = Sd(Ṫb, Ṫ
i
sink, h̃d) (5.37)

For the reverse differentiated mode, the adjoint wall temperature T fw is used by the
flow solver to obtain the adjoint solid sink temperature T s. This is then converted into an
adjoint heat flux qsw and adjoint temperature T sw using the differentiated routine which
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calculates the Robin parameters Tsink and h̃ for the solid domain.

T
i
s, R

i
= Fb(T

i
fw) (5.38)

qisw, T
i
sw = f(R, T

i
s) =⇒ (calc. T̃sb) (5.39)

~x
i
, T

i
b, T

i
sink, h̄

i = Sb(qisw, T
i
sw), (5.40)

T
i−1
fw , T

i
1 = f(T

i
sink, h̄

i) =⇒ (calc. T sink) (5.41)

T
i−1
s = Fb(T

i−1
fw , T

i−1
1 ). (5.42)

The solid solver then returns an adjoint sink temperature T sink and adjoint virtual heat
transfer coefficient h. The differentiated Robin preprocessing step uses the virtual heat
transfer coefficient h to calculate the adjoint wall temperature T fw while the adjoint sink
temperature T sink is assigned to the first off wall node, as shown in Equation (5.41).

Tables 5.6 and 5.7 show good agreement between the gradients of dTwdTb
and dTw

d~x obtained
using the tangent, adjoint, and central difference methods.

Gradient Design variable
method 1 [E-04] 2 [E-02] 3 [E-04]
Tangent 2.5762110467644555 1.0925380019541161 6.2699386158202540
Adjoint 2.5762110467644582 1.0925380019541164 6.2699386158202584

CD [∆ = 10−4 K ] 2.5761096367205027 1.0925347169177257 6.2007757151150145

Table 5.6: hFRB gradient of temperature Tw w.r.t bottom temperature Tb.

Gradient Design variable
method x y z

Tangent 12.776834118125210 -10.523597306166273 0.32383945281109172
Adjoint 12.776834108125197 -10.523597314289930 0.32383945264861863

CD [∆ = 10−7m ] 12.760587537741230 -10.509541539249767 0.32302864383382257

Table 5.7: hFRB gradient of temperature Tw w.r.t coordinates.

5.7 Convergence of differentiated coupling

All the gradients obtained in Tables 5.2 - 5.7 were obtained by fully converging the fluid
and solid primal and adjoint equations and looping backwards for the same number of
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Figure 5.2: Reverse differentiated CHT coupling algorithms; Left:TFFB, Centre: TFRB,
Right:hFRB.

iterations as the primal loop. However, significant time savings can be obtained by only
partially converging the fluid adjoint equations each time without significantly impacting
the accuracy of the gradient. Rather than looping backwards for the same number of
iterations as the primal, a fewer number of reverse iterations could be done, at the cost
of a slight reduction in gradient accuracy. This is demonstrated with the hFRB coupling
algorithm on the same flat plate coupled problem and the results are shown in Table 5.8

ResT No. primal No. adjoint Fully converged dTw
dTb

[E-04] dTw
dxcriteria its its fluid adjoint

-12 19

19 3 2.5931768445246677 12.803442391969877
3 3 2.5932320190671476 12.803770636795289
19 7 2.5927960839112308 12.801561971825787
3 7 2.5928512561382180 12.801890193911879

-4 8

8 3 2.5804449469263107 12.740490830418784
3 3 2.5805001251356501 12.740819089239759
8 7 2.5800736517173864 12.738657080036727
3 7 2.5801288188754076 12.738985273671066

Table 5.8: Adjoint gradients for different coupling convergence criteria.

The first column of Table 5.8 refers to the stopping criteria of the coupling based on
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the coupling residual equation (Equation (3.5)) repeated here for convenience

ResT = log10

(√√√√ 1

N

N∑
j=1

(T ij − T
i−1
j )2

)
.

ResT is used to quantify the difference in the interface temperature between successive
coupling iterations. A ResT criteria of -12 means the primal coupling was terminated as
soon the value of ResT was less than -12. The second column of the table refers to the
number of primal coupling iterations required to meet the stopping criteria in column 1.
The third column of the table refers to the number of reverse coupling iterations performed.
The fourth column refers to if the fluid adjoint equations were solved to full convergence or
not. For partially converged fluid adjoint (represented by crosses), the adjoint equations are
converged for a residual drop of approximately 5 orders of magnitude between successive
reverse coupling iterations (see Figure 5.3). Columns five and six are the values of the
obtained gradients.

(a) Full convergence of fluid adjoint (3). (b) Partial convergence of fluid adjoint (7).

Figure 5.3: Convergence level of fluid adjoint equations between coupling iterations.

The results from Table 5.8 show only minor changes in the value of the gradient even
when the fluid adjoint equations are only partially converged. For example, there is only
about a 0.5% difference between the first and final values of dTwdx despite a difference of 16
reverse coupling iterations and the partial convergence of the fluid adjoint. These results
suggest that the number of reverse iterations needed to obtain reasonably accurate gradients
does not have to be equal to the number of primal iterations. Consequently, it is possible to
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reduce the amount of wall clock time taken to obtain the required gradients. However, for
optimisation problems, the gradient of the objective function w.r.t design variables could
be more sensitive to the convergence criteria and number of reverse iterations. Therefore
more investigation is required if this is to be done during numerical optimisation.

5.8 Summary

This chapter discussed how to combine two adjoint solvers to obtain accurate gradients
using the adjoint method. The derivation of the adjoint equations for multidisciplinary
problems was shown. Furthermore, three coupling algorithms were differentiated and the
adjoint gradients were compared to the tangent linear and central difference gradients. It
was shown that the adjoint gradients were accurate and have the added advantage of being
far less computationally expensive to obtain than the tangent linear and central difference
gradients.

The three coupling algorithms considered (i.e. TFFB, TFRB, hFRB) show how gradi-
ents are exchanged for Dirichlet, Neumann, and Robin boundaries. Therefore, the presented
framework can be extended to other coupling algorithms derived through a combination of
any of these three boundary conditions. This represents a generic framework which can be
used to obtain gradients for MDO and can then be extended to other coupling algorithms
and disciplines.

This enables the use of fully coupled partitioned methods to perform Multidisciplinary
Design Optimisation (MDO) which will lead to more robust optimisation results. This is
because the inter-disciplinary interaction, which may be lost in sequential single discipline
optimisation, are captured and the gradients of these interactions will be used in the opti-
misation process. Consequently, the presented framework for calculating gradients can be
combined with gradient based optimisation algorithms and used for MDO.

Finally, it was seen that partial convergence of the fluid adjoint equations did not lead
to significant changes in gradient values and the number of reverse coupling iterations done
could be reduced. However, this will be further investigated in the following chapter.



Chapter 6

Numerical optimisation

In this chapter, several CHT optimisation problems are solved. As discussed previously,
CHT is a multidisciplinary problem and Multidisciplinary Design Analysis (MDA) is re-
quired to assess the performance of a design. The performance of a design is measured
quantitatively by an objective function (J) and accurate methods of solving CHT problems
are required to obtain accurate values of the objective function. This thesis is focused on
the use of numerical optimisation to solve CHT optimisation problems and gradient based
optimisation is preferred as fewer objective function evaluation are required to find the opti-
mum. This is particularly essential for multidisciplinary problems as the cost of evaluating
the objective function can be high. Furthermore, the adjoint method is used to reduce the
computational cost of obtaining the required gradients.

In Chapter 2, methods for performing MDA were discussed and these methods were
successfully applied in Chapter 3 to solve three CHT problems. The results of Chapter 3
show that we have the required numerical solvers and algorithms to accurately compute
objective functions (J). In Chapters 4 and 5, a sensitivity analysis framework (based on
the discrete adjoint via Automatic Differentiation) was developed and verified. In this
chapter, the gradients

(
dJ
dα

)
obtained from the differentiated coupling algorithms are used

in conjunction with standard gradient based optimisation algorithms and applied to CHT
optimisation problems of interest.

62
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6.1 Optimisation algorithms

Given an initial design which does not satisfy certain design or performance criteria, op-
timisation algorithms can be used to produce new designs which satisfy the requirements
or improve the performance of the initial design. The optimiser does this by altering the
design variables α to produce a new design. For example, in shape optimisation problems,
the design variables could be the shape of an aerofoil and new designs are obtained by
changing the shape of the aerofoil to reduce the drag or increase the lift.

Optimisation algorithms can grouped into gradient based or gradient free methods.
Gradient based optimisation algorithms obtain new designs by using the slope of the ob-
jective function (i.e. gradient w.r.t design variables) as a search direction and moving in
the direction of the negative slope in order to reduce the value of the objective. This is
done through updating the design variables based on the gradient information. The two
optimisation algorithms used in this work are the Steepest Descent and BFGS algorithms.
The steepest descent algorithm updates the design variables in the direction of the steepest
slope. That is

αi+1 = αi − s ·
dJ

dα
, (6.1)

where s is the step size chosen. The gradient (dJdα) provides information on which
direction leads to a reduction in the objective function J , while the step size (s) controls
the step taken along the descent direction. The steepest descent method is known to
converge slowly, however, the choice of step size gives the user control over the amount of
change per optimisation iteration which is sometimes desirable.

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm uses an approximation of
the Hessian (curvature) which leads to much faster convergence to the optimum than the
steepest descent. This comes at the price of greater complexity and the method needs the
step size to be safeguarded to avoid divergence. The complexity of the method means that
rather than user implementation, external libraries are often used as a black box. This
means the user has little control over the step size of the algorithm which sometimes leads
to large changes in the design variables which is often a problem in shape optimisation
problems. This is because large shape changes lead to large perturbation in the volume
mesh which could reduce mesh quality and affect the convergence of the flow solver.
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6.2 Mesh deformation

For shape optimisation problems, the change in geometry requires an updated computa-
tional mesh which mirrors the geometry perturbation. This can be done by re-meshing the
domains but an automatic mesh generator would be required. Furthermore, re-meshing
results in topology changes which alter the truncation error in the calculated gradients and
could lead to poor performance of gradient based optimisation algorithms.

Alternatively, a mesh deformation algorithm can be use to propagate the displacement
of the surface of the new geometry to the interior domain nodes thereby leaving the mesh
topology unchanged. Consequently, a mesh deformation algorithm is used rather than re-
meshing the solid domain. The mesh deformation algorithm used is the Inverse Distance
Weighted interpolation (IDW). IDW obtains the volumetric displacement field (δX) based
on a boundary displacement field (Xb) using an inverse distance weighting function (W ).
That is,

δX =

∑N
b=1W (X −Xb)δX∑N
b=1W (X −Xb)

, (6.2)

W (X −Xb) =

(
Ldef

||X −Xb||

)a
+

(
αLdef
||X −Xb||

)b
, (6.3)

where a = 3, b = 5, α = 0.1, and Ldef is the furthest distance of a any mesh node to
the element centroid. The mesh deformation algorithm used was implemented in the flow
solver and the algorithm has also been reverse differentiated.

Figure 6.1: Left: Displacement of a cooling channel, Right: Boundary and interior mesh
deformation due to displacement (Original grid = black lines, deformed mesh = red lines).

At this point, all the necessary ingredients required to perform numerical optimisation
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are available.

6.3 Inverse design optimisation

Inverse problems are solved by providing a desired solution and adjusting design variables in
order to achieve the desired target. The current inverse problem is related to the flat plate
test case described in Section 3.1. In the inverse problem, we seek the bottom temperature
(Tb) which results in the best match for a given the interface wall temperature (Ttarget) as
shown in Figure 6.2. This simple test case is chosen to evaluate the performance of the
differentiated algorithms as the final solution of the problem is known.

Inverse CHT problems are often simplified into either inverse conduction [56] [57] or
convection problems [58] [59] [60]. Ahamad and Balaji [61] consider both conduction and
convection in their coupled inverse problem however, the problem is solved using artificial
neural networks. The use of gradient based optimisation methods to solve fully coupled
inverse CHT problems is rare.

x

y,T

Tb=?

V
∞

,T
∞

Ttarget

Figure 6.2: Description of flat plate inverse problem

The inverse problem is solved by formulating an optimisation problem, which allows
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the use of classical direct methods to solve the physics involved. An objective function
(J) is defined as the difference between the desired interface temperature (Ttarget) and the
obtained interface temperature (Tw) for an estimated bottom temperature (T̃b).

J =
1

2

∫ L

0
(Ttarget − Tw)2dx, (6.4)

and minimising Equation 6.4 results in an interface temperature which matches the target
temperature. The objective function depends implicitly on the bottom temperature Tb
through the solution of the coupled problem. Each node at the bottom of the plate has
an independent value of Tb specified as a boundary condition, and is used in this work as
a design variable (α) that needs to be changed to drive J to zero. As a result, the design
variable α in the discrete problem is an array of size N , being 226 in the present work.

The objective is hence to minimise Equation (6.4) subject to the constraints of satisfying
both the state equations of both domains and maintain continuity of state variables (Tw, qw)
across the interface.

A gradient based method is used to reduce the deviation of the current interface wall
temperature with the desired one. The gradient of the objective function (sensitivity) w.r.t
the control variables, α, is given as

dJ

dα
=

∫ L

0
(Ttarget − Tw)

dTw
dα

dx, (6.5)

= −
N∑
j=1

(Ttarget − Tw)
dTw
dα

,

= gTu.

The gradients of the temperature w.r.t the design variables, i.e. the temperature specified
on the bottom of the flat plate, are computed using the adjoint approach for calculating dTw

dTb

described in Chapter 5. The target temperature is obtained by solving the primal problem
with a bottom temperature of 600K, hence it is guaranteed that a solution to the problem
exists. T̃b is initially taken as 400K and refers to the estimated bottom temperature that
should yield Ttarget .
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6.3.1 Gradient verification and Convergence of coupled adjoint

dJ
dα is calculated using the adjoint and central difference methods. The central difference gra-
dient (using the hFRB algorithm) for a step-size of 10−4 is calculated as -16.285555575006327.
The obtained adjoint gradients for different coupling convergence criteria (Equation (3.5))
are shown in Table 6.1.

ResT No. primal J No. adjoint Fully converged dJ
dT̃bcriteria its its fluid adjoint

-10 14 49574.76672

14 3 -16.213149771304280
3 3 -16.213151850037050
14 7 -16.211719505224423
3 7 -16.211484618170818

-3 7 49574.62303

7 3 -16.213151396904671
3 3 -16.213153480794599
7 7 -16.211484166652358
3 7 -16.211486250228454
1 7 -16.208558817229790

1 3 48350.78851

3 3 -15.964738963931770
1 3 -15.962456781879856
3 7 -15.963124615242574
1 7 -15.960842140321112

Table 6.1: Adjoint gradients for different coupling convergence criteria using the hFRB
coupling algorithm.

As mentioned in Chapter 5, the number of reverse coupling iterations needed to obtain
the adjoint gradients could be less than the number of primal iterations. Looking at the
values for a stopping criteria of -3, there is only about a 0.02% difference between 7 reverse
iterations with full fluid adjoint convergence and 1 reverse iteration with partial adjoint
convergence. This shows that the number of reverse iterations required can be as little as
1 and the fluid adjoint equations do not need to be solved to full convergence.

The results in Table 6.1 also show that the convergence of the value of the objective
function is an essential requirement for accurate gradients. The objective function and
gradient values for a stopping criteria (ResT ) of -3 and -10 are similar. However, for a
stopping criteria of 1, the deviation in the value of the gradients is much larger and is
probably due to the incorrect value of the objective function. Consequently, it appears
better to formulate the coupling convergence criteria based on the change in the value of
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the objective function rather than the change in the interface temperature. As a result, the
new coupling stopping criteria for numerical optimisation is chosen as

ResJ = log10

(
abs
(Ji − Ji−1

Ji

))
, (6.6)

where i is the current coupling iteration. Using the new stopping criteria, it can be observed
that the TFRB algorithm also converges in a few reverse iterations as shown in Table 6.2.
For the TFFB algorithm however, more adjoint coupling iterations are required for the
gradient to converge. This is most likely due to the slower convergence of the algorithm as
seen in Figure 3.4a. Consequently, the coupling algorithms using Robin boundary conditions
offer significant computational cost savings during both the primal and reverse runs due
the the fewer number of coupling iterations required to converge the primal and adjoint
coupling.

ResJ Method No. primal No. adjoint Fully converged dJ
dT̃bits its fluid adjoint

-4 hFRB 7

7 3 -16.213123464117896
3 3 -16.213125551733963
3 7 -16.211458326021756
1 7 -16.208558817229790

-4 TFRB 7

7 3 -16.276452487010975
3 3 -16.276461676406644
3 7 -16.274786846455068
1 7 -16.275029595997751

-4 TFFB 11

11 3 -16.497409395306306
6 3 -16.501610373037391
3 3 -17.062164288946512
11 7 -16.486675440154741
3 7 -17.050383199509540

Table 6.2: Adjoint gradients for different coupling algorithms.

6.3.2 Results

The objective is minimised using the BFGS optimisation algorithm from the SciPy library
[62]. The difference between the temperatures obtained from the direct and inverse solution
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(c) Evolution of the bottom temperature
(TFRB).
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Figure 6.3: Results of the inverse solution after 28 optimisation iterations.

is defined as
Error = TTarget − TInverse. (6.7)

The optimisation is solved using all three coupling algorithms and the coupling stopping
criteria (ResJ) is set as -4. Only two reverse coupling iterations are done for the hFRB
and TFRB algorithms while the TFFB uses the same number of reverse iterations as the
primal. For all algorithms, fluid adjoint is converged about 5 orders of magnitude each
time. The optimisation is run for 28 optimisation steps and the results obtained are shown
in Figure 6.3.

The TFRB optimisation finished in 8.3 hours, while the hFRB took 9.3 hours, and the
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TFFB finished in 66.7 hours. The difference in runtimes shows the advantage of using
coupling algorithms which use Robin boundary conditions as they require less primal and
reverse coupling iterations.

Figure 6.3a shows that the reduction in the objective function for all three coupling
algorithms. The results for the TFRB algorithm in Fig. 6.3b show that the inverse solution
is significantly closer to the target than the initial guess. Similar results were obtained
for the TFFB and hFRB coupling algorithms (see Figure 6.4). The successful solution
of the inverse problem shows that gradient computation procedure described Chapter 5
can be successfully utilised by optimisation algorithms to solve multidisciplinary design
optimisation problems.
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Figure 6.4: Results of the inverse solution for TFFB and hFRB algorithms.

6.4 Thermal load optimisation

The turbine inlet temperatures of modern gas turbines often exceed the maximum per-
missible temperature of turbine blade materials. One approach to address the overheating
problem is to provide internal cooling to preserve the integrity of the blade. However, this
causes large temperature gradients in the blade and may adversely affect the blade lifetime
due to the thermal stresses generated [63].

The overheating and thermal fatigue caused by the combination of high inlet tempera-
tures and turbine cooling is a common cause of turbine blade failure as seen in Figure 6.5
[64] [65]. Hence, the blade lifetime could be extended by reducing the thermal gradients in
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Figure 6.5: Thermally damaged turbine blade [64].

the blade. Consequently, an objective function is defined to represent this effect.
The thermal objective function (J) is defined as the weighted sum of the temperature

and temperature gradient in the solid domain.

J = c1 · I1 + c2 · I2, (6.8)

where c1 and c2 are weight factors ( c1 + c2 = 1) and the sum of the temperature in the
solid domain is defined as

I1 =
1

2

√√√√ 1

Ωs

N∑
j=1

T 2
j , (6.9)

while the non-uniformity of the temperature field is defined as

I2 =
1

2

N∑
j=1

(∇Tj)2, (6.10)

where N is the number of nodes in the solid domain. The term I1 serves to avoid designs
which produce a uniform high magnitude temperature field (i.e. low temperature gradient,
high temperature), while the I2 term serves to reduce the temperature gradient and conse-
quently the thermal stress. Both I1 and I2 are normalised using the values from the initial
design.
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The objective function is implemented in CalculiX and is differentiated w.r.t. the coordi-
nates and CHT boundary conditions in CalculiX. The objective function depends implicitly
on the solid coordinates because a coordinate perturbation (δ~x) results in a volume change
(δΩs). Therefore, the gradient of the objective w.r.t coordinates is evaluated as

dJ

d~x
=
∂J

∂~x
+
∂J

∂T

dT

d~x
, (6.11)

where ~x represents the cartesian coordinates x, y, z and dT
d~x can be obtained using the

differentiated coupling algorithms described in Chapter 5.

6.4.1 Gradient verification and Convergence of coupled adjoint

To verify the accuracy of the adjoint gradients obtained for Equation (6.11), the flat plate
test case in Section 3.1 is used. The weighting constants c1&c2 are taken as 0.5 and the
coupled solution stopping criteria (ResJ) is set as -7. The node at the bottom left corner
of the plate is used as the design variable which is perturbed to obtain central difference
gradients (see Figure 6.6). The adjoint hFRB procedure is also shown in Figure 6.6.
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Figure 6.6: Left: Perturbation of the design variable, Right: hFRB adjoint procedure.

Table 6.3 shows good agreement between the adjoint and central difference gradients.
Similar to the results obtained in Table 6.2, the TFFB algorithm requires more reverse cou-
pling iterations than the TFRB and hFRB algorithms to converge to an accurate gradient
value.
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ResJ Method Central Diff No. adjoint Fully converged dJ
dy[∆y = 10−8m] its fluid adjoint

-7 hFRB 2.763951245654539

8 3 2.7640087476819333
3 3 2.7640086766814211
3 7 2.7640116201616292
1 7 2.7608959386278791

-7 TFRB 2.303537188774740

8 3 2.3036154270081126
3 3 2.3036150655530117
3 7 2.3036189193159049
1 7 2.3035295370861868

-7 TFFB 2.303536139613982

13 3 2.3034514495830405
3 3 2.3016725906081996
13 7 2.3034768792365168
3 7 2.3017001159515513

Table 6.3: Adjoint gradients for different coupling algorithms.

6.4.2 Mark II turbine blade optimisation

An optimisation problem is formulated to minimise the thermal objective function (Equa-
tion (6.8)) by changing only the location of each cooling channel in the MarkII turbine
blade. Similar work has been done by Ferlauto [15] where an inverse design optimisation
of the MarkII was performed using channel coordinates and radii as design variables. How-
ever, only the conduction in the solid was considered and the flow equations were ignored.
Wang et al. [66] minimise the maximum temperature in the C3X vane by changing the
shape and location of the cooling channels, however the gradients are calculated using the
finite-differences. In [14] the entropy generation of an internally cooled turbine blade is
minimised by changing the shape of the blade wall. Mousavi [12] performs a temperature
gradient optimisation while Gkaragkounis [16] minimises the mean temperature in the C3X
turbine blade by changing the shape of the blade wall and location of the cooling channels.

However, in [12] , [14], and [16], the continuous adjoint method is used to obtain the
gradients and only a combination of Dirichlet and Neumann boundary conditions is used
for the coupling between solvers. In the present work, the coupled discrete adjoint method
is used to calculate the gradients while the Robin-Robin (hFRB) coupling algorithm is used
to obtain the coupled solution. A 2D simulation of the case is performed and the boundary
conditions used are shown in Section 3.3

The x, y coordinates of each cooling channel is taken as a design variable (α) while the
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Figure 6.7: MarkII Geometry and mesh.

radii of the channels are kept fixed. As the solver inputs are the grid (x, y) coordinates, the
reverse differentiation only gives us the gradient of the cost function w.r.t grid coordinates.
However, by summing the x&y gradients at the grid nodes of a particular cooling channel,
we are able to obtain the gradient w.r.t the channel coordinates, and by displacing all the
nodes by the same magnitude, the channel radius is kept constant.

Consequently, the number of design variables is equal to the number of channels (10)
times two degrees of freedom, leading to 20. The ten cooling channels are numbered as
shown in Figure 6.7. The objective function gradient is first verified in the solid domain
alone and the weight constants are chosen as c1 = c2 = 0.5. The central difference and
adjoint gradients obtained are shown in Table 6.4

α Adjoint CD [∆ = 10−7m ]
x -4.027759607145722 -4.027759575864209
y 3.453533744189160 3.453533725661373

Table 6.4: Gradient of J w.r.t to x, y location of cooling channel 1 (solid domain only).

The coupled adjoint gradients are also compared to central difference gradients with the
stopping criteria (ResJ) set as -6.

Table 6.5 shows that the adjoint and central difference gradients match up to 3 decimal
places. Therefore, the adjoint gradients can now be used in conjunction with a gradient
based optimiser to solve the optimisation problem.
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dJ/d Channel Adjoint CD [∆ = 10−7m ]
x 1 0.814184396519775 0.814074160859768
y 1 -0.257961749813784 -0.257498785627419
x 4 -0.045413004345721 -0.045279308635848
y 4 -0.107993044634841 -0.107942127458571
x 10 -0.210540327245528 -0.210956274115937
y 10 -0.114930459095038 -0.114789205363230

Table 6.5: Coupled gradient of J w.r.t to x, y location of 3 cooling channels

6.4.3 Optimisation results

Three optimisations are run with varying values of c1 and c2 as shown in Table 6.6. An
unconstrained optimisation is performed and the steepest descent algorithm is used in order
to avoid large displacements to the cooling channels between optimisation iterations. For
the L2 temperature norm optimisation (Opt1), a constant step-size of 7E-03 was used while
Opt2 and Opt3 were run with a step-size of 1E-03. The coupling stopping criteria is set as
ResJ = −4 and 3 reverse coupling iterations are used to calculate the gradients.

Opt1 Opt2 Opt3
c1 1.0 0.0 0.5
c2 0.0 1.0 0.5

Table 6.6: Values of weights for each optimisation run.

Figure 6.8 shows the displacement of the cooling channels. The black lines represent
the channels of the optimised blades while the solid surface is the initial geometry. For the
L2 temperature norm optimisation (Opt1), the channels at the leading edge are displaced
upwards towards the high temperature regions while the trailing edge channels are displaced
towards the suction surface (x/c > 0).

Opt2 is the exact opposite of Opt1 with the leading edge channels being displaced
downwards towards the blade interior while the trailing edge channels are displaced towards
the pressure side of the blade (x/c < 0). Opt3 is a less amplified version of Opt2.

The optimisations are stopped prematurely due to excessive mesh deformation. The
final values for the objective function are shown Figure 6.9 and Table 6.7. Figure 6.10
shows the change in temperature distribution between the initial and optimised blades,
where ∆T is the difference between the optimised and baseline temperature.
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Opt1 Opt2 Opt3

Figure 6.8: Channel displacements at the leading and trailing edges.

Figure 6.9: Cost function evolution (right) and interface temperature distribution (left).

Opt1 Opt2 Opt3
No. Opt iterations 18 15 20

I1/I1,ref 0.99752 1.00276 1.00180
I2/I2,ref 1.01373 0.99813 0.98536

Table 6.7: Final Values of I1 and I2 after optimisation.

For the L2 temperature norm optimisation, the temperature around the leading edge
and the suction side of the blade are reduced. This is evident in Figure 6.10a which shows
negative values for ∆T over a significant portion of the blade perimeter. Figure 6.10b also
shows how the internal temperature is reduced in the direction of the channel displacement.
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(a) Change in interface temperature distribution.

(b) Opt1 change in internal tem-
perature.

Figure 6.10: Comparison of initial and optimised temperature distribution.

The greatest reduction in temperature is seen around the leading edge of the blade (blue
region in Figure 6.10b).

Conversely, for Opt2 and Opt3, the temperature is reduced on the pressure side and
increased on the suction side and the results for Opt1 are inverted.

6.5 Summary

In this Chapter, the developed coupled discrete adjoint framework has been used in con-
junction with optimisation algorithms to solve multidisciplinary optimisation problems. It
was seen that the convergence of the objective function is required for accurate gradients. It
was also seen that coupling algorithms using Robin boundary conditions require less reverse
coupling iterations to obtain reasonably accurate gradients.

All three differentiated coupling algorithms were successfully used to solve an inverse
problem. The TFRB and hFRB algorithms required less wall clock time than the TFFB
algorithm to solve the inverse problem. The time savings can be attributed to the Robin-
based algorithms requiring less primal and reverse coupling iterations. This shows that using
Robin boundary conditions in the fluid domain can speed up the optimisation process.

A thermal objective function was also introduced and used in a turbine blade optimisa-
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tion problem. The thermal objective function is a weighted sum of the solid temperature and
temperature gradient. Three optimisation runs were performed using different weighting
values for the objective function. For all three optimisations, there was a 0.2-2% decrease in
the objective function. In the following chapter, a more challenging 3D optimisation using
the thermal objective function is performed.



Chapter 7

Internal cooling channel optimisation

Modern gas turbines are equipped with internal cooling channels which cool the internal
structure and provide cooling air for other forms of cooling such as film cooling as shown
in Figure 7.1. A prominent feature at the ends of the channels is the presence of a U-
Bend. The U-Bend directs the flow through a 180 degree turn which leads to significant
pressure losses in the internal cooling scheme and results in a lower cycle efficiency of the gas
turbine plant. Consequently, the majority of the U-Bend shape optimisations in literature
have focused on the pressure loss optimisation of the U-Bend section [67] [68] [69] [70].

Figure 7.1: External turbine cooling and gas path through internal cooling channels [71].

79



CHAPTER 7. INTERNAL COOLING CHANNEL OPTIMISATION 80

While the pressure loss optimisation is an important and interesting problem, it is a
single disciplinary optimisation problem which does not take into account the effect of
shape changes in the bend on the temperature and heat transfer in the both domains. As
the primary aim of the internal channels is to provide cooling for the blades and preserve
structural integrity, the effect of the channel flow on the solid also needs to be considered
in an optimal design.

He et al. [17] perform an adjoint based aerothermal optimisation using weighted sums of
the pressure loss coefficient (CPL) and the Nusselt number (Nu) as the objective function.
The wall temperature was fixed at 10 K higher than the inlet temperature, and the partial
derivatives for the adjoint equations were approximated using finite differences. The results
showed that an increased weighting for CPL lead to an expansion of the duct which decreased
the flow velocity and friction losses. On the other hand, an increased weighting for Nu lead
to a shrinking of the duct which increased the flow velocity and convective heat transfer.

Previous optimisation studies on the U-Bend have not considered the conduction or
deformation in the solid domain. Optimisations investigating the solid temperature or
thermal gradients generated as a result of the cooling are lacking and the present works
aims to address this. In this chapter, a multidisciplinary CHT optimisation of thermal
objective function (Equation (6.8)) is performed. A partitioned coupling approach is used to
determine the interface temperature and the adjoint equations are solved using analytically
calculated derivatives.

The geometry of the U-Bend used in this work is based on the experimental study of
Colleti et al. [72], however, the length of the inlet and outlet sections are shortened as
shown in Figure 7.2.
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Figure 7.2: Left: Top cross sectional view of the U-Bend, Right: Side cross sectional view.

The design area is bounded by the solid domain (coloured peach) and shape changes
are allowed to only the fluid-solid interface.
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7.1 Boundary conditions and Discretisation

The experimental study was conducted at a Reynolds number of 43830 and with a bulk
velocity of 8.8m/s. The simulation of the fluid flow with the experimental conditions is chal-
lenging due to a combination of low inlet velocity, flow separation, secondary flow motion,
and streamwise curvature. This combination of features result in poor convergence of the
compressible flow solver due to the large difference in acoustic and convective eigenvalues in
low Mach number flows. This problem can be alleviated by having the Mach number in the
range 0.1-0.3 which ensures that compressibility effects remain negligible [32]. However, in
order to match the experimental results, the Reynolds number needs to be kept constant.
Consequently, the inlet velocity for the CFD run needs to be increased while the Reynolds
number remains constant. In the present work, higher inlet velocity is achieved by adjust-
ing the ratio between the inlet total pressure and outlet static pressure. The isentropic
equations for total pressure (PT ) and total temperature (TT ) ratios are given by

PT
Ps

=
(

1 +
γ − 1

2
M2
) γ
γ−1

, (7.1)

TT
Ts

= 1 +
(γ − 1

2
M2
)
, (7.2)

where Ps and Ts are static pressure and static temperature respectively, and γ is the
heat capacity ratio of air. The inlet total temperature is chosen to match the experimental
values in Table 7.1. An inlet Mach number (Min) of 0.1 is chosen and the values of the
inlet total pressure and outlet static pressure are adjusted until the experimental Reynolds
number is achieved. The inlet and outlet pressure boundary conditions are obtained through
the following steps:

1. For Min = 0.1, calculate Ps for an initial guess of PT,in using Equation (7.1).

2. With the experimental value for TT calculate Ts using Equation (7.2).

3. Use the calculated value of Ps and Ts to calculate the density and viscosity using the
ideal gas law and Sutherland formula respectively.

4. Calculate the inlet velocity and Reynolds number.
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5. If the target Reynolds number is not obtained, return to step 1 and adjust PT,in
accordingly.

The final values used for the CFD boundary conditions are shown in Table 7.1.

Experiment CFD
Temperature (T ) 293.15 K TT,in [K] 293.19
Pressure (P ) [Pa] 1.103× 105 PT,in [Pa] 27218.2727
Velocity (V ) [m/s] 8.8 Min 0.1
Density (ρ) [kgm−3] 1.204 Density (ρ) [kgm−3] 0.32185
Viscosity (µ) [Pa·s] 1.813E-05 Viscosity (µ) [Pa·s] 1.88841E-05

PS,out [Pa] 27028.5990
Dh [m] 0.075 Dh [m] 0.075 m
Re 43830 Re 43830.00024

Table 7.1: U-Bend fluid boundary conditions.

For the solid domain, the solid material is chosen as stainless steel with a thermal con-
ductivity of 14.2 W/mK, and a density of 7900 kgm−3. The temperature of all outer walls
are set as 303 K except the inlet facing wall which is set as adiabatic. A Robin boundary
condition is specified at the fluid-solid interface (dashed line in Figure 7.3) with the inter-
face temperature being the result of the coupled solution. The virtual solid conductivity
used for the hFRB coupling algorithm is specified as R̃ = λs

0.01 .
The fluid domain is discretised with approximately 75,000 nodes while the solid uses

approximately 29,000 nodes and matching grids are used between both domains as shown
in Figure 7.3.

7.2 Primal results

A 3D simulation is performed using the Spalart-Allmaras turbulence model [29]. The AUSM
scheme [34] is used for the convective fluxes while the viscous terms are calculated using
an edge-corrected Green-Gauss method. 2 levels of multigrid are generated using Hip [73]
and used with JT-KIRK implicit time stepping [30] to accelerate convergence. The hFRB
coupling algorithm is used and after 37 coupling iterations the final values of the coupling
convergence criteria (Equations (3.5) and (6.6)) are ResT = −7.4 and ResJ = −10.1.
Figure 7.4 shows that the coupled problem converges slowly. Between the second and final
coupling iteration, there is only a ResT drop of 3.61 and ResJ drop of 3.2.
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Figure 7.3: Solid boundary temperature and fluid and solid grids.

Figure 7.4: Evolution of the fluid residuals and coupling convergence criteria.
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Figure 7.5: Initial temperature (top) and velocity (bottom) on the mid-plane.

The slow convergence is related to the choice of the virtual solid conductivity R̃. Smaller
values of R̃ which could have sped up the coupling convergence lead to instabilities in the
high velocity region of the inlet leg of the channel (see Figure 7.5).

Figure 7.5 shows the initial temperature and velocity magnitude field. A qualitative
comparison with the experiment shows that the current mesh is unable to accurately cap-
ture the flow separation and reattachment. However, due to the high runtimes and slow
convergence, it is computationally expensive to further discretise the flow. The use of a
parallelised flow solver or Quasi-Newton coupling algorithm would eliminate this bottleneck.
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Figure 7.6: Initial temperature (top) and temperature gradient (bottom) field in the solid.

7.3 Parameterisation

The design variables (α) used for the MarkII shape optimisation were the grid coordi-
nates (X) which produced the optimised design as a deformed mesh. Typically, the initial
geometry is designed using Computer Aided Design (CAD). CAD models are used for sev-
eral aspects of the design process such as meshing, numerical analysis, and manufacturing.
However, reconstructing the CAD files from the output mesh requires approximations which
lead to deterioration of geometric details and reduces the quality of the final design. Conse-
quently, it would be preferable to have a CAD model of the optimised design as this ensures
compatibility between several design departments.

Alternatively, the CAD parameters which define the geometry can be used as design
variables during the optimisation leading to a CAD model of the optimised design. A CAD
based parameterisation makes it is easier to impose geometric constraints. For example,
maintaining the channel radius in the MarkII optimisation in the previous chapter.

If the CAD parameters are to be used as design variables for gradient based optimisation,
the optimiser requires the gradient of the objective function w.r.t. the CAD parameters.
That is
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dJ

∂α
=
∂J

∂α
+
∂J

∂X

∂X

∂α
. (7.3)

The gradient of the grid coordinates w.r.t. CAD parameters (∂X∂α ) has to be obtained
from the differentiated CAD modelling system. However, most commercial CAD packages
lack analytically and efficiently differentiated gradients. Robinson et al. [74] use finite-
differences to calculate the CAD sensitivites while Banovic, Mykhaskiv, Auriemma et al.
[75] [76] [77] use operator overloading to reverse differentiate the OpenCASCADE CAD
kernel. The handicap of the operator overloading approach is that it consumes a lot of
memory.

The current work uses the NURBS-based Parameterisation method with Complex Con-
straints (NSPCC) CAD kernel. The NSPCC kernel is written in Fortran90 and has been
revers differentiated using source transformation AD by Jesudasan et al. [78]. NSPCC uses
the boundary representation of the CAD model to derive the parameterisation. NSPCC
also allows the imposition of geometric constraints between adjacent NURBS patches such
as G0 (no gaps), G1 for tangency , and G2 for curvature.

Figure 7.7: Geometric constraints and control net distribution.

The boundary representation of the U-Bend geometry consists of 12 patches of cubic
NURBS and rational Bezier curves (see Figure 7.7). Each patch is defined using a 6x4
control net leading total number of 288 control points. The constraint equations are for-
mulated numerically, differentiated with AD, and a constraint Jacobian is computed. The
design space (all possible infinitesimal deformations that satisfy the constraints) is in the
null space (kernel) of the constraint Jacobian. We compute a basis for this null space (and
also for the orthogonal row space) using SVD. The design variables are then not the control
points, but the singular vectors from the SVD.
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7.4 Optimisation results

The thermal objective function (Equation (6.8)) is used with c1 = 1 and c2 = 0. That is,
only the temperature term of the objective which is rewritten here for convenience

I1 =
1

2

√√√√ 1

Ωs

N∑
j=1

T 2
j .

The coupling stopping criteria used for the optimisation is set as ResJ = −5 which results
in approximately 6 coupling iterations between optimisation steps. 3 reverse coupling it-
erations are done to calculate the gradient. The steepest descent optimisation algorithm
is used with a fixed step size of 3.E-2 and after five optimisations steps there is a 4.3%
reduction in the cost function.

Figure 7.8 shows that the optimiser clearly expands the solid domain and shrinks the
fluid in order to reduce the solid temperature. There is a 9% increase in the solid volume
and a marked increase in the size of solid region between the upstream and downstream
channel.

Figure 7.8: Optimised fluid and solid domains.

Figure 7.9 shows a comparison of the temperature distribution between the initial and
optimised geometry while Figure 7.10 compares the velocity distribution. Figure 7.10 also
shows a change in the position of the high velocity fluid flow. The high velocity region
corresponds to lower a lower temperature region in Figure 7.11.This is because the increased
fluid velocity results in an increase in the convective heat transfer.

Figure 7.12 shows that the optimiser removes the area of low secondary flow, increases
the secondary flow in the channel centre. This will lead to more mixing in the fluid, hence
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Figure 7.9: Initial vs. optimised temperature on the mid-plane.

Figure 7.10: Initial vs. optimised velocity on the mid-plane.
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Figure 7.11: Initial vs. optimised solid temperature on the mid-plane.

Figure 7.12: Initial vs. optimised velocity tangent to plane normal (at 90◦ position).

increased heat transfer.
There is a pronounced increase in the flow separation in the downstream channel shown

in Figure 7.10. The increased flow separation would result in an undesirable increase in the
pressure loss. Consequently, a multi-objective cost function taking the pressure loss into
account (similar to the work of He et al. [17]) would be a more appropriate optimisation
for this test case.
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7.5 Summary

In this chapter, a novel multidisciplinary optimisation was performed on an internal cooling
channel U-Bend. For the first time, a solid domain was used to enclose the design area of the
U-Bend. The Robin-Robin hFRB coupling method was used to solve coupled problem and
it was seen that problem converged slowly. The slow convergence of the coupled solution
is caused by a combination of the choice the virtual solid conductivity R̃ and the use of a
compressible flow solver.

A multidisciplinary optimisation was performed to reduce the temperature in the solid
domain surrounding the U-Bend. The geometry was parameterised using the NSPCC CAD
kernel. The optimisation used the differentiated partitioned method described in Chapter
5 to obtain the gradient with respect to grid coordinates. The reverse differentiated CAD
kernel was then used to obtain the final derivative of the objective function with respect
to the design CAD design variables. This ensures that the optimised shape is available in
CAD format.

The optimised geometry produced deformations to both the fluid and solid domains.
The optimisation results showed a shrinking of the U-Bend fluid section and an increase in
the sold volume. This lead to an increase in the fluid velocity which increased the convective
heat transfer and reduced the cost function by 4.3%. The obtained results would lead to an
undesirable increase in pressure loss therefore the results could be improved by modifying
the objective function to consider the pressure loss.



Chapter 8

Conclusion

The predominant approach to Conjugate Heat Transfer (CHT) optimisation is the use of
gradient-free optimisation methods which suffer from high computational costs and limit
the number of design variables which could be used. Gradient-based adjoint methods
promise to eliminate the high computational cost through efficient gradient calculation
which also allows for an increase in the number of design variables used. However, the
commonly favoured continuous adjoint method offsets this advantage with a high cost in
the development of the adjoint solvers. The discrete adjoint method developed in this work
alleviates the developmental cost imposed by the continuous adjoint by building the adjoint
solvers using Automatic Differentiation (AD).

In this thesis, a discrete adjoint framework for fully coupled partitioned CHT optimi-
sation was developed. The adjoint was obtained by applying source transformation AD
to the in-house flow solver, mgOpt, and the open-source heat conduction solver, CalculiX.
This resulted in a lower implementation cost than continuous adjoint and required no sim-
plifications as is often done for CHT optimisation problems. Consequently, the bottleneck
of the number of design variables which is faced by gradient-free optimisation methods is
eliminated and the cost of developing the adjoint is significantly reduced. Therefore, more
interesting and challenging CHT optimisations can be performed, devoid of any simplifi-
cations to the governing equations, while using a rich design space. This has the effect of
reducing both the computational cost and barrier to entry for gradient-based CHT optimi-
sation and has the potential to significantly shorten the design cycle.

CHT problems are often solved using a partitioned approach in which two different
numerical solvers are used to solve the governing equations of the fluid and solid domains.
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This allows the use of highly reputable solvers for the separate domains. The partitioned
approach requires the use of coupling algorithms which iteratively exchange boundary con-
ditions until temperature and heat flux are continuous between the fluid and solid domains
as discussed in Chapter 2. The use of Robin boundary conditions in the fluid domain is
relatively new and the results of numerical analysis in Chapter 3 show that Robin boundary
conditions lead to much faster convergence of the primal coupling problem.

The core contributions of this thesis are the differentiation of CalculiX for CHT and
the differentiation of the partitioned coupling algorithms used. The differentiated coupling
algorithms also require coupling iterations to converge the gradient and the exchange of
gradients through the differentiated algorithms was clearly outlined. The three coupling
algorithms differentiated in Chapter 5 involved a combination of Dirichlet, Neumann, and
Robin boundary conditions. Previous work has focused on differentiation of a combina-
tion of Dirichlet-Neumann coupling algorithms. The differentiation of recently developed
coupling algorithms using Robin boundary conditions is one of the novelties of this thesis.

The convergence of the coupled adjoint gradients was investigated in Chapters 5 & 6
and it was seen that poor convergence of the objective function negatively impacted the
accuracy of gradients. Furthermore, in a similar way to the primal flow equations, the
fluid adjoint equations could be partially converged between reverse coupling iterations
without significant loss of accuracy in the gradients. It was also shown that the number of
reverse coupling iterations could be significantly lower than the number of primal coupling
iterations without severely impacting gradient accuracy. This advantage was only seen for
coupling algorithms which use Robin boundary conditions in the fluid domain and it was
shown that accurate gradients can be obtained in as little as one reverse coupling iteration
in Chapter 6. This highlights a useful and previously unreported advantage of the use of
Robin boundary conditions in CHT problems.

Therefore it is recommended that the use of Robin boundary conditions in CHT prob-
lems become more widespread as they speed up the convergence of both the primal and
coupled adjoint. This will lead to significant computational cost savings during both the
primal and adjoint runs and speed up the design process. This is highlighted by the results
of the inverse design optimisation which showed that Robin-based coupling algorithms re-
quired less wall clock time to complete the optimisation. Furthermore, it is recommended
that where possible, the primal run of CHT optimisation problems need not be solved until
temperature and heat flux is continuous between domains, rather, they can be terminated
once the cost function is converged to just 4 significant figures.
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The differentiated coupling algorithms made use of two adjoint solvers which were ob-
tained via source transformation Automatic Differentiation (AD) in Chapter 4. The use
of AD is very effective as it allowed the fluid adjoint solver to be developed automatically
through the use of differentiation scripts. Although problems were encountered while dif-
ferentiating CalculiX, the maturity and further development of AD tools will eliminate the
problems related to mixed programming languages faced during this thesis.

The differentiated coupling algorithms were used with standard optimisation algorithms
to solve several optimisation problems in Chapter 6. At no point were the problems simpli-
fied to conduction or convection only problems and partitioned coupling methods were used.
The benefits of the author’s developments culminated in the possibility of a novel optimisa-
tion problem related to an internal cooling channel u-bend in Chapter 7. Furthermore, the
number of design variables used in two of the optimisation problems was greater than 102

which is not feasible for standard gradient-free optimisation methods. Consequently, it is
the author’s hope that there will be an increase the use of gradient-based methods in CHT
optimisation and more interest in the use of the discrete adjoint with partitioned coupling
algorithms using Robin boundary conditions.

8.1 Future work

This thesis has shown the advantage Robin-based coupling algorithms offer in terms of
computational time savings. For Robin-based coupling algorithms, the choice of the virtual
parameters R̃ and h̃ could be further investigated. Currently, there is no widely accepted
method of determining the choice of these parameters which would lead to fast convergence
while maintaining stability.

Only the three coupling algorithms used in this work were differentiated. For com-
pleteness, the 4 other fixed-point algorithms in Table 2.1 could also be differentiated. The
strength of Automatic Differentiation (AD) was also demonstrated in this work. AD could
be used to obtain the Jacobian of the coupled problem which can then be used for Newton-
like coupling algorithms.

The results obtained in Chapter 3 for the C3X and MarkII turbine blades show that
the Spalart-Allmaras turbulence model is unable to accurately predict the transition from
laminar to turbulent flow. This inaccuracy certainly has a negative impact on the ability
of the optimiser to obtain optimum designs. Therefore the implementation of transition
turbulence models will ensure truly optimum designs can be found.
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The 2D optimisation of the MarkII turbine blade performed in Chapter 6 only used
the location of the internal channels as design variables. Further work could include the
deformation to the fluid-solid interface subject to maintaining pressure loss. The radius
and shape of the cooling channels could also be changed, subject to some manufacturing
constrains. Additionally, A full 3D simulation of the turbine blade which also models the
coolant flow would lead to more complete optimisation designs.

Only matching interface grids were used in this work. Although the computational
time of solid is significantly less than that of the fluid, the use of non-conforming meshes
between domains could reduce the computational time further. This would require the use
of interpolation algorithms which also have to be differentiated and the effect of this on the
accuracy and convergence of multidisciplinary gradients could be investigated.

The thermal load optimisation could be further developed to include a stress calculation.
The results of the CHT simulations could be used for a stress analysis in order to more
accurately predict the blade thermal stress and lifetime. CalculiX is already capable of stress
analysis, and can therefore be differentiated using AD. Looking further, the centrifugal
forces on the blade can also be considered for a more rigorous optimisation study.

For the U-Bend optimisation, the obtained thermal optimisation results would lead to
a significant increase in pressure loss. Therefore an objective function taking pressure loss
into account would lead to more robust optimisation results. The results were obtained
with a relatively coarse mesh. A finer mesh could be used to more accurately capture the
flow field, and a parallelised solvers could be used to reduce the computational runtime.
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Appendix A

Differentiation of CalculiX

CalculiX solves the steady state heat equation as linear system of equations described in
Chapter 2. That is,

∫
Ωs

(∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

)
NidΩs = Q, (A.1)

KT = Q. (A.2)

SUBROUTINE nonlingeo_fortran(q↑w, T ↓w, T ↓sink, h↓, ~x↓)

...

! set boundary conditions

! calc. internal forces

! build system of equations

...

!solve linear system

CALL linear_solver(K,T,Q)

...

END SUBROUTINE nonlingeo_fortran

Listing A.1: Sample version of main routine.

96



APPENDIX A. DIFFERENTIATION OF CALCULIX 97

The linear system is solved using a black box linear solver (see Listing A.1) therefore the
source code is unavailable for Tapenade. Consequently, the linear solver had to be hand
differentiated as recommended by Tapenade [79]. By applying the chain rule, the forward
differentiated (tangent) code solves the following tangent system of equations

K̇T + KṪ = Q̇, (A.3)

KṪ = Q̇− K̇T, (A.4)

KṪ = RHS, (A.5)

where K̇ is the derivative of the conduction matrix w.r.t the the coupling boundary con-
ditions Q, Q̇ is the tangent seed vector, and Ṫ is the derivative of the Temperature field
w.r.t the coupling boundary conditions. The procedure for solving the tangent system is
as follows, First, Equation (A.2) is solved by the linear solver to obtain T , next the RHS
term in Equation (A.5) is calculated, then the linear solver then solves for Ṫ . Listiing A.2
shows pseudo-code of this process.

SUBROUTINE nonlingeo_fortran_d (..., q̇↑w, Ṫ ↓w, Ṫ ↓sink, ḣ↓, ~̇x↓)

...

!solve tangent linear system

CALL linear_solver(K↓, T ↑, Q↓)

RHS = Q̇− K̇T

CALL linear_solver(K↓,Ṫ ↑,RHS↓)

...

END SUBROUTINE nonlingeo_fortran_d

Listing A.2: Forward differentiated linear solver.

The reverse differentiation of the linear system in Equation (A.5) makes use of the dot
product equality between the tangent and adjoint [79] which leads to

Q = (K−1)TT (A.6)

Ki,j = −TjQi (A.7)

where T is the adjoint seed vector, and K and T are the derivatives of the conduction
matrix and the temperature field w.r.t coupling boundary condition respectively. As the
conductivity matrix is symmetric, the primal and adjoint system matrix is the same. As
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an iterative scheme requiring several solves of the linear system in Equation A.2 is used to
converge the primal solution, the adjoint gradients needs to be accumulated leading to

Qj = Qj +Qj (A.8)

Ki,j = Ki,j − TjQi (A.9)

A pseudocode of the reverse differentiated linear system solve is shown in listing A.3.

SUBROUTINE nonlingeo_fortran_b (..., q̄↑w, T̄ ↑sink, h̄↑, ~̄x↑, T̄ ↓w)

...

!solve adjoint linear system

KT = K ! symmetric matrix

CALL linear_solver(KT ↓, w↑, T
↓)

Q = Q+ w

CALL linear_solver(K↓, T ↑, Q↓)

DO i=1,n

DO j=1,n

Kij = Kij − Tj × wi
END DO

END DO

...

END SUBROUTINE nonlingeo_fortran_b

Listing A.3: Reverse differentiated linear solver.



Appendix B

Differentiating the partitioned
approach

In order to illustrate the data flow between solvers during coupling iterations, the exchange
of boundary conditions at one interface node is considered. The interface temperatures on
the fluid and solid side are denoted as Tfw and Tsw respectively. Upon convergence of the
coupling algorithm, both temperatures will have the same value. The heat flux between
domains can be estimated using the conductivity and temperature difference between the
interface and first off-wall node. The Robin parameters R̃ and h̃ are user defined numbers.

Figure B.1: Description of boundary terms for one interface node

The solid and fluid solvers can then be represented by the pseudocode shown in listings
B.1 and B.2. The fluid and solid solvers are coupled through listing B.3 which mimics the
exchange of boundary conditions at a single interface node. The ↓ symbol is used to signify
inputs to the routines while the ↑ signifies an output.
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SUBROUTINE solid(T ↑sw, q↑sw, T ↓b , T ↓fw, h̃↓, T ↓sink)

...

qsw = λs×(Tb - Tfw) ! solve for interface heat flux

IF (HFRB == TRUE) THEN

Tsw = (-qsw/h̃) + Tsink ! solve for interface temperature

END IF

END SUBROUTINE solid

Listing B.1: Simplified solid solver.

SUBROUTINE fluid(T ↑↓fw, h̃↑, T ↑sink, q↓sw, T̃ ↓s , R̃↓)

...

IF (TFRB OR HFRB == TRUE) THEN

qw = R̃×(T̃s-Tfw) ! Robin boundary condition

END IF

Tfw = (qfw/h) + Tfreestream ! solve for interface temperature

IF ( HFRB == TRUE) THEN

Tsink = Tfw + (qfw/h̃)

END IF

END SUBROUTINE fluid

Listing B.2: Simplified fluid solver.

SUBROUTINE couple(T ↑w, q↑w, T ↓b )

Tfw = ! initial guess

do i=1,end ! loop until convergence

call solid(T ↑sw, q↑sw, T ↓b , T ↓fw, h̃↓, T ↓sink) ! solve solid

! For TFRB & hFRB

IF ( TFFB == FALSE) THEN

call calc_ts(T̃ ↑s , R̃↓, q↓w, T ↓w)

END IF

Call fluid(T ↑↓fw, h̃↑, T ↑sink, q↓sw, T̃ ↓s , R̃↓) ! solve fluid

end do

END SUBROUTINE couple

Listing B.3: An example fixed-point coupling iteration scheme.
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B.0.1 Partitioned tangent linear method

To obtain the tangent mode of the fixed-point coupling method, forward mode AD is
applied to the coupling subroutine to produce the differentiated version which is shown in
listing B.4. The "_d" notation denotes a forward differentiated routine and a dot above a
variable implies a seed vector. The symbol f is used to denote some form of computation
e.g addition, multiplication, division etc which has been analytically differentiated.

SUBROUTINE couple_d (..., Ṫ ↑w, q̇↑d, Ṫ ↓b )

! loop for same number as primal

do i=1,end

call solid_d (..., Ṫ ↑↓fw, q̇↑sw, Ṫ ↓b , Ṫ ↓sink, h̃↓d) ! tangent solid solver

! For TFRB & hFRB

IF ( TFFB == FALSE) THEN

T̃sd = f(q̇w, Ṫw) ! =⇒ calc. T̃sd

END IF

Call fluid_d (..., Ṫ ↑↓fw, Ṫ ↑sink, h̃↑d, q̇↑sw, T̃ ↓sd) ! tangent fluid solver

end do

END SUBROUTINE couple_d

Listing B.4: Tangent coupling iterations.

The forward differentiated (tangent linear) coupling algorithm shown in listing B.4
follows the same procedure as the primal coupling. The tangent variables flow in the same
direction as their primal counterparts and the differentiated routines are also called in the
same sequence as the primal. This is an advantageous feature of the tangent mode which
makes debugging easier due to the similarity between the tangent and primal codes.

B.0.2 Partitioned adjoint method

Reverse mode AD is applied to the coupling routine to obtain the fixed-point adjoint in
listing B.5. The fixed-point adjoint is an inverse of the primal and iterates backwards from
the final to first iteration. The calls to the fluid and solid solvers are reversed and the input
and output variables are reversed. During the reverse loop, it is necessary to reuse some
intermediate values for the gradient calculations. Consequently, the fluid and solid states
are stored during the primal run and recalled using "POP" statements shown in Listing
B.5.
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SUBROUTINE couple_b (..., T
↑
b , T

↓
w, q↓w)

! reverse loop

do i=end ,1

POP (T ifw, qisw) ! reuse transient state

Call fluid_b (..., q↑sw, T̃ ↑sb,T
↓
sink, h

↓
) ! adjoint fluid solver

! For TFRB & hFRB

IF ( TFFB == FALSE) THEN

POP (T̃ is) ! reuse transient state

T sw, qsw = f(T̃sb) ! =⇒ calc. T̃sb

END IF

POP (qiw) ! reuse transient state

call solid_b (...,T ↑↓fw, q↓sw, T
↑
b , T

↑
sink,h

↑
) ! adjoint solid solver

IF ( TFRB == TRUE) THEN

Tw = T sw + T fw ! accumulate gradient

END IF

T b += T b ! accumulate gradient

end do

END SUBROUTINE couple_b

Listing B.5: Reverse coupling iterations.
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