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ABSTRACT
In this paper we summarize the contributions of participants to the
third Sussex-Huawei Locomotion-Transportation (SHL) Recogni-
tion Challenge organized at theHASCAWorkshop of UbiComp/ISWC
2020. The goal of this machine learning/data science challenge is
to recognize eight locomotion and transportation activities (Still,
Walk, Run, Bike, Bus, Car, Train, Subway) from the inertial sensor
data of a smartphone in a user-independent manner with an un-
known target phone position. The training data of a “train” user is
available from smartphones placed at four body positions (Hand,
Torso, Bag and Hips). The testing data originates from “test” users
with a smartphone placed at one, but unknown, body position. We
introduce the dataset used in the challenge and the protocol of the
competition. We present a meta-analysis of the contributions from
15 submissions, their approaches, the software tools used, com-
putational cost and the achieved results. Overall, one submission
achieved F1 scores above 80%, three with F1 scores between 70%
and 80%, seven between 50% and 70%, and four below 50%, with a
latency of maximum of 5 seconds.

CCS CONCEPTS
• Computing methodologies→ Activity recognition and un-
derstanding; Supervised learning by classification.

KEYWORDS
Activity recognition; Deep learning; Machine learning; Mobile sens-
ing; Transportation mode recognition
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1 INTRODUCTION
The mode of transportation or locomotion is an important contex-
tual that enables applications such as activity and healthmonitoring,
individual environmental impact monitoring, and intelligent service
adaptation [17–25]. Several prior work looked at recognizing modes
of transportation from smartphone sensors, including motion, GPS,
sound, and image [26–30]. To date, most research groups assess
the performance of their algorithms using their own datasets on
their own recognition tasks. These tasks often differ in the sensor
modalities used or in the allowed recognition latency. This makes it
difficult to compare methodologies and to systematically advance
research in the field.

Following on our successful 2018 and 2019 challenges [31, 32],
which saw 22 and 14 submissions, respectively, we organized the
third Sussex-Huawei Locomotion-Transportation (SHL) recognition
challenge in the year 20201. In contrast to the SHL 2018 and 2019,
which focused on time-independent and placement-independent
evaluation, respectively, the goal of this challenge is to recognize
8 modes of locomotion and transportation (the activities include:
being still, walking, running, cycling, driving a car, being in a bus,
train or subway) from the inertial sensor data of a smartphone in a
user-independent manner. This paper introduces the dataset used
for the challenge and the protocol for the competition, and summa-
rizes and analyzes the achievements of the participants contributing
to the challenge.

1http://www.shl-dataset.org/activity-recognition-challenge-2020/

https://doi.org/10.1145/3410530.3414341
https://doi.org/10.1145/3410530.3414341
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Figure 1: Smartphone positioning during data collection.

2 DATASET AND TASK
2.1 Dataset
The challenge uses a subset of the complete Sussex-Huawei Locomotion-
Transportation (SHL) dataset [33, 34]. The SHL dataset was recorded
over a period of 7 months in 2017 by 3 participants (called User1,
User2 and User3) engaging in 8 different modes of transportation
and locomotion in real-life setting in the United Kingdom, i.e. Still,
Walk, Run, Bike, Car, Bus, Train, and Subway. Each participant
carried four smartphones at four body positions simultaneously: in
the hand, at the torso, in the hip pocket, in a backpack or handbag
(see Fig. 1). The smartphone logged data from 16 sensor modalities.
The complete dataset contains up to 2812 hours of labeled data,
corresponding to 16,732 km travel distance, and is considered as
one of the biggest dataset in the research community.

The SHL Challenge 2020 provided a training, testing and valida-
tion dataset2. The training dataset comprises 59 days of data from
the 4 locations (Bag, Hips, Torso, Hand) indicated in Fig. 1 and from
a single “Train” user called User1. The testing contains data from
an “Test” user. This “Test” user is in reality a combination of data
of User2 and User3, as none of these users could engage in all the
activities, and this combination allows to obtain a balanced test
dataset. The phone is placed at one location3, which is unknown to
the participants during competition. The validation dataset contains
6 days of data from the 4 locations and from User2 and User34. Fig. 2
depicts the duration of each transportation activity in the training,
validation and testing datasets. In total, we have 272 × 4 hours
of training data, 40 × 4 hours of validation data and 160 hours of
testing data, respectively.

The challenge dataset contains the raw data from 7 sensors,
including accelerometer, gyroscope, magnetometer, linear acceler-
ation, gravity, orientation, and ambient pressure, which yields a
total of 20 sensor channels. The sampling rate of all these sensors is
100 Hz. The activity label (class label) of the training and validation
data is provided. The class label for the testing data is invisible to
the participants for evaluation.

2 The exact dates for splitting the dataset will be released at the challenge website
http://www.shl-dataset.org/activity-recognition-challenge-2020/.
3 The testing position is “Hips”.
4 Note that the validation data is same as the previewed version of the SHL dataset.
http://www.shl-dataset.org/download/#shldataset-preview.
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Figure 2: The duration of each class activity in the training
and the testing dataset. The 8 classes are: 1 - Still; 2 - Walk;
3 - Run; 4 - Bike; 5 - Car; 6 - Bus; 7 - Train; 8 - Subway.

2.2 Data Format
The training and validation data was generated by segmenting
the whole data with a sliding window of 5 seconds with jumping
size 5 seconds. The testing data was generated by segmenting the
whole data with a sliding window of 5 seconds and jumping size
10 seconds. The frames for the training and validation data are
consecutive in time. The frames in the testing data are randomly
shuffled. The rationale for this is to force challenge participants to
design algorithms which operate with a latency of a maximum of 5
seconds, which can be relevant in real-time interactive applications.

As shown in Table 1, the training and validation data contains the
data from four positions: Bag, Torso, Hips andHand; the testing data
contains the data of one of the four position5, and that position is un-
known to the participants. Each position in the training/validation
dataset contains 21 plain text files, including 20 sensor files and 1
label file. Each position in the testing dataset only contains the 20
sensor files and excludes the label file.

Each sensor data file in each position of the training set contains a
matrix of size 196,072 lines× 500 columns, corresponding to 196,072
frames each containing 500 samples (5 seconds at the sampling rate
100 Hz). The data in the label file is of the same size (196,072×500),
indicating sample-wise transportation activity. Similarly, each sen-
sor data file in each position of the validation set contains a matrix
of size 28,789 × 500. The label file is of same size as the sensor data.
Each sensor data file of the testing set contains a matrix of size
57,573 ×500. The label file of the testing set will remain confidential
until after the challenge. It is used for performance evaluation by
the challenge organizer. The total size of the data in ASCII format
are 76.9, 11.3 and 5.6 GB for the training, validation and testing set,
respectively.

The 8 numbers in the label file indicate the 8 activities: 1 - Still;
2 - Walk; 3 - Run; 4 - Bike; 5 - Car; 6 - Bus; 7 - Train; 8 - Subway. 6

2.3 Task and Evaluation
The task is to train a recognition pipeline using the training/validation
dataset and then use this system to recognize the transportation
5 The testing position is “Hips”.
6 Note that we removed all the ‘null’ class from the raw data.



Summary SHL Challenge 2020 UbiComp/ISWC ’20 Adjunct, September 12–16, 2020, Virtual Event, Mexico

Table 1: Data files provided by the SHL recognition chal-
lenge. Position: B - Bag; T - Torso; Hi - Hips; Ha - Hand; Un
- Unknown.

Modality File Train (B/T/Hi/Ha) Validation
(B/T/Hi/Ha)

Test
(Un)

Accelerometer
Acc_x.txt
Acc_y.txt
Acc_z.txt

✓ ✓ ✓

Gyroscope
Gyr_x.txt
Gyr_y.txt
Gyr_z.txt

✓ ✓ ✓

Magnetometer
Mag_x.txt
Mag_y.txt
Mag_z.txt

✓ ✓ ✓

Linear
accelerometer

LAcc_x.txt
LAcc_y.txt
LAcc_z.txt

✓ ✓ ✓

Gravity
Gra_x.txt
Gra_y.txt
Gra_z.txt

✓ ✓ ✓

Orientation
Ori_w.txt
Ori_x.txt
Ori_y.txt Ori_z.txt

✓ ✓ ✓

Pressure Pressure.txt ✓ ✓ ✓

Label Label.txt ✓ ✓ ✕

mode from the sensor data in the testing set. The recognition perfor-
mance is evaluated with the F1 score averaged over all the activities.

LetMi j be the (i, j)-th element of the confusion matrix. It repre-
sents the number of samples originally belonging to class i which
are recognized as class j. Let C = 8 be the number of classes. The
F1 score is defined as below.

recalli =
Mii∑C
j=1Mi j

, precisionj =
Mj j∑C
i=1Mi j

, (1)

F1 =
1
C

C∑
i=1

2 · recalli · precisioni
recalli + precisioni

. (2)

3 RESULTS
Thirty-three teams expressed interests in the initial registration
stage. The teams had 2.7 months (05 April - 25 June 2020) to develop
the methods and work on the challenge task. Eventually, 15 teams
contributed 15 submissions in the final submission stage by the
deadline of 25 June7. Table 2 shows the confusion matrices com-
puted on the testing dataset and Table 3 summarizes the technical
details of the 15 submissions.

Fig. 3 depicts the F1 score of each submission for the testing
set. The submissions are ranked based on their performance on the
testing set (Table 3). The performance of the submissions ranges
from 17.8% to 88.5%. There is 1 submission achieving an F1 score
above 80% on the testing set, 4 between 60% and 70%, 3 between
50% and 60%, and 4 below 50%.

Since each team employs a distinct strategy for cross valida-
tion, we request each team to predict their performance for the
testing dataset based on the available dataset (i.e. training and
validation). We report this predicted performance, as well as the
actual performance on the test set in Fig. 3. The predicted result
shows that the submissions 3 and 4 generalize well between the
training/validation and the testing data. The submissions 1 and 10
shows moderate under-fitting. The other submissions suffer form

7 Submission [13] contributed and evaluated in the SHL Challenge but not accepted
for publication after peer review. Submission [14] is evaluated in this summary, but is
ineligible for the prize competition due to conflict of interest.
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Figure 3: The submissions are ranked based on their F1
scores on the testing set (more details are given in Table 3).

over-fitting. We briefly introduce the approaches used by the top
three contributions.

We-can-fly takes the first place with its F1 score of 88.5%, which
is at least 9.5 percent point higher than other submissions [1]. Af-
ter converting sensor readings (acceleration, linear acceleration,
gyroscope, magnetometer, gravity, pressure) from phone-centred
coordinate system to human-centred coordinate system, it employs
a 1D DenseNet model working on the multi-channel sensor data
simultaneously. Interestingly, the submission shows certain under-
fitting, with the predicted performance only 78%.

IndRNN achieves the second highest F1 score of 79.0%. After de-
rotating the sensor data from phone-centred coordinate system to
human-centred coordinate system, the proposed method computes
hand-crafted features in the time and frequency domains which
are input to an RNN model to predict the labels of the sensor data.
The method estimates the phone location in the testing set to be
“Hips-Torso” and builds a position-dependentmodel. It future adopts
transfer learning to accommodate user variation.

ThirdTime’sACharm takes the third place with its F1 score 77.9%.
It employs a classical machine learning pipeline (XGBoost) work-
ing on hand-crafted features (1124 in total). The method trains a
position-dependent model after estimating the phone location in
the testing set to be “Hips”. The method applies semi-supervised
learning to estimate user information in the testing set, and im-
proves the recognition performance with a user-dependent model.

4 SUMMARY OF APPROACHES
We categorize the 15 submissions into two families: classical ma-
chine learning pipeline (ML) and deep learning pipeline (DL). There
are 6 ML submissions and 9 DL submissions.

Fig. 4(a) box-plots the F1 scores obtained by these two families.
While ML has lower upper bound than DL, it has a higher bottom
bound (excluding the outlier at 17.8%). The smaller dynamic range
implies better robustness of ML, which utilizes hand-crafted fea-
tures that can cope with user and position variation. In contrast,
the features learned by DL does not always guarantee a good gen-
eralization. The best performance achieved by the DL approach
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Figure 4: Comparison between machine learning and deep
learning approaches. (a) F1 score for the testing data. (b)
Training time. (c) Testing time.

(We-can-fly [1], 88.5%) is 10.6 percentage points higher than the best
ML approach (ThirdTime’sACharm [3], 77.9%). Fig. 4(b)-(c) show
in box-plot the training and testing time by ML and DL approaches,
respectively. DL takes much more time for training than ML, and
also takes more time for testing.

Fig. 5 depicts the specific classifiers employed by ML and DL
pipelines. ML involves four classifiers: extreme gradient boost (XG-
Boost), random forest (RF), multi-layer perceptron neural network
with less than 2 hidden layers (MLP), and ensembles of classifiers
(Ensembles). DL involves four classifiers: convolutional neural net-
work (CNN), recurrent neural network (RNN), CNN+LSTM, and
generative adversarial network (GAN).

For classical machine learning, RF and XGBoost each has two
submissions while MLP and Ensembles each has one submission.
Among these classifiers, XGBoost achieves the highest F1 score
(77.9%), followed by RF (69.1%) and MLP (52.8%). For deep learning,
CNN (6S - 6 submissions) is the most popular classifier, while the
other three classifiers each has one submission. CNN achieves the
highest F1 score (88.5%), followed by RNN (79.0%).

All the 4 ML approaches uses hand-crafted features as input to
the classifier. DL may use different types of data as input to the
classifier (Fig. 6): either in the time domain (3S), in the frequency
domain (3S), or with hand-crafted features (3S). The time-domain in-
put achieves the highest F1 score (88.5%), followed by hand-crafted
features (79.0%), and frequency-domain raw data (55.7%).

4.1 Post-processing
Since the challenge aims to investigate the real-time recognition
performance within 5 seconds, we randomly shuffle the temporal
order of the testing frames. In SHL 2019, one submission recovered
the temporal order of frames by looking at the correlation of sensor
data [16]. This year we employed a special processing strategy to
prevent this. Specifically, when generating the testing frames, we
use a sliding window of length 5 seconds and a jumping size of 10
seconds, so that the correlation between framed data is minimized.
Interestingly, this year, one submission still managed to perform
temporal smoothing with a proposed nearest neighbour smoothing
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Figure 5: Classical machine learning and deep learning
classifiers used by the submissions. The text on top of the
bar indicates the highest F1 score achieved by each group of
classifiers.
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Figure 6: Type of input data to the deep-learning classifier.
The text on top of the bar indicates the highest F1 score
achieved by each type of input.

scheme [8]. The submission finally achieved a F1 score of 61.2%, the
8th position among all the submissions. It would be interesting to
see if this scheme can really improve the recognition performance
after the release of the ground-truth labels of the testing data.

4.2 Software Implementation
Fig. 7(a) summarizes the programming languages used by the sub-
missions. For ML, Python (5S) is the most popular languages among
6 submissions, followed by Java (1S). No submission chose Matlab.
For DL, Python is the only language used by all 9 submissions.
Fig. 7(b) summarizes the machine learning libraries used by the
submissions. For ML, Scikit-Learn (Python) is the mostly used li-
brary (5S), followed by Java AIT (1S). For DL, Keras (4S) is the
most popular library, followed by Pytorch (3S) and Tensorflow (2S).
Keras is a high-level library building on low-level libraries including
Tensorflow, Theano and CNTK, where all the four submissions use
the Tensorflow backend.

5 PERFORMANCE ANALYSIS
In Fig. 3, 11 out of 15 submissions achieve F1 scores between 50%
and 90%. We analyze the results from the top 11 submissions.

Fig. 8 box-plots the recognition accuracy for each class activity
(i.e. the diagonal elements of the confusion matrix in Table 2),
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used by the submissions for classical machine learning and
deep learning. (a) Programming. (b) Library.
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Figure 8: Recognition accuracy for each class activity by the
top 11 submissions and the average confusion matrix. The
8 class activities are: 1 - Still; 2 - Walk; 3 - Run; 4 - Bike; 5 -
Car; 6 - Bus; 7 - Train; 8 - Subway.

among the top 11 submissions, and also presents the average con-
fusion matrix of their results. It can be observed from the box-plot
that the class Bus and Subway are the two most difficult activities to
recognize, followed by Train and Car. The first four activities (Still,
Walk, Run, and Bike) are better recognized compared to the last
four (Car, Bus, Train, and Subway). The motion of the smartphones
during walk, run and bike is more distinctive than when the person
is sitting or standing in the car, bus, train or subway, thus making
the first four activities more distinctive than the last four. There
is mutual confusion between the motor vehicles (Car vs Bus), and
between the rail vehicles (Train vs Subway). The reason for this is
the similar motion patterns during these activities. Some confusion
between Still and the four vehicle activities (Car, Bus, Train and
Subway) is also observed. This is similar to previous results reported
in SHL 2018 [31], SHL 2019 [32] and in our baseline evaluation [34].

Baseline Performance
For reference, we present the baseline performance obtained with
the baseline pipeline (CNN-freq) that was employed in SHL 2018 [35].
We simply retrain the same pipeline with this year’s challenge data
without fine tuning. When using the training set only for model
training, we obtain an F1 score of 68.0% for the testing set. When
using both the training and validation set for model training, we

obtain an F1 score of 78.8%, which is 10.8 percentage points higher
than the previous one. This demonstrates that the performance
can be improved effectively by incorporating the validation data
for model training. The confusion matrix for the highest F1 score
(78.8%) is given in Table 2. This baseline result is slightly lower than
the second best submission (79.0%).

6 DISCUSSION
The F1 scores reported in SHL 2020 are at a similar level to the ones
reported in SHL 2019 [32]. SHL 2020 has 11 submission with F1
scores above 50%, with an average score among these of 58.9%. SHL
2019 has 13 submissions with F1 scores above 50%, with an average
score among these of 61.6%. The best performance reported SHL
2020 (88.4%) is higher than the best one in SHL 2019 (78.4%). The
average performance of SHL 2020 is slightly lower than SHL 2019.
SHL 2019 focuses on position-independent evaluation while SHL
2020 focuses on both position-independent and user-independent
evaluation. On the one hand, the user variation in SHL 2020 makes
the recognition task more challenging. On the other hand, the
recognition at “Hips” position in SHL 2020 is easier than the “Hand”
position at SHL 2019. Taking these two issues both into consid-
eration, it is reasonable that SHL 2019 and 2020 achieve a similar
performance.

The participant teams have employed various techniques to
tackle the challenge of achieving position-independence and user-
independence. We summarize them as three schemes below.

Robust representation. Most submissions use orientation/position
independent representation of the sensor data. For instance, the
magnitude of sensor data, which is a combination of the data at
three coordinates, has been widely used across the teams for feature
computation or classifier training. Several submissions convert sen-
sor data from phone-centred coordinate system to human-centred
coordination system, which can increase the robustness to phone
placement [1, 2, 6, 9, 10]. The submissions [1, 2] obtain the top two
performance among all the participants.

Position-specific modeling. The location of the phone in the
testing dataset is unknown, but it is known to be one of the four
locations in the training dataset. Many submissions exploit this
fact to predict the location of the phone first, and then do position-
dependent training. Based on the summary in Table 3, 8 out of 15
submissions employ a machine learning scheme to estimate the
location of the phone, where 7 out of these 8 submissions estimated
the location correctly as “Hips” [2–4, 8, 9, 12, 14] and only one
submission estimated the location to be “Hand” [6]. The highest
F1 score achieved by these 8 submissions is 79.0%, which is ranked
second among all the submissions [2]. The submission [14] employs
generative adversarial networks to improve the recognition perfor-
mance for a specific position. While this interesting idea achieved
quite good results for the “Hip” position in the validation dataset
(95.0%), the performance for the testing data is quite low (34.4%). A
more in-depth investigation is needed for this approach.

User-specific modeling. Since the validation and the testing
dataset contain the data from the same users (User2 and User3), the
submission [3] exploits this fact to develop user-dependent model.
It employs transfer learning techniques to train two user-dependent
models with assistance from the validation dataset. The testing data
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is clustered into two users and processed with two user-specific
models accordingly. The method achieved an F1 score of 77.9%,
which is ranked the third place among all the participants. The
submission [3] also applied transfer learning to accommodate user
variation, achieving the second highest F1 score 79.0%.

7 CONCLUSION
We reported the achievements obtained during the SHL recognition
challenge 2020, where one submission achieved an F1 score between
80% and 90%, three submissions achieved F1 scores between 70%
and 80%, four submissions between 60% and 70%, three between
50% and 60%. We summarized the approaches used by these submis-
sions and analyzed their performance. Because the approaches are
implemented by different research groups with varying expertise,
the conclusions drawn will be confined to the submissions of the
challenge.

The submissions can be divided into ML and DL pipelines. This
year more submissions employed DL and led to higher performance.
The highest performance is achieved by an DL approach (88.5%),
which is 10.6 percentage points higher than the best ML approach
(77.9%).

Various schemes have been employed by the participant teams to
tackle the challenge of the variation of user and position, including
robust representation, position-specific modeling, and user-specific
modeling. The provides a good insight for developing novel al-
gorithms for position-independent and user-independent activity
recognition.
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Table 2: Confusion matrix (F1 score) of each submission for the testing dataset. The 8 class activities are: 1 - Still; 2 - Walk; 3 -
Run; 4 - Bike; 5 - Car; 6 - Bus; 7 - Train; 8 - Subway.

 We_can_fly (88.47%) IndRNN (78.98%) ThirdTimesACharm (77.89%) DSML-TDU (76.40%) 

1 

2 

3 

4 

5 

6 

7 

8 

    93     2     0     1     1     0     2     2 

     3    95     0     1     0     0     0     0 

     0     2    95     3     0     0     0     0 

     3     2     0    93     1     0     1     1 

     4     0     0     0    87     6     2     2 

     7     1     0     0     8    81     2     1 

     6     0     0     1     1     1    81    10 

     4     0     0     0     0     0    10    85 

    88     2     0     0     2     0     4     4 

     3    96     0     0     0     0     0     0 

     0     7    93     0     0     0     0     0 

     4    17     0    78     0     0     0     0 

     5     0     0     0    67    14    11     2 

     6     1     0     0    18    67     6     2 

     6     1     0     0     2     1    59    30 

     5     0     0     0     1     0    10    84 

    86     4     0     1     2     1     3     3 

     1    98     0     0     0     0     0     0 

     0     8    92     1     0     0     0     0 

     4     9     0    76     0     2     1     8 

     3     0     0     0    93     1     3     0 

    11     1     0     0    17    62     6     3 

     8     1     0     0     4     3    64    20 

     6     1     0     0     1     0    35    56 

    90     4     0     0     1     0     3     3 

     2    98     0     0     0     0     0     0 

     0    13    87     0     0     0     0     0 

     3     3     0    93     0     0     0     0 

     3     0     0     0    71    11    12     2 

     8     2     0     0    16    65     6     2 

    16     1     0     1     3     4    49    26 

    16     1     0     1     2     2    17    59 

 DL_Lock (69.40%) RED_CIRCLE (69.10%) ASIA (62.55%) MDCA (61.19%) 
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     7    11     0    73     2     6     0     1 

     5     0     0     0    60    17    13     6 

     5     1     0     0    15    64    10     5 

     5     1     0     1     8     6    62    18 

     5     0     0     0     4     2    38    50 

    86     2     0     2     2     2     5     1 

     4    90     0     4     1     0     0     0 

     0    21    69    10     0     0     0     0 

     7     8     0    74     3     4     1     3 

     6     0     0     0    63    21     9     2 

    10     1     0     0    27    48    11     2 

     5     1     0     2     7     3    67    15 

     5     0     0     0     2     1    41    50 

    75     1     0     5     2     6     9     2 

     4    88     0     5     1     1     1     0 
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Table 3: Summary of the SHL recognition challenge 2020.

Predict Test CPU GPU Train [h] Test [s] Lang. Library

3
ThirdTime's

ACharm 
XGBoost Features Hips LAGMOPR 81.0% 77.9%

8-core@3.6GHz

RAM-16G
RTX 2060 0.08 15 Python Scikit-learn 60 [3]

6 RED_CIRCLE RF Features Hand LAGMOPR 77.0% 69.1%
2-core@2.3GHz

RAM-13G
/ 1 41 Python Scikit-learn 1825 [6]

7 ASIA RF Features / LAGMP 86.0% 62.6%
8-core@2.3GHz

RAM-16G
/ 0.08 1 Python Scikit-learn 278 [7]

8 MDCA MLP Features Hips AGMOPR 75.0% 61.2%
8-core@1.9GHz

RAM-16G
/ 0.03 3 Java AIT 0.2 [8]

10 SensingGO XGBoost Features / LAGMP 50.0% 55.0%
12-core@2GHz

RAM-128G
/ 0.3 180 Python Scikit-learn 0.7 [10]

15 Petrichor Ensemble Features / LAGMP 75.0% 17.9%
16-core@1.9GHz

RAM-256G
/ 3 3 Python Scikit-learn 410 [15]

1 We-can-fly CNN Time / LAGMPR 78.0% 88.5%
14-core@2.6GHz 

RAM-128G

Tesla 

V100
6 120 Python Pytorch 30 [1]

2 IndRNN RNN Features Hips-Torso AGMOP 87.0% 79.0%
10-core@2.4GHz

RAM-256G 
Titan XP 18 2540 Python Pytorch 43 [2]

4 DSML_TDU CNN Features Hips LGM 67.9% 76.4%
8-core@3.5GHz

RAM-128G

GTX

1080Ti
2 300 Python

Keras 

(Tensorflow)
103 [4]

5 DL_Lock CNN Features / LAGM 79.0% 69.4%
6-core@3.5GHz

RAM-32G

 RTX 

2080 Ti
0.75 16 Python

Keras 

(Tensorflow)
19.3 [5]

9 TDU_BSA CNN Frequency Hips LAGMOP 84.8% 55.7%
6-core@3.2GHz

RAM-32G
RTX 2060 12 60 Python

Keras 

(Tensorflow)
114 [9]

11
1031141021

06          _

CNN + 

LSTM
Time / LAGMOPR 95.0% 52.8% HPC Cluster

HPC 

Cluster
85 146 Python Tensorflow 39 [11]

12 Eagles CNN Time Hips LAGMOPR 57.8% 45.8%
56-core@2.2GHz

RAM-96G

4 × Tesla 

K40M
3 60 Python

Keras 

(Tensorflow)
1 [12]

13 Team-X CNN Frequency / AGMOR 90.0% 37.3% ?
Tesla 

P100
10 ? Python Tensorflow ? [13]

14 Noname GAN Features Hips LAGMOPR 95.0% 34.4%
6-core@3.2GHz

RAM-32G

GTX 

2080 
3 60 Python Pytorch 14 [14]

   

Ref

ML

DL

Sensor modalitiy: L - Linear accelerometer; A - Accelerometer; G - Gyroscope; M - Magnetometer; O - Orientation; P - Pressure; R - Gravity. 

Sensor 
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Performance Computational resource Time Implementation
Model 

size (MB)
App. Rank Team Classifier Input

Location 
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