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ABSTRACT Capacity prediction of lithium-ion batteries represents an important function of battery 

management systems. Conventional machine learning-based methods for capacity prediction are inefficient 

to learn long-term dependencies during capacity degradations. This paper investigates the deep learning 

method for lithium-ion battery’s capacity prediction based on long short-term memory recurrent neural 

network, which is employed to capture the latent long-term dependence of degraded capacity. The neural 

network is adaptively optimized by the Adam optimization algorithm, and the dropout technique is exploited 

to prevent overfitting. Based on the offline cycling aging data of batteries, the capacity prediction 

performance is validated and evaluated. The experimental results demonstrate that the proposed algorithm 

can accurately track the nonlinear degradation trend of capacity within the whole lifespan with a maximum 

error of only 2.84%. 

INDEX TERMS Lithium-ion batteries, capacity prediction, aging factors, long short-term memory 

(LSTM). 

NOMENCLATURE 
A. ABBREVIATIONS 

EVs electric vehicles 

EOL end of life 

BMS battery management system 

SOC state of charge 

SOH state of health 

GPR Gaussian process regression 

ECM equivalent circuit model 

OCV open circuit voltage 

KF Kalman filter 

PF particle filter 

RC resistance-capacitance 

RLS recursive least squares 

IC incremental capacity 

RUL remaining useful life 

SVM support vector machine 

HFs healthy features 

RNN recurrent neural networks 

LSTM long short-term memory 

LOOCV leave-one-out cross validation 

IR internal resistance 

SEI solid electrolyte interphase 

CEI cathode electrolyte interface 

DIC discharge incremental capacity 

GRA grey relational analysis 

MAE maximum absolute error 

MSE mean square error 

RMSE root mean square error 

B. SYMBOLS 
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1F  the internal resistance of battery 

2F  
the average temperature of battery in a 

charging and discharging cycle 

iX  the aging factors dataset in the training set 

i
X 

 the aging factors dataset in the test set 

ˆ
iy  the predicted value of capacity 

i
y

 the observed value of capacity in the test set 

1t
h

−
 

the last output of cell state in the LSTM-

RNN architecture 

t
x  the current cell input 

tf  the outputs of forget gate 

  the sigmoid function 

fW  the weight matrix of forget gate 

fb  the bias of forget gate 

ti  the sigmoid layer of input gate 

t
a  the output of tanh layer for the input gate 

iW  the weight matrix of sigmoid layer of input 

gate 

cW  the weight matrix of tanh layer of input gate 

ib  the bias of sigmoid layer of input gate 

cb  the bias of tanh layer of input gate 

tc  the current cell state 

t
h  

the output of LSTM-RNN at current 

moment t  

oW  the weight matrix of the output layer 

ob  the bias of output layer 

to  the sigmoid layer of output gate 

( )J   the objective function with   

t
g  the gradient with parameter 

1t


−
 

t
m  the exponential moving average of gradient 

t
v  the exponential moving average of squared 

gradient 

1
  the exponential decay factors accounting for 

weight distribution 

2
  the exponential decay factors that controls 

the influence incurred by squared gradient 

ˆ
t

m  the modified values of 
t

m  

ˆ
t

v  the modified values of 
t

v  

  the learning rate of Adam algorithm 

  a smooth coefficient 

p  the probability of dropout for the neuron 

CiX  the complete features dataset of i th cell 

2R  goodness-of-fit 

n  the total sample number 

iy  the sampling average value 

I. INTRODUCTION 

Lithium-ion batteries have been widely deployed in electric 

vehicles (EVs) and energy storage systems of power grids 

due to their high energy/power density, no memory effect 

and long lifespan [1]. However, with the cyclic charging and 

discharging operations, battery’s capacity degradation and 

electrical performance deterioration can influence vehicle 

operation performance and safety. In particular, when the 

capacity decreases below 80% of its initial value, lithium-ion 

batteries turn to be unstable and degrade faster than before, 

implying that they reach end of life (EOL) [2], and the 

continued operation of batteries may lead to irreversible 

damage. As such, accurate diagnosis for battery health 

condition becomes an indispensable task [3]. In practice, a 

serviceable battery management system (BMS) is essential to 

ensure operating efficacy and battery safety [4]. One main 

function of BMS is to conduct inner status estimation of 

batteries, such as state of charge (SOC) and state of health 

(SOH) [5]. Accurate capacity information can supply an 

important foundation for SOC and SOH estimation, and also 

provide valuable indexes to end-users and battery 

manufactures [6].  

To now, extensive research has been conducted to improve 

capacity prediction accuracy of batteries. The conventional 

capacity estimation methods can be categorized into two types: 

model-based methods and data-driven methods [7]. Ref. [8] 

proposes a two-stage scheme for battery capacity estimation 

according to the variation of thermal dynamics. In the first 

stage, the estimation for battery core temperature and heat 

generation is implemented, and then a joint estimation for both 

SOC and capacity are exerted in the following stage. Ref. [9] 

builds a capacity fading model based on the sample entropy, 

which is employed to calculate the battery surface temperature 

in the charging process. Through considering the influence of 

heat generation on capacity attenuation, the particle filter (PF) 

is exploited to estimate the battery remaining capacity. Ref. 

[10] presents a data-driven diagnostic technique for capacity 

estimation based on Gaussian process regression (GPR), in 

which the voltage measurement over a short period of 

galvanostatic phase is considered as the model input. In [11], 

considering the consistency among cells connected in series, 

the variation characteristics of voltage are extracted from two 

different cycles by conducting the dynamic time warping 

algorithm. Based on the extracted feature, a three-step capacity 

estimation method with the theoretical foundation of shape 

invariance of the charging voltage is proposed to calculate the 

capacity difference between two adjacent cells. In these 

mentioned prediction methods, the estimated capacity value is 

severed as an intermediary for other state estimation. 

Considering the coupling relationship, joint estimation of 

capacity with other battery states, such as co-estimation of 

capacity and SOC, are usually carried out sequentially. 

For the co-estimation of capacity and SOC, some joint 

algorithms become attracted due to their satisfactory precision 

and robustness [12]. Based on effective electrical models such 



 

VOLUME XX, 2017 3 

as equivalent circuit model (ECM), a number of advanced 

filter algorithms (such as Kalman filter (KF) and PF) can then 

be adopted to conduct the joint estimation of battery status and 

model parameters [13]. In [14], a second-order resistance-

capacitance (RC) ECM is established, and the square root 

cubature KF is employed to estimate the SOC. Meanwhile, the 

capacity, as one of the key parameters of model, is identified 

by the genetic algorithm (GA). Ref. [15] proposes a multiscale 

dual H-infinity filter to estimate the SOC and capacity of 

battery in real time with different timescales for reaction to 

slow varying battery capacity and fast varying battery state. To 

address the different variation rates of model parameters, Ref. 

[16] presents a joint algorithm integrated by KF and the 

recursive least square (RLS) method to estimate SOC and 

capacity, in which the model parameters are adaptively 

updated by a vector-type RLS. For the sake of enhancing the 

estimation precision. Ref. [17] constructs a serially connected 

battery pack model based on a second-order RC ECM of cell. 

Then, a multiscale extended KF algorithm is employed to 

accurately estimate SOC, model parameter and capacity of 

single cell in battery packs. 

In addition to SOC, accurate estimation of capacity, as 

mentioned above, is also of importance for health diagnosis of 

battery. As an indicator of assessing the battery degradation 

status, SOH is usually indexed by the ratio of current 

maximum useful capacity over the rated value [18]. In [19], a 

fusion method incorporating partial incremental capacity (IC) 

analysis and a dual GPR model is proposed to estimate the 

SOH of lithium-ion batteries. To improve the SOH estimation 

accuracy and reliability, Ref. [20] extracts four feature vectors 

representing the degradation status of battery from the 

charging voltage curves. Consequently, the SOH prediction is 

attained via the well-tuned GPR model with the extracted 

features as the inputs. By incorporating the critical features 

derived from battery operation data set, Ref. [21] proposes a 

real-time estimator for remaining useful life (RUL) prediction 

based on the SVM model. In [22], the SVM model is 

constructed with a radial basis function kernel, and the feature 

variables are extracted from partial charging voltage curves to 

construct the training dataset. In addition, the kernel 

parameters of SVM model are optimized by the grid search 

method. Ref. [23] leverages the conjugate gradient method 

and multi-island GA to optimize the hyper parameters of GPR 

model, and the characteristic parameters of constant-current 

charging process are extracted as the healthy features by the 

IC analysis method. On this basis, the SOH estimation is 

attained by combing the extracted features and the optimized 

GPR model. In short, all of these data-driven methods need 

healthy features to establish a mapping relationship between 

SOH and feature variables. In other words, a reliable SOH 

estimation strongly requires proper feature extraction to 

perform qualified SOH diagnosis [24]. However, lithium-ion 

battery degradation is consecutive and generally involves 

hundreds to thousands of cycles, and the later degradation 

evolution is highly related with the former degradation 

information throughout these cycle operations. Moreover, the 

healthy features extracted from the charging and discharging 

profiles also show a specific variation trend with the aging. 

These variables can be regarded as a time series signal, of 

which the current values may exhibit long-term dependencies 

with historical values. Nevertheless, the conventional data-

driven methods, such as SVM and GPR, are inefficient to learn 

the long-term dependencies, thus it remains challenging to 

maintain high estimation accuracy for long-term capacity 

prediction [25]. 

Presently, deep learning network has received widely 

attention and has been progressively applied in the language 

modeling [26] and image recognition [27]. As a kind of deep 

learning network, long short-term memory recurrent neural 

network (LSTM-RNN) is employed to solve the problem with 

long-term dependences. LSTM-RNN can reserve the key 

information from the degradation data via effective learning of 

long-term dependence based on the specific gate [28]. Given 

long-term characteristic of battery degradation, LSTM-RNN 

may be a suitable solution to learn the long-term degradation 

trend of capacity variation. Ref. [29] exploits the LSTM-RNN 

to learn the long-term dependence of degraded capacity of 

supercapacitor, and the experimental results show that the 

LSTM-RNN can predict the RUL of the supercapacitor on the 

rest testing data with 2.61% root mean square error (RMSE). 

Ref. [30] employs the LSTM-RNN to predict RUL of lithium-

ion batteries. The elastic mean squared back-propagation 

algorithm and Monte Carlo simulation are respectively 

applied to adaptively optimize the network and generate a 

probabilistic RUL prediction. However, the LSTM-RNN in 

[29, 30] is trained based on the historical capacity degradation 

data, and then one- and multi-step forward RUL prediction is 

performed. In addition, Ref. [29] reveals that the capacity 

degradation trajectory of lithium-ion batteries is approximate 

to the linear degradation, thus the decline rate of capacity 

under the whole cycle life is similar. Nonetheless, the 

degradation rate of battery is significantly different in the 

beginning and ending stage of whole lifespan. Therefore, the 

prediction accuracy of capacity based on only partial 

degradation data for model training needs to be further 

analyzed. Furthermore, when incomplete offline data is 

available, whether the LSTM-RNN can also accurately predict 

the battery remaining capacity in the whole lifespan still needs 

to be investigated and validated.  

Motivated by this, the capacity prediction of lithium-ion 

batteries based on the LSTM-RNN is carefully conducted. 

Firstly, the LSTM-RNN is optimized based on the Adam 

optimization algorithm, and the dropout technology is 

employed to prevent the network from overfitting. Then, the 

optimized LSTM-RNN is exploited to achieve the capacity 

prediction of lithium-ion batteries. Whereupon, this paper 

conducts the validation and comparison of capacity prediction 

effectiveness of LSTM-RNN for the lithium-ion batteries 

from the following four aspects. (1) The influence of aging 

factors on the performance of capacity prediction for lithium-
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ion batteries based on LSTM-RNN is discussed. (2) The 

capacity prediction results based on the LSTM-RNN are 

compared with the prediction results of SVM, GPR and Elman 

NN. (3) Through one battery’s whole cycle life data for model 

training, others battery’s data are validated to examine the 

prediction performance of the built LSTM-RNN model. (4) 

The leave-one-out cross validation (LOOCV) method is 

applied to evaluate the performance of the LSTM-RNN with 

the aging factors as model inputs. 

The remainder of this paper is structured as follows. The 

battery life cycle test is introduced, and the experimental data 

are analyzed in Section II. Section III illustrates the detailed 

capacity prediction process of lithium-ion batteries based on 

LSTM-RNN. The validation and comparison of prediction 

results are elaborated in Section IV, and Section V concludes 

the study. 

II.  BATTERY AGING EXPERIMENTAL AND DATA 
ANALYSIS 

In this section, the cycle life experimental and the degradation 

data acquired from a huge cycling data repository are 

introduced. Based on the cycling data, the aging factors are 

extracted to represent the battery capacity variation. After that, 

the framework and process of capacity prediction are 

illustrated in a schematic diagram. 

A. BATTERY AGING EXPERIMENTAL AND CAPACITY 
DEGRADATION DATA 

In this study, the cyclic aging data of lithium-ion batteries are 

obtained from an open source experimental data repository 

[31], which collects the cyclic life tests of a variety of 

commercial LFP/graphite batteries (nominal capacity of 1.1 

Ah and rated voltage of 3.3 V). The upper and lower cut-off 

voltages of the battery are 3.6 V and 2.0 V, respectively. The 

charging policy follows a form of C1(Q1)-C2 mode, where C1 

and C2 denote the first and second constant current stage, and 

Q1 denotes the SOC at which the current changes. The second 

current step ends at 80% SOC, after that the cell is charged 

with 1C (C denotes the rate capacity value, i.e., 1.1) constant 

current (CC)-constant voltage (CV) mode, and the cells are 

discharged with 4C current. During the experiment, the 

surface temperature and internal resistance are measured and 

recorded. Note that the internal resistance measurement is 

conducted during charging at 80% SOC by imposing 10 pulses 

of ±3.6C current with the duration of 33 ms [31]. Seven cells’ 

data (labeled as Cells 1 to 7) are selected from this dataset to 

investigate the performance and effectiveness of the LSTM-

RNN model for capacity prediction. 

The curves of degradation capacity are shown in Fig. 1, 

which highlight that the degradation trajectories of four cells 

remain almost the same, indicating that the degradation 

mechanism is nearly consistent for the same type of lithium-

ion batteries. The cycle life experiments for all batteries are 

terminated when the batteries reached 80% of nominal 

capacity, i.e., 0.88 Ah. It can also be found that the degradation 

slope is relatively flat before 90% SOH. However, when the 

SOH drops less than 90%, the capacity degradation shows an 

exponential decline trend with faster dropping speed. Besides, 

the electric characteristics will gradually deteriorate during the 

aging process, the thermal characteristics of batteries will also 

vary with aging [32]. Next, the aging factors will be extracted 

from electric and thermal characteristics variation of the 

battery. 

 
FIGURE 1.  Capacity degradation curves of Cells 1 to 4. 

B. AGING FACTORS EXTRACTION AND ANALYSIS 

From the perspective of electric characteristics, one main 

change during degradation is that the internal resistance (IR) 

will gradually increase. During the battery aging process, the 

formation and thickening of the SEI film, the cathode 

electrolyte interface (CEI) formation and the internal structure 

disordering can lead to the increase of IR. However, the 

aforementioned issues cannot be measured directly; and by 

contrast, the measured IR, as a representative variable, will 

vary in a nonlinear manner relating to the capacity degradation 

[32]. As can be seen from Fig. 2, significant variation of IR 

does not obviously appear in the cycle of [1, 800] but with an 

exponential variation trend after cycle 800. The IR increase 

represents the capacity degradation to some extent with the 

form of inverse proportional function. In other words, the 

more obviously IR increases, the faster the capacity declines. 

Therefore, the battery IR, denoted by F1, can be selected as an 

aging factor.  

Considering the battery’s thermal characteristics, the 

surface temperature at each moment is recorded during the 

experiment. Due to the IR increase and active materials loss of 

contact caused by the current collector corrosion, binder 

decomposition and electrolyte loss, the generation of ohmic 

heat and the heat distribution inside battery differ greatly under 

the same charge/discharge C-rate when the battery ages [33]. 

Fig. 3 shows the temperature variation curves of Cell 1 at 

different cycles. It can be seen that the temperature shows an 

augmented trend with the increase of cycle number. Intuitively, 

the average temperature of each cycle is calculated to analyze 

the thermal characteristics of battery. The variation of average 

temperature with different cycle times is shown in Fig. 4. It is 

clearly observed that the average temperature increases 

progressively with the cycle experiment. Based on the 
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variation relationship of capacity and average temperature 

with the cycle number, it can be concluded that the average 

temperature can also represent the capacity degradation. 

Consequently, the average temperature of each cycle can be 

selected as another aging factor, denoted by F2. Except for the 

IR and temperature, the aging factors can also be extracted 

from the charge/discharge voltage profiles. Since the 

experimental battery in this study is discharged with constant 

current, the incremental capacity analysis during the 

discharging process is conducted. The discharging 

incremental capacity (DIC) curves at different cycles for Cell 

1 are shown in Fig. 5. In addition, Fig. 6 shows the variation 

curves of peak absolute value with cycle numbers for Cells 1 

to 4. As can be seen, the absolute value of peak decreases 

gradually with the increase of cycle number, implying that the 

absolute value of DIC peak point can effectively characterize 

the battery degradation. Hence, the absolute value of DIC peak 

can also be considered as one aging factor, called F3. Next step, 

the implied relationships between aging factors and capacity 

will be analyzed. 

 
FIGURE 2.  The variation curves of internal resistance with cycle numbers 

for Cells 1 to 4. 

 
FIGURE 3.  The temperature variation curves of Cell 1 at different cycles. 

 
FIGURE 4.  The evolution trend of average temperature with cycle 
numbers for Cells 1-4. 

 
FIGURE 5.  The variation curves of discharge incremental capacity at 
different cycle numbers for Cells 1. 

 
FIGURE 6.  The evolution trend of max DIC value with cycle numbers for 
Cells 1-4. 

C. CORRELATION ANALYSIS OF AGING FACTORS 
BASED ON GRA 

As discussed previously, the IR, average temperature and the 

absolute value of DIC peak, denoted as F1, F2 and F3, are 
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selected as the aging factors to characterize the capacity 

degradation. To further analyze the relationship between aging 

factors and capacity, we took cell 1 as an example, and the 

variation relationships between the aging factors and capacity 

with respect to cycle life are shown in Fig. 7 and Fig. 8, where 

the color scale represents the cycle life. As can be found, F1 

and F2 increase and F3 decreases with the capacity degradation. 

Additionally, in the early and middle phases of cycle life (1 to 

800 cycles), the capacity degrades with a slow speed, and F1 

remains almost unchanged; and in contrast, F2 increases 

obviously and F3 gradually decreases with the increase of 

cycle numbers. Comparatively, in the ending phase of cycle 

life (800 to 1100), the capacity degradation and the increase of 

F1 are faster, and the increase rate of F2 becomes slower and 

more stabilized; however, F3 still decreases obviously. It can 

be concluded that the change of F1 is not obvious, whereas the 

variation of F2 is relative larger in the early cycle life. In the 

later cycle life stage, the changes of F1 and F2 are opposite to 

that of the early stage. Furthermore, there exists obvious 

change in F3 throughout the whole cycle life. To sum up, a 

kind of mapping relationship between the aging factors and 

capacity really exists in different cycle life phases. In this 

study, the correlation between the aging factors and battery 

capacity is further evaluated by grey relational analysis (GRA). 

As a crucial method based on the grey system theory, GRA 

evaluates the correlation among the elements according to the 

similarity and dissimilarity of their variation trend. The 

quantitative analysis based on the GRA is to obtain the 

correlations between reference and comparative sequences, as 

detailed in [34]. Through GRA, the correlation grades between 

aging factors and capacity of each cell are acquired, as shown 

in Table I. Particularly, the correlation grade of F2 is greater 

than 0.75 for all the cells, which means the selection of aging 

factors is feasible for capacity estimation. 
TABLE I 

GREY RELATIONAL GRADES BETWEEN FEATURES AND CAPACITY 

Aging Factors 
Battery Number 

Cell 1 Cell 2 Cell 3 Cell 4 

F1 0.5883 0.5902 0.5691 0.5761 

F2 0.7646 0.7819 0.7818 0.7708 

F3 0.5769 0. 6022 0.5793 0.5873 

 
FIGURE 7.  The variation relationship between capacity and F1 and F2 with 
cycle numbers of Cell 1. 

 
FIGURE 8.  The variation relationship between capacity and F3 with cycle 
numbers of Cell 1. 

D. THE FRAMEWORK AND FLOWCHART FOR 
CAPACITY PREDICTION 

Fig. 9 shows the framework and flowchart of capacity 

prediction based on the LSTM-RNN model. As can be seen, 

the whole prediction process contains the experimental data 

processing, the model construction and the capacity prediction 

modules. In the data processing module, the aging factors data 

set  1 2 3, ,i i i iX F F F= , where the subscript i  represents the 

cycle number, is structured based on the extracted 

characteristic features from the aging experimental data. The 

sample set is divided into the training set and the test set. In 

the model construction and optimization module, the 

architecture and network layers of LSTM-RNN is firstly 

designed, and the model parameters are initialized. Then, the 

aging factors data set iX  and the corresponding capacity 

value iy  in the training set are considered as the LSTM-RNN 

model’s input and output, respectively. The optimal model 

parameters are searched via test and cross validation. In the 

capacity prediction and error analysis module, similarly, the 

aging factors data set 
iX   in the test set is inputted into the 

well-tuned model, and then the output ˆ
iy  is collected as the 

prediction value of battery capacity. By calculating evaluation 

criteria and comparing the predicted value ˆ
iy  with the 

observed value 
iy

, the prediction effectiveness of LSTM-

RNN model is assessed. 

III. METHODOLOGIES 

This section elaborates the mechanism and derivation of 

related model and algorithms applied for the capacity 

prediction, including the LSTM-RNN, the Adam optimization 

algorithm and the dropout technique. In addition, the 

evaluation criteria and LOOCV method are addressed to 

evaluate the performance of LSTM-RNN based capacity 

estimation algorithm. 
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FIGURE 9.  The framework and flowchart of capacity prediction. 

A.  THE ARCHITECTURE OF LSTM-RNN 

LSTM-RNN is a kind of specialized RNN for solving 

vanishing gradient problems and gradient explosion problems 

with long-term dependency [35]. Compared with the simple 

RNN, the LSTM-RNN adds a state c  in the hidden layer to 

keep the long-term state, and this newly added state c  is 

called the cell state [29]. The structure of LSTM-RNN is 

shown in Fig. 10. Note that the subscript t  of each vector 

represents the moment state, which denotes the generality of 

LSTM-RNN applications. For the capacity prediction of 

lithium-ion batteries, the moment state means the cycle 

number. At moment t , there are three inputs for the LSTM-

RNN: the input variable 
t

x  of the current time network, the 

output value 1th −  and the cell state 1tc −  in the previous step. 

Meanwhile, the LSTM-RNN has two outputs: the output value 

th  and cell state tc  at current moment t .  

Similar with classic RNNs, LSTM-RNN is composed of the 

input layer, hidden layer and output layer. However, the 

hidden layer in LSTM-RNN is with a specialized memory 

mechanism, instead of a general neuron. The internal state of 

LSTM-RNN at moment t  is called tc , which is critical to the 

network and locates at the heart of each neuron that is linearly 

activated. The internal state can be regarded as a carrier, to 

which the information has been added or from which has been 

removed. This information processing can be carefully 

regulated by the so-called gate [30]. The gate is a distinctive 

feature of LSTM-RNN, which actually denotes the fully 

connected layers. There are three gates, namely, the input gate, 

forget gate and output gate, in a LSTM-RNN architecture. 

Any read or modification operation can be achieved through 

controlling of these three gates. Additionally, the information 

selection of gate is mainly conducted by the sigmoid function, 

tanh function or matrix multiplication [24]. 

ft

+

it at ot

ct-1 ct

ht-1 xt ht

tanh

Forget 

gate
Input 

gate

Output 

gate

 
FIGURE 10.  The network architecture of LSTM. 

It can be seen from Fig. 10 that the first step of applying the 

LSTM-RNN is to decide what information should be 

discarded by the forget gate, which reads 
1t

h
−

 and 
t

x , and 

outputs a value tf  between 0 and 1, where the upper bound 1 

indicates that the information should be totally kept; and by 

contrast, the lower bound 0 means that it should be thoroughly 

discarded. The next step is to determine what information 

should be stored in the memory gate. One part of the input gate 

ti , called the sigmoid layer, decides what information should 

be updated, and another part, called the tanh layer, creates the 

candidate vector 
t

a , which is added to the current cell state. 

Finally, by means of the updated cell state tc  and the value to  

of output gate, the output of LSTM-RNN can be calculated. 

Based on the previous moment output 
1t

h
−

 and the input of 

current moment 
t

x , the state values of three gates and the 

candidate vector 
t

a  can be formulated as: 

 

1

1

1

1

( [ , ] )

( [ , ] )

tanh( [ , ] )

( [ , ] )

t f t t f

t i t t i

t c t t c

t o t t o

f W h x b

i W h x b

a W h x b

o W h x b







−

−

−

−

=  +


=  +


=  +
 =  +

  (1) 

where 
1t

h
−

 is the last output of cell state, 
t

x  is the current cell 

input,   represents the sigmoid function, 
fW  is the weight 

matrix of forget gate, and 
fb  is the bias of forget gate; 

iW  

and 
cW  denote the weight matrix of sigmoid layer and tanh 

layer of input gate, respectively; 
ib  and 

cb  represent the bias 

of sigmoid layer and tanh layer of input gate; 
oW  and 

ob  

denote the weight matrix and bias of the output layer. When 

the state values of each gate are determined, the current cell 

state tc  and the output of LSTM-RNN can be calculated, as: 

 1

tanh( )

t t t t t

t t t

c f c i a

h o c

−=  + 


= 

 (2) 

Based on the above discussion, LSTM-RNN can reach the 

purpose of learning the long-term dependences of capacity 

degradation and performing one- or multi-step forward 

prediction. Next, the training algorithm will be detailed to 
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search the optimal weight matrices and biases for capacity 

prediction. 

B. OPTIMIZATION TRAINING FOR LSTM-RNN 

In this study, the Adam optimization algorithm is employed to 

optimize the parameters of LSTM-RNN. The Adam algorithm 

is a first-order gradient optimization method that mainly 

accounts for optimizing the gradient of stochastic objective 

function based on adaptive estimates of lower-order moments. 

Compared with traditional random gradient descent 

algorithms, it advances higher computational efficiency, lower 

RAM occupation, less turning labor and better dominance in 

solving large-scale parameter optimization. Ref. [36] 

experimentally validates that the Adam algorithm is more 

efficient in solving deep learning problems, compared with the 

RMSprop [37] and AdaGrad algorithm [38]. The parameter 

updating process of Adam algorithm is detailed as follows. 

Firstly, at step t , the gradient of optimization objective is 

calculated, as: 

 
1

( )
t t

g J



−

=    (3) 

where ( )J   represents the objective function with  , 
t

g  

denotes the gradient with 
1t


−

. At step t , the exponential 

moving average value of both gradient and squared gradient 

t
m  and 

t
v , are respectively calculated, as: 
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where 
1

  and 
2

  denote the exponential decay factors for 

weight distribution and influence incurred by squared gradient. 

In general, the initial value of 
0

m  and 
0

v  is set to zero, 
t

m  

and 
t

v  are adjusted to zero in the initial stage of training 

process. Thus, a modification will be applied to reduce the 

training error, as: 

 1

2

ˆ (1 )

ˆ (1 )

t t

t t

m m

v v





= −


= −

 (5) 

where ˆ
t

m  and ˆ
t

v  denote the modified values of 
t

m  and 
t

v . 

The parameters are updated as: 

 
1

ˆ ˆ( )
t t t t

m v   
−

= −  +  (6) 

where   denotes the learning rate, and   expresses the 

smooth coefficient for avoiding the denominator from zero. 

The remaining parameters of Adam algorithm are set to 

1
0.9 = , 

2
0.999 = , =0.001 , and 

-810 = . 

C.  DROPOUT TECHNOLOGY TO PREVENT LSTM-RNN 
FROM OVERFITTING 

Overfitting refers to the model’s ability of fitting the training 

data set well but showing inferior fitting effect in the test data 

set [29]. To address this issue, the dropout technique is 

employed to prevent the LSTM-RNN from overfitting [39]. 

Generally, the error back-propagation method is applied to 

iteratively adjust the parameters for each Mini-Batch in the 

RNN training process. The key idea of dropout technique is 

that it removes the neurons from the layers of RNN during the 

training process to prevent the model from overfitting. The 

neurons along with all its connections are temporarily 

discarded from the network, as shown in Fig. 11. It is 

essentially a random process during which one stochastic 

neuron is selected to remove. Therefore, each neuron will be 

retained with a fixed probability p , which is set to 0.4 in this 

paper. It can be seen from Fig. 11 (b) that the NN model after 

applying the dropout technique is equivalent to sampling a 

condensed network from it. The condensed network consists 

of all remaining neurons and their connections after removing 

the discarded neurons. Hence, training a neural network with 

dropout can be regarded as training many condensed networks 

with extensive weight sharing, where each condensed network 

is trained rarely [30]. By this manner, the network becomes 

less sensitive to the specific weights of neurons, which in turn 

results in that the network is with the better generalization 

capability.  

(a) (b)
 

FIGURE 11.  The schematic diagram of dropout neural network model. (a) 

standard neural network with 1 hidden layer; (b) neural network after 
applying Dropout technology. 

D.  LEAVE-ONE-OUT CROSS VALIDATION 

In this paper, the LOOCV method is employed to verify the 

performance of the LSTM-RNN for capacity prediction [40]. 

The schematic diagram of LOOCV applied in this study is 

illustrated in Fig. 12. The complete feature data set contains 

four subsets 1CX , 2CX , 3CX and 4CX  which are combined 

with four cells’ aging factors extracted from the experimental 

data. Each subset is composed of three features vectors

 1 2 3, ,F F F , namely IR, average temperature and absolute 

value of DIC peak. As illustrated in Fig. 1, the degradation 

curves of four cells are similar, indicating the degradation 

mechanism is coincident for one type batteries. Therefore, it is 

feasible to train model with one cell’s data and test with others 

cells’ data for validating the prediction effectiveness of the 

proposed LSTM-RNN model. In this work, we suppose one 

cell’s data as the test dataset and compile other three cells’ data 

together as the training dataset, as shown in Fig. 12. Since the 

validation datasets are not imported in the training process, the 

trained model can provide an approximately unbiased 

estimation [13]. The training and test process is repeated four 

times, and thus each battery cell is used as the test dataset, and 

we can conclude that it is equivalent to perform a 4-fold cross 

validation for the LSTM-RNN model. After each iteration, the 

prediction error and evaluation criteria are calculated to assess 

the model performance. Next, the evaluation criteria applied 

in this study are introduced. 
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1 2 3 4

1 2 3 4

1 2 3 4
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Data Set    1 1 2 2 3 3 4 4, [ , ],[ , ],[ , ],[ , ]C C C C C C C CX Y X Y X Y X Y X Y=

 
FIGURE 12.  The schematic of leave-one-out cross validation process. 

E.  THE PERFORMANCE EVALUATION CRITERIA 

To assess the prediction performance, the maximum absolute 

error (MAE), mean square error (MSE), RMSE and 

goodness-of-fit 2R  are considered as the evaluation criteria. 

MAE, MSE and RMSE evaluate the average prediction 

performance, of which the smaller value implies better 

prediction precision. By contrast, 2R , varying within [0, 1], 

evaluates the correctness of trained model, and the higher 

value (closer to 1) of 2R  indicates more similar prediction 

result, compared to the real attribution. These four criterions 

are formulated as:  
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where n  represents the total sample number; iy  and ˆ
iy  are 

the real value and predicted value of target variable for the ith 

sample, respectively; and iy  represents the average value.  

In the next step, a series of validations are conducted, 

followed by the detailed comparison and discussions. 

VI.  RESULTS AND DISCUSSION 

In this study, four cells’ data are employed to validate the 

effectiveness of the proposed LSTM-RNN model for capacity 

prediction. The capacity prediction results under different 

conditions are discussed, including the influence of aging 

factors for model inputs, the comparisons of LSTM-RNN with 

traditional SVM, GPR and Elman NN, as well as the 

prediction results in terms of different cells’ data for training.  

A. INFLUENCE WITH AGING FETURES AS MODEL INPUT 
ON THE PREDICTION PERFORMANCE  

To analyze the influence on the LSTM-RNN model caused by 

the aging factors as model inputs, the historical capacity 

degradation data and extracted aging factors are respectively 

employed as the inputs for model training. When considering 

the historical capacity data as model inputs during the training 

process, the model output is the observed capacity value of the 

next cycle corresponding to the current input cycle. In contrast, 

the observed capacity value of current cycle is regarded as 

model output while taking the aging factors as model input. 

Therefore, the data length of prediction results has one cycle 

difference with different model input. To make the prediction 

results of different features as model input are consistent, the 

prediction with historical capacity data as model input starts 

from the last cycle of training set. In addition, when the 

LSTM-RNN model executes one- or multi-step forward 

prediction with historical capacity data as model input, it will 

obtain different predicted values with disparate variables for 

state update of the network. For comparison, the observed 

value and the predicted value of current cycle are respectively 

exploited to update the network state for next cycle’s 

prediction. The prediction results of taking observed value and 

predicted value to update state are synchronously compared 

with the prediction results with the aging factors as model 

input.  

Taking Cell 1 as an example, 60% of cycle life data is 

employed for model training, and the rest 40% is utilized for 

test. The predicted results and corresponding errors are shown 

in Figs. 13 and 14. We can find that when the predicted value 

is employed to update the network state, all the predicted 

results remain almost the same, indicating that the model 

cannot identify the degradation pattern in this case. When the 

observed value is employed to update the network state, the 

predicted results show a slight degradation trend in the global 

view but distinctly deviate from the observed capacity 

degradation trajectory. When the aging factors are taken as the 

model input, the capacity degradation trend can be well 

tracked by the LSTM-RNN model, and the maximum 

prediction error is less than 2%, as show in Fig. 14. Note that 

the battery degradation can be divided into two stages 

according to the capacity decline rate in this study. One stage 

is a linear degradation with a slower decline rate, e.g., the cycle 

range [1, 800], and the other stage is an exponential 

degradation with a faster decline rate, such as cycles 800 to 

1100. The experimental results show that when the 

degradation rate of capacity is distinctly different in the early 

and later of cycle life period, the LSTM-RNN cannot identify 

the battery degradation pattern with the historical capacity data 

as the model input. However, as long as some effective aging 

factors such as the IR and temperature of battery can be 

extracted as the input for model training, the LSTM-RNN can 

predict the remaining capacity of battery with preferable 

accuracy and strong robustness. 

To further analyze the influence of aging factors on the 

capacity prediction, the absolute value of DIC peak is 

extracted as one aging factor, namely, F3. The prediction 

results of Cell 1 with different aging factors as the model 

input are shown in Figs. 15 and 16, respectively. As can be 

seen, all the prediction values with different aging factors as 

the model inputs can well track the capacity degradation 

trajectory. As can be obviously seen from Fig. 16 (b), when 
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F3 is added as the model input, the maximum prediction error 

is 1.78%, which does not decrease much, compared with the 

maximum error with only F1 and F2 as the model inputs. 

Moreover, when the model input is only F3, the maximum 

prediction error reach 3.02%, as shown in Fig. 16 (c). Note 

that the extraction of F3 requires differential and 

interpolation calculation, significantly increasing the 

computation burden and the algorithm’s complexity. 

Furthermore, constant current charging/discharging 

operations are difficult to encounter in practical applications. 

Compared with F1 and F2 that can be directly measured, the 

extraction of F3 is more complex. To sum up, the subsequent 

discussion of capacity prediction in this study is based on 

only F1 and F2 as the model inputs hereinafter. 

 
FIGURE 13.  The capacity prediction results of Cell 1 with different model 
input and conditions for state updating of network. 

 
FIGURE 14.  The capacity prediction errors of Cell 1. (a) The predicted 
errors with predicted value for state update; (b) the predicted errors with 
observed value for state update; (c) the predicted errors with aging 
factors as model input. 

 
FIGURE 15.  The capacity prediction of Cell 1 with different aging factors as 
model input. 

 
FIGURE 16.  The capacity prediction errors of Cell 1. (a) The predicted errors 
with F1 and F2 as model input; (b) The predicted errors with F1, F2 and F3 as 
model input; (c) The predicted errors with only F3 as model input. 

B. COMPARISON OF PREDICTION RESULTS WITH 
DIFFERENT METHODS 

To further evaluate the performance of LSTM-RNN model, 

the single GPR, SVM and Elman NN algorithms are 

respectively applied for the capacity prediction of Cell 2. For 

the sake of fair comparison, 60% of the cycle data (1 to 686 

cycles) are utilized to train the model, and the remaining 40% 

data (687 to 1144 cycles) are employed to verify the precision. 

The aging factors are taken as the model inputs, and the 

predicted results and errors are shown in Figs. 17-18 and Table 

II. It can be seen from Fig. 17 that the LSTM-RNN can 

precisely track the degradation trajectory of capacity in the 

whole test dataset and can achieve the preferable prediction 

accuracy. Although the other three methods can roughly 

reflect the variation trend of capacity, the prediction errors are 

far more than that of LSTM-RNN. From Table II, we can find 

that the MAE of GPR, SVM and Elman NN are respectively 
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6.85%, 5.86% and 4.81%, in contrast to that of LSTM-RNN 

with 1.95%. Meanwhile, the MSE and RMSE of GPR, SVM 

and Elman NN are one order magnitude more than that of 

LSTM-RNN. From the perspective of prediction errors and 

accuracy, the LSTM-RNN algorithm outperforms GPR, SVM 

and Elman NN algorithms. 

During the model training and optimization process, the 

consumption time for each iteration is recorded. The average 

consumption time of each method in the model training is 

calculated, as show in Table II. As can be seen, the time cost 

of Elman NN is shortest, which is 32.93 s, followed by the 

LSTM-RNN, which lasts 56.46 s. Owing to the calculation of 

kernel functions and optimization of complex hyper-

parameters, the SVM and GPR respectively cost 193.55 s and 

153.56 s for model training, which are much longer than that 

of LSTM-RNN. It is worth noting that the capacity 

degradation rate gradually increases with the cycling 

experiment, and the prediction errors of GPR, SVM and 

Elman NN also gradually increase, as show in Fig. 18. The 

results indicate that the GPR, SVM and Elman NN are not 

qualified for the time series prediction with large sample data 

and long-term dependence. To sum up, the proposed LSTM-

RNN algorithm not only exhibits higher prediction accuracy 

and faster operation, but also shows more robustness in 

predicting capacity degradation with long-term dependence. 
TABLE II  

CAPACITY PREDICTION ERRORS FOR CELL 2 WITH DIFFERENT METHODS  

Methods 

Evaluation Criteria 

MAE 
(%) 

MSE 
(10-5) 

RMSE 
(%) 

Average Time 
Cost (s) 

LSTM-RNN 1.96 7.81 0.88 56.46 

GPR 6.85 140 3.81 153.56 

SVM 5.86 100 3.17 193.55 
Elman NN 4.81 25.8 1.61 32.93 

 

 
FIGURE 17.  The prediction results for Cell 2 with different methods. 

 
FIGURE 18.  The prediction errors for Cell 2 with different methods. 

C. CAPACITY PREDICTION WITH SINGLE BATTERY 
DATA 

To further validate the performance of LSTM-RNN for 

capacity prediction, the experimental data of another three 

cells, i.e., Cells 5, 6, and 7, are analyzed. Similarly, 60% cycle 

data are employed to train the model for each single battery; 

in other words, the prediction of Cells 5 to 7 starts at cycle 617, 

554 and 564, respectively. Note that the aging factors, which 

are exploited for the LSTM-RNN model input, are only the IR 

and average temperature. The prediction results and errors of 

Cells 5 to 7 are shown in Figs. 19 to 21 and listed in TABLE 

III. As can be seen, the maximum prediction error of these 

three batteries is 2.54%, which is acceptable for capacity 

prediction. It can also be seen from Figs. 19 to 21 that the 

prediction error gradually increases with the increment of 

capacity degradation but declines quickly at the EOL of 

battery. The prediction error reveals that the LSTM-RNN can 

better predict the battery capacity in the whole cycle lifespan 

with the aging factors as the model inputs. In addition, the 

MSE and RMSE for these three cells are 1.29×10-4, 5.24×10-

5, 2.22×10-4, and 1.14%, 0.72%, 1.49%, respectively; 

manifesting that the proposed LSTM-RNN model leads to 

preferable prediction performance. The 2R  of Cells 5 to 7 are 

respectively 0.9704, 0.9797 and 0.9241, which illustrate the 

prediction value is holistically consistent with the real capacity. 

To sum up, by using the aging factors as the model inputs, the 

LSTM-RNN can predict the battery capacity with preferable 

accuracy. 
TABLE III  

CAPACITY PREDICTION ERRORS FOR CELLS 5 TO 7 

Battery 

Number 

Error Criterion 

MAE (%) MSE (10-4) RMSE (%) R2 

Cell 5 2.04 1.29 1.14 0.9704 

Cell 6 1.44 5.24 0.72 0.9797 

Cell 7 2.54 2.22 1.49 0.9241 
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FIGURE 19.  The capacity prediction of Cell 5. (a) The capacity prediction results; (b) The prediction error. 

 
FIGURE 20.  The capacity prediction of Cell 6. (a) The capacity prediction results; (b) The prediction error. 

 
FIGURE 21.  The capacity prediction of Cell 7. (a) The capacity prediction results; (b) The prediction error. 

D. CAPACITY PREDICTION WITH MULTIPLE BATTERY 
DATA 

To analyze the capability of degradation mechanism 

identification for the same type battery based on the LSTM-

RNN model, we employed the whole cycle life data of Cell 1 

as the training data and the other cell’s data for test. Fig. 22 

and Table IV sketch the prediction results and corresponding 

errors. As shown in Fig. 22, the capacity degradation 

trajectories of Cells 2 to 4 are well tracked by the LSTM-RNN 

model. The MAE is 1.56%, 2.00% and 1.01%, respectively. 

From Table IV, we can find that the MSE and RMSE of Cell 

3 estimation are the largest, i.e., 3.61×10-5 and 0.60%; whereas 

the 2R  is least, which is 0.9690. It can be obviously seen 

from Fig. 2 that the IR value of Cell 3 is the most among the 



 

VOLUME XX, 2017 13 

four cells when reaching its EOL, and its value is about 0.001 

ohm larger than that of the other three cells. It can also be 

found from Fig. 4 that the average temperature of Cell 3 is 

the least at every cycle. The slight difference in the aging 

factors results in larger capacity prediction error of Cell 3 

than those of Cells 2 and 4. Nevertheless, the prediction 

errors of Cells 2 and 4 are mostly less than 1%, except some 

individual points where the error is relative larger. The MSE 

and RMSE of Cells 2 and 4 are less than 2.70×10-5 and 0.51%, 

which can be regarded as a preferable accuracy for capacity 

prediction. Moreover, the 2R  of Cells 2 and 4 are 0.9872 and 

0.9835, demonstrating that the predicted values are highly 

consistent with the observed values. In summary, the 

experimental results manifest that even only the complete 

cycle life data of one cell are employed to train the model, 

the LSTM-RNN can still accurately predict the capacity of 

other batteries with the same type. 
TABLE IV  

CAPACITY PREDICTION ERRORS FOR CELLS 2 TO 4 

Training Testing 
Error Criterion 

MAE (%) MSE (10-5) RMSE (%) R2 

Cell 1 Cell 2 1.56 2.64 0.51 0.9872 

Cell 1 Cell 4 2.00 3.61 0.60 0.9690 

Cell 1 Cell 5 1.01 2.53 0.50 0.9835 

 

 
FIGURE 22.  The capacity prediction results and error of Cells 2 to 4 with data of cell 1 for training. (a)-(b) the prediction results and error of Cell 2; (c)-
(d) the prediction results and error of Cell 3; (e)-(f) the prediction results and error of Cell 4. 

E. THE VALIDATION OF CAPACITY PREDICTION BASED 
ON LOOCV 

According to the LOOCV principle shown in Fig. 12, the data 

of four cells are randomly combined into one group, and thus 

they are divided into four data group, each of which contains 

a training dataset and a test dataset. In this study, the training 

dataset is assembled from three cells’ data, and the remaining 

cell’s data is utilized for test. This validation process is 

repeated for four times until each cell is employed for test in 

turn. Therefore, a 4-fold cross validation is performed for the 

LSTM-RNN model.  

The validation results of capacity prediction are shown in 

Fig. 23, and the corresponding errors are illustrated in the Fig. 

24 and Table V. As can be seen from Fig. 24, the maximum 

prediction errors of Cells 1, 2 and 4 are lower than 2%, 

whereas that of cell 3 reaches 2.84%. The MSE, RMSE and 
2R  of Cell 3 are 2.84×10-5, 0.50% and 0.9787, respectively. 

It is worth noting that the prediction error of Cell 3 is the 

largest among those of the four cells. This prediction results 

are in line with the previous conclusion that the slight 

difference in the aging factors can lead to larger prediction 

error, as drawn in Section 4.4. Compared with the prediction 

results of Cell 3 with only the data of Cell 1 for model training, 

when the data of Cells 1, 2 and 4 are employed for training, 

the prediction accuracy is not significantly improved, as 

shown in Fig. 24 (c) and Table V. It can be therefore concluded 

that increasing the amount of training data cannot distinctly 

improve the prediction accuracy. Furthermore, the 

experimental results indicate that when the prediction model 

is fixed, the capacity prediction accuracy is not much related 

to the amount of training data but depends on the effectiveness 

of the extracted aging factors. It can be seen from Fig. 23 that 

the LSTM-RNN model can accurately predict the global trend 

of capacity degradation, whereas the predicted values 

fluctuate in the vicinity of the observed values. In addition, the 
2R  of Cells 1, 2, and 4 are 0.9957, 0.9955 and 0.9960, which 
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are quite close to 1, highlighting that the predicted values are 

very similar to the observed values. It can be noted that the 

capacity prediction for Cells 1 to 4 is attained based on 

different datasets for model training, and the maximum 

prediction error is less than 3%, highlighting that the proposed 

model is stable and reliable. To sum up, the experimental 

results manifest that when the effective aging factors are 

extracted for model training, the LSTM-RNN model can 

precisely learn the degradation pattern of battery and predict 

the battery capacity with preferable accuracy. 

TABLE V  

CAPACITY PREDICTION ERRORS FOR CELLS 2 TO 4 

Battery 

Number 

Error Criterion 

MAE (%) MSE (10-5) RMSE (%) R2 

Cell 1 1.74 0.75 0.27 0.9957 

Cell 2 1.95 0.92 0.30 0.9955 

Cell 3 2.84 2.48 0.50 0.9787 

Cell 4 1.03 0.61 0.25 0.9960 

 

 
FIGURE 23.  The capacity prediction results of Cells 1 to 4 based on LOOCV. (a) the prediction results of cell 1 with data of Cells 2, 3 and 4 for training; 
(b) the prediction results of Cell 2 with data of Cells 1, 3 and 4 for training; (c) the prediction results of Cell 3 with data of Cells 1, 2 and 4 for training; (d) 
the prediction results of Cell 4 with data of Cells 1, 2 and 3 for training. 

 
FIGURE 24.  The capacity prediction error of Cells 1 to 4 based on LOOCV. (a)-(d) the prediction errors of Cells 1 to 4. 
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VI.  CONCLUSION 

The key challenge of capacity prediction for lithium-ion 

batteries based on data-driven methods lies in effective 

extraction of key aging factors and accurate modeling of the 

long-term dependences of capacity degradation. In this paper, 

the LSTM-RNN algorithm is employed to construct the data 

driven-based capacity prediction for lithium-ion batteries. To 

improve the prediction performance of LSTM-RNN model, 

the Adam optimization algorithm is leveraged to find the 

optimal model parameters, and the dropout technique is 

exploited to prevent the network from overfitting. The 

reliability and robustness of LSTM-RNN for capacity 

prediction is validated based on the leave-one-out cross 

validation. The experimental results validate the LSTM-RNN 

model can well track the nonlinear capacity degradation 

trajectory. Meanwhile, even when only one battery data is 

employed for model training, the capacity prediction error of 

other cells is still less than 2%. Moreover, two conclusions can 

be drawn based on the leave-one-out cross validation. Firstly, 

when different training and test dataset are employed, the 

LSTM-RNN model can accurately predict the battery capacity 

with a maximum error of 2.84%, manifesting that the 

proposed method has preferable prediction accuracy and 

strong robustness. Secondly, when the model can learn the 

capacity degradation pattern in the whole lifespan of battery, 

increasing the amount of training data does not distinctly 

reduce the prediction error. The prediction accuracy mainly 

depends on the reliability and validity of the extracted aging 

factors. This work highlights the feasibility of applying the 

LSTM-RNN to predict capacity of lithium-ion batteries.  
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