
C Minor: a Semantic Publish/Subscribe Broker for
the Internet of Musical Things

Fabio Viola∗ Q , Luca Turchet†, Francesco Antoniazzi∗‡ and György Fazekas† Q
∗University of Bologna, Bologna, Italy

Email: {name.surname}@unibo.it
†Queen Mary University of London, London, United Kingdom

Email: {luca.turchet,g.fazekas}@qmul.ac.uk
‡Centro Nazionale Tecnologie Informatiche e Telematiche (INFN CNAF), Bologna, Italy

Abstract—Semantic Web technologies are increasingly used
in the Internet of Things due to their intrinsic propensity to
foster interoperability among heterogenous devices and services.
However, some of the IoT application domains have strict
requirements in terms of timeliness of the exchanged messages,
latency and support for constrained devices. An example of these
domains is represented by the emerging area of the Internet of
Musical Things. In this paper we propose C Minor, a CoAP-based
semantic publish/subscribe broker specifically designed to meet
the requirements of Internet of Musical Things applications, but
relevant for any IoT scenario. We assess its validity through a
practical use case.

Keywords—Internet of Musical Things; Smart musical instur-
ments; Smart spaces; Semantic Web; Context-aware computing.

I. INTRODUCTION

In the end of the eighties, a visionary sentence by Mark
Weiser [1] put the basis for the current Internet of Things
(IoT), definition appeared for the first time only ten years later
[2]. Weiser stated that ”the most profound technologies are
those that disappear” [1] and this is very close to what the
IoT is building around us. Many are the application domains
where the IoT is employed and several are the steps that
brought to the Internet of Things (i.e., pervasive or ubiquitous
computing [3], context-aware computing [4]), but one thing
remained unchanged: the central role of the context. Abowd
et al. provided a definition of context that is the one most
commonly accepted in literature: ”context is any information
that can be used to characterize the situation of an entity. An
entity is a person, place, or object that is considered relevant
to the interaction between a user and an application, including
the user and applications themselves” [4]. The Internet of
Things is gradually evolving towards a new direction known
as Semantic Web of Things [5], where the main focus is on
the adoption of technologies belonging to the area of Semantic
Web [6]. The Semantic Web was born to transform the Web
from a repository of human-readable information into an entity
that allows for the machine-understandability of data. This
vision is becoming reality thanks to a layered structure known
as Semantic Web stack. The main components of this stack
allow: 1) the univocal identification of resources thanks to
IRI (International Resource Identifiers); 2) the representation
of data as a set of triples thanks to RDF (Resource Description
Framework) [7]; 3) the definition of a vocabulary to clearly
state the meaning of represented data by the means of RDFS
(RDF Schema) [8] and OWL (Web Ontology Language) [9]; 4)

the storage and retrieval of data via the SPARQL Update [10]
and Query languages [11].

Internet of Things and Semantic Web evolved indepen-
dently, and the various attempts to combine the strengths of
the latter (e.g., simple data representation formalism, machine-
understandability and disambiguation of meaning) with the re-
quirements of the IoT (e.g., scalability, timeliness and support
for constrained devices) revealed themselves to be ambitious
tasks, which are still ongoing. In particular, the biggest issue
of today’s IoT is well resumed by the word fragmentation.
The IoT scenario, in fact, is currently characterized by high
heterogeneity of devices, services and protocols, which is an is-
sue limiting the interoperability [12]. Semantic Web standards
allow one to rely on a common representation of data based on
shared and agreed ontologies, and provide a powerful mecha-
nism to solve the problems of discoverability and orchestration
of services [13]. Among the hundreds of communication proto-
cols with different aims, lightweigth protocols for machine-to-
machine (M2M) communication (e.g., CoAP, MQTT, AMQP)
are gaining momentum for their ability to support constrained
devices thanks to a binary representation of messages, a small
code footprint, and the implementation of paradigms such as
publish/subscribe or resource/observe [14], [12]. This allows
one to build reactive applications characterized by a constant
evolution of the context. However, the Semantic Web stack
is oriented towards more static scenarios, where information
evolves at a lower rate [15], making challenging bridging these
two worlds.

In this paper we exploit a lightweight IoT protocol for
M2M communication, the Constrained Application Protocol
(CoAP) [16], to build a semantic context broker, named C Mi-
nor, which is suitable for fog computing applications involving
constrained devices [17]. C Minor leverages the authors’
experience on the development of semantic publish/subscribe
brokers (e.g., for the Smart-M3 interoperability platform [18],
[19] and the SPARQL Event Processing Architecture [15]) for
context-aware and IoT applications [20], [21]. The proposed
approach combines the expressive power of Semantic Web
technologies (RDF, RDFS, OWL and SPARQL) with the ad-
vantages of a top-class IoT protocol such as CoAP (binary data
sent over UDP, resource/observe interaction pattern). We argue
that this approach puts the basis for the efficient adoption of
semantics on constrained devices while still granting backward
compatibility with the old SPARQL 1.1 protocol.

To assess the validity of our approach, we propose an



evaluation of C Minor and a proof of concept based on one
of the most challenging IoT scenarios: the Internet of Musical
Things (IoMusT) [22]. According to the proposal of Turchet
and colleagues, the IoMusT relates to the network of physical
objects (Musical Things) dedicated to the production, interac-
tion with or experience of musical content. Musical Things
embed electronics, sensors, data forwarding and processing
software, and network connectivity enabling the collection and
exchange of data for musical purpose. A Musical Thing can
take the form of a smart musical instrument [23], or any other
smart device utilized to control, generate, or track responses to
music content. The technology proposed here may be proved
particularly useful in IoMusT scenarios where several actors
are involved in the music creation process, such as audience
members using large-scale participatory live music systems. In
such scenarios it is indeed essential to reduce the transmission
bandwidth consumption.

The remainder of the paper is organized as follows: in
Section II we propose an overview of the state of the art.
In Section III the architecture of C Minor is presented, while
Section IV contains the results of a preliminary evaluation.
Conclusions and future works are discussed in Section V.

II. RELATED WORK

The Internet of Things is a research area that is currently
being applied to many application domains with very different
requirements. Among these, the Internet of Musical Things
[22] is one of the most constrained in terms of latency.
Nevertheless, it could benefit from the adoption of technologies
belonging to the Semantic Web, for their intrinsic ability to
foster interoperability among devices and applications [24]. In
this Section, we propose an overview of the state of the art in
the area of semantics applied to the IoT and an overview of
the main IoMusT applications.

A. Semantic technologies in the IoT

Polling mechanisms are not efficient either for the re-
quired computational effort to periodically compare the results
of a query with its previous execution, or for the amount
of data transferred over the network. A publish/subscribe
paradigm [14] allows one to solve these issues: clients com-
municate their interests once and receive notifications when
something matching them is available. Semantic Web tech-
nologies are currently bound to a request-response interaction
paradigm. An effort toward a publish/subscribe enhanced ver-
sion of Semantic Web technologies has been made by several
researchers, like Murth et al. [25], Alti et al. [26] and Schade
et al. [27]. Adapting Semantic Web technologies to more
dynamic scenarios is a task carried on also by the Smart-M3
community, which proposes a broker-centric publish/subscribe
architecture pivoting the SPARQL language. In [28], the au-
thors reported a survey of the semantic information brokers
implemented according to the M3 paradigm. RedSIB [29],
the OSGi SIB [19], cuteSIB [30] and pySIB [18] are four of
the most recent contributions of the Smart-M3 community to
the development of a semantic publish/subscribe architecture
for context-aware applications. A new project originated from
the research on the Smart-M3 platform: the SPARQL Event
Processing Architecture (SEPA) is a publish/subscribe context-
broker built on top of a SPARQL endpoint that offers support

for standard protocols. Despite being oriented towards IoT
applications, these semantic brokers still do not employ the
lightweight protocols designed for such scenarios. In literature
there are very recent attempts of bridging the gap between
semantic technologies and the IoT, but they still neglect the
ability to subscribe to changes in the knowledge base (e.g.,
[31]). In [32], authors focus on the provision of more effective
resource discovery, supporting also approximate matches.

Other studies that rely on Semantic Web to build up an IoT
environment usually focus on its capability to store uniformly
formatted knowledge more than on the dispatching aspect. So,
in works like the previously mentioned [24], the Semantic Web
is considered as a possible solution to the untreatable vertical-
ity of IoT. Data representation is also the topic of interest
in [33], where the relationship between Semantic resources
and RESTful resources is investigated. Mainetti et al. in [34]
developed a parallelism between the MQTT topic concept and
Semantic URI resources to achieve the so-called Web of Topics.
Another work by Khodadadi et al., [35], proposes a framework
joining semantics, linked data and a widely used protocol like
CoAP targeting with a practical example the collaboration of
those technologies, resulting in the possibility of environmental
discovery and full usage.

B. Technology-mediated audience participation

As mentioned in Section I, a relevant IoMusT application
of the proposed technology concerns systems that involve com-
munications between several actors, such as large-scale audi-
ences. Technology-Mediated Audience Participation (TMAP)
[36] is a branch of interactive arts where audience members
are actively engaged in the music creation process by means
of information and communication technologies. Reviews of
TMAP systems can be found in [37], [38], [39], [40]. These
systems scatter the conventional unidirectional chain of musi-
cal communication for written Western music, where the mu-
sical messages are exchanged sequentially from composers to
performers to “passive” listeners, since the audience members
collaboratively contribute to the music making thus playing
also the role of composer and performer. Interaction techniques
for TMAP have been proposed exploiting different types of
media and sensors, including mobile devices [37], [41], [42],
[39] and tangible interfaces [43] such as light sticks [44].

C. Existing IoMusT ecosystems

An IoMusT ecosystem is composed of actors involved
in musical activities such as performers and audiences, as
well as information and service providers [45]. As for any
IoT ecosystem, an IoMusT one forms around commonly
used hardware and software platforms as well as standards.
From the technological perspective, the core components of
an IoMusT ecosystem are of three types: 1) Musical Things
(i.e., the interoperable devices serving musical purposes); 2)
connectivity (i.e., the network infrastructure supporting multi-
directional wireless communication between Musical Things),
3) applications and services (i.e., the enablers for different
types of interactions between Musical Things users).

To date, only a handful of IoMusT ecosystems exist, some
of which have been devised for ubiquitous music scenarios
[46]. For instance, research has investigated technologically-
mediated interactions between a performer playing a smart



musical instrument and audience members using Musical
Haptic Wearables (MHWs). Smart Instruments are a family
of musical instruments characterized by embedded computa-
tional intelligence, wireless connectivity, an embedded sound
delivery system, and an onboard system for feedback to the
player [23], [47]. They offer direct point-to-point communi-
cation between each other and other portable sensor-enabled
devices connected to local networks and to the Internet.
MHWs are wearable devices for audience members, which
encompass haptic stimulation, gesture tracking, and wireless
connectivity features [48]. The work reported in [49] presents
an IoMusT architecture enabling the multidirectional creative
communication between a performer playing a smart mandolin
and four audience members using armband-based MHWs.
The smart mandolin was configured to extract in real-time
from the acoustic signal captured by the microphone, the
strums performed on the strings. The timing and amplitude
of strums having an amplitude above a certain threshold
were sent synchronously and simultaneously to four MHWs.
Upon reception, such information was mapped to vibrations of
amplitude and duration proportional to the detected strum. In
addition, to involve the audience in the music making process,
the sensor interface of the MHWs were used by audience
members to deliver to the smart mandolin player messages
activating the playback of backing tracks.

Another example of IoMusT ecosystem is reported in [50].
The authors presented an IoMusT ecosystem involving a
smart mandolin, smartphones, and the Freesound reposi-
tory (https://freesound.org/). The ecosystem was devised to
support performer-audience interactions and aimed to enable
the creative use of content retrieved from Freesound as an
accompaniment for the music played by the smart mandolin.
The ecosystem was tested with three audience members, who
were empowered to retrieve and organize Freesound content
to collaboratively create the accompaniment.

The recent work reported in [51] describes a semantically-
enriched Internet of Musical Things architecture which relies
on a semantic audio server and edge computing techniques.
Specifically, a SPARQL Event Processing Architecture is em-
ployed as an interoperability enabler allowing multiple hetero-
geneous Musical Things to cooperate. The authors created an
IoMusT ecosystem around such architecture, which involved
basic prototypes of Musical Things.

III. C MINOR

To the best of our knowledge, C Minor is the first attempt
to exploit CoAP in a SPARQL Event Processing Architecture.
A SEPA is a semantic client/server architecture where clients
communicate by means of messages exchanged through the
server (i.e., also named broker). This broker-centric architec-
ture is then classifiable as a message-oriented middleware [52].
The main assignment of the broker is to hold and provide
access to an RDF knowledge base (KB) by means of the
SPARQL query and update language: the broker is then a
SPARQL endpoint and as such, clients communicate through
SPARQL requests. Differently from a standard SPARQL end-
point, a SEPA also implements the publish/subscribe paradigm:
subscriptions allow clients to be notified about changes in the
KB (i.e., in any subgraph of interest) avoiding polling. C Minor

should then provide the ability to retrieve data from a knowl-
edge base through the request/response or publish/subscribe
paradigm and update the knowledge base by adding, modifying
or deleting triples from it.

Developing a semantic context broker relying on IoT
lightweight protocols required an analysis of the available
alternatives (i.e., CoAP, MQTT and AMQP). The choice of
CoAP was determined by several factors:

• It was proposed by the Internet Engineering Task
Force (IETF), and in particular the Constrained REST-
ful Environments (CoRE) subgroup, as a standard
Request For Comment (RFC). So it is an open, fully
documented specification [16] and it can paves the
way towards interoperability in the IoT.

• CoAP headers have a minimum impact on the message
size, [12];

• CoAP is based on UDP (while MQTT and AMQP
rely on TCP) but still supports retransmission of
lost or damaged packets through the mechanism of
confirmable and non confirmable messages. In this
way CoAP removes the overhead caused by the three-
way handshake protocol;

• As highlighted by Naik [12], CoAP, compared to
MQTT and AMQP, presents the lowest bandwidth
requirement and the lowest latency;

• CoAP addresses the problem of discoverability [13]
by providing a list of the available resources.

• CoAP is designed to be easily mapped on HTTP, then
binding the SPARQL 1.1 Protocol [53] to CoAP is a
very straight-forward process.

A. From HTTP to CoAP

The SPARQL 1.1 protocol [53] relies on HTTP to convey
requests and responses. CoAP can be easily translated to HTTP
since it implements a subset of REST optimized for M2M
computation [16]. For this reason we report in this Section a
comparison between the SPARQL 1.1 Protocol and the CoAP
version proposed in this paper:

• SPARQL Update requests: according to [53], a
SPARQL Update is sent with an HTTP POST request
where the text of the update is specified in the request
payload or through url-encoded parameters. A suc-
cessful request may return a 2XX or 3XX code, while a
failure is signaled by a 4XX (for wrong requests, e.g.,
syntax error) or 5XX code (server issues). C Minor
accepts requests including the text of the update as
a payload and returns 2.04 Changed in case of
success, otherwise a 4.00 Bad Request for a
wrong request or 5.XX code to notify problems on
the server side.

• SPARQL Query requests: according to [53], queries
can be performed with GET or POST requests. In
the first case, the query is specified through percent-
encoded parameters. In the latter, as in SPARQL
Updates, queries can be provided as a payload or
through url-encoded parameters. C Minor accepts

https://freesound.org/


queries provided as payload of POST requests. The
status code can be 2.04 (in case of success), 4.00
(for wrong requests) or 5.XX (for server-side errors).

The comparison between the SPARQL 1.1 Protocol and
the CoAP version proposed by C Minor is reported in Table I.

TABLE I. MAPPING SPARQL 1.1 PROTOCOL OVER COAP. A
SUMMARY OF THE IMPLEMENTATION PROPOSED IN C MINOR

HTTP CoAP

Update Request verb POST POST
Text specified as: payload or url-encoded payload
Status code for success: 2XX or 3XX 2.04
Status code for error: 4XX or 5XX 4.00 or 5.XX

Query Request verb GET,POST POST
Text specified as: url-encoded or payload payload
Status code for success: 2XX or 3XX 2.04
Status code for error: 4XX or 5XX 4.00 or 5.XX

B. Software architecture

C Minor is a python3 server built on top of the aiocoap
framework, a natively asynchronous implementation of a
CoAP library. C Minor can either exploit the rdflib to
implement an internal RDF graph (useful to reduce the depen-
dencies on the target device), or rely on an external SPARQL
endpoint (e.g., the Fuseki endpoint developed in the context
of the Apache Jena framework).

The architecture, depicted in Fig 1, is based on a set of
classes, among which is worth mentioning:

• SPARQLQueryResource that handles all the re-
quests for SPARQL queries;

• SPARQLUpdateResource, responsible for the up-
date of the knowledge base and the subsequent trig-
gering of the subscriptions;

• SPARQLSubscribeResource, which is the class
that deals with the requests for new subscriptions as
well as the requests to close existing ones. Every
time a new subscription request is received, a proper
instance of the class SubscriptionResource is
created.

• SubscriptionResource is an observable class
that permits clients to receive notifications related to
a given subscription.

• CMinorStats, in charge of collecting stats to ana-
lyze the state of the system.

• Endpoint, responsible of all the interactions with
either the external SPARQL endpoint or the internal
graph.

Fig. 1 shows a UML class diagram where, for the sake
of clarity, only the relationships among classes defined in the
aiocoap framework and classes implemented in C Minor are
highlighted. Arrows with white head represent an inheritance
relationship.

StatsManager

__init__()
reset()
getData()

stats
Cminor

__init__()
run()

stats

stats

SPARQLQueryResource

__init__()
render_post()

stats
graph
logger

stats

SPARQLUpdateResource

__init__()
render_post()

stats
graph
logger
lock

stats

CminorStats

__init__()
render_get()
render_delete()

stats

stats

SubscriptionResource

__init__()
render_get()
notify()
reschedule()
update_observation_count()

stats
subText
lastResults

stats

SPARQLSubscribeResource

__init__()
render_post()
render_delete()

stats
graph
root
logger

stats

aiocoap.resource.Resource

needs_blockwise_assembly()
render()

...

stats

aiocoap.resource.ObservableResource

__init__()
notify()
reschedule()
add_observation()
update_observation_count()
...

...

stats

aiocoap.resource.Site

__init__()
needs_blockwise_assembly()
add_observation()
add_resource()
remove_resource()
...

...

Endpoint

__init__()
query()
update()

graph
native
queryURI
updateURI
queryHeaders
updateHeaders

Con�gFileException

__init__()

value

EndpointException

__init__()

value

Fig. 1. Class Diagram showing the relationship between C Minor and aiocoap
classes

C. Primitives

C Minor holds or interacts with an RDF graph and provides
all the functionalities of a SPARQL Endpoint over CoAP. As
previously mentioned, following the example of the Smart-M3
platform [28] and the SPARQL Event Processing Architecture
[15], the ability to subscribe to a subgraph is provided.
The following is a list of all the primitives that should be
implemented by client-side libraries to interact with a C Minor
instance, in relation to the routes exposed by the server:

• update – C Minor, just like SEPA, exposes a proper
route (i.e., /update) to handle update requests.
Then, the only difference with SEPA is represented
by the protocol that is CoAP instead of HTTP, but
with the same verb (i.e., POST, see Section III-A).
An UML sequence diagram showing how the user can
perform a SPARQL Update is shown in Fig. 2.

• query – Queries, just like updates, are handled as in
the SPARQL Event Processing Architecture. A POST
in a CoAP (instead of HTTP) request is used to deliver
the query to the /query route of the server. Fig 3
depicts the process to perform a SPARQL query.

• regSubscription – every subscription corresponds to
an observable resource. This primitive is needed to
allow the creation of such resource. For example, a
POST request with the following payload:

{
"query":"SELECT * WHERE { ?s ?p ?o }",
"alias":"all"

}

creates a new observable resource with URI /all
that provides notifications every time the results of
the query changes (i.e., every time the underlying
knowledge base is updated). Differently from SEPA,
this mechanism allows C Minor to intrinsically group



all the equivalent subscriptions to provide a more
efficient management both in terms of computational
and memory resources.

• observe – client-side libraries should provide the
ability to observe resources to exploit the subscription
functionality provided by C Minor. A GET request
with the observe option set is what it is needed
to start receiving notifications. The URI to observe a
resource is the one specified during the POST request
to /subscription (this process is shown in Fig. 4).
If the client willing to observe a resource is different
from the one that initialized the subscription, then the
URI can be discovered through the proper primitive
discovery described below.

• unregSubscription – As the name suggests, this prim-
itive would allow one to unregister a subscription
(i.e., to delete the related observable resource). This
primitive would perform a DELETE request to the
route /subscription with a payload like this:

{ "alias":"all" }

• discover – C Minor, being based on the CoAP pro-
tocol, exposes the resource /.well-known/core
that enables the discovery on the available resources.
A discovery allows one to get the URIs of the routes
to update and query the knowledge base, as well as
the routes to register or unregister a new subscription.
More importantly, the discovery allows to get the list
of the observable resources corresponding to active
subscriptions, as shown by Fig. 5

• stats – C Minor holds an internal data structure
containing an updated count of the performed updates
and queries with the average elapsed time. Moreover
it maintains a list of the active subscriptions, with the
number of generated notifications. These statistics can
be retrieved with a GET request on the /stats URI,
or reset with a DELETE on the same URI. Supporting
the access to statistics in client-side APIs is optional.

User Cminor client Cminor RDF graph

SPARQL Update
uri
path

CoAP Request
SPARQL Update

Update conf.

CoAP Reply

user-friendly

results

POST

2.04

Fig. 2. Sequence diagram for SPARQL updates

A list of the URIs exposed by the C Minor server is
proposed in Table II.

IV. EVALUATION

In this Section we propose the results of a preliminary
evaluation of C Minor in order to characterize the behaviour of

User Cminor client Cminor RDF graph

SPARQL Query
uri

CoAP Request
Query

Result

CoAP Reply

user-friendly

results

POST

2.04

Fig. 3. Sequence diagram for SPARQL queries

User Cminor client Cminor RDF graph

SPARQL Subscribeuri

CoAP Request

CoAP Reply

user-friendly

results

POST

2.01

alias <X>

Observe uri <X>
CoAP Request

GET Query

First Result

CoAP Reply 2.03

CoAP Reply 2.04
user-friendly

results

New Results

Fig. 4. Sequence diagram for registration of SPARQL subscription and
subsequent observation

User Cminor client Cminor RDF graph

uri

CoAP Request

CoAP Reply 2.05
GET

Observe uri
CoAP Request

GET Query

First Result

CoAP Reply 2.03

CoAP Reply 2.04
user-friendly

results

New Results

results

Fig. 5. Sequence diagram for discovery of SPARQL subscriptions and
subsequent observation

the broker. The following tests were executed on two C Minor
instances: the former, running with an RDFlib store and the
latter with a non-persistent instance of Fuseki. As in [31] we
made two assumptions:

1) The size of the knowledge base is limited: the KB
hosts only the current context. The semantic broker,
in fact, should host only the current representation



TABLE II. RESOURCES OF THE C MINOR SERVER

URI Verb Payload

/query POST the plain SPARQL query
/update POST the plain SPARQL update
/subscription POST JSON (keys query and alias)
/subscription DELETE JSON (key alias)
/<SUB> GET -
/.well-known/core GET -
/stats GET -
/stats DELETE -

of the involved resources, which are a direct conse-
quence of the producers involved in the application.
In the envisioned IoMusT scenarios, the amount
of producers is small if compared to the expected
number of consumers.

2) The KB hosts only assertional data and not also
terminological data (i.e., the ontology is not stored
in the context broker but used by client-side libraries
to represent information). Again, this is a technical
decision that allows to limit the size of the knowledge
base.

According to Gray [54], the evaluation of performance
should be relevant to the analyzed use case, simple to un-
derstand, portable, and scaleable to assess the performance of
small as well as large systems. Keeping this in mind, in this
Section we evaluate the performance of C Minor through the
typical operations of the IoMusT domain (also employed by
the use case detailed later on in Section IV-E). The evaluation
has been carried out on a Dell Alienware 17 R2 laptop hosting
both the semantic context broker and the clients to minimize
the impact of the network (that will be detailed in the following
subsections).

A. Evaluation of the Update primitive

Fig 6 and Fig 7 show the behaviour of the broker with
respect to SPARQL Update requests with both Fuseki and
RDFlib. The test consists in performing SPARQL Updates
causing the simultaneous insertion of n ∈ [1, 25] discrete
audio features semantically represented according to the Audio
Commons Ontology [55]. The scenario envisioned in this test
is that of a set of performers with Smart Instruments sharing
the collected audio features with the musical things owned by
the audience. With RDFlib the time required to perform the
update linearly grows with the complexity of the request. It
is easily noticeable that Fuseki outperforms RDFlib fulfilling
every request in a nearly constant time inferior to 10 ms. Both
the charts report the results of the client-side evaluation (i.e.,
including the CoAP request and response messages), as well
as the time employed by the underlying engine to store data.
The average time required by the protocol to dispatch request
and response is 3.16 ms.

B. Evaluation of the Query primitive

C Minor with RDFlib shows a better behaviour when
responding to query requests, as shown by Fig 9 and Fig 8.
This time, the test is aimed at retrieved the whole context that
is composed by n discrete audio features semantically mapped
according to the Audio Commons Ontology, with n ∈ [1, 25].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

10

20

30

40

50

60

Size of the update (# of audio features)

T
im

e
 (

m
s
)

Time to publish audio features with Fuseki

Fuseki

Fuseki + CoAP messages

Fig. 6. Time to publish a context composed by n audio features with a
SPARQL Update on C Minor + Fuseki (n ∈ [1, 25]).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

10

20

30

40

50

60

Size of the update (# of audio features)

T
im

e
 (

m
s
)

Time to publish audio features with RDFlib

RDFlib

RDFlib + CoAP messages

Fig. 7. Time to publish a context composed by n audio features with a
SPARQL Update on C Minor + RDFlib (n ∈ [1, 25]).

The higher values in elapsed time running SPARQL queries
on C Minor with Fuseki are imputable to the high presence
of white spaces and newline characters included by Fuseki
when requesting the JSON serialization of results. This ends
up with longer messages that require a higher number of UDP
segments to be dispatched. The optimization of this step is one
of the future works.

C. Evaluation of the Subscription mechanism

Fig. 10 shows the behaviour of C Minor with respect to
the subscription mechanism. With this test we aim to quantify
the time needed by the server to detect and notify a change to
the observers.

The context is composed by an average number of ten audio
features. A SPARQL Update request produces the update of
a single audio feature. With a subscription to all the audio
features running on C Minor, every time the value of a feature
changes, the server has to update the state of the subscription



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

10

20

30

40

50

60

Number of query results (triples)

T
im

e
 (

m
s
)

Time to retrieve the context with Fuseki

Fuseki

Fuseki + CoAP messages

Fig. 8. Time to perform a SPARQL Query on C Minor with Fuseki.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

10

20

30

40

50

60

Number of query results (triples)

T
im

e
 (

m
s
)

Time to retrieve the context with RDFlib

RDFlib

RDFlib + CoAP messages

Fig. 9. Time to perform a SPARQL Query on C Minor with RDFlib.

resource monitoring the related subgraph and notify the change
to all the observers. In this test the number of observers is n,
with n = 10 · i (with i = 1 . . . 10).

D. Evaluation of the latency

In this Section we propose an analysis of the latency
measured in this test scenario. The evaluation was carried
out triggering 100 CoAP requests to C Minor of length n
bytes (n = 20 · i; i = 1, . . . , 25), and measuring two of the
metrics proposed in [56]: the Flow completing time (FCT)
and the CoAP Round Trip Time (C-RTT). The first consists
of the time interval between the sending of first request and
the receiving of the last response. The latter, consists of the
average elapsed time between the sending of the original
CoAP request and receiving of the CoAP response. This test is
intended to measure the latency of the CoAP protocol, so the
query, update or subscription mechanisms were not involved
in these measurements. Fig. 11 shows that, the time required
to complete the flow of requests is nearly constant and is
not influenced by the length of the messages. Then, Fig. 12

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

Number of observing clients

T
im

e
 (

m
s
)

Time to send a notification with RDFlib

RDFlib

Fuseki

Fig. 10. Time to send a notification to n observers (n = 10 · i, i =
{1, . . . , 25}).

confirms the promising results in terms of latency with average
CoAP Round Trip Time inferior to 5 ms.

Fig. 11. Flow Completing Time on C Minor

Fig. 12. CoAP Round Trip Time on C Minor

E. Proof of concept

To validate our architecture we implemented a proof-of-
concept ecosystem around it, which aimed at simulating the
interaction between a smart musical instrument performer
and audience members in a TMAP context. The ecosystem,
illustrated in Figure 13, comprised the following components:

Smart mandolin. The role of producer was played by the
smart mandolin reported in [57]. This instrument consists of
a conventional acoustic mandolin smartified with a sensors
interface, a contact microphone, a loudspeaker, wireless con-
nectivity, embedded battery, and the Bela board for low-latency
audio and sensors processing [58]. Wireless connectivity was
achieved by means of the Wi-Fi USB dongle A6100-100PES



by NETGEAR (which supports the IEEE 802.11.ac Wi-Fi stan-
dard). Wireless data reception and forwarding were achieved
leveraging Open Sound Control (OSC) messages over the User
Datagram Protocol.

The audio engine was coded in libpd, a porting of the Pure
Data computer music environment into a library for embedded
systems [59]. It comprised a variety of ad-hoc sound effects
modulating the instrument’s string sounds, a library of sound
samples to be triggered, as well as mapping strategies to
control the sound production from the data gathered from the
sensors. In addition, the sound engine comprised a module
for the real-time extraction of features from the audio signal
captured by the microphone. Specifically, by leveraging the
Pure Data object fiddle∼ [60] we extracted the note onset, its
pitch and amplitude. From these low-level features we then
calculated the note density, the average pitch, and the average
amplitudes over 5 seconds.

Musical Thing prototypes. Six prototypes of Musical
Things played the role of consumer. They were created in
order to simulate an IoMusT scenario involving audience
participation (i.e., where audience members use the prototypes
to generate musical sounds). Such prototypes were composed
by the Bela board, a NETGEAR A6100-100PES Wi-Fi USB
dongle, a loudspeaker, and a powerbank. Consumers were
given the role of accompaniment of the melody played by
the smart mandolin. The sound engine of three prototypes
was configured to produce sequences of synthesized notes.
Such sequences consisted of random patterns of sounds created
with a basic triangular wave generator, whose density was
randomized in the range of [1, 200] notes per second. The
parameters of each generated note were randomized as follows:
the frequency ranged among the frequencies of either the scales
G major, D major, or E minor, depending on the prototype; the
duration ranged between 10 and 150 ms; the amplitude ranged
between 0.01 and 1. The sound engine of the remaining three
prototypes was configured to generate one of the following
chords: G major, D major, or E minor. These were rendered
by means of FM synthesis techniques.

Thanks to a python script communicating via OSC mes-
sages to the libpd sound engine, each generated notes sequence
or chord was played and stopped according to the notifications
issued by the CoAP server. Each of the six consumers was
assigned to one of the six statuses “scale G major”, “scale D
major”, “scale E minor”, “chord G major”, “chord D major”,
“chord E minor”. When the status “silence” was issued by the
CoAP server then no chord or note sequence was played and
only the melody of the smart mandolin could be heard.

Semantic Server. The semantic server runs on an
ODROID-XU4 board (manufactured by Hadkernel), enhanced
with the Wi-Fi router TP-Link TL-WR902AC (which features
the IEEE 802.11ac standard over the 5GHz band). Following
the recommendations reported in [61] to optimize the com-
ponents of a Wi-Fi system for live performance scenarios
to reduce latency and increase throughput, the router was
configured in access point mode, security was disabled, and
only the IEEE 802.11ac standard was supported.

The server analyzed the information extracted and sent by
the smart mandolin as well as delivered to the six consumers
the results of the performed analysis. The analysis was based

on fuzzy logic techniques [62], where the 27 possible combi-
nations resulting from dividing into 3 parts the range of each
of the 3 parameters extracted by the smart mandolin (i.e., note
density, the average pitch, and the average amplitudes over 5
seconds), were randomly grouped into 6 subsets of 4 triplets
and 1 subset of 3 triplets. The triplets belonging to each subset
were then associated to one of the 7 possible statuses: “scale
G major”, “scale D major”, “scale E minor”, “chord G major”,
“chord D major”, “chord E minor”, “silence”.

As previously mentioned, the context broker of the seman-
tic server only hosts the current context. This allows one to
increase the performance of the application, since removing
outdated information allow the engine to timely process a
lower amount of data. More in detail, the context is formed
by the audio features published by the smart mandolin and the
state produced according to an ad-hoc defined fuzzy logic.

V. DISCUSSION AND CONCLUSION

In this paper, we presented C Minor, a semantic broker
adapting the concept of a SPARQL Event Processing Archi-
tecture [15] to a lightweight application protocol commonly
adopted in the IoT: CoAP. The choice of CoAP is due to the
need of a direct mapping of the existing SPARQL 1.1 proto-
col [53] (based on HTTP) on the new broker. To the best of our
knowledge, this is the first attempt to build a semantic publish/-
subscribe broker on top of the CoAP protocol. Subscriptions
can be defined using the SPARQL Query language as in [15].
The main difference consists in the way subscriptions are
mapped over the resource/observe paradigm implemented by
CoAP, that is intrinsically suitable for grouping equivalent
subscriptions and subsequently optimize their processing. This
is of paramount importance in applications where a crowd of
clients is interested in the same kind of modifications of the
graph. On the one hand, this is an undeniable advantage of the
C Minor architecture, but, in contrast with the aforementioned
SEPA, the entire set of bindings of a triggered subscription is
sent after an update.

We demonstrated our approach by implementing an
IoMusT ecosystem, where CoAP-speaking clients were em-
bedded in prototypes of smart instruments and Musical Things
for audience members. The adoption of semantics in this
ecosystem paves the way towards new IoMusT scenarios where
1) heterogeneous devices can interoperate by means of the
shared knowledge base and 2) several different applications
can co-exist sharing the same context to enable personalized
musical experiences. The adoption of CoAP, in this sense,
mitigates the poor level of performances of Semantic Web
protocols taking advantage of a binary encoding of messages
and a faster transport level protocol like UDP and granting
low latencies of the exchanged messages. In real IoMusT
environments, it is reasonable to think at the audience as people
whose Musical Things run applications acting as consumers on
the shared knowledge base. It is also very likely that these
clients are interested in the same information produced by
performers, i.e., they run the same subscription. Then, as the
size of the audience (i.e., connected musical things) grows to
hundreds of units, it is important to optimize the behaviour of
the broker to treat equivalent subscriptions as one unique. As
previously mentioned, this is already achieved by C Minor:



Fig. 13. The developed IoMusT ecosystem with the indications of its hardware components.

equivalent subscriptions are grouped under the same CoAP
resource permitting to upsize the scenario.

Regarding future development of the platform, we plan
to test multiple solutions to optimize subscription processing.
For instance, it is worth mentioning the implementation of
the Look-Up tables as suggested in [63]. Look-Up tables
would reduce the number of subscriptions to be processed after
every update discarding those monitoring a different subgraph.
Moreover, starting from the simple tests presented in this paper,
we plan to design a benchmark specifically oriented at CoAP-
based semantic architectures, in order to achieve a complete
evaluation of the performance of the platform varying a higher
set of parameters.

ACKNOWLEDGMENT

Luca Turchet acknowledges support from the EU H2020
Marie Curie Individual fellowship (749561), George Fazekas
from the EU H2020 Audio Commons grant (688382).

REFERENCES

[1] Mark Weiser. The computer for the 21st century. Scientific american,
265(3):94–105, 1991.

[2] Kevin Ashton. That ’internet of things’ thing. RFiD Journal, 22(7),
2011.

[3] Mahadev Satyanarayanan. Pervasive computing: Vision and challenges.
IEEE Personal communications, 8(4):10–17, 2001.

[4] Gregory D Abowd, Anind K Dey, Peter J Brown, Nigel Davies, Mark
Smith, and Pete Steggles. Towards a better understanding of context
and context-awareness. In International symposium on handheld and
ubiquitous computing, pages 304–307. Springer, 1999.

[5] Floriano Scioscia and Michele Ruta. Building a semantic web of
things: issues and perspectives in information compression. In IEEE
International Conference on Semantic Computing, pages 589–594.
IEEE, 2009.

[6] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web.
Scientific american, 284(5):34–43, 2001.

[7] Ora Lassila and Ralph R. Swick. Resource description framework (rdf)
model and syntax specification, 1998.

[8] Dan Brickley, Ramanathan V Guha, and Brian McBride. Rdf schema
1.1. W3C recommendation, 25:2004–2014, 2014.

[9] Deborah L. McGuinness, Frank Van Harmelen, et al. Owl web ontology
language overview, 2004.

[10] Andy Seaborne, Geetha Manjunath, Chris Bizer, John Breslin,
Souripriya Das, Ian Davis, Steve Harris, Kingsley Idehen, Olivier Corby,
Kjetil Kjernsmo, et al. Sparql/update: A language for updating rdf
graphs. W3c member submission, 15, 2008.

[11] Eric Prud, Andy Seaborne, et al. Sparql query language for rdf. 2006.

[12] Nitin Naik. Choice of effective messaging protocols for iot systems:
Mqtt, coap, amqp and http. In Systems Engineering Symposium (ISSE),
2017 IEEE International, pages 1–7. IEEE, 2017.

[13] Dominique Guinard and Vlad Trifa. Building the web of things: with
examples in node. js and raspberry pi. Manning Publications Co., 2016.

[14] Patrick Th Eugster, Pascal A Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. The many faces of publish/subscribe. ACM computing
surveys, 35(2):114–131, 2003.

[15] Luca Roffia, Paolo Azzoni, Cristiano Aguzzi, Fabio Viola, Francesco
Antoniazzi, and Tullio Salmon Cinotti. Dynamic Linked Data: A
SPARQL Event Processing Architecture. Future Internet, 10(4):36,
2018.

[16] Zach Shelby, Klaus Hartke, and Carsten Bormann. The constrained
application protocol (coap). Technical report, 2014.

[17] Carsten Bormann, Mehmet Ersue, and Ari Keranen. Terminology for
constrained-node networks. Technical report, 2014.

[18] Fabio Viola, Alfredo D’Elia, Luca Roffia, and Tullio Salmon Cinotti. A
modular lightweight implementation of the smart-m3 semantic informa-
tion broker. In Proceedings of the 18th Conference of Open Innovations
Association FRUCT, pages 370–377. FRUCT Oy, 2016.

[19] Alfredo D’Elia, Fabio Viola, Luca Roffia, Paolo Azzoni, and Tul-
lio Salmon Cinotti. Enabling interoperability in the internet of things: A
osgi semantic information broker implementation. International Journal



on Semantic Web and Information Systems (IJSWIS), 13(1):147–167,
2017.

[20] Alfredo D’Elia, Fabio Viola, Federico Montori, Marco Di Felice, Luca
Bedogni, Luciano Bononi, Alberto Borghetti, Paolo Azzoni, Paolo
Bellavista, Daniele Tarchi, et al. Impact of interdisciplinary research
on planning, running, and managing electromobility as a smart grid
extension. IEEE Access, 3:2281–2305, 2015.

[21] Luca Bedogni, Luciano Bononi, Alberto Borghetti, Riccardo Bottura,
Alfredo D’Elia, Marco Di Felice, Federico Montori, Fabio Napolitano,
Carlo Alberto Nucci, Tullio Salmon Cinotti, and Fabio Viola. An
integrated traffic and power grid simulator enabling the assessment of
e-mobility impact on the grid: a tool for the implementation of the smart
grid/city concept. Technical Sciences, 1(1):73–89, 2016.

[22] Luca Turchet, Carlo Fischione, and Mathieu Barthet. Towards the
Internet of Musical Things. In Proceedings of the Sound and Music
Computing Conference, pages 13–20, 2017.

[23] Luca Turchet, Andrew McPherson, and Carlo Fischione. Smart In-
struments: Towards an Ecosystem of Interoperable Devices Connecting
Performers and Audiences. In Proceedings of the Sound and Music
Computing Conference, pages 498–505, 2016.

[24] Pratikkumar Desai, Amit Sheth, and Pramod Anantharam. Semantic
gateway as a service architecture for iot interoperability. In IEEE
International Conference on Mobile Services, pages 313–319. IEEE,
2015.

[25] Martin Murth and Eva Kühn. Knowledge-based coordination with a
reliable semantic subscription mechanism. In Proceedings of the 2009
ACM symposium on Applied Computing, pages 1374–1380. ACM, 2009.

[26] Adel Alti, Abderrahim Lakehal, Sébastien Laborie, and Philippe Roose.
Autonomic semantic-based context-aware platform for mobile applica-
tions in pervasive environments. Future Internet, 8(4):48, 2016.

[27] Sven Schade, Frank Ostermann, Laura Spinsanti, and Werner Kuhn.
Semantic observation integration. Future Internet, 4(3):807–829, 2012.

[28] Fabio Viola, Alfredo D’Elia, Dmitry Korzun, Ivan Galov, Alexey
Kashevnik, and Sergey Balandin. The M3 architecture for smart
spaces: Overview of semantic information broker implementations. In
Proceedings of the 19th Conference of Open Innovations Association
(FRUCT), pages 264–272. IEEE, 2016.

[29] Francesco Morandi, Luca Roffia, Alfredo D’Elia, Fabio Vergari, and
Tullio Salmon Cinotti. Redsib: a smart-m3 semantic information broker
implementation. In Open Innovations Association (FRUCT), 2012 12th
Conference of, pages 1–13. IEEE, 2012.

[30] Ivan V. Galov, Aleksandr A. Lomov, and Dmitry G. Korzun. Design
of semantic information broker for localized computing environments
in the internet of things. In Open Innovations Association (FRUCT),
2015 17th Conference of, pages 36–43. IEEE, 2015.

[31] Victor Charpenay, Sebastian Käbisch, and Harald Kosch. µrdf store:
Towards extending the semantic web to embedded devices. In European
Semantic Web Conference, pages 76–80. Springer, 2017.

[32] Michele Ruta, Floriano Scioscia, Agnese Pinto, Filippo Gramegna,
Saverio Ieva, Giuseppe Loseto, and Eugenio Di Sciascio. Coap-based
collaborative sensor networks in the semantic web of things. Journal
of Ambient Intelligence and Humanized Computing, pages 1–18, 2018.

[33] Antonio Garrote Hernández and Marı́a N Moreno Garcı́a. A formal
definition of restful semantic web services. In Proceedings of the First
International Workshop on RESTful Design, pages 39–45. ACM, 2010.

[34] Luca Mainetti, Luigi Manco, Luigi Patrono, Ilaria Sergi, and Roberto
Vergallo. Web of topics: An iot-aware model-driven designing approach.
In Internet of Things (WF-IoT), 2015 IEEE 2nd World Forum on, pages
46–51. IEEE, 2015.

[35] Farzad Khodadadi and Richard O. Sinnott. A semantic-aware frame-
work for service definition and discovery in the internet of things using
coap. Procedia Computer Science, 113:146–153, 2017.

[36] Fares Kayali, Oliver Hödl, Geraldine Fitzpatrick, Peter Purgathofer,
Alexander Filipp, Ruth Mateus-Berr, Ulrich Kühn, Thomas Wagensom-
merer, Johannes Kretz, and Susanne Kirchmayr. Playful technology-
mediated audience participation in a live music event. In Extended
Abstracts Publication of the Annual Symposium on Computer-Human
Interaction in Play, pages 437–443. ACM, 2017.

[37] Atau Tanaka. Mobile music making. In Proceedings of the Conference
on New Interfaces for Musical Expression, pages 154–156, 2004.

[38] Antonio D de Carvalho Junior, Sang Won Lee, and Georg Essl.
Understanding cloud support for the audience participation concert
performance of crowd in c[loud]. In Proceedings of the Conference
on New Interfaces for Musical Expression, pages 176–181, 2016.

[39] Yongmeng Wu, Leshao Zhang, Nick Bryan-Kinns, and Mathieu Barthet.
Open symphony: Creative participation for audiences of live music
performances. IEEE MultiMedia, 24(1):48–62, 2017.

[40] Oliver Hödl, Geraldine Fitzpatrick, Fares Kayali, and Simon Holland.
Design implications for technology-mediated audience participation
in live music. In Proceedings of the Sound and Music Computing
Conference, pages 28–34, 2017.

[41] Nathan Weitzner, Jason Freeman, Stephen Garrett, and Yan-Ling Chen.
massMobile-an Audience Participation Framework. In Proceedings of
the Conference on New Interfaces for Musical Expression, pages 21–23,
2012.

[42] Gÿorgy Fazekas, Mathieu Barthet, and Mark B. Sandler. Novel Methods
in Facilitating Audience and Performer Interaction Using the Mood
Conductor Framework, volume 8905 of Lecture Notes in Computer
Science, pages 122–147. Springer-Verlag, 2013.

[43] Ben Bengler and Nick Bryan-Kinns. Designing collaborative musical
experiences for broad audiences. In Proceedings of the ACM Conference
on Creativity & Cognition, pages 234–242. ACM, 2013.

[44] Jason Freeman. Large audience participation, technology, and orchestral
performance. In Proceedings of the International Computer Music
Conference, 2005.

[45] Luca Turchet, Carlo Fischione, Georg Essl, Damián Keller, and Mathieu
Barthet. Internet of Musical Things: Vision and Challenges. IEEE
Access, 2018.

[46] Damián Keller and Victor Lazzarini. Ecologically grounded creative
practices in ubiquitous music. Organised Sound, 22(1):61–72, 2017.

[47] Luca Turchet. Smart musical instruments: vision, design principles, and
future directions. IEEE Access, 2018 (in press).

[48] Luca Turchet and Mathieu Barthet. Envisioning Smart Musical Haptic
Wearables to Enhance Performers’ Creative Communication. In Pro-
ceedings of International Symposium on Computer Music Multidisci-
plinary Research, pages 538–549, 2017.

[49] Luca Turchet and Mathieu Barthet. Demo of interactions between
a performer playing a Smart Mandolin and audience members using
Musical Haptic Wearables. In Proceedings of the Conference on New
Interfaces for Musical Expression, pages 82–83, 2018.

[50] Luca Turchet and Mathieu Barthet. Jamming with a smart mandolin
and freesound-based accompaniment. In Proceedings of the 23rd IEEE
Conference of Open Innovations Association (FRUCT). IEEE, 2018.

[51] Luca Turchet, Fabio Viola, György. Fazekas, and Mathieu Barthet.
Towards a semantic architecture for internet of musical things applica-
tions. In Proceedings of the 23rd IEEE Conference of Open Innovations
Association (FRUCT). IEEE, 2018.

[52] Michele Albano, Luis Lino Ferreira, Luı́s Miguel Pinho, and Ab-
del Rahman Alkhawaja. Message-oriented middleware for smart grids.
Computer Standards & Interfaces, 38:133–143, 2015.

[53] Lee Feigenbaum, Gregory Todd Williams, Kendall Grant Clark, and
Elias Torres. Sparql 1.1 protocol. Recommendation, W3C, March, 2013.

[54] Jim Gray. Database and transaction processing performance handbook.,
1993.

[55] Alo Allik, György Fazekas, and Mark B Sandler. An ontology for audio
features. In ISMIR, pages 73–79, 2016.

[56] Zheng Fei, Fu Baicheng, and Cao Zhen. Coap latency evaluation.

[57] Luca Turchet. Smart Mandolin: autobiographical design, implementa-
tion, use cases, and lessons learned. In Proceedings of Audio Mostly
Conference, 2018.

[58] Andrew McPherson and Victor Zappi. An environment for
Submillisecond-Latency audio and sensor processing on BeagleBone
black. In Audio Engineering Society Convention 138. Audio Engineer-
ing Society, 2015.

[59] Peter Brinkmann, Peter Kirn, Richard Lawler, Chris McCormick, Martin
Roth, and Hans-Christoph Steiner. Embedding pure data with libpd. In
Proceedings of the Pure Data Convention, volume 291, 2011.

[60] Miller S Puckette, Miller S Puckette Ucsd, Theodore Apel, et al. Real-



time audio analysis tools for pd and msp. In Proceedings of the
International Computer Music Conference, 1998.

[61] Thomas Mitchell, Sebastian Madgwick, Simon Rankine, Geoffrey S
Hilton, Adrian Freed, and Andrew R Nix. Making the most of wi-fi:
Optimisations for robust wireless live music performance. In Proceed-
ings of the Conference on New Interfaces for Musical Expression, pages
251–256, 2014.

[62] Petr Hájek. Metamathematics of fuzzy logic, volume 4. Springer Science
& Business Media, 2013.

[63] Luca Roffia, Francesco Morandi, Jussi Kiljander, Alfredo D’Elia, Fabio
Vergari, Fabio Viola, Luciano Bononi, and Tullio Salmon Cinotti. A
semantic publish-subscribe architecture for the internet of things. IEEE
Internet of Things Journal, 3(6):1274–1296, 2016.


	Introduction
	Related Work
	Semantic technologies in the IoT
	Technology-mediated audience participation
	Existing IoMusT ecosystems

	C Minor
	From HTTP to CoAP
	Software architecture
	Primitives

	Evaluation
	Evaluation of the Update primitive
	Evaluation of the Query primitive
	Evaluation of the Subscription mechanism
	Evaluation of the latency
	Proof of concept

	Discussion and conclusion
	References

