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Abstract—In this paper, a siamese DNN model is proposed to
learn the characteristics of the audio dynamic range compressor
(DRC). This facilitates an intelligent control system that uses
audio examples to configure the DRC, a widely used non-
linear audio signal conditioning technique in the areas of music
production, speech communication and broadcasting. Several
alternative siamese DNN architectures are proposed to learn
feature embeddings that can characterise subtle effects due to dy-
namic range compression. These models are compared with each
other as well as handcrafted features proposed in previous work.
The evaluation of the relations between the hyperparameters of
DNN and DRC parameters are also provided. The best model is
able to produce a universal feature embedding that is capable
of predicting multiple DRC parameters simultaneously, which
is a significant improvement from our previous research. The
feature embedding shows better performance than handcrafted
audio features when predicting DRC parameters for both mono-
instrument audio loops and polyphonic music pieces.

I. INTRODUCTION

Deep Neural Networks, particularly Convolutional Neural
Networks (CNN) have become exceptionally successful in a
wide variety of visual object recognition and classification
tasks [1]. The reasons for this are now well understood. For
instance, CNNs can learn filters corresponding to increasingly
complex shapes in the target image hence becoming successful
at classifying or labelling images. In the domain of audio, the
application of CNNs have also proved successful in several
tasks, including audio labelling and similarity estimation. The
input representation is usually a time-frequency image, e.g.
Fourier or Mel-spectrogram [2] [3] [4], but increasingly, raw
audio samples are used as well [5] [6]. The reason for the
success of these approaches is less straightforward to see,
because there is poor analogy between shapes or objects
in images, and events, such as notes or chords in audio
recordings. Audio events are typically distributed in frequency,
e.g., the recording of a note played on an instrument and
its harmonic partials activate discontinuous bands along the
frequency axis. The problem becomes more acute when audio
events overlap.

Finding an appropriate input representation and designing a
neural network suitable for recognising very specific aspects
of an audio signal is also a difficult and generally unsolved
challenge. Standard approaches work well for common audio
classification problems, but if the task becomes focussed on a

specific aspect of audio that is often obscured by other large
varying signal attributes, we may need to adopt different input
representations, network structures and training methods to
develop a successful solution. For instance, the dynamic range
of an audio signal may be characterised by features such as
the crest factor [7] and also correlate with note attack and
release times. These are measurable in a single note recording
but become obscured by overlapping note events and other
changes in complex real-world recordings.

In previous work, we designed an intelligent control system
targeting the dynamic range compressor (DRC). This uses an
audio example as a reference to estimate DRC parameters that
bring a signal closer to the reference [8]. The system thus takes
two inputs, a reference audio and the input signal that needs
to be processed. Handcrafted audio features are extracted and
fed to a trained machine learning model, which predicts the
parameters of DRC and make the output, the compressed
input audio, sound as close as possible to the reference.
We have designed four sets of handcrafted features that are
corresponding to individual DRC parameters: threshold, ratio,
attack time and release time [9]. Due to the fact that we used
different feature sets for each DRC parameter, we need to
train four individual regression models. A generic feature set
to predict all parameters would therefore be a great benefit.
In addition to the above mentioned drawbacks, most of the
handcrafted features are based on note envelope structures.
For simple audio material such as isolated notes, it is easy
to extract envelopes, however for more complex audio, for
instance, audio loops1 with overlapping note events, more
complex algorithms like NMF and onset event detection are
required, to separately analyse note events in a loop [10]. It
is still relatively straightforward to extract notes from loops,
but polyphonic music brings additional difficulties to the
problem and may increase the computational cost dramatically.
For instance, overlapping note events may have different
duration and timbre, making them difficult to identify. For
these reasons, we assume a deep learning model can be
beneficial in our task. Deep neural networks can learn complex
nonlinear relations between input and output signals. We can

1A loop is a short snippet of musical audio that may be tiled and repeated
seamlessly to provide accompaniment.
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design an appropriate audio input representation, and make
the model learn a generic feature embedding for all four
parameters. Meanwhile, having one trained model to generate
features will reduce the computational complexity. The model
also has the potential capability to generate efficient features
regardless of audio materials. The focus of this paper is to
design a feature learning model, so that it will be possible
to compare the efficiency between the trained features and
handcrafted features. We use the features in conjunction with
a conventional regression model, as opposed to end-to-end
learning, for sake of reproducibility and easier comparison
with previous work.

To achieve our goal, we proposed a siamese structure with
the feature embeddings formed by the difference between the
output of two branches. We test several architectures within
this two branch framework, aiming to learn highly specialised
audio features that are invariant to large variations in several
other attributes. We first evaluate baseline designs, then we
tune them to the task at hand given the observations. The
rest of the paper is organised as follows: Section II provides
the essential background. Several potentially suitable DNN
model designs from the literature are adopted and evaluated in
Section III. The models are tuned to our specific problem by
altering the model structures and hyperparameters in Section
IV. In Section V, we test the most suitable model on larger
scale and more complex dataset. Conclusion and future work
are provided in Section VI.

II. BACKGROUND

Audio effects can be considered signal processing opera-
tions applied by audio engineers during music mixing and
production. They play an essential role in shaping a desirable
sound. Casual users often find it hard to configure the diverse
parameters of effects, because they typically have limited
understanding of the underlining signal processing. Amateur
producers, hobbyists and musicians often describe a desired
effect by providing an example, e.g., a name of a style, artist or
song as a reference, rather than articulating specific parameters
or features, e.g., stating that they require a short attack [11].
This motivates us to build an intelligent control system using
a reference audio.

Dynamic range compressor is an essential effect in many
audio production use cases. DRC operates by applying gain
reduction while the input signal energy exceeds a configurable
threshold for a set amount of time. It is a highly non-linear
effect, which has been the interest of many researchers in
intelligent audio production [12]. A tutorial on the underlining
signal processing of digital DRC is provided in [13]. Previous
research on intelligent DRC control is using statistical features
[14] [15]. Recent works introduce machine learning and deep
learning models [8] [16].

As discussed earlier, DNNs are increasingly used in au-
dio signal processing and shown outstanding performance in
speech recognition [17], music genre classification [18] and
onset event detection [19] for example. There are attempts
of using DNNs for intelligent music production too [16],

[20]. The former work uses DNN as a predictor to reproduce
a gain factor, while the latter is a generative model that
simulates an audio effect in fixed configuration. Since there is
no neural network that performs a non-linear signal processing
and also have the same parameter control as a conventional
DSP algorithm, we use neural networks to learn a feature
embedding which is then used for parameter prediction rather
than developing an end-to-end model.

Effective recognition of specific patterns or variations in
temporal or spacial data greatly benefits from system charac-
teristics such as shift and translation invariance. This explains
the success of CNNs in image and audio processing. There are
two primary ways to use CNN for audio related tasks. Since
CNN is originally designed for visual data, i.e. 2D signal per
channel, we can transform the 1D audio signal into a 2D time-
frequency representation and apply 2D CNN directly. Popular
representations include the spectrogram [2] and the percep-
tually motivated Mel-spectrogram [3] [4]. Regarding time-
frequency representations as equivalent to an image remains
a question, even if this has proved to be powerful in several
tasks including music classification and tagging. For instance,
images can be shifted in the y-axis and the information remains
the same, but a shift in the frequency axis will have different
implications for audio. Many research shows that given raw
audio input, i.e., a uniformly sampled digital signal, it is
possible for the model to learn an appropriate hierarchical
representation [21]. Therefore, to reduce information loss
during preprocessing, many recent works apply raw audio as
the input for the CNN. Normally, using raw audio involves
presenting a relatively long 1D signal. Many researchers use
large convolution filter size, e.g. 10-20ms (441-882 samples
with a sample rate of 44100Hz) [5] [6]. There are also ”sample
level” networks which use a small filter size, e.g. 3 samples
[22] and achieve a comparable level of accuracy in music
tagging tasks. Since our problem would require a model to
learn multiple parameters of an audio signal processing task,
we need the model to be able to capture features at different
scales. Therefore the multi-kernel model approach [23] [24]
designed to enhance the versatility of the model would be a
benefit in our task.

Since our problem also requires the model to pay attention
to subtle changes in an audio signal, such as the changes in
note attack times and to learn features related to them, we
consider to use a siamese network [25]. The siamese model is
a structure that contains two or more identical subnetworks.
It is an appropriate structure when a model needs more than
one input or branch, and all inputs are from the same domain.
This structure is powerful, especially when the multiple inputs
are similar or linked in a certain relation [26]. In our case,
the inputs are the audio before and after dynamic range
compression. Similar structures may also be used in audio
applications for feature learning across different domains [27].

III. MODEL DESIGN

In this research, our purpose is to learn a feature embedding
that represents all the characteristics of the DRC. The system



uses two audio inputs, an unprocessed input and a compressed
audio as reference. During the training process, the latter is a
compressed version of the former, therefore, we have access
to the ground truth of compression parameters. The dataset
with ground truth are divided into training and testing set,
therefore, for both training and testing sets, there will be
ground truth to evaluate. The evaluation results in this and the
following sections are the prediction accuracy of the testing
set. In real world scenario, a model performs well if it can
still deliver reasonable performance when the reference is no
longer generated from the unprocessed input c.f. [8]. The
analysis of this situation is out of the scope of this paper. We
focus on learning an optimal feature embedding for a specific
audio domain. Figure 1 outlines the training and prediction
process. We denote audio as Input 1 (unprocessed audio),
Input 2 (processed audio) and the ground truth parameters,
i.e. training target, as Labels. The details of the dataset is
provided in Section III-B. We have 4 parameters in this re-
search, attack time, release time, ratio, and threshold, denoted
Θ = {τa, τr, Ratio, Thd}.

Input 1

Input 2

Unprocessed 
 audio branch

  Processed   
audio branch

Labels (4, ); 
Θ = {τa,τr,Ratio,Thd}

Feature
Embedding

(50, )

Random
 Forest

 Regression
 

Labels (4, ); 
Θ ={τa,τr,Ratio,Thd}

Fig. 1. Workflow for the designed system: it contains a twin-siamese DNN
model for feature learning with the learning target of DRC parameters, and
a random forest regressor trained by DNN feature embedding for parameter
prediction. Details of the training process is given in Section III.

Two audio files will be used as the inputs for the siamese
model shown in Fig. 1, where they are described as Unpro-
cessed branch and Processed audio branch. These identical
branches contain convolutional layers as well as dense layers.
Their outputs are considered feature embeddings. We will
introduce three model designs in the following paragraph. To
learn the characteristics of an audio signal, we can preprocess
it to obtain a time-frequency representation, or use raw audio
samples as input. We have two model designs corresponding
to these two types of inputs signals. Besides, we also consider
the multi-kernel approach [24] to enable learning features at
multiple time and frequency scales. We merge the output of the
two branches using subtraction, followed by a fully connected
dense layer. Mean squared error is used as loss function for
training as the training targets are the parameters Θ of the
DRC. Finally, we update the learning rate adaptively using
Adadelta [28]. The trained feature embeddings are then used
as features to train a random forest regression model. It follows
the same procedure of our previous work [8]. We did not

design the model as a predictor directly, but it is possible to
plug a DNN regressor after the feature embedding layer. At the
current stage of the research, we prefer to focus on enabling
the model to learn DRC related features well. We would also
like to compare the results with our previous handcrafted
features. Using the random forest model will therefore provide
a more trustworthy comparison.

A. Model designs for the siamese branches

Model 1. CNN structure
The first model design for both identical branches is the

classical CNN structure [1] widely used in image and audio
signal analysis. CNNs provide the state-of-the-art in relevant
tasks including onset event detection [29] and music boundary
learning [4]. The audio segments that are affected at the DRC
onset, i.e., when the signal exceeds the configurable threshold,
can be considered a boundary which represents a change point
within the audio. Multiple aspects of the audio are altered
depending on the parameter settings. We assume the CNN is
able to learn the DRC characteristics. We use Mel-spectrogram
input, a good reduced representation of timbre information. We
use a seven layer CNN, which consists of five convolutional
layers, five max-pooling layers and a dropout rate of 0.1. It is
followed by two dense layers. The model summary is provided
in Table. I.

Input: Mel-spectrogram (128,690,1)
Conv2D: 3*3*10
MaxPool2D: 2*2

DropOut: 0.1
Conv2D: 3*3*15
MaxPool2D: 2*2

DropOut: 0.1
Conv2D: 3*3*15
MaxPool2D: 2*2

DropOut: 0.1
Conv2D: 3*3*20
MaxPool2D: 2*2

DropOut: 0.1
Conv2D: 3*3*20
MaxPool2D: 2*2

DropOut: 0.1
Flatten

Dense(feature embedding layer): 50
Dense: num para

Output: Parameters
TABLE I

MODEL SUMMARY FOR THE CNN STRUCTURE, I.E. MODEL 1.

Model 2. Sample level CNN for waveform input
The second model structure uses time domain audio samples

as input. As we mentioned before, the common time-frequency
representation cannot be considered exactly equivalent to an
image, therefore we propose using audio samples directly as
input. Since some aspects of DRC operation may be better
characterised in the time domain, i.e., at the audio sample
level, we used sample-level small filters and follow the model
design in [22], where the proposed network contains seven
1D convolutional layers, batch-normalisation, and six layers of
max-pooling. This front-end is then followed by two residual
layers and two dense layers. We use residual layers to avoid



the vanishing gradient problem without introducing too many
layers [30]. A summary of this model is provided in Table
II. Some of the convolutional layers are duplicated, we use
“*2” to represent two groups of layers with the same settings.
“L1”-“L4” are the notations for back end layers.

Input: Waveform (44100,1)

Front
End

Network

Conv1D: 3*1*64
Batch Normalisation

Conv1D: 3*1*64
Batch Normalisation

MaxPool1D: 3*1
*2

Conv1D: 3*1*128
Batch Normalisation

MaxPool1D: 3*1
*2

Conv1D: 3*1*256
Batch Normalisation

MaxPool1D: 3*1
*2

Flatten, Dimension expand

Back
End

Network

Conv2D: 7*256*512
Batch Normalisation L1;

Conv2D: 7*256*512
Batch Normalisation L2;

Add (L1, L2) L3;
Conv2D: 7*256*512
Batch Normalisation L4;

Add (L3, L4)
Global Pooling;

Dense(feature embedding layer): 50
Dense: num para

Output: Parameters
TABLE II

MODEL SUMMERY FOR THE WAVEFORM STRUCTURE, I.E. MODEL 2. IT
CAN BE SEPARATED TO FRONT-END AND BACK-END NETWORK, WHERE

THE FRONT-END IS A COMBINATION OF SAMPLE LEVEL 1D CONV LAYERS
AND THE BACK-END CONSISTS OF TWO RESIDUAL LAYERS.

Model 3. Multi-kernel CNN structure
Our task is to make this siamese model learn multiple

aspects of DRC, i.e., changes that happen at different time
scales, as well as at different magnitudes, for example, due to
changes in attack time vs. ratio and threshold. We consider to
use the multi-kernel model construction proposed in [24]. This
model is designed to capture the audio features at multiple
scales at the same time, which fit our purpose to observe
audio characteristics over different decision horizons. It could
be especially useful for our problem because we want our
model to learn four aspects of DRC at the same. The model
with only one kernel size might neglect certain features of
the audio. The model applies several temporal kernels as well
as frequency domain (timbre) kernels as illustrated in Fig.
2. Similarly to the previous model, this structure uses Mel-
spectrogram input too. It applies six different kernel shapes
with 2D convolutional layers, four different kernel shapes with
1D convolutional layers and concatenate the outputs of all ten
layers together as input to the back-end network, which has
two residual convolutional layers and two dense layers as in
Model 2.

B. Dataset description
In our experiments, we generate 64 guitar loops and drum

loops using the Apple Loops1 library. We compress them using

1https://support.apple.com/kb/PH13426

different DRC parameter settings to produce the following
datasets:

For DS1 to DS4, the audio files are compressed with only
one parameter changing, while the others are fixed. For DM1

and DM2, each audio file is compressed while two parameters
are changing at the same time. Take DM1 as an example,
each audio file will be compressed by 8 threshold settings
and 8 ratio settings. It will produce 64 compressed audio for
each raw audio loop. For instance, guitar1 is compressed
using Thd [10.0dB, 14.8dB, 19.6dB, 24.4dB, 29.2dB, 34.0dB,
38.8dB, 43.6dB], guitar2 is compressed using Thd [10.6dB,
15.4dB, 20.2dB, 25.0dB, 29.8dB, 34.6dB, 39.4dB, 44.0dB],
and so on. For each audio file, the compression threshold grid
is 4.8dB, but the combined set yields a finer grid, 0.6dB as
noted in the table. The default value for each parameter is
Thd = −37.5dB, Ratio = 2 : 1, θa = 5ms, θr = 200ms.

dataset generation dataset size

DS1 Thd: 0 to 49dB with step of1dB guitar: 65*50;
drum: 64*50

DS2 Ratio: 0 to 20 with step of 0.4 guitar: 65*50;
drum: 64*50

DS3 τa: 1 to 100ms with step of 2ms guitar: 65*50;
drum: 64*50

DS4 τr : 10 to 1000ms with step of 20ms guitar: 65*50;
drum: 64*50

DM1
Thd: 10 to 47.8dB with step of 0.6dB
Ratio: 1 to 19.9 with step of 0.3

guitar: 65*64;
drum: 64*64

DM2
τa: 1 to 95.5ms with step of 1.5ms
τr :10 to 955ms with step of 15ms

guitar: 65*64;
drum: 64*64

TABLE III
DATASET DETAILS FOR TWO INSTRUMENTS

In the following subsection, models for one and two param-
eters are trained and tested based on these datasets. A more
complex dataset is used in Section V.

C. Evaluation of different model designs

All models are trained using a small batch size of 8, while
15% of the data are used as validation set. We monitored the
validation error to avoid overfitting to the training data. After
the model is trained, the feature embedding is generated using
the trained networks. The feature embeddings are then used
to train a random forest regression model, where we split the
data into 80% training and 20% testing. We split the audio
dataset randomly 50 times. The averages of the test prediction
mean absolute errors (MAE) are reported in Table IV.

The DNN models are able to produce similar results for
Thd and Ratio. However, the prediction error of τa and τr
are relatively high compared to handcrafted features. Since we
did not preprocess input audio to emphasise any of the DRC’s
effect, the model would react better when a specific DRC
parameter has a more significant influence on the raw audio,
i.e. Thd and Ratio. Moreover, handcrafted features are tuned
specifically to extract information from a temporal region of
the audio where a certain parameter is the most effective.
Comparing the two types of models, using raw audio as input
provides better performance in 6 out of 8 cases for single

https://support.apple.com/kb/PH13426


Input

Timbre
Feature

Temporal
Feature

Concatenate

Backend

Output

Mel-spectrogram
(128,690,1)

ZeroPad (3,0)
Conv2D (7*115*5)
BatchNormalisation
MaxPool2D (1,576)

ZeroPad (1,0)
Conv2D (3*115*10)
BatchNormalisation
MaxPool2D (1,576)

Conv2D (1*115*15)
BatchNormalisation
MaxPool2D (1,576)

ZeroPad (3,0)
Conv2D (7*51*5)

BatchNormalisation
MaxPool2D (1,640)

ZeroPad (1,0)
Conv2D (3*51*10)
BatchNormalisation
MaxPool2D (1,640)

Conv2D (1*51*15)
BatchNormalisation
MaxPool2D (1,640)

AveragePool (1,128)
Dimension squeeze

Conv1D (16*5)
BatchNormalisation

AveragePool (1,128)
Dimension squeeze

Conv1D (8*10)
BatchNormalisation

AveragePool (1,128)
Dimension squeeze

Conv1D (4*15)
BatchNormalisation

AveragePool (1,128)
Dimension squeeze

Conv1D (2*20)
BatchNormalisation

| {z }
Followed the backend design
of Model 2, c.f. Table II.

Output: Parameters

1

Fig. 2. Model summery for the multi-kernel structure, i.e. Model 3. The front end network concatenates 11 Conv layers with different kernel shapes. The
back end network is two layers of residual layers, which is the same as Table II.

parameter prediction. Many factors can lead to this result. First
of all, the frame size we used for the Mel-spectrogram is 512,
which is relatively large given that our problem focuses on
small transient times. Secondly, Mel-spectrogram works well
when the aim is to retrieving high-level musical information,
but it may smear useful spectral information that are important
in our problem. Given these observations, some improvements
on the network structures and hyperparameters are described
in the next section.

Thd Ratio τa τr

Guitar

Model 1 1.781dB 0.657 4.338ms 35.589ms
Model 2 1.206dB 0.751 3.192ms 32.893ms
Model 3 1.034dB 1.009 3.273ms 71.288ms

Handcrafted 0.903dB 0.623 0.845ms 10.442ms

Drum

Model 1 2.994dB 0.961 3.829ms 58.394ms
Model 2 2.627dB 0.932 3.480ms 43.668ms
Model 3 2.953dB 1.218 7.694ms 93.064ms

Handcrafted 0.915dB 0.655 1.194ms 12.714ms
TABLE IV

PREDICTION MAE FOR REGRESSION MODEL USING FEATURE
EMBEDDINGS LEARNT FROM EACH DNN AS WELL AS HANDCRAFTED

FEATURES, WHEN PREDICTING INDIVIDUAL PARAMETERS OF THE DRC.

The results are not yet encouraging when using the trained
features to predict individual DRC parameters, in contrast,
improvements are shown when we train the model to learn
two parameters simultaneously. The training data for the two
parameters model are DM1 and DM2, which is larger than
the single parameter training set. The results are shown in
Table V. Comparing with Table IV, the model produces better
results, especially for release time. For Thd, Ratio, and τr,
the DNN model is able to yield a better performance than
handcrafted features. Model 2 is the best performing model in
this experiment. This model provides the best performance for
4 out of 8 cases. For reference, the range of each parameters
are 49dB for Thd, 19 for Ratio, 99ms for τa and 999ms
for τr. The larger range of release time results in a higher
prediction error compared with the other parameters.

Thd, Ratio τa, τr

Guitar

Model 1 1.854dB, 0.529 2.081ms, 20.184ms
Model 2 1.666dB, 0.460 1.725ms, 18.357ms
Model 3 1.567dB, 0.618 1.565ms, 15.588ms

Handcrafted 0.912dB, 0.883 2.100ms, 25.079ms

Drum

Model 1 1.810dB, 0.800 5.061ms, 27.005ms
Model 2 1.112dB, 0.391 4.506ms, 13.609ms
Model 3 2.170dB, 0.782 6.463ms, 21.427ms

Handcrafted 3.233dB, 0.684 2.354ms, 14.980ms

TABLE V
PREDICTION MAE FOR REGRESSION MODEL USING FEATURE

EMBEDDINGS LEARNT FROM EACH DNN AS WELL AS HANDCRAFTED
FEATURES, WHEN THE MODEL IS JOINTLY PREDICT TWO DRC

PARAMETERS.

IV. MODEL TUNING

In the previous section, we explored several model designs
from the literature. In this section, we improve the networks
to better fit our task, along with the analysis of the model
components’ impact on the results. The following subsections
discuss each model respectively.

A. Improvements on Model 1

First, we aim to improve the performance of Model 1.
There are several reasons to use time-frequency representation
as input: the data size is reduced; the ability to control the
frequency and time resolution; using 2D convolution will give
us more choices of kernel size;

The previous settings for the hyperparameters are used
directly as reported in [24] [22]. Next, we optimise the net-
work structure and hyper parameters. As discussed in Section
II, many factors will influence the performance. Here, we
considered three factors: whether using Mel-spectrogram or
spectrogram, the kernel shape of the model and finally the
frame length of the STFT. We can assume that the Mel-
spectrogram smeares useful information and this leads to a
poor performance. Therefore, using spectrogram alone can be
assumed to improve the performance. Due to the fact that our
problem requires focussing on a short transient time at some



point, as well as the sample-level Model 2 shows a better
performance in the previous experiment, we assume that a
short time frame, i.e., a better time resolution and a smaller
kernel size will also improve the performance. Based on these
two assumptions, we conduct the following experiments.

The first exploratory analyses are designed to improve the
model, therefore we do not conduct a thorough experiments
for all the datasets. We use the drum dataset: DS3, DS4

and DM2 in this Section, because it shows in Table IV that
prediction of attack/release time is more difficult for DNN
models (large performance gap). The predicted mean absolute
errors (MAE) are provided in Table VI. The first experiment
aims to select the most suitable input signal format. We use
the same frequency resolution for both representations. The
prediction error shows a large improvement. Especially for
release time, it reaches a similar performance to Model 2.
All cases exceed the performance of Model 1 too. We can
conclude that spectrogram is a more suitable representation
for this task and this model.

Para(ms)
Input signal Melgram Spectrogram

τa 3.829 2.415

τr 58.394 33.085

Joint prediction (τa/τr) 5.061 4.656
27.005 17.781

TABLE VI
PREDICTION MAE WHEN CHANGING INPUT REPRESENTATIONS

In the second experiment, we investigate the time frame
length of spectrograms. The results in Table VII provides a
clear trend that with the decrease of frame size, the prediction
error drops. We did not progress the experiment with frame
size smaller than 128 samples because this would yield un-
reasonably low frequency resolution.

Para (ms)
Time frame length 512 256 128

τa 2.415 2.197 2.042

τr 33.085 30.546 26.698

Joint prediction (τa/τr) 4.656 4.271 3.141
17.781 16.846 15.752

TABLE VII
PREDICTION MAE WHEN CHANGING FRAME SIZE FOR SPECTROGRAM

The third experiment is conducted while we alter the kernel
size of the model. The original design is using five 2D
convolutional layers with a 3 by 3 kernel. Since we need to
capture audio features in multiple feature dimensions, we will
try to alter kernel sizes and combinations. We reduce the depth
of the 2D layers and increase the depth of 1D convolutional
layers at the same time. Except for the release time results,
the other performances did not show significant improvement.
For simplicity, we keep the five convolutional layers with 3*3
kernels in further experiments.

Para (ms)
Kernel size 5(3*3) 4(3*3)+1(1*3) 3(3*3)+2(1*3)

τa 2.042 1.966 1.962

τr 26.698 21.173 18.491

Joint prediction (τa/τr) 3.141 4.232 3.941
15.752 14.436 16.791

TABLE VIII
PREDICTION MAE WHEN CHANGING KERNEL SHAPES FOR MODEL 1,

WITH DIFFERENT COMBINATIONS OF 2D AND 1D CONV LAYERS

B. Improvement on Model 2

In this section, we explore the improvement for Model 2
using the same datasets. One conclusion we can draw from
the previous experiment is that for our problem, having large
filter size in the time axis will result in poor performance
in predicting τa, τr. We have also tested the performance on
Ratio, Thd but the improvement is not as significant as the
temporal parameters, therefore we did not present them. Apart
from the size of the filters, we also alter the number of filters
and layers of the network. The prediction errors are provided in
Table IX. However, the results do not improve as significantly
as they do for Model 1. Even though the advantage of the
sample level CNN is having a fine resolution in time domain,
we can achieve and exceed the prediction result by tuning the
2D CNN model and its input time-frequency representation.

Initial ↑ Filter size ↓ Filter number ↓ Layers

τa 3.480ms 7.772ms 3.227ms 3.784ms

τr 43.668ms 48.834ms 39.740ms 45.030ms

Joint
prediction

4.506ms
13.609ms

6.683ms
20.486ms

5.847ms
17.622ms

3.864ms
16.619ms

TABLE IX
TUNING RESULTS FOR MODEL 2, WHEN WE INCREASE FILTER SIZE,

REDUCE FILTER NUMBERS, AND REDUCE LAYERS RESPECTIVELY

C. Improvement on Model 3

As it is mentioned in Section III, we also consider the multi-
kernel structure that proved to be efficient in the music tagging
problem [24]. Since the DRC may impact audio events in the
short and long-term and impact different frequencies in a non-
linear fashion, it makes sense to use multiple kernels at the
same time. We use all six datasets to train the best performing
model (Model 1 tuned), Model 3 with default settings, and the
Model 3 with tuned hyperparameters. We used all six datasets
to provide an overall evaluation for the tuned models. The
prediction results are provided in Table X.

The results for Model 3 are not as good as the best per-
formance reported in Section IV-A. Based on the conclusion
from the previous section, we improve the model by using
spectrogram with smaller time frame as input, as well as
decreasing the kernel size for the temporal features. These
changes do not improve the prediction error rate significantly
however. Model 3 combines multiple feature representation



Model 1 tuned Model 3 Model 3 tuned

Thd 1.543dB 2.953dB 2.602dB

Ratio 0.746 1.218 1.184

τa 2.024ms 7.694ms 7.691ms

τr 26.698ms 93.064ms 41.678ms

Joint prediction

1.019dB 2.170dB 1.351dB
0.417 0.782 0.394

3.141ms 6.463ms 3.644ms
15.752ms 21.427ms 17.688ms

TABLE X
IMPROVEMENT FOR MODEL 3, USING SPECTROGRAM AND A REDUCTION

OF FRAME SIZE

layers, therefore there are more trainable parameters compared
to Model 1 and Model 2. This leads to growth in complexity
and make the training more difficult. It might also be due to the
shallowness of the network. The model concatenated multiple
layers, but they are all single layers, therefore the depth of
the model is 3. This is very shallow compared to the other
designs. We will consider to deepen this model in the future
work.

V. EVALUATION ON SIMULTANEOUS PARAMETER
ESTIMATION AND POLYPHONIC MUSIC DATA

In this experiment, we expand the dataset from two param-
eters changing simultaneously to all four parameters chang-
ing together. The data is generated using the same method
described earlier and reported in Table III. Changing four
parameters together results in a substantial growth of the
amount of data, therefore, instead of 8 settings for each
parameters, we use 5, i.e., drum1 is compressed using Thd:
[10.0dB, 18dB, 26dB, 34dB, 42dB], Ratio: [1.28:1, 5.12:1,
8.96:1, 12.80:1, 16.64:1], τa: [1ms, 21ms, 41ms, 61ms, 81ms],
and τr: [10ms, 210ms, 410ms, 610ms, 810ms]; drum2 is
compressed using Thd [11.0dB, 19dB, 27dB, 35dB, 43dB],
Ratio: [1.76:1, 5.60:1, 9.44:1, 13.28:1, 17.12:1], τa: [3.5ms,
23.5ms, 43.5ms, 63.5ms, 83.5ms], and τr: [35ms, 235ms,
435ms, 635ms, 835ms], and so on. The new dataset of size
64 ∗ 625 = 40000 is outlined in Table XI.

dataset generation dataset size

D4P

Thd: 10 to 49dB with step of 1dB
Ratio: 1.28 to 20 with step of 0.48
τa: 1 to 98.5ms with step of 2.5ms
τr :10 to 985ms with step of 25ms

drum: 64*625

TABLE XI
DATASET DETAILS FOR CHANGING FOUR PARAMETERS TOGETHER

We compare the prediction results between the regressor
trained using handcrafted features and feature embedding
learnt by Model 1. The results are given in Table XII. The
predictions of the four parameter model are not as good as
the two parameter ones. However, the four parameter model
shows its advantage when compared to handcrafted features.
When several attributes of the audio are changing at a time,

handcrafted features that are designed to measure specific
attributes like attack time differences, tend to lose their benefit
compared to a neural network. The MAEs for attack and
release time have grown, but for reference, the range of the two
parameters are 99ms and 999ms respectively. We also outline
the percentage of the predicted error over the parameter range
in Table XII.

Handcrafted features Feature embeddings

Thd 2.937dB / 7.34% 2.369dB / 5.92%

Ratio 3.447 / 17.24% 3.265 / 16.33%

τa 13.926ms / 14.07% 10.868ms / 10.98%

τr 120.577ms / 12.07% 79.045ms / 7.91%

TABLE XII
PREDICTION MAE USING LARGE SCALE DATA AND COMPARING

HANDCRAFTED FEATURES AND FEATURE EMBEDDINGS FOR PREDICTING
FOUR DRC PARAMETERS. THE PERCENTAGE OF THE PREDICTION ERROR

OVER PARAMETER RANGE IS ALSO GIVEN.

We also test the model using more complex audio materials,
that is, polyphonic music. We randomly select 50 audio
segments from the mixed music of the MedleyDB dataset
[31]. We generate 50*625 compressed audio using the method
described in Table XI. We use the feature learning model
trained on drum loops’ features to predict the compression
parameters of the mixed audio. The two types of features
are handcrafted features and the feature embeddings from
the best performing DNN model. The predicted MAEs are
reported in Table XIII. The results from the model trained by
feature embeddings are clearly better. This result is reasonable
because considering that the programme material is different
from what model is tuned to, however, handcrafted features
are more depended on it. It is surprising that the prediction
MAE for mix audio is better than testing drum loops alone
(compare the last column of Table XII and Table XIII). We
may assume that richer audio content provides a benefit for the
DNN model. The results also indicate improved robustness and
generalisation of our method. Our future work aims to confirm
or refute these observations.

Handcrafted features Feature embeddings

Thd 11.585dB 1.697dB

Ratio 5.104 2.194

τa 26.628ms 9.873ms

τr 268.420ms 160.629ms

TABLE XIII
PREDICTION MAE FOR MIXED AUDIO WHOSE FEATURE EMBEDDINGS ARE

GENERATED USING DNN MODEL TRAINED BY DRUM LOOPS.

VI. CONCLUSION

In this paper, we explored several model designs for an
intelligent DRC control system. Handcrafted features failed
to provide good prediction when we aim to predict several



parameters together. DNN models start to show their advan-
tage compared to handcraft features when we predict two or
more parameters. The improvement becomes substantial when
predicting all four parameters together. Across the three model
designs, the CNN model using a high temporal resolution
spectrogram as input shows the best performance.

In this research, we discovered that the performance would
improve significantly when an appropriate time-frequency
representation is used as input. Surprisingly, the multi-kernel
model does not provide the best performance in this task.
This might be due to the complexity of the model, i.e., a
large network with more parameters possibly requiring more
training data. However, it is still worth considering to use
the multi-resolution time-frequency representations as input.
When we predicting more parameters together, the perfor-
mance for two parameters are much better than predicting
only one. However, the performance for four parameters drop
substantially compared with predicting only two parameters. A
possible explanation could relate to the larger grid size when
training data for the four parameters. The results may improve
using a finer grid and increased training data size.

In conclusion, the DNN model provides the ability to train
one generic model for all parameters of an audio effect. It
helps to reduce the limitations of handcrafted features. Further
research will be conducted to improve the performance and
test our models in a more realistic real-world scenarios, e.g.,
when applying the system in a professional music recording
studio.
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