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Multicomponent self-assembly holds great promise for the generation of complex and

functional biomaterials with hierarchical microstructure. Here, we describe the use

of supramolecular co-assembly between an elastin-like recombinamer (ELR5) and a

peptide amphiphile (PA) to organize graphene oxide (GO) flakes into bioactive structures

across multiple scales. The process takes advantage of a reaction—diffusion mechanism

to enable the incorporation and spatial organization of GO within multiple ELR5/PA

layers. Scanning electron microscopy (SEM), transmission electron microscopy (TEM),

and ImageJ software were used to demonstrate the hierarchical organization of GO

flakes within the ELR5/PA layers and the distribution profiles of GO throughout the

ELR5/PA membranes. Furthermore, atomic force microscopy (AFM) revealed improved

Young’s moduli of the ELR5/PA/GO membranes compared to the ELR5/PA membranes.

Q12

Lastly, we investigated biocompatibility of the ELR5/PA/GO membrane via various cell

culture methods.

Keywords: graphene oxide, multicomponent self-assembly, peptide amphiphiles, elastin-like recombinamer

INTRODUCTION
Q6

Q8Self-assembly, the process by which multiple smaller components autonomously interact and
organize into larger well-defined structures, plays a crucial role in the way nature creates structure
and functionality (Whitesides and Grzybowski, 2002). In an attempt to emulate biological systems,
molecular self-assembly is being used to design bioinspired materials with a spectrum of exciting
properties such as well-defined nanostructure (Zhang, 2003; Gazit, 2007), precise display of
bioactive signals (Webber et al., 2010; Azevedo, 2019), temporal control of signaling (Kumar
et al., 2018), and tuneable mechanical properties (Pashuck et al., 2010). Further processing has
been used to enhance complexity for example via modulation of the assembly process (Zhang
et al., 2010), top-down techniques (Mata et al., 2009; Mendes et al., 2013), or incorporation of
multiple bioactive epitopes (Stephanopoulos et al., 2013; Gentile et al., 2017). However, the ability
to assemble molecules hierarchically into well-defined macroscopic structures with practical use
remains limited.
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Multicomponent self-assembly offers an attractive route to

Q11

design and engineer materials with molecular precision while
increasing complexity and functionality (Draper et al., 2015).
For example, the co-assembly of peptide amphiphiles (PAs)
bearing either host or guest moieties has been recently used
to develop hydrogels with enhanced mechanical properties
(Redondo-Gómez et al., 2019). In a different approach,
by co-assembling PAs with a megadalton hyaluronic acid,
Capito et al. (2008) created stable sacs and membranes with
hierarchical nano-to-micro structure. Inspired by this work,
we have used PA molecules as self-assembling chaperones
to interact with and guide the assembly of different types
of molecules such as 1,3:2,4-dibenzylidene-D-sorbitol (DBS)
gelators (Okesola et al., 2019), the protein resilin (Okesola
et al., 2020a), or hyaluronan/nanoclay composites (Okesola
et al., 2020b), generating hydrogels with tuneable structure
and mechanical properties. Furthermore, taking advantage of
hydrodynamic forces generated during additive manufacturing,
Hedegaard et al. (2018) developed biocompatible hydrogel
constructs with well-defined ordered or randomly oriented
nanofibers, surfacemicrotopographies, distinct microgeometries,
and macroscopic assemblies.

Multicomponent self-assembly offers the possibility to not
only take advantage of the properties of the individual
components but also emergent assembling phenomena and
synergistic properties (Okesola and Mata, 2018). In this context,
Inostroza-Brito et al. (2015) demonstrated how PAs can affect
the conformation of elastin-like recombinamers (ELRs) to
consequently generate a diffusion-reaction assembly process.
This mechanism enables the formation of a hierarchical multi-
layered ELR5/PA membrane with the capacity to access non-
equilibrium and a series of dynamic properties. While the
resulting material is fragile (Inostroza-Brito et al., 2017), the
study demonstrates the possibility to guide the assembly of
complex components, such as proteins, beyond the nanoscale in
a controllable and autonomous manner.

Graphene oxide (GO) is a single layer two-dimensional
nanomaterial with a wide range of properties such as high
surface area, mechanical strength, thermal conductivity,
biocompatibility, and ease of functionalization (Zhu et al., 2010;
Yang et al., 2013). Graphene-based materials have enormous
potential in the biomedical field in applications ranging from
biosensors (Justino et al., 2017) and biological imaging (Lin
et al., 2016) to drug and gene delivery (Liu et al., 2013)
and biomaterials (Shin et al., 2016). A variety of composite
biomaterials incorporating a biomacromolecule and GO have
been generated in the form of electrospun mats (Azarniya et al.,
2016), hydrogels (Kang et al., 2015; Zhou et al., 2017), films
(Han et al., 2011), or other 3D structures (Rajan Unnithan et al.,
2017). For instance, nanocomposites of GO and chitosan have
been prepared resulting in improved mechanical properties
(Han et al., 2011; Li et al., 2013), resistance against enzymatic
degradation (Shao et al., 2013), enhanced cellular (Depan et al.,
2014; Dinescu et al., 2014), and antibacterial (Mazaheri et al.,
2014) activity. Other GO-protein composite materials based on
GO and gelatin or collagen have led to materials with improved
mechanical properties (Wan et al., 2011; Jalaja et al., 2016) and

bioactivity (Kang et al., 2015; Lee et al., 2016; Zhou et al., 2017).
While these examples elucidate both the interest and progress of
incorporating GO within biomaterials, the capacity to organize
GO flakes hierarchically remains an unmet challenge.

Here, we report on the use of the ELR5/PA co-assembling
system to enable localization and organization of GO flakes into
hierarchical and functional structures. We demonstrate how the
diffusion-reaction mechanism of formation can be used to guide
the assembly of GO flakes between the ELR5/PA layers and
generate complex geometries where GO is organized at multiple
length scales. Furthermore, we reason that the assembly of GO
in this manner will lead to enhanced mechanical properties of
the ELR5/PA system. We describe the underlying mechanism
of self-assembly, the structure of the composite material, and
the biocompatibility of the resulting ELR5/PA/GO biomaterial
through extensive in vitro cell studies.

RESULTS AND DISCUSSION

Rationale
The approach is based on the ELR5/PA co-assembling system
(Inostroza-Brito et al., 2015, 2017) and takes advantage of
its reaction-diffusion mechanism to recruit, localize, and
organize GO flakes at multiple length scales (Figure 1). We used
0.04% (v/v) GO (Wick et al., 2014) (pH = 2) with monolayer
content >95% and oxygen content >36% given its water
dispersability and low cost (Figure 1E). We used a cationic
PAK3 (C15H31CONH-VVVAAAKKK-CONH2) to co-assemble
with the oppositely charged ELR5 (MESLLP-[(VPGVG VPGVG

VPGEG VPGVG VPGVG)10-(VGIPG)60]2-[(VPGIG)10-
AVTGRGDSPASS(VPGIG)10]2-V) molecule to evaluate the
capacity of the assembling process to recruit and organize GO
flakes within the distinctive ELR5/PA multilayers (Figure 1A).
Furthermore, given our previous findings that distinct PA
molecules can generate different ELR5/PA membrane structures
(Inostroza-Brito et al., 2015), PAs with different charge densities
including PAK2 (C15H31CONH-VVVAAAKK-CONH2) and
PAK4 (C15H31CONH-VVVAAAKKKK-CONH2) were also used
to co-assemble with ELR5 (Figure 1D). In addition, the resulting
materials were characterized according to their mechanical
properties and used as cell culture substrates to investigate
their effect on cell adhesion, proliferation, metabolic activity,
and morphology.

Synthesis of Individual Components
PA molecules were synthesized following standard solid-phase
peptide synthesis methods as previously reported (Mata et al.,
2012). PA purity and structural conformation was characterized
by reverse phase HPLC and electrospray ionization mass
spectrometry (Figure S1). ELR5 molecules were obtained from
Technical Proteins Nanobiotechnology S. L., Spain and GO
aqueous dispersions were obtained from Sigma Aldrich, UK.

Characterization of Interactions Between
Components
The ELR5/PA system relies on electrostatic, hydrophobic, and H-
bond interactions (Inostroza-Brito et al., 2015). Consequently, we

Frontiers in Materials | www.frontiersin.org 2 May 2020 | Volume 7 | Article 167

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

Majkowska et al. Hierarchical Organization of Graphene Oxide Into Scaffolds

FIGURE 1 | Schematic representation and representative images of tubes and tube wall cross-sections of the ELR5/PA/GO system. (A) SEM micrograph of anQ4

Q5 ELR5/PA cross-section with its characteristic multi-layered architecture. Inset: Bright field image of a top view of an ELR5/PA tube. (B) Schematic of the ELR5/PA

system cross-section with black horizontal lines representing ELR5/PA layers embedded with GO flakes (red). (C) SEM micrograph of the cross-section of an

ELR5/PA/GO membrane visualizing the localization of GO flakes between ELR5/PA layers. (D,E) Molecular structure information of PAs, ELR5, and GO used in this

work.

first used circular dichroism (CD) to investigate the secondary
structure in aqueous solution of both PAs and ELR5 with and
without GO. CD revealed that PAK3 exists in a random coil
conformation when dissolved in MilliQTM water at pH 4.5 and
room temperature (RT), and does not undergo conformational
change when mixed with GO under the same conditions
(Figure 2A). However, a slight red-shift at the 195 nm minimum
was observed, which might indicate an interaction between
PAK3 and GO as previously reported (Pashuck et al., 2010).
CD on ELR5 samples dissolved in MilliQTM water at pH 5
and RT exhibited both random coil and β-sheet conformations
(Figure 2A) that did not change upon addition of GO. However,
lower intensity of the negative 195 nm signal might indicate that
GO reduces the content of random coil structures in ELR5 while
increasing the content of type I β-turns (Perczel and Fasman,
1992).

We further investigated the ELR5/PA/GO interactions by
conducting zeta potential and dynamic light scattering (DLS)
measurements. zeta potential of PAK3 decreased after addition
of GO (Figure 2B). This is likely a consequence of a drop in the

PAK3’s surface charge as a result of its electrostatic interactions
with carboxyl, hydroxyl, or carbonyl groups present in GO
(negatively charged), partially screening the positive charges of
PAK3. On the other hand, the zeta potential of ELR5 molecules
increased slightly after addition of GO, suggesting absence of
electrostatic interactions between these components, which is in
agreement with the CD results (Figure 2A). DLS measurements
revealed a dramatic decrease in GO size after mixing with both
PAK3 (Figure 2C) and ELR5, which suggests disruption of GO
aggregates, known to form in aqueous solutions (Tang et al.,
2015), due to electrostatic interactions. It is important tomention
that DLS is a well-suited technique for estimating the size of
spherical particles. However, this technique has been also used
to provide relative changes in size of non-spherical components
including GO (Stankovich et al., 2006), Pas (Raymond and
Nilsson, 2018), and ELRs (Navon and Bitton, 2016).

Hydrophobic interactions also play a key role in the ELR5/PA
system above the ELR5’s transition temperature (Tt) (Inostroza-
Brito et al., 2015). To investigate whether addition of GO into the
ELR5/PA system influences hydrophobic interactions, a turbidity
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FIGURE 2 | Analysis of interactions between PAK3, ELR5, and GO. (A) CD spectra of PAK3, ELR5, and their mixtures with GO in aqueous solutions at room

temperature. (B) Zeta potential measurements of aqueous solutions of PAK3, ELR5, and their mixtures with GO. (C) DLS measurements of aqueous solutions of

PAK3, ELR5, and their mixtures with GO (D) Turbidity of aqueous solutions of PAK3, ELR5, and their mixtures with GO at 4 and 40◦C measured at 300 nm. Error barsQ19

represent ±SD where ****p < 0.0001 and ***p < 0.001. The experiments were performed in triplicates.

assay was performed. The results confirmed that significant levels
of aggregation between ELR5, PAK3, and GO are only present
when the temperature is above the Tt of ELR5 (Figure 2D), which
indicates that presence of GO in the solution does not influence
the hydrophobic interactions between PAK3 and ELR5, necessary
for membrane formation (Inostroza-Brito et al., 2015).

These results indicate that molecular interaction between GO
and both molecular building blocks (PAK3 and ELR5) relies
mostly on electrostatic forces. However, both components retain
most of their secondary structures in presence of GO and,
consequently, hydrophobic interactions from ELR5 seem to also
play a key role above the ELR5 transition temperature.

The ELR5/PA/GO Membrane—Micro and
Macroscopic Properties
Upon ELR5/PAK3 co-assembly, a diffusion barrier is formed
across which the PAK3 diffuses (Inostroza-Brito et al., 2015).
Electron microscopy was used to investigate the assembly of
GO within the ELR5/PAK3 membrane when added into the
system. We first mixed GO with the PAK3 solution and
subsequently inoculated it into the ELR5 solution. Scanning

electron microscopy (SEM) revealed poor incorporation of
GO (Figure 3B), likely as a result of the inability of the
relatively large GO flakes to diffuse through the ELR5/PAK3
diffusion barrier. We then reasoned that combining GO with
ELR5 solution might surpass this obstacle. We prepared an
ELR5/GO solution followed by inoculation of PAK3 into the
mixture. In this case, we observed much higher incorporation
of GO in the final membrane (Figure 3C). Given these findings,
we then mixed GO with both ELR5 and PAK3 solutions,
followed by inoculation of PAK3/GO in the ELR5/GO solution.
In this setup, membranes qualitatively exhibited the highest
incorporation of GO (Figure 3D) while maintaining their multi-
layered structure and capacity to adhere to interfaces and
open controllably, transforming sacs into tubular structures
(Figures 4C–E) (Supplementary Information). Transmission Q13

electron microscopy (TEM) revealed presence of GO flakes
(visible as black lines) throughout the thickness of the
ELR5/PAK3/GO membrane, positioned within and parallel to
the membrane layers (Figure 4B). SEM performed on the
membranes confirmed the multi-layered microarchitecture with
embedded GO flakes (Figure 3F-row) seen on TEM. These
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FIGURE 3 | Investigation of GO incorporation in different ELR5/PA systems. First row illustrates the different experimental setups including (A) co-assembly of ELR5

and PAK3 (control), (B) GO combined with PAs before membrane formation, (C) GO combined with ELR5 before membrane formation, and (D) GO combined with

both PAs and ELR5 before membrane formation. Rows (E,F,G) depict SEM micrographs of cross-sections of the different systems including ELR5/PAK2 (row E),Q20

ELR5/PAK3 (row F), and ELR5/PAK2-K4 (row G). Asterisks * point to GO flakes. Insets are top view bright field images of the corresponding tubes. Differences in

color/contrast of the inset images are a result of differences in the structure of the generated membranes.

results indicate that GO can be successfully incorporated within
the ELR5/PAK3 system by taking advantage of the diffusion-
reaction mechanism of assembly to recruit, localize, and organize
GO flakes within the multi-layered architecture and as part of a
more complex geometrical structure.

Incorporation Studies
To investigate the possibility to use supramolecular self-
assembling processes to guide the organization of GO more
broadly, we repeated the experiments using variations of
PAK3, PAK2 (C15H31-VVVAAAKK–CONH2) and PAK4
(C15H31-VVVAAAKKKK-CONH2) (Figure 1D). We have

previously demonstrated that these PAmolecules with a different
number of lysine residues were also able to form stable ELR5/PA
membranes, but exhibiting different cross-sectional architectures
(Inostroza-Brito et al., 2015). Membranes formed using PAK4
exhibited a multi-layered architecture with increased thickness
and a looser structure compared to ELR5/PAK3 membranes
(Inostroza-Brito et al., 2015) while those formed using PAK2
exhibited a different three-level structure with orthogonal fibers
(Figure 3F-row) (Inostroza-Brito et al., 2015). To study the
interaction between GO and the ELR5/PAK2-K4 system, we
also attempted to generate ELR5/PA membranes combining
both PAK2 and PAK4 (1:1 mixture). We hypothesized that the
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FIGURE 4 | Investigation of GO incorporation and ELR5/PAK3/GO membrane properties. (A) TEM micrograph of a cross-section of an ELR5/PAK3 membrane (InsetQ21

is a representative SEM micrograph). (B) TEM micrograph of a cross-section of an ELR5/PAK3/GO membrane with GO flakes (yellow arrows) (Inset is a representative

SEM micrograph). (C–E) Demonstration of the dynamic properties of the ELR5/PAK3/GO system including spontaneous opening after a drop of PAK3/GO solution is

inoculated into an ELR5/GO solution (C–E) capacity for longitudinal growth upon increasing the ELR5/GO volume.

different diffusion mechanisms arising from the co-assembly
of these different components would guide and organize GO
flakes differently. To investigate this hypothesis, experiments
were conducted using ELR5/PAK2 and ELR5/PAK2-K4
combinations (Figures 3E,G-rows). As before, GO was mixed
with (i) PAs alone, (ii) ELR5 alone, and (iii) both components
(Figures 3B–D). ELR5/PAK2/GO and ELR5/PAK2-K4/GO
membranes were stable and robust (Figures 3E,G insets) and
exhibited darker color suggesting GO incorporation in these
conditions, which was assessed by observations under an optical
microscope. SEM investigations on membranes revealed GO
flakes were incorporated and organized within and throughout
the multi-layered architecture of the ELR5/PAK2-K4/GO
membranes (Figure 3G-row). As with the ELR5/PAK3/GO
system, highest incorporation of GO was achieved when the GO
was mixed with both PA and ELR5 solutions (Figures 3D,F). In
contrast, ELR5/PAK2/GO membranes exhibited large quantities
of GO on the outer and inner side of the membrane but only
marginal incorporation within the membrane.

These results suggest that GO can be incorporated within
the ELR5/PA system independently of the PA molecule used.
However, the level of incorporation of GO within the membrane
depends on the supramolecular mechanism of assembly, with
both ELR5/PAK3/GO and ELR5/PAK2-K4/GO presenting more
GO in the multilayers than ELR5/PAK2/GO membranes, which
present a different mechanism of co-assembly (Inostroza-Brito

et al., 2015). Initial formation of a diffusion barrier prevents
large flakes of GO from diffusing through the barrier, forming
membranes with less GO flakes. Addition of GO flakes in
the ELR5 solution helps to overcome this obstacle, forming
membranes with higher content of GO. Highest incorporation,
however, can be achieved only when GO is combined with both
PA and ELR5 solutions, particularly in the case of the ELR5/PAK3
and ELR5/PAK2-K4 systems.

Membrane Thickness
To study the effect of introducing GO into the ELPR5/PA system,
possible changes in membrane thickness were investigated
by SEM (Figure 5B). SEM revealed that the thickness of
ELR5/PAK3/GO membranes increased when GO was added
in either PA or ELR5 solutions prior to assembly, forming
the thickest membrane when GO was mixed with both ELR5
and PAK3 (Figure 5D). Similar results were observed in
ELR5/PAK2-K4/GO membranes (Figure 5D). In contrast, the
thickness of ELR5/PAK2/GO membranes gradually decreased
with addition of GO to either PAK2, ELR5, or both PAK2 and
ELR5 solutions. This result suggests that the supramolecular
mechanism of assembly of ELR5/PAK2membranes, which differs
from ELR5/PAK3 and ELR5/PAK4 systems (Inostroza-Brito
et al., 2015), prevents incorporation of GO. These experiments
are in alignment with the SEM observations (Figure 3) and
confirm that, while supramolecular processes may be able

Frontiers in Materials | www.frontiersin.org 6 May 2020 | Volume 7 | Article 167

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

Majkowska et al. Hierarchical Organization of Graphene Oxide Into Scaffolds

FIGURE 5 | GO content and distribution in the membranes. (A) Schematic of the experimental setup for measuring GO distribution. (B) GO distribution profile

throughout the thickness of the ELR5/PAs/GO systems. Number of GO flakes present in each layer of a z-stack image was quantified and presented as number of

GO flakes vs. layer number which was normalized as % of the thickness of the membrane. (C) GO content per membrane as measured by UV-Vis. (D) Thickness of

the membranes as measured by SEM. Error bars represent ±SD where ****p < 0.0001, ***p < 0.001, **p < 0.01, and *p < 0.5. The experiments were performed inQ19

triplicate.

to organize GO flakes at multiple scales (ELR5/PAK3 and
ELR5/PAK2-K4 systems), the size of GO flakes may limit its
incorporation in some co-assembling systems (ELR5/PAK2).

GO Content
To further characterize GO incorporation, the amount of
GO within each of the ELR5/PA systems was quantified.
After co-assembly, membranes were dissolved in 1,1,1,3,3,3-
Hexafluoro-2-propanol (HFIP) and GO absorbance was
monitored spectrophotometrically in the UV-Vis region. The
technique enabled quantification of mass of GO per membrane
(Figure 5C) and the results revealed the highest incorporation
of GO occurred in ELR5/PAK2-K4 membranes, followed
by ELR5/PAK3 membranes, and, as expected, ELR5/PAK2
membranes with the lowest incorporation of GO. These results
correlate with the previously discussed SEM observations
(Figure 3) and membrane thickness experiments (Figure 5B).

Distribution of GO
SEM and TEM demonstrated that GO flakes are
incorporated and organized within the ELR5/PAK3/GO
and ELR5/PAK2-K4/GO membranes. To further characterize

the level of incorporation throughout the thickness of the
membrane, 3D z-stacked bright field images of the membrane
were generated (Figure 5A). Using ImageJ software (Schneider
et al., 2012), we quantified the number of GO flakes in each
layer of the different membranes by generating z-stack images
and producing distribution profiles depicting number of
GO flakes vs. layer number, which was normalized as % of
the thickness of the membrane (Figure 5B). These profiles
revealed that in ELR5/PAK3/GO membranes, GO is distributed
throughout the thickness of the membrane with higher
amounts present in the middle. In addition, ELR5/PAK2-
K4/GO membranes exhibited similar level of GO incorporation
but the flakes were more evenly distributed throughout
the membrane (Figure 5B). Interestingly, ELR5/PAK2/GO
membranes exhibited uniform distribution throughout the
membrane but with much lower levels of incorporation
(Figure 5B). These results confirm that GO flakes were in
fact distributed throughout the membranes of all the systems
studied but with different levels of incorporation. Highest
incorporation and distribution was observed in ELR5/PAK2-
K4/GO and ELR5/PAK3/GO membranes, on which we focused
to assess applicability.

Frontiers in Materials | www.frontiersin.org 7 May 2020 | Volume 7 | Article 167

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

Majkowska et al. Hierarchical Organization of Graphene Oxide Into Scaffolds

Mechanical Properties of the ELR5/PA/GO
Systems
Given the unique mechanical properties of GO (Zhu et al.,
2010) as well as its incorporation and organization within
the ELR5/PA systems, we hypothesized that the mechanical
properties of the resulting ELR5/PA/GO membranes would
improve compared to the control ELR5/PA membranes. Atomic
force microscopy (AFM) measurements were conducted on both
luminal (inner) and abluminal (outer) sides of ELR5/PAK3/GO
and ELR5/PAK2-K4/GO membranes assembled with GO added
to both PA and ELR5 solutions (Figure 6). The results revealed
significant increase in Young’sModuli of the ELR5/PAK2-K4/GO
membrane on both luminal and abluminal sides compared to
ELR5/PAK2-K4 membranes (Figure 6B). This increase was also
evident in ELR5/PAK3/GOmembranes compared to ELR5/PAK3
ones (Figure 6A). These results suggest that stiffness of the
ELR5/PA membrane increases after incorporation of GO on
both sides of the membrane, which correlates with the SEM
observations (Figure 3), membrane thickness measurements
(Figure 5C), and GO distribution and incorporation (Figure 5D)
within the membrane’s microstructure when GO is added to both
ELR5 and PAs solutions.

Cell Studies
Cell Adhesion
The potential applicability of the ELR5/PA/GO materials was
investigated by assessing the suitability of the membrane to
be used in tissue engineering applications. Mouse adipose
derived stem cells (mADSCs) were cultured on both sides of
the membranes that presented higher incorporation of GO
including ELR5/PAK3, ELR5/PAK3/GO, ELR5/PAK2-K4, and
ELR5/PAK2-K4/GO. Preliminary biocompatibility was assessed
by quantifying cell adhesion, viability, and proliferation.

mADSCs were seeded on both ELR5/PAK3 and ELR5/PAK2-
K4 membranes (with and without GO) in serum-free media,
incubated for 4 h, rinsed to remove non-adherent cells, cultured
for an additional 4 h in full media (DMEM, 20% FBS),
and then dyed with the blue dsDNA stain 4’-6-diamino-2-
phenylindole (DAPI). Fluorescent microscopy revealed higher
numbers of cells growing on ELR5/PAK3 and ELR5/PAK3/GO

membranes than on ELR5/PAK2-K4 and ELR5/PAK2-K4/GO
membranes (Figure 7B). To verify these results, we quantified
the amount of double strand DNA (dsDNA) present in
the samples by PicoGreenTM assay. This assay allows the
quantification of the concentration of dsDNA that can be
interpreted as proportional to the number of cells present in
the sample. mADSCs from membranes were collected after 7
days of culture and tissue culture plate (TCP) was used as
control. The results revealed similar dsDNA concentration of
cells growing on ELR5/PAK3 and ELR5/PAK3/GO membranes,
suggesting that these membranes facilitate cell adhesion and
proliferation (Figure 7A). In contrast, dsDNA concentration of
cells growing on both ELR5/PAK2-K4 and ELR5/PAK2-K4/GO
membranes was significantly lower than TCP. We hypothesize
that the decrease in cellular dsDNA may be the result of (i)
a greater cytotoxic effect from the positives charges of PAK4
(Newcomb et al., 2014) or (ii) the higher Young’s Modulus
of both ELR5/PAK2-K4 and ELR5/PAK2-K4/GO (compared
to ELR5/PAK3 and ELR5/PAK3/GO; Figure 6), which could
influence cell adhesion. Previous studies have demonstrated that
stiffer surfaces can result on lower mADSCs adhesion (Discher
et al., 2005).

In summary, these results reveal that incorporation of GO
within both ELR5/PAK3 and ELR5/PAK2-K4 systems does not
affect the biocompatibility of the material but differences in
the resulting architecture and material properties may lead to
differences in the capacity of the material to promote cell
adhesion and proliferation.

Cell Morphology
Cells stained with DAPI (nucleus) and Phalloidin CruzFluorTM

647 (actin) were imaged under an epifluorescent microscope.
Analysis of the stained cells revealed that cells grown on
ELR5/PAK3 and ELR5/PAK3/GO membranes exhibited a
well-spread morphology and formed multiple connections
with surrounding cells (Figure 7E). In contrast, cells grown
on ELR5/PAK2-K4 and ELR5/PAK2-K4/GO membranes
displayed a much less spread morphology and formed fewer
connections with neighboring cell. These results suggest that
ELR5/PAK3 membranes support better cell adhesion compared
to ELR5/PAK2-K4 membranes regardless of the GO content.

FIGURE 6 | Young’s Moduli of the membranes. AFM measurements were carried out on the luminal (inner) and abluminal (outer) side of the ELR5/PAK3 ± GO

membranes (A) and ELR5/PAK2-K4 ± GO membranes (B). Error bars represent ±SEM where **p < 0.01, and *p < 0.5. The experiments were performed in 5

replicates.
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FIGURE 7 | Investigation of biocompatibility of ELR5/PAs/GO membranes. Mouse derived adipose stem cells (mADSCs) were grown on the membranes and dsDNAQ23

content (A) was quantified after 7 day in culture and normalized to TCP (100%) by PicoGreenTM assay. (B) Fluorescence microscopy images of mADSCs stained with

DAPI (4,6-diamidino-2-phenylindole) after 4 h of cell culture. (C,D) Proliferation studies. mADSCs were grown on the ELR5/PAK3 ± GO (C) or ELR5/PAK2-K4 ± GO

(D) membranes. dsDNA content was quantified by PicoGreenTM assay. (E) Morphology studies. mADSCs were stained with Phalloidin CruzFluorTM 647 and DAPI.

Images indicate a spreading morphology and intercellular connections between mADSCs growing on ELR5/PAK3 and ELR5/PAK3/GO membranes and a barely

visible cytoskeleton of mADSCs grown on ELR5/PAK2-K4 and ELR5/PAK2-K4/GO membranes with minimal spreading and connections observed. (F,G) Cell

metabolic activity studies. mADSCs were grown on the ELR5/PAK3 ± GO (F) or ELR5/PAK2-K4 ± GO (G) membranes, cell metabolic activity was assessed with

Alamar BlueTM assay. The data suggest there is no significant difference in cell metabolic activity between either ELR5/PAK3 and ELR5/PAK3/GO nor ELR5/PAK2-K4

and ELR5/PAK2-K4/GO systems at any of the time points. Error bars represent ±SD where ****p < 0.0001, ***p < 0.001, **p < 0.01, and *p < 0.5. The experiments

were performed in triplicates.

Cell Metabolic Activity
To further assess the capacity of the materials to support cell
growth, the metabolic activity of mADSCs on the membranes
was assessed by Alamar blueTM assay over 2 weeks of cell culture.
Same membranes used for cell adhesion studies (Figure 7E)
revealed no significant difference in metabolic activity for cells
growing on the ELR5/PAK3/GO membranes vs. ELR5/PAK3
membranes at any time point (Figure 7F). On the other hand,
cells grown on ELR5/PAK2-K4/GOmembranes exhibited a slight
decrease, though not statistically significant, in metabolic activity
compared to those grown on ELR5/PAK2-K4 membranes. These
results further evidence that addition of GO flakes into the

ELR5/PAK3 system does not have a negative impact on the
metabolic activity of the cells. However, there is a slight decrease
in cell metabolic activity after addition of GO in the ELR5/PAK2-
K4 system, suggesting supramolecular organization of GOwithin
the membranes or the possible cytotoxicity of the positively
charged PAK4 (Newcomb et al., 2014) might play a role.

Cell Proliferation
Cell proliferation was then assessed by quantifying dsDNA
concentration of mADSCs grown on the different membranes
on days 2, 7, and 14 via Quant-iTTM PicoGreenTM assay. The
results revealed that in case of the ELR5/PAK3 system, GO
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does not have an effect on the proliferation of mADSCs at
none of the investigated time points (Figure 7C). On the other
hand, we observed that GO may be influencing proliferation
of mADSCs grown on ELR5/PAK2-K4 membranes, given a
decrease in dsDNA concentration at day 7 and an increase
at day 14 compared to membranes without GO (Figure 7D).
These results indicate that both ELR5/PAK3 and ELR5/PAK2-
K4 systems support cell proliferation regardless of GO content,
although, proliferation rate is slower for cells growing on the
ELR5/PAK2-K4 system.

CONCLUSION

In this study, we report the ability of the ELR5/PA self-
assembling system to manipulate, localize, and organize GO
flakes into hierarchical structures. By taking advantage of
the electrostatic and hydrophobic nature of ELR5 and PAs,
the formation of a diffusion barrier upon their co-assembly,
and the subsequent diffusion-reaction mechanism of ELR5/PA
membrane formation, we demonstrate the potential to use
supramolecular mechanisms to guide assembly of GO across
scales and into complex architectures. Furthermore, we show
that incorporation of GO flakes within the ELR5/PA system
improves mechanical properties of the resulting materials and
may be beneficial for tissue engineering applications. Also,
we demonstrate that incorporation of GO does not affect the
capacity of the composite material to support mADSCs adhesion,
proliferation, and metabolic activity.

METHODS
Q24

Membrane Formation
ELR5 and PA molecules were dissolved separately in MilliQ
water (10 and 15 mg/mL, respectively). pH was adjusted to pH
= 5 (ELR5) and pH = 4.5 (PAs). One hundred and ninety
microliter of ELR5 solution was placed in a well in a 48 well
plate. Ten microliter of PA solution was added by immersing the
pipette tip into the ELR5 solution and slowly releasing the liquid.
The membrane was left to develop for 48 h at 30◦C. For GO
membranes: GO 4 mg/mL (pH = 2) was diluted to the required
concentration with pH adjusted to pH = 4.5 and mixed with
either ELR5 solution or PA solution before membrane formation.
Ten microliter of PA-GO solution was added by immersing the
pipette tip into the ELR5-GO solution and slowly releasing the
liquid. The membrane was left to develop for 48 h at 30◦C.

Growth Experiment
ELR5 and PAmolecules were dissolved separately inMilliQ water
(10 and 15, mg/mL respectively). GO 4 mg/mL was diluted to the
required concentration and mixed with either ELR5 solution or
PA solution before membrane formation. Hundred microliter of
ELR5/GO solution was placed in a glass vial. Five microliter of
PA-GO solution was added by immersing the pipette tip into the
ELR5 solution and slowly releasing the liquid. Additional 20 µl
of ELR5/GO solution was carefully added to the vial every 10min
to observe growth of the membrane.

Zeta Potential and Dynamic Light
Scattering
Zeta potential was measured to investigate the changes in surface
charge density of ELR5, PA and GO molecules when mixed
together. ELR5 and PA were dissolved in MilliQ water [0.1
and 0.15% (w/v), respectively]. GO was diluted to the final
concentration of 0.001% (w/v). pH was adjusted to pH = 5
(ELR5) and pH = 4.5 (PAs), and pH = 4.5 (GO). All samples
were sonicated for 30min prior taking the measurement. Zeta
potential was measured at 25◦C on a Zetasizer (Nano-ZS ZEN
3600, Malvern Instruments, UK).

Circular Dichroism Spectroscopy
ELR5 and PAs were dissolved in MilliQ water [0.025 and 0.01%
(w/v), respectively]. In order to carry out the measurement
at the same conditions as membrane formation, pH was
adjusted to pH = 5 (ELR5) and pH = 4.5 (PAs). GO was
diluted to the final concentration of 0.001% (w/v) and pH
was adjusted to pH = 4.5. CD spectra were obtained using
1mm path length and 300 µl volume quartz cuvette (Chirascan,
Applied Photophysics, UK). between 195 and 270 nm with a
0.5 nm interval at 25◦C. CD measurement was conducted using
ChirascanTM CD spectrometer (Chirascan, Applied Photophysics
Ltd, UK) equipped with a Peltier temperature controller, under a
constant nitrogen purging at a constant pressure of 0.7MPa. Each
represented spectrum is the average of three consecutive spectra.

Turbidity
ELR5 and PA were dissolved in MilliQ water [0.025 and 0.01%
(w/v), respectively]. GO was diluted to the final concentration
of 0.001% (w/v). Absorbance of the solutions was measured
at 300 nm using a microplate reader (Spetrostarnano, BMG
Labtech, UK) at 4 and 40◦C.

Transmission Electron Microscopy
Membranes were formed as described. After washing with
MilliQ water membranes were crosslinked with TEM grade
glutaraldehyde followed by dehydration with a gradient 30–100%
of ethanol. Membranes were then embedded on LRWhite resin
and ethanol 50–50% for 1 h and 100% LRW 1h and again 100%
LRW overnight. The following day they were encased in capsules
filled with resin and left in the oven at 60◦C for 5 h to harden. The
block was sectioned with a Reicht microtome to a thickness of
70 nm. The sections were loaded onto a copper grid and stained
with 2% uranyl acetate for 4min and rinsed in MilliQ water. The
samples were visualized on a JEOL JEM1230 electronmicroscope
operating at 80 kV.

Scanning Electron Microscopy
ELR5/PA/GO membranes were left to develop for 48 h and then
washed in MilliQ water and fixed with 2.5% glutaraldehyde in
MilliQ water for 2 h at room temperature. Then, the samples were
washed in MilliQ water followed by dehydration by immersion
in an increasing concentration of ethanol (20, 50, 70, 90, 96, and
100%). The samples were then subjected to a process of critical
point drying (K850, Quorum Technologies, UK) followed by
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sputter-coating with gold for 90 s. SEM imaging was carried out
using an Inspect F50 (FEI Comp, The Netherlands).

GO Distribution
Membranes were formed as previously described. After washing
in MilliQ water membranes were cut open, put flat on a
microscope slide and then covered with a slide cover. 3D images
were obtained with Zeiss LSM710 confocal microscope.

GO Mass
Fully formed and washed membranes were dissolved in
1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP) followed by
sonication for 30min. GO absorbance was measured
spectrophotometrically in the UV-VIS region. Standard
curve was prepared using a solution of GO flakes in
hexafluoroisopropanol at a known concentration.

Atomic Force Microscopy
Atomic force microscopy was used to measure Young’s Modulus
of the investigated system. Membranes were attached to a
Petri dish using a drop of cyanoacrylate adhesive and left for
a minute for the adhesive to dry followed by immersion in
ultrapure MilliQ water. Young’s Modulus measurements were
taken with JPK Nanowizard-1 (JPK Instruments, Germany) in
force spectroscopy mode, which was mounted on an inverted
optical microscope (IX-81, Olympus, Japan). Indentation was
carried out using quadratic pyramidal cantilevers (MLCT, Bruker,
MA, USA) with spring constant of 0.07 N/m and half-angle to
face of 17.5◦. Measurements were taken in multiple areas per
sample and multiple times per area.

Cell Studies
Fully developed membranes were washed with MilliQ water and
crosslinked with genipin at a concentration of 25 µl/ml at 37◦C
overnight. Tubes were then washed inMilliQ water and sterilized
under UV light for 20min. After sterilization, tubes were washed
three times in Hank’s balanced salt solution. Fifty thousand
mADSCs re-suspended in DMEM (10%FBS, 1%P/S) were seeded
on each ELR5/PA/GO tube. Media was changed every 2 to 3 days.

Cell Attachment
Cells were seeded as previously described in a serum free
DMEM media and incubated for 4 h followed by additional 4 h
in full media (DMEM with 20% FBS). Cells were fixed with
4% paraform aldehyde for 1 h and stained with blue dye 4’-6-
diamino-2-phenylindole (DAPI), followed by imaging under an
epifluorescent microscope (Leica DMi8).

Cell morphology was assessed by using epifluorescent
microscopy (Leica DMi8). After the cell culture membranes

were fixed with 4% paraform aldehyde for 1 h and stained
with 4’-6-diamino-2-phenylindole (DAPI) and Phalloidin
CruzFluorTM 647.

Cell metabolic activity was assessed on days 2, 7, and 14 with
AlamarBlueTM cell metabolic assay. Membranes were incubated
for 2 h at 37◦C in a 10% (v/v) solution of AlamarBlueTM in
DMEM. Fluorescence of the solution was then read at 570
and 595 nm using a microplate reader (Spetrostarnano, BMG
Labtech, UK).

Cell proliferation was assessed by quantifying the number of
adherent cells to membranes with Quant-iTTM PicoGreenTM

assay on days 2, 7, and 14. Briefly, cells were lysed and the
supernatant solution was diluted in assay buffer followed by
addition of Quant-iTTM PicoGreenTM reagent and incubation
for 5min at RT. Fluorescence of the samples was measured at
480 nm (excitation) and 520 nm (emission) using a microplate
reader (Spetrostarnano, BMG Labtech, UK). The DNA
concentration for each sample was calculated by using a
standard curve.
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