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SUPPLEMENTARY NOTE 1

Details on individual measurements: Abbreviations and statistical measures

Abbreviations

The power grid frequency has been recorded in several synchronous areas across Europe and beyond. We introduce
the abbreviations used when referring to the measurement sites, e.g. in plots, in Supplementary Table 1: We list the
town, and country where the measurement was taken and the synchronous area to which this particular device was
connected. For example, the measurement taking place in Karlsruhe, Germany is abbreviated as DE (ISO 3166 for
Germany) and is connected to the Continental European synchronous area (CE). When discussing the results, we
will often refer to the synchronous area and name the measurement site abbreviation in parenthesis, e.g. Continental
Europe (DE) is known to be influenced by market dynamics, see also [1]. Unless we are specifically interested in
the short time scale, a measurement taken in one location is representative for the whole synchronous area, see also
discussion on time-to-bulk in the main text. For areas that are part of a larger country, we first name the country and
then specify the area further, e.g. US-UT stands for the United States of America, State Utah, which in turn is part
of the Western Interconnection.

Supplementary Table 1. Abbreviations of measurement locations and their connection to synchronous areas. For each country,
we adopt the ISO 3166 code. The population is extracted from Wikipedia and the sources therein in March 2020.

Abbreviation Measurement location Synchronous area Population

Islands
IS Reykjavík, Iceland Iceland 360,390
FO Vestmanna, Faroe Islands Faroe Islands 51,783

ES-GC Las Palmas de Gran Canaria, Canary Islands, Spain Gran Canaria 851,231
ES-PM Palma de Mallorca, Balearic Islands, Spain Mallorca 896,038

Continental
DE Karlsruhe, Germany Continental Europe (CE) 500,000,000
GB London, United Kingdom Great Britain (GB) 66,224,800
EE Tallin, Estonia Baltic 6,042,657
SE Stockholm, Sweden Nordic 21,180,931

Others
US-UT Salt Lake City, Utah, US Western Interconnection 3,205,958
US-TX College Station, Texas, US Texas Interconnection 84,600,000
ZA Cape Town, South Africa South Africa 58,775,022
RU St. Petersburg, Russia Russia 146,745,098

Statistical measures

Let us systematically investigate the statistical properties of the various areas by computing their mean deviation
from the reference µ, as well as their standard deviation σ, skewness β, and kurtosis κ in Supplementary Table 2.
First, we note that most of the synchronous areas are very close to their reference frequency of 50 Hz (or 60 Hz for US
areas) on average. Except for Great Britain (GB) and South Africa (ZA), continental areas display a smaller standard
deviation than islanded areas. For GB, we can attribute this large deviations to the very different frequency regulation
framework (when compared to Continental Europe), which allows large deviations [2]. The skewness and kurtosis are
more difficult to interpret. Some areas, such as Texas (US-TX) and Faroe Islands show a substantial skewness, while
other areas, such as Continental Europe (DE) and Iceland (IS) display a large kurtosis κ > 3, hinting at heavy tails
in the distribution.

Kurtosis of aggregated data and increment statistics Let us have a closer look at the kurtosis values. We utilise
the kurtosis and its deviation from the Gaussian value of κGauss = 3 to quantify whether a given distribution displays
heavy tails and thereby deviates from a Gaussian distribution. For the aggregated statistics studied above this is
relevant as it tells us how likely we will observe extreme deviations, which could lead to a curtailment of demand or a
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Supplementary Table 2. Statistical properties of different measurement sites. We report the mean µ as the mean deviation from
the reference frequency f − f ref, standard deviation σ, skewness β and kurtosis κ of the data.

Area Mean µ [mHz] Std. σ [mHz] Skew. β Kurtosis κ

Islands
IS 0.90 55.81 -0.04 7.02
FO -36.65 133.15 0.27 2.39

ES-GC -0.60 61.63 0.38 5.00
ES-PM 1.32 70.13 0.06 2.62

Continental
DE 0.22 18.77 0.08 3.95
GB -0.06 62.29 0.04 2.42
EE -0.29 12.44 -0.09 2.95
SE 0.61 48.91 0.19 4.05

Others
US-UT -0.73 18.67 -0.04 2.56
US-TX 0.20 17.79 -0.49 2.42
ZA 1.47 93.43 -0.15 2.39
RU -1.63 16.44 -0.24 2.52

shutdown of generators. For the increments, this is of particular interest for the statistical modelling since a classical
Ornstein–Uhlenbeck Process would lead to Gaussian increments [3].

A kurtosis of κ > 3 is only clearly observed in the aggregated data of IS, ES-GC, DE, and SE. In all cases, the
numerous extreme events are a remarkable observation. For such a highly regulated and controlled system as the
power grid to deviate so strongly so often demands an explanation. We are confident that the heavy tails at the two
continental areas DE and SE are related to extreme deviations at the trading intervals [1, 4, 5]. The tails in the two
islands might also be caused by market activities or arise due to a different operation by the TSO, as will be clarified
in future work.

The role of the kurtosis changes when moving to increments. A large kurtosis of the increments indicates that the
effective noise acting on the system does indeed not follow a Gaussian distribution, as expected in many stochastic
processes. Naturally, investigating the increments of an empirical trajectory, we will observe a much more volatile
behaviour than if we only observe the trajectory itself. Large jumps will be present and on a short time scale we
expect extreme tails in real-world data. Some of these large jumps could be caused by renewable generators, others by
fast control mechanisms or inverters. Still it is remarkable that kurtosis values of κ 102, are observed for IS and ES-GC
in Fig. 4 of the main text. While the general trend of decreasing kurtosis with increasing time lag is in coherence
with previous work on increment analysis [6, 7], further work is necessary to arrive at a full statistical description of
frequency increment.
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SUPPLEMENTARY NOTE 2

Scaling of fluctuations

Let us investigate whether the fluctuation in terms of regular deviations, measured by the standard deviation σ, or
extreme deviations, measured by the kurtosis κ scale with the size of the power system. Intuitively, we would expect
that the more generation is present in a given area, the smaller the fluctuations we observe are going to be. As a
proxy of the total generation, we use the total population of a synchronous area as this information is easily available
for all areas and population and total generation are approximately proportional [8]. As we can see in Supplementary
Fig 1, the kurtosis κ is not a simple function of the size of a synchronous area. The occurrence of heavy tails, as
measured by the kurtosis κ, depends on dispatch strategies, market regulations [9] and control requirements, which
are standardised within the European Network of Transmission System Operators for Electricity (ENTSO-E) [2],
leading to very similar values of the kurtosis in most synchronous areas.

104 105 106 107 108 109

Population

1

3

5

7

κ

IS

FO

EE

ES-PM

SE

GB

DE

RU
US-TX

US-UT
ZA

ES-GC

Supplementary Figure 1. Extreme fluctuation occurrence do not decrease with increasing grid size. We plot the kurtosis as a
measure of heavy tails as a function of the population of a synchronous area.

In contrast, we have seen in the main text that the aggregated noise amplitude ε decreases approximately as the
square root of the size of a synchronous area. Let us review the derivation of this relation in more detail and discuss
alternative approaches to observe the scaling. We follow the arguments presented in [1]: Let us use the standard swing
equation [10] to describe the synchronous frequency dynamics at each node i as

Miω̇i (t) = −Diωi (t) + εiΓi(t) + Pmi + P ei , (1)

where ωi = fi/(2π) is the nodal angular velocity, Mi is the inertia, Di is the damping, εiΓi(t) is a noise term and Pmi
and P ei are the mechanical power generated or consumed and the transmitted electrical power respectively. Moving to
the bulk description, i.e., defining the total inertia M :=

∑N
i=1Mi and the bulk angular velocity ω̄ :=

∑N
i=1Miωi/M

and assuming a constant damping to inertia ratio γ = Di/Mi [11] as well as balanced electrical and mechanical power
on average, i.e.,

∑N
i=1 P

m
i = 0,

∑N
i=1 P

e
i = 0, we obtain

d
dt
ω̄ (t) = −γω̄ (t) +

1

M

N∑
i=1

εiΓi (t) . (2)

The equation from the main text is re-obtained by identifying ∆P as
∑N
i=1 εiΓi (t). If we assume that the noise Γi(t)

at each node is approximately Gaussian with zero mean and standard deviation 1 (the amplitude is included in εi),
we can formulate the Fokker–Planck equation [3] of this Ornstein–Uhlenbeck process (2) as

∂p

∂t
= γ

∂

∂ω̄
(ω̄p) +

1

2

1

M2

[
N∑
i=1

ε2i

]
∂2p

∂ω̄2
. (3)

The resulting probability density function p (ω̄) is a normal distribution with mean 0 and standard deviation

σ =

√∑N
i=1 ε

2
i

γM2
. (4)
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As an additional simplification, let us assume identical noise εi = ξ and identical inertia Mi = m at all nodes, i.e.,
M = Nm. Then, the standard deviation is given as

σ =

√
Nξ2

γm2N2
=

√
ξ2

γm2

1√
N
. (5)

This means the standard deviation decays approximately as σ ∼ 1/
√
N . An important assumption when comparing

areas with Supplementary Eq. (5) is that we assume similar noise ξ, damping γ, and inertia m. While the inertia per
machine will likely be similar in the different areas, the effective damping depends on the control applied and the
noise on the mix of generators (nuclear, hydro, coal, wind, solar, ...) and the nature of the demand fluctuations.

To take these additional external factors into account when comparing the empirical data of the various synchronous
areas, we do not compare the standard deviation several areas but their aggregated noise amplitudes ε. To retrieve
the aggregated noise amplitude ε we employ a non-parametric Nadaraya–Watson estimator to extract the Kramers–
Moyal moments of the underlying stochastic dynamics. For a timeseries x(t), the nth Kramers–Moyal moment can be
extracted via

Mn(x, t)= lim
∆t→0

1

∆t

〈
(x′(t+∆t)−x′(t))n|x′(t)=x

〉
, (6)

where the averaging process is made more precise by implementing a kernel-density function Kh(·) = h−1K(·/h) with
a bandwidth h. The Nadaraya–Watson estimator Wh(x), at point i, is given by [12]

Wh(x)i =
Kh(x− x′i)∑S
j=1Kh(x− x′j)

, (7)

where we take Kh(x) to be an Epanechnikov function, compact in R[−1,1], and S is the number of data points.
The aggregated noise amplitude ε is retrieved studying the second Kramers–Moyal moment, and employing the
aforementioned estimator, resulting in

M2(x) =
1

S∆t

S∑
i=1

Wh(x)i[x
′(t+∆t)− x′(t)]2i = ε2, (8)

with ∆t = 1s. All Kramers–Moyal moments are easily retrievable, see Refs. [13, 14]. The so extracted aggregated
noise amplitude ε will closely follow the empirical Fokker–Planck equation and should therefore resemble a ε ∼ 1/

√
N

decay, as any deterministic effects are filtered out.
Finally, while we expect the noise to decay with the size, it is well-justified to add a constant to our previously

derived expression (5), modifying it to

ε ∼ σ =
a√
N

+ b. (9)

We add the constant b to take the effect of deadbands into account. All synchronous areas have deadbands [10], i.e.
frequency ranges for which there is no (primary) control active and the frequency dynamics evolves freely. This means
for a certain range |ω| < ωdeadband the damping to inertia ratio γ, which explicitly includes primary control, is much
smaller and the frequency randomly evolves and contributes a minimum noise contribution b.

In addition to the standard deviation σ or the aggregated noise amplitude ε, we might also consider using a
Gaussian kernel to detrend the data and only analyse the standard deviation of the detrended data. Finally, we could
also consider using the standard deviation of the increments (at the smallest available time lag τ = 1) as a proxy of
the actual noise. We compare these different approaches in Supplementary Fig. 2: Moving from top to bottom: Taking
the unfiltered standard deviation of the data (Supplementary Fig. 2 a), does give a rough trend but areas as South
Africa (ZA) or Great Britain (GB) have a much larger standard deviation than we would expect from the scaling law.
When we introduce the de-trending, the overall standard deviation drops (Supplementary Fig. 2 b) but the problems
with GB and ZA persist. Likely this is caused by control regulations that allow larger deviations than they are allowed
for example in Continental Europe. Next, we extract the aggregated noise amplitude ε (Supplementary Fig. 2 c) and
observe a decay, well-approximating the conjectured scaling law. Finally, we note that using the standard deviation
of the increments at lag τ = 1s is almost identical to the aggregated noise amplitude ε (Supplementary Fig. 2 d).
Comparing all four plots, in particularly in terms of the standard deviation of the best fit (shaded area), leads to the
conclusion that panels c and d are the best descriptors. Both the extracted noise ε as well as the increments on the
one second scale ∆f1 are good proxies of the diffusive forces acting on the synchronous area.
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Supplementary Figure 2. Average fluctuations decrease with increasing grid size with increments ∆f1 and aggregated noise
amplitude ε as the best descriptors. We plot the standard deviation (a), filtered standard deviation (b), the aggregated noise
amplitude (c) and the standard deviation of the increments at time lag τ = 1s (d). The shaded area gives the standard deviation
of the fit.
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SUPPLEMENTARY NOTE 3

Castaing’s model for increments
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Supplementary Figure 3. Increment analysis reveals non-Gaussian characteristics, dominantly in islands. We plot the Castaing
parameter λ2

τ , given by Supplementary Eq. (14), for the different examined power grid frequency recordings. We observe a
non-vanishing intermittency in Gran Canaria (ES-GC), Iceland (IS), Faroe Islands (FO), Mallorca (ES-PM), Britain (GB),
Texas (US-TX) , and South Africa (ZA). In contrast, the increments’ distribution of the Baltic (EE), Continental Europe (DE),
Nordic (SE), Russia (RU) synchronous areas and the Western Interconnection (US-UT) approach a Gaussian distribution.

In the main text we quantified deviations from Gaussianity of the increment distributions by the use of the excess
kurtosis κ−3, which should decay to zero if the distributions under consideration are Gaussian. Here, we offer a more
theoretical view by using Castaing’s model. This model describes the deviations of the increments’ distribution from
a Gaussian distribution [15–17] and has already been applied to frequency analysis [6, 7]. The increments ∆fτ with
the lag τ have a non-homogenous scaling, which leads to distributions with high kurtosis, and sometimes non-zero
skewness [18]. The rationale is that the process is a superposition of several subset processes with distinct scales,
similar to superstatistics [19, 20]. Specifically, Castaing’s model is a special case of log-normal superstatistics applied
to increments. The probability density function (PDF) of the increments p(∆fτ , στ ) is a function of the widths στ ,
given by

p(∆fτ , τ) =

∫ ∞
−∞

Lλ(στ )p0(∆fτ , στ )d lnστ , (10)

where the underlying subset processes are assumed to have a Gaussian distribution p0(∆fτ , στ ) ∼ N (0, στ ) of some
variance σ and Lλ(στ ) accounts thus for the scales of each superposition. This scale function Lλ(στ ) is conjectured
to be log-normally distributed

Lλ(στ ) =
1

λτ
√

2π
exp

[
− ln2(στ/σ0)

2λ2
τ

]
, (11)

with λ2
τ being the Castaing parameter. For the case λ2

τ → 0, the distribution Lλ(στ ) approached a δ-distribution, and
the increments ∆fτ are purely Gaussian distributed. As λ2

τ increases, the convolution includes more scales and the
tails of the PDF of the increments enlarge. Inserting Supplementary Eq. (11) into Supplementary Eq. (10) yields the
explicit PDF of the increments as

p(∆fτ , τ) =

1

λτ2π

∫ ∞
0

dστ
σ2
τ

exp

[
−∆f2

τ

2σ2
τ

− ln2(στ/σ0)

2λ2
τ

]
.

(12)

The increments intermittency behaviour is thus solely described by the Castaing parameter λ2
τ . Multiplying both sides

of Supplementary Eq. (12) by ∆f2
τ and integrating over [−∞,∞], we find

σ2
0 = 〈∆f2

τ 〉 exp
[
−2λ2

τ

]
. (13)

One can now recover the Castaing parameter λ2
τ by extracting the fourth-order statistical moment, i.e., the kurtosis

κ∆f (τ), of the PDFs of ∆fτ as function of the lag τ . The Castaing parameter λ2
τ results in

λ2
τ = ln

(
κ∆f (τ)

3

)
, (14)
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i.e., for a Gaussian distribution with κ∆f (τ) = 3 the Castaing parameter decays to 0.
To extract the Castaing parameter, we compute the increment statistics ∆fτ of a certain timeseries fτ and calculate

the kurtosis κτ of the PDF of the increments. Then, we take the normalised logarithm as in Supplementary Eq. (14)
and do so over the desired range of increments time-lag τ .

Computing the Castaing parameter λ2
τ for our data, we observe very heterogeneous results between the various

synchronous areas, see Supplementary Fig. 3. In some areas, the intermittent behaviour of the increments ∆fτ is
subdued and the overall distribution approaches a Gaussian distribution (in EE, DE, SE, RUS, and US-TX), i.e.,
the Castaing parameter λ2

τ approaches 0. On the other hand, all islands display large and non-vanishing intermittent
behaviour, as well as GB, US-TX, and ZA. Iceland (IS) but particularly Gran Canaria (ES-GC) shows impressive
deviations from Gaussianity that require detailed modelling in the future.

With Castaing’s model and parameter we used an alternative approach to quantify heavy tails, instead of purely
using the kurtosis κ. A further advantage of Castaing’s approach is that it allows us to model the increments as
superimposed distributions, complementary to superstatistics of the aggregated frequency distributions [1]. An explicit
increment model will be left for future work.
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SUPPLEMENTARY NOTE 4

Further increment analysis
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Supplementary Figure 4. Long increment lags lead to increased correlations. We repeat the increment analysis from the main
text but with larger lags 1 s ≤ τ ≤ 10 s. Note that each of the 2×2 subpanels is now using four different lags τ but the overall
figure still follows the same arrangement as in the main text.

We complement the increment analysis from the main text by considering larger time lags τ > 1 s. In particular, we
compute the increments [6, 21] ∆fτ = f(t+τ)−f(t) for the four measurement sites in Continental Europe: Karlsruhe,
Oldenburg, Istanbul and Lisbon. For the pairs investigated in the main text, we consider a lag τ = 1, 2, 5, 10 seconds
in Supplementary Fig. 4. Since the scatter plots report increments at two locations at the same time t, points on the
diagonal indicate large correlations, while circles or ellipses aligned with one axis indicate no correlations. The results
for Oldenburg vs. Karlsruhe are almost independent of the specific time lag τ . The magnitude of the increments
increases for increasing time lag τ but almost all values follow the diagonal, indicating a high correlation on the full
time scale for 1 to 10 seconds. In contrast, the increment plots involving Istanbul and Lisbon change much more with
increasing lag τ as their increments on the time scale of 1 second are almost completely uncorrelated but at 5 to 10
seconds, an increasing number of points follow the diagonal, i.e., fluctuation events become correlated. Similar to the
detrended fluctuation analysis (DFA) from the main text, we again observe that short time scales are independent,
while we approximate a bulk description for longer time scales. This observation is also consistent with claims found e.g
in [22] that high frequency fluctuations do not penetrate the grid over long distances but lower frequency fluctuations
do.
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Supplementary Figure 5. The kurtosis κ of the increment statistics ∆fτ decreases with increasing lag τ . We plot the kurtosis
κ of each recording site as a function of the increment lag τ .

Finally, we may further investigate how the increment distributions look like, in particular with respect to their large
deviations, i.e., their heavy tails measured by the kurtosis of the increment distributions. Computing the kurtosis κ of
the increment statistics ∆fτ at different lags τ , shows that the deviations from the Gaussian (κGaussian = 3) decrease
on average. While the kurtosis shows a small increase in Győr with increasing time lag, the kurtosis at Istanbul and
Lisbon is substantially reduced, see Supplementary Fig. 5. This finding is consistent with [6], where the authors also
found that long lags lead to approximately Gaussian increment statistics. Here, we go further in that we observe
spatial differences already at a time resolution of 1 second, in particular for locations far away from Karlsruhe.
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SUPPLEMENTARY NOTE 5

Details on Detrended Fluctuation Analysis (DFA)

Detrended Fluctuation Analysis (DFA) [23, 24] studies the fluctuation of a given process by considering increasing
segments of the timeseries. Take a timeseries X(t) with N elements Xi, i = 1, 2, . . . , N . Obtain the detrended profile
of the process by defining

Yi =

i∑
k=1

(Xk − 〈X〉) , for i = 1, 2, . . . , N,

i.e., the cumulative sum of X subtracting the mean 〈X〉 of the data. Section the data into smaller non-overlapping
segments of length s, obtaining therefore Ns = int(N/s) segments. Given the total length of the data is not always
a multiple of the segment’s length s, discard the last points of the data. Consider the same data, apply the same
procedure, but this time discard instead the first points of the data. One has now 2Ns segments. To each of these
segments fit a polynomial yv of order m and calculate the variance of the difference of the data to the polynomial fit

F 2(v, s) =
1

s

s∑
i=1

[Y(v−1)s,i − yv,i]2, for v = 1, 2, . . . , Ns,

where yv,i is the polynomial fitting for the segment i of length v. One also has the freedom to choose the order of
the polynomial fitting. This gives rise to the denotes DFA1, DFA2, . . . , for the orders chosen. Notice F 2(v, s) is a
function of each variance of each v-segment of data and of the different s-length segments chosen. One can define the
fluctuation function F 2(s) by averaging each row of segments of size s

F 2(s) =
1

Ns

{
Ns∑
v=1

F 2(v, s)

}1/2

.

The inherent scaling properties of the data, if the data displays power-law correlations, can now be studied in a log-log
plot of F 2(s) versus s. Herein the scaling of the data obeys a power-law with exponent h as

F 2(s) ∼ sh,

where h is the self-similarity exponent (which may be multifractal) and relates directly to the Hurst index. The self-
similarity exponent h is calculated by finding the slope of this curve in the log-log plots. For a detailed explanation
of DFA, see [25]. The analysis implemented here is based on [26].
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SUPPLEMENTARY NOTE 6

Principal Component Analysis
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Supplementary Figure 6. The principal components reveal the spatial structure of inter-area modes. The maps show the colour-
coded entries of the normalised principal components fm. The spatial structure corresponds to synchronous behaviour (a),
East-West oscillations (b), North-South oscillations (c), Coastal-inland fluctuations (d-e), and intra-Hungarian oscillations (f).
The synchronous component describes the frequency bulk behaviour and thus explains already λ1 = 99.2% of the total variance.
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Supplementary Figure 7. The inter-area modes oscillate with a period between 3 and 9 seconds. The figure displays squared
Fourier amplitudes |F (am(t))|2 of the mode amplitudes am(t). The largest inter-area oscillations occur with a period of t = 7 s
and t = 4.5 s, which corresponds well to the results in [27]. In the main text, we only discussed the first three modes as the
most dominant ones.

We apply a principal component analysis (PCA) to our multivariate frequency time series in order to extract
the dominant modes of inter-area oscillations. Generally, a PCA identifies the orthogonal linear subspaces (principal
components) that maximise the projected variance of the data [28]. Let f(t) be the vector containing the frequency
recordings from all six locations within Europe. The principal components are then given by the eigenvectors fm(t) of
the data covariance matrix. Based on the principal components, we can decompose the centred frequency recordings
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into uncorrelated time series am(t):

f(t) = 〈f〉+

N∑
m=1

am(t)fm.

The time series am(t) describe the amplitude of the frequency recordings f(t) projected onto the m-th principal
component. Their variance, i.e., the projected variance, is given by the eigenvalue λ̃m. By rescaling this variance, we
obtain the share of total variance explained by the m-th component:

λm =
λ̃m∑
m λ̃m

.

We interpret the principal components (PCs) of f(t) as spatial inter-area modes and the time series am(t) as their
amplitudes. Supplementary Fig. 6 displays all six modes obtained from our synchronised measurements in Continental
Europe. The first mode (PC1) represents a synchronous frequency oscillation at all locations and thus corresponds
to the bulk behaviour of the frequency. The other modes (PC2-PC6) display asynchronous spatial patterns and thus
represent inter-area oscillations. Due to their small amplitude, these modes only explain a low portion of the variance
(λ2, ..., λ6 < 0.4%), while the bulk mode already covers λ1 ≈ 99.2%. However, PC2 to PC6 uncover the dominant
spatial structure of inter-area modes across Continental Europe. Let us analyse these modes based on their visualisation
in Supplementary Fig. 6 in more detail: PC2 contains one coherent area in Western Europe that oscillates in phase
opposition to Istanbul. In PC3 Lisbon and Istanbul swing in opposition to the Northern measurement locations. PC2
thus resembles an East-West dipole, while PC3 is similar to a North-South dipole. The other modes correspond to a
Coast-Inland fluctuation (PC4 and PC5) and an intra-Hungarian oscillation (PC6).

To reveal the oscillation period of these modes, we analyse the power spectral density (PSD) of their amplitudes
am(t) (Supplementary Fig. 7). The East-West dipole (PC2) exhibits a main period length of t ≈ 7 s and a smaller
contribution at t ≈ 9 s. PC3 mainly oscillates with a period pf t ≈ 4.5 s, but there is also a distinct peak at
t ≈ 9 s, which also appears in PC2 and PC4. PC5 and PC6 mainly exhibit oscillations with a period of t ≈ 7 s and
t ≈ 4.5 s. The PSD of bilateral differences between single measurement locations reveals the same main period lengths
(Supplementary Fig. 8). Interestingly, no inter-area oscillations can be observed between Karlsruhe and Oldenburg,
which could indicate well-balanced power within Germany or could be caused by the limited spatial resolution of the
available 6 modes. Overall, we identify three main oscillations periods of inter-area modes with t ≈ 9 s, t ≈ 7 s, and
t ≈ 4.5 s, which is consistent with the typical frequency of inter-area modes [29].

The comparison to a more detailed study suggests that our principal components probably relate to overlaps of
different global inter-area modes. A first indicator for this conclusion is the occurrence of multiple substantial peaks
in our PSD in Supplementary Fig. 7 (e.g. for PC3). The detailed analysis in [27] revealed four dominant inter-area
modes in Continental Europe with distinct period lengths. The authors describe a mode G1, which resembles a North-
South dipole and oscillates with t = 5 s. Furthermore, they present mode T1, which represents an East-West dipole
oscillating at t = 6.7s, and similar mode G2 with t = 3.3s. In mode G3, Eastern Europe, Spain, and Portugal swing
in phase opposition to Central Europe with t = 2s. Comparing this to our results, we conclude that PC2 corresponds
well to mode T1, while PC3 is similar to mode G1. However, PC3 contains another substantial oscillation with t = 9s.
This could be an effect of aliasing due to our low Nyquist-frequency of 0.5 Hz. Modes with period lengths below 2s
thus re-appear in our PSD at multiples of their oscillation period. The mode G3 could thus correspond to the peak at
t ≈ 9s in Supplementary Fig 7. Finally, PC4 contains the mode G2 among others, while PC5 and PC6 both contain
the period lengths of G1 and T1. The PCA modes are thus very similar to the results in [27], but they do not isolate
inter-area modes with single distinct periods.

The overlap of different (linear) oscillation modes in our PCA results can have different reasons. Our low spatial
resolution could make it impossible to retain the spatial modes identified in an earlier study [27]. On the other hand,
a linear separation of the inter-area modes through a PCA and a Fourier decomposition could generally fail due to
the non-linearity of power system dynamics. Finally, our time resolution of one second could lead to aliasing and
the incorrect reconstruction of inter-area modes. In the future, a higher spatial and temporal resolution of frequency
recordings would be necessary to further investigate these effects.
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Supplementary Figure 8. Inter-area oscillations between different grid sites. We perform a spectral analysis of the frequency
differences by computing the spectrum of the frequency difference ∆f loc between two sides, e.g. in (e): ∆f loc = fOldenburg −
fKarlsruhe.
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