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The electrical energy system has attracted much attention from an increasingly diverse research
community. Many theoretical predictions have been made, from scaling laws of fluctuations to prop-
agation velocities of disturbances. However, to validate any theory, empirical data from large-scale
power systems are necessary but are rarely shared openly. Here, we analyse an open data base of
measurements of electric power grid frequencies across 17 locations in 12 synchronous areas on three
continents. The power grid frequency is of particular interest, as it indicates the balance of supply
and demand and carries information on deterministic, stochastic, and control influences. We perform
a broad analysis of the recorded data, compare different synchronous areas and validate a previously
conjectured scaling law. Furthermore, we show how fluctuations change from local independent os-
cillations to a homogeneous bulk behaviour. Overall, the presented open data base and analyses
constitute a step towards more shared, collaborative energy research.

INTRODUCTION

The energy system, and in particular the electricity
system, is undergoing rapid changes due to the intro-
duction of renewable energy sources to mitigate climate
change [1]. To cope with these changes, new policies and
technologies are proposed [2, 3] and a range of business
models are implemented in various energy systems across
the world [4]. New concepts, such as smart grids [5], flex-
umers [6], or prosumers [7] are developed and tested in
pilot regions. Still, studies rarely systematically compare
different approaches, data, or regions, in part because
freely available research data are lacking.

The frequency of the electricity grids is a key quantity
to monitor as it follows the dynamics of consumption
and generation: A surplus of generation, e.g. due to an
abundance of wind feed-in, directly translates into an in-
creased frequency. Vice versa, a shortage of power, e.g.
due to a sudden increase in demand, leads to a drop-
ping frequency. Many control actions monitor and sta-
bilise the power grid frequency when necessary, so that it
remains close to its reference value of 50 or 60 Hz [8]. Im-
plementing renewable energy generators introduces addi-
tional fluctuations since wind or photo-voltaic generation
may vary rapidly on various time scales [9–11] and re-
duces the overall inertia available in the grid [12]. These
fluctuations pose new research questions on how to de-
sign and stabilise fully renewable power systems in the
future.
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Analysis and modelling of the power grid frequency
and its statistics and complex dynamics have become
increasingly popular in the interdisciplinary community,
attracting also much attention from mathematicians and
physicists. Studies have investigated for example differ-
ent dynamical models [13–15], compared centralised vs.
decentralised topologies [16–18], investigated the effect of
fluctuations on the grid’s stability [19, 20], or how fluc-
tuations propagate [21, 22]. Further research proposed
real-time pricing schemes [23], optimised the placement
of (virtual) inertia [24, 25], or investigated cascading fail-
ures in power grids [26–29]. However, these theoretical
findings or predictions are rarely connected with real data
of multiple existing power grids.

In addition to the need raised by theoretical models
from the physics and mathematics community, there is
also a great need for open data bases and analysis from
an engineering perspective. While there exist data bases
of frequency time series, such as GridEye/FNET [30] or
GridRadar [31], these data bases are not open, which
limits their value for the research community. In partic-
ular, different scientists with access to selected, individ-
ual types of data only, from grid frequencies to electricity
prices, demand, and consumption dynamics, cannot com-
bine their data with these data bases, thereby hindering
to study more complex questions, such as the impact of
prices dynamics or demand control on system stability.

Hence, open empirical data are necessary to validate
theoretical predictions, adjust models, and apply new
data analysis methods. Furthermore, a direct compari-
son of different existing power grids would be very helpful
when designing future systems that include high shares
of wind energy, as they are already implemented in the
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Nordic grid, or by moving towards liberal markets, such
as the one in Continental Europe. Proposals of creating
small autonomous cells, i.e., dividing large synchronous
areas into microgrids [32] should be evaluated by com-
paring synchronous power grids of different size to esti-
mate fluctuation and stability risks. In addition, cascad-
ing failures, spreading of perturbations, and other anal-
yses of spatial properties of the power system may be
evaluated by recording and analysing the frequency at
multiple measurement sites.

In this article, we present an analysis of an open data
base for power grid frequency measurements [33] recorded
with an Electrical Data Recorder (EDR) across multiple
synchronous areas [34, 35]. Details on how the recordings
were made are described in [33], while we focus on an ini-
tial analysis and interpretation of the recordings, which
are publicly available [36]. First, we discuss the statistical
properties of the various synchronous areas and observe
a trend of decreasing fluctuation amplitudes for larger
power systems. Next, we provide a detailed analysis of a
synchronised wide-area measurement carried out in Con-
tinental Europe. We perform a detailed analysis show-
ing that short time fluctuations are independent, while
long time scale trends are highly correlated throughout
the network. We extract the precise time scales on which
the power grid frequency transitions from localised to
bulk dynamics. Finally, we extract inter-area oscillations
emerging in the Continental European (CE) area. Over-
all, by establishing this data base and performing a first
analysis, we demonstrate the value of a data-driven anal-
ysis in an interdisciplinary context.

RESULTS

Data overview

We recorded power grid frequency time series using
a GPS synchronizsed frequency acquisition device called
Electrical Data Recorder (EDR) [34, 35], providing sim-
ilar data as a Phasor Measurement Unit (PMU) would.
Recordings were taken at local power plugs, which have
been shown to give similar measurement results as moni-
toring the transmission grid with GPS time stamps [37],
see also [33] for details on the data acquisition and a de-
scription of the open data base. In addition, we received a
one week measurement from the Hungarian TSO for the
two cities Békéscsaba and Győr. We marked the loca-
tions of the measurement locations on a geographic map
in Fig. 1 a-b. Still, many more synchronous areas in the
Americas, Asia, Africa, and Australia should be covered
in the future.

To gain a first impression of the frequency dynam-
ics, we visualise frequency trajectories in different syn-
chronous areas and note quite distinct behaviour, see
Fig. 1, c-e. We refer to each measurement by the coun-
try or state in which it was recorded, see also Supple-
mentary Note 1. We group the measurements into (Eu-

ropean) continental areas, (European) islands and other
(non-European) regions, which are also mostly continen-
tal. Most islands, such as Gran Canaria (ES-GC), Faroe
Islands (FO), and Iceland (IS), but also South Africa
(ZA), display large deviations from the reference fre-
quency, while the continental areas, such as the Baltic
(EE) and Continental European areas (DE), as well as
the measurements taken in the United States (US-UT
and US-TX) and Russia (RU), stay close to the refer-
ence frequency. There are still more differences within
each group: For example, the dynamics in Gran Canaria
(ES-GC) and South Africa (ZA) are much more regular
then the very erratic jumps of the frequency over time
observable in the Faroe Islands (FO) and Iceland (IS).
Finally, we do not observe any qualitative difference be-
tween 50 and 60 Hz areas (right), when adjusting for the
different reference frequency. Note that some of the syn-
chronous areas considered here are indeed coupled via
high-voltage direct current (HVDC) lines but still pos-
sess independent synchronous behavior. Specifically, the
British (GB), Continental (DE), Baltic (EE) and Nordic
(SE) European areas as well as Mallorca are connected
in this way. The HVDC connection of Mallorca towards
Continental Europe might be the reason it displays over-
all smaller deviations than FO or IS, which cannot access
another large synchronous area for balance.

Let us quantify the different statistics in a more sys-
tematic way by investigating distributions (histograms)
and autocorrelation functions of the various areas. The
distributions contain important information of how likely
deviations from the reference frequency are, how large
typical deviations are (width of the distribution) and
whether fluctuations are Gaussian (histogram displays
an inverted parabola in log-scale) and whether they are
skewed (asymmetric distribution). Analysing the distri-
butions (histograms) of the individual synchronous ar-
eas (Fig. 2 a-c), we note that the islands tend to ex-
hibit broader and more heavy-tailed distributions than
the larger continental areas. Still, there are considerable
differences within each group. For example, we observe a
larger standard deviation and thereby broader distribu-
tion in the Nordic (SE) and British (GB) areas compared
to Continental Europe (DE), which is in agreement with
earlier studies [38, 39]. Some distributions, such as those
for Russia (RU) or the Baltic grid (EE), do show approx-
imately Gaussian characteristics while for several other
areas, such as Gran Canaria (ES-GC) and Iceland (IS)
they exhibit a high kurtosis (κIceland ≈ 7, as compared to
κ = 3 for a Gaussian), i.e., heavy tails and thereby a high
probability for large frequency deviations. We provide a
more detailed analysis of the first statistical moments,
i.e., standard deviation σ, skewness β and kurtosis κ in
Supplementary Note 1.

Complementary to the aggregated statistics observable
in histograms, the autocorrelation function contains in-
formation on intrinsic time scales of the observed stochas-
tic process, see Fig. 2 d-e. For simple stochastic processes
such as Ornstein–Uhlenbeck processes, we would expect
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Figure 1. Overview of available frequency data. a: Different locations in Europe, Africa, and Northern America at which
frequency measurements were taken. Australia and large parts of Asia or not displayed as there were no measurements recorded.
b: Zoom of the European region (excluding Gran Canaria) with all locations labelled. Circles indicate measurement sites
where single measurements for several days were taken, diamonds mark the four locations where we performed synchronised
measurements and triangles mark sites for which we received additional data. c-e: Frequency trajectories display very different
characteristics. We plot one hour extracts of the deviations from the reference frequency of f ref = 50 Hz (or 60 Hz for the
US power grids), which are offset from the zero mean to improve readability. Panels c-e and following plots abbreviate the
measurement sites using the ISO 3166 code for each country and each location is assigned a colour code, as in the maps in
panels a and b. For more details on the data acquisition and measurement locations see Supplementary Note 1 and [33]. Maps
were created using Python 3 and geoplots.

an exponential decay exp(−γτ) of the autocorrelation
with some damping constant γ [40]. While most syn-
chronous areas do show an approximately exponential
decay, the decay constants vary widely. For example, the
autocorrelation of the Icelandic data (IS) rapidly drops
to zero, while the autocorrelation of the Nordic grid (SE)
has an initial sharp drop, followed by a very slow decay.
Other grids, such as the Faroe Islands (FO) or the West-
ern interconnection (US-UT) do show a slow decay, in-
dicating long-lasting correlations, induced e.g. via corre-
lated noise. Finally, regular power dispatch actions every
15 minutes are clearly observable in the Continental Eu-
ropean (DE), British (GB) and also the Mallorcan (ES-
PM) grids, consistent with earlier findings [38, 39, 41].

Concluding, we see that histograms are a good indica-
tor of how heavy-tailed the frequency distributions are,
while the autocorrelation function reveals information on
regular patterns and long term correlations. These corre-
lations are likely connected to market activity or regula-
tory action, demand and generation mixture, and other
aspects specific to each synchronous area. Instead of go-
ing deep into individual comparisons let us search for
general applicable scaling laws instead.

Scaling of individual grids

For the first time, we have the opportunity to anal-
yse numerous synchronous areas of different size, ranging
from Continental Europe with a yearly power generation
of about 3000 TWh [42] and a population of hundreds of
millions to the Faroe Islands with a population of only
tens of thousands. These various areas allow us to test
a previously conjectured scaling law [38] of fluctuation
amplitudes given as ε ∼ 1/

√
N , i.e., the aggregated noise

amplitude ε in a synchronous area should decrease like
the square root of the effective size of the area.

To derive this scaling relation, we formulate a Stochas-
tic Differential Equation (SDE) of the aggregated fre-
quency dynamics. A basic model, also known as the ag-
gregated swing equation [43, 44], is given as

M
d
dt
ω̄ (t) = −Mγω̄ (t) + ∆P (t), (1)

with bulk angular velocity ω̄, total inertia of a region M ,
power imbalance ∆P (t), and effective damping to inertia
ratio γ, which also comprises primary control. The bulk
angular velocity is the scaled deviation of the frequency
from the reference: ω̄ = 2π

(
f − f ref

)
and ∆P (t) effec-



4

−500 −250 0 250 500

f − f ref [mHz]

10−7

10−6

10−5

10−4

10−3

10−2
P

D
F

Islands

IS FO ES-PM ES-GC

−200 0 200

f − f ref [mHz]

10−6

10−5

10−4

10−3

10−2

Continents

EE SE GB DE

−200 0 200

f − f ref [mHz]

10−5

10−4

10−3

10−2

10−1
Others

RU US-TX US-UT ZA

0 15 30 45 60 75

τ [min]

0.0

0.5

1.0

A
u

to
co

rr
el

at
io

n IS FO ES-PM ES-GC

0 15 30 45 60 75

τ [min]

0.0

0.5

1.0 EE SE GB DE

0 15 30 45 60 75

τ [min]

0.0

0.5

1.0 RU US-TX US-UT ZA

a b c

d e f

Figure 2. Heterogeneity in power grid statistics. Both histograms and autocorrelation functions display very distinct features
between the different synchronous areas. a-c: Histograms of the different synchronous areas provide insight on heavy tails
but also the different scales of the fluctuations. We visualise the empirical probability distributions of the various areas by
histograms on a logarithmic scale. d-f: The complex autocorrelation decay reveals distinct time scales in the different grids. We
compute the autocorrelation of each area for a time lag of up to 75 mins.

105 106 107 108

Population

0

5

10

ε
[m

H
z] ISFO

EEES-PM SE

GB DERU

US-TXUS-UT

ZA

ES-GC

fit a/
√
N + b

Figure 3. The noise tends to decrease with an increasing size
of the synchronous area until it saturates. We plot the ex-
tracted noise amplitude ε compared to the logarithm of the
population in a given synchronous area. The population size
serves as a proxy for the total generation and consumption of
that area, as data on the size of the power grids is not com-
monly available. The shaded area is the standard deviation of
the ε estimation.

tively represents noise acting on the system with mean
〈∆P (t)〉 = 0, as generation and load are balanced on av-
erage. A simple scaling law for the frequency variability
can be derived if the short-term power fluctuations at
each grid node are assumed to be Gaussian. If the grid
has N nodes with identical noise amplitudes, the stan-
dard deviation of the power imbalance scales as

σ∆P ∼
√
N. (2)

At the same time, the total inertia typically scales lin-
early with the size of the grid, i.e., M ∼ N . As a result,

the amplitude of the total noise acting on the angular
velocity dynamics scales as

ε ∼ 1

M
σ∆P ∼

1√
N
. (3)

A more detailed derivation is provided in Supplementary
Note 2 and discussed in [38, 39]. And a technical dis-
cussion of extracting the aggregated noise amplitude is
presented in [45]. We note that the scaling law has to be
modified if the noise at the nodes is not Gaussian [38].

To verify the proposed scaling law in eq. (3), we ap-
proximate the number of nodesN by the population of an
area, since generation data are not available for all syn-
chronous areas and population and generation tend to
be approximately proportional [42]. We utilise the pop-
ulation size as a proxy for size of the grid N . Indeed,
we note that the aggregated noise amplitude ε does ap-
proximately decay with the inverse square root of the
population size, as predicted, see Fig. 3. At a certain
size, the noise saturates. The deviations from the pre-
diction, such as by South Africa (ZA) and Iceland (IS)
are likely caused by different local control mechanisms,
or non-Gaussian noise distributions, which we focus on in
the next section. Interestingly, while Faroe Islands (FO)
and Mallorca (ES-PM) do display non-Gaussian proba-
bility density functions, they follow the proposed scaling
law. Why this is the case and how a fully non-Gaussian
scaling law could capture this even better remain open
questions for future work. Still, we observe a decay of the
noise, approximately following the prediction over four
orders of magnitude.
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Increment analysis

In the previous section, we approximated the noise act-
ing on each synchronous area as Gaussian to derive an
approximate scaling law. In the following, we want to go
beyond this simplification and investigate the rich short-
time statistics present in each synchronous area. We will
see in particular how non-Gaussian distributions clearly
emerge on the time scale of a few seconds.

This short time scale is investigated via increments
∆fτ . The increment of a frequency time series is com-
puted as the difference of two values of the frequency
with a time lag τ

∆fτ = f(t+ τ)− f(t). (4)

An analysis of ∆fτ provides information on how the time
series changes from one time lag τ to the next. On a short
time scale of τ ≈ 1 second the increments can be used
as a proxy for the noise ε acting on the system, see also
Supplementary Note 2.

The increments for a Wiener process, an often used
reference stochastic process, are Gaussian regardless of
the lag τ [40]. However, for many real world time series,
ranging from heart beats [46] and turbulence to solar and
wind generation [9], we observe non-Gaussian distribu-
tions for small lags τ . For many such processes with non-
Gaussian increments, the probability distribution func-
tions (PDFs) of the increments tend to approach Gaus-
sian distributions for larger increments [9]. We observe a
similar behaviour for the frequency statistics, see Fig. 4.
The Nordic area (SE) displays deviations from Gaussian-
ity for small lags τ but approximates a Gaussian distribu-
tion for larger τ . The Russian area (RU) even starts out
with an almost Gaussian increment distributions. Con-
trary, the Icelandic area (IS) shows clear deviations from
a Gaussian distribution for all lags τ investigated here.
Still, for larger lags the pronounced tails flatten and the
increment distribution slowly approaches a Gaussian dis-
tribution. The non-Gaussian increments on a short time
scale point to non-Gaussian driving forces, e.g. in terms
of generation or demand fluctuations acting on the power
grid.

To investigate the deviations of the frequency incre-
ments from Gaussian properties, we utilise the excess
kurtosis κ−3 of the distribution. Since the kurtosis κ, the
normalised fourth moment of a distribution, is κGauss = 3
for a Gaussian distribution, a positive excess kurtosis
points to heavy tails of the distribution.

Computing the excess kurtosis κ − 3 for all our data
sets, we observe variable degrees of deviation across the
various synchronous areas (Fig. 4). In some areas, the in-
termittent behaviour of the increments ∆fτ is subdued
and the overall distribution approaches a Gaussian distri-
bution (in EE, DE, SE, RUS, and US-UT), i.e., the excess
kurtosis κ−3 becomes very small (. 100). In contrast, all
islands as well as GB, US-TX, and ZA display large and
non-vanishing intermittent behaviour, with a large ex-
cess kurtosis (∼ 101...102). Iceland (IS), as well as Gran

Canaria (ES-GC) show impressive deviations from Gaus-
sianity, which require detailed modelling in the future.

We summarise that smaller regions tend to display
more intermittency in their increments than larger re-
gions, again consistent with findings on the scaling of the
aggregated noise amplitude ε (Fig. 3). Furthermore, we
observe that increment distributions tend to approach
Gaussian distributions for larger increments, as expected
[9], but with distinct time horizons that depend on the
grid area. For most of the islands the excess kurtosis re-
mains high even for lags of ten seconds. Contrary, in most
areas of continental size the excess kurtosis is very small
already for lags larger than one second. Very interesting
is also the following observation: Non-Gaussian distribu-
tions in the aggregated frequency statistics (Fig. 2) are
not necessarily linked with non-Gaussian increments. For
example in Continental Europe (DE) we observe Gaus-
sian increments but a non-Gaussian aggregated distribu-
tion. The deviation from Gaussianity in the aggregated
distribution, e.g. in terms of frequent extreme events, is
likely explained by the external drivers, such as market
activities [47]. Finally, this analysis presented here ex-
tends previous increment analyses [22, 48], which only
considered increments of less than a second (τ < 1 s),
while we observe relevant non-Gaussian behaviour for
larger increments (τ ≥ 1 s). We further analyse the dif-
ferences between aggregated kurtosis and increment kur-
tosis in Supplementary Note 1 and discuss Castaing’s
model [49] and superstatistics [50] as more theoretical
approaches towards increment analysis in Supplementary
Note 3.

Correlated dynamics within one area

Moving away from comparing individual synchronous
areas, we use GPS-synchronised measurements at mul-
tiple locations within the same synchronous area, the
Continental European (CE) area, marked as diamonds
and triangles in Fig. 1. These measurements reveal that
the frequency at different locations is almost identical
on long time scales but differs on shorter time scales,
see Fig. 5. While the trajectories of the two German lo-
cations, Oldenburg and Karlsruhe, are almost identical,
there are visible oscillations between the frequency values
recorded in Central Europe (Karlsruhe) compared to the
values recorded in the peripheries (Istanbul and Lisbon).

Let us quantify this by analysing the time series at
the time scale of 1 second and hours, see Fig. 6. Incre-
ments ∆fτ , as also introduced above, reveal the short-
term variability of a time series. In addition, we measure
the long-term correlations on a time scale of hours by de-
termining the rate of change of frequency (RoCoF). The
RoCoF is the temporal derivative of the frequency and
thereby very similar to increments. However, here it has
a very different meaning as we evaluate it only at ev-
ery full hour and take into account several data points,
see [39] and Methods. Thereby, the RoCoF mirrors the
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Figure 4. Increment analysis reveals non-Gaussian characteristics, dominantly in islands. a-c: We display histograms of the
increments ∆fτ for the lag values τ = 1, 10 seconds for selected areas. The curves are shifted for visibility and compared to a
Gaussian distribution as reference. a: Iceland (IS) displays clear deviations from Gaussianity, even for larger increments τ . b:
The Nordic area (SE) displays a non-Gaussian distribution for τ = 1 s, but approaches a Gaussian distribution for larger delays
τ . c: Russia (RU) has a Gaussian increment distribution for all lags τ . d-f: We plot the excess kurtosis κ − 3 for the different
examined power grid frequency recordings on a log scale. We observe a non-vanishing intermittency in Gran Canaria (ES-GC),
Iceland (IS), Faroe Islands (FO), Mallorca (ES-PM), Britain (GB), Texas (US-TX), and South Africa (ZA). In contrast, the
increments’ distribution of the Baltic (EE), Continental Europe (DE), Nordic (SE), Russia (RU) synchronous areas, and the
Western Interconnection (US-UT) approach a Gaussian distribution. See also Fig. 5 for an illustration how increments are
computed from a trajectory.
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Figure 5. Synchronised measurements within the Continental European (CE) synchronous area differ on the short time scale.
We show a 1 hour frequency trajectory recorded at four different sites in the CE area: Oldenburg, Karlsruhe, Lisbon, and
Istanbul. We further illustrate the RoCoF (rate of change of frequency) as the slope of the frequency every hour and the
increment statistics ∆fτ as the frequency difference between two points with time lag τ . For clarity, we do not include the two
Hungarian measurement sites here, which produce similar results.

hourly power dispatch [53] and gives a good indication
of long-term dynamics and deterministic external forc-
ing. In the next section, we will also investigate the in-
termediate time scale of several seconds and inter-area
oscillations.

Short time scale dynamics, as determined by frequency
increments ∆fτ , are almost independent on the time scale
of τ = 1 second, see Fig. 6 a-d. We generate scatter plots
of the increment value ∆fτ (t) at the same time t at two
different locations. If the increments are always identical,

all points should lie on a straight line with slope 1. If the
increments are completely uncorrelated, we would expect
a circle or an ellipse aligned with one axis. Indeed, the in-
crements taken at the same time for Oldenburg and Karl-
sruhe are highly correlated and almost always identical,
i.e., the points in a scatter plots follow a narrow tilted el-
lipse (Fig. 6 a). Moving geographically further away from
Karlsruhe, the increments of Istanbul (Fig. 6 b) are com-
pletely uncorrelated with those recorded in Karlsruhe,
i.e., large frequency jumps in Istanbul may take place at
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m = 1, in accordance with Ref. [52], and plot the fluctuation
function F 2(`) as a function of the time window length l. The
inset magnifies the values for ` ∈ {100 . . . 2 · 101}. The lines
connect data points to each other to guide the eye.

the same time as small jumps happen in Karlsruhe. A
similar picture of uncorrelated increments emerges when
comparing Lisbon and Istanbul (Fig. 6 d), while Lisbon
vs. Karlsruhe displays some small correlation (Fig. 6 c).
At the two peripheral locations, Lisbon and Istanbul, the
increment distributions are much wider, i.e., larger jumps
on a short time scale are much more common in Istanbul
and Lisbon than they are in Karlsruhe. For larger lags
τ > 1 s, the increments between all pairs become more
correlated, see Supplementary Note 4.

Let us move to longer time scales. At the 60 minute
time stamps, power is dispatched in the CE grid to match

the current demand, leading to a sudden surge in the
frequency [39, 41, 53]. Interestingly, the frequency dy-
namics at the different grid sites are very similar, i.e.,
the deterministic event of the power dispatch is seen un-
ambiguously everywhere in the synchronous area, almost
regardless of distance, see Fig. 6. All locations closely fol-
low the same trajectory on the 1 hour time scale. This is
reflected in highly correlated RoCoF values, with a par-
ticularly good match between Oldenburg and Karlsruhe
and a linear regression coefficient of at least R2 ≥ 0.93
for all pairs (Fig. 6 a-d).

We combine these different time scales in a single de-
trended fluctuation analysis (DFA), where we also inte-
grate the two Hungarian locations, see Fig. 7. At short
time scales, the DFA results differ for the four locations,
while starting at the time scale of t ∼ 101 seconds, the
four curves coincide. For the time scale of 1 second, all lo-
cations are subject to different fluctuations, with Istanbul
and Lisbon displaying the largest values of the fluctuation
function. This is coherent with results of the increment
analysis, where Istanbul and Lisbon have the broadest in-
crement distributions (Fig. 6 a-d). Moving to longer time
scales of tens or hundreds of seconds, we observe a coin-
cidence of the fluctuation function. This coincidence, i.e.,
identical behaviour for large time scales is in good agree-
ment with the highly correlated RoCoF results (Fig. 6
e-h). We may also interpret this change from short term
and localised dynamics to long term and bulk behaviour
as a change from stochastic to deterministic dynamics,
i.e., the random fluctuations are localised and take place
on a short time scale, while the deterministic dispatch
actions and overall trends penetrate the whole grid on
a long time scale. See also Methods and Supplementary



8

Note 5 for details on the DFA methodology.

Spatio-temporal dynamics

Next, let us investigate the spatio-temporal aspect of
the synchronised measurements. We connect the transi-
tion from local fluctuations towards bulk behaviour with
the geographical distance of the measurement points,
complementing earlier analysis based on voltage angles
[54, 55]. We determine the typical time-to-bulk, i.e., the
time necessary so that the dynamics at a given node ap-
proximates the bulk behaviour. To this end, we choose
Karlsruhe, Germany, as our reference, which is very cen-
tral within the Continental European synchronous area.
The choice of the reference does not qualitatively change
the results. For each of the remaining five locations, we
compute the relative DFA function

η(`) =
F 2location

(`)− F 2Karlsruhe
(`)

F 2Karlsruhe(`)
(5)

with respect to Karlsruhe and ask, when does this differ-
ence drop below 0.1 (or 10%), i.e., when are the fluctu-
ation at location almost indistinguishable from the ones
in Karlsruhe?

The further apart two locations are, the later they
reach the bulk behaviour, i.e., the larger their time-to-
bulk, see Fig. 8. This observation can be intuitively un-
derstood: Two sites in close geographical vicinity are typ-
ically tightly coupled and can be synchronised by their
neighbours, whereas sites far away have to stabilise on
their own. Our time-to-bulk analysis quantifies this in-
tuition. We consider both a linear and a quadratic fit.
A linear dependence is expected if the bulk behaviour
is realised by coupling via the shortest available path.
In contrast, if the propagation is following a diffusive
pattern via multiple independent paths, we would ex-
pect a quadratic dependence of the time with respect to
the distance. Indeed, the quadratic fit, following diffu-
sive coupling, is a much better fit than a linear one, as
indicated by a lower Root-Mean-Squared-Error 0.5, com-
pared to 1.2 seconds in the linear case. Using the newly
obtained fits, we find that a location only 100 km from
Karlsruhe will have to independently stabilise fluctua-
tions on the scale of 0.5 to 1 second and will then closely
synchronise with the dynamics in Karlsruhe (our bulk
reference). Contrary, a site 1000 km away has to stabilise
already for about 3 to 5 seconds before it is fully inte-
grated in the bulk. This gives additional guidance for the
control within large synchronous areas, in particular for
remote and weakly coupled sites. Clearly, these first esti-
mates demonstrate that further research is necessary to
validate and adjust spatio-temporal models of the power
grid [21].

Principal Component Analysis

So far, we have focused on when and how the localised
fluctuations transition into a bulk behaviour. During this
transition, on the intermediate time scale of about 5 sec-
onds, we observe another phenomenon: ’Inter-area oscil-
lations’, i.e., oscillations between sites in different geo-
graphical areas far apart but still within one synchronous
area. Different methods are available to extract spatial
inter-area modes, ranging from Empirical Mode Decom-
position [56] to nonlinear Koopman modes [57]. Here, we
use a principal component analysis (PCA) [58], which
was already introduced to power systems when analysing
inter-area modes and identifying coherent regions [59].
A PCA separates the aggregated dynamics observed in
the full system into ordered principal components, which
we interpret as oscillation modes. Ideally, we can explain
most of the observed dynamics of the full system by in-
terpreting a few dominant modes. Each of these modes
contains information of which geographical sites are in-
volved in the modes dynamics, similar to an eigenvector.
Typical behaviour includes a translational dynamics of
all sites (the eigenvector with entries 1 everywhere) or
distinct oscillations between individual sites (an eigen-
vector with entry 1 at one site and -1 at another site).

Indeed, applying a PCA to the synchronised measure-
ments in CE, we can capture almost the entire dynamics
with just three modes, see Fig. 9. In Fig. 9 a, we pro-
vide the squared Fourier amplitudes of each mode and in
Fig. 9 b-d we visualise the first three modes geograph-
ically. These three modes already explain the largest
shares λm of the total variance, see Supplementary Note
6 for the remaining modes and more details. The first
mode (PC1) explains λ1 ≈ 99.2% of the variance and rep-
resents the synchronous bulk behaviour of the frequency.
The second (PC2) and third (PC3) mode correspond to
asynchronous inter-area modes. They contribute much
less to the total variance due to their small amplitude
(cf. Fig. 5). In PC2 (Fig. 9 c), Western Europe forms a
coherent region that is in phase opposition to Istanbul
(East-West dipole), while in PC3 (Fig. 9 d), Lisbon and
Istanbul swing in opposition to Oldenburg (North-South
dipole). Similar results were found in an earlier theoreti-
cal study of the CE area, which also revealed global inter-
area modes with dipole structures [60].

The temporal dynamics of the spatial modes exhibit
typical frequencies of inter-area oscillations. Fig. 9 a
shows the squared Fourier amplitudes |F (am(t))|2 of the
spatial modes. The components PC2 and PC3 have their
largest peaks at t ≈ 7 s and t ≈ 4.5 s, which are the peri-
ods of these inter-area modes. These periods correspond
well to the typical periods of inter-area oscillations, which
are reported to be 1.25–8 s [61]. On larger time scales
t > 12 s, the amplitudes |F (am(t))|2 of the inter-area
modes drop below the values of PC1. Thus, the frequency
dynamics is dominated by the its bulk behaviour again,
which is consistent with the estimated time-to-bulk of
12-15s (Fig. 8).
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DISCUSSION

In this article, we have presented a detailed analysis
of a recently published open data base of power grid fre-
quency measurements [33]. We have compared various
independent synchronous areas, from small regions, such
as the Faroe Islands and Mallorca, to large synchronous
areas, like the Western Interconnection in North Amer-
ica and the Continental European grid, spanning areas
with only tens of thousand customers to those with hun-
dreds of millions. Especially the smaller areas tend to
show a larger volatility in terms of aggregated noise but
also increment intermittency, such as Iceland and Gran
Canaria. We have complemented this analysis of indepen-
dent grids by GPS-synchronised measurements within
the Continental European power grid, revealing high cor-
relations of the frequency at long time scales but mostly
independent dynamics on fluctuation-dominated short
time scales. Compared to other studies applying synchro-
nised, wide-area measurements, such as FNET/Grideye
in the US [30] or evaluations from Iceland [62], the data

we analysed here is freely available for further research
[33].

The comparison of different synchronous areas gives us
a solid foundation to test previously conjectured scaling
laws of fluctuations in power grids with their size [38],
helps us to develop synthetic models [39] or predict the
frequency [63] of small grids, such as microgrids. Further-
more, aggregating standardised measurements from dif-
ferent areas, we can compare countries with high shares of
renewables (high wind penetration in Iceland) with areas
with almost no renewable generation (Mallorca) to learn
how they influence the frequency dynamics and thereby
the power grid stability. Similarly, this comparison also
gives insights on how different market structures impact
the frequency statistics and stability of a power grid.

Our results on the spatial dependencies in the Conti-
nental European (CE) synchronous area are also highly
relevant for the operation of power grids and other re-
search in the field. The observations that the long term
behaviour is almost identical throughout the synchronous
area but short time fluctuations differ, are in agreement
with earlier theoretical findings [21]. Based on the DFA
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results (Figs. 7 and 8), we provide a quantitative estimate
that at least for the CE area already at time scales of
about ten seconds, we observe an almost uniform bulk be-
haviour, even for locations thousands of kilometres apart.
This bulk behaviour emerges much faster when locations
are closer to one another.

In the regime of resonant behaviour [21], we observe
inter-area oscillations with period lengths of t = 7 s and
t = 4.5 s, which we extract using a principal component
analysis (PCA). These time scales agree well with fre-
quencies of inter-area oscillations reported in other stud-
ies in Europe [60, 61, 64] but also in the US [65]. However,
we notice that the time scales separating bulk, resonance
and local behaviour are different than the authors in a
theoretical work [21] assumed. There, local fluctuations
were described for the 0.1 second time scale and bulk dy-
namics already started at times between about 2s and 5s.
This raises the question on how these time scales depend
on the size and the dynamics of the power grid under
consideration. Finally, we note that the PCA is a prime
example for a model-free and data-driven analysis that
still allows interpretations.

Our observation of frequency increments being inde-
pendent on time scales of one second is consistent with
earlier studies [48]. For Continental Europe, we find that
1 s-increments are correlated at small distances (below
500 km), but independent at locations far apart. On time
scales of one second and below, we cannot observe global
inter-area modes anymore. Instead, we expect local fluc-
tuations that quickly decay with distance to their origin
[21, 22], which is consistent with our findings. The dis-
tribution of these short term fluctuation was reported to
exhibit a strongly non-Gaussian distribution when sub-
ject to intermittent wind power feed-in [48]. In agree-
ment with these results, the non-Gaussian effects van-
ish on time scales above one second in our recordings
from Continental Europe. However, in other, particularly
smaller, synchronous areas we even observe heavy-tailed
increment distributions on times scales up to 10 s. This
is likely related to the grid size and control regulations,
although a detailed explanation still remains open.

In this paper, we connect the mathematics and physics
communities with the engineering community, by provid-
ing potent data analysis tools from the theoretical side
and then connecting these findings in the practical do-
main of power grid dynamics without the use of an ex-
plicit model. Both the data analysis and its interpreta-
tion could be very useful for the operation of individ-
ual grids. Our insights for the scaling could be used to
improve control mechanisms, such as demand side man-
agement [66], while our spreading insights give further
indications about how fast cascading failures will spread
throughout the power grid [28]. Several grid operators as
well as other researchers have likely recorded power grid
frequency time series at many more grid locations than
we could provide in this single study. All such recordings
from different sources should be combined to enable more
comparisons between the dynamics of synchronous areas

of different sizes and under different conditions. The data
base studied here [33] may offer a valuable starting point
for such endeavours.

Because data are still only scarcely available, there re-
main many open questions: Can we systematically de-
termine a propagation velocity of disturbances through
the grid and compare these with theoretical predictions
[21, 25, 67]? Can we identify other time series influenc-
ing the power grid frequency dynamics and quantify their
correlation such as hydro power plants in the Nordic area
or demand of aluminium plants in Iceland? Can we ex-
tract the impact of market activities on the frequency
dynamics in all synchronous areas? From a statistical
modelling perspective, it would be interesting to inves-
tigate the scaling of higher moments, i.e. skewness and
kurtosis, with time lag and size in more detail. These
questions constitute only a small selection from a multi-
tude that an open data base may help to address from a
broad, interdisciplinary perspective, including engineer-
ing, mathematics, data science, time series analysis, and
many other fields.

METHODS

Data selection

We make use of the open data base, described in de-
tail in [33] to perform all analysis presented in the main
text and in Supplementary Notes 1 to 6. This data set
contains recordings of twelve independent synchronous
regions recorded between 2017 and 2020. While some lo-
cations, such as the Faroe Islands only contain a single
week of data, other regions, such as Continental Europe
have been monitored for several months or years, for more
details see [33]. However, due to some technical difficul-
ties, e.g. loss of GPS signal or unplugging the device,
some measurements are not a number, i.e., "NaN" and
are tagged as not reliable in the data base. These entries
have been deleted to compute the histograms and sta-
tistical measures in Supplementary Note 1. To compute
the autocorrelation function, as well as for the analysis
of the synchronised measurement in Continental Europe,
we selected the longest possible trajectory without any
"NaN" entries. As a final note: From the available Gran
Canaria data, we are using the March 2018 data.

RoCoF computation

When determining the rate of change of frequency (Ro-
CoF), i.e., the time derivative of the frequency, we follow
the same procedure as has been outlined in [39]: We se-
lect a short time window centred around the anticipated
dispatch jumps at 60 minutes of about 25 seconds length,
i.e. starting at (X):59:48 and lasting until (X+1):00:12 for
all hours X. Then, we fit this short frequency trajectory



11

with a linear function f(t) = a + bt. We are not inter-
ested in the offset a but the value of b gives us the slope
of the frequency changes, i.e., the time derivative of the
frequency is approximately given as df

dt ≈ b.

Detrended Fluctuation Analysis (DFA)

To carry out the detrended fluctuation analysis (DFA),
we follow a similar procedure as outlined in [52], using the
package outlined in ref. [51]. The main idea is to detrend
the data and extract the most dominant time scales by
measuring the scaling behaviour of the data from increas-
ing segments of data. The commonly denoted fluctuation
function F 2(`), function of the segment size ` on the time
series, accounts for the variance of segmented data of in-
creasing size. The scaling of the underlying process or
processes can thus be extracted. In [52] a detailed study
of the different time scales in power grid frequencies can
be found, largely focusing on scales of about ten seconds
and above, whereas we put particular emphasis on the
smallest time scales available, of the order of 1 second.
More details are given in Supplementary Note 5.

Time-to-bulk

To extract the time-to-bulk, seen in Fig. 8, we take
the measurements of the Detrended Fluctuation Analysis
(DFA) in Fig. 7 and utilise Karlsruhe as the reference for
comparison. Having Karlsruhe as a reference, we compare
the normalised fluctuations η(`):

η(`) =
F 2location

(`)− F 2Karlsruhe
(`)

F 2Karlsruhe(`)
, (6)

(eq. (5) in the main text), to extract the excess fluctua-
tion at the different locations. As there is no standard,
we choose a threshold value of 10% for fluctuations at
the different recordings to be identical. Once η(`) drops
below this threshold of 10%, the datasets are considered
to be identical. In this manner, we determine the time-
to-bulk as the necessary time of a recording to exhibit
the same fluctuation behaviour as the reference of Karl-
sruhe. The distance measures taken are the geographic
distances with respect to Karlsruhe, applying OpenStreet
Maps https://www.openstreetmap.org/ and using the
routing by Foot(OSRM). This yields the following dis-
tances from Karlsruhe: Oldenburg: 538km, Győr: 825km,
Békéscsaba: 1163km, Lisbon: 2203km, Istanbul: 2276km.
The reason to use route finding by foot is that the power
grid is not taking any air plane routes but is limited
also to the shortest routes available in the transmission
grid. These distances in the power system might be even
longer where transmission line density is low. Note that
our choice of geographical distance does not apply any
assumption on the underlying power grid topology. With

fully (yet currently unavailable) information about all op-
erational transmission lines, a shortest path distance on
the transmission network would be an alternative [22].

Data availability

Frequency recordings are described in detail in [33].
An open repository containing all recordings can be ac-
cessed here: https://osf.io/by5hu/. The Hungarian
TSO data is available here: https://osf.io/m43tg/. All
data that support the results presented in the figures of
this study are available from the authors upon reasonable
request.

Code availability

Code to produce the presented analysis and figures is
available on github: https://github.com/LRydin
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