Left atrial enhancement correlates with myocardial conduction velocity in patients with persistent atrial fibrillation

Brief title: LGE-CMRI correlates with CV in psAF patients

Rheeda L Ali (PhD)[1]
Imperial College London, UK
Department of Bioengineering, Imperial College London, SW7 2AZ UK
rheeda.ali@gmail.com

*Norman A Qureshi (PhD, MBBS)
Imperial College London, UK
National Heart & Lung Institute, Imperial College London, United Kingdom &
ElectroCardioMaths Programme, Imperial College London, London W12 0NN, UK.
n.qureshi@imperial.ac.uk

*Dr. Ali and Dr. Qureshi contributed equally to this manuscript

Silvia Liverani (PhD)
Queen Mary University of London
School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
liveranis@gmail.com

Caroline H Roney (PhD)*[2]
Imperial College London, UK
Department of Bioengineering, Imperial College London, London SW7 2AZ, UK.
caroline.roney@kcl.ac.uk

Steven Kim (MEng)
Abbot Medical, USA
P Boon Lim (PhD, MBBS)
Imperial College London, UK
National Heart & Lung Institute, Imperial College London, United Kingdom &
ElectroCardioMaths Programme, Imperial College London, London W12 0NN, UK.
p.b.lim@imperial.ac.uk

Jennifer H Tweedy (PhD)
Imperial College London, UK
Department of Bioengineering, Imperial College London, SW7 2AZ UK
j.siggers@imperial.ac.uk

Chris D Cantwell (PhD)
Imperial College London, UK
Department of Aeronautics, Imperial College London, SW7 2AZ UK
c.cantwell@imperial.ac.uk

Corresponding author:

Nicholas S Peters (FHRS, PhD, MD)
Imperial College London, UK
National Heart & Lung Institute, Imperial College London, United Kingdom &
ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London,
London W12 0NN, UK.
n.peters@ic.ac.uk
011 44 7946 579930

No conflicts.
No relationships with industry.

Sources of Funding
This work was supported by the British Heart Foundation (BHF), grants FS/11/22/28745 &
RG/10/11/28457, the ElectroCardioMaths Programme of the Imperial BHF Centre of Research
Excellence and NIHR Imperial Biomedical Research Centre.
Abstract

Background: Conduction velocity (CV) heterogeneity and myocardial fibrosis both promote re-entry, but the relationship between fibrosis as determined by left atrial (LA) late-gadolinium enhanced cardiac magnetic resonance imaging (LGE-CMRI) and CV remains uncertain.

Objective: Although average CV has been shown to correlate with regional LGE-CMRI in patients with persistent AF, we test the hypothesis that a localized relationship exists to underpin LGE-CMRI as a minimally invasive tool to map myocardial conduction properties for risk stratification and treatment guidance.

Method: 3D LA electroanatomic maps during LA pacing were acquired from eight patients with persistent AF following electrical cardioversion. Local CVs were computed using triads of concurrently acquired electrograms and were co-registered to allow correlation with LA wall intensities obtained from LGE-CMRI, quantified using normalised intensity (NI) and image intensity ratio (IIR). Association was evaluated using multilevel linear regression.

Results: An association between CV and LGE-CMRI intensity was observed at scales comparable to the size of a mapping electrode: -0.11m/s per unit increase in NI (P<0.001) and -0.96m/s per unit increase in IIR (P<0.001). The magnitude of this change decreased with larger measurement area. Reproducibility of the association was observed with NI, but not with IIR.

Conclusion: At clinically relevant spatial scales, comparable to area of a mapping catheter electrode, LGE-CMRI correlates with CV. Measurement scale is important in accurately quantifying the association of CV and LGE-CMRI intensity. Importantly, NI, but not IIR, accounts
for changes in the dynamic range of CMRI and enables quantitative reproducibility of the association.

Abbreviations:

CL: Cycle length
CV: Conduction velocity
EAM: Electro anatomical mapping
IIR: Image Intensity Ratio
LGE-CMRI: Late gadolinium enhanced cardiac MRI
NI: Normalized Intensity
Introduction

Success rates of catheter ablation for persistent AF is hindered by our poor understanding of the underlying mechanisms of AF persistence. Central to improving this understanding is the relationship between local myocardial conduction properties and the underlying tissue architecture, determined clinically by estimating myocardial fibrotic burden using late-gadolinium enhanced cardiac magnetic resonance imaging (LGE-CMRI). The challenges to determining this relationship are in part due to limitations and inconsistencies in the acquisition, interpretation and the registration of high-resolution imaging and electroanatomic mapping (EAM) data to allow correlative analyses.

It has previously been established that an electro-architectural relationship exists between myocardial fibrosis and CV on a regional and whole-heart level. However, if such a relationship exists on a localized level, LGE-CMRI may fulfil its potential as a non-invasive tool to map myocardial conduction properties for risk stratification and treatment guidance.

Current 3D EAM systems with high-density multi-electrode contact mapping catheters can provide detailed spatio-temporal information on the functional behaviour of the endocardium. Local CV can give a clear interpretation of underlying tissue health and identify the presence of non-conducting fibrotic tissue through the analysis of wave-front propagation patterns. The accurate evaluation of local CV requires invasive contact mapping with subsequent laborious post-processing of acquired electrograms.

LGE-CMRI is a well-established non-invasive technique to visualise myocardial fibrosis and has been corroborated with histomorphometric validation. Fibrotic atrial imaging has had mixed success due to the current limits of MRI resolution, the patchy nature of atrial fibrosis and difficulties in inter-patient scar-thresholding. As a consequence, several post-processing algorithms and intensity normalisation approaches have been developed to improve the
robustness of LA fibrosis-mapping from LGE-CMRI. Although the extent of enhancement has
been associated with conventional markers of atrial structural remodelling such as LA dimension,
and clinical outcomes following catheter ablation, there is continued uncertainty surrounding the
exact nature and pathological state of the atrial myocardium delineated by high-intensity regions.

We sought to test the hypothesis that a systematic and objective approach to the acquisition and
spatial correlation of CV and LGE-CMRI data can define a reproducible electro-architectural
relationship at clinically relevant scales.

Methods

A diagram showing the key steps of the data collection and analysis methodology used in the
study is shown in Figure 1

Study Population

Patients with symptomatic persistent AF (based on the classification of AF by published guidelines
from the AHA/ACC/HRS/ESC) presenting for their first ablation to Imperial College Healthcare
NHS Trust were prospectively enrolled. The study was approved by the Local Research and
Ethics Committee for Imperial College Healthcare NHS Trust and written informed consent was
obtained from each patient. Patients with contraindications to undergoing LGE-CMRI were
excluded from the study.

Data acquisition

Each patient underwent LGE-CMRI prior to the ablation procedure. MRI acquisition was
performed using a 1.5T Philips Achieva MR system, and a 5- or 32-element phased-array cardiac
coil. LGE-CMRI was performed in the axial orientation 12-20 minutes following the 20ml bolus of
gadobenate dimeglumine contrast agent, using an ECG triggered, free-breathing navigator-gated
whole heart 3D spoiled gradient echo acquisition sequence. Resolution was at 1.5 x 1.5 x 4mm
and reconstructed to 1.25 x 1.25 x 2 mm. Complete LA coverage was obtained with 40-50 slices. Data were acquired within a window of 100-150ms within each R-R interval depending on heart rates, with a low-high k-space ordering and spectral pre-saturation with inversion recovery (SPIR) for fat suppression. The inversion recovery delay was determined from a Look-Locker sequence, with an inversion time chosen to null myocardial signal. MRI scans were performed in patients in rate-controlled AF. To assess the robustness and reproducibility of the methodology, two patients (denoted throughout as patients G and H) underwent two pre-ablation LGE-CMRI scans, two weeks apart.

Catheter ablation was performed within two weeks from the LGE-CMRI scan. All anti-arrhythmic drugs were discontinued for at least 5 half-lives, and amiodarone was discontinued at least 60 days prior to the ablation procedure. All procedures were performed in the post-absorptive state under general anaesthesia. Transoesophageal echocardiography was performed in all patients once anaesthetised to exclude LA appendage clot, and to subsequently guide transseptal puncture. A deflectable decapolar catheter (Inquiry™, St Jude Medical, St. Paul, MN, USA) was positioned in the coronary sinus to record electrograms, pace the atrium, and serve as a temporal reference. Single trans-septal punctures were performed using a Brokenbrough needle through a fixed curve long-sheath (SL0, St Jude Medical, MN, USA). Unfractionated heparin was administered to achieve an activated clotting time of 300-350s throughout the procedure.

An impedance-based EAM system (NavX EnsiteTM Velocity, St Jude Medical, MN, USA) was used. The LA geometry and all subsequent data were acquired using a 20-pole (1mm electrodes) double-loop catheter (Inquiry™ AFocusII™, St Jude Medical, MN, USA) with 4mm electrode spacing. Before each acquisition, the AFocusII catheter was held tangentially to the endocardial surface, enabling stable tissue contact. Patients presenting in AF underwent external DCCV before any mapping was conducted. Following the acquisition of the LA geometry, high-density LA activation mapping was performed. The left atrium was paced from one of more sites (i.e. the
coronary sinus, roof of left atrium and left atrial appendage) at pacing rates of 250ms, 300ms,
350ms and 600ms. The pacing protocol included a drive train of 8 beats to ensure that left atrial
capture and activation was consistent (avoiding latency and decrementation), and also to facilitate
the stability of AFocusII catheter at the particular site of the left atrium that was being
interrogated/mapped.

The LA was paced using a drive train protocol of 8 beats from the coronary sinus, roof and/or left
atrial appendage. Unipolar electrograms were recorded and displayed at filter settings of 0.5-
100Hz during the procedure, where the 20 recordings together form a kernel as shown in Figure
2A. The electrode positions were projected to the geometry by the EAM system (Figure 2E and
2F). Electrodes more than 5mm away from the surface were disregarded.

Data were acquired at multiple locations on the LA, focused mainly on the posterior endocardial
wall where the highest propensity of fibrosis was expected to be found. Local activation times
(LATs) were calculated by the EAM system relative to a reference electrode and assigned as the
time of the maximum negative gradient of the unipolar electrogram. Electrograms were assessed
post-procedurally by an experienced Cardiac Electrophysiologist and those indicative of poor
contact or high noise were rejected. Following mapping, pulmonary vein isolation was achieved.
All patients were observed for a further 24hrs prior to discharge. No complications were observed
in this cohort of patients.

MRI/EAM Segmentation and Registration

The LA epicardial surface on LGE-CMRI images was manually segmented by an experienced
Cardiac Radiologist, as shown in Figure 2B, and the epicardial surface was extracted. The EAM
surface was co-registered to the MRI surface. The accuracy of the registration process was
estimated by target registration error. Projected EAM surface electrode positions were mapped
under the computed surface transformation to the MRI surface. The operators performing the
ablation procedure were blinded to the generated LA scar-maps derived from the LGE-CMRI.

Local and regional conduction velocity estimation

Conduction velocity was estimated both locally and regionally. Regional CV was estimated by
fitting a model of an ideal circular propagating wavefront to the positions and LATs of the 20
electrodes of a given kernel. Additionally, the wavefront radius, r, and residual error, η, of the fit
were calculated. High η indicate that the wavefront is not sufficiently smooth within the kernel.
Kernels with η < 5 s/mm were rejected as the wavefront violated the planarity assumptions
required by the local CV analysis below.

The local CV is calculated using the principle of triangulation which uses the differences in LATs
across unique groups of 3 mapping electrodes (triads) and their interelectrode distance. This
approach provides accurate estimates of velocities in areas of just a few mm², but assumes planar
propagating wavefronts. Triads were only chosen between concurrent recordings within the
same kernel to avoid any inter-beat variability of wavefront propagation. The minimum
interelectrode distance between any pair of electrodes in a triad was constrained to be greater
than the registration error.

Detection and evaluation of left atrial wall intensities from LGE-CMRI

Raw absolute LA wall image intensities were extracted from the LGE-CMRI image as the
maximum voxel intensity along a 3mm inward-facing normal from the segmented epicardial
surface.

LA wall LGE-CMRI intensities are acquired in arbitrary units and their average brightness and
dynamic range varies between images, even between multiple scans of the same subject. Local
gadolinium uptake was quantitatively evaluated through two intensity normalisation techniques:
1) Normalised intensity (NI) is calculated from the raw intensity by subtracting the mean intensity
of the LA blood pool and dividing by the standard deviation (SD) of the blood pool voxels \(^{18}\); 2) Image Intensity Ratio (IIR) is calculated as the ratio of raw intensity values and the mean intensity of the LA blood pool\(^{19}\). Both these metrics convert the raw intensities to quantities which can be compared, and are routinely utilised in LA scar-mapping with LGE-CMRI \(^{1,8,19}\). The mean and SD of the blood pool were calculated by shrinking the segmented epicardial surface by 5 voxels (3mm). The average NI or IIR value on the area enclosed by each triad of transformed electrode positions was then calculated \(^{20}\). A representative map of NI on the segmented surface is shown in Figure 2C.

Reproducibility

A sub-group of two patients had two pre-ablation LGE-CMRI scans, separated by two weeks. Segmentation, registration and construction of the LA scar map were performed independently on each image. A single EAM dataset was used per patient for determining association. The data from each scan were included in the statistical analysis as separate datasets. If the image processing and registration methodology is reproducible, the estimated association should not be significantly different between the two scans of the same patient.

Statistical Analysis

Continuous variables are given as mean±SD; categorical variables are given as percentages. A linear mixed-effects model was used to characterise the relationship between LA wall intensity, using either NI or IIR, and conduction velocity. Likelihood-ratio tests were used to compare if models, fit by maximum likelihood, were significantly different. The inclusion of CL did not significantly improve the model fit and was excluded from the final model.

A multilevel model was used to characterise the relationship between left atrial wall intensity and conduction velocity. Multilevel models provide a mechanism to account for, and quantify, variation
in model intercepts and slopes across patients and cycle lengths. The association between
normalised intensity, \(I \), and conduction velocity, \(V \) was modelled as

\[
V_{ijk} = (\beta_0 + u_j + v_k) + (\beta_1 + \beta_2 j)I_{ijk} + \epsilon_{ijk}
\]

where \(\beta_0 \) is the overall intercept, and \(u_j \) and \(v_k \) are random effects associated with patients and
cycle lengths. \(\beta_1 \) captures the effect due to intensity and is the primary parameter of interest in this
study, representing the overall association between conduction velocity and intensity across all
patients and cycle lengths. The \(\beta_2 j \) values represent per-patient random slopes; that is, the
patient-specific deviation from \(\beta_1 \). Likelihood-ratio tests were used to compare if models, fit by
maximum likelihood, were significantly different. The model reported here was statistically
significant (\(p < 0.001 \)) compared to all other simpler models without random intercepts or slopes.
The inclusion of a random slope for cycle length did not significantly improve the model fit.

Two-sided p-values with \(p < 0.05 \) were considered to indicate statistical significance. Statistical
analyses were performed using R version 3.4.3 (The R Foundation for Statistical Computing).

Results

Study Population

Due to the large number of data points collected per patient at multiple paced CL, a total of 8
patients provided sufficient data for the purposes of this study. A summary of the clinical
characteristics is given in Table 1. Patients are denoted as A-H.

Data quality

All EAM surfaces were registered to their corresponding MRI surfaces for co-localisation of image
intensity with CV. Average target registration errors were 3.08mm (range 1.94-5.71mm).
A total of 267 kernels were acquired across all patients, comprising a total of 5340 mapping points. In total 171 kernels were rejected due to non-planarity of the underlying wavefront ($\eta < 5 \text{ s/mm}$). A total of 96 complete or partial kernels (mean 12 kernels/patient, range 2-13) remained. An average of 435 triads were formed per kernel (range 1-1140 triads/kernel).

Distribution of conduction velocities and left atrial wall intensities

An overview of the data used in this study is shown in Figure 3 and summary statistics for CV and NI for each patient are given in Table S1. The CV sampled across all patients is given in Figure 3A. The mean CV was 0.85 m/s. A representative example of the distribution of calculated CV is shown in Figure 3B for a kernel from Patient H, paced at a cycle-length of 600ms, with the corresponding regional CV estimate indicated by the red line. Good coherence between the local and regional algorithms was observed across all kernels in the study.

An example of the distribution of gadolinium enhancements using NI (Patient H, second scan) is shown in Figure 3C. The distributions of NI across the entire segmented atrial surface for the first and second scans are shown by the red and blue lines, respectively.

Influence of triad area

Triads were only formed within individual kernels from those electrodes in good contact with the myocardium. Triad areas ranged from 0.12mm2 to 590mm2. The change in CV per unit increase in LGE-CMRI intensity, denoted β_1, was measured across all patients and CL. The effect of measurement area on this slope was studied by binning triads by their area and fitting the model to those triads within each bin separately. Bins were chosen as 10mm2 wide non-overlapping intervals in the range 0-160mm2. Beyond this range there were insufficient data to generate reliable statistical models. Figure 4 shows the change in the slope with increasing triad area. The magnitude of the slope was found to decrease with increasing area. To address the hypothesis...
that CV is associated with LGE-CMRI enhancement, specifically at small scales, only those triads with area < 80mm² were considered for the remainder of the study.

Association of localised LGE intensity with CV

Conduction velocity correlated with LGE-CMRI intensity (slope = -0.104m/s change in CV per unit increase of NI, p < 0.001). The CV at 0 S.D. (model intercept,) was 1.00 m/s, which is within the expected physiological range of healthy myocardium. Per-patient slopes and intercepts are shown in Figure 5A. Six of the per-patient slopes are significantly different from the overall slope (p-values < 0.05). Figure S1 shows corresponding CV and NI at each triad for all kernels from Patient G, scan 2. The overall association and patient-specific association from the statistical model are also highlighted.

No random effect relating CL with NI was included in the model (based on the outcome of likelihood-ratio tests). Only one CL (350ms) had an intercept significantly different from the overall intercept. Variations in the intercepts with CL were two orders of magnitude smaller than the overall intercept, suggesting there is negligible change in the relationship with respect to CL.

Reproducibility of LGE-CV evaluation

For Patients G and H, who underwent two LGE-CMRI scans, the images were independently segmented, registered with the clinical data and fused to examine reproducibility. These are shown as G1, G2, H1 and H2 in Figure 5A. For both patients, the slope and intercept for the first and second scans did not differ with statistical significance when using NI.

Comparison of left atrial wall normalisation (NI vs IIR)

LA wall intensity was assessed using NI and IIR. The statistical model was modified to also examine the relationship between IIR with CV. This identified a change in CV of -0.942 m/s per unit increase in IIR (p<0.001). The CV was estimated as 1.00m/s at an IIR value of 1.0, which
corresponds to an NI value of 0 S.D. Per-patient slopes and intercepts for the association of CV with IIR are shown in Figure 5B. As for NI, six of the patients have slopes which are significantly different from the overall slope. However, the confidence intervals are larger and reproducibility is poor, as evidenced by a significant difference in the random slopes of H1 and H2.

Discussion

Main Findings

We have demonstrated a localized relationship between local myocardial CV and LA wall LGE in patients with persistent AF on clinically relevant scales comparable to a mapping catheter electrode or ablation lesion. Higher normalised LA intensities represent increased structural fibrotic remodelling and this corresponds to slower CV. The overall estimate for the change in CV with each unit increase in LA intensity was found to be substantially larger in magnitude than previously reported over larger spatial scales. Triad size was found to quantitatively affect the slope, with larger area measurements reducing the magnitude of the corresponding relationship. NI was identified to be a more effective intra- and inter-patient measure of LA intensity normalisation compared to IIR, leading to increased confidence in the estimate of and improved intra-patient reproducibility. There were no significant differences in the relationship across multiple scans of the same patient.

Conduction velocity and LGE-CMRI defined fibrosis

Lower local CV were observed in LA regions with increased fibrotic change as defined by the higher extent of gadolinium enhancement. The conduction delay can be explained by several underlying pathophysiological mechanisms including gap junctional remodelling, Na+ channel abnormalities and heterogeneous cell-coupling between myocytes and fibroblasts23-25.

Measurement scale
The area subtended by the triads used in the analysis had a clear influence on the resulting beta estimate. In this study, the association is determined using triads of area < 80mm2, allowing for a more direct translation and relevance to catheter ablation in clinical practice. At the upper end of this range (70-80mm2), the average maximal edge length of each triad was 15.4mm (range 5.9-20.0mm). For comparison, the typical contact area of the ablation electrode is approximately 10mm2 (3.5mm diameter). Intuitively, averaging over larger areas diffuses the effect of small-scale variations in the quantities of interest and potentially masks the true localised association between them. In the atrium this is crucial, due to the patchy and non-uniform nature of atrial fibrosis. As shown in Figure 2, gadolinium uptake varies on scales as small as 5mm such as in narrow isthmuses which can promote slow conduction and re-entry. Fukumoto et al evaluated intensities for each of 20 sectors of the atrial wall in each axial slice. The length of each sector is approximately 20mm, which is at the upper end of maximal triad edge length used in the present study and correspondingly the larger values of area in Figure 4. Consequently, at larger areas, localized variations in conduction velocity would be averaged out leading to a reduction in the magnitude of the association between conduction velocity and intensity. This factor may explain the apparent discrepancy between the association (beta estimate) of the present study (β_1: -0.942m/s/IIR), at smaller spatial scales of areas < 80mm2, and that of Fukumoto et al (β_1: -0.34m/s/IIR). To explain this, Figure 4 also shows the same area dependency plot expressed in terms of IIR where the red and blue dotted lines mark the beta estimates from our study and that of Fukumoto et al respectively. The IIR beta estimate of -0.34, found in Fukumoto et al for persistent AF patients, is of smaller magnitude than the IIR beta estimate of -0.94 reported here, but is consistent with our findings, if measurement area is taken into consideration. This further emphasizes the importance of resolution when quantitatively comparing quantities.

Reproducibility
While both scans for each patient in the reproducibility sub-study were compared with the same EAM data, our experience suggests that the segmentation and co-registration steps are most prone to the introduction of errors. Importantly, the relationship between CV and NI within each pair of datasets were statistically indistinguishable, confirming the accuracy and reproducibility of our approach.

Intensity normalisation

One significant contribution of our study is a comparison between the IIR and NI metrics for the qualitative assessment of independently acquired MR images. By its definition, IIR accounts for underlying shifts in the intensity spectrum, while NI includes the standard deviation of the blood pool to account for inter- and intra-patient differences and accordingly for differences in the dynamic range of the images. Consequently, NI led to a more robust statistical model for elucidating the relationship between CV and intensity, compared with IIR, as well as improved reproducibility of the patient-specific association. In particular, the 95% confidence intervals on the intercept and slope estimates for IIR, shown in Figure 5B, were generally larger than the corresponding confidence intervals for NI in Figure 5A. Reproducibility of patient-specific slopes was observed for NI, but not for IIR.

Conduction velocity restitution

No statistically significant effects due to CL were observed, indicating no identifiable CV restitution.

Limitations

In order to obtain high fidelity electrograms, electroanatomical data were limited to the posterior LA, which was anatomically consistent, conducive to placement of the AFocusII mapping catheter tangential to the endocardial surface, and contained a predilection of fibrosis. Sampling
from the posterior wall may have potentially introduced sampling bias. Future studies should incorporate contact sensing catheters to increase robustness of the data collection protocol. This study investigated a persistent AF cohort which has been shown to have more extensive structural and electrical remodelling compared to paroxysmal AF patients. Future studies should include a more heterogeneous group of patients.

The image MR images used in this study were manually segmented to delineate the epicardial wall of the left atrium. As such, errors may have been introduced during the segmentation process.

IIR is defined as the ratio of the wall intensity of the sector to the blood pool mean 19. However, in this study, IIR was evaluated point-wise as the ratio of the epicardial wall intensity and the mean blood intensity.

Conclusions

Higher LA intensities correspond to lower local myocardial conduction velocities. The scale of measurement of CV and LA wall intensity is crucial in accurately quantifying this relationship, which is found to be of a higher magnitude than previously reported 1. Importantly, NI, but not IIR, accounts for changes in the dynamic range of LGE-CMRI and improves the quantitative reproducibility of the relationship. Evaluation of the LA substrate with the use of normalised intensity from LGE-CMRI can be potentially used as a minimally invasive tool to predict atrial myocardial conduction properties.
References:

Registration Using Free-Form
Deformations: Application to Breast MR Images. *IEEE Transactions on Medical Imaging*

13. Studholme C, Hill DL and Hawkes DJ. An overlap invariant entropy measure of 3D

14. Fitzpatrick JM and West JB. The distribution of target registration error in rigid-body

NS, Siggers JH and Ng FS. An automated algorithm for determining conduction velocity,
wavefront direction and origin of focal cardiac arrhythmias using a multipolar catheter. *Conf

changes in human left and right atrial conduction. *Journal of Cardiovascular Electrophysiology*.

17. Cantwell CD, Roney CH, Ali RL, Qureshi NA, Lim B and Peters NS. A software platform
for the comparative analysis of electroanatomic and imaging data including conduction velocity

DD, Marine JE, Berger RD, Halperin HR, et al. Magnetic resonance image intensity ratio, a
normalized measure to enable interpatient comparability of left atrial fibrosis. *Heart Rhythm*.

NS. A novel method for quantifying localised correlation of late-gadolinium

21. Ramanathan C, Ping J, Ghanem R, Ryu K and Rudy Y. Activation and repolarization of
the normal human heart under complete physiological conditions. *Proc Natl Acad Sci*.
2006;103:6309-6315.

22. Cantwell CD, Roney CH, Ng FS, Siggers JH, Sherwin SJ and Peters NS. Techniques for
automated local activation time annotation and conduction velocity estimation in cardiac

23. Maleckar MM, Greenstein JL, Giles WR and Trayanova NA. K+ current changes account
for the rate dependence of the action potential in the human atrial myocyte. *Am J Physiol Heart

Differences in gap junction channels between cardiac myocytes, fibroblasts , and heterolo-gous

25. King JH, Huang CL and Fraser JA. Determinants of myocardial conduction velocity:

27. Ciaccio EJ, Chow AW, Kaba RA, Davies DW, Segal OR and Peters NS. Detection of the
diastolic pathway, circuit morphology, and inducibility of human postinfarction ventricular
<table>
<thead>
<tr>
<th>Patient Characteristics (n=8)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
<td>62±11</td>
</tr>
<tr>
<td>Male</td>
<td>5 (62.5)</td>
</tr>
<tr>
<td>Mean LA size on TTE (mm)</td>
<td>41±6</td>
</tr>
<tr>
<td>Mean CHADS2 score</td>
<td>2.4 (0-5)</td>
</tr>
<tr>
<td>Mean left ventricular EF (%)</td>
<td>62±8</td>
</tr>
<tr>
<td>Hypertension</td>
<td>3 (37.5)</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>1 (12.5)</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>1 (12.5)</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>2 (25)</td>
</tr>
<tr>
<td>History of heart failure</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Duration of persistent AF (months)</td>
<td>19±10.7</td>
</tr>
<tr>
<td>Anti-arrhythmic drug therapy (beta-blocker, flecainide and amiodarone)</td>
<td>6 (75)</td>
</tr>
</tbody>
</table>

Table 1: Clinical demographics of patients.
Figure 1: Diagram of the analysis methodology. All patients undergo LGE-CMRI prior to the ablation procedure (patients G and H had 2 pre-procedural LGE-CMRI to assess reproducibility of LA fibrosis-mapping). Prior to any ablation, LA EAM during pacing is performed. Localised CV is estimated from EAM data and LGE-CMRI images are segmented to estimate fibrosis density. Data is co-registered and fused, after which statistical modelling is undertaken.
Figure 2: A: Ensite™ Velocity mapping system used for collecting endocardial electrograms. The LA was paced over a range of CLs and the acquired unipolar electrograms are shown in the right panel. B: LGE-CMRI axial slice with manual segmentation delineated in yellow C: Illustrative patient-specific map NI. D: Illustrative patient-specific map of IIR for same patient as C. E and F: Distribution of electrograms on the posterior and anterior walls of the LA respectively.
Figure 3: A: Distribution of CV measurements in the study. B: Comparison of local CV measurement distribution with regional CV estimate (red dashed line). C: Distribution of sampled NI for patient H second scan and the density of NI across entire atrial surface for both
Figure 4: Influence of measurement area on the overall β_1 estimate for association of CV with NI. Solid area denotes 95% confidence intervals. Larger measurement areas lead to lower magnitude β_1 estimate. The dotted red line indicates final β_1 estimate from present model for localised measurements with areas < 80mm2. The dotted blue line indicates beta estimate from Fukumoto et al\('.\)
Figure 5: Per-patient model intercepts (left) and slopes (right) for NI (A) and IIR (B). Values indicate the per-patient difference from the model’s overall intercept (NI: 1.00 m/s, -0.104; IIR: 1.94 m/s, -0.942). G1, G2 and H1, H2 correspond to repeat analyses of patients G and H for assessing reproducibility.