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Abstract

In this thesis we perform calculations on the CFT side of the duality between N = 4
supersymmetric Yang-Mills theory and type IIB string theory on AdSs x S°. The
results are used to study quantum gravity on AdS.

Chapters 3 and 4 explore the structure and combinatorics of the quarter BPS sector
with gauge groups U (), SO(N) and Sp(N) in the planar free field limit. For U(N), we
identify the multi-traces with a word monoid, with aperiodic single traces corresponding
to Lyndon words. For SO(N) and Sp(N) we generalise Lyndon words using minimally
periodic conditions. We present the quarter-BPS generating function for SO(N)/Sp(N)
gauge groups.

Chapter 5 examines the permutation algebras behind operator construction in the
free field theory with SO(N) and Sp(IN) gauge groups. There is a rich group in-
dependent structure, including formulae for correlators expressed purely in terms of
permutations. We introduce Schur and restricted Schur bases for the baryonic sector
of the SO(N) theory, derive covariant bases for the quarter-BPS sectors of SO(N) and
Sp(N) theories, and calculate their correlators.

Chapter 6 studies the projection of the half-BPS sector from the U(N) theory to the
SO(N)/Sp(N) theory, dual to an orientifold projection of S® to RP5. This is charac-
terised by a plethystic refinement of Littlewood-Richardson coefficients, expressible in
terms of the combinatorics of domino diagrams. A second expression for the projection
is derived in terms of a product of SO(NN)/Sp(IN) giant graviton states.

Chapter 7 looks at the quarter-BPS sector of the U(N) theory at weak coupling.
Multi-symmetric functions allow systematic study of the finite N properties, involving
combinatorics of set partitions. We construct a quarter-BPS, finite N-compatible, U(2)
covariant, orthogonal basis, labelled by a U(N) Young diagram and a multiplicity,
for which we derive precise counting results. These are interpreted as quarter-BPS

deformations of the half-BPS giant graviton states.
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Chapter 1
Introduction

The AdS/CFT correspondence [3-5] has revolutionised theoretical physics over the last
twenty years. It is a conjectural identification between a string theory on d + 1 dimen-
sional Anti-de-Sitter space (times a compact manifold) and a conformal theory living
on the d dimensional boundary manifold. What makes this conjecture both incred-
ibly interesting and difficult to prove, is the strong-weak nature of the duality. The
weakly coupled gauge theory, accessible to study via perturbation theory, is dual to
strongly interacting stringy physics, for which we have no good mathematical descrip-
tion, and vice versa. Consequently, assuming the validity of the conjecture, new features
of strongly coupled conformal field theory and gravity can be investigated through the
dual description. For a thorough review of AdS/CFT and its varied applications see [6].

The most studied example of the correspondence, and the one explored in this
thesis, is in d = 4 dimensions with the maximal amount of supersymmetry. On the
AdS side, this is type IIB string theory on AdSs x S°, while on the CFT side, we have
the NV = 4 super Yang-Mills theory with U(N) gauge group.

There are two parameters needed to define the Yang-Mills theory, the coupling gy as
and the rank N of the gauge group. In the dual theory, the two parameters are the
string coupling g, and the ratio % between the radius of AdS and the string length.
These are identified via

4
i = g =) 0 = s = o (10.)
where A is the 't Hooft coupling.

It was shown by 't Hooft [7] that in a U(N) gauge theory with fields in the adjoint,
one can take the large N limit while keeping ) fixed and obtain a perturbative expansion
in powers of % with the gth term corresponding to double line Feynman diagrams on
surfaces of genus ¢g. This matches the genus expansion of string theory, and was an

early indication of string-gauge duality.
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CHAPTER 1. INTRODUCTION

A result of particular importance coming from the ’t Hooft expansion is exactly
when the perturbative description of a U (V) gauge theory is valid. Naively, one would
expect this to be when gy < 1, but if NV is large then contributions from loops in the
diagrams can outweigh the coupling constant, rendering the perturbative description
invalid. In fact it is when A < 1 that one can use the Feynman diagram computations.

The strong-weak nature of the duality is apparent from (1.0.1). Perturbative gauge
theory is valid at small A, meaning the radius of curvature R of the AdS space is
comparable to the string length [;. In this regime, stringy effects become important,
and the supergravity description can no longer be trusted. On the other hand, at large
A, inaccessible to gauge theory calculations, the curvature is much greater than the
string length scale, and the supergravity description is valid.

In principle, the matching between the two sides of the AdS/CFT duality depends
on two factors. Firstly, the Hilbert space must fit into the same representations of the
global symmetry group PSU(2,2|4). In particular the energy of an AdS state must
match the scaling dimension of a CFT local operator (by the operator-state correspon-
dence, we use CFT local operators rather than states). Secondly, the correlators of the
AdS states and CF'T local operators must agree. The conjectural identification between
states, operators and their respective correlators was given in [4,5].

In general, these correlators are very hard to calculate precisely, and many can only
be given order by order in perturbation theory. An important and influential exception
to this rule is the planar limit of the N’ = 4 super Yang-Mills theory. This refers to the
N — oo limit with A fixed, so only the leading term in the 't Hooft expansion survives,
and therefore only planar Feynman diagrams contribute. It was proved in [8] that
this theory is integrable, allowing the application of powerful mathematical techniques
that provide concrete results to all orders in A. This has become a vast and extremely
fruitful area of research. A review of this huge topic can be found in [9].

A more difficult problem is to study the correspondence while including sub-leading
terms in the % expansion, or explicitly at finite V. While many important results have
been found, the understanding is not as complete as for the planar limit.

In this thesis, we focus on half- and quarter-BPS local primary operators in N' = 4
super Yang-Mills. These are annihilated by, respectively, a half and a quarter of the
16 Poincaré supercharges in the theory. As a result, they live in short or semi-short
representations and their conformal dimension is determined by their charges under
the SU(4) R-symmetry and the Lorentz group. This restriction means concrete results

can be found even at finite V.
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CHAPTER 1. INTRODUCTION

1.1 Half-BPS sector

In N = 4 super Yang-Mills, there are 6 real scalar fields ¢,, filling out the six dimen-
sional representation of the R-symmetry SU(4), which is a double cover for SO(6). On
the AdS side of the duality, the SO(6) symmetry corresponds to rotations of the S°
factor. The 6 scalar fields are combined into 3 complex scalar fields X; = ¢; + i¢;+3,
hiding some of the R-symmetry and leaving only an SU(3) x U(1) subgroup apparent.
Half-BPS operators in the the CFT are exactly the multi-traces of one of the complex
scalars, which we will refer to as X.

From arguments based purely on the representation theory of PSU(2,2|4), the
spectrum of half-BPS multiplets remains unchanged for any value of the coupling con-
stant [10]. Additionally, there are strong non-renormalisation theorems on correla-
tors [11-15], so calculations can be performed on either side of the duality at any value
of the coupling and compared directly.

The half-BPS states have been well studied, and much is known about them. The
spectrum of single trace operators corresponds to Kaluza-Klein gravitons compactified
on the S% factor of AdSs x S® [5]. The operator TrX" has charge n under a U(1)
subgroup of the SU(4) R-symmetry, and the dual AdS state has n units of angular
momentum around the S°. More generally, multi-trace operators are dual to multi-
graviton states.

This identification between operators and Kaluza-Klein gravitons is valid if n ~
O(1) compared to N. However, if n is taken to grow in size comparable to N, then the
large energy of the state causes a backreaction and the supergravity approximation to
the full string theory no longer holds. The behaviour of the BPS states as n scales with
respect to N is an important problem that has illuminated many interesting physical
aspects of the two theories.

The first qualitatively different behaviour is observed when n ~ V/'N. Tt was found
in [16] that operators of the form TrX” where J ~ /N, can be understood as strings
with large angular momentum on the S°. These BMN states can be identified with
strings in the pp-wave background, which are an unusual case of strings that can be
quantised exactly, with the spectrum exactly matching that of the super Yang-Mills
operators.

Continuing to scale n, it was demonstrated in [17] that gravitons with angular
momentum J ~ N expand into a D3-brane wrapped around a 3-cycle in the S®. These
giant gravitons also explained the string theoretical origins of the stringy exclusion
principle [18], a cut-off in the spectrum when the angular momentum of a single graviton
exceeds N. The radius of the S® wrapped by a giant graviton increases with the angular
momentum, with an upper bound given by the radius of the S°. This upper bound

corresponds exactly to J < N.
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CHAPTER 1. INTRODUCTION

The gauge theory origins of the stringy exclusion principle are much simpler, emerg-
ing from relations between traces at finite N. The Cayley-Hamilton theorem for a
matrix implies that a trace TrX™ with n > N can be re-written in terms of products
of traces of size < N.

Another family of brane states, called dual giants or AdS giants were found in [19].
These are D3-branes wrapping a S® within the AdSs factor, with similar properties to
sphere giants except they do not suffer from a stringy exclusion principle.

After early identifications of sphere giants as sub-determinant operators [20, 21],
a complete basis for half-BPS operators in the gauge theory was found in [22], valid
for all n and N. These are operators Op = yg(X) labelled by a Young diagram R
with n boxes and constrained to have length no greater than N. They can be simply
understood as the analytic continuation of the U(IN) character xr(U) to a generic
complex matrix X.

The basis O allowed a simple identification of all giant graviton states, dual giants,
and a smooth interpolation between the two. Take R to be a single column of length
J ~ N. This is dual to a giant graviton of angular momentum J, and the cut-off on the
length of the Young diagrams corresponds to the stringy exclusion principle. Similarly,
a Young diagram with a single row of length J ~ N is dual to an AdS giant of angular
momentum J, with no cut-off on the length of the row. Young diagrams with several
long columns or rows correspond to multi-giant states. This correspondence between
Young diagram operators and giants has been confirmed from a number of directions:
holographic comparison of correlators of two Young diagrams with a trace [23-26],
moduli space quantisation [27,28] and strings attached to giants [29-35].

Beyond the identification of O with giant gravitons, [22] also demonstrated that
the half-BPS sector of ' = 4 SYM is dual to N non-interacting fermions in a 1-
dimensional harmonic oscillator. The correspondence between free fermions, half-BPS
operators and giant gravitons was further developed in [36].

A complete classification of half-BPS excitations of AdSs x S° was given in [37].
These are referred to as LLM geometries, and are specified by a colouring of the LLM
plane, a 2-dimensional plane of boundary conditions split into coloured regions and
empty regions. Since this is a complete characterisation, all scaling behaviour of half-
BPS states can be seen in LLM solutions. The simple AdSs x S° appears as a circle.
Small perturbations of this correspond to Kaluza-Klein gravitons. A donut with large
radius corresponds to a sphere giant, while a central circle with a distant ring around
it is an AdS giant. When the energy of the BPS state is O(N?), we find different
topological or geometrical spaces. These correspond to states where the energy has
grown sufficiently large that the backreaction has changed the geometry of the space.

The colouring of the LLM plane is interpreted as the 2-dimensional phase space of

N fermions. Coloured areas of the plane, of total area N, correspond to occupation by
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CHAPTER 1. INTRODUCTION

fermions. This gives a natural correspondence between Young diagram operators and
LLM geometries via the free fermion interpretation. The detailed matching is described
in [38].

This scaling behaviour of the half-BPS states on both sides of the duality represents
a thorough understanding of this sub-sector of the U(N) N = 4 super Yang-Mills theory
and its AdS5 x S° dual.

1.2 Quarter-BPS sector

There has been much work done on developing an understanding of the quarter-BPS
sector that can compare with the half-BPS equivalent. While many important results
have been found, this project is still incomplete.

We begin with the AdS side of the duality, as more is known here than for the dual
gauge theory. Giant gravitons were generalised to the quarter and eighth-BPS sectors
in [39], with worldvolumes given by the intersection of holomorphic surfaces in C? with
a b-sphere. These represent the entire quarter-BPS sector (for states with energy of the
appropriate order), but only a subsector of the eighth-BPS sector, since world-volume
fermions or gauge fields are set to zero [27]. These giant gravitons were quantised in [27],
where the authors proved that the space of quarter/eighth-BPS states correspond to a
system of N non-interacting bosons moving in a 2/3-dimensional harmonic oscillator.
Dual eighth-BPS giants were quantised in [40] and the same result was obtained for
the Hilbert space.

While giant gravitons have been generalised to the quarter and eighth-BPS sector,
these branes have not been studied as much as the half-BPS equivalents, and their
properties are not as well understood.

The quarter and eighth-BPS equivalent of LLM geometries were derived in [41].
Like the half-BPS case, solutions are expressed in terms of boundary conditions on
4 and 6 dimensional spaces. However the procedure to generate the metric from the
boundary conditions is more difficult, involving non-linear differential equations, and
the relation to free fermion dynamics no longer holds.

On the gauge theory side of the correspondence, a lack of non-renormalisation the-
orems means quarter-BPS operators at generic coupling are difficult to find. Represen-
tation theory only protects the spectrum of very special quarter-BPS multiplets (those
in the SU(4) R-symmetry representation with Young diagram [n — 1, 1]). Generic ones
are not protected.

More is known in the free field theory with A = 0. In this limit, quarter-BPS
operators are exactly the multi-traces of two of the complex scalar fields, which we
will write as X and Y. Various Young diagram bases, generalisations of the half-BPS

operators Op, have been developed for this space [42—46].
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CHAPTER 1. INTRODUCTION

The spectrum changes discontinuously when interactions are turned on, as some of
the semi-short multiplets recombine into generic long multiplets which acquire anoma-
lous dimensions. From index calculations [47], it is expected that the spectrum then
remains fixed from A < 1 to A > 1. There are also non-renormalisation results for
correlators of quarter-BPS operators [15,48], and it is believed that 2 and 3-point func-
tions of quarter-BPS operators do not get renormalised as we travel from weak to strong
coupling.

Finding quarter-BPS operators at weak coupling is a difficult problem, and has not
yet been solved in full generality. A systematic method to find them was developed
in [49] and applied at low dimension. This approach gave candidate states and then
found the BPS operator by orthogonalising to descendent states.

In [50], the dilatation operator was shown to be an effective method for finding
quarter-BPS operators at weak coupling. After diagonalising the dilatation operator,
the quarter-BPS states are exactly those in the zero eigenspace. A lot of work has been
done to diagonalise the one-loop dilatation operator on the free-field bases. In [51],
one of the Young diagram bases called the covariant basis was investigated, and a
method was developed to find quarter-BPS states. An alternative basis, called the
restricted Schur basis, was explored in [31,35,52]. This latter approach succeeded in
finding quarter and eighth-BPS operators for Young diagrams in the distant corner
limit. Finally, a special class of quarter BPS operators at weak coupling was found to

be related to Brauer algebra constructions [53].

1.3 SO(N) and Sp(N) gauge theories

In a different direction, one can look at N/ = 4 super Yang-Mills with SO(N) and
Sp(N) gauge groups and ask whether they have a dual string theory description.

In the formalism of 't Hooft, two line Feynman diagrams are used to describe the
perturbative expansion of a U(N) gauge theory with fields in the adjoint represen-
tation. These two lines have arrows pointing in opposite directions, as the adjoint is
composed of a product between the fundamental and anti-fundamental representations.
For SO(N) and Sp(N), the fundamental representation is real, and isomorphic to its
complex conjugate. It follows that the lines no longer have a preferred direction, and
consequently, in addition to the normal genus expansion of the U(N) theory, the per-
turbative description admits Feynman graphs that live on non-orientable surfaces such
as RP? [54]. This implies not only that there is a string theory description of SO(N)
and Sp(N) gauge theories, but that it is given in terms of non-orientable strings.

The AdS/CFT dual of N = 4 super Yang-Mills with these gauge groups was found
n [55]. The S® factor in the standard AdS/CFT correspondence is replaced by a RP?
factor by identifying 2 ~ —x for x € S°. At the same time, the string worldsheet has its
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orientation reversed. This is called the orientifold quotient, and maps the U(N) gauge
theory to SO(N) or Sp(N) theories. The gauge group that emerges depends on the
topological class of the two-form fields coupled to fundamental strings and D-strings.

Indeed, the SO(N) theory emerges quite naturally from this description. One
way of arriving at the U(N) correspondence is to place N D3-branes at the origin of
Minkowski space and note that these deform the near horizon geometry from flat space
to AdSs x S°. In this picture, the six real scalar fields of the Yang-Mills theory emerge
as the transverse displacement of the branes from the origin, which appear in the near-
horizon geometry as the radial direction of AdS times the S°. Correspondingly, the
identification z ~ —x on S° sets X; ~ —X;, where X; (i = 1,2, 3) are the three complex
scalar fields.

In tandem, the (a,b)th component of the gauge field corresponds to the amplitude
of a string stretching from the ath brane to the bth. Reversing the orientation of a
string, this instead stretches from the bth to the ath. Therefore the gauge indices are
transposed. It follows that the orientifold quotient sets X; ~ —X7T

;» which is exactly

the map from the complexified adjoint of u(N) to the complexified adjoint of so(NV).
In order for the Sp(NN) theory to emerge from the orientifold quotient, one needs to
consider the subtle topological factors, and a more detailed description is needed.

For half-BPS states of conformal dimension n = O(1), the picture for SO(N)/Sp(N)
gauge theory and its dual string theory is similar to that of U(N). Kaluza-Klein
gravitons, compactified on the RP%, correspond to single trace states TrX™. From the
gauge theory, n must be even due to the constraints on X, while in the string theory, this
is because the U (1) R-symmetry charge of X is twice the quantised angular momentum
on the RP5. Multi-trace operators then correspond to multi-particle graviton states.

The allowed brane wrappings on AdSs x RP° were investigated in [55]. For both
SO(N) and Sp(N), there are the standard giant graviton branes wrapped on 3-spheres
within either the AdSs or RP® factors. However, for SO(N) with N even, there is an
additional brane state wrapped around a RP? within the RP°. In the gauge theory,
this is a Pfaffian operator, consisting of % copies of the scalar fields X; contracted
using the SO(N) invariant tensor €4, 4,. Evidence that Pfaffian operators should be
considered as D-brane states was presented in [21], which demonstrated that the 't
Hooft expansion of such states included string worldsheets with boundary.

A Young diagram basis for half-BPS SO(N) and Sp(NN) multi-trace operators was
developed in [56,57]. For SO(N) with N even, a basis for Pfaffian operators was also
derived, labelled by Young diagrams with first column of length V. It is expected that
these bases are dual to giant gravitons with the appropriate brane wrapping, in much
the same way as for the U(N) Young diagram basis operators.

N

Further, these Young diagram bases can be interpreted as 5 non-interacting fermions

in a harmonic oscillator potential. This relates to the bubbling orientifold description
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of SO(N) and Sp(N) theory, derived in [58]. This replaces the LLM plane with a half-
plane, corresponding to fermions moving on a half-line. The free fermion picture nicely
summarises the correspondence between bubbling orientifold geometries of AdSs x RP°
and half-BPS operators in the SO(N) and Sp(N) theories.

There are few studies of the quarter-BPS sector for the SO(N) and Sp(IV) theories.
A Young diagram basis was constructed for the free field theories in [59,60], though
this did not include Pfaffian operators. Little is known about the quarter-BPS sector

at weak coupling.

1.4 Outline of thesis

We begin this thesis by giving some of the necessary mathematical background for the
following chapters. Chapter 2 introduces the permutation group S,,, and how it can
be used to construct gauge invariant operators in the U(N) theory taking account of
finite NV effects.

In chapter 3 we study the quarter-BPS sector of A/ = 4 super Yang-Mills with
U(N) gauge group in the free field limit. This can be split into two distinct halves.
The first part examines the combinatorics of the matrix words that appear in the
multi-trace operators in the planar limit. The generating function for the planar free
field quarter-BPS sector was derived in [61], and is also the generating function for a
graded, non-commutative monoid. We investigate the correspondence between these
two systems, the structure this entails, and how this structure is reflected in the large
N generating function. The second half summarises the role of permutations in the
quarter-BPS sector and the different bases that can be used to describe it.

Chapter 4 studies the word combinatorics of the quarter-BPS sector for the SO(N)
and Sp(N) gauge theories, again in the planar free field theory. The anti-symmetry of
the matrix fields induces relations between traces of different matrix words. We study
these relations, examine the structure of the space of quarter-BPS sector, derive the
large N generating function and describe how different expressions for this function
reflect the structure of the space.

Chapter 5 studies the same sector as chapter 4 but with N finite. We describe the
rich structure of permutation algebras lying behind the construction of BPS operators
and give gauge group independent characterisations of operators and correlators.

Chapter 6 analyses in detail the dual description of the orientifold quotient taking
AdS5 x S5 to AdS5 x RP5. We focus on the half-BPS U(N) multi-trace operators and
map this to an SO(N)/Sp(NN) operator by replacing the generic complex matrix X in
the complexified adjoint of u(N) with an anti-symmetric matrix in the complexified
adjoint of s0(N)/sp(IN). By using the Young diagram bases in both gauge groups, we

obtain a description of the orieintifold quotient of the dual giant gravitons.
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Finally, chapter 7 looks at weak coupling quarter-BPS operators in the U(N) gauge
theory. We use the mathematics of multi-symmetric functions to derive the finite N

behaviour of this sector and give a construction algorithm for a Young diagram basis.
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Chapter 2

Mathematical Preliminaries:
Permutations, Traces and

Partitions

Permutations, and the wider symmetric group algebra C(.S,,), have proved an important
tool in theoretical physics. For an overview of their varied applications see [62]. The
connection between symmetric and unitary groups established by Schur-Weyl duality
has played a major role in studying the BPS sector of N’ = 4 super Yang-Mills. The use
of permutations has been the key technical step in allowing the explicit construction of
operator bases, calculation of correlators and understanding the restrictions imposed by
finite N [22,29,32,42-46,56,57,59,60]. They have also, through the lens of AdS/CFT
provided a new viewpoint on the stringy exclusion principle and have enabled further
study into giant gravitons and the BPS sector of strongly coupled type IIB string theory
on AdSs x S°.

We begin this chapter by reviewing how one constructs multi-traces from permu-
tations in S,, acting on the n-fold tensor product of the fundamental of U(N). We
describe how invariances on C(S,) result in different permutation algebras controlling
this construction, and in particular define the algebras relevant for the half and quarter-
BPS sectors of N' = 4 super Yang-Mills. Partitions are then discussed along with their
Young diagrams. Next we do a quick review of S,, representation theory, followed by
an explanation of Schur-Weyl duality and the consequences for both operators and al-
gebras when we allow n < N. Finally, we detail the uses of permutations in calculating
correlators, before finishing with a description of symmetric functions and their relation
to the half-BPS sector.
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2.1 Constructing traces from permutation algebras

Let V' be the carrier space for the N-dimensional fundamental representation of U (V),
and consider the n-fold tensor product V™. S, acts on this space by permutation of
the factors. We can write this action in components as
I i1i9..in _ i1 sio in
j ] j o 6jo(n

O'J_O'

i,—1 i,—1 i
_ el Yo 1(2) o—1(n)
T Uidedn T Vo) Jo(2) - 5j1 5j2 "'5jn (2'1'1)

)

For permutations, we use the multiplication convention (o7)(i) = 7(o(i)), or equiva-
lently (o7)% = okri.

By conjugating operators on the tensor space, S, can act on these as well. Consider
n matrices Z1, Zs, ..., Z, in the adjoint of U(N), and write Z for the tensor product

Z1Q®Zy® -+ R Zy. Then

I a1 bo—1(n) j Jn ok kn
(0Zo™t), = o, 05 (Z1)3, - (Zn)y 510171(1) .. '5l071(n)

lg=1(1) lg=1(2) lg=1(n)
(Zl)lafl(n (Z2)1071<2) s (Zn)lofl(m

= (Zoay)y, (Zow),. - (Zow),)

ln

~ o (@)} (2.1.2)

where the last line defines o (Z).
In order to construct a U(N) trace operator from this, we simply take the V®"

trace of a permutation ¢ multiplied by Z.

Oy = Tr (0Z) = (Zl);i;(l) (Z2)72 Jee (Zn);i:(n) (2.1.3)
The cycles of o determine the structure of the trace. A single cycle (a1, as,...,a) in

o leads to the single trace TrZ,, Z,, ... Z,,, while a permutation with several cycles

leads to a multi-trace. For example

oc=(1,2,...,n) Tr(cZ) =TvZ1Zs ... Zy (2.1.4)
o=(1,2,3,4)(5,6,7,8) Tr(0Z) = (TxZ1Z2Z574) (TrZ5Z6 Z7 Z3) (2.1.5)
o=(1,5,3)(2,6) Tr(cZ) = (TrZ1Z573) (TrZa Zs) (TrZy) (2.1.6)
We can reverse this relation. Given a multi-trace of Z1, Zs, ..., Z, in which each matrix

only appears once, we can identify the permutation ¢ € S,, which produces this trace.
Therefore the full space of degree (1,1,...,1) multi-traces is in correspondence with
the group algebra C(S,) via the identification O, < o.

An intuitive way to think about the index contractions in (2.1.3) is to use a con-

traction diagram like the one given in figure 2.1. The permutation ¢ connects the index
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Figure 2.1: Diagrammatic representation of the index contraction of n matrices with a
permutation. Each vertical line represents an index, while the horizontal lines at the top
and bottom indicate we trace over these indices.

lines of the different Z;. By connecting the corresponding index lines at the top and
bottom, one acquires a set of loops, each corresponding to a single trace factor.

A simple consequence of this identification between permutations and traces is
obtained by setting 2y = Zy = --- = Z,, = I the identity matrix. Then each trace
factor contributes N, and we get

Tro = giti2in — Ne() (2.1.7)

9112...0n,

where c(0) is the number of cycles in o.

Similarly, to study an M-matrix system X1, Xo,..., X3, we set each of the Z; to
be equal to one of the X;. To study the degree (ni,na,...,ny) subspace of the matrix
system, we set Z1,Za,...,2Zy, equal to X1; Zn, 41, .., Zni+n, €qual to X3 and so on.
Looking at X, we see that there is a subgroup of S,, that leaves this invariant under
the action defined in (2.1.2). For any 7 € Sy, X Sp, X --+ X Sy,,, we have 7(X) = X.
Therefore

O =0 pr1 (2.1.8)

where the notation O, = Tr (¢X) is used to denote both the n and M-matrix operator.
It will be clear from context which is under discussion.

It follows that the degree (ni,na,...,nas) subspace of the M-matrix system cor-
responds to the subalgebra of C(S,,) invariant under conjugation by the subgroup
H =25, xS, X xSy, This is denoted

Animony = Al = {a ca=cac ' forallo e H} (2.1.9)

The case M = 1 describes the half BPS sector of A/ = 4 SYM. The conjugating
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subgroup is the entirety of S, so the subalgebra of interest is invariant under
a— oao ! oe S, (2.1.10)

The invariant algebra A,, is the centre of C(S,), and can be described in terms of the
standard conjugacy classes of S, or the irreducible representations, which are both
reviewed in section 2.3. The consequences of understanding this algebra in the setting
of the half BPS sector were first explored in [22].

When considering just the single complex matrix X, a permutation o of cycle type
p=1[A\1,A2,..., \g] = [1P1,2P2 .. .] (p is a partition, introduced in section 2.2) produces
the trace i

Tr(oX) =T, = [[ Tex™ = [ ] (TvX7)"” (2.1.11)
i=1 i
Setting M = 2, we obtain the quarter BPS sector of N' = 4 SYM. The invariant algebra

Ap, mo is invariant under the action

1

a— oao” o€ Sy, X Sp, (2.1.12)

Ap, n, has been studied in [63] and we will review the conjugacy class and Fourier
description in sections 3.5.3 and 3.6.1 respectively.

For the 2-matrix case we call our matrices X and Y rather than X; and X5, and
will use the notation X®"Y®"2 = X. The form of the traces arising from Ay, », is
harder to describe, involving partitions labelled by the Lyndon words of a monoid on
two letters. We give this description in section 3.5.2.

The eighth BPS sector of N'=4 SYM is larger than just multi-traces of three ma-
trices, since it also includes fermion contractions [50]. However, the scalar component
can be found by setting M = 3. Many of the techniques used for the M = 2 case are
directly applicable here, and the results can be generalised very simply, so we do not
study this in detail.

Other subalgebras of C(S,) become relevant when we consider the traces with

SO(N) or Sp(N) gauge group in chapter 5 or symmetrised traces in chapter 7.

2.2 Partitions

The conjugacy classes and irreducible representations of S, are labelled by integer
partitions p of n, for which we use the standard notation p F n.

We write partitions in two ways, either in components: p = [A1, Ag,...], where the
A; are weakly decreasing, or in terms of the multiplicities of ¢ as a component of p:
p=[1P1 2P2 3P3 _]. To interchange between the two, p; is the number of As equal to

1, po is the number of As equal to 2 etc.
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The sum of a partition p is denoted by

pl = ZM => ipi=n (2.2.1)

i

and the number of components by

l(p) = # of non-zero \; = Zpi (2.2.2)

(2

Since all permutations of cycle type p have the same sign, we define the sign of a
partition to be the sign of any permutation with that cycle type. In terms of components
and multiplicities
(—17 = JJ=vM+ = T] (~o» (2.2.3)
i i even
The Young diagram of a partition p is a visual representation, formed by arranging
boxes such that the number of boxes in each row corresponds to the components of the

partition. So for example the partition p = [4,4, 2] has the Young diagram

Y(p) = (2.2.4)

We will not distinguish between a partition and its Young diagram, and will use the
terms interchangeably. We denote Young diagrams in the same way as a partition,
pEn.

At various points in this thesis, we will place numbers within the boxes of a Young
diagram. This is called a Young tableau, and there are many different varieties that
we will come across. Rather than introduce them all here, we will wait until each type
is relevant and define them then.

For a partition p - n, we denote the conjugate (transposed) partition by p°. Visu-

ally, this reflects the Young diagrams in the diagonal, for example

p= — p'= (2.2.5)

The relation in terms of components is

Ai(p°) = (# components of p that are > i) (2.2.6)
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Two partitions p = [A1, Ag,..., \g] F n and ¢ = [p1, 2, ..., ] = m can be combined
into a partition p + ¢ F n + m by adding together the components

p+q=[A+p1, Ao+ p2,. ] (2.2.7)

If one partition has length greater than the other (e.g. k > 1), then a suitable number
of zeros is appended to the shorter partition in order to define the components needed
for the addition (e.g. pyr1 = --- = px = 0). Addition of partitions can be thought of
intuitively as concatenating their two Young diagrams horizontally.

For p F n, we define the partition 2p - 2n by
2p=p+p (2.2.8)

which has components double that of p. For any positive integer k, we define the
partition kp - kn similarly.

We could also combine Young diagrams by concatenating them vertically. This can
be formalised by considering p = [1P1,2P2 .. .] and ¢ = [19,292,...] in terms of their
multiplicities. We define

pUq= [1PrHa gpatae ] (2.2.9)

This notation for the two ways of ‘adding’ permutations was used in [64].

2.3 5, representation theory

2.3.1 Conjugacy classes

The conjugacy classes in 5, are labelled by a partition p F n, where the members of
the p conjugacy class are just the permutations with cycle type p. For o € .S, of cycle
type p the centraliser of ¢ is define to be the subgroup of S, that commutes with o.
The form of this group is given in section 3.5. For now, we only need the size of the
centraliser, which is

% =[["»! (2.3.1)

i

Using the orbit-stabiliser theorem [65] then tells us that the size of the conjugacy class

(number of elements in S,, with cycle type p) is ?—;

2.3.2 Representations

The irreducible representations of .S, are also labelled by partitions. The dimension dg
of the representation R F n is given in terms of the ‘hook lengths’ of the boxes in the

Young diagram of R. The hook length of a box b € R is the number of boxes contained
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in the ‘hook’ of b, consisting of b, all boxes to the right of b in its row, and all boxes
below b in its column. For example, using the same Young diagram as in (2.2.4), the

hook lengths of each box are

1 (2.3.2)

Then Hp is defined to be the product of the hook lengths of each box in R. So for
(2.3.2) we have Hp = 14400.
The dimension dg is given by the hook length formula

n!
dr = T (2.3.3)
This dimension can be interpreted combinatorially as the number of standard Young
tableaux of shape R. The Young basis given in appendix A.l is an explicit basis for R
that demonstrates this dimensionality.
The two simplest representations of .S, are the two 1-dimensional reps: the trivial
(symmetric), with R = [n] and the sign (anti-symmetric), with R = [1"].
It is well known that S,, representations are real and that the representation space
can be given an inner product so as to make them orthogonal. The matrix representa-
tives of group or group algebra elements are denoted by D (). These matrices satisfy

the orthogonality relations

n!
o€Sn R

We write xr(0) = TrDR(o) for the character of a permutation. The orthogonality

relations for characters are

n! Z Xr(o = 0Rs Z XR(9)XR(T) = 2p, Op,p, (2.3.5)
v 0ESh RFn

where p, is the cycle type of . Setting 7 = 1 in the right hand equation, we obtain
the resolution of the identity

=3 drxa(o) = 6(0) (2.3.6)

RFn

where 0 is a function defined on S, by

soy=dt 7! (2.3.7)

0 otherwsie
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The character of a permutation in an irrep R depends only on its cycle type, so taking

o € S, to be of cycle type p - n we define

xr(p) = xr(0) (2.3.8)

This notation neatens the orthogonality relations (2.3.5)

> S xXr(p)xs(p) = dns S xnxn(a) = 5oy (23.9)
RFn

pkn

For a representation R F n, the conjugate representation R¢ is isomorphic to the tensor

product of R with the sign representation, so

RE=[1"]®R DI (0) = (1) D{}(0) Xre(p) = (=1)"Xr(p)
(2.3.10)

2.3.3 Centre of C(S5,)

The centre of C(S,,) is the sub-algebra that commutes with everything in C(S,). A
basis for the algebra can be found by summing over the conjugacy classes. Using any

T € S, of cycle type p, we define

1
ap = Z oo} (2.3.11)

" oEeS,
By reparameterising the sum to run over ¢/ = 7o instead of o, it follows that «,
commutes with any permutation = € S,,.

In the 1-matrix system, when the centre is the algebra of interest, multiplying a,

by X and tracing over V™" produces a simple multi-trace, just as seen in (2.1.11)

Tr (pX) = T, = [ ] (TrX")" (2.3.12)

i

There is another important basis for the centre, constructed using the irreducible rep-

resentations R+ n

= dfff > xr(o)o (2.3.13)

" 0€Sy
It follows from the conjugation invariance of yr that Pr commutes with the whole of

S,. Multiplying Pr by X and tracing over V", we obtain the Schur operators

O = %’H PrX) = Z xr(0)Tr (0X) (2.3.14)
'UES

where we have normalised the operators with respect to the two-point functions intro-
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duced later in section 2.6.

These were first defined in [22] and are named Schur operators since when written
as a function of the eigenvalues of X, they are exactly the symmetric Schur functions
sg. For more on symmetric functions and the relation they have to the half-BPS sector
see section 2.7.

It is a simple consequence of Schur’s lemma and the orthogonality relations (2.3.5)
that Ppr is represented by the identity matrix in R and by the zero matrix in all other
irreps

D®(Pg) = dgs (2.3.15)

It also follows from the orthogonality relations (2.3.5) that the Pr satisfy the multipli-
cation identity
PrPs = PsPr = 0psPr (2.3.16)

This means that in any representation of .S,,, Pgr acts as a projector onto the R subspace.

There is a particular element of the centre that will be especially important

0= Z (Tro)o = Z N¢g (2.3.17)

O'ESn UES’n

where ¢(0) = l(p(¢)) is the number of cycles in o, and we have used (2.1.7) to evaluate
the trace of o over V™. Q commutes with S, because conjugate permutations have

the same ¢(o)

aQa ' = Z N@aga™" = Z NeleTloa) s — (2.3.18)
oc€SK 0ESK

Since {2 commutes with S,,, by Schur’s lemma it must act proportionally to the identity
on any irrep R F n. The constant of proportionality is given in terms of the contents of
the boxes of the Young diagram of R. Let (7, ¢) label the box of R in the rth row and
the cth column. Then the content of box (r,c) is r —c. So for example for R = [4, 4, 2],

the contents of each box are

0112
—-110|1]2 (2.3.19)
—2|—-1

For a box b € R, the contents of b is written ¢;. Then in rep R F n,  has representative

DR Q) = [[(V + &) := fr(N) (2.3.20)
beR

where this serves as a definition for the polynomial fr(/N). This result is explained in

more detail using Jucys-Murphy elements in appendix A.
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Since Ppg is the projector onto the R representation of Sy, it follows from (2.3.20)
that

Q=>" fr(N)Pg (2.3.21)
R

In a Young diagram of length I[(R) > N, the (N + 1)th box in the first column has
2

content —N, and therefore the factor (N 4 ¢3) in (2.3.20) vanishes. Consequently,

frR(N) =0 if I(R)>N (2.3.22)

So © = 0 in representations with {(R) > N. The significance of this is discussed in
section 2.6.

In 2 we see our first example of an N-dependent element of C(S;,). There are two
possible interpretations of N in this context. Firstly, we can view N as a number given
by the rank of the gauge group U(N). This is more useful when working with matrices.
Secondly, we can view IV as a formal variable, in which case our correlators and other
gauge invariants are formal power series in this variable. This latter interpretation is

more helpful when working with permutation algebras.

2.4 Schur-Weyl duality

Schur-Weyl duality connects the representation theory of S,, with that of U(NV), and is
the key mathematical link that allows us to talk about U(N) matrix invariants using

permutations.

2.4.1 U(N) representations

Irreducible representations of U(N) are labelled by partitions p with I(p) < N, with

the sum |p| unrestricted. The dimension of the representation R is given by

v _ IR

de = (2.4.1)

where fr and Hp are defined in (2.3.20) and (2.3.2) respectively.
Using the Hook length formula (2.3.3) and the expression for {2 in an S,, represen-

tation in (2.3.20), we can write

U = (2.4.2)

Similarly to the S,, representation dimension formula (2.3.3), we can interpret this
dimensionality combinatorially as the number of semi-standard Young tableaux one can

construct using the letters 1,2,..., N. These semi-standard tableaux are described in
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section 3.6.2, along with a corresponding Young basis that exhibits this dimensionality.

2.4.2 Schur-Weyl duality and the double centraliser theorem

Consider the tensor product space V®™. As discussed in section 2.1, there is an action
of S, on this space defined by permuting the factors. Since V carries the fundamental of
U(N), V&™ also carries the tensor product representation of U(N). This representation
is the diagonal action of a U(N) matrix on each of the tensor factors. Since the action
is the same on each factor, this will commute with any permutation of the factors.
Therefore V®" is a representation of the direct product group S, x U(N).

We give two statements of Schur-Weyl duality, the first of these is the nature of the

decomposition of V®" into representations of S,, x U(N)

ver= @@ virevy®™ (2.4.3)
(BN

We already mentioned that the S,, and U(NN) actions on V& commute. More formally,
we can say that S, and U(N) both embed into the endomorphism algebra End (V®"),
and that these two sub-algebras commute with each other. The second statement of
Schur-Weyl duality is that these two sub-algebras are each other’s centraliser within
End (V®"). In simpler terms, if any A € End (V®") commutes with the U(N) action,
it must be (the endomorphism corresponding to) an element of C(S),). Similarly if A

commutes with Sy, it must be part of the algebra generated by the U(N) action.
The relation between these two forms of Schur-Weyl duality can be understood
by noting the form of the sum in (2.4.3). For a generic representation W of a direct

product group G X H, we can decompose W as

W= P Vi, ® Ve, @V, (2.4.4)
Rg,Ry

where Rg and Ry run over the irreducible representations of G and H respectively,
while VQG%%H is the multiplicity space whose dimension is just the multiplicity of the
representation Rg ® Ry. If this multiplicity space has a dimension greater than 1, then

VIQQ%H while keeping Vg, Vg, fixed.

there are endomorphisms of W that act only on
These endomorphisms must commute with both G and H, so they are not each other’s
centraliser within End (W).

There is a second condition before we can conclude G and H are each other’s
centraliser. For a given representation Rg of G that appears in the decomposition
(2.4.4), there must be a unique representation Ry of H that pairs with Rq. If this
were not the case, we could construct an endomorphism of W that commuted with

both G and H by swapping the Rg components of Rg ® Ry, and Rg ® Ry .
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In the case of Schur-Weyl duality, the multiplicity spaces are one-dimensional, and
each R on the left corresponds to the same R on the right, and therefore the two algebras
are each others’ full centraliser. This is related to the double centraliser theorem, an
important result of abstract algebra.

In appendices D.3 and F.4, we see examples where we do have multiplicity spaces,
and have to consider the sub-algebras of End (W) that commute with both G and H.

2.5 Finite N constraints

The Schur-Weyl decomposition (2.4.3) hides an important detail that we emphasise
here. In section 2.1 we explained how the relevant algebra for constructing multi-traces
in the half-BPS sector is the centre of C(S,). In equation (2.3.13) we defined Pg, the
elements of this algebra that we contract with X to give the Schur operators of [22].
However (2.4.3) states that when considering permutations acting on V®", only those
representations R with I(R) < N contribute. Those Pr with [(R) > N are represented
by the zero operator on V®" and thus the Schur operators with {(R) > N must vanish.

From an algebra point of view, this restricts us further to a subalgebra of the centre,
spanned by those Pr with [(R) < N. Since R F n, this restriction only has any effect
when n > N, and we will use the term ‘large N’ to refer to any N > n, and ‘finite N’
for any N < n.

There are similar cut-offs in the full C(S,,) algebra. This can be expressed using
the Fourier basis for C(.S,), defined by

=Y D)o (2.5.1)

O'GSTL

where R - n and ¢, j are basis indices for the representation R. Then at finite IV, the
Fourier basis is restricted to those R with [(R) < N, and those R with [(R) > N are
removed from the algebra.

In more abstract terms, the Fourier basis is an explicit identification of the decom-

position of C(S,) as a representation of S,

C(Sn) =P V' @ Vo (2.5.2)
RFn

where V]éff ¥ indicates that this space is in the R representation of S, under left mul-
tiplication of C(S,,), and in the trivial representation under right multiplication, while
for Vgght it is vice versa. At finite N, we consider the smaller algebra obtained by
removing the terms with {(R) > N from the sum (2.5.2).

The quarter-BPS algebra A, ,, also gets reduced when we consider N < n. This

is described in more detail in section 3.6.1 when we define the restricted Schur basis.
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Schur-Weyl duality is a very nice way of introducing this finite N cut-off, but there
are other ways of understanding this result. We can see the vanishing of these operators
as a consequence of relations between multi-traces of degree > N when considering
N x N matrices. These relations come, for example, from the Cayley-Hamilton theorem.
We could also understand it as a result of the expansion of the projectors Pg in terms
of Young symmetrisers, which involve anti-symmetrisation down the columns of R.
Therefore if [(R) > N, we have an anti-symmetrisation on more than N indices, which
must vanish for an object whose indices can only take N values.

The final interpretation of this result is in terms of the AdS/CFT correspondence.
Half-BPS operators are dual to giant gravitons, D3-branes that wrap an S3 in the S°
factor of AdSs x S® [17]. The length of a column in a Young diagram corresponds to
the angular momentum of the D3, which in turn determines the radius of the S3. This
radius is bounded from above by the radius of the S°, and this restriction limits the
column to length at most N. From this viewpoint, the restriction [(R) < N is ensuring
that the S2 doesn’t expand beyond the S° which contains it. This is called the stringy
exclusion principle [18], and finding the dual interpretation in terms of Young diagrams

was one of the major results of [22].

2.5.1 SEP-compatible bases

Throughout this thesis, we will define and use various different bases of degree n op-
erators; these will (nearly) all come with a partition label p - n. They will also have
other labels that will depend on which space we are considering at the time; for now
we bundle these together in wu.

For N < n, only a subset of the operators O, , will be needed to form a basis,
specifically those with I(p) < N. This means the operators with I(p) > N can be

written as a linear combination of the shortened basis

Opu= Y &% 0y (2.5.3)
l(qq)’gN
We call the basis SEP-compatible (where SEP stands for Stringy Exclusion Principle)
if ¢iw = 0 for all p,u,q,v, i.e. if the operators with I(p) > N vanish identically.
Intuitively, these bases are aligned along the direction of the finite N quotient, and in
this sense better capture the finite N behaviour of the space.
In general, multi-trace bases such as (2.3.12) are not SEP-compatible, while Young

diagram bases such as (2.3.14) are.
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2.6 Correlators

Starting with the generic n-matrix system, the correlator of two U(N) matrix fields is
<(Zs)§“ | (Zr)§> = 6,50{ 0} (2.6.1)

For two operators O,, O, of the form given in (2.1.3), this translates to
(0:|05) = 5(Qor™ 1) (2.6.2)

where Q is defined in (2.3.17).

The properties of © encode the finite N cut-off into the inner product (2.6.2). In
(2.3.22) we explained how 2 vanishes in a representation R if I[(R) > N. Therefore
(2.6.2) is identically zero for any operators that disappear after imposing the finite N
restrictions, or equivalently for any permutations in the [(R) > N sector of C(S,,).

Using the correspondence between O, and o, (2.6.2) defines the physical inner
product on C(S,). This means for large N we can work completely in C(S,), and
largely forget about the matrices Zy,...,7Z,. At finite N, if we wish to work purely
with permutation algebras, we must be careful to incorporate the restrictions imposed
by removing elements of the Fourier basis (2.5.1) with [(R) > N.

There is also the standard inner product on C(S,,), given by

<T|U>Sn = 5(07—71) = 0gr (263)

Reversing the correspondence between O, and o, this defines the 5, inner product on
U(N) gauge-invariant operators. We denote this with a .S,, subscript on the brackets.
After incorporating the finite N cut-off, the S,, inner product is

(0:105)s, = dn(oT) (2.6.4)
where )
on(e) == Y drxr(o) (2.6.5)
s RFn
I(R)XN

From the resolution of the identity (2.3.6), this reduces to §(o) if N > n.
From the definition (2.3.17), the large N expansion of  is

oo fivo(L) )

Therefore in the leading N limit, the physical inner product differs from the .S, inner
product only by a factor of N™. This large N limit is called the planar limit, and we
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therefore often use the S,, inner product to give planar results. However the S, inner
product is not the same as the planar inner product, since in the planar inner product
we would also take the leading N limit in any operator coeflicients, while in the S, inner
product we retain these N-dependencies. When all coefficients are N-independent, we
can use the S, inner product to derive planar results.

From the definition (2.6.4), we see that O, and O, are orthogonal if o # 7 and
N > n. So in the large N limit, different multi-traces are orthogonal.

For all correlators here, and in subsequent chapters, we have suppressed the position
dependence as this is purely determined by conformal invariance. For a thorough

description of why we can do this see [22].

2.6.1 Half-BPS sector

Consider the 1-matrix system, as described in section 2.1, in which all the Z; become
X and the appropriate algebra is the centre of C(S,). When calculating correlators
we must now consider Wick contractions between the copies of X. This leads to the

physical and S,, inner products

(0:|0,) = Z 4] (Qaaa_lT_l) (2.6.7)
a€Sy,

(0:105)g, = > o (aoa™'r71) (2.6.8)
a€Sn

We can see that in the S,, inner product, O, and O, are orthogonal if ¢ and 7 are in
different conjugacy classes and N > n. So as in the general n-matrix case, different
multi-traces are orthogonal to each other in the planar limit. Using the notation T,

defined in (2.1.11) the normalisation is
<TP|TQ>Sn = Zp0pq (2.6.9)

where we have used the result from section 2.3.1 that the size of the centraliser for a
permutation of cycle type p is z,. Therefore z, has a physical interpretation in the
planar limit as the norm of multi-trace operators.

The physical inner product mixes traces of different types and does not admit a
nice formula on multi-traces.

For the Schur operators defined in (2.3.14), we can use orthogonality of characters,

(2.3.5), and the representation of €2 in a representation R, (2.3.20), to show

(Or|Os) = 0rsfr (2.6.10)
Srs U(R)< N
(OR|Os) s, = ORS ZER; ; v (2.6.11)
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So the Schur basis is exactly orthogonal to all orders in N using both inner products.
Three and higher point function can be calculated using product rules involving
Littlewood-Richardson coefficients. For a description of these rules, and associated

subtleties relating to the position dependence of the scalar field involved, see [22].

2.6.2 Quarter-BPS sector

In the 2-matrix system we set n; of the Z; to be X and no of the Z; to be Y. This
leads to the physical and .S, inner products

(0:10,)= Y 5 (Qaca'r1) (2.6.12)
Q€ Spy XSn,

(0:105)g, = > on(aca™'77) (2.6.13)
€ Spy XSn,

We study these further in section 3.5.3 for quarter-BPS multi-trace operators and sec-
tion 3.6 for the restricted Schur and covariant bases, generalisations of the half-BPS

Schur basis to the quarter-BPS sector.

2.7 Symmetric functions

The half-BPS sector is composed of multi-traces of a single complex matrix X. Diago-

nalising in terms of its eigenvalues, we have

z 0 0 0
0 3 0 0

x=|0 0 =z ... 0© (2.7.1)
0 0 0 ... ay

Thus any multi-trace of X can instead be written as a function of the eigenvalues
x1,Z2,...,2N. These functions must be completely symmetric in the N variables, and
are called symmetric functions. The theory of symmetric functions is well studied in
mathematics, and they have many interesting properties [64]. In this section we review
some basic concepts from this field.

Symmetric functions are defined as polynomials in the N variables x1, x3, z3,..., TN
that are invariant under all permutations of the x;. More explicitly, given a polynomial

f(z1,29,...,2N), [ is a symmetric function if

f(z1,29,.. . 2N) = f(%(l)a Lo(2))--- 733a(N)) (2.7.2)
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for all o € Sy.

We can take the infinite N limit of this definition by defining symmetric functions
as formal power series in infinitely many variables x1,x9,.... To return to the finite
N case (or to reduce a symmetric function in M > N variables to one in N variables),
we can set x4 =0,2n42=0,....

There are many different bases for the ring of symmetric functions, of which we will
look at three. In each of these bases, each basis element consists of polynomials of a
single degree, n, and the basis for the degree n subspace is labelled by the partitions of

n.

2.7.1 Monomial basis

We start with the monomial basis. Given a partition p = [A1, g, ..., A\g] of n, take the
monomial
xi‘lxé\Q . azgk (2.7.3)

and then add all distinct permutations of the lower indices to form a symmetric function.
So for example if we take p = [3,1,1] (and use N = 3 for simplicity), the associated

monomial basis element is

Mi3,11) = T1T203 + 112503 + 2120273 (2.7.4)
For p = [1P1,2P2 .. ], we can define the monomial functions more formally by
_ 1 A A Al(p)
Mp = <H pi!) > T T2 Lol(n) (2.7.5)
[ ogeSN

where N > [(p) and the normalisation in front accounts for non-trivial coefficients
introduced by redundancies in the components of p.
For future convenience, we also define the rescaled monomial function M, to be

(2.7.5) without the normalisation factor.

Ao A A
M, = Z To(1)T(2) - xal((l‘&)) (2.7.6)

oESN

The notion of SEP-compatibility defined in (2.5.1) applies equally well to symmetric
functions as it does to gauge-invariant operators. Since the definitions (2.7.5) and
(2.7.6) involve I(p) distinct xs, if N < [(p), some of these are zero, and therefore

my, = M, = 0. Hence the monomial symmetric functions are an SEP-compatible basis.
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2.7.2 Power-sum basis

The second basis we consider is the power-sum basis. This is constructed from polyno-

mials of the form
Tp =) af (2.7.7)

Note we use a T rather than the more standard P to denote the power-sum functions.
This is to emphasise the relations between these symmetric functions and the multi-
trace operators of the half-BPS sector.

For a partition p = [A1, Ag,... Ag] = [1P1,2P2 .. .], the power-sum symmetric func-
tion is

k
T, = HTM =@ (2.7.8)

7

Consider a N x N diagonal matrix X with entries z;, as in (2.7.1). Then (2.7.7) can
be written in terms of X as T}, = TrX*. For the general symmetric function (2.7.8) we
have

T, =[] (TeXx*)" (2.7.9)

(2
Identifying this with the multi-trace operators (2.1.11) provides the link between sym-
metric functions and the half-BPS sector of A' = 4 super Yang-Mills with gauge group
U(N).

2.7.3 Schur basis

Finally, we look at the Schur basis. These are labelled by partitions R - n, thought of

as representations of the symmetric group S,.

1
SR = Z ;XR(P)TP (2.7.10)
pFn p

where z, is defined in (2.3.1). Through the identification of 7,, with the multi-trace
operator (2.1.11) and noting that the size of the p conjugacy class in S, is %’ we see

sgr are exactly the Schur basis (2.3.14) for half-BPS states
Or = sr(z1,22,...,ZN) (2.7.11)

Since the Schur and monomial functions form a basis for the degree n symmetric func-
tions, there is a basis change matrix transforming between them. This is given by the

Kostka numbers Kg),

sR=Y _ Krpmy (2.7.12)
pFn
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The Kostka numbers have a combinatoric interpretation in terms of the number of
semi-standard Young tableaux of shape R and evaluation p. These Young tableaux are
defined in section 3.6.2.

As discussed in section 2.5 for the equivalent Schur operators, the Schur basis is
SEP-compatible.

The Schur functions are also connected to the characters of U(N) representations.
Consider a matrix U € U(N) and the projector Pgr € C(S,), defined in (2.3.13), acting
on the tensor product V®". Using the Schur-Weyl decomposition (2.4.3), we have

Tryen PRU = (T‘YVSnPR) ( TI'VU(N) U) =dpr X%(N) (U) (2.7.13)
R R
where X%(N) is the character of the U(N) representation R. We can also write Try en PRU

as a sum over permutations

arxy™ () = 2 S o) Tryen (01) (2.7.14)
oESh
which is dgr times the Schur operators defined in (2.3.14), with X replaced by U.
Since the Schur operators are Schur functions in the eigenvalues of X, it follows
that
x%(N)(U) = sg (u1,u2,...,uN) (2.7.15)

where w1, us, ..., un are the eigenvalues of U.
A formula for the multiplication of Schur function in terms of Littlewood-Richardson

coefficients is given in appendix D.1.
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Chapter 3

Structure, combinatorics and

correlators of the free field
quarter-BPS sector with U(N)

gauge group

All fields in the N' = 4 super Yang-Mills theory lie in the adjoint representation of the
gauge group. Therefore gauge invariant operators are constructed by taking a trace
over words on the alphabet of local operators. This forms a strong connection between
the classification of gauge invariant operators and the combinatorics of words. For more
on the links between these two topics see [61,66,67].

The counting of quarter-BPS operators in the planar free field limit was given in

terms of an infinite product generating function in [61].

o0

Fyvy(z,y) = H

k=1

Hi_yk (3.0.1)
The individual factors in the product are obtained by substituting ¥, y* into a root
function, given by (1 —x —y)~! . In [68], this root function was found to be a generic
feature in free quiver gauge theories with U(N) gauge groups, and an interpretation of
the root function in terms of word counting was given in [69]. This combinatorics of
gauge invariants is closely related to paths on graphs, which have interesting number
theoretic aspects studied recently [70].

Consider the root function .

—_— 3.0.2
T— (3.0.2)

The coefficient of z™1y"2 is (7:‘1), which counts the number of different ways of ordering
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n1 xs and ne ys, or equivalently the number of different words that can be made from
n1 &s and ng gs, in the space of words generated freely by two generators &,y. This
space of words form a monoid, where the product is given by concatenation.

Consider the implications of interpreting the whole infinite product Fyy(ny(z,y) in
terms of words. The coefficient of z?"1y?"2 in (1 — 22 — y?)~! counts the number of
words formed from ny Zs and ns gs, so now the letters have weight 2. We denote the Is
and s with weight one by Z; and g; and those with weight 2 by &2 and 3. Multiplying
the two generating functions then counts words made from all four available letters,
where the weight 1 letters commute with weight 2 letters. So the coefficient of x™y"2

in
1

(1—z—y)(1-2?-y?)

counts words constructed from n1,1 218, n21 918, n1,2 T2s and no o Pos such that nq 1 +

(3.0.3)

2n1,2 = n1 and ng 1+2n2 2 = ng, subject to an equivalence between two words when they
are obtained from each other by commuting letters of different weights (equivalently,
we could say all weight 1 letters precede all weight 2 letters).

Repeating this process, we see that Fi () (x,y) counts words constructed from s
and gs of all weights (i.e. &y, Jx with k any positive integer), where within each level,
21 and g are non-commutative, but different levels commute with each other. We will
refer to this kind of word counting problem as an integrally-graded word combinatorics.
A natural problem is to give a bijection between the words in this counting and the
traces of two matrices X, Y in the large N limit. This is given in section 3.3.

The first part of this chapter, section 3.1, is devoted to understanding the structure
of the multi-traces in the large N quarter-BPS sector, and in particular how the entire
space is related to the much smaller set of aperiodic single traces. Along the way we
derive the Hilbert series for various intermediate structures, which are quarter BPS
generating functions. In section 3.3, we show the integrally-graded words exhibit the
exact same structure, with Lyndon words playing the role of aperiodic traces. The
bijection is then constructed by matching Lyndon words with aperiodic traces. This
bijection allows transferring the concatenation product on words to a non-commutative
product on traces.

In the second half of the chapter, we use the theory of permutations developed
in chapter 2 to describe the different bases one can use for the quarter-BPS sector.
Section 3.5 starts by considering the multi-trace basis, corresponding to a conjugacy
class description of the permutation algebra. This has a labelling set consisting of
a partition for each Lyndon word, generalising of the partition label of the half-BPS
sector to the quarter-BPS.

In section 3.6, we define two different orthogonal SEP-compatible bases for the
free field quarter-BPS sector, the restricted Schur basis first defined in [44,45] and the
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covariant basis introduced in [43,46]. Both give different combinatoric expressions for
the dimension of the degree (n1,ny) subspace. We give the physical two-point functions
for both bases, expressed in terms of the Young diagram label R that they share. We
use these two bases in later chapters to study the orientifold quotient to SO(N)/Sp(N)
gauge theory and the U(N) theory at weak coupling.

This chapter consists of work originally presented in [1].

3.1 Structure of the space of U(N) multi-traces of two

matrices

We consider the global structure of the set of multi-traces, as well as how this structure
is reflected in (3.0.1). We find it is simplest to express this in the language of vector
spaces, so we consider T', the space spanned by the U(N) multi-traces.

The generating function (3.0.1) is the Hilbert series of T', where T is graded by how
many Xs and Y's appear in each multi-trace. More explicitly, we can split 7" into a

direct sum of subspaces T{ spanned by the degree (ni,ny) multi-traces. Then the

n1,n2)

Hilbert series is defined by

Hrp(z,y) = Z " y" DIim Ty, ) (3.1.1)

ni,n2

Note that we use the term ‘Hilbert Series’ only with reference to graded vector spaces.
When the vector space also has the structure of an algebra, the Hilbert series imparts
information about the relations between the generating elements of the algebra. While
some of the vector spaces we consider do have an algebra structure, indeed T{;,, ;) is
isomorphic (as a vector space) to the algebra A, , defined in section 2.1, we will not
focus on this aspect.

To describe the factorisation of multi-traces into single traces, the full space T is

divided into subspaces T} spanned by multi-traces formed from r single traces.
o0
T=PT. (3.1.2)
r=0

Tp is the one-dimensional space spanned by 1, thought of as the trivial multi-trace (the
multi-trace containing no single traces). We define Ts7 to be the space spanned by the
single traces, so that T3 is just Tigr. T5 contains multi-traces with two single traces in
their factorisation. Naively this space appears to be Ts7 ® Tsr, but in this space there
is a distinction between t; ® t5 and t3 ®t;, whereas given the two traces t; and to, there
is a unique multi-trace formed from their product. Instead we have Th = Sym? (Tst),

defined to be the symmetric part of T'sy ® Tsp. Similarly, T, = Sym” (Ts7), defined to
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be the completely symmetric part of (Ts7)®". So we have
T=C®Tsr ®Sym? (Tsr) D ...

= P sym” (Tsr)

r=0
= Sym (Tsr) (3.1.3)

where (3.1.3) is the definition of the Sym operator on vector spaces.
The Hilbert series for Tsp is the generating function for the counting of single traces,
which is related to the counting of multi-traces via the plethystic exponential. Given

the generating function

= > Any "y (3.1.4)

ni,n2

for the single traces, the generating function for the multi-traces is given by

F(z,y) = PExp(f)(z,y) = exp (Z f<ky>)

k=1

= 1 3.1.5
N H (1—xn1yn2)Amvn2 (3.1.5)

ni,n2

We can see this diverges if f(0,0) = Ago # 0. This is expected, since a single trace
operator of weight 0 would lead to an infinite number of multi-trace operators of weight
0. Since there is no single trace operator containing no matrices, this is not a problem.
For an explanation of why the plethystic exponential takes the single trace counting
to the multi-trace counting, and for more details on the interesting properties of the
plethystic exponential, see [71,72].
The plethystic exponential can be inverted using the plethystic logarithm

#(z,y) = PLog(F Z“gf log F(z*, y¥) (3.1.6)
k=1

where p is the Mobius function defined in (13.0.3). The proof that (3.1.5) and (3.1.6) are
inverses of each other comes from the identity (B.0.4). See appendix B for a detailed
description of the useful properties of the Mobius function.

The Hilbert series for T' and Tsp are related by

HT = PEXp (HTST) HTST == PLog (HT) (3.1.7)
Now consider the structure of Tgr. A single trace can be written as
Tew* (3.1.8)
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where W is an aperiodic matrix word, and k is the number of periods. The number
of periods and the aperiodic matrix word (which is only defined up to cyclic rotations)

identify the trace. Therefore we can write
_ (1)
TsT =K ®Tgp (3.1.9)

where TélT) is spanned by the aperiodic single traces and K is spanned by the positive
integers. Consider an element k ® w, where w is an aperiodic single trace of weight
(n1,n2), then the weight of k ® w is (kni, kna). So the tensor factors interact non-
trivially with respect to the weightings. Taking account of this, the Hilbert series of
Tsr and Ts(éz are related by

(o]
Hryp(w,y) = Hyo (2%,4%) (3.1.10)
k=1

where the kth term in the sum corresponds to the subspace k ® Té;) of T'sr. Defining
the coefficients of the two Hilbert series by

Hry, (z,y) Z Ay poxy"™? T<1) z,y) Z Ay ety (3.1.11)
ni,ng ni,n2
the relation (3.1.10) becomes
Anl,nz = Z a’%{% (3112)
diny,n2

where d|nj,ng means d is a divisor of both n; and no.

This relation can be inverted using the M&bius inversion formula (3.0.8) to get

Unyms = D p(d)Any na (3.1.13)

d|ni,no

In terms of the Hilbert series, this becomes

Hygw (w,9) = Y (k) Hrgy (%, ") (3.1.14)

Hyg) = M (Hry,) Hpy, = M™ (H (1>) (3.1.15)
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In full, T' can be decomposed as
T = Sym (K ® Tng)) (3.1.16)

and the corresponding decomposition in the generating function is

ST
oo
= PExp [Z H,o (", y )]
=1
o0
— [[ PEx» [HT(U] (z*, %) (3.1.17)
el ST

The expressions (3.1.16) and (3.1.17) reflect splitting the multi-traces into single traces,
and then decomposing the single traces by the number of periods. This can be done
the other way round. A multi-trace can be split into factors, where each factor consists
only of single traces with a specified number of periods. These factors can then be

decomposed into those single traces. Doing things in this order gives the structure

T = [T(l)}@)K = [Sym (T&F))}@K (3.1.18)

where by V®E | we mean
VR —Viehelhe... =@V (3.1.19)

and each Vj is a copy of V' but with all weights multiplied by k. The Hilbert series of
V@K ig then given by

Hyex (z,y) HHV z* %) (3.1.20)

Just as for the sum (3.1.10), we can invert this

ﬁ [HVM ,yk)}“(k) (3.1.21)

The proof of this inversion relies on the multiplicative version of the Mobius inversion

formula, (3.0.6). We say Hy is the multiplicative Mobius transform of Hy gx

Hy = Myt (Hyox) Hyeox = M1 (Hy) (3.1.22)
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Using this notation, the generating function version of (3.1.18) is

Hy = Mg (Hyo)) = Mo, {PEXP (HTmﬂ
ST

mult

oo o
Hr(z,y) = [[ Hyo (", 4*) = [] PExp [HTST)} (2", ") (3.1.23)
k=1 k=1

which matches (3.1.17). From that the (not immediately obvious) result
Sym (K ® V) = (Sym V)®X (3.1.24)

corresponds to the trivial result

PExp ( Hv(xk,yk)> = H PExp [Hy] (=, y") (3.1.25)
k=1 k=1

Comparing (3.1.23) with (3.0.1) we see that Hpq) is what we called the root function.
Additionally, we find the root function is not the most fundamental object. It is
the plethystic exponential of HTST)’ and we should think of this Hilbert series as the
fundamental object of interest. It would be interesting to see whether this additional
structure of the root function has an analogue in the general quiver theory explored
in [69].

The structure described above, both for the vector spaces and their associated

Hilbert series, is summarised in figure 3.1.

3.2 Generating functions at large N

In figure 3.1 and the work leading to it, we showed the relations between the vector
spaces T, Tsp, T and T élT) and their associated Hilbert series, which are the quarter
BPS generating functions. Since these relations are invertible, we can find all the

Hilbert series from just one of them. We already know from (3.0.1) that

o0

Hr(z,y) = F(x,y) = H
k=1

1
m (3-2.1)
which counts the full set of 2-matrix U(N) multi-traces. Comparing with (3.1.23), we

see that
1

—_— 3.2.2
T— (3.2.2)

HT(l) (1‘, y) =

which counts aperiodic multi-traces. This allows us to interpret the product in (3.2.1).
The factor (1 — x — y)~! counts multi-traces constructed only from aperiodic single

traces, while the factor (1 —z* —¢*)~! counts multi-traces constructed only from single
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Counts aperiodic single traces

Tensor with K

M1 PExp

Top = K ® TS

Sym

Hryp = M~ (HT<1>

ST

T = sym (T4))

) Hrpay = PExp (HTu))

Counts single traces

ST

Counts aperiodic multi-traces

PExp Mt
Sym Tensor power of K
T = Sym (K ® Té?) = Sym (TélT))@)K
Hy = PExp {M—l (HT(l))] = M;nzlt [PEXp (HTST))}

ST

Counts all multi-traces

Figure 3.1: Diagram summarising the structure of T, the space of U(N) 2-matrix

multi-traces, and its relation to TélT), the space of U(N) aperiodic single traces. Each
box contains the vector space in question, the corresponding Hilbert series and the trace
description of what these are counting. The outer labels on the arrows show the vector
space operations to travel between the boxes, while the inner labels show the equivalent

Hilbert series operations.
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traces with k periods.

Applying the plethystic logarithm to (3.2.1) and (3.2.2) gives

[e] l o °] 1
Ha (a0) = 3 1 o (H 1——y>

=1 k=1

= — i Mé”log(l—x“—y“)

k=1
p()
1—a2d— yd) lgd e

10

I
|
M8EM8 I[~]s
©-
.
= /—\

() 1og (1 gl yd> (3.2.3)
HTélT> (z,y) = Miid) log (1 —zd - yd) (3.2.4)

.
I

1

where in the first calculation we have changed variables from (k,l : 1 < k,l < o0) to
(d,1:1<1<00,l|d) by setting d = kl. We have also used the identity (B.0.15), and
¢(d) is the Euler totient function defined in (B.0.14).

These two series (3.2.3) and (3.2.4) count single traces and aperiodic single traces
respectively. Later it will be important to have explicit formulae for the coefficients
Ap\ ngs Gnymy Of these series as defined in (3.1.11). Expanding the logarithm in (3.2.3)

and reparameterising

Hryp(z,y) =

=S xny"% 3 ¢(d)<%> (3.2.5)

T(l) z,y) Z "y nl Z u(d)<€ll> (3.2.6)

ni,n2 d|n1,n2

Comparing with (3.1.11), we see that, for n # 0

Anymy = — Z (d @1) (3.2.7)

d|n1,n2
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Uy mg = % > u(d)(,%) (3.2.8)

d|ni,ne d

and Ago = app = 0. The combinatoric interpretation of these sequences is as follows:
Gn, n, is the number of aperiodic single traces that can be constructed from n; X's and
ny Y's, while A, ,, is the number of single traces (with any number of periods) that
can be constructed from ny Xs and ne Y's. Tables of values for these sequences are
given in appendix C. They are related by (3.1.12) and (3.1.13).

The generating functions (3.2.1) and (3.2.3) were first presented in [61], while the
properties of (3.2.2) and generalisations were studied in [69]. We believe this is the first
time (3.2.4) has been interpreted in the context of the quarter BPS sector of N' = 4

super Yang-Mills, though it has been found in other mathematical contexts [73].

3.3 Bijection between words and traces

The result of section 3.1 is to identify the aperiodic single traces as the fundamental
building block from which we can construct the space of all multi-traces. The equivalent
objects in the integrally-graded monoid of words are Lyndon words. We define these,
exhibit how these play the same role as aperiodic traces, and then give the bijection

between aperiodic traces and Lyndon words.

3.3.1 Lyndon words

For legibility, we will use the alphabet {0,1} in the definition of Lyndon words, and
then replace this with {Z, 5} when constructing the bijection.

A Lyndon word is an aperiodic word which is smallest (for &, g, this is first alphabet-
ically) among cyclic rotations of its letters. For example the word 000101 is aperiodic
and is smaller than its cyclic rotations 001010, 010100, 101000, 010001,100010, and is
therefore a Lyndon word. The Lyndon words of length < 5 are

0,1
01
001, 011 (3.3.1)
0001 , 0011, 0111
00001 , 00011 , 00101 , 00111 , 01011, 01111

The utility of Lyndon words comes from the Chen-Fox-Lyndon theorem [74, Theorem
5.1.5] which states that all words can be uniquely factorised as a sequence of ‘non-
increasing’ Lyndon words.

In this context, ‘non-increasing’ refers to the lexicographic ordering of words. View
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the strings as being the binary expansions of numbers between 0 and 1. Then the
ordering is just the same as the ordinary ordering of numbers between 0 and 1. If two
words would form the same number after the decimal point (for example 01, 010, 0100,
etc), then the longer word is larger. When using letters &, 7, this ordering is just the
normal alphabetical order.

We provide some factorisations as an example

100101 = 1000101
110010 =101000100
011010 =01100100

where we have used o as the binary operation in the free monoid on 0 and 1. Note that
we require the restriction to non-increasing sequences of Lyndon words, otherwise for
example we could also factorise the first word as 10001001, or even 10000o01lo00o01.

Now consider words constructed not just from &1, 1, but also Zs, 92, T3, ys,.... To
deal with this we use the set of Lyndon words for each level. The factorisation of
a multi-level word then consists of the factorisation of its level one component, the

factorisation of its level two component, etc.

3.3.2 Structure of the space of words

In section 3.1 we saw the structure of the vector space of traces. Clearly for a bijection
to exist between traces and words, the vector space of words must also have the same
structure. Define W to be the space spanned by the multi-level words. By repeating the
arguments of 3.1, the factorisation of words into (multi-level) Lyndon words corresponds
to

W = Sym (Wrw) (3.3.2)

where Wryy is the space spanned by the Lyndon words of all levels. Now a levelled
Lyndon word is identified by its level and an un-levelled Lyndon word on just &, 7. As

in section 3.1, this corresponds to
_ (1)
Wiw = K@ Wy, (3.3.3)

where the weight of a levelled Lyndon word k ® [ is given by k times the weight of the

un-levelled Lyndon word . This is exactly the structure we saw in T'.

3.3.3 Bijection between Lyndon words and aperiodic single traces

An aperiodic trace is equivalent to an aperiodic matrix word constructed from X and

Y up to cyclic rotations. In particular we can choose a representative from the orbit
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of cyclic rotations as that which is alphabetically smallest (this is equivalent to the
ordering as defined in section 3.3.1 with X replaced by 0 and Y by 1). Then the
aperiodic word, by definition, is just a Lyndon word on the two letters X and Y.
Replacing those letters with & and ¢ gives the bijection.

In order to reconstruct the full bijection, we just match the two factorisations (words
into Lyndon words and multi-traces into single traces) and the two level structures

(periodicities and word level).

3.3.4 Products across the bijection

This bijection allows the definition of an interesting and surprising non-commutative as-
sociative product on the quarter-BPS multi-traces. The integrally-graded word monoid
has a non-commutative product given by concatenation, and through the bijection we
can investigate this product on the other side. Due to the factorisation properties of
Lyndon words, this has some unusual behaviours, very different from the standard prod-
uct. We give some examples below, using only aperiodic traces as multiplying traces

with different numbers of periods will just revert to ordinary trace multiplication.

(TrXY)" o TrY = Tr(XY)"Y ( )
TrY o (TrXY)" = (TrXY)" TrY ( )
(TrXY)" o TrX = (TrXY)" TrX (3.3.6)
TrX o (TrXY)" = TrX (XY)" (3.3.7)
TrXY TrX3Y o TrX?Y = TrXY TrX3Y X2Y (3.3.8)
TrX?%Y o TrXY TrX3Y = TrX2Y XY Tr X3Y (3.3.9)

We see that within traces of a certain periodicity, this product can concatenate con-
stituent traces to form longer traces, though still of the same periodicity.
Since all words on %,y can be generated by concatenating & and ¢, all aperiodic
multi-traces of X and Y can be written as a o-product of only the traces TrX and TrY.
We do not explore this product any further here, and leave investigations of its

properties and significance as an interesting problem for the future.

3.4 SO(2,1) representation

The structure found in section 3.1 carries a representation of the algebra so(2,1). Let
e, (k=1,2,3,...) be the basis vectors for K. The generators for so(2,1) are Jy, J_, J3.
We define their action on K by

Jier = kegt
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Jgek :kek

ke, k>1
J,ek: k-1

0 k=1

The commutation relations for these are

[J3, J4] = J4+
g, J_] = —J_
[y, J ] = —2.J5

Which are indeed the commutation relations for so(2,1).

Using the standard rules of tensor product representations, Tsr = K ® TST) carries

a representation of s0(2,1), where T él‘r) is given the trivial representation.

Let V' be the carrier space for an arbitrary representation of so(2,1). We note that
Sym” (V') is an invariant subspace of V®" with the standard tensor product represen-
tation. Therefore Sym” (V') is also the carrier space for a representation of so0(2,1).
Therefore T'= Sym (Ts7) carries a representation of s0(2,1).

Consider what this action looks like on a generic single trace with aperiodic matrix

word W and k periods

Jy Tew* = gTewk+t (3.4.1)

JsTeW* = ke (3.4.2)
L ETIWRL k>

J_TeWw* = (3.4.3)
0 k=1

So this s0(2,1) produces traces with more periods from those with less, and in doing
so mixes traces of different degree. However it does not change the total number of
traces; a single trace remains a single trace, a double trace remains a double trace etc.
Each aperiodic trace forms the lowest weight state (with J3 = 1) of an irreducible
representation. More generally, any product of m aperiodic multi-traces is the lowest
weight state (with J3 = m) of an irreducible representation. There are many other
irreducible representations, for example there is a lowest weight state (with J3 = 3) of
the form TrVVlTrT/VQ2 — TerTng for W1, Wy two different aperiodic matrix words.
This action plays a complementary role to the non-commutative product defined
in section 3.3.4. There, the number of periods within a trace could not be changed,
but different traces with the same periodicity could be combined into a longer trace.
Here, we can change the number of periods, but the aperiodic matrix word inside the

trace is fixed. Combining the o product with the so0(2,1) action allows us to generate
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all multi-traces of X and Y.
It will be interesting to investigate whether this so(2, 1) can be interpreted geomet-

rically in terms of spectrum generating algebras (SGAs) in the dual space-time. SGAs
of the form SO(p, 1) were discussed in the context of AdS/CFT in [75].

3.5 Labelling of multi-traces and conjugacy classes

The conjugation action (2.1.10) splits S, into orbits, called conjugacy classes, labelled
by p F n. In section 2.3 we explained that in the half-BPS sector, these conjugacy
classes provide a basis (2.3.11) for the centre of S,,, the algebra responsible for operator
construction. This basis produced the multi-trace basis of operators. In this section
we extend that description to the quarter-BPS sector by considering the 2-matrix con-
jugation action (2.1.12).

We quickly review some facts on the half-BPS sector that were not included in

section 2.3, before moving to the more general quarter-BPS case.

3.5.1 Half-BPS sector

As explained in (2.1.11), the half-BPS traces are labelled by a partition p - n. Any

permutation o € S, of cycle type p will, when contracted with X®", produce the trace
7, =[] (Tex?)" (3.5.1)
i

Similarly, the element «,,, defined in (2.3.11) as a sum over the conjugacy class, will
produce T}, when contracted with X®". To give the size of the conjugacy class, we use
the orbit-stabiliser theorem on the action (2.1.10).

The stabiliser of a permutation o of cycle type p = [1P1,2P2 . .] is just those
elements that commute with ¢. This is composed of a semi-direct product. The first

factor comes from powers of the cycles of o, which generate a group of the form

Gy = X (Z)P (3.5.2)

i

Intuitively, these rotate the cycles of 0. The second factor comes from permuting cycles

of the same length. This has the form

Gs =X ), (3.5.3)

In the semi-direct product, the component S,, of G2 acts on (Z;)?* by permuting the
factors. This is called the wreath product of Sp, with Z; and is denoted by Sy, [Z;]. For

more on the wreath product, see section 5.1.2.
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Overall, we have the stabiliser

Stab(o) = Gy x Gy = X [Sp, % (Zi)"] = X S, [2] (3.5.4)

(2

which has size z,, defined in (2.3.1). Applying the orbit-stabiliser theorem, the size of
the conjugacy class is
n!

= (3.5.5)

“p
3.5.2 Quarter-BPS labelling

As discussed in section 3.1, a single trace is described by a Lyndon word w and the
number of periods, while a multi-trace is defined by a collection of these single traces.
Consider a generic multi-trace, and let the number of constituent single traces with

Lyndon word w and number of periods i be p,,;, then the multi-trace can be written

Tp =[] (Tew?)P (3.5.6)

w,e

where W is the matrix word equivalent of the Lyndon word w. This trace is charac-
terised by the set of numbers P = {p,,;}. A convenient way to package these numbers

is to define a partition p,, for each Lyndon word
Py = [1Pwt 2Pw2 ] (3.5.7)
Then the label for a U(N) multi-trace is

P = {pw : w a Lyndon word} = {pa, py, Day: Pu2ys Pay2, - - - } (3.5.8)

The partition p, is the partition used to label the half-BPS traces, and the remaining
partitions have the same interpretation, replacing the matrix X with a matrix word.

Consider just the p,, partition inside P. Then the corresponding multi-trace is

Ty =] (Tew) s (3.5.9)

(2

Comparing with (3.5.1), we can see X has been substituted for W. A general Tp is a

product of these for each w.

T = [[ 7% = [ (z:w?) " (3.5.10)

w,

Define l,,(w), I, (w) and {(w) be the number of s, the number of ys and the total length
of w respectively. Then clearly l[(w) = l;(w) + ly(w), and the number of X's and Y's in

52



CHAPTER 3. STRUCTURE, COMBINATORICS AND CORRELATORS OF THE
FREE FIELD QUARTER-BPS SECTOR WITH U(N) GAUGE GROUP

P T’p
pe = [1,1], by = [1,1] (TI"X) (TI“Y)
pz=[1,1], py = [2] (TI“X) (TTYQ)
pm:p]ﬁpy:[71] (Tl“ )TI‘Y)
pz=11], py=1[1], pay =[1] | (TrX) (TrXY) (TrY)
pe=1[2], py =[] (TrX?) (Tfyz)
Pay = [1,1] (TrXY)
P2y = (1], py = [1] (TrX?Y) (TrY)
Puy2 = [1], pe = [1] (TrX) (TrXY?)
Py = [2] Tr(XY)?
Py2y2 = [1] TrX2Y?

Table 3.1: The 10 different U(N) multi-traces at n1 = n2 = 2 along with their labels.
Any constituent partitions of P that are not explicitly listed are set to zero.

a multi-trace is

Zl )|pw Zl )P (3.5.11)

We summarise this with P I (n1,n2).
As an example of this labelling, table 3.1 lists the 10 different P I (2,2) and their

associated multi-traces.

3.5.3 Quarter-BPS conjugacy classes

For the 2-matrix case, rather than conjugation by S, in (2.1.10), we have conjugation
by Sp, X Sn,. We still call the orbits under this reduced conjugation action ‘conjugacy
classes’. Since permutations in a particular conjugacy class lead to the same multi-
trace, and conversely each multi-trace corresponds to a conjugacy class, the labelling
set for the conjugacy classes is exactly the same as that for the traces, the P defined
in (3.5.8).

As in section 3.5.1, the size of these conjugacy classes is found using the orbit-
stabiliser theorem. Take o to be a representative member of the conjugacy class P.
From the examples given in (2.1.4-2.1.6), and the general case given above them, we
can see how the cycles of o produce the single trace components of T’»: a number in
{1,2,...,n1} corresponds to an X while a number in {n;+1,n1+2,...,n} corresponds
toaY.

The stabiliser of o is composed of the elements of S,, x S, that commute with
o. As in the half-BPS, each cycle has a rotation subgroup attached to it. However,
conjugation by Sp, x Sy, rather than by S, means we can only rotate the numbers
1,2,...,n; amongst themselves (and similarly for n; +1,n1+2,...,n). Therefore for a
single cycle labelled by Lyndon word w and number of repetitions ¢ (remember cycles

correspond to single traces), the rotation group has size i (rather than i/(w), which is
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the length of the cycle). As in the half-BPS case, different cycles with the same labels

can be permuted, and therefore the stabiliser is given by

Stab(c) = X Sy, . [Zi] (3.5.12)

w,e

which has size

Zp = [["** (wi)' = [ [ 2pu (3.5.13)

w,i w

So by the orbit-stabiliser theorem, the size of S, x S, conjugacy classes is

nllng!
Zp

(3.5.14)

Sums over the conjugacy classes span the invariant algebra A, ,,. Let op be any

permutation in the conjugacy class labelled by P. Then a basis for A, ,, is

1
ap = —— E TopT ! (3.5.15)
N2 s xS

These are the elements of A, », that produce the corresponding multi-trace operator
Tp.
We can use (3.5.13) to evaluate the S,, inner product of 2-matrix multi-traces using
the formula (2.6.13)
(Tr|Tq)s, = Zpopa (3.5.16)

As expected, Zp plays the same role as z, in the half-BPS case, (2.6.9), and can be

interpreted physically in the planar limit as the norm of a multi-trace operator.

3.6 Orthogonal Young diagram bases and correlators

For N < n, the multi-trace bases, at half and quarter-BPS, acquire highly non-trivial
relations between the different elements, and the finite N behaviour is difficult to
determine. In the language of section 2.5.1, they are not SEP-compatible.

For half-BPS operators, the Schur basis defined in (2.3.14) is exactly orthogonal
at all order in NV and is SEP-compatible. We now introduce two generalisations of
this basis to the quarter-BPS sector, the restricted Schur basis and the covariant basis.
Both have the same key properties, they are exactly orthogonal to all orders in N and

are SEP-compatible.
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3.6.1 Restricted Schur basis
Operator basis

The restricted Schur basis was first constructed in [44, 45] following earlier work in
[29, 32]. It gives a basis for the space of degree (nj,ng) traces, and is labelled by
Rt n,R; F ni, Ry F ng, along with two Littlewood-Richardson multiplicity indices
w, v that satisfy 1 < p,v, < ggr.g,.r,. The operators are given by

dr
o v = L(0)Tr (6 X®™ @ Y®"2)  (3.6.1
R,R1,Ra.p, \/dedR2n!(n1)!(n2)! D XRR1Ra g (0)Tr (0 ® ) (3.6.1)

gESy

The first expression inside the sum is called the restricted character of o, and is defined
by
XR,Rl,R%u,V(U) =Trg [P]%,RQ;M—WDR(U)] (3-6'2)

where Trp is the trace over the representation R of S,,, and Pgl is an intertwiner

Ro;u—v
that takes the uth copy of Ry ® Ry (a representation of Sp, X S;SL inside R to the vth
copy, and is zero on everything else. For more on the Littlewood-Richardson multiplicity
indices p and v, including a systematic way of choosing a basis for the multiplicity space,
see appendix D.

At finite N < n, R is restricted to have at most N rows. Since R, Ry are such
that there is a non-zero multiplicity of Ry ® Rs inside R, the same restriction applies
to R; and R».

When n; = n and ny = 0, the restricted character reverts to just the ordinary

character xg, and (3.6.1) become exactly the Schur operators defined in (2.3.14).

Algebra basis

In the equivalent algebra picture, the restricted Schur elements give a basis for Ay, n,

dr
/BR,Rl,RQ,/L,V = 7‘ Z XR7R1:R27H7V(O-)O- (3'6'3)
G o€EeS

where we have used a different normalisation to the operators (3.6.1). The normali-
sation for operators was chosen to give nice expressions for the correlators in (3.6.8),
whereas the normalisation in (3.6.3) is chosen to give nice multiplicative properties in
Ay n given below.

This basis for A, », gives an explicit identification of the Wedderburn-Artin de-

composition of the algebra, since they have the multiplication property

5PL7R17R27M17N2/85731,52,I/1,V2 = 5RS(5R1516R2$25u2V15R7R1,R27M1,V2 (364)
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From this, we can think of the Sg g, Rr, . as block diagonal matrices with a block for
each trio (R, Ri, Ry). This block has size gr.g, r,. The matrix for Sg g, R, . is the
zero matrix in each block except the (R, Ri, R2) block, in which there is a single 1 in
the (p,v)th position.

Using this matrix picture, we can see that as a matrix algebra, A, », has the form

Aning = @ M(gRQRLRQ) (3.6.5)

RFn

Ritny

Rotno
where M(k) is the algebra of k x k matrices. Representations of M (k) are the same
as representations of GL(k) and therefore the irreducible representations of A, ,, are
labelled by the triple R, Ry, Ry and a GL(gg;r,,r,) Young diagram.

At finite N, we lose the basis elements with [(R) > N, and only those with I[(R) < N

contribute to operator construction.

For more properties of this algebra see [63].

Combinatorics

From the labelling of the restricted Schur basis, we see the dimension of the degree

(n1,n2) space can be written

N _ 2
an,nz_ Z 9R;R1,R> (3.6.6)
RFn
RiFny
Ralnao
I(R)<N

From section 3.1, these dimensions (for infinite V) are generated by

o0

1
Z N,Sinz.xnlynz = F(.CU, y) = H m (367)
ni,n2 k=1
Correlators
The two-point function of restricted Schur operators is given by
<OR,R1,R2,M1,M2’0575175271/171/2) = 5R5'5R1S15R2525N1V15M2V2fR (3'6'8)
ORSOR:S10R»S,0 1) I(R) <N
<OR,R1,R27M17#2|OS,S1,S2,V1,V2>sn = TR e (3.6.9)
0 I(R)> N

where fr was defined in (2.3.20).
Three-point and higher functions can be obtained by using the product rule for

restricted Schur operators explained in [45].
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3.6.2 Covariant basis

The covariant basis was first introduced in [43,46]. In chapter 7 we use it to investigate

quarter-BPS operators in the weakly coupled theory.

U(2) action on traces

Let X; = X and X9 = Y. Then there is an action of U(2) on the i index in Xj.
By extension this acts on all traces and operators, so we can choose our basis to be
U(2) covariant. Since U(2) turns Xs into Y's and vice versa, this basis mixes states
with different numbers of Xs and Y's while keeping the total number of matrices, n,
constant. We will say an operator has field content (ny,ne9) if it contains ny X's and nq
Ys.

The u(2) operators on traces are given by

9 ) XZ 9_ XZ 9_
. (X j+> _ <TrX88X TrXaaY> N A (3.6.10)
gy Ty % Trv2 Yiox: Yiavs

The operator X counts the number of X matrices in a trace, similarly for ). The
lowering operator J_ ‘lowers’ a trace by turning an X into a Y, and the raising operator
J+ ‘raises’ a trace by turning a Y into an X.

Acting on the matrices X; with a U(2) index

Ri X}, = 6,X; (3.6.11)
Define new operators
Jo=X+)Y TJs=X-Y (3.6.12)

Then Jy counts the total number of matrices, while [J3 counts the difference between
the number of X's and Y's. As the notation suggests, J3, J+ form an su(2) subalgebra
of u(2), while Jy spans a u(1) that commutes with the su(2). This split decomposes
u(2) into a sum of su(2) and u(1).

The operators (3.6.10) obey standard hermiticity conditions (R;)T = Rg for R-

symmetry generators
(Jo)T = T (J)1 = T3 (T =T (3.6.13)

It follows that operators with different U(2) quantum numbers must be orthogonal.
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U(2) representations

Semi-standard Young tableaux are defined to be Young tableaux in which the positive
integers in the boxes increase weakly along the rows and strictly down the columns. For
example if we take R = [2,1] and allow entries of 1,2 and 3, the possible semi-standard

tableaux are:

11\11\12\12\13\13\22\2
2 3 2 3 2 3 3 3

3] (3.6.14)

The evaluation of a semi-standard tableau r is a sequence of numbers p(r) = [p1, p2, . . ]
where

pi = (# of occurences of the number i in ) (3.6.15)

So for example the evaluations of the tableaux in (3.6.14) are respectively
2,1,0] [2,0,1] [1,2,0] [1,1,1] [1,1,1] [1,0,2] [0,2,1] [0,1,2] (3.6.16)

When the evaluation p(r) is a partition (i.e. p; > p2 > ...), these tableaux contribute
to the Kostka number Kg, seen in (2.7.12).

For a representation A + n of U(2) with [(A) < 2, the basis vectors of A are
labelled by the semi-standard Young tableaux of shape A containing only 1s and 2s.
For A = [% +7,5 —j], there are 2j + 1 possible tableaux, where j runs over the

non-negative half-integers up to 5. These possibilities are

57 k 2j—k
N A~ N
- ~ ~ ~ 3.6.17)
Lfafafaffafefa][2] 3
where 0 < k < 2j.
We can understand the representation A = [% +7,5 —j] in terms of the u(1)

spanned by Jy and the su(2) spanned by J3, J+. All states in A have weight n under

u(1), and form a spin j of su(2). The identification of basis vectors is

S gAm em
— " )

111 1‘1‘_”___:‘],7@') (3.6.18)
212 |-+2

where |j,m;) is the standard basis spanning the spin j representation of su(2) with

-7 <mj < j.
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Operator basis

Consider V5*", where V3 is the fundamental of U(2), and in particular the basis vector
a=eq @egy @+ @ eg, of V' where a; € {1,2} for each j. Then we define X, =
Xa, ® Xg, ® -+ ® X,,. Combined with a permutation o € S, we write

Ouo = Tr (0X,) (3.6.19)

)

The covariant basis is labelled by A F n, a partition with at most 2 rows; My, a semi-
standard tableau of shape A that indexes the basis vector of the A representation of
U(2); R F n, a partition with at most N rows; and 7, a multiplicity index satisfying
1<7<C(R,R,A\). C(R,R,A) is the multiplicity of A (as an S,, representation this
time) within R® R, or equivalently the multiplicity of the trivial representation within
R® R® A.

Using these labels, the covariant basis operators are

Vg r
Onatnie =" Y SETDIO)CR aty mOao (3.6.20)

ijm
U,a,Z,J,m

where C} ,, ,, are the Clebsch-Gordon coefficients for the Schur-Weyl decomposition

vt = @@ viP ey (3.6.21)
AFn
1(A)<2

and SfJRT’r}T are the Clebsch-Gordon coefficients for the 7th copy of the trivial S,
representation inside R ® R ® A.

The field content (n1,ns2) is the evaluation of the tableau My. The number of 1s in
My is nq, while the number of 2s is ng.

When A = [n] and M, is the highest weight state, the operators (3.6.20) reduce
to the standard Schur operators (2.3.14). Therefore the A = [n] sector is (part of)
an ultra-short multiplet and has the same properties as the half-BPS operators. The
multiplicity index 7 is trivial since R ® R always contains a unique copy of the trivial
representation

C(R,R,[n]) = 1 (3.6.22)

The A = [n — 1,1] sector also has special properties. In [10] it was proved that these
multiplets cannot recombine to form long non-BPS multiplets and therefore must re-
main quarter-BPS at all values of the coupling. In these cases, the multiplicity 7 in

(3.6.20) runs over the number of corners of R minus 1.

C(R,R,[n—1,1]) = (# of corners in R) — 1 (3.6.23)

59



CHAPTER 3. STRUCTURE, COMBINATORICS AND CORRELATORS OF THE
FREE FIELD QUARTER-BPS SECTOR WITH U(N) GAUGE GROUP

This is proved most simply by comparing the covariant basis with the combinatorics of
the restricted Schur basis defined in (3.6.6).

Combinatorics

In the A = [n — j, j] sector, there is a tableau M, with field content (n1,n2) if and only
if n1,ng > j. So using the labelling of the covariant basis, we can write the dimension

of the degree (n1,n2) space as

Ny = >, C(RRn—j4) (3.6.24)

RFn
j<min(ni,nz)
I(R)XN

Correlators

The physical and S,, correlators of generic U(2) covariant multi-traces O, , are

(Op,7|O4,0) = Z Sa(a)p0 (Qaoa™ I (3.6.25)
a€ Sy

<Ob,7‘0a,0>sn = Z Oa b5N aco T 1) (3.6.26)
ag Sy

These are the same as the inner products (2.6.12) and (2.6.13), only with additional
U(2) covariant labels. The d,(q) factor enforces that o € Sy, x Sy, for the appropriate
embedding of S, x Sy, into S,.

Both inner products are diagonal on the covariant basis, and similarly to the Schurs

and restricted Schurs, it is R that determines the physical norm [43].

<OA7MA,R77'|OA,,MA/,R/,T/> = 5A,A’6MA,MA/ 6R,R/5T,T’fR (3627)
6A,A'5M M /6R,R’5T,T’ Z(R) < N

(OaMy R ON My R) g = A (3.6.28)
" o I(R)> N

Higher point (extremal) correlation functions can be obtained by using a product rule.
For the covariant basis this was given, for the more general case of a quiver theory,
in [68]. For the procedure to reinsert the position dependences into higher point corre-
lation functions see [22].

In both the restricted Schur (3.6.1) and covariant, (3.6.20), bases we have a label
R b n, restricted to [(R) < N, that governs the .S,, behaviour of the operator and also
determines the norm. As might be expected, these labels coincide for the two bases,
and the other labels are just different ways of parameterising the distinct R subspaces.
In [76], the author gives an explicit basis change between the two bases for fixed field

content (ni,ns), demonstrating that R is unchanged between the two.
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Chapter 4

Structure and combinatorics of
the planar free field quarter-BPS
sector with SO(N) and Sp(N)

gauge groups

Familiar AdS/CFT connects N/ = 4 super Yang-Mills with U(N) gauge group with
string theory on AdSs x S5. In [55], the gravity dual of different gauge groups was
considered. It was found that the appropriate space to consider was AdSs x RP°, ob-
tained from the standard space by taking an orientifold quotient that identifies opposite
points of the S° while also reversing string worldsheet orientation. Depending on the
cohomology class of the field strengths associated to the 2-form fields of the original
S5-based theory, this is dual to either an orthogonal or symplectic gauge group.

On the CFT side of the duality, this quotient is rather simpler to understand, we
replace all fields in the complex adjoint of u(/N) with those in the complex adjoint of
50(N) or sp(N) respectively. In the half and quarter-BPS sectors, this entails replacing
the complex matrices X and Y with anti-symmetric matrices for the orthogonal group,

or for the symplectic group, matrices satisfying the symplectic condition

X = —axoT (4.0.1)

0 I
Q= (_I 0) (4.0.2)

and I is the % by % identity matrix (the symplectic group only exists for N even).

where

There are deep connections between the orthogonal group (for even N) and the sym-

plectic group. It was proved in [77] that dimensions of SO(N) and Sp(N) irreducible
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representations (both labelled by a Young diagram R) are related by the transformation
R— R° N = -N (4.0.3)

This relation was extended to all (non-baryonic) gauge invariant quantities in [78].
This general pattern of anti-symmetrisation (conjugation) and N — —N was observed
in [57,60], and will occur repeatedly in chapter 5. For the purposes of this chapter, it
is sufficient to note that the combinatorics of the two theories will match in the planar
limit where finite N cut-offs on Young diagrams do not enter.

When we consider the gauge group SO(N) (with N even), there is a qualitative dif-
ference in the spectrum of BPS primary operators compared to both U(N) and Sp(IV).
The latter two theories consist purely of multi-trace (mesonic) operators, while the
orthogonal group also allows Pfaffian type (baryonic) operators. From the CFT per-
spective, this stems from the invariant tensor €;,4,. i, and in [55] a D3-brane wrapped
around a RP? subspace of RP® was presented as a candidate for the gravity dual. These
Pfaffian operators were studied further in [21], where more evidence was provided that
a wrapped D3-brane is the correct interpretation. These have conformal dimension %,
so do not contribute to the planar quarter-BPS sector or generating function studied
in this chapter. They will be considered in detail in chapter 5.

This chapter focuses on the planar structure of the SO(N) and Sp(N) theories,
and in particular how the aperiodic matrix words of the U(N) theory are replaced
by ‘minimally periodic’ words for SO(N) and Sp(/N) multi-traces. This is expressed
in the equivalent combinatorics of words by defining orthogonal Lyndon words which
play the role of Lyndon words from the U(N) theory. We derive two distinct ways
of decomposing the space of 2-matrix multi-traces at large N, one in terms of the
minimally periodic words, the other in terms of the aperiodic words. The associated
generating functions are then calculated.

This chapter consists of results originally presented in [1].

4.1 Constraints on single traces, orthogonal Lyndon words

and labelling of multi-traces

We start by considering the SO(N) theory, where we replace the generic complex
matrices of the U (V) theory with anti-symmetric complex matrices. We then move on
to the symplectic case, where the new matrices satisfy the condition (4.0.1). This turns
out to result in exactly the same set of traces.

In the SO(N) half-BPS sector, TrX"™ vanishes for n odd, and hence there are no

gauge invariant operators if n is odd. If n is even, they are labelled by a partition p -
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with corresponding operator
T, = [ ] (Tex?)” (4.1.1)

(2
To look at the quarter-BPS sector, begin by considering the trace of an arbitrary matrix
word. It is specified by k, the number of periods, and an aperiodic matrix word W.

Since a trace is invariant under transposition, we have
k
Wk = Tr (W7) (4.1.2)

As X and Y are anti-symmetric, the relation (4.1.2) reduces the number of linearly
independent single traces. The transpose reverses the matrix word - we call the reversed
word W) - and introduces a factor of (—1)¥“W) where {(W) is the length of W.

k
TW* = (—1)F W1y (W(”) (4.1.3)

There are now two sets of two possibilities: either W and W) are the same (up to
cyclic rotations), or they are not, and k(W) is either even or odd.

If W % W, then (4.1.3) tells us that two distinct traces that were previously
unrelated are no longer independent. The parity of kI(WW) affects whether they are
related with a positive or negative sign, but does not change the combinatorics.

If W = W), then the combinatorics is dependent on the parity of kI(W). If k I(W)
is even, then (4.1.3) is trivial, and gives us no new information. If it is odd, then (4.1.3)
implies that the trace vanishes. So for example, TrX, TrY3, TrX?Y and Tr(X*Y)? all
vanish.

We can therefore write the linearly independent SO(N) single traces as
—~\ k
Tr (W) (4.1.4)
where W, rather than being aperiodic, is instead minimally periodic. From the cases

above, there are three different possibilities for W, that we call types 1A, 1B and 2.

Type 1A: Wis a Lyndon word of even length which is invariant under reversal (up

to cyclic rotations)

Type 1B: W is the square of a Lyndon word of odd length that is invariant under

reversal (up to cyclic rotations)

Type 2: W is the first (lexicographically) of a pair of Lyndon words that transform

into each other under reversal (up to cyclic rotations)

For type 2, there is nothing special about our choice of using the first of the pair, we

merely need to choose a representative.
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Ty
Type 1A x3y , 3:2y2 , xy3
2y, ty?, Bdyzy, 233, 22yt ayzy®, zyd

22, 42
Type 1B 22yz?y, xylry?

ghyxty, py?ady?, plyzyxiyzy, 2?y3atyd, cyxyPoyay?, zytoy?

nyny
Type 2 Pyzy?, ?yxy?
yx?y?, plyzy?, dyzy?, Pyzyzy?, ?yzy?t, 2iy?ay

Table 4.1: Lowest order examples of the three distinct types of orthogonal Lyndon
words

We define type 1A, 1B and 2 orthogonal Lyndon words in the same manner as
above, but on formal letters x, y rather than matrices X and Y. These play the same
role for SO(N) traces as the normal Lyndon words did for U(N) traces. The lowest
order examples of the three types of orthogonal Lyndon words are shown in table 4.1.

Although the orthogonal Lyndon words defined here play the same role in the
labelling of traces for SO(N) as the normal Lyndon words did for U(N), there are two
important differences. Firstly, the orthogonal words are not aperiodic; type 1B words
contain two periods, hence the ‘minimally periodic’ condition. Secondly, the orthogonal
Lyndon words do not form the factorisation units in a free monoid on two letters. This
means we cannot define a product on the SO(N) traces as we did for the U(NN) version

in section 3.3.4.

4.1.1 Labelling of multi-traces

In section 3.5.2, we saw that to label U(NN) multi-traces, we gave each Lyndon word w
a partition p,. The analogous statement is true for SO(N) with orthogonal Lyndon
words.

We define pg; to be the number of single traces with ¢ repetitions of the min-
imally periodic W that appear in a multi-trace. These combine into a partition
pp = [1P@1 2Po.2 ] for each orthogonal Lyndon word. We define P to be the set

of these partitions

P= {pw : w an orthogonal Lyndon word}

= {pz2,pxy,pyz,pxsy,pzzyz,pxys, ey D2y - } (4.1.5)

The multi-trace corresponding to P is

5 =175 =11 (ﬁﬁi)m”' (4.1.6)

@,
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P Ts
pe2 =[1], poy =[1], pp2 =[1] | (TrX?) (TxrXY) (TrY?)
Pey = [1,1,1] (TrXY)?
P33y = [1] y Py2 = [1] (TI‘X3Y) (TI‘YQ)
Pazy2 = (1], pay = [1] (TrX?Y?) (TrXY)
Pays = (1], P2 = [1] (TrXY3) (Ter)
Pay = [2,1] Tr(XY)? (TrXY)
Py = (1] TrX3Y3
Pu2yry? = [1] TrX?Y XY?
Pay = [3] Tr(XV)3

Table 4.2: The 9 different SO(N) multi-traces at n; = ny = 3 along with their labels.
Any constituent partitions of P that are not explicitly listed are set to zero.

Let l;(w), ly(w) and {(w) be the number of xs, number of ys and total length of w
respectively. Then

Zl )pa| ng = Zl )pa| (4.1.7)

We use the same notation P I (ny,ng) as for the U(N) traces in section 3.5.2. It will
always be clear whether we are referring to a SO(N) or U(N) trace.

As an example of the new notation, we give the 9 different P IF (3,3) in table 4.2.

It will also be helpful to consider traces of symmetric matrices X and Y. We use
a tilde to refer to anti-symmetric matrix objects, while a bar is used for those related
to symmetric matrices. A single trace of symmetric matrices is labelled by a Lyndon
word up to reversal, w, and the number of periods. The w can be split into two types;
either it is a Lyndon word that is invariant under reversal (type 1), or it is the first
(lexicographically) of a pair of Lyndon words that transform into each other under
reversal (type 2). This differs from the SO(N) case only in that there is no distinction
between odd and even length words of type 1. We define pg, P, W, l,(w0), l,(w), [(®)
and |- in an analogous way to the U(N) and SO(N) traces.

4.1.2 Symplectic gauge group
We now study the single trace constraints and multi-trace labelling in the Sp(N) setting.
Rather than anti-symmetric X and Y, we have matrices satisfying (4.0.1). In the half-
BPS sector, this implies
TrX" = Tr(XT)" = Tr (QXQ)" = Tr (2X)" = Tr (- X)"
= (—1)"TrX" (4.1.8)
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where we have used Q2 = —1. So, just as in the SO(N) case, the odd order 1-matrix
single traces vanish while the even ones remain unchanged, and Sp(IV) of degree n are
labelled by a partition p - 3.

Applying the same logic to the quarter-BPS case, we again find the Sp(IV) relations
between traces are the same as those for SO(N). For a trace with k periods and

aperiodic matrix word W, we have

k
T+ = (—1) W)y (W“)) (4.1.9)

As claimed, this is identical to (4.1.3). Therefore symplectic single traces are specified
by an orthogonal Lyndon word and a number of periods k, while multi-traces are
labelled by P IF (n1,ng).

4.2 Structure of the space of SO(N) multi-traces of two

matrices

In section 3.1, we investigated the structure of T', the space of U(N) gauge-invariant

functions of two matrices in the large N limit. In particular we looked at the level
structure corresponding to the number of periods in a trace, and the factorisation arising
from the decomposition of multi-traces into their single trace constituents. These two
processes were reflected in the generating functions by the inverse Mobius transform
M1 (3.1.10) and the plethystic exponential (3.1.5). This structure was deduced from
the equation (3.1.8) for a generic U (V) single trace. Since the equation (4.1.4) has the
exact same form, we must have the same structure for T, the space of SO(N) multi-
traces at large N. The only difference is to replace the aperiodic traces of U(N) with
the minimally periodic traces of SO(N). This is shown in figure 4.1.

As indicated by the name, minimally periodic traces have either one or two periods.
This leads to an alternate structure for T’ which respects the absolute number of periods,
rather than the number of repetitions of the minimally periodic units. This second
structure is summarised in figure 4.2.

Both these structures give relations between the Hilbert series for the relevant vec-
tors spaces, and therefore they can all be determined from the generating function for
T. This function is not given in the literature, although similar results are presented
in [79], in the context of SO(N) superconformal indices, and [80], for free matrix
models. We derive it in two distinct ways, firstly in section 4.3 using the structure
built up from minimally periodic words and known results about cycle polynomials
of dihedral groups. In appendix E we give an alternative method starting from the
counting formula (5.6.74) giving the size of the large N quarter-BPS sector in terms

of Littlewood-Richardson coefficients. This formula is derived independently of the
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structures given in this section, and instead comes from studying Fourier bases for the
permutation algebras relevant for operator construction.

In order to calculate the various Hilbert series for the SO(N) vector spaces of
interest, we will relate them to the U(IN) equivalents defined in section 3.1. We use

the notation T Z—) T to denote that replacing generic matrices with anti-symmetric
2

matrices sends the space T of U(N) multi-traces to the space T of SO(N) multi-traces.
Similar notation will be used for subspaces of T'.

As in chapter 3, we will consider various different vector spaces in addition to T. In
general, those relating to SO(N) traces will have a tilde on top, whereas those primarily
to do with U(N') objects will not. Some vector spaces we define will be relevant to both,
so the divide is not a sharp one. Similarly to the notation used in section 3.1, we use
superscripts in brackets to refer to a space with a specified number of periods, and

subscripts to add extra information on the type of traces being considered.

4.2.1 Structure from minimally periodic traces

Equation (41.1.3) gave new relations between traces of anti-symmetric matrices com-
pared to unrestricted matrices, and we subsequently split the Lyndon words relevant
for U(N) traces into three categories. We can encode this structure into the U(N)
vector space of aperiodic single traces Té}), defined in (3.1.9), by splitting it into three
distinct subspaces

(1) _ (1) (1) (1)
TST =T, ©® TST;inU;odd ©® TST;var (421)

ST;inv;even

The first space is spanned by those traces of even length with W = W) up to cyclic
rotations (‘inv’ stands for invariant); the second space is spanned by traces of odd length
with W = W), the third space is spanned by traces of any length with W % W) (‘var’
stands for variant). From (4.1.3), T

STeinv-even 15 UNchanged under the Zo quotient. This

is spanned by orthogonal Lyndon words of type 1A. The other two spaces, corresponding
to types 1B and 2, are more complex.

In section 4.1, we demonstrated that for reversal-invariant W of odd length, the
discriminating factor determining whether the trace vanishes or not is whether & is odd
or even respectively. If k is even, TélT);mU; odq 18 unchanged by the quotient, while if £ is

odd, it vanishes. So we have
K® oy — K, ® 7 (4.2.2)
ST;inv;odd Zo even STsinv;odd e

where Keyen is the space spanned by the even integers. This is isomorphic to K as a
vector space but not as a graded vector space, since replacing K¢yen, with K would lose
information about the weight of a given trace. However, we can recover K as a tensor

factor by doubling the weight of the space T's7,iny:0aa to make up for halving the weight
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of the Ky factor. We have
(1) _ 2)
Keven @ TST;inv;odd =K® (TST;inv;odd> (423)

Effectively this says rather than consider X (or Y, X2Y, XY, ...) as the aperiodic
word identifying the trace, instead consider X? (or Y2, (X?Y)2, (X*Y)?2, ...) as the
minimally periodic word. These are exactly the type 1B orthogonal Lyndon words.

Finally consider TST);U ur- 1t is spanned by aperiodic matrix words (up to cyclic
rotations) which change under reversal. So we can split the spanning set into orbits
(of size 2) under reversal. Define T élT)war to be the space spanned by these orbits, or
equivalently by orthogonal Lyndon words of type 2. Then

_ 7 F(1) ~(1)
STvar — TST;var ® TST;var Z—2> TST;yar (424)

In full, the Zs quotient of Tgr is

_ (1) T Fi(min) _ (1) (2) (1)
TST =K® TST Z—2> TST =K® TST;”L =K® (TST;inU;even ® TST;inv;odd ® TST;U(M’)
(4.2.5)
where the ‘min’ superscript refers to the words being minimally periodic as opposed to

aperiodic. Extrapolating to the full space of multi-traces

T=Sym (Ko T§)) — T = sym (K o 75 (4.2.6)
2
We see this has the same structure as (3.1.16), but with a base space Tg}lm) This

allows us to reproduce figure 3.1, but with the new base space, shown in figure 4.1.
Furthermore, we saw in section 3.4 that the structure (3.1.16) allowed T to carry a
representation of s0(2,1). By the same argument, T will also carry such a representa-

tion.

4.2.2 Structure from absolute periodicity

Briefly return to the description of the U(N) single trace space Tsp. Breaking down

the decomposition (3.1.9) further, we have
Tsr =Kol = (10T) o (20T 0 (30 TH) o... (4.2.7)

TST also has this structure, but there is a difference in interpretation. The subspace
k:®Té1T) of T's corresponds to the traces with k periods, whereas the subspace k®f§?m)
of TST does not, instead it contains traces with k repetitions of the minimally periodic

words. Since these words can contain two periods (if they are of type 1B), k ® fg}lm)
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T

H~(mzn)

Counts minimally periodic single traces

Tensor with K Sym
M=t PExp
TST =K® Tégfln) (mzn _ Sym mzn )
Counts single traces Counts minimally periodic multi-traces

PExp mult
Sym Tensor power of K

T = Sym (K ® fé’}””)) _ Sym mm )®K

Hy = PExp M (Hpnm )| = ML, [PEXp (Hzim)|

Counts all multi-traces

Figure 4.1: Diagram summarising the structure of T', the space of SO(N) multi-traces,
and its relation to T(mm) the space of SO(N) minimally periodic single traces.
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contains traces with k or 2k periods. We can instead decompose TST into subspaces

corresponding to the number of periods rather than the number of repetitions.
Tor=10V)® 20 V) ®(30V3)a... (4.2.8)

where k ® V}, is the vector space of single traces with & periods.

From (4.1.3) it follows that for odd length, reversal invariant aperiodic matrix words,
only the even periodicities survive the Zs projection. For all other aperiodic matrix
words, there is no distinction between even and odd periodicities. Therefore Vj, will
depend only on whether k is even or odd. From the discussions in section 4.1, we can
write down the appropriate vector spaces. They are

T(Odd) T( )

ST;inv;even

& T var (4.2.9)
T(even) Té‘ ) @ Tév]j—)\ var

T;inv
— 7 1) ~(1)
=T & TST;inv;odd ® TST var (4210)

ST;inv;even
Note that the odd and even superscripts refer to periodicities, while the odd and even
subscripts refer to the length of the aperiodic trace/matrix word. Splitting K = K44 ®

Keyen in the obvious way, we have

Tsr = (Kodd ® Tg}dd)) ® (Kmn ® fg;")) (4.2.11)

Now the combination of K,jq and K.y, keeps track of the true periodicities of the
traces.

Doing a analysis of the Hilbert series associated with these vector spaces, simi-

lar to that done in section 3.1, we arrive at the relations shown in figure 4.2. The

transformations S and ;¢ are defined by

Sifal (@ y) =D f@*v5)+ D g@*, b (4.2.12)
k odd k even
St Lf 9 (,) (H fla ) ( 11 g(w’“,yk)> (4.2.13)
k odd k even

Note that S, while being similar to M ™!, has a distinct disadvantage to it’s analogue,

namely it is not invertible. Given S[f, g, there are multiple f, g which would produce

the same S§. This means we cannot instantly find the Hilbert series for TéOdd) nd
Té?en) just from the Hilbert series for T. Instead we need to investigate the structures

(4.2.9) and (4.2.10).
In order to do this, we introduce names for the coefficients of various Hilbert series.

These are shown in table 4.3, along with a description of which set of traces these coef-
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~(odd) = (even)

TST TST

H~ odd H"' even
TéT ) TéT )

Counts single traces of a specified periodicity

Tensor with K,qq and Sym

Keyen respectively
PExp

T(odd) — Sym (Téond)> Tleven) — Gy (j—?ée;en))

Hz(oaa) = PExp (Hfg;td)) Hz(cveny = PExp (Hfs(f;en)>

Counts multi-traces of a specified periodicity

TST = Kogq ® j:é*?ziid) ® Keyen ® féej’i)en)

Smult

Hy =5 (Hpom, Hyren )

Counts all single traces

Tensor power of K, 4q

PExp and Keyen respectively

Sym

T = Sym (Kodd ® Té?id) @ Keven & Téeqz)en))

~ ®RK, ~ ®Keven
= Sym (Téf;,fid)) dd ® Sym (T é‘;jen)>

Hy. = PExp S (Hzgoan, Hygewen ) | = Smate [PExp (Hzoan ) . PExp (Heven )|

Counts all multi-traces

Figure 4.2: Diagram summarising the structure of T', the space of SO(N) multi-traces,
and its relation to Tg;fid), the space of SO(N) single traces with a specified odd number

of periods, and TéeTven), the space of SO(N) single traces with a specified even number
of periods.
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Hilbert series Vector space Counting interpretation
coefficients
by ms ié?m) minimally periodic SO(N) single traces
B, no TVST =K® fg;m) all SO(N) single traces
i (1) aperiodic, reversal invariant
ny g TST'inv .
’ U(N) single traces
var ~(1) aperiodic pairs of U(N) single traces
an17n2 TST'v(zr .
’ that reverse into each other
AZT”M Tstiimy = K ® TS(}T);Z.M all reversal invariant U () single traces
~ ~1 all pairs of U(N) single traces
A%T:nz TST;Ua’/‘ =K® Té’jz-var .
’ that reverse into each other
j 0dd) ~(odd) SO(N) single traces with a
o ST specified odd number of periods
pleven) F(even) SO(N) single traces with a
pe ST specified even number of periods

Table 4.3: Definition of various single trace counting sequences. Formally, they are
defined as the coefficients of Hilbert series for certain vector spaces. We also give the
counting interpretation.

ficients count. Tables of values are given in appendix C. Note that since the coefficients
listed all count single traces, they all vanish when n; = ngy = 0. Therefore in the later
explicit expressions for these sequences, we implicitly set the ny = ny = 0 term to be
0.
Recall that a;, », are the coefficients in the Hilbert series for T 5%2, defined in (3.2.8).
Then from definition (4.2.1), and recalling (4.2.4), we have
Anymy = af‘l”l”‘jnz + 2a%%" (4.2.14)

ni,n2

The lower case sequences count aperiodic single traces, while the upper case ones count
single traces of all periodicities. This leads to relations (3.1.12) and (3.1.13) between
the as and As (although shown only for the undecorated versions, this is also true for
both superscripts). Using these, we have

Apyny = A0 424V (4.2.15)

n1,n ni,n2
From the definitions (4.2.9) and (4.2.10), we have the relations

(even) _ _war inv
nimy = %ning + ni,n2
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=~ [anyny + a0, (4.2.16)

[any iy + (=1)"ai",,] (4.2.17)

So to find the Hilbert series for Tg;fld) and T S(Zf}en), we first need to find the generating

1nv
ni,mn2?

or equivalently the A™%  since they are related by (3.1.12)

function for the a n1,m2

and (3.1.13).
In (4.2.1) we decomposed T’ élT) into subspaces that were invariant or variant under

reversal. We now do the same to Tgp.

Tsr = TST;inv @ TST;var = (TST;inv;odd S5 TST;im};even) @ TST;var (4218)

where the odd and even parts refer to the length of the entire single trace, not (as

in (4.2.1)) the length of the aperiodic matrix word which, along with the number of
periods, defined the single trace. We have

Torims = K @ TS, Tsrwar = K @ TS 4.2.19

STsinv ® STinv STvar ® STvar ( e )

but the split into odd and even parts does not respect the K tensor product. Instead,

we have

1 1
TSTéinW@U@n - <K ® Té%;irw;even) ©® (Keven ® Téqz;inv;odd) (4'2'20)

1
Tstiinviodd = Kodd ® Té‘T);inv;odd (4.2.21)

By repeating the analysis from section 4.2.1, under the Zy quotient T's7.iny:0aq disap-
pears, 17 inv;even is unchanged, and T's7.yqr is ‘halved’ to fST;UM as seen previously for
the aperiodic version in (4.2.4). Therefore the quotient on the full set of single traces
is

Tst Z—> TST = TST;inv;even S fST;U&T‘ (4'2-22)
2

The coefficients of Hg = are By, n,, S0 using (4.2.15) we find

B A, t Afﬁl”m n even
e AP n odd
ni,n2
1 )
=5 [Anins + (=1)" A5, (4.2.23)

We previously found a formula for A, ,, (3.2.7), and in the next section we find an
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expression for By, n,, (4.3.17). Comparing these with (4.2.23) allows us to find A7

ni,n2°

Since ai",. are related to AZ", ~ via the Mobius transform, we can then use (4.2.16)

and (1.2.17) to find the Hilbert series for T é?en) and fb(f;id).

4.2.3 Symplectic gauge group

In section 4.1.2 we observed that Sp(N) and SO(N) multi-traces were labelled by
the same set, P Ik (n1,n2), and consisted of the same matrix words. At large N, all
distinct matrix words produce linearly independent gauge-invariant trace operators,
and therefore the spaces of traces have the same structure.

From another point of view, the key relation on traces of SO(N) matrix words is
(4.1.3). From this equation, the entire structure of the space, exhibited in figures 4.1
and 4.2, was derived. The Sp(IV) relation, given in (4.1.9) is identical, hence we can
follow the exact same process to get the same results.

Therefore, at large NV, the structures of the Sp(IN) quarter-BPS sector is given in
1.1 in terms of orthogonal Lyndon words, the ‘minimally periodic’ matrix words of the
theory, or 4.2 in terms of the true periodicity of aperiodic matrix words. All associated

generating functions are given below in 4.3.

4.3 Generating functions at large N

Figures 4.1 and 4.2 give the structure of the large N space of multi-traces T, the various
sub-spaces that contribute, and the relations between the corresponding Hilbert series
(generating functions).

As explained in section 3.2, any of the Hilbert series in figure 4.1 determines all
others, and from the argument at the end of the previous section, we know finding
the By, n, (or equivalently HfST) will give all the series in figure 4.2. It is therefore
sufficient to find just the series HTST'

This section gives a direct approach to finding HTST that gives insight into its
structure. In appendix I£ we present an independent argument that derives Hz from
the combinatorics of the restricted Schur basis defined in section 5.6.3. This generating
function is of interest to mathematicians [81], and we believe that our explicit evaluation
of it is a new mathematical result.

To find By, n,, consider the matrix words contained inside the traces. These words
are constructed from ny Xs and ng Y's with n; + ng = n. In the U(NN) gauge theory,
they are equivalent up to cyclic rotations only, but in the SO(N) gauge theory, we also
have to consider the effect of transposition. As seen in (4.1.3), this reverses the word
and also multiplies by a factor of (—1)". The cyclic rotations and the reversal act as

D,, on the matrix word.
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To deal with the factor of (—1)", instead of considering D,, acting on the set of
words, we consider D,, acting on the vector space spanned by the words. Let V5 be the
vector space spanned by two vectors, ex and ey. A basis for V2®" is labelled by the set
of words of length n constructed from X and Y. Define an operator ) on V5 by

Qex = xex Qey = yey (4.3.1)

Then the 2™y eigenspace of Q%" is spanned by words constructed from n; Xs and
ng Y's.
Let o be the generator of rotations in D,, and 7 the reflection/transposition. These

act on the basis vectors for V2®" as

o [62'1 Xe,®...Q ein] =€, Qe RV...0¢, e (4.3.2)
Tlen ®ep®...0¢e,]=(—1)"€, ®...Qe;, ey (4.3.3)

where i; € {X,Y}. These commute with the action of @®". This action of the dihedral
group on the space of matrix words was considered in [80].
To get the vector space spanned by traces of anti-symmetric matrices, we project

down to those states which are invariant under the action of D,, using

1 3 1 Z” :
pEDy, i=1

After projecting the 2192 eigenspace of Q®", the dimension of the reduced eigenspace

is By, n,- Therefore

Tr (Pp,Q%")= Y 2" y"Bu,m, (4.3.5)

ni1+ne2=n

Forgetting the factor of (—1)" in (4.3.3), then 0,7 act as permutations on V;*". We
can therefore use the techniques of section 2.1 to express (4.3.5) in terms of traces of
Q. Since Tr Q' = z' 4 ¢/, this is

n

1 i i i
> MY Bu = 5 |2 (@ u) @ )0 @ 1y
ni+n2=n =1

n

(DY@ ) @ ) @ 4y
i=1
(4.3.6)

where ¢;(p) is the number of cycles of length j in the permutation p.

We can evaluate (4.3.6) using the cycle index polynomial of D,,. For a subgroup H
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of the symmetric group Sy, the cycle index polynomial of H is defined to be

ZM(ty, 1, ... ‘ Z tcl(P)tC2(P)tC3(ﬂ) N

‘ peEH

=> 7z Ht’” (4.3.7)

pkn

where Zf is the number of elements of H with cycle type p normalised by |H].
The cycle polynomials of the dihedral group is well known

M1
1t1t2 2 n odd

Z0n (bt ) = %Zaﬁ(d)ti + (4.3.8)

djn 1t2 (t2 +1t3) neven (and > 2)

where ¢(d) is the Euler totient function defined in (B.0.14). The first part of the poly-
nomials is just half the cycle index polynomial of the cyclic group Z,,. This corresponds

to the rotations o’ in D,,. The second part correspond to the reflections or. Therefore
(4.3.6) is

Z l'mymBm,m — Z ¢ LU -+ y %

ni+na=n d|n

1 2 o\n=1
—5(x+y)(z* +y°) 2 n odd
+ 1/,.2 2\ 22 2 2 2 (4.3.9)
1@ +y) 7 [(w+y)?+ (@*+y*)] neven

To find By, ,, explicitly we binomially expand the above. The first half of the expression
was already expanded in (3.2.5), and is (half) the order n generating function for the

Ani nys 50 we focus on the second half. For n odd, we have

[un

n—

n—1 2 n—1
(x+y) (£U2 +y2) 7 Z ( 2 ) ($2r+1yn721‘71 +x2ryn72r) (4310)
r=0 "
and for n even
n—2 9
n—2 2 n—2
(x2+xy+y2) (x2+y2) 2 < 72,, ) ($2r+2yn—2r—2+$2r+1yn—2r—l+x27‘yn—27‘)
r=0

(4.3.11)

Consider the coefficient of ™42 if both ny and ny are even. Two of the three terms in

(4.3.11) can contribute. Provided ni,ns > 2, we get contributions from r = %, 5 — 1.
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This leads to the coefficient

n__q n__q ny o4 ng
<2n )+<731_>:<2:12> (4.3.12)
2 2 2

Checking the cases where n; = 0 or ng = 0, we get 1 as a coefficient, which agrees with
(4.3.12).

Performing similar analyses for the other possible parity combinations leads to the

coefficients
ni _|_ n2—1
<2 n > ny even, ny odd (4.3.13)
2
ni—1 + ng
< 2n171 ’ > n1 odd, ng even (4.3.14)
2
n=1 , na—1
( L > ny odd, nz odd (4.3.15)
2

All four cases can be summarised by the coefficient
n1 ng
ol

Taking account of the signs and factors of a half in (4.3.9), we have

LU (1% 1)
BTLL”Z = §An1’n2 —+ 5 ( 2 2

dni,n2

where we have used the expression for A, ,, from (3.2.7).
Comparing (4.2.23) with (4.3.17), we find

i <V§1J + L”ﬂ) (4.3.18)

ni,n2

which have generating function

(I+2)(1+y) | _2*+ay+y’+aty

4.3.1
1— a2 —qy? 1— 22 —qy? (4.3.19)

HTST;in'u (x7 y) =
where the —1 comes from setting AB’}O’” =0.

To find the full generating function for By, »,, we sum (4.3.9) from n = 1 to oo.

For the first half of this expression, this was already done in (3.2.3) (the generating
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function for A, ,,), and similarly for the second half in (4.3.19). Therefore

1 = é(d P tray+yt—x—y
Fsow (@) = Hy, (2.9) = 3 [— > A tog(1 - at -y ¢ TEEL
d=1

(4.3.20)

We can now take the plethystic exponential, given in (3.1.5), to get the multi-trace

generating function

w2k 4 ghyk 4 y2k gk yk]
exp

00
Fsom)(z,y) = Hy(z,y) = H m 2% (1 — 22k — y2F)

- (4.3.21)
where to evaluate the infinite products/sums we have used a change of variables similar
to those in (3.2.4) and (3.2.5) as well as the identity (B.0.14).

Using the relations given in figure 4.1, we can find Hz i,y and Hféﬂ;m). Taking the
Mobius transform (see (3.1.14)) of (4.3.20) gives

22 4 piyd 20 pd yd]

1 & 1 i d
Hféf;in) (z,y) = ) Z#(d) {—dlog(l - —y")+ 1 — 2d — yy2d

d=1
(4.3.22)
where we have used the identity (13.0.16). Expanding to find the coefficients gives
1 1/n w12+ 22
bnhnz = 5 Z /“”(d> |:7”L <7—fll> =+ (*1)d < 2d LMJ 2d >:| (4323)
d|n17n2 d 2d
Taking the plethystic exponential of (4.3.22), we get
1 x%—i—xkyk—i-y%—x —y"
Hmin (2, y) = H > duld
T (min) — 2%k _ o2k
Vi-z—y Pt 1—2 !
(4.3.24)

where we have used the identity (B.0.4). This is the root function, equivalent to (3.0.2)
from the U(N) theory.

The numbers appearing in the exponential here, ¢ = Ed\ i dp(d), form an inter-
esting mathematical sequence. It is sequence A023900 in the OEIS [82], and has the
alternative expression

=[] @-p (4.3.25)

plk
p prime

This completes the description of the Hilbert series in 4.1.
To find the Hilbert series for the vector spaces shown in figure 4.2, we apply the
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Mobius transform to (4.3.19) to find

22d +xdyd +y2d +$d +yd

4.3.26
1 — g2d — y2d ( )

H. (2,y) =M (Hrg,,,) (@,y) = _ pu(d)
d=1

Then using the Hilbert series equivalents of the formulae (4.2.16) and (4.2.17), we have

1
HT(odd) (z,y) = 5 [H o (z,y) + HT(1) (—x, —y)] (4.3.27)
ST ST;inv
1 & 1 J d
=5 > nld) |- log(l —a! —y)
d=1

1 — g2d — y2d

(4.3.28)
1
HféeTvem (z,y) = B [HTé}[) (x,y)+ HTélT);mU (x,y) (4.3.29)
1 — 1 d d 224 4 gy 424 4 gd gl
-3 2@ - Hoe(1 - oty ¢ I

(4.3.30)

Note the similarities between these series, which count single traces with odd and even
numbers of periods, and the minimally periodic version (4.3.22). The only difference
between the three series is in the sign of the last two terms.
From these three Hilbert series we can derive explicit expressions for the coefficients
Z;”m, bgﬁ% and b&i”i’;) These are given in appendix C.

Taking the plethystic exponential of (4.3.28) and (4.3.30) gives

3 dild) 2 +afyh 4y + (1)(* + b

1
Hoaay (T, y) = N kl_[lexp 2 ok T
(4.3.31)
22k | ko 4 2k
+ ahyk 2k 4 ok 4 yk
e (@) = s H exp s S du(d)| (4.3.32)

where we have used the identity (B.0.4). This gives us all the Hilbert series featured
in figure 4.2.
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4.3.1 Half-BPS sector

The generating function for the half-BPS sector was given in [57]. By setting y = 0 in

(4.3.21), we obtain the same results

X 1
Fsomv(@,0) = ][ (1= 27)Bo

n=1

Setting no = 0 in (4.3.17) and using (B.0.14) we get

1 1 n even
Bno=5(1+(-1)") =
2 0 7 odd
Plugging this into (4.3.33)
S |
FSO(N)(maO) = H 1_ . 2n
n=1

which matches the result found in [57].
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Chapter 5

Algebraic structure of the free
field SO(N) and Sp(N) gauge

theories

In this chapter we study the permutation construction of SO(N) and Sp(N) operators
at finite N. The major difference compared to the U(N) theory is that we work
with permutations in Sg, rather than S,,. This understanding was first used in [56]
in order to construct a Young diagram basis for the half-BPS sector of the SO(N)
theory, shortly followed by the generalisation to Sp(N) in [57]. This basis was used
to calculate correlators to all orders in N, and is directly analogous to the original
U(N) Schur operators of [22]. These results included a Young diagram basis for half-
BPS baryonic operators constructed from ¢;, . 4, , though correlators for these operators
were not found. An extension to the free field quarter-BPS sector was found in [59,60],
giving a restricted Schur basis similar to the U(N) version introduced in [44,45].

We expand upon this picture, introducing a gauge group independent way of look-
ing at the permutation construction of operators, valid for SO(N), Sp(N) and U(N).
For each sector there is a permutation state space A that, when contracted with the
appropriate invariant tensors, produces the gauge-invariant operators. A has two asso-
ciated auxiliary algebras, A” and A% that act on the left and right respectively. Each
of A, A" and A% are defined in terms of an action o — o(a) for o € G where G is
permutation group. This action splits C(S2,) into orbits that are called double cosets
for SO(N)/Sp(N) and conjugacy classes for U(N). In the SO(N) and Sp(NN) theories,
the double cosets can be split into two categories depending on the sign associated with
the action (). The odd double cosets do not contribute to the algebras A, A" and
A while the sums over the even double cosets form a basis. For the SO(N) mesonic
and Sp(N) operators A, this double coset basis constructs the multi-trace basis of

operators.
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By transforming to a Fourier basis of C(S3,) and studying the defining actions,
we find Fourier bases of A, A" and A" valid at finite N. These have nice multipli-
cation properties within and between the algebras, allowing an identification of the
Wedderburn-Artin decomposition of A* and A®. Under the action of AX x Af on the
state space, A forms representations which can be given explicitly.

In each theory there is a special theory dependent element Q%) of C(Sy,,). This has
nice eigenvalues on A" and A and commutes with A”. However, its most important
property is its role in correlators. For appropriately defined operators O, depending

on a permutation « € A, we find

(0510a) = 36 (Q(G)a(a)ﬁ’l) (5.0.1)

ceG

This is a theory independent correlator formula depending only on the permutation
construction of operators.

For SO(N) and Sp(N) permutation state spaces, the Fourier bases construct or-
thogonal bases of operators labelled by Young diagrams. In the half-BPS sector, these
are the Schur operators introduced in [56,57]. For SO(N) mesonic and symplectic
operators in the quarter-BPS sectors, they are the restricted Schur basis first defined
in [59,60]. For quarter-BPS operators in the SO(INV) baryonic sector, they form a new
baryonic restricted Schur basis.

In order to compare permutation algebras between the SO(NN) and Sp(N) theories,
we find that there is a slightly different relation from the link (4.0.3) between invariants.
This is

R — R° o—(-1)%0 (5.0.2)

We will generally start by deriving the results for the orthogonal group, and follow up
with remarks on the generalisation to the symplectic case. The exception is when we
deal with SO(N) baryonic objects, which have no Sp(IN) equivalent.

In the final part of this chapter we define the U(2) covariant basis for quarter-
BPS mesonic, symplectic and baryonic operators. The U(N) equivalent (3.6.20) has
been used in [51] and chapter 7 of this thesis to construct quarter-BPS weak coupling
operators.

A minority of the material in this chapter was originally presented in [1], while the

majority is unpublished.
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5.1 Technical differences from U(N)

In section 2.1 we considered V', the carrier space for the N-dimensional fundamental
representation of U(N). The matrices X; and in in the adjoint of u(N) were given
one up and one down index. This reflected the fact that V is a complex representation
of U(N) and the conjugate space V* forms a non-isomorphic representation (the anti-
fundamental). The upper index of in» lives in V', while the lower index lives in V'*.

Compare this with SO(N). V also carries the fundamental representation of SO(N).
This is a real representation, and therefore the conjugate representation is isomorphic
to V. Therefore the two indices of matrices in the adjoint of s0(n) lie in the same space.
Hence we use the index structure X% and Y%. Indeed, as X and Y are anti-symmetric,
their indices must lie in the same space.

Consequently, for SO(N) tensors, there is no difference between upper and lower
indices. For our purposes, we will (in general) use downstairs indices for SO(N) invari-
ant tensors that we use to contract the indices of X and Y, while using upstairs indices
for the operators. That being said, when it is convenient to break these conventions
we will do so. We still use a combination of downstairs and upstairs indices for objects
(such as permutations) acting on the tensor space V2.

Similar statements hold true for Sp(IV), and we use the same index structure for
these fields. The condition (4.0.1) is equivalent to saying that (2X)" is symmetric,
which is an easier condition to work with, and we therefore use QX and QY in the

construction of operators rather than the bare matrices.

5.1.1 Invariant tensors

The invariant tensors for SO(N) are d0;; and €;,4,..4,, while for Sp(N) we only have
Qj, where Q is as defined in (4.0.2). €;,4,...i is invariant in the symplectic theory, but

is related to the %—fold tensor product (recall N is even in symplectic theories) of €;;

Z Qi 1yio Yio@iow - Yig(v-1)iacn (5.1.1)

Eitio..iny — @ =

Therefore the baryonic operators in the symplectic theory are linearly dependent on

the mesonic ones, and we will not consider them.

5.1.2 The wreath product S,[S5]

Gauge invariant operators will be constructed by contracting the indices of X®"1Yy ®n2
or (QX)®™ (QY)®"2 which lie in the space V®?". It is therefore appropriate to consider
permutations in So, rather than S,. There is a particularly important subgroup of Ss,

that will play a crucial role in this construction, the wreath product group S,[Ss].
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1 3 ) 2n—1

2 4 6 2n

Figure 5.1: The set on which S,[S2] acts. A group element can permute the n pairs,
while switching or not switching each individual pair

Intuitively, S, [S2] can be thought of as the permutations of n pairs of objects. Each
pair can be individually switched, and the n pairs can be permuted among themselves,
so we have |.S,,[S2]| = 2"n!. By labelling the 2n objects as {1,2}, {3,4},...,{2n—1,2n},
we see that S,,[S2] naturally lies within Sa,. It is simple to check that it is the centraliser
of the permutation (1,2)(3,4)...(2n—1,2n). Figure 5.1 shows the set on which S,,[S2]
acts.

More formally, S,,[S2] is defined as the wreath product of S,, with Sy, or equivalently
as the semi-direct product of S,, with (S3)", where the S, acts on (S2)™ by permutation
of the factors.

Since S,,[S] is a subgroup of Sa, it acts on V2", The properties of this action are
easiest to see if we label the indices slightly differently. Consider A € V®?" with the
indices labelled as follows

AL — Airainiz iz 2. in,ine (5.1.2)

Then the S, part of S,[S2] act on the first index (j in ;) while the n copies of Sy
acts on the second index (k). Therefore if M is a symmetric (anti-symmetric) matrix,
(M ®")[ will be invariant (anti-invariant) under the action of S, [Sa].

We can define projection operators onto irreducible representations of S, [S2] just
as we did with S, representations in (2.3.13). There are two one-dimensional rep-
resentations of S,[Ss] that are important for our analysis. The trivial (symmetric)
representation takes o to 1, and the anti-symmetric (sign) representation takes o to
(—1)?, defined by considering o € S,,[S2] < Sa,. We denote these two representations
by [S] and [A] respectively. The projectors of [S] and [A] are given by

1 1 i
Pg) = o ESX%S ]U Py = S GSZ%S ](—1) o (5.1.3)
oCOn (02 o€Sn[Ss

For a description of a generic irreducible representation of S,[S2] see appendix I
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5.1.3 Invariant vectors

There are three distinct types of invariant vectors that are important in the construction
of SO(N) and Sp(N) operators. The first two are relevant for SO(N) mesonic and
Sp(N) operators, while the third is used in SO(N) baryonic operators.

The vectors |R, [S]) and |R,[A])

Firstly, consider vectors in a representation R - 2n of So, that are invariant or anti-
invariant under S,,[S2]. Each invariant vector corresponds to a copy of [S] when R is
decomposed into irreducible representations of S, [S3], and similarly the anti-invariant
vectors correspond to the copies of [A]. It is proved in [64, Chapter VIL.2] that [5]
appears in the decomposition of R if and only if R has an even number of boxes in
each row, and then it appears with multiplicity 1. By conjugation of Young diagrams,
[A] appears in the decomposition if and only if R has an even number of boxes in each
column, and then it appears with multiplicity 1. We denote the unit vectors in R that

lie in the [S] and [A] representations (when they exist) as
R, [S]) | R, [A]) (5.1.4)

More detail is provided on how |R,[S]) and |R, [A]) embed into R in appendix A.

In a representation, Pig) and P4 can be given in terms of these invariant vectors

IR, [S]) (R,[S]| if R has even row lengths
D" (Pg)) = (5.1.5)
0 otherwise

|R, [A]) (R, [A]| if R has even column lengths
D (Py) = (5.1.6)
0 otherwise

Consider an R F 2n with both even row lengths and even column lengths, so that it
admits both an invariant and anti-invariant vector of S,[S2]. Such an R has n even
and is made up of 2 x 2 blocks HH. Define % 5 to be the ‘quartered’ version of R

where each 2 x 2 block is replaced by a single box. In terms of components

R _ [Rl Ry Rk] (5.1.7)

R:[R13R17R27R2a"'aRkaRk:] — Z 27 27"'a 92
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For example

R=1[6,6,2,2] = =[3,1] = [ | (5.1.8)

Define Sffdd) to be the embedding of S,, into Sa, that acts on only the odd numbers.

) by o(0dd)

For o € S, we denote the equivalent permutation in ngOdd . In the paper [83],
the author derives the matrix element of o(°¥) in a representation R with respect to
the S,[S2] invariant vector on the left and the S, [S2] anti-invariant vector on the right.

Suppose the cycle type p - n of o0 € S, has an odd component. Then
(R, 18] D" (o1 | R, 4]) = 0 (5.1.9)
If there is no odd component in p, then o has cycle type 2p, for p - 5. In this case

2l®) [ (2n)!
~ 2np) dr

(R, [5]| D" (o) | R, [A4]) xa (p) (5.1.10)
4
Consider the behaviour of the vectors (5.1.4) under conjugation of R. If R has even
row lengths and admits a vector |R, [S]), then the conjugate representation R has even
column lengths and admits a vector | R, [A]).
Let Vi be the representation space for R. Then since R¢ =sgn®R, we have an

orthogonal map p from Vg to Vie satisfying

DF (o) = (=1)7pDR(0)p? (5.1.11)
Then for o € S,[Ss)]
D (0)p|R,[S]) = (~1)7pD"(0)| R, [S]) = (~1)7p|R,[S]) (5.1.12)
and hence
|BS, [A]) = p|R, [S]) (5.1.13)

Similarly, if R had even column lengths, we have
|RS,[S]) = p|R, [A]) (5.1.14)
So the invariant and anti-invariant vectors switch places under conjugation of Young

diagrams.
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The vectors |Ri, Ro, [S],\) and |R1, Ro, [A], \)

We will also be interested in vectors invariant or anti-invariant under S, [S2] X Sy, [S2],
for n1 + ne = n. To understand these, consider the Littlewood-Richardson decomposi-

tion of Sa, representations into Say, X S, representations

R= Q) Rie@Ra Vi (5.1.15)

RiFnq
Rolno

where Vﬁlﬁllt Ry is a Littlewood-Richardson multiplicity space of dimension gg.g, r,. For

more detail on this decomposition, how gr.r, gr, is calculated and a way of choosing a
basis for Vﬁ”ﬁ“ R, See appendix D.

We can then look at the decompositions of the R; representations of Sa,, into Sy, [S2]
representations in exactly the same manner as discussed above for R. If both Ry and Rs
have even row lengths, then R contains a corresponding gg. g, r, copies of the [S]® [S]
representation of Sy, [S2] X Sp,[S2]. We denote the unit vectors spanning these by

|R1, Ra, [S], \) (5.1.16)

where A indexes a basis element of Vg‘}éllt Ry

Similarly, if both R; and Ry have even column lengths, then R contains a corre-
sponding gr.r, R, copies of the [A] ® [A] representation of Sy, [S2] X Sy, [S2], whose unit
vectors are denoted by

|R1, Ra, [A], \) (5.1.17)

The projectors to the [S] ® [S] and [A] ® [A] representations of Sy, [S2] X Sy, [S2] are
defined by

1 1 .,
Pisiols) = gy >, @ Plaje() = 5 > (1%
€Sy [S2]% Sy [S2] €S, [S2] X Sy [S2]

(5.1.18)

In a representation R F 2n, these projectors have representatives in terms of the in-

variant vectors

9R;R{,Ry
DR (Pgjas) = Y. Z |R1, R, [S], A) (R1, Re, [S], Al (5.1.19)
RiF2ny  A=1
RobF2no
9R;R{,Ry
DR (Paje) = D Z |R1, Ra, [A], A) (R1, Ra, [A], Al (5.1.20)
R1F2n4q =
Rol2n9

where the sum runs over Ry, Ry with even row lengths for Pgg(s) and even column
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lengths for Plajg(4)-
Using the same notation as (5.1.13), the two vectors (5.1.16) and (5.1.17) transform
into each other under conjugation of Young diagrams. If R contains a copy of R1 ® Ro

where R, Ro have even row lengths, then
|RY, R5, [Al, A) = p|R1, Ry, [S], A) (5.1.21)

where the vector on the left lives in the representation R¢ of So,. Similarly, if R contains

a copy of R; ® Ry where Rj, Rs have even column lengths, then
|R1, R, [S],A) = p| Ry, Ra, [A], A) (5.1.22)

The vector |[1V]) @ |R, [S])

The final vector of interest is (anti-)invariant under the subgroup Sy x S¢[S2], where
2n = N +2q and the Sy factor acts on {1,2,..., N} while the S,[S>] factor acts of the
pairs {N +2i—1, N+2i} for 1 < i < g. This subgroup is relevant for baryonic operators
in the SO(N) theory. We are interested in vectors anti-invariant under the Sy factor
and invariant under the S,[Ss] factor. Such a vector lives in a representation [1V] ® R
of Sy x Saq where R has even row lengths. In appendix D.2.1, we characterise the R
that admit such a representation, and prove that there is always a unique R associated
to a given R, with Littlewood-Richardson coeflicient gp,;;n) z = 1. Therefore there is
a unique unit vector (up to a minus sign) with the sought-after invariance. We write
this as a tensor product in [1V] ® R

1Y) ® IR, [S]) (5.1.23)

where ‘ [1N ] > is the vector spanning the one-dimensional representation [1/V] of Sy and
|R,[S]) is the unit S,[So]-invariant vector in R as defined in (5.1.4).

If R is restricted to have I[(R) = N (note it must have I[(R) > N in order to contain
a copy of [1V]), then the relation between R and R simplifies to R = [1V] + R.

Define the projector onto the [1V] @ [S] representation of Sy x S,[Sa] by

1 g
Pamgls) = N12ig! Y, ()70 (5.1.24)
O'GSNXSq[SQ}

where for o € Sy x S;[S2], we define o to be the Sy component.
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X X X Y Y

Figure 5.2: A diagrammatic representation of the index contraction in a mesonic oper-
ator, where each line represents an index. There are n1 Xs and n2 Y's, and 8 € C(S2,).

In a representation, this projector is represented in terms of the invariant vector

D (P ) = g 1Y)y @ IR 18D ) (1] @ (R.[8]]) :ft fe :vaizpropﬁate form

(5.1.25)

5.2 Permutation state spaces and auxiliary algebras

Consider permutations o € Sy, acting on the 2n indices of the SO(NN) matrix tensor
product X®"1Y®n2_ Ag discussed beneath (5.1.2), this will be anti-invariant under
S, [S2] X Sp,[S2] permutations. For the symplectic case, (2X)®™ (QY)®" will be
invariant under S, [S2] X Sp,[S2].

Now consider the possible contractions we can use. From the discussion of invariant

tensors in section 5.1.1, there are two possibilities for the SO(N) theory
6
OV = BirinBigia - - Oianvian (5.2.1)
C§E) = 5z‘1i2...z‘N5iN+1iN+25iN+3iN+4 o Oigy_riog (5.2.2)

where the baryonic contractor C(®) is only available when N is even.

Looking at the action of permutations on these contractors, C'®) is invariant under
Sy [S2] permutations. Defining ¢ = n — % the invariances of C®) are controlled by the
group Sy X S,4[Se]. It is anti-invariant under the Sy factor of and invariant under the
Sq[S2] factor.
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..\5 m m

€

X X X Y Y

Figure 5.3: A diagrammatic representation of the index contraction in a baryonic
operator. The e vertex has N legs and there are n; Xs, ne Y's and ¢ (: n— %) és. For
convenience, this diagram shows N = 2n;, but in general this does not have to be the
case.

For the symplectic gauge group we have
Q
CY = Qi Qi - i1 (5.2.3)

which is anti-invariant under S, [S2].

For o € C(S3y,), we define orthogonal mesonic and baryonic operators by

0% = CWal (xEmy®nz)’ (5.2.4)
0% = O ol (xEmy®n2)’ (5.2.5)

and symplectic operators by
0% =\l [(x)%™ (Qy)@n2]” (5.2.6)

We refer to these as the SO(N) mesonic, baryonic and Sp(IN) contraction patterns
respectively, in contrast to the U(N) contraction pattern (2.1.3). Figures 5.2, 5.3 and
5.4 show these three types of contractions diagrammatically.

Each of (5.2.4), (5.2.5) and (5.2.0) is invariant under left and right multiplication by
different subgroups of Sa,. These lead to different sub-algebras of C(Sa,,) that control
the construction of operators in each of the three cases. We first consider the SO(N)
mesonic and symplectic case, since they involve the action of the same groups, before

moving on to the baryonic case.
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QX 95.¢ Qx QY QY

Figure 5.4: Diagrammatic representation of the contraction pattern for symplectic
mesonic operators.

5.2.1 Mesonic and symplectic sectors

For SO(N) mesonic operators, the invariances of the contraction (5.2.4) lead to A Ly

defined by invariance under

g .
An1,n2 :

a— (=) car™! o € Sp[S2] , T € Sy, [S2] X S, [S2] (5.2.7)

Q

n1.ny> defined by invariance under
k)

the equivalent for symplectic operators is A

A,?W : a— (—1)7 car! o € Sp[S2] , T € Sp,[S2] X Sn,[S2] (5.2.8)
which come from the contraction (5.2.6). Take two elements «, 8 € Ale,ng- Then using
(5.2.7) first on 8 and then on «, we have

af =a(l,2)f=—-af =0 (5.2.9)

So the multiplication in A% is trivial. We therefore do not call A9

n1,n2 s & Sub-algebra

Q

of C(S2n), instead it is a subspace, which we call a permutation state space. A} ,,

also has this property.
Despite (5.2.9), Aéu,ng and A?

multiplied by other sub-algebras of C(Ss,) that we call auxiliary algebras. Consider

do have interesting multiplication properties when

At and A, defined respectively by invariance under

Al o oar! o, T € Sp[Sa] (5.2.10)
A, a— (=1)°(=1)ocar! o, T € Sp[Sa] (5.2.11)

These two definitions are similar to the half-BPS versions of (5.2.7) and (5.2.8) but have
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the same sign behaviour on the left and right, leading to a non-trivial multiplication.
In section 5.4.1 we give a Fourier basis for A, prove that they are Abelian algebras
and give a description of the different one-dimensional irreducible representations.
The algebras Al act by left multiplication on A%?M respectively.
é é - A0 Q
‘A?T'Am,nz c ‘Anlmz An’A cA

ni,n2 — ni,n2

(5.2.12)

We could also consider other products between the auxiliary algebras and the permu-

tation state space. By similar reasoning to (5.2.9), we have

Ag AL L =AD AR =0 (5.2.13)
ATAL = AL A =0 (5.2.14)

The products AzhmAfL and A,%MA,J{ are non-zero, but are in general quite complex

and we will not study them here. Instead, we use a different pair of algebras to act on

the right of Af/l?m. These are called Afl n, and are defined respectively by invariance
under
Al o oar ! 0, T € Sp,[S2] X Sp,[S2] (5.2.15)
Aniny a (=1)°(=1)oar! 0,7 € Sp,[S2] X Sny[S2] (5.2.16)

Intuitively, AF match the left-hand actions of (5.2.7) and (5.2.8) while AX match

n1,m2

the right-hand actions. As a result, A  naturally act on the right of the permutation

ni,n2
state spaces
é - 1 Q + Q
A A g An17n2 An17n2An1,n2 g An17n2

ni,n2% mi,n2

(5.2.17)

Fourier bases for A+

., are given in section 5.4.2. These allow us to identify a matrix

description of the auxiliary algebras and describe the different irreducible representa-
tions.
The actions of A and Ai’ng on Ai/l?m commute, since one acts by left mul-

tiplication and the other on the right. This means Af/ym can be decomposed into

representations of the product algebra A,jf x AT

mns- These decompositions are given

in (5.6.63) and (5.6.64) respectively.

The description of the state spaces Afl/lgm and the respective auxiliary algebras
give our first concrete example of the anti-symmetrisation relation (5.0.2) between
the SO(N) mesonic sector and the Sp(IN) theory. The state spaces Af/ym are anti-

symmetrisations of each other, the left auxiliary algebras A are anti-symmetrisations

+

of each other, and similarly for the right auxiliary algebras A7, /..
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In the half-BPS sector, the state spaces A%(}Q reduce to A?/ Q, defined by

Al a— (=) car? o, T € S,[92] (5.2.18)
AL ar (=1)7 car™? o, T € Sp[92] (5.2.19)

+

while the right auxiliary algebras A7, . reduce to the left auxiliary algebras AE| so

for the half-BPS permutation state spaces we have the left and right actions

AfFAL C A AAL C A (5.2.20)
Ay AL C AL AR AS C A (5.2.21)

At large N, (5.2.7), (5.2.8), (5.2.10), (5.2.11), (5.2.15), (5.2.16), (5.2.18) and (5.2.19)
define A%%Q, AL, AL

ni,n2’

to consider. We denote the reduced algebras by adding ‘; N’ (for example A?;fY ny) O

Af/ @ respectively, but for N < n there are finite N cut-offs

the upper index labels, and they are defined formally in section 5.6 in terms of their
generators. Schematically, they are the intersection of the unrestricted versions with
the N-restricted sub-algebra of C(Ss,) as described in section 2.5.

In this section we have repeatedly referred to section 5.4 where we will introduce
Fourier bases for each of the auxiliary algebras, give multiplication rules for them, de-
scribe their representations and give their finite N behaviour. For the permutation
state spaces, the equivalent is done in section 5.6, where in addition we give the decom-
positions of the states spaces as representations of the auxiliary algebras and describe
the operators constructed by the state spaces.

There is another basis described in section 5.3 for each of the spaces/algebras,
obtained by summing over the orbits of the defining actions. These orbits are called
double cosets. For the state spaces these bases correspond to the multi-trace operators.

The two types of bases, Fourier and double coset, are the SO(N)/Sp(N) equivalent
of the Fourier and conjugacy class bases for the U(NNV) algebra A, ,, as described in

sections 3.5.3 and 3.6.1.

5.2.2 Baryonic sector
The definition of baryonic operators (5.2.5) is invariant under the transformation

Nompng & Q> (—1D)7 (=1)Toar™" o€ Sy x Sy[Sa], T € Sy, [Sa] X Sny[Sa]
(5.2.22)

where for o € Sy x.S;[S2], o1 is the Sn component. This defines the sub-space A:?V;m,nz
of C(S2,). However, this is not the permutation state space responsible for operator

construction. The definition (5.2.22) relies on N being finite, and therefore we need to
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restrict the group algebra C(Ssy,) to only incorporate those Young diagram components
with [(R) < N, as explained in section 2.5. The intersection of this restriction with

N

R .
Nonymy 18 called AN;mm,

and it is this space which captures the true degrees of
freedom of the system. We give a formal definition for the restricted space in terms of
its generators in (5.6.80).

At this point it is worth clarifying the terminology ‘finite NV cut-off’. For the mesonic
and symplectic sectors, this refers to the restriction of the group algebra to [(R) < N, as
this is the only effect of N from the permutation point of view. For the baryonic sector,
the terminology is potentially confusing since we require N to be finite in order for it to
exist, yet we can also consider the space Ai\’;m,nz on which we have not implemented
the ‘finite IV cut-off’. For ease of notation, we will refer to the restriction, even in the

baryonic sector, as the ‘finite N cut-off’. For similar reasons, we refer to A as a

§V;n1,n2
permutation state space, even though it does not describe any physical state space of
operators.

€

;N A
Ny, and Ay have a trivial product (unless

By similar logic to (5.2.9),
2n = N). However, like the mesonic and symplectic cases, there are auxiliary algebras
acting on the left and right that have interesting multiplication properties with A

On the left we have

€
Nini,ng’

By, : ar (=1)7 (=1)"oar ! 0,7 € SN X S¢[S2] (5.2.23)

where o7 is the Sy component of o.

On the right we have A, ,, defined in (5.2.16). As with the permutation state
space, we should consider the restricted versions B;}Z and Aﬁ{{ym as there is no large N
limit for baryonic operators. These are defined in terms of their generators in section
£

5.4.

: . N —N N
Since the actions of By g and Anin, commute on A%

Nomyng? it forms a representation
b b

of Bf\}i X AE{{YM. This representation is described in (5.6.83).
The half-BPS equivalent of (5.2.22) is
A

n *

a— (=17 (=1)Toar ! o € SNy X 54[S2] , T € Sp[5] (5.2.24)

which, along with its restriction Af{,],\;, is acted on the left and right by auxiliary algebras

Bja\}]z and A, respectively.

5.3 Double cosets

In section 5.2 we defined various algebras and permutation state spaces by invariance
(or anti-invariance) under multiplication on the left and right by subgroups of Sa,.
These actions were (5.2.7), (5.2.8), (5.2.10), (5.2.11), (5.2.15), (5.2.16), (5.2.18), (5.2.19)
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Permutation algebra/state space GL Gr (=1)(m)
Half-BPS state space Afl Sp[S2] Sn[S2] (=17
Half-BPS state space A S [S2] Sn[S2] (1)

Auxiliary algebra A" Sn[So] Sn[S2] 1
Auxiliary algebra A, Sn[S2] Sp[S2] (=17 (=1)"

Quarter-BPS state space Afblm Sp[S2] Sni[S2] X Sny[S2] (=17

Quarter-BPS state space ASW Sn[So] Sny [S2] X Sn,[S2] (—1)°
Auxiliary algebra A Sny[S2] X Sny[S2] | Sny[S2] X Sn,[S2] 1
Auxiliary algebra A - Sni[S2] X Spy[S2] | Sny[S2] X Sny[S2) | (=1)7(=1)

Half-BPS state space Aj., SN X Sq[S2] Sn(S2] (=1)7 (-1

Quarter-BPS state space AR, n, SN x S¢[S2] Spy [S2] X Spy[S2] | (=1)71(—1

Baryonic auxiliary algebra By , SN X Sq[S2] SN x Sq[S2] (=1 (=1)"

Table 5.1: The permutation algebras and state spaces we consider in this chapter. Each
is defined by invariance under multiplication by G, on the left and Gr on the right, up
to a sign change of (—1)(®™ for (0,7) € GL X Gg.

(5.2.22), (5.2.23) and (5.2.24). If we ignore the minus signs in each of these, they give
an action purely on Sa, rather than the wider algebra C(Sa,). The orbits under these
unsigned actions are called double cosets. Given the subgroup Gy, on the left and Ggr

on the right, we denote the set of double cosets by
Gr\S2n/GRr (5.3.1)

When the left and right groups are the same, Gy = Gp, these doubles cosets span
algebras that are known in the mathematics literature as Hecke algebras. Further,
when the Hecke algebra is commutative, the groups G and G = GR are known as a
Gelfand pair. See [64] for more on these mathematical concepts.

When we include the minus signs in the actions, the double cosets are split into two
categories, even and odd. Denote the sign associated to the action of (o,7) € Gp x Gg
by (—1)(‘”). Depending on the action being considered, this may or may not be equal
to (—=1)?(—1)". The choice of sign is restricted by the nature of a group action: it

always satisfies
(_1)(00’,77") — (_1)(017)(_1)(0/77") (5.3.2)

The permutations groups G, and G and the associated sign (—1)(®7) for the different
algebras are given in table 5.1.
Let m be a representative member of a double coset. We define this to be an odd

double coset if there exists a (o,7) € G, x Gr such that

(_1)(077)0-71'7'71 = —7T (533)
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If there is no such (o,7), the double coset is even. Note it does not matter which
representative = we chose; if we take 7’ = an~! to be an alternative representative
then ¢/ = aca™! and 7/ = 7471, so (5.3.3) is true either for all 7 in the double coset
or none.

The distinction between even and odd double cosets is important when we consider
summing over the action of Gy x Ggr. Consider m € Sy,. By summing over the action

on m, we obtain an element of the invariant algebra/space

o = Z (-1 grr! (5.3.4)

oelGy,
TEGR

If 7 is in an odd double coset, then there is some (o, 75) € G, X Gg with (—1)m™) =
—1land 0,7 ! = 7. The element (0, 7) generates a subgroup { (o, 7,)* : 1 <k < m}
of G, xGR, where m is the smallest integer such that o = 7" = 1. The sign associated

to a member of this subgroup is
k
(_1)(0'71'77—7r)k — |:(_1)(0'7T7T7\')i| — (—]_)k (535)

Therefore
(—1)omm) ghpr—k = (_1)kg (5.3.6)

Since the sign associated to (o, 7)™ = (1,1) is 1, m must be even. Now take right

coset representatives (3,7) of Gr x Gg over this subgroup. Then

o = X0 (3 b

(B) k=1
— _N\Bmpg(Mm__m -1
> (-1 B(zﬂ 2ﬂ>7
(B)
=0 (5.3.7)

So the odd double cosets are those that vanish when summed over the (signed) group
action.

The map m — a; in (5.3.4) projects an arbitrary element of C(Ss,) into the invariant
algebra/space, and therefore elements of the form «, constitute a spanning set. Any
two elements 7, 7’ of the same double coset have the same «; (up to a potential minus
sign), and therefore if we choose 7 to run over set of double coset representatives, a
generate the invariant algebra/space. (5.3.7) demonstrates that odd double cosets do
not contribute, and therefore we restrict to w that are representatives of an even double
coset. These «a; form a basis for the invariant algebras/spaces.

The existence of odd double cosets depend on the sign (—1)(>7) in the particular
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action. In the defining action of A} and Af .,

double cosets are even. Similarly, if (o, 7) are such that owr = 7, then clearly o and
7 have the same sign and (—1)?(—1)" = 1. Therefore A, and A, , also do not have

ni,n2
odd double cosets.

The other algebras/state spaces in table 5.1 all have odd double cosets that do
not contribute. For Af/ 2 and Af/l?m, setting o = 7 = (1,2) implies the double coset

containing the identity is odd. For A% and A% set c =7 =(N+1,N +2), and

ni,n2’

the sign is (—1)(@7) = 1, so clearly all

again the double coset containing the identity is odd. Finally, the defining action for
Bn q has an odd double coset containing 7 = (1, N 4+ 1,2, N + 2) since

(L2)r(N+1,N+2) == (5.3.8)

For the actions defining the permutation state spaces f/l{)nz, f/ Q, As

1y and AL,
different elements in the same double coset produce the same operators when inserted
in the appropriate contractions: (5.2.4), (5.2.5) or (5.2.6). The defining property (5.3.3)
of odd double cosets means operators produced by odd double cosets are identically
zero. Therefore the even double cosets are responsible for operator construction.

In the remainder of this section we give a more explicit understanding of the double

cosets associated with the (unsigned) actions

o oar ! o, T € Sp[S2] (5.3.9)
o oar ! 0 € Sn[Sa] , T € Sn,[Sa] X Sny[Sa] (5.3.10)

The first of these is associated to the left auxiliary algebras AX, as well as the half-BPS
state spaces .Af/ ? The second is associated to the quarter-BPS state spaces Az/f,z@.
As previously discussed, the actions (5.2.10) and (5.2.11) defining A do not have
odd double cosets, so do not split the double cosets of (5.3.9). In principle the split
into even and odd could be different for the different actions (5.2.18) and (5.2.19)

L' — 7 it follows that o and 7 have the same

corresponding to .Afl/ 2 However, if o7~
sign, so splitting the double cosets by the sign (—1)7 is the same as splitting them by
(—1)7. Therefore there is only a single consistent way of splitting (5.3.9) into even and
odd double cosets, and from now on we use this definition for even and odd, independent
of the sign of the particular action being considered.

We have a similar situation for the defining actions (5.2.7) and (5.2.8) for .Af/l{lm
splitting the double cosets of (5.3.10), and therefore there is no ambiguity in the defi-
nition of even and odd double cosets.

For each of (5.3.9) and (5.3.10) we will give a labelling set for the double cosets,
provide descriptions of representative members, write down the size of a given double

coset and identify which of these are even and odd. We then use sums over even double
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cosets to construct bases. For the permutation state spaces A%?ng and Ai/ Q, these

bases are responsible for the construction of multi-traces, and the labelling sets of the

even double cosets are the same as those for the multi-traces.
+

ni,n2

For the auxiliary algebras A and BIEV’ q and the baryonic state spaces A

Nina o
and Af,,, not covered by (5.3.9) and (5.3.10), explicit descriptions of the double cosets
are more involved and we do not give them here. In the interests of completeness, the

double coset bases are

Al Qg = Z onr ! (5.3.11)
O',TESnl [SQ]XS»/LQ [SQ]
A ar = > (—1)7(=1)Tgnr (5.3.12)
O’,TESnl [SQ]XSnQ [SQ]
N ar= > ()7 (=D"orr! (5.3.13)
O',TGSNXSq[SQ]
Ninins O = Z (-)7orrt (5.3.14)
oSN X Sq[S2]
TESnl [SQ]XSn2 [SQ}
in - ar= Y  (-)%orr! (5.3.15)
O‘ESN XSq[SQ]
TGSn[Sg]

where in each case m runs over the representatives of the even double cosets, and for

o € Sy X 54[82], o1 is the Sy component.

5.3.1 Action of S,[5;] x S,[S2]: the half-BPS sector

Above (5.3.9), we explained that any two permutations in the same (even) double coset
produce the same operator up to a possible minus sign. For mesonic operators at large
N, the converse is true: if two permutations produce the same operator (up to a sign),
they belong to the same double coset. Therefore the labels for multi-traces considered
in section 4.1 are the same as the labels for even double cosets. In the half-BPS sector,
this means the labels for even double cosets are partitions ¢ I 3.

Consider the action (5.3.9). This is the algebra invariance produced if we replaced
the anti-symmetric matrix X in the (half-bps) construction of operators (5.2.4) with
a symmetric matrix. Since multi-traces of this matrix would be labelled by partitions
p F n, the double cosets under (5.3.9) are also labelled by p. From the previous
paragraph, the odd double cosets would be those p which have an odd component
while the even double cosets have p = 2¢, where the partition 2¢g is defined to have
components that are double the components of q.

To give representatives for the double cosets, consider a permutation o € S, of

cycle type p. Embed S, into Sa,, by acting only on the odd numbers {1,3,...,2n — 1},
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and let 0(°@) ¢ S5, be the embedding of o. Then o(®¥ is a representative member
of the double coset labelled by p. As expected, the operator (5.2.4) constructed from
o(©dd) ig the standard trace operator of type p

1
Oftuay = €17 () (x5’

= 5i1j1 6i2j2 o0 J <J(0dd)>hj”2]2'"z"]" Xkl xkalo - xknln
e k1l1kalo...knln

5 o 1192...0n  $J1 £J2 In vkil1 vkalo knln
= 0iyjy "'61njnak1k2...kn5l1 (512 ...5lnX X"2 X

_ _i112...0n k111 vkaio kni

— tizin ki xhaiz | xhuin

— XFkikoq) xkako@) — xFnko(n)

=[] (Tex?%)™ (5.3.16)

where we have evaluated the last line by noting that this is a U(N) type contraction as
considered in (2.1.11) with the generic U(N) matrix replace with the anti-symmetric
SO(N) matrix.

The calculation (5.3.16) (excluding the last line), is shown diagrammatically in 5.5,
which makes the structure of the argument clearer. Intuitively, placing o(° in the
SO(N) contraction formula (5.2.4) reduces it to the U () contraction formula (2.1.11).

In (5.3.16), we have not used any symmetry or anti-symmetry properties of X, so
the result applies for both. Taking X to be anti-symmetric, we deduce that if p has an
odd component, the trace vanishes, and therefore we conclude again that it is these p
which label the odd double cosets and p = 2¢q label the even double cosets.

The same calculation can be performed for the symplectic contraction (5.2.6)

I
Ogl — Céﬁ) (O(odd))J [(QX)(Xm]J

= Qi Qi - i (U(odd))zumh...wn (QX)k'lll (QX)WQ N (QX)knln
kilikala...knly

= Qi 5y Qg - - - Qinjnalilli,fé‘fgnéflléljf Lo x)Bh QxR Qx)ket

= Qi (QX) Qi (X)L Q5 (QX)E g2t

— ol (07X (@2) (o)

= (=)ol Xk xRk Xk

= (=1)"X" et X)X e

— H (Trx®)™ (5.3.17)
A

This is shown more intuitively, excluding the last line, via a diagram in figure 5.6. The
fact (5.3.17) matches (5.3.16) serves as another demonstration that the SO(N) and

Sp(N) traces have the same form, as argued in section 4.1.2.
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N0 -0 .
O fedd) || —
o | Colq

Figure 5.5: A diagrammatic version of (5.3.16). The dotted lines represent the fact
that o(°?® fixes all even numbers. The first row keeps the index positions in X constant,
while the second breaks our index conventions and uses the index structure X ij = XY
to illustrate that using o°¥ € S,,, has changed the SO(N) type contraction into the
U(N) type contraction (cf. figures 5.2 and 2.1)
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15

ol = (-

4&

Figure 5.6: A diagrammatic version of (5.3.17). The dotted lines represent the fact
that o(°?) fixes all even numbers. By following the index lines on the left, we see that
o9 is contracted with n copies of the matrix QXQ%. Using the condition (4.0.1),
this is just —X7T. We have pulled out the factors of —1 and the transpose means the X
indices switch roles (compare with figure 5.5). In the second row, we convert this result
into a U(N) type contraction by breaking our index conventions and setting Xij = X",
The role switch of the X indices on the first line means ¢ is inverted on the second line.
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Take a 0 € S, of cycle type p and consider the stabiliser of o(°%) under (5.3.9).
For each cycle of length 4, it consists of a rotation group and a reflection element that
together generate a copy of D;, the dihedral group of order 2i. Similarly to the U(N)
case in section 3.5.1, there is also a S, factor that acts on the p; cycles of length .
For a more detailed description of how these properties appear in the stabiliser of o,

see [1]. In total the stabiliser group is
Stab(o) = X (5,,1 » (Dy)P ) >< S, [Dy] (5.3.18)

which has size

TP (i) = 22 (5.3.19)

%

Applying the orbit-stabiliser theorem, the size of a double coset is

|Sn[52] X Sn[SQH N 22”(n!)2

= 5.3.20
|stabiliser| Z2p ( )
In terms of ¢ - &, the size of an even double coset is
22n ! 2
ﬂ (5.3.21)
Z4q

where 4q is the partition of 2n with components quadruple those of q. For a formal
mathematical proof of the fact that partitions label double cosets, as well as a derivation
of their size, see [64, Chapter VIIL.2].

The double coset bases for A+ and A%/ are

Af ap = Z TO'I(,Odd)T('il (5.3.22)
7,mESR[S2]
A ap= Y. ()7 (-1)Trol (5.3.23)
T,mESH[S2]
1 odd) —
A % = o S ()Trogtrt (5.3.24)
T,mESH[S2]
1 odd) —
AL ag = 2 ()2 (n1)? Z (=17 TO'éq P (5.3.25)
T,mESH[S2]

where o, € 5, is a permutation of cycle type p - n. The sign of a, will in general
depend on the choice of oy, but this ambiguity is not an issue for our purposes, and

we do not resolve it here.
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5.3.2 Action of S,[S;] X (Sp,[S2] X Sp,[S2]): the quarter-BPS sector

This section closely follows the half-BPS discussion above, and much of the logic is
repeated.

In the quarter-BPS sector, double cosets are defined to be orbits in Sy, under the
action (5.3.10) where this is the unsigned version of (5.2.7) and (5.2.8). This is the
invariance we would have obtained had we taken X and Y to be symmetric matrices in
the construction of operators (5.2.4), and so the double cosets correspond to the traces
of symmetric matrices, and are therefore labelled by P as defined at the end of section
4.1.1.

Take o € S,,. Then by the same logic as in (5.3.16), we have

C}‘S) (U(odd)>l (X®n1y®n2)J — xkiko)  xknikompyke+ikomi 1) ykekom)
g (5.3.26)
By comparing with the explanation of quarter-BPS U (V) traces offered in section 3.5.3
we see that the trace is determined by the cycles of 0. Each cycle is a single trace, where
a number in {1,2,...,n;} corresponds to an X and a number in {n; + 1,71 +2,...n}
corresponds to a Y. Arranging the X's and Y's in the order specified by the cycle gives

the trace. We say o € S,, is of ‘cycle type’ P if it produces (up to a sign) the multi-trace

Tp = [ (W) #*: (5.3.27)

Wi

where W is the matrix word corresponding to the Lyndon word (up to reversal) w as
described at the end of section 4.1.1. For any o € S, with ‘cycle type’ P, (%4 ig a
representative member of the double coset labelled by P.

The stabiliser under the action (5.3.10) for such a representative o(°®) is more
complex than the half-BPS statement (5.3.18). Each cycle, labelled by w,i has an
associated rotation group Z;. If the word w is reversal invariant (i.e. of type 1), we
also have a reflection symmetry, enhancing the rotation group to the dihedral group
D;. This is the same dihedral group that played a crucial role in determining the
generating function for single traces in section 4.3. There is also the permutation
factor Sy, ; permuting cycles with the same labels. For a more detailed description of

this stabiliser group see [1]. This leads to the stabiliser

Stab(o) = | X S D | x| X Spu. [Z4] (5.3.28)

w of type 1 w of type 2
i i
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which has size

Jp = H 29pa H Zpe (5.3.29)

w of type 1 w of type 2

Applying the orbit-stabiliser theorem, the size of the double coset is

22%nInq Ingy!

7 (5.3.30)
In the construction of the stabiliser group (5.3.28), all rotations of a cycle w,i are
given by even permutations o € S,[S2], T € Sy, [S2] X Sp,[S2] under the action (5.3.10),
while the reflection action is given by o, 7 with signs (—1)7 = (=1)7 = (=1)®), So
the double coset is odd if there are one or more cycles labelled by w with odd length
and odd i. This happens when one of the constituent partitions pg in P has an odd
component, for w of type 1 and odd length. So for even double cosets, the partitions
pg for w of type 1 and odd length are of the form pgz = 2pgs where pgg is a partition
with half the sum, and ww as is an orthogonal Lyndon word of type 1B. The remaining
partitions pg, for w of type 1 and even length (an orthogonal Lyndon word of type 1A)
or for w of type 2 (an orthogonal Lyndon word of type 2), can have any form for the
even double cosets.

Recall that P is defined as a set of partitions. Then replacing the partitions pg =
2p@w for an even double coset means this set of partitions is now of the form P as
defined in (4.1.5). So, as expected, the even double cosets have the same labels as the
quarter-BPS multi-traces.

In terms of the label ﬁ, the stabiliser of an even double coset is

Stab(a) = >< Spu';,i [Dl] X X Spw,z‘ [DQZ] X X Spm,i [ZZ]
w of type 1A w of type 1B w of type 2
i i i
(5.3.31)
with size
Zz= I 2. I 2. I = (5.3.32)
W of type 1A W of type 1B w of type 2

and the size of an even double coset is

|S,[Sa] % (Sn1[Sa] X Suy[S2])| 2% nlngIno! (5.3.33)
|stabiliser| B 273 -

Similarly to the half-BPS case, even double cosets produce the traces for both orthog-
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onal and symplectic gauge theory. Sums over the even double cosets form bases for the

invariant algebras at large N. The bases for A° and A | are

n1,n2 ni,n2
1
Fy . o 1\ (odd) —1
Avnat O g 2 DRI (533
TGSn[SQ]
7T€Sn1 [52} ><Sn2 [52}
1
Q . o _\7(odd)_—1
S D DI e
TGSn[SQ]

7T€Sn1 [52} ><Sn2 [52}

where 05 € S, is of ‘cycle type’ P.

5.3.3 Equivalent S, description

In the previous section we have described the equivalence classes in So, that lead, via
the contractions (5.2.4) and (5.2.6), to the different SO(N) and Sp(/N) multi-traces.
These classes were orbits under the group action (5.3.10), and we separated the orbits
into odd and even depending on whether they produced non-vanishing traces.

The U(N)-type contraction, (2.1.3), also produces SO(N) traces if we treat X and
Y as antisymmetric matrices (after performing the flavour projection to the 2-matrix
system), and therefore we can give an equivalent description using equivalence classes

in S,,. Explicitly, given o € S,,, we have

o~ aca! a € Sy, X Sh, (5.3.36)

and in addition, o is related to any permutation that can be obtained by inverting some
subset of the cycles of o. If the cycle decomposition of ¢ is ¢ = cyco ... ¢, then
o~ ij € {—1,1} (5.3.37)
As before, we can split these equivalence classes into those that produce non-zero traces
and those that don’t. If ¢ contains a cycle ¢ of odd length such that ¢ is conjugate
(under Sy, x Syn,) to ¢!, then the contraction vanishes. If o contains no such cycle,
then it and the corresponding equivalence class produce a non-vanishing trace.
The combination of (5.3.36) and (5.3.37) in S, is equivalent to (5.3.10) in So,.
We see that the S, version is more complicated, and explicitly depends on the cycle
structure of o. It therefore cannot be described as a group action on 5,, and would be

difficult to deal with as a result. We can clearly see the advantages of using Ss;,.
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5.4 Fourier bases for auxiliary algebras

+

n1,m2

double cosets, and more explicitly for AX . These bases were only valid at large N.

In section 5.3 we schematically gave bases for the auxiliary algebras A in terms of
In the first two parts of this section we give a different set of bases labelled by Young
diagrams. These make explicit the Wedderburn-Artin decomposition of the algebras
and allow identification of representations. They are also valid at finite N, and have
definite eigenvalues when acting on the Schur and restricted Schur bases (introduced

in section 5.6) of the appropriate permutation state spaces Ai/ Q, A%%Z, N, and

The baryonic auxiliary algebra By, defined in (5.2.23) was also considered in 5.3,
and a schematic double coset basis was given. However, baryonic operators can only
be defined at finite IV, and therefore the correct auxiliary algebra to consider is the
restricted version Bi}i. In the final part of this section we give a Young diagram basis
for By , that allows us to define B]E\}{Z in terms of its generators. After this definition, we
will in general study BJE\}Z as the algebra of interest, and only mention the unrestricted
version Bj , in passing when the distinction is important. This is in contrast to the
SO(N) mesonic and Sp(N) cases, where we focus on the large N algebras and only
mention the finite N versions in passing.

In each case, the Fourier basis can be obtained by transforming from the permuta-
tion basis of C(S2;,) to the Fourier basis (2.5.1) and considering the effect of invariance
under the defining action of each algebra. For a detailed account of a basis construction
of this type see [1], or the construction of the mesonic covariant basis in appendix F.

There are two special elements of C(Sy,) relevant for correlator calculations in
SO(N) and Sp(N) theories. € is important for the SO(N) mesonic sector and the
Sp(N) theory, while ¢ is important for the baryonic sector of the SO(N) theory. For
the left auxiliary algebras, the corresponding €2 element has eigenvalues on the Fourier
basis determined by the Young diagram labels. For a definition of the two elements
and a description of their properties, see appendix A. For their role in correlators see
section 5.5.

The equivalent Fourier bases for the permutation state spaces are given in section

5.6.

5.4.1 AF

The Fourier basis for A is labelled by R I 2n with even row lengths

Bt = (jj), S (R, [S)|D(0)|R, [S))o (5.4.1)

U€S2n
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where the vector |R,[S]) is invariant under S,[S2]. It was defined, along with the
anti-symmetric version |R, [A]), in (5.1.4).
The basis for A, is labelled by the conjugate set of Young diagrams to (5.4.1). This

is given by R F 2n with even column lengths

6y = (jjj), S° (R, [A)|D(0)| R, [Al)o (5.4.2)

0'65271

It follows from the behaviour of D®(c) and |R,[S]) under conjugation of R, given in
(5.1.11) and (5.1.14), that these two bases are directly related to each other by anti-

symmetrisation and conjugation of Young diagrams
BEC = Anti-Sym(53y) (5.4.3)

where the operator Anti-Sym sends ¢ — (—1)%¢ and extends linearly to C(S2,,).
This is another example of the anti-symmetrisation relation (5.0.2) between the
SO(N) and Sp(N) theories. A7, spanned by 8, is the left auxiliary algebra for SO(N)

mesonic operators while A, spanned by S, is the left auxiliary algebra for Sp(N)

ns
operators, so (5.4.3) shows the exchange of the two algebras under anti-symmetrisation
and R — R°.

When we restrict to N < n, the basis elements 57 with I(R) > N will annihilate
the relevant permutation state spaces Af/ BN and A%Qnév under left multiplication.
Therefore we restrict the auxiliary algebras to AEN by restricting the R labels to have
I(R) < N.

The normalisations of (5.4.1) and (5.4.2) are chosen so that they have the multipli-

cation property

BEBE = SrsBh BrBs = O0rsBR (5.4.4)

where we have evaluated the product using the orthogonality relation (2.3.4). This
proves that AF are commutative algebras. They can be realised as matrices with rows
labelled by R (subject to the appropriate row and column length conditions), where
B§ has a 1 in the Rth diagonal entry and 0 everywhere else.

The Wedderburn-Artin theorem [84] states that any (semi-simple) algebra is iso-
morphic to a matrix algebra consisting of block diagonal components. The matrix
interpretation above gives the Wedderburn-Artin decomposition of AX. As complex

algebras, they are

A= P c A, = . C (5.4.5)

R-2n with R-2n with
even row lengths even column lengths
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Where C is understood as the space of 1 x 1 matrices. Using these decompositions, we
can identify the distinct irreducible representations of AF. Since representations of C
are labelled by a complex numbers, the irreducible representations of A* are labelled
by a Young diagram R F 2n (satisfying the appropriate conditions) and a complex
number c.

When acted on by ﬁ, the ﬁﬁ form eigenvectors on both the left and the right. It
follows from the action of © on the vectors |R,[S]) and |R, [A]), given in (A.2.18) and
(A.2.19), that

Opf = B0 = 81 OBy = B = f28 (5.4.6)
where
= JI +a) (5.4.7)
be odd
columns of R
= JI W+a) (5.4.8)
be odde

+
n

fl‘;, flg =0if[(R) > N, so Q takes the unrestricted algebras A* to the finite N versions
+ N
no.

Since the ,8; generate AF it follows that Q commutes with these algebras. Note that

The projectors Pg) and P4, defined in (5.1.3), are invariant under the respective
defining actions (5.2.10) and (5.2.11) of A} and A;,, and are therefore members of the

algebras. They therefore commute with Q

QP = PgQ QP = PayQ (5.4.9)
+
5.4.2 .Anm2
The Fourier basis for Al is labelled by R F 2n; Ry,T7 F 2ny; Rs,Th F 2no

ni,n2

and two Littelwood-Richardson multiplicity indices p, v for the triples (R; R1, R2) and
(R; Ty, Ty) respectively. Ry, Ro, T} and Ty are restricted to have even row lengths, while
the only restriction on R is that gr.r, Rr,,9r;, 1» > 0. The basis is given by

dp

BE,(RLR%M),(TLTQ,V) = (2n)| Z <R17 R27 [S]Hu’ DR(U) |T17 T2a [S]a V> g (5410)
’ o€Son

where the vector |Ry, Ro, [S], 1) is defined in (5.1.16) and is invariant under Sy, [Sa] X
Sy [S2]. The anti-invariant version |Ry, R, [A], ) is defined in (5.1.17).
The basis for A, ,,

given by R F 2n; Ry, T1 F 2n1; Ro,Ts F 2ny and two Littelwood-Richardson multi-

is labelled by the conjugate set of Young diagrams to (5.4.10),
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plicity indices u,v for the triples (R; Ry, R2) and (R;T1,T>) respectively. Ry, Ra,Th
and 75 are restricted to have even columns, while the only restriction on R is that

9R;R1,R2» YR T, T» > 0.

BR (R1,Ra,1),(T1,T2,v) ‘ Z R1>R27 M’DR( )|T17T27[A]7V>U (5411)

oc€San

These two bases are related to each other by conjugation of Young diagrams. It follows
from the behaviour of Df(c) and |R1, Rz, [S], ) under R — R®, given in (5.1.11) and
(5.1.22), that

— Anti-Sym ( (5.4.12)

+ _
BRC,(RiR%#),(Tf,Tf,V) BR)(Rl :R21/"‘)7(T1 ,T2al’)>

Similarly to the discussion under (5.4.3), this shows the right auxiliary algebras of the
SO(N) mesonic and Sp(IN) sector switch places under anti-symmetrisation.

When we restrict to N < n, the basis elements 6;‘; R1 with I(R) > N

Rz,u) (T1,T27 )
will annihilate the relevant permutation state spaces Amm a Ay Nonynp Under right

multiplication. Therefore we restrict the auxiliary algebras to An;f)’u by restricting the
R labels to have [(R) < N.
The normalisations of (5.4.10) and (5.4.11) are chosen so that they have the multi-

plication property

+ + _ +
PRy Roa) (T2 T5.0)P5.(81 82, 0), (U1 U p) = ORS O(T1,T5,0)(51,82.0) PR (Ry, Raups) (07 U2 p)
(5.4.13)

PRy Roa) (1115, P5,(81 82, 0). (U1 U p) = ORS O(T1,T5,0)(51,82.0) PR (Ry, Roups) (101 U2 0)
(5.4.14)

where we have evaluated the product using the orthogonality relation (2.3.4).

The multiplication relations (5.4.13) and (5.4.14) can be realised by matrices with
rows labelled by R, R, Ra, i, subject to the appropriate conditions. The matrices are
block diagonal in the R label, and ﬂ?%:,(Rl,Rz,y),(Tl,Tg,u) has a 1 in the (R, Ra, u)th row
and (11, T»,v)th column of the Rth block, with zeroes everywhere else in that block
and in all other blocks.

Define

mp = > 9R:Ry.Ro (5.4.15)

R1F2n; with even row lengths
RaoF2no with even row lengths
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> YRRy Ry (5.4.16)

R1F2n1 with even column lengths
RoF2no with even column lengths

X |

Then the Wedderburn-Artin decomposition of the algebras A+

n1,n2
Al = @ M(m) (5.4.17)
RF2n
Ay o = @B M(mp) (5.4.18)
RF2n

where M(k) is the algebra of k x k matrices. Representations of M(k) are the same

as representations of GL(k), and therefore the irreducible representations of A . are

labelled by R (satisfying the appropriate conditions) and a GL(m%) Young diagram.

5.4.3 By, and By

The Fourier basis for B% g 18

- ' (™)@ (R 181 DM@ (1)) @ R.[S]) )o (5.4.19)

oc€Son

where R I 2n contains a copy of the Sy x Sa, representation [1V] ® R for R a Young
diagram with even length rows. In section D.2.1, a characterisation of these R is given,
along with a proof that for these R, there is a unique associated R with Littewood-
Richardson coefficient gp.v gz = 1. The unit vector |[1V]) @ |R,[S]), defined in
(5.1.23), is the unique vector in R that is anti-invariant under Sy and invariant under
Sq [S2].

Any basis element B% with I[(R) > N will annihilate the permutation state spaces
A and A% N I A he appropriate sub-algebra is Bf\}{\q[, defined by

B;}f\qf = Span {ﬁ% l(R) < N} (5.4.20)

Since R must include a copy of the [1V] representation of Sy, the restriction I[(R) < N
implies [(R) = N, and the relation between R and R becomes R = [17V] + R. Therefore
R could be used as a label for the restricted algebra.

The multiplication rule for (5.4.19) is

BrBS = drsPr (5.4.21)

where we have evaluated the product using the orthogonality relation (2.3.4). This
proves that both B;}JZ and B]EVH are commutative algebras. They can be realised as

matrices with rows labelled by R (subject to the appropriate conditions). The basis
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element 3% has a 1 in the Rth diagonal entry and 0 everywhere else.
From this matrix interpretation of 3%, the Wedderburn-Artin decomposition of Bf\}]\qf

is

By = P C= P C (5.4.22)

RF2n with odd row lengths RF2q with even row lengths
I(R)=N I(R)XN

Therefore the irreducible representations of Bf\}z are one dimensional, labelled by a
Young diagram R  2n (satisfying the appropriate conditions) and a complex number
c. We could of course replace the R label with the equivalent R - 2q.

When acted on by ¢, the 8% form eigenvectors on both the left and right. It follows
from the action of Q° on |[1V]) ® |R,[S]), given in (A.2.63) that

O°BR = BrY" = fRPR (5.4.23)
where
fa= JI W+ (5.4.24)
beodd

columns of R

This definition is identical to f§ in (5.4.7), however the constraints on the allowable
Young diagrams are different in the baryonic case, so we use the different notation to
emphasise that these are a different class of R.

Since 3% generate B]E\}z, (5.4.23) implies that Q° commutes with the entire algebra
(both the unrestricted and restricted versions). Note that f = 0 if I(R) > N, so Q°
maps the unrestricted algebra By to Bf\}z.

The projector Pyjng(g), defined in (5.1.24), is invariant under the defining action
(5.2.23) of By, and is therefore a member of the unrestricted algebra. It therefore

commutes with Q°

O Pvjgis) = Pavjers) (5.4.25)

5.5 Correlators from permutations

In (2.6.7) and (2.6.12) we saw that in the U(N) theory we can express correlators
of operators purely in terms of permutations. In this section we develop analogous
formulae for the mesonic and baryonic sectors of SO(N) theory and the Sp(IN) theory.
These formulae are given in (5.5.10), (5.5.27) and (5.5.22) respectively.

In each of these theories, including U(N), the construction of operators and the
formulae for correlators obey a common pattern.

Take a € S),. Then there is a corresponding operator O,. There are redundancies
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in the map a — O, described by the action of a permutation group G. Take 0 € G
and let the action of ¢ be denoted by o(«). Then

Oy = Oa(a) a €S, ceG (5.5.1)

In the SO(N) and Sp(N) theories, G is the direct product group G, x G considered
in section 5.3 and acts by both left and right multiplication. In the U(N) theory, G is
Spy X -+ X Sy,, and acts by conjugation as described in section 2.1.

Define the permutation state space A to be the sub-algebra of C(5),) that is invariant
under the action of G. Then the map from a € A to O, is redundancy-free.

There are two auxiliary algebras AY and AP that act naturally on A by multi-
plication on the left and right respectively. For the SO(N) and Sp(N) theories, A”
is defined to be sub-algebra of C(S,) that is invariant (up to a sign) under left and
right multiplication of Gz, while A is invariant (up to a sign) under left and right
multiplication of Gg. In the U(N) theory, AY = AR = A.

In each theory there is a special N-dependent element Q() € C(S,,) that appears

in correlator formulae. We have

(05]04) }:a( 0@g ) (5.5.2)

oceG
where for 5 € C(S2,), the inverse is defined to invert each element of Ss, and then

extend to C(Sa;,) linearly. We call this the linear inversion of 3. Explicitly

-1

Z a0 = Z ag0 ! (5.5.3)

oc€San 0€San

For the U(N) theory, the Q(%) element is 2, defined in (2.3.17). For the SO(N) mesonic
sector and Sp(N), Q) = Q seen in the previous section, while for the SO(N) baryonic
sector Q@) = Qe

Although the element Q(&) changes from theory to theory, it has similar properties

in each
e The state space A has nice eigenvalues under left multiplication by Q(&),

e The left auxiliary algebra AL commutes with (%) and has nice eigenvalue under

left or right multiplication by Q).

Q) enforces the finite N cut-off on Young diagrams in the algebras A and AL.

In the leading N limit, (%) reduces to a multiple of the identity in Sp,.

Q@) is constructed from Jucys-Murphy elements.
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For the mathematical results behind these properties see appendix A.

In each case, expressing the two-point function in the form (5.5.2) allows us to define
an alternative S,, inner product on operators by replacing Q(%) with the identity of S,
(and imposing a cut-off on Young diagrams by replacing § with dx). In the N — oo
limit, the S, inner product is the planar inner product.

In table 5.2, we give G, o(a), QF, A, A" and AF for each of the U(N), SO(N)
mesonic, SO(N) baryonic and Sp(N) theories in both the half and quarter-BPS sectors.

A summary of permutations and their role in N'=4 SYM with U(N) gauge group
was given in [62]. The structure described above generalises many of these structures
to the SO(N) and Sp(N) gauge theories. With these techniques, it should be possible
to simply extend many of the results obtained in the U(/NV) theories to SO(NN) and
Sp(N). This applies not only to N'=4 SYM, but also to general quiver theories such
as those considered in [68].

In [85] it was shown that the embedding properties of classical Lie algebras imply
that the existence of a Schur basis for the half-BPS sector is a gauge group independent

(@)

property. Since '~/ acts nicely on these Schur operators, we expect there to be some

relation. This is an interesting problem for future study.

5.5.1 Mesonic SO(N) operators

The inner product of two SO(N) matrix fields is
<X“]X”> — o167 — oi6] = <Y’d\yiﬂ' > (5.5.4)

When extended to tensor products of X and Y using Wick contractions, this becomes

n no\J n na\ 1 g n !
((xemyen)T| (xemysm)l) - Y. (=170 =2"mno! (Pajspa))
O'ESn1 [Sa2] XSnQ [S2]
(5.5.5)
where the projector P g4 was defined in (5.1.18).
We define

where C}é) is the mesonic contractor defined in (5.2.1). C°(B) is invariant under linear
inversion (see (5.5.3)) of B and also under left and right multiplication of 5 by S,,[S2].
This action of S, [S2] on both sides was given in (5.3.9) and studied in section 5.3.1. It
splits the permutations in Ss, into double cosets labelled by a partition p - n. If we

take o, to be any permutation in the p double coset, then

C%(0,) = N'®) (5.5.7)
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U(N) U(N) SO(N) mesonic SO(N) mesonic
half-BPS quarter-BPS half-BPS quarter-BPS
G Sh Sny X Sny | SnlS2] X Sp[S2] | SnlS2] % (Sn,[S2] X Sn,[S2])
o(a) oao! cao! (-1 oar! (-1 oar!
Q@) Q Q Q Q
A | centre of S, A no A .Afllm
AL | centre of S, Anins A At
ATt | centre of S, Anino A, Ao
Sp(N) half-BPS Sp(N) quarter-BPS
G | Sp[S2] x Sp[S2] | SnlS2] X (Sn,[S2] X Sn,[S2])
o(a) (-1)7car™! (-1)?car™!
Q@) Q Q
A A A s
AL Ay "
AR At A,

SO(N) baryonic quarter-BPS

SO(N) baryonic half-BPS
G (SN X Sq[SQ]) X Sn[SQ]
o(a) (1) (=1)Toar™?
QG) 0F
.A Aé;N
AL BN
ar l

(SN % 5¢[S2]) x (Sn,[S2] X Sny[S2])
(1) (=1)"oar!
QE
A s
B€;N
a;]]\fv,q

Nini,ne

Table 5.2: We give the theory dependent parts of the correlator formula (5.5.2) for each
sector of interest in the U(N), SO(N) and Sp(N) gauge theories. For U(N), we use
o € G, and when G is a direct product group G = G X G for the SO(N) and Sp(N)
theories, we use 0 € G, and 7 € Ggr. For o € Sy x S4[S2], we define o, to be the Sy
component. The different Q) are defined in appendix A while the various permutation
state spaces and algebras were introduced in section 5.2. For the non-baryonic sectors,
all algebras are defined at large N. As the baryonic sector only exists at finite N, we
give the finite N versions of the algebras defined in 5.2 here.
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this is proved in (A.2.7).
The Q) relevant for SO(N) mesonic operators is €, which is related to the sum
of (5.5.7) over Say,. Define p, to be the partition labelling the double coset of 0. Then

SN = N oo =0 Y 7| =2"nl0Pg (5.5.8)

o€San oc€E€San TESTL[SQ}

where the projector Pig) is defined in (5.1.3). This result is proved in (A.2.5). Relative
to the statement there, we have commuted Q past Pig) using (5.4.9).

Using (5.5.5), the two-point function of the operators (5.2.4) is

<(92|Og> = 2"n1!n2!06 (aP[A@[A]ﬁ_l) (5.5.9)

where 37! is the linear inversion (5.5.3) of 3.
We can re-express (5.5.9) by introducing a spurious sum over S, using the invari-

ance of C% under (linear) inversion, and substituting (5.5.8)

(0jlo3y = > (- (arp)
TGSnl[Sz]XSnQ [52]
= Z (—1)705(77) ) (W_laT_lﬂ_l)

TES2n
TESh, [S2] X Shng [S2]

- 3 (—1)75 (ﬁom—lﬁ—l) (5.5.10)
oESR[S2]
€S, [S2] X S,y [S2]
This is the SO(N) equivalent of the formula (2.6.12). In that formula, Q imposed the
finite NV cut-off in the algebra C(S,,). Here, Q plays the same role, as explained below
(A.2.19).
The leading large N behaviour of Q is

Q=N" [1 +0 <]17>} (5.5.11)

So at large N, (5.5.10) reduces to N™ times the Sy, inner product, defined by

<Og\(’)g> — S (176 (car s (5.5.12)
0ESR[S2]
TESnl [SQ] XSn2 [SQ]
Similarly to the U(N) S,, inner product (2.6.13), this can be viewed as the planar inner
product for SO(N) provided the coefficients of operators are N-independent. Using

(5.5.12) and the properties of even double cosets as explained in section 5.3, we can
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evaluate the large N inner product of two SO(N) multi-traces as defined in (4.1.1) and
(4.1.6)

<Tp‘Tq>52n = OpqZ4p (5.5.13)

<T7'5|T@>52n = 05525 (5.5.14)

This follows the general rule established for U(/N) multi-trace planar inner products in

section 3.5. The size of the stabiliser of a double coset representative receives a physical

interpretation as the planar inner product of two operators. From (5.5.10) we see that

the finite IV corrections to the planar result are controlled by ﬁ, just as the finite N

corrections to the U(N) correlator are controlled by €2.

5.5.2 Symplectic operators
The two point function for symplectic matrices is
<X’d\Xij> = oio — Y, = <Ykl\YiJ> (5.5.15)
which is equivalent to
((@x)™) (QX)U> = 5j0] + o6 = ()M | (2)”) (5.5.16)
Using Wick contractions, we can apply this to tensor products of QX and QY

<[(QX)®TL1 (Qy)®n2]J| [(QX)®n1 (QY)®”2]I> _ Z cr§
0ESny [S2] X Snqy[S2]

= 2"n1!no! (P[S}®[S])§ (5.5.17)

=

introduced in (5.2.3), we define

Using the symplectic contractor C}Q)

c(p) = P gie (5.5.18)

This is invariant under (linear) inversion of § and anti-invariant under left and right

multiplication of 8 by S,,[S2]. The symplectic versions of (5.5.7) and (5.5.8) are

C%op) = (—1)"(—=1)7?(—N)!®) (5.5.19)

)" Y () =N o = 3 o= 3 (-1 | =2mifiny

0ESan, 0ESan TESK[S2]
(5.5.20)
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where the projector P4 is defined in (5.1.3). These results are proved in (A.2.12) and
(A.2.15) respectively. Relative to the statement in (A.2.15), we have commuted € past
Py using (5.4.9).

Comparing (5.5.19) and (5.5.20) with the SO(N) equivalents (5.5.7) and (5.5.8)
we see that they are related (up to a factor of (—1)") by anti-symmetrisation of o
and N — —N. This is an example of the general connection (4.0.3) between gauge
invariants of the SO(N) and Sp(N) theories.

Using (5.5.17), the two-point function of the operators (5.2.6) is
(05102) = 2"m1na!C® (aPlgeis) 57" (5.5.21)

where 37! is the linear inversion (5.5.3) of 3.
In analogy to (5.5.10), we can rearrange (5.5.21) by introducing a sum over Sa,,

using the invariance of C! under linear inversion, and substituting (5.5.20)

(09]09) = 3y (—1)°5 (ﬁam—lﬁ—l) (5.5.22)
Tesn(j[esiﬁlisst [Sa]

=

This has the same properties as (5.5.10). € imposes the finite N cut-off (see below
(A.2.19)), and at large N, it reduces to N™ times the Sy, inner product, defined by

QN —1pp—
(051030)g, = > (-1)76 (car™87h) (5.5.23)
0€Sp[S2]
TESnl [SQ} XSn2 [82}
As explained in section 4.1.2; the Sp(N) multi-traces have exactly the same form as
the SO(N) traces, and their large N inner product is exactly as given in (5.5.13) and
(5.5.14) for the half-BPS and quarter-BPS sectors respectively.

5.5.3 Baryonic SO(N) operators

Define
ce(B) = C\F gl (5.5.24)

where C}E) is the baryonic contractor introduced in (5.2.2). This is invariant under
(linear) inversion of § and has nice transformation properties under left and right
multiplication of 5 by Sy x S¢[S2]. Under the Sy factor C¢(f3) is anti-invariant, while
under the S;[Ss] factor it is invariant.

This action of Sy x S;[S2] on both sides was given in (5.2.23) and is the defining
action for the baryonic auxiliary algebra By . It follows that if o is in an odd double
coset of this action we have C¢(0) = 0. From the definition of the baryonic contractor

(5.5.24), it is simple to see that for ¢ in an even double coset, we have C¢(c) = +NIN¥
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for some k. We expect that the even double cosets are characterised by a partition
and k is exactly the length of this partition, giving a baryonic equivalent to (5.5.7) and
(5.5.19).

For the baryonic sector, the element Q%) is Q. This is related to sums of (5.5.24)

over Sy, by
Z CE<0)U =Q° Z (—1)010' = N!2qq!QEP[1N}®[S] (5525)
0ESan O’ESNXSq[Sz}

where for 0 € Sy x S4[S2], o1 is the Sy component and the projector Pingls) s
defined in (5.1.24). This result is proved in (A.2.24). Relative to the statement there,
we have commuted 2° past Pyyng(g) using (5.4.25).

We can use (5.5.5) to deduce the two-point function of two baryonic operators as
defined in (5.2.5)

(03105) = 2"m!nalC* (aP a5~ (5.5.26)

where 87! is the linear inversion (5.5.3) of 3.
As in (5.5.10), we can rearrange (5.5.26) by introducing a sum over Ss,, using the

invariance of C¢ under (linear) inversion and substituting (5.5.25)

(05]0%) = > (—1)71(=1)75 (Voar '8 (5.5.27)
o€SN % Sq[Sa2]
T65n1 [S2] ><S7L2 [52]

This allows the definition of an S, inner product of baryonic operators

(05105),, = > (1) (=1)76 (car1B87) (5.5.28)
o=(01,02)ESN XS5¢[S2]
TESn, [S2]X Sy [S2]

However baryonic operators are intrinsically finite N objects, so the S5, inner product

is not the large N limit of the physical inner product, unlike (5.5.12) and (5.5.23).

5.6 Fourier bases for permutation state spaces; the Schur
and restricted Schur basis of operators; and correla-
tors

In section 5.4 we gave Fourier bases for the various auxiliary algebras. In this section

. 6/Q ; /0 ;
we do the same for the permutation state spaces A ; A;}J.\;, An/l,nz and Af\’,].\zl g

When inserted into the appropriate operator construction formulae (5.2.4), (5.2.5) and
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(5.2.6), these Fourier bases lead to orthogonal Young diagram bases for the space of
operators. In the half-BPS case, these are called the (mesonic, symplectic or baryonic)
Schur basis, while the quarter-BPS versions are the (mesonic, symplectic or baryonic)
restricted Schur basis.

The programme of finding Young diagram bases for the half and quarter-BPS sectors
was first started, for the U(N) theory, in [22]. This was applied to the SO(N) theory
in [56], which defined the Schur basis for mesonic operators and calculated their corre-
lators. This was soon followed by [57], which introduced the symplectic and baryonic
Schur bases, though did not calculate correlators for the baryonic basis. The extension
to the restricted Schur basis for mesonic quarter-BPS operators first appeared in [59]
including correlator results, and [60] did the equivalent for the symplectic Schur basis.
The correlators for the baryonic Schur basis were found in [1], which also introduced
the restricted Schur extension.

For each permutation state space, we split the discussion into four sections. We
start by introducing the Fourier basis, the associated labelling set and describing the
algebraic properties. This includes giving the action of the associated left and right
auxiliary algebras and the corresponding decomposition as a representation of the prod-
uct auxiliary algebra. We also give the eigenvalues of the basis under the left action of
the appropriate one of Q and Q°. After introducing the algebra basis we move on to the
operators they construct. For the half-BPS sector we can interpret these in terms of
symmetric functions of the % distinct eigenvalues. The third section uses the labelling
of the Fourier basis to give a combinatorial description of the size of the space. This
connects to the large N generating functions found in section 4.3. For the half-BPS
sector, we also have expressions for the finite N generating functions. Finally, we give

the physical and Sy, correlators of the basis.
5.6.1 A’ and A%: the mesonic and symplectic Schur bases

Algebra basis

The state spaces A2 and A are defined by invariance under the group actions given in

(5.2.18) and (5.2.19) respectively. From these actions, we can derive the Fourier bases

s 1 R
R = np) GZS: SI|D™(o)| R, [A])o (5.6.1)
o 2n
of =5 dR i > (B [AID(0)| R, [S))o (5.6.2)
R onp| e )
0ED2n

where in both bases R F 2n is a Young digram with even length rows and columns.

Note this implies n even; for n odd the spaces .Ai/  are zero-dimensional.
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The normalisation of oz‘SR and a% are chosen to give a nice form for correlators, given
later in (5.6.23) and (5.6.24).

These two bases are closely related. Firstly, consider conjugating the Young diagram
R. The behaviours of D®(¢), |R, [S]) and |R, [A]) under R — R® were given in (5.1.11),
(5.1.13) and (5.1.14) respectively. From these it follows that

% = Anti-Sym (oz%) (5.6.3)

So the mesonic and symplectic bases are related by anti-symmetrisation and conjugation
of Young diagrams. In (5.4.3) we proved that under the same transformation the left
auxiliary algebra for the mesonic operators switches with the left auxiliary algebra for
symplectic operators. Since for half-BPS operators these are also the right auxiliary
algebras, we see that this transformation exchanges all three spaces, the permutation
state space and both auxiliary algebras, between the SO(NN) and Sp(INV) theories.

The bases are also related by interchange of the factors in the decomposition (2.5.2)
of C(S,,), or equivalently they transform into each under linear inversion.

The left auxiliary algebra for A% is A}, and the right auxiliary algebra is A, while
for A it is the other way round. Using the Fourier bases (5.4.1) and (5.4.2) for AF

the actions are given by

BEal = dpsa a%Bg = dpsa (5.6.4)

By R = Orsah aRBd = drsa (5.6.5)

In section 5.4.1, we explained the algebra structure of AF and showed that represen-
tations were labelled by a Young diagram R I 2n and a complex number c. For A,
R was restricted to have even row lengths, while for A, R has even column lengths,
so the R in (5.6.1) and (5.6.2) falls into both categories. Since A} acts on the left of
A% and A, acts on the right, the two actions commute, and A% can be sorted into

representations of the product algebra A} x A.. From (5.6.4), this decomposition is

Va - @ Vgc:l ® VF.?,C:1 (5.6.6)

RF2n with even
row and column lengths

Similarly, AS! can be sorted into representations of A~ x At

Ve = D Vi1 @ Vi oo (5.6.7)

RF2n with even
row and column lengths

In both representations there is no multiplicity space, and the R on the left matches

the R on the right. As discussed in section 2.4.2 in the context of the double centraliser
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theorem, this shows that AF are each others’ centraliser within the endomorphism
algebras of Afl/ 2

To give a more concrete realisation of the algebraic structure of A*, in section 5.4.1
we gave a matrix interpretation of Bf; as matrices with rows labelled by R. We can
repeat this for (5.6.6) and (5.6.7), to give a more intuitive understanding.

In this matrix picture a‘SR is a the tensor product of column vector with a single 1
in the Rth row with respect to A, and a row vector with a single 1 in the Rth column
with respect to A, . For all % just switch ‘row’ and ‘column’.

6/

The action of Q on a . follows from its action on the vectors |R,[S]) and |R, [A])
given in (A.2.18) and (A.2.19)

) ) 30 Q9
r = frROR RSl = frap (5.6.8)
Qafs = fraj Q= fhof}
So the eigenvalues of Q are given in terms of the Young diagram label R. The eigenvalues
on the left are relevant for correlators. Since f& = fi = 0 for I(R) > N, Q maps the

large N state spaces .Afl/ 2 {6 the restricted finite N versions .Afl/ &N

Operator basis

To construct the mesonic and symplectic Schur bases of operators we insert (5.6.1) and

(5.6.2) into the contraction formulae (5.2.4) and (5.2.6) respectively

) n\J
Of = 2%, Z 1S]| DR (o) | R, [A]) O\ (X7 (5.6.9)
065277,
n1J
Of = W g 2 (RAAIDT@)IR.1S]) ol [(QX)%"] (5.6.10)
UESQn

At finite N, those OéR/Q with [(R) > N vanish, and the remaining Of{ﬂ form a basis
for the reduced space.
When n = O(N), these operators are dual to giant gravitons wrapped around
3—cycles within AdS5 x RP°.
n [57], the authors gave a different way of writing the Schur SO(N) and Sp(N)
Schur operators in terms of the matrix X2. Consider the 2 5 times tensor product of X 2
as an operator on V®3 | denoted by X2. Then in a completely analogous way to the X

version (2.1.11), for a permutation o € S% of cycle type p - 5, we have

Tr (0X?) = [ ] (TeX %)™ (5.6.11)

i
Since R F 2n has even column lengths and row lengths, it can be ‘quartered’ into a
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partition % 5 as described in (5.1.7). Then (5.6.9) and (5.6.10) can be rewritten as

Of = 5 , > 27Xk (0)Tr (0X?) (5.6.12)
(5) O'GSn *
2
O = 3 , 274\ k(o) Tr (0X?) (5.6.13)
(5)' =) ‘

where ¢(0) is the number of cycles in 0. Note that this means that SO(N) and Sp(NV)
operators have the same expressions when written in terms of multi-traces.

In the SO(N) gauge theory with N even, we can put X in the form

0 21 O 0 0 0

—z1 0 0 0

0 0 T2 0 0
X=|0 0 -2 0 0 0 (5.6.14)

0o 0 0 0 TNy

0o 0 0 © —Ty 0

which means
X? = Diag (—x%, —x2, —xd, -3, =2, —xi) (5.6.15)
2 2

If N is odd, then zy in (5.6.14) and (5.6.15) is replaced with zx_1 and an extra 0 is
2 2
added to the diagonal in both. In either case, it follows that

TexX? = (~1)F2 322 = 21y (—gﬁ, a2, _xQL%J) (5.6.16)
i=1
where T}, is the power-sum symmetric function defined in (2.7.7) and L%J is % rounded
down to the closest integer. Applying this to each factor of (5.6.11)
Tr (0X2) = 29T, (—x%, a2, —x“m) (5.6.17)
2

where o € S% is of cycle type p = 5 and T}, is the power-sum symmetric function
defined in (2.7.8).
Re-expressing (5.6.12) in terms of S% conjugacy classes and comparing with the

definition (2.7.10) of a Schur symmetric function, we have

O% = Z lXﬁ(p)Tp <—x%, —23,..., _:CQL%J)

_ 22 2
—55< Ty, =T, ..., x{%J) (5.6.18)
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So, in direct analogy to the U (V) statement (2.7.11), the SO(N) operators are Schur
functions in the L%J distinct eigenvalues of the matrix X2,

For the Sp(N) gauge theory, N is always even and we can put X in the form

0 T2
0 O TN
X = 2 (5.6.19)
—X1 0 0
0 —X9 0
0 0 —IN
2

which leads to a relative minus sign compared to (5.6.15) in the expression for X2, and

therefore in terms of eigenvalues
OR =sp (x%,x%, . ,xi) (5.6.20)
4 2

Combinatorics

The Young diagrams % t 5 are unrestricted at large IV, and hence the number of Schur
operators of degree n is p (%) if n even and 0 if n odd. This matches the counting of

multi-traces from (4.1.1), and the generating function is known [64]

[e.o]

1
11 T (5.6.21)

n=1

which matches (4.3.35) as expected.

At finite N, the cut-off is l(%) < % The generating function for these cut-off

partitions numbers is

1
11 T (5.6.22)

Correlators

The correlator of two SO(N') mesonic Schur operators follows from the formula (5.5.10)
for correlators of mesonic operators, orthogonality of matrix elements (2.3.4) and the

action (5.6.8) of Q on |R, [S])

<O§%\065> = Ors [ (5.6.23)
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Similarly the correlator for symplectic Schurs follows from (5.5.22), (2.3.4) and (5.6.8)
(ORIOY) = Ors [ (5.6.24)

In the Sy, inner product both bases are orthonormal.

Consider the effect of the transformation (4.0.3) on (5.4.7). Conjugating a Young
diagram R takes the odd rows of R to the odd columns of R¢, and for a box b € R, the

conjugated box b° € R has contents cpe = —c¢p (see (2.3.19)). Therefore

fre(-N)= [ (-N+a) (5.6.25)

be odd
columns of R¢

=" I (N-c) (5.6.26)

be odd
columns of R®

=" I W+a) (5.6.27)

be odd
rows of R

= ()" fR(N) (5.6.28)
Since n is even for half-BPS operators, we have

<(9;§c|(956> = (oR0g) (5.6.29)

This is an explicit example of the relation (41.0.3) between SO(N) and Sp(IN) gauge
invariant quantities.

As the Schur operators are Schur symmetric functions in the eigenvalues of X?2,
product rules for these operators are expressed in terms of Littlewood-Richardson co-
efficients (D.1.4). Therefore three-point functions and higher are given in terms of
these.

5.6.2 A?VJZL the baryonic Schur basis
Algebra basis

The permutation state space that constructs half-BPS baryonic operators is A?VAZL
Such operators only exist when IV is even, 2n > N, and for the half-BPS case, when
qg=n-— % is even. A}:VA;L is invariant under the action (5.2.24), but also requires a

cut-off on Young diagrams. The Fourier basis for the unrestricted version .A}:V;n is

o= | s X ((W)o @) ORI, Go

o€Son
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where R has even column lengths and admits a representation [1V] ® R of Sy x Sy,
where R has even row lengths. The constraints this condition puts on R are given in
section D.2.1. When we impose the cut-off [(R) < N, the constraints simplify, and R
must be of the form R = [1V] + R. This implies R also has even column lengths, and
is therefore of the same form as Young diagram used to label the mesonic Schur basis

(5.6.9). This gives a simple description of the state space A?VJ\;
Aiv]\:z = Span {oﬁ% : R =[1V] + R for R with even row and column lengths} (5.6.31)

The auxiliary algebras B;}i and A, act on the left and right of A?VA; respectively.

Using the Fourier bases (5.4.2) and (5.4.19), these actions are given by
Bsag = Orsak aRBg = OrsaR (5.6.32)

The state space AN can be given as a representation of B]E\}z x AV, In sections 5.4.3
and 5.4.1 respectively, the representations of Bf\}z and A, were classified. Both are
labelled by a Young diagram R and a complex number ¢. For B]E\}Z, R is restricted to
have form R = [1¥] + R for R with even row lengths and I(R) < N, while for A",
R must have even column lengths and [(R) < N. Therefore the R in (5.6.30) falls into

both categories. The representation is

Ve = D Vie=1 © Vi ey (5.6.33)

RF2n with odd
row and even column lengths

I(R)=N
The lack of a multiplicity space in this decomposition, and the matching of R be-
tween the two factors means Bf\}z and A, N are each others’ centralisers within the
endomorphism algebra of A5.

In sections 5.4.3 and 5.4.1 we give a matrix interpretation of B;}{\qf and A, ;N, with
rows labelled by the Young diagram R. In this picture, a% is a column vector with a 1
in the Rth row with respect to Bf\}z and a row vector with a 1 in the Rth column with
respect to Ay

The action of QF on aF, follows from its action (A.2.63) on the vector |[1V])®|R, [S])

Oaf = frak (5.6.34)
There is also an action of (2 on the right, though this is not relevant for correlators
050 = fa5 (5.6.35)

Since f§ = f =0 for R with I(R) > N, QF imposes the cut-off in Young diagrams in
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the unrestricted space .A‘Jf\,m.

Operator basis

To construct the baryonic Schur basis we insert the basis elements (5.6.30) into the

baryonic contraction formula (5.2.5)

O = V qufwn)! > (1M @ (R.18)) PP (o) R, [A)) € o (X°7)

O'ESQn

(5.6.36)

If R is a single column of length N, this is dual to a giant graviton wrapped around
a RP? within the RP5 factor. More general R with n = O(N) boxes is a multi-giant
state, with one wrapped around a RP? and the others wrapped on S3.

We saw in (5.6.18) that the SO(N) mesonic Schur basis are Schur functions in the
eigenvalues of X2. The baryonic Schur basis has an equivalent interpretation involving
the Pfaffian of X. For a generic anti-symmetric matrix with NV even, this is defined to

be the square root of the determinant. For X of the form (5.6.14), it is simply
2

This appears in baryonic operators through the identity

o o N
5i1i2i3i4...iN71iNXZ”2XZ3Z4 L XWNSN = 2% <2> ! Pf(X) (5'6'38)

Consider a permutation 7 € S, of cycle type p. This is embedded into Sy, by acting

on the odd numbers, and embedded into Ss, by acting on the odd numbers greater

odd)

than N. In both these embeddings we denote the equivalent to 7 by 7(°¥) . Then from

(5.6.38) and (5.3.16)

N4

o (T(odd)>1 (xm)7 =2

N 5 odd)\ ! J
ey (e ()

(J;[ ) PE(X) [T (Tex?)™ (5.6.39)

vz

2

i

To express this in terms of (’)f, we use a similar approach to that taken in [57] to prove

the equality of expressions (5.6.9) and (5.6.12). For a € Sa,,, define

05 = 3 xr(0)CY) (a0 (X&) (5.6.40)

og€Soy,
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Using the resolution of the identity (2.3.6), it follows that

> dpog = Pl (xm)’ (5.6.41)

(2 R)—2

We now rearrange (5.6.40) to compare it to (5.6.306)

05 = 3 xrlato)O) ol (xm)7

0ESan,

= 3 a0 )0 (Paviars }UP[A}) (x®m)’
oc€Sap

= > xr (07 BumeigoPla) OF o) (x°7) (5.6.42)
0€S2TL

where the projectors Pjynjgs) and Pu are defined in (5.1.24) and (5.1.3) respectively.

]
Using the expressions (5.1.25) and (5.1.6) for the projectors in a representation, we

have

05 = (R[] D" (o) (|1)) @ |25 )
> ({1 ® (R 1)) D™ o) . [4) 0oy (X

o€Son

= (([1™]] ® (R.1]] ) D (0) IR, 4] \/ al ’”qf;”!@”)’ o5, (5.6.43)

The matrix element can be evaluated by decomposing R as a representation of Sy x Sag.
We have

VRSzn — @ VSN Q VS24 ® V]fz"g]f]tnq (5.6.44)
ryFEN
rogh-2q

where V}T{Lﬂ“ rog is the Littlewood-Richardson multiplicity space for the decomposition.
The tensor product vector on the left of the matrix element means only the ry = [IN ],
Toq = R term will contribute. It is proved in appendix D that the multiplicity space is
trivial for these values of rn and raq.

For 7 € Sy, embedded into Ss, by acting on {N +1,...,2n}, the ry = [lN],

794 = R component of the decomposition of D (1) is
D (1) ~ Iyny ® D™ (1) (5.6.45)

where If;n is the identity operator on V[ff\\r’]

Similarly, the relevant component of the vector |R, [A]) is
IR, [A]) ~ afixy 5 (10V]) @ IR, [4])) (5.6.46)
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|) appears as this is the vector |ry,[A]) anti-invariant under S,[S2] for the
(5.6.47)

J.

[1¥]. The coefficient is
1) 18, 14) = \fxn (Paviorayla)
5.1.6) of the projector

where |[1
representation ry
1.25). We have not been able

R N P
afixp = (1] @ (R
where for the second equality we have used the representative (
4] defined in (5.1.3), and introduced a new projector Pjinyg(a) defined analogously to
=
J.

Pingps) in (5.1.24) with representative analogous to (
to find a simple formula for a[l NLR"

Using the components (5.6.45) and (5.6.46), for 7 € S, of cycle type 2p we can write
SI1) (g @ DR (70 ) (|1V]) @ |, [4]))

the matrix element of (5.6.43)
S| ) D (71 |, [4))
(5.6.48)

({0 o (R
= aftx a (V] ®
= affy 5 (R [S]| DR () |, [4))

I

2!®) [ (29)!
Y _
=N Rgggr || g, X a(p)
where we have used (5.1.10) to evaluate the final R matrix element
Putting the pieces together, for o € Sg of cycle type p, we have
N 2 Ny (N 2i\P
22 ( )'Pf( )Tr (0X?) = 22 <2>!Pf( )] (Tex?)
N12nnldgr(2q)!
R R\44 c() _
2 (0)O% (5.6.49)
; [ 24¢!(2n)!dp XE\IER
) gives
N12nn! [dgr(2q)
2 R q R 5
Tr oX?) \/ 9q] 2n)d [1N]7ROR
(5.6.50)

Inverting this relation using orthogonality relations (2.3.5

N (N 1

(3P0 g X o

2 GESQ

Comparing with the mesonic Schur operators (5.6.12), we see the baryonic Schurs are
(5.6.51)

2
up to normalisation, the Pfaffian operator multiplied by a mesonic Schur
dr(2q)! R
[ o

2n)ldg

N!12np!
24q!

2% <N>!Pf 0? \/
2
In terms of eigenvalues, the baryonic Schur is, up to normalisation, the product of

the Pfaffian (5.6.37) with the Schur symmetric function labelled by %, as described in
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(5.6.18).

Combinatorics

The combinatorics of the baryonic sector are determined in much the same way as the
mesonic sector, with R playing the role of R from section 5.6.1. The only restriction on
% is { (%) < %, so the size of the degree n baryonic sector is the number of partitions

of 4 with length < % The generating function for these is

N

2
N
2 .6.52
21;[171,271 (565)

Comparing with (5.6.22), we see the generating function for the entire half-BPS sector

of the SO(N) gauge theory at finite even N is

(1+m%)

which matches the results of [57].

1

e (5.6.53)

Tz

Correlators

The two-point function of two baryonic operators can be calculated using the formula
(5.5.27) for the correlator of baryonic operators, orthogonality of matrix elements (2.3.4)
and the action (5.6.31) of Q¢ on |[1V]) ® |R, [5])

(O%|0%) = drs[R (5.6.54)

Under the Sy, inner product, the O% are orthonormal.
This correlator should be reproducible by studying the stringy physics of branes
wrapped around a non-trivial 3-cycle in the RP% factor of AdSs x RIPS.

5.6.3 A° and A9

n1,ne ni,na°
bases

: the mesonic and symplectic restricted Schur

Algebra basis

The state spaces .Am ny and Al are defined to be invariant under the group actions

given in (5.2.7) and (5.2.8) respectively. From these actions, we can derive the Fourier

ni,n2

bases

1
0 R
oo = 3\ @ryidming] 'n'm'm > (R, [SIID"(0)| Ry, Ry, [A], o (5.6.55)

og€Say,
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1
Q _ § R
OéR,Rl,Rz,)\ - 2 (2n |n|n1'n2 5 ‘D ) ‘Rly R27 [5]7 A) g (5656)
2n

where the labelling sets and their restrictions are

SO(N) Sp(N)
Rt 2n with even row lengths R I- 2n with even column lengths
R+ 2nq with even column lengths R1 F 2n; with even row lengths  (5.6.57)
Ry F 2ng with even column lengths Ry F 2n9 with even row lengths

1 <A< YRR, 1 <A< 9Rr:RiR,

More formally, the u, v indices label basis vectors in the Littlewood-Richardson multi-
plicity space. In section D.3 we give a prescription for how to choose this basis. When
N < n, we also impose the finite N condition [(R) < N.

Since Littlewood-Richardson coefficients are invariant under conjugation (D.0.6),
at large N the labels for an SO(IN) operator are conjugate to the labels for an Sp(NV)
operator. From the behaviour of D®(c), |R,[S]) and |Ry, Rz, [A], \) under conjugation,
given in (5.1.11), (5.1.14) and (5.1.21) respectively, the two bases are related directly

by conjugation of R and anti-symmetrisation

d : Q
aRC,Ri,Rg,)\ = Antl—Sym (aR,Rl,RQ,A) (5658)

This is a generalisation of the half-BPS version (5.6.3), and has the same interpretation
as explained there.
The auxiliary algebras for Am ny aT€ A on the left and A, . on the right. For

AL we have A;, on the left and A}

ni,na? ni,ng

n1,n2
on the right. Using the Fourier bases defined

in sections 5.4.1 and 5.4.2, these actions are

ﬂ;_alls%,Rl,Rg,A = 0Rs a%thR%,\ (5.6.59)
a%le7R27>"8§7(51,527M),(T1,T2,u) = ORs 5(R1,R2,/\)(51,52,#) a(SR,Tl,TQ,l/ (5.6.60)
Bg‘o‘%,Rl,Rg,)\ = 0Rs O‘%,RLRQ,/\ (5.6.61)
a%le=R2»N8§<sl,sz,m,(Tl,Tz,u) = ORS O(Ry,RaN)(51,52.0) QR To (5.6.62)

The state space A?
algebra A} x A ..
At and A,

row lengths and a complex number ¢, while for A

mms Can be decomposed as representations of the direct product

In sections 5.4.1 and 5.4.2, we classified the representations of

1.y FOT AT, representations are labelled by a Young diagram R with even

n1,mg» Tepresentations are labelled by a
Young diagram R and a GL(mp) Young digram r, where mp, is defined in (5.4.16) and
R is restricted to admit gr.r, r, > 0 for some R; - 2n;, Ry = 2ny with even column

lengths. The R in (5.6.55) satisfies both conditions. From (5.6.59) and (5.6.60), the

130



CHAPTER 5. ALGEBRAIC STRUCTURE OF THE FREE FIELD SO(N) AND
SP(N) GAUGE THEORIES

decomposition of Am ny 18

Vi= D Vi1 9Veao (5.6.63)

RF2n with
even row lengths

Similarly, ASL . has auxiliary algebras A, on the left and A , on the right. Repre-

ni,n2 ni,n2

sentations of A are labelled by R with even column lengths and a complex number ¢,

while representations of A} | are labelled by R (which admits ggr.g, r, > 0 for some

ni,no

Ry F 2ny, Ry F ng with even row lengths) and a GL(mE) Young digram r, where mE
is defined in (5.4.15). Then as a A, x A}

n.m, Tepresentation, AL s

ni1,n2

Ve = D Vi1 ® Vg (5.6.64)

R-2n with
even column lengths

In both representations there is no multiplicity space, and the Rs on either side match,

so AF and AF

ny1,mn2-

are each other’s centraliser within the endomorphism algebras of

We gave a matrix interpretation of A} and ATiL1 n, 1D sections 5.4.1 and 5.4.2. In

this picture a% R R, 18 @ column vector with a single 1 in the Rth row with respect
y 1,112,
to A and a row vector with a single 1 in the (Ry, Ra, A)th column of the R block with

respect to A~ Similarly, a% Ri.Ry)\ IS @ column vector with a single 1 in the Rth

ni,mne’

row with respect to A, and a row vector with a single 1 in the (R, R2, A\)th column
of the R block with respect to A} . .

There is one more interesting multiplication property of A? and A When

ni,n2 ni,m2°

multiplied on the right by the basis (3.6.3) of the U (V) algebra Az, 2n,, we have

1) U(N s
R R17R27>\BS (5'1,)52 wy 5R55R151 5R2525,u)\aR7R1,R2’1, (5665)
Q U(N) o
@R R17R27ABS S1,52,4,v 5R55R15'1 5R25’2 5;1)\04]{7]{17}{27” (5666)
So -’421 n, forms a representation over Agp, 2n,. In section 3.6.1 we give a description of
the representations of Agy,, 2n,. They are labelled by a triple R, R1, Ry with gr.r, . r, > 0
and a GL(gRr.Rr,,r,) Young diagram r. Using this labelling, Ale n, and Agl ny L€
1)
Vi= EB VIR,R1,R),r=00 (5.6.67)

R2n with even row lengths
R1F2n1 with even column lengths
RolF2n2 with even column lengths

vh= D VIR, Ry, Ry),r=00 (5.6.68)

RF2n with even column lengths
R1F2n; with even row lengths
RaoF2no with even row lengths

Thinking of the U(N) elements as block diagonal matrices as explained in section 3.6.1,
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oz‘sR’ Ry.Ra\ form row vectors with zero entries in all blocks except that corresponding to

(R, R1, R2), in which it has a single 1 at the Ath position.

This gives a nice interpretation of the form of the SO(N) and Sp(N) counting formu-
lae (5.6.74) and (5.6.75) and their U(N) equivalent (3.6.6). The U(N) counting contains
squares of Littlewood-Richardson coefficients because A, n, lives in the adjoint repre-
sentation of Ay, »,. The SO(N) and Sp(N) counting contains Littlewood-Richardson
coefficients to the first power because they lie in the fundamental representation (of a
subset of the blocks) of Ay, p,.

The action of € on A%?ng follows from its action on |R, [S]) and |R, [A]), given in
(A.2.18) and (A.2.19)

A0 _ 00
QaRRl,RgA fRaRRl,RQ,)\ QA% gy Rox = JTRYE Ry RaN (5.6.69)

Unlike the half-BPS sector equivalent (5.6.8), in the quarter-BPS sector O only has
hamy and AL on the left. Since f§ = f& =0
if [((R) > N, it still enforces the finite N cut-off.

definite eigenvalues when acting on A° .

Operator basis

The restricted Schur basis operators for SO(N) and Sp(N) are constructed by inserting

(5.6.55) and (5.6.50) into the contraction formulae (5.2.4) and (5.2.6) respectively

5 1 &) 1 ®n ®Rna\J
OhRiRax = 5o 1/(271 P GZS: 0)|R1, Rz, [A], \) O ol (XO™Y®™2)" (5.6.70)
2n
Q R Q) 1 ®n ®na1d
OR, Ry, Ra A = 2 50\ oYt 1ot 2n) 'n'm'ng' ezs: AlD" (o) |R1, Rz, [S], M) C7 oy [(2X)9™ (QY)¥"2]
2n

(5.6.71)

In the half-BPS sector, the Schur bases for SO(N) and Sp(N) have the same expres-
sions in terms of multi-traces. This is not true in the quarter-BPS. Instead, it follows
from (5.6.58) that restricted Schurs with conjugate labels are anti-symmetrisations of

each other. Define the anti-symmetrisation operator on a single trace by
Anti-Sym (TrW) = (—=1)! W)+ (5.6.72)

for a matrix word W. The definition is extended in the obvious way to multi-traces
and linear combinations thereof. This is directly analogous to the operator Anti-Sym

on permutations. Then

Ok e gy x = Anti-Sym (OF z. g, ») (5.6.73)

132



CHAPTER 5. ALGEBRAIC STRUCTURE OF THE FREE FIELD SO(N) AND
SP(N) GAUGE THEORIES

SO(N) mesonic and Sp(N) Schur operators in the half-BPS sector could be expressed
as Schur symmetric functions in the distinct eigenvalues of X?2. In the quarter-BPS,
the matrices X and Y cannot be simultaneously diagonalised, so there is no equivalent

expression for the restricted Schur operators in terms of the two sets of eigenvalues.

Combinatorics

From the labelling sets for the restricted Schur operators, the number of field content

(n1,n2) operators in the two theories is

N = > IR:Rs Ry (5.6.74)

RF2n with even row lengths
R12n, with even column lengths
Ry2n, with even column lengths

I(R)XN

;N

NN = > IR\ Ry (5.6.75)

RF2n with even column lengths

RiF2n; with even row lengths

RoF2n5 with even row lengths

I(R)<N
It follows from the invariance of Littlewood-Richardson coefficients under conjugation
(D.0.6) that for large N the combinatorics for SO(N) mesonic operators and Sp(V)
operators are the same. In fact, since baryonic operators do not exist at large N, this
is the combinatorics of the entire quarter-BPS sector for both gauge groups. The large
N generating function for both N,(lfﬁfz) and Né?ff) is given in (4.3.21). We prove this
directly from the formula (5.6.74) in appendix F.

The combinatorics (5.6.74) and (5.6.75) have also been derived from group integrals

in [59] for SO(N) and [60] for Sp(N).

Correlators

The correlator of two restricted Schur operators can be calculated from the formula
(5.5.10) for the correlator of two mesonic operators, orthogonality of matrix elements
(2.3.4) and the action (A.2.18) of Q on |R, [S])

<O§%,R1,R2,A1 !02,31752,A2> = 5RS5R15‘1 5R2525>\1>\2 f??, (5-6~76)

while the symplectic equivalent follows from (5.5.22), (2.3.4) and (A.2.19)

(OB Ry ron |08 5, 500 ) = ORSOR, 8,0k 5, 00 0 [ 1o (5.6.77)

Under the Sy, inner product, both bases are orthonormal.
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It follows from (5.6.28) that the SO(N) and Sp(IV) operators with conjugate labels

have norms related by

1 1) Q Q
<ORC,R§,R5,A1 \OSC,Sf,Ss,AQHN_)_N = (=1)"(OR,r, 7o |05.5,,5..0:) (5.6.78)

This is another example of the relation (4.0.3) between mesonic and symplectic gauge
invariants.

More general correlation functions can be calculated using product rules for the
restricted Schurs [60].

5.6.4 AN : the baryonic restricted Schur basis

ni,n2’

Algebra basis

The permutation state space that constructs quarter-BPS baryonic operators is .AZIN N -

Such operators only exist when IV is even and 2n > N. Unlike the half-BPS case, the
N

quarter-BPS sector does admit operators when ¢ = n — % is odd. Ay

Ningna 18 Invariant

under the action (5.2.22), but also requires a cut-off on Young diagrams. The Fourier

basis for the unrestricted version A%, is
sNa,N2

= \/N!Qqq!2"67l11j!n2!(2n)! (V] (7, [)) DM (@) |, R 4], N

ocESa,

(5.6.79)

where R F 2n has two types of Littlewood-Richardson decompositions. Firstly, it ad-
mits a representation R ® Ry of Say,, X.Sap, where Ry and Ry have even columns lengths.
A is a Littlewood-Richardson index for this decomposition. Secondly, it contains a rep-
resentation [1V] ® R of Sy x Ss, where R has even row lengths. The conditions for
such an R are complex and are given in section D.2.1. When we impose the cut-off
I(R) < N, they simplify considerably to R = [1¥]+ R. This allows a simple description

of the state space A%J;\;hm

Af\}],\;hm = Span {a%7R17R27/\ : R = [1V]4+R for R with even row lengths, 1 < \ < 93;31,32}
(5.6.80)

SN on the right. Using

Nina,na
the Fourier bases defined in (5.4.19) and (5.4.11) respectively their actions are

The auxiliary algebras for A are B;}Z on the left and A

n1,N2

Bga%,Rl,R2,)\ = 5350‘%,1%1,1%2,,\ (5.6.81)

g — . (>4
ORRy,Ra AP (81,80 1) (Th o) = ORS O(Ry,Ra N (S1,S2,1) O3 To (5.6.82)

134



CHAPTER 5. ALGEBRAIC STRUCTURE OF THE FREE FIELD SO(N) AND
SP(N) GAUGE THEORIES

. N
Under these actions, AN;nth

algebra Bf\}]z X Aﬁjfxz. The irreducible representations of the two auxiliary algebras

can be decomposed as representations of the product

were classified in sections 5.4.3 and 5.4.2. For B;}Z, a representation is labelled by a
complex number ¢ and a Young diagram R of form R = [1¥] 4+ R where R with even
row lengths and [(R) < N, while for Aﬁffxz, representations are labelled by a Young
diagram R F 2n with [(R) < N and a GL(mp) Young diagram r, where mJ, is defined
in (5.4.16) and R is restricted to admit gr.g, r, > 0 for some R; - 2n;, Ry - ng with
even column lengths. The R in (5.6.79) satisfies both constraints. From (5.6.81) and
(5.6.82), the decomposition of A"

Nini,na 18

Ve P Vi1 ®Vi,g (5.6.83)

RF2n with
odd row lengths

I(R)=N
In both representations there is no multiplicity space and the R on either side match,
SO B;}ZZ and Agffyh are each other’s centraliser within the endomorphism algebra of

e N
Nini,ns”

In sections 5.4.3 and 5.4.2 we gave a matrix interpretation of the Wedderburn-Artin

decompositions of B5Y and A7

. . - .
no1n,- Using this language, o R.Ry R\ 15 2 column vector

with a single 1 in the Rth row with respect to B;}Z and a row vector with a single 1 in
the (Ry, R, A)th column of the R block with respect to Aﬁj,sz.

We can also give a Af{ljy n, as a representation of the U(N) algebra Asgp, 2, in a
similar manner to (5.6.67) and (5.6.68). There is no mathematical difference between
the baryonic case and the mesonic and symplectic version already considered, so we
will not spell it out explicitly here.

The action of QF on o, p g, , follows from its action (A.2.63) on the vector } [1N] >®
R, [S])

Q% R, Ror = JROR Ry RN (5.6.84)
As f = 0 for R with [(R) > N, Q° enforces the cut-off in Young diagrams in the

e;N

unrestricted space Ay, . .
bl )

Operator basis

To construct the baryonic Schur basis we insert the basis elements (5.6.79) into the

baryonic contraction formula (5.2.5)

€ o dr N P, R (e) I n no\J
oR,Rl,RQ,A—\/N!Qqqmm!m!(%)! ; ({[1]]@ (R, 181) D™ (@) Ba, Bay [A], MOV (X O™y 272)
o 2n

(5.6.85)
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Combinatorics

From the labelling of the operators (5.6.85), the dimension of the degree (ni,ny) space

of baryonic operators is

N’V&;;J,\;z = Z 9R;R:,R, (5686)

RF2n with odd row lengths
R1F2n; with even column lengths
R>F2ny with even column lengths

I(R)=N

Correlators

The two-point function of two baryonic operators can be calculated using the baryonic
correlator formula (5.5.27), the orthogonality of matrix elements (2.3.4) and the action
(5.6.81) of Q¢ on |[1V]) ® |R, [S])

< %,Rl,RQ,)\l |O§,Sl,SQ,)\2> = 5RS(SR151 5R2525)\1>\2f}8% (5687)

Under the Sy, inner product, the OE’ Ry Ry AT€ orthonormal.

5.7 Covariant bases

For each of the mesonic, symplectic and baryonic sectors, we can define U(2) covariant
bases in much the same way as we did for the U (V) theory in section 3.6.2. The U(N)
covariant basis has been used, first in [63], and subsequently in chapter 7 of this thesis,
to construct quarter-BPS operators at weak coupling. This is the first construction of
the SO(N) and Sp(INV) equivalents, and we expect that they could be used in a similar
way.

In this section, we present the key concepts necessary for the construction of the
bases, give a formula for the operators, and develop their combinatorics and correlators.
The detailed mathematical work involved in the construction of the mesonic operators
and the calculation of their correlators is given in appendix I. The symplectic and
baryonic basis are mathematically very similar to the mesonic version, so we are more
schematic for these two, and leave out some of the details both here and in appendix
F.

When introducing the U(N) covariant basis in section 3.6.2, we described some
basic U(2) representation theory. In this section we use the same notation.

Define X; = X and X9 = Y. Then the 7 index in X; is in the fundamental
representation of U(2), as described in section 3.6.2. Similarly to that section, consider
V", where Va is the fundamental of U(2), and in particular the basis vector a =
Cay ® €ay ® -+ ® eq, of V" where a; € {1,2} for each j. Then we define X, =
Xo, ® Xg, ® - ® Xg,, -
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5.7.1 SO(N) mesonic basis
Operator basis

Combining X, with a permutation o € Sy,,, we define
08, = Vol (X,)’ (5.7.1)

In appendix ' we discuss this definition, determine the redundancies in labelling oper-
ators by a and ¢ and derive a different labelling set that removes these redundancies.

These operators are

1 d .
) _ R a R Son—Sn[S2] 5J s
OA,MA,R,M - 2”771' dA(QTL)' az;k CA,MA,k [<R7 [S” D (U)] J BR —(¢,A), 15k Oa,a

(5.7.2)
where the labels are R F 2n with even column lengths satisfying [(R) < N, A - n with
I(A) <2, My a basis index for the A U(2) representation and p a multiplicity index.

The coeflicients involved in the definition are:

e C} y, 1 18 a Clebsch-Gordon coefficient for the Schur-Weyl decomposition (2.4.3)

of V2. k is an index for the A representation of S,,.

e [(R,[S]| D%(0)], is the representative of ¢ in the R representation of Sa, mul-

J
tiplied on the left by the S,,[Se]-invariant vector |R,[S]). J is a basis index for
R.
o B SISl o the branchi fficient taking the R tation of Sy, t
Ro(éA)hy 1S the branching coefficient taking the R representation of Sz, to

the (¢, A) representation of S,,[Ss] (see section I.1 for a description of S, [S2] rep-

resentation theory).  is a multiplicity index for the Sa, — Sy, [S2] decomposition.

For more properties of these coeflicients and an explanation of their appearance in

(5.7.2), see appendix F.

Combinatorics

In [86] the authors give an expression for the multiplicity M‘sR’ A of a representation
(¢, A) of S,,[S2] when reduced from a representation R of Sa,. They give two formulae,
the first in terms of terms of the plethysm of the symmetric functions sy and the
elementary symmetric function ea. The plethsym of two Schur functions is described
in the introduction to chapter 6, but we will not define the more general case for

generic symmetric functions. The second formula is in terms of Littlewood-Richardson
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coefficients. For A = [A1, As], we have

1)
Mra = Z 9R;R1,Ry — Z 9R:R.,R, (5.7.3)
Ri1F2A; , RaF2A, RiF2(A1+1), RoF2(A2—1)
with even column lengths with even column lengths

These are exactly the Littlewood-Richardson coefficients found in the multiplicity (5.6.74)
of the restricted Schur basis. Indeed, the first term in (5.7.3) is the number of linearly
independent mesonic quarter-BPS operators with field content (A, A2). The second
term is the number of operators with field content (A + 1, A9 — 1), so by subtracting
those we remove the operators which are U(2) descendants and are left only with those

that are highest weight states of a A = [Aj, Ag] representation.

Correlators

Consider the two point function of two U(2) covariant tensor operators X,. We can use
Wick contractions along with the two-point function (5.5.4) for the matrices X and Y
to find the correlator of X,

() 1)) = 3 dasn(=1)7 (071} (5.7.4)

O'ESn[Sz]

where for o € S,[S2], & € Sy, is defined as the S;, component of o from the semi-direct
product S, [S2] = Sy, X (S2)".

In (5.5.10) we derived a formula for SO(N) mesonic correlators involving the el-
ement €. There is an analogous formula for covariant mesonic operators. Using the
expression (5.5.8) giving Q as a sum of the contraction C?, the correlator of the (5.7.1)

operators is

(01105,) = 3 dusn(-1)7Co oy 1771
’YESH[SQ}

= Z 5a’:/(b)(—1)75<§7707_17_1) (5.7.5)
¥,mESy [S2]

In appendix .3 we use (5.7.5) to evaluate the correlator of the covariant basis operators
(5.7.2). We find

(O a1 50O a1y ess) = ar0as, s Ors Oy S (5.7.6)

In the Sy, inner product, the operators are orthonormal.
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5.7.2 Symplectic basis
Operator basis

The matrix combination with definite symmetry in the symplectic theory is Q.X; rather
than X;, so define

QX)) = (0X,,) (QXg,) 5" .. (QX,, )2t (5.7.7)
Then a generic quarter-BPS symplectic operator can be written
0%, = el (0X,)” (5.7.8)
The covariant basis is

AMaRop ™ onp dp(2n)!

a Son—Sn[S2] ;J
Z CX Mk [<R7 [A”DR(U)]JBR :(A,[(;S),L;kog,ﬂ
a,o,J.k

(5.7.9)
where R I 2n has even row lengths and satisfies [(R) < N, A F n with [(A) < 2, My
is a basis index for the U(2) representation A and g is a multiplicity index, this time
for the reduction of R to the (A, ¢) representation of S,[S2] (compared with (¢, A) in
(5.7.2)).

As with the Schur and restricted Schur bases, the mesonic and symplectic bases are
related by conjugation and anti-symmetrisation. Define EX?\/[A Ry O be the coefficient
of (9270 in (5.7.2) and FK;?\/[A,R,M to be the coefficient of O, in (5.7.9). Then it follows
from the behaviour under conjugation of the representative Df (o), the vector |R,[A])

and the branching coefficient, given in (5.1.11), (5.1.13) and (F.3.5) respectively, that
Eviren= D P ry (5.7.10)

Combinatorics

The reduction of a representation R of Sa, to the representation (A, ¢) of S,[S2] was
also investigated in [86]. The multiplicity M%’ A can be given in terms of the plethysm
of sy with the power-sum symmetric polynomial po or instead in terms of Littlewood-

Richardson coefficients. For A = [A1, As] we have

Q
MR,A = Z 9R:R\,R, — Z 9R:R1,R, (5.7.11)
RiF2A; | RoF2A, RiF2(A1+1), RoF2(As—1)
with even row lengths with even row lengths

which matches the multiplicity from the restricted Schur basis as expected.

139



CHAPTER 5. ALGEBRAIC STRUCTURE OF THE FREE FIELD SO(N) AND
SP(N) GAUGE THEORIES

Correlators

By considering Wick contractions and using the formula (5.5.16) for the two-point

function of QX and QY, the correlators of two copies of QX is

(@)1 (%)) = 3" buoiy (071)] (5.7.12)

O'ESn [SQ}

Using the relation (5.5.20) between sums of the contraction C** and Q, we can express

the correlator of two generic covariant symplectic operators of the form (5.7.8) as

(01 105,) = " busyCor 177

YES, [Sz]

- ¥ 5M(b)(—1)“a(§mf1¢*1) (5.7.13)
~,mE€S,, [Sa]

Employing similar techniques to those used in appendix I to calculate the correlators
of the mesonic basis, we can give the two-point function of the symplectic covariant

basis operators (5.7.9)
<O¥,MF,S7V|O?,MA7R7M> = 5AF6MAMF5R55MVJC1% (5714)
They are orthonormal in the Sy, inner product.

5.7.3 Baryonic basis
Operator basis

For a permutation o € Ss,, define a generic covariant baryonic operator by
0%, = O oh(X,)’ (5.7.15)

The covariant basis is

OX,MA,R,,L = \/dA(Qn 'N'2‘1q'2"n' Z CR My k [( (1 ]| ® (R, [S]|) DR(U)] JB}S;":Z& A, M;k 0; -
(5.7.16)
where R = [1V] + R for R I~ 2¢ with even row lengths satisfying I(R) < N, A - n
with [(A) < 2, M} is a basis index for the U(2) representation A and p is a multiplicity
index for the reduction from the R representation of Sa, to the (¢, A) representation
of S, [S2].
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Combinatorics

The combinatorics of the baryonic basis are identical to the mesonic case, just with a

different class of Young diagrams R, so we refer the reader to the description (5.7.3).

Correlators

Using the formula (5.7.4) for the correlator of two copies of X, and the relation (5.5.25)
between sums of the contraction C® and the element €2, we write the correlator of two

generic baryonic operators of the form (5.7.15) as

< Z,T|OZ,O'>: Z 6&,7(6)(_1)706(0—7_17_1)
YES,[S2]

= > Gasp(—DT(=1)76 (QFroy ) (5.7.17)
¥, mESy [S2]

Then using the same methodology as that of appendix I to calculate the correlators of

the mesonic basis, the correlators of baryonic covariant basis operators (5.7.16) are

(OF M 5.1 Ofats Rp) = OATOM M ORS O f o (5.7.18)

In the Sy, inner product the operators are orthonormal.
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Chapter 6

Orientifold quotient from U(N)
theory to SO(N) or Sp(N) theory

In [55], N' = 4 super Yang-Mills with SO(N) and Sp(NN) gauge groups were demon-
strated to be the dual of type IIB string theory on AdSs x RP°. This string theory was
obtained from the standard AdSs x S° theory by identifying anti-podal points on the
S5 and reversing worldsheet orientation at the same time. Depending on topological
considerations, this orientifold quotient can lead to either a SO(N) or a Sp(N) gauge
group in the dual CFT. We now study this quotient in the BPS sector from the gauge
theory point of view. The distinction between the orthogonal and symplectic quotient
is much less subtle here, we either put the scalar fields X and Y in the adjoint of so(N)
or sp(N).

The majority of this chapter examines the quotient in the half-BPS sector. A
Young diagram basis of the U(N) half-BPS sector was derived in [22], while in [56,57]
equivalents were found for the SO(N) and Sp(N) theories. When we perform the
orientifold quotient on an arbitrary U(N) state, it becomes a linear combination of the
SO(N)/Sp(N) basis. The coefficients in this expansion describe how a giant graviton
in AdSs x S® reduces to those in AdSs x RP5. We investigate these coefficients using
two different approaches.

Firstly, we find that these coefficients have a simple and elegeant expression in terms
of a classic concept in the combinatorics of Young diagrams, called plethysms of Young
diagrams.

Consider a Young diagram t with m boxes and a positive integer k. There is a
representation V; of U(IN) corresponding to t. We take N to be large here, more
precisely N > mk. Now consider the tensor product Vt®k. This is a representation
of U(N) under the diagonal action where the group element U € U(N) acts as U ®
U ® ---U. This diagonal action of U(N) commutes with the Sy permutation group

acting on Vt®k by permuting the different factors of the tensor product. So we can
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decompose V2®k according to irreps of U(N) x Sy which correspond to pair (R, A)
where R is a Young diagram with km boxes and A is a Young diagram with & boxes.
The multiplicity of (R, A), denoted P(¢, A, R) is known as a plethysm coefficient. They
were defined by D. E. Littlewood [87] and remain the subject of important questions
in combinatorics [88]. The sum over A of P(¢,A, R) can be expressed in terms of
Littlewood-Richardson coefficients. For the case where k = 2, the Young diagram
A can be either the symmetric with a row of length 2, denoted as A = [2], or it
can be anti-symmetric, denoted as A = [1,1] for two rows of length 1. The sum
P(t,[2], R) + P(t,[1,1], R) is a Littlewood-Richardson coefficient: the number of times
R appears in Vt®2 when this is decomposed into irreps of the diagonal U(N). Thus
P(t,[2], R) and P(t,[1,1], R) are plethystic refinements of the Littlewood-Richardson
coefficients. It turns out that the orientifold projection map can be expressed in terms of
the plethysm coefficients P(¢,[2], R) and P(t, [1,1], R). A combinatorial rule for finding
these coefficients was given in [89], refining the Littlewood-Richardson rule by replacing
the standard Littlewood-Richardson tableaux with Yamanouchi domino tableaux.

The second approach uses another mathematical result described in [89]. Since both
U(N) and SO(N)/Sp(N) Young diagram bases can be described as Schur symmetric
functions, there is an operation on symmetric functions equivalent to the orientifold
quotient, denoted by ¢?. [89] gives a formula for ¢? on a U(N) Young diagram R in
terms of the 2-quotient, a pair of Young diagrams (¢1,t2) that gives an alternative
parameterisation of R. Interestingly, this gives a Zs symmetry on the U(N) theory,
interchanging t; and to, that does not affect the quotient operator. We conjecture this
is dual to inversion of the S°® and worldsheet orientation.

At the end of the chapter, we use the restricted Schur bases for U(N) [44,45] and
SO(N)/Sp(N) [59,60] to examine the quotient in the free field quarter-BPS sectors.

This chapter concerns only the mesonic sector of the SO(N) theory, since the U (V)
operators are all multi-traces, and replacing a generic X with an anti-symmetric X takes
multi-traces to multi-traces. The baryonic operators, and associated branes wrapped
on an RP? within RP° do not arise from the quotient in this way.

Some of the material in this chapter was originally presented in [1].

6.1 Projection coefficients in the half-BPS sector

Consider the quotient of a half-BPS U(N) single trace operator. We have

e Zo TrX* k even
TrX" — (6.1.1)

0 k odd
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Note that on the left-hand side, X is an unconstrained complex matrix, while on the
right it is either anti-symmetric or obeys the symplectic condition (4.0.1), depending
on our choice of quotient.

Extending this quotient in the obvious way to multi-traces and linear combinations
thereof, we can examine the behaviour of the Schur operators (2.3.14). Let R = n (with

n even, otherwise the quotient always vanishes) index a U(NN) operator, then

o) 22, 3 aF0%/¢ (6.1.2)

TH2n with even
row and column lengths

where the SO(N) and Sp(N) operators are defined in (5.6.12) and (5.6.13). Note
that since the expressions for (’)5} and (’)gp2 in terms of multi-traces are identical, the
projection coefficients ag are independent of the gauge group. We will use §/2 in the
upper label of operators throughout to indicate this property.

If we consider the definition (6.1.2) at large N, then since all coefficients of multi-
(N) and O/ are independent of N, so are the ag. At finite N, the

same quotient relation holds, though now some or all of the operators may vanish.

traces in OV

Consistency of the finite N cut-offs on the two bases require that ag is only non-zero
when [(T) > I(R).

As an example of the quotient we look at n = 4. Using the definition (2.3.14) the
U(N) operators are

U(N 1 1 2 1 1 1
OEI%EI% = ZTrX4 —|—§ (TrX?)" + 1 (Trx?) (TrX)? —|—§ (TrX?) (TrX) + 7 (Trx)*
(6.1.3)
O = —;TX* — (TrX%)" + 7 (TrX7) (TrX) + 5 (TrX)
(6.1.4)
ogtM = i (Trx?2)* —% (TrX?) (TrX) + % (Trx)*
(6.1.5)
oy Lopa y2 _ 1 2 2 1 4
oy = (WXt - (TeX?) - o (TeX?) (TrX) + 5 (TrX)
(6.1.6)

oLt = - iTrx‘l +é (Trx?)? - i (TrX?) (TrX)? % (TrX?) (TrX) + 21—4 (TrX)*

Survive the Zg quotient Annihilated by the Zga quotient

(6.1.7)
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. T
[6,6] | [4,4,2.2] | [2,2.2,2,2,2]

[6] 1 0 0
5.1] 1 0 0
[4.2] 1 1 0
[4.1,1] 1 0
3,3] 1 1 0
3,2,1] 0 0 0
3,1,1,1] 0 1 0
2.2,2] 0 1 1
2,2,1,1] 0 1 1
RILI1] | 0 0 1
MI,L1,11] ] 0 0 1

Table 6.1: Projection coefficients ok at n = 6.

while from (5.6.12) and (5.6.13), the SO(N)/Sp(N) operators

5/Q 1 4 1 2\2
OEEHH_ T X+ 2 (Trx?) (6.1.8)
5/Q _ _1 4 1 212
0% =T X"+ 2 (TrX?) (6.1.9)
So the quotient is
oUW 22, 50/ 6.1.10
1] mama ( )
OUVWN) 22, o/ 6.1.11
o HH (6.1.11)
OUWN) L2, 0/t L 3/ 6.1.12
& ciii R (6.1.12)
oUW Zo 5/

-0, (6.1.13)
P

OE(N) EEN O%Q (6.1.14)

More examples of projection coefficients for n = 6 and n = 8 are shown in tables 6.1
and 6.2. These are calculated using the formula (6.1.18) derived presently.
To give an explicit expression for the projection coefficients, we recall that the size

of the conjugacy class in S,, with cycle type p - n is ?—; Using this we write the U(NV)
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T

k [8.8] [ [6,6,2.2] | [4,4,4.4] | [4,4,2.2,2.2] | [2,2,2,2,2,2,2,2]
B 1 0 0 0 0
[7.1] 1 0 0 0 0
[6,2] 1 1 0 0 0
[6,1,1] 0 -1 0 0 0
[5,3] 1 1 0 0 0
[5,2,1] 0 0 0 0 0
[5,1,1,1] 0 1 0 0 0
[4,4] 1 1 1 0 0
[4,31] 0 0 1 0 0
[4,2,2] 0 1 1 1 0
[4,2,1,1] 0 1 0 1 0
[4,1,1,1,1] 0 0 0 1 0
3,3,2] 0 1 0 1 0
3,3,1,1] 0 1 1 1 0
3.2,2,1] 0 0 1 0 0
[3,2,1,1,1] 0 0 0 0 0
[3,1,1,1,1,1] 0 0 0 1 0
2,2,2,2] 0 0 1 1 1
22,2,1,1] 0 0 0 1 1
2.2,1,1,1,1] 0 0 0 1 1
R | 0 0 0 0 1
LI,1,1,1,1,11] | 0 0 0 0 1

146

Table 6.2: Projection coefficients ok at n = 8.
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operators (2.3.14) in terms of traces
oM =y A Xe(p H (Trx?)" (6.1.15)
pFn %
N)/Sp(N) Schur operators, invert (5.6.12)/(5.6.13) to give
(6.1.16)

To give this as a sum of SO(

H (TrX27’ = Z xt(q

tH5

5/9

%

and T is obtained from ¢ by replacing each box of ¢t by the 2 x 2 block
.6.1, t = %, and in the partition notation of section 2.2,

where ¢ - 5
HH. In the notatlon of section 5
T =2t U 2t.
It follows that
U(N) Z Xr(2p) i 5/
0™ =2 > 272192 P> xi(p)OY
pF% tF%
6/
= Z Z —xr(2p)x:(p) | OY (6.1.17)
2 \pH2 “p
where we have used 22, = 2l(p) zp. Therefore
1
ah=> —xr(2p)x:(p) (6.1.18)
pr2 P
Introduce
n n n
— (1.1 7) (2,2 7)...(7, ) 1.1
m ( + 5 + 5 5 M (6.1.19)
, 21, the product

For a permutation o € S%, embedded into S, by acting on {1

om has cycle type 2p. So we have
(6.1.20)

1
= ﬁ ZXRUWXt)
(3)

O'GSn

1
— P,
thR( +70)

where P, defined in (2.3.13), is the projector onto the t representation of S=
n}, the conjugate of

Since m switches the sets {1,2 ,%} and {% +1,5+2,...,
P, by 7 is the projector P, onto the ¢ representation of S% with a different embedding,

n} instead of {1,2,...,%}. Then

actingon {§ + 1,5 +2,...,
s 1 1 . 1
ap = —XR (PtPtﬂ') —XR (Ptﬂ'Pt) = —XR (Pt(g)tﬂ') (6121)
dy dy dg
= PP, = PP, is the projector onto the representation ¢t ® ¢ of S» x Sn

where Pt®t
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Decomposing R into representations S% X S’%, we have

Sn S
Vir=@P Vvt eV

n
r,skg

¥ @ vt (6.1.22)

where V]{;;"lst is the multiplicity space of dimension gg..s. Consider the action of w
on a vector in the (r,s) subspace. Since 7 exchanges the two copies of S%, it is
mapped to a different vector in the (s,r) subspace. This induces a map between the
multiplicity spaces Vlg};flst and Vg‘gff . For the subspaces with r = s, this is a map from
the multiplicity space to itself. Since 72 = 1, we can split Vg};fit into the +1 and —1
eigenspaces, which we denote by V}g?ﬁ it;i.

The projector Pyg in (6.1.21) means only the » = s = ¢ term in the decomposition

contributes. On this term, 7 splits into
T =T ® Tonult (6.1.23)

where m; acts on t®t by switching the factors, and m,,,;+ acts on the multiplicity space.

Only the diagonal terms in ¢ ® ¢ contribute to the trace, and therefore

Xtat(me) = di (6.1.24)
It follows that
1 . .
ok = gy Xeer(m) Tyt () = Dim (ng;jf*) — Dim (nggﬁt’ ) (6.1.25)

These dimensions are S, plethysm coefficients. We now use Schur-Weyl duality, given
in (2.4.3), to give the equivalent expression in terms of U(N) plethysm coefficients that
have been studied in [89]. Since the projection coefficients are N-independent, we work
at large IV to avoid issues with finite N cut-offs.

Let V be the fundamental of U(N). Then U(N) and S, act on V®", with the
interaction between the two given by Schur-Weyl duality. Explicitly, for ¢ € S, and
U € U(N), we have the decomposition

Tryen (oUd) = > X U) X5 (o) (6.1.26)
RFn

In direct analogy to the projector (2.3.13) we can define an operator that projects onto
the R irrep of U(N). Since U(N) is a compact Lie group, the sum is replaced by an

integral over the Haar measure (normalised so that the volume of the group is 1).

P — / U 5N uu (6.1.27)
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which has representative 1 in the R representation of U(N) and 0 in all others. We can

use this to express aﬂ as a trace over the whole of V®"
r_1 s p
YR = 7 XR (Prgt )
t
1 NG N
( ) (PR( )> X}gg" (Pigt )

dU () d

1 U(N)
=~y Trver (PR Proy 77) (6.1.28)
R t

Perform a Schur-Weyl decomposition on each factor in V" = VO @ VO3,

N\:

@VU % @VU

re5 sH3
= P vV eyl MoV gy ? (6.1.29)
Tsl—"

Examine the action of 7 on this decomposition, just as we did for (6.1.22). Since 7
exchanges the two copies of V®2 | it exchanges the spaces labelled by (r,s) and (s, )

for r # s. On the spaces with » = s, 7 splits into a tensor product operator

7 =a/W) g gSn (6.1.30)
where 7V(N) exchanges the factors of V uw) 2V, and 75+ is 7, as defined in (6.1.23).
Therefore
a% = 1 Trv®n (Pt@)tP]g(N) 7'(')
d% N) g,

_ 15 . < U(N) )
o d%(N) dt ‘/,SU(N)®VU(N)®V % ‘/t % R

®
1 Sn
i) dtx,%iv )< Py MU ) A

L o) (pu
- dU(N)tht (PR RU0) (6.1.31)
R

Splitting the U (V) representation ¢ ® t into its symmetric and anti-symmetric parts
S%(t) and A2%(t), we have

ke b Do () e (B)] o1

Each of the two terms is just the multiplicity of the R irrep of U(N) in S? (t) and AZ (¢)
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respectively. By definition, these are the U(N) plethsym coefficients P(t, [2], R) and
1dm

2
of 7) in the above, we see that these plethsym coefficients agree with the S,, plethsym
coefficients of (6.1.25)

P(t,[1,1], R). Keeping track of the 7 eigenspaces (for example by using instead

P(t,[2], R) := Mult (R, S*(t)) = Dim (Vé’fff,f“) (6.1.33)

P(t,[1,1], R) := Mult (R, A%(t)) = Dim (Vg}gt?‘) (6.1.34)

where the partitions [2] and [1,1] denote the fact that we took the symmetric and
anti-symmetric parts of ¢t ® ¢.

So we have
ap =P(t,[2],R) — P(t,[1,1], R) (6.1.35)
The Littlewood-Richardson coefficient is

grtt = P(t,[2], R) + P(t,[1,1], R) (6.1.36)

SO ag is a refined version of gr.:. We see that gr.;; = 0 is a sufficient condition for

a% = 0 and the parity of g;+r is the same as the parity of aﬂ.

The plethysm coefficients P(¢, [2], R) and P(¢, [1, 1], R) were the subject of the pa-
per [89]. They present two combinatorial rules, the first gives the difference P(t, [2], R)—
P(t,[1,1], R) = ok directly, while the second gives the two plethysm coefficients indi-

vidually. Both rules involve Yamanouchi domino tableaux, which we now define.

6.2 Domino tableaux and combinatorics of plethysms

A domino tiling of shape R n (n even) is a tiling of the shape R with 2 x 1 or 1 x 2
rectangles, which are called dominoes. A domino tableau is a tiling where each domino
contains a positive integer, such that the numbers increase weakly along the rows and
strictly down the columns. Note that each domino occupies 2 rows and 1 column (or 2
columns and 1 row), and the integers contained within the dominoes must be correctly
ordered in both rows (columns). This is analogous to the semi-standard Young tableau
introduced in section 3.6.2.

Each row in a domino tableau defines a word by reading the numbers in the row
from right to left, where vertical dominoes, which span two row, only contribute to
the upper row. The row reading of the tableau is then defined by concatenating these
words starting with the top row and proceeding downwards.

A lattice word is a word on the alphabet of positive integers such that each prefix

contains at least as many 1s as 2s, at least as many 2s as 3s, and, more generally, at
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tirfafe] (a1 )r] ftft]rf1| [1]1 1)1
2 2
2212 2 2 2(213 21213
3 3 4 3 4
4,3,1] [4,2,2] [4,2,1,1] [3,3,2] 3,3,1,1]
11112223 11112233 11112234 11123223 11123224
1 1
1)1 1)1 1)1
2 2 2 2 2 2 2
3 2 3 3 3
2 3 2 3 3
4 3 4 4
3 ¥4J 5 4 5
3,2,2, 1] 3,2,2, 1] 3,2,1,1,1] 2,2,2,2] 2,2,2,1,1]
11123243 11123234 11123245 11223344 11223345

Figure 6.1: The possible Yamanouchi domino tableaux of shape [4,4,3,3,1,1]. The
evaluation and row reading of each tableau is given beneath.

least as many is as (i + 1)s for every i. A Yamanouchi domino tableau is a domino
tableau for which the row reading is a lattice word.

In the original paper [89], they use the column reading instead of the row reading,
which must be Yamanouchi words, defined to be the reversal of a lattice word. The
two forms are equivalent. In this work we use lattice words to make clearer the analogy
between Yamanouchi domino tableaux and the Littlewood-Richardson tableaux defined
in appendix D.

For a given Yamanouchi domino tableau, let the number of integers ¢ in the tableau
be given by \;. We define the evaluation of the tableau to be A = [A1, Ag,...]. Clearly
> ;M = 5, and the lattice word condition on the row reading ensures that A is a
partition of 7, i.e. the )\; are weakly decreasing.

As an example of the above definitions, figure 6.1 gives the ten Yamanouchi domino
tableaux of shape [4,4,3,3,1, 1] along with their row readings and evaluations.

A key property of a domino tiling is the number of horizontal or vertical dominoes.
Take R F n, with components Ry, Ro, ..., R;. Assume that R admits a domino tiling,
and let r be such a tiling. Then define h;(r) to be the number of horizontal dominoes

in row i of r, v;(r) be the number of vertical dominoes with their uppermost box in row
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i, and h(r) and v(r) be the total number of horizontal and vertical dominoes. Then we

have

Ry = 2hy(r) + vi(r)
Ry = 2ha(r) + v1(r) + va(r)

R3 = 2h3(r) +va(r) + v3(r)
(6.2.1)

Ri—1 = 2hg_1(r) + vp—2(r) + vp_1(r)
Ry = 2hk(7“) + Uk_l(T)

Therefore

(_1)R1+R3+--- _ (_1)2(h1(7‘)+h3(1”)+...)+1)1(7")+’l)2(7’)+---+vk—1(7") — (_1)U(T) (6_2.2)

Crucially, if a domino tiling of shape R exists, the parity of v(r) (similarly the parity
of h(r)) depends only on R, and not on how the dominoes are arranged. In light of
this, we define e5(R), the 2-sign of R, to be (—1)"(") if R admits a domino tiling, and
0 otherwise.

Under conjugation of R, horizontal dominoes turn into vertical ones and vice versa.
Since h(r) 4+ v(R) = 5, it follows that

£2(R°) = (—1)2ea(R) (6.2.3)

We can now give the first combinatorial rule, proved in [89], for finding a. Defining
Df\?‘ to be the number of Yamanouchi domino tableau of shape R and evaluation A, we
have

oh =P(t,[2],R) — P(t,[1,1], R) = e2(R)DF (6.2.4)

Note this means the sign of the non-zero a% depends only on R and not 7', since
DE > 0. This can be seen in tables 6.1 and 6.2, where each row consists only of zeroes
and positive numbers, or zeroes and negative numbers.

For the second rule, consider T' - 2n, constructed from 2 x 2 blocks. Clearly we can
tile T" with dominoes by putting 2 horizontal dominoes in each 2 x 2 block. Therefore
in any domino tableau of T', there must be an even number of horizontal (and vertical)
dominoes. We split the domino tableau of shape T into two classes, based on the
number of pairs of horizontal dominoes. If a tableau has an even number of pairs, we
say it has spin 1, while if it has an odd number of pairs it has spin —1. For T of this
type, we define DSC’ r and D:_F’ p to be the number of Yamanouchi domino tableaux of

evaluation R and positive and negative spin respectively. The second combinatorial
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rule, which gives the two plethysm coefficients individually, is
P(t,[2,R) = DL 5 P(t,[1,1],R) = DL (6.2.5)
This leads to a second expression for (6.1.35)
ap=DL ,—DT, (6.2.6)

In tables 6.1 and 6.2 we gave some low n (n = 6,8) examples of a%, calculated using
(6.1.18). In addition, the n = 4 coefficients can be read off from (6.1.10-6.1.14). These
tables have been checked against both combinatorial rules (6.2.4) and (6.2.5). In all
cases the results match.
From (6.1.36), the total number of domino tableau of any spin is the Littlewood-
Richardson coefficient
gris =D} g+ DT p=Dp (6.2.7)

So 0% may be viewed as a refinement of the Littlewood-Richardson coefficient gr. ¢
The two combinatoric methods of finding ag are independent of each other. For
example if we take R = [3,2,1], then there are no domino tableau of shape R, so
(6.2.4) gives 0 trivially. However if we look at Yamanouchi domino tableau of shape
T = [4,4,2,2] (corresponding to t = [2, 1]) and evaluation R, we find two such tableaux,

one contributing to each of the two plehtysm coefficients. These two tableaux are

(6.2.8)

The first tableau has spin 41 while the second has spin —1. Using (6.2.5), P(¢,[2], R) =
P(t,[1,1], R) = 1, and therefore o’k = 0.

The two tableaux in (6.2.8) can also be interpreted with the roles of 7' and R
switched. If we take R = [4,2,2] and t = [3,2, 1] then these tableaux contribute to D},
and by (6.2.4) we find ok = 2. This is the lowest n example of a projection coefficient

taking a value with modulus greater than 1.

6.3 Brane interpretation of domino algorithm

We can also formulate a detailed brane interpretation of the domino algorithm. For a
single column Young diagram R, a domino tiling exists only if the length of the column is
even. Single giant gravitons with L units of angular momentum can be usefully thought

of as composites of L quanta. Pairs of quanta are invariant under the orientifold action,
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consistent with the fact that only single column Young diagrams of even length survive
the projection. The projection of these single column Young diagrams R are single
column Young diagrams ¢, which should therefore also be interpreted as single giants in
the orientifold theory. Similarly the quanta of angular momentum forming a single long
row (AdS giant) are paired by the domino algorithm into Zy invariant pairs, resulting
in a single giant in the quotient.

Now consider a 2-row Young diagrams R = [ry,72], in the regime where 7,79
are comparable to N and their difference is also comparable to N, e.g. [ri,r2] =
[2N, N]. Consider a domino tiling with a number s; < ry of vertical dominoes, with

the remaining boxes [r; — s1,r2 — s1] occupied by horizontal dominoes.

S1 9 — 81 1T — T2
N N N

-
IR L 1 1 \ (6.3.1)

This has evaluation t = [%, %] The vertical dominoes stretch across boxes in
the first and second row, which can be viewed as quanta constituting the two branes
described by R. The horizontal dominoes are constituents of the same brane. A hori-
zontal domino in the first or second row of R contributes a box to the first or second
row of £. The vertical dominoes, even though they span row one and two of R, con-
tribute to the first row of ¢ only. The domino combinatorics thus encodes, in a precise
way, a recombination of angular momentum quanta between the two branes of angu-
lar momenta 71,72 described by R, which accompanies the orientifold procedure. For
multi-row Young diagrams, the domino algorithm pairs quanta of angular momentum
in adjacent rows, equivalently adjacent giant gravitons in the LLM plane. An analo-
gous discussion holds for multi-column states, where horizontally tiled dominoes pair
quanta from distinct giants and vertically tiled dominoes pair quanta within a giant
worldvolume.

It would be interesting to deduce connections between the brane interpretation of
the orientifold projection coefficients discussed heuristically above, from more general
frameworks for brane dynamics in the presence of orientifolds, as developed for example
in [90,91]. In the AdS/CFT context, a useful discussion of orientifolds is in [58].

6.4 The quotient operator as a product

Beyond the combinatorial rules (6.2.4) and (6.2.5), the paper [89] gives an expression for
the quotient of a U(N) operator Og(N) as a product of two SO(N)/Sp(N) operators.

Expressed in the language of symmetric functions, they define a map ¢ which takes
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a Schur function sg in the IV variables x1, z9,...,xn and returns a symmetric function

$?(sg) in the % variables y1, %2, ...,y~. This is defined by
2

d)Q(sR) <y17y27 e 71/%) = SR (yl: Y1, Y2, =Y2, - - 72/%, _y%> (641)

The authors then explain that

¢2(8R) = 6Q(R)Sh (yfa y;v s ay%) St (y% y%a v ay2%> (642)

where the ordered pair of Young diagrams (¢1,t2) are the 2-quotient of R, which will
be described shortly.

The Zg quotient from the U(N) theory replaces the generic matrix X with an anti-
symmetric or symplectic matrix. In terms of the N eigenvalues of X, for SO(N) (N

even) the quotient acts as
T —1x1, Tg —> —iT1, ... ,xN_lﬁix%,xN%—ix% (643)
while for N odd, we have
1 — X1 , Lo —> —i.%'l, ooy, IN—2 — m‘¥ y, TN—1 — —i.%% , TN — 0 (6.4.4)
and for Sp(N)
1’1—>ZL‘1,{L‘2—>—1’1,...,$N_1—>ZL‘%,IL‘N—>—:L‘% (6.4.5)

Since the U(N) Schur operators are Schur symmetric functions in the N eigenvalues
of X, this means the SO(N) quotient can be evaluated by setting y; = iz; in (6.4.1),
while the Sp(N) quotient sets y; = x;. Using the formulae (5.6.18) and (5.6.20) for

SO(N) and Sp(N) Schur operators in terms of Schur symmetric functions, we see that
o4 2, ¢y (R)OY 0" (6.4.6)

where T; = 2t; U 2t;. Intuitively, T; is obtained from ¢; by replacing each box of ¢; with
the 2 x 2 block HH.

In the dual string theory, this suggests that the orientifold quotient of a giant gravi-
ton state in AdSs x S° can be expressed as a composite system of two SO(N)/Sp(N)
giant graviton states.

The product of two Schur symmetric functions is expressed in terms of Littlewood-
Richardson coefficients (D.1.4). Therefore

O 2 ey O 0"
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= e2(R)s¢, 51,

=e2(R) Y Guteast
e
1<%

=o(R) Y g, 07" (6.4.7)
P
<%

and consequently
af = ea(R)get 1o (6.4.8)

We now explain how the 2-quotient Young diagrams (¢1,t2) are derived from a partition
REn.

6.4.1 2-core and 2-quotient of a partition

Take a partition R - n. For the definitions of this section, we do not require n to be
even. The 2-core and 2-quotient of R are discussed in [64, Chapter I].

Consider removing dominoes from R until you obtain either the empty diagram, or
a ‘staircase’ diagram of the form Ay = [k, k — 1,...,2,1], from which no domino can
be removed. Then the 2-core of R is the resulting Ay. This is independent of the order
in which dominoes are removed from R.

A simple way to determine the 2-core is to colour the boxes of R. A box is white
if the content, defined in (2.3.19), is even, and black if the content is odd. This forms
a chessboard pattern on the boxes of R, with a white square in the top left. Let
ny(R) be the number of white boxes in R and ny(R) the number of black boxes. Then
Ny — Ny is unchanged by adding a domino to the diagram. The staircase diagram Ay
has n,, —ny = % if k£ is odd and n, —np = —g if k is even. Inverting these gives k
in terms of n,, — ny, and therefore n,, — n; determines the 2-core.

If the 2-core of R is Ay for £k > 0, then R does not admit a domino tableau.
Therefore the projection coefficients ag will vanish unless R has 2-core Ag, the empty
Young diagram.

Split the rows of R into two types, even and odd, depending on whether the last
box of the row has even or odd contents. Similarly, a column of R is even/odd if the
last box in the column has even/odd contents. Then ¢; is defined to be the diagram
composed of the boxes in the intersection between the even rows and the odd columns.

Similarly ¢, is the intersection of the odd rows with the even columns.
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As an example of this process, take R = [5,5,4,2]. This can be tiled by dominoes

(6.4.9)

and therefore the 2-core of R is empty.

The 1st and 4th rows of R are even, while the 1st, 4th and 5th columns are odd.
Correspondingly, the 2nd and 3rd rows are odd and the 2nd and 3rd columns are even.
Colouring the intersection of even rows and odd columns green, and the intersection of

odd rows and even columns red, we have

R= (6.4.10)

so the 2-quotient (¢1,t2) of R is

t = [ ] 3,1] ty = = (2,2] (6.4.11)

The algorithm above constructs the 2-core and 2-quotient for any partition R. Con-
versely, given a choice of Ay and a pair of partitions (¢1,t2), there is a unique R
|Ak|+ 2(|t1] + |t2]|) with the 2-core Ay and 2-quotient (¢1,t2). We now give a construc-
tion of R with empty 2-core and 2-quotient (¢1,t2), which we denote by R(t1,t2).

To describe R(t1,t2) we introduce the Frobenius notation for a partition, as de-
scribed in [64]. The depth of a partition p is the largest = such that there is a box in
the (r,7)th position. So for example the depth of any hook diagram [k, 1!] is 1, while
the depth of [2,2] and [3,2, 1] is 2.

For a partition p = [\, Ag, ..., Ag] of depth 7, define o; = A\; — i for 1 < i < r. This
is the number of boxes to the right of (7,7) in the ith row of p. Given the conjugate of
p is p® = [p1, po, . .., ], define B; = p; — . This is the number of boxes below (i,%) in
the ¢th column of p. We have a; > a9 > - >, >0and 8y > B2 > --- > 3, > 0, and
we denote p by

p=(a1,02,....00|B1, B2,. ... Br) (6.4.12)

Intuitively, the pair «a;, 8; specify the hook of the box (i,7), and we can construct the
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entire partition from this information. Visually

a1 ‘
as ‘
o ‘
p= 51 52 . 5T (6.4.13)
The size of p is
Pl =7+ (ai+B) (6.4.14)
=1

It is clear that conjugating p swaps the «; and ;.

We now move on to the construction of R(t1,2). In Frobenius notation, let

t = (a1, 02, 0,181, oy .., Br) (6.4.15)
te = (71,72, - -+ ¥s[01, 02, - -, s) (6.4.16)

Then consider the sets
A={201,209,...,20,,271 + 1,279+ 1,... 275 + 1} (6.4.17)
B={281+1,285+1,...,28, +1,251,26,...,25,} (6.4.18)

The even members of A are just double the «a;, and it follows that they are all distinct.
Similarly the odd members of A are all different, and therefore all members of A are
distinct. Let a; be the ith largest member of A for 1 < i < r 4+ s. Similarly, let b; be
the ith largest member of B. Then R(t1,t2) is given in Frobenius notation by

R(tl, tQ) = (al, as, ... ,aT+S\b1, bg, e 7br+s) (6.4.19)
The length of R(t1,t2) is
L(R(t1,t2)) = by + 1 = max(2p; + 2,261 + 1) = max(2l(t1),2l(t2) — 1)  (6.4.20)

Therefore the finite N cut-off on R(t1,t2) is equivalent to

[(t1),l(t2) < N

5 (6.4.21)
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As a special example of the 2-quotient, consider t; = to = 7. In this case R = R(r, )
has even length rows and columns, and is built of 2 x 2 blocks FH. As discussed earlier,

this allows the definition of % by replacing each 2 x 2 block with a single box. Then

% = r. This gives an alternative expression for the relation between T and ¢ = Z for
the SO(N)/Sp(N) theories:
T = R(t,t) (6.4.22)
From the definition (6.4.19), under conjugation of R, we have
R(t1,t2)¢ = R(t5,t7) (6.4.23)

From this relation we can derive the conjugation behaviour of the projection coefficients.
Using the expression (6.4.8) for %, the behaviour (6.2.3) of ea(R) under conjugation,

and properties of Littlewood-Richardson coefficients, it follows that

E

afe = €2 (R%) gresg e = (—1) 2e2(R) gty 1y = (—1) 2 gy (6.4.24)

6.5 Simple families of projection coefficients

We can use the 2-core and 2-quotient to better understand the physics of the orientifold
quotient. There are three families of R which have particularly nice properties.
Firstly, we have R with
oM 22, g (6.5.1)

These are exactly the R with non-empty 2-core. As a special case, this includes all
diagrams with R = n and n odd. More generally, these R are ‘staircases + dominoes’,
i.e. they are constructed by taking a Ap with £ > 0 and adding dominoes on to the
diagram. One can check in examples (6.1.10-6.1.14) and tables 6.1 and 6.2 that all
coefficients ozg with R of this form vanish.

The other two families of R have quotient
oYM 22, o) (R)OY/® (6.5.2)

for a unique Young diagram 7'. This can occur in two distinct ways.

Firstly, consider R = R(t, ¢) or R = R(¢,t), where ¢ is the empty partition. Then
) project to a single
SO(N)/Sp(N) operator. Let t = (a1, ag,...,a:|B1,P2,...,05;) in Frobenius notation.
Then (6.4.19) reduces to

it follows from (6.4.6) that the orientifold quotient projects (’)g(N

R(t,¢) = (201,200, ..., 200281 + 1,282 + 1,...,28, + 1) (6.5.3)
R(p,t) = (200 + 1,202 + 1,..., 200 + 1|21, 202, . .., 2B:) (6.5.4)
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For this ¢ and these R, we have ozg = e9(R). To determine the sign, we need to
construct a domino tableau of shape R. From the domino rule (6.2.4), there is a unique
Yamanouchi domino tableau of shape R and evaluation t. We now describe this tableau,
both to determine e2(R) and to give an example of the domino rule at work.

Before doing the general case, consider an example with ¢t = (4,2,03,2,1) =
[5,4,3,3]. Then R(t,¢) = (8,4,0]7,5,3) =[9,6,3,3,3,3,2,1] and R(¢,t) = (9,5,1]6,4,2) =
[10,7,4,3,3,2,1], shown below. The Yamanouchi domino tableaux that contribute to

T T .
AR(t,6) and « R(6.) respectively are

RN
2 [ 2 ] 2|
2
3
3
N (6.5.5)
— 4
44
44 L1

Counting the number of vertical dominoes, we conclude the 2-sign of R(t,¢) is —1,
while the 2-sign of R(¢,t) is +1.

In more generality, the Yamanouchi domino tableau of shape R(t,¢) contains «;
horizontal dominoes in the ith row, each containing an i and 5; + 1 vertical dominoes
in the ¢th column, numbered ¢,¢ + 1,...,% + §;. The Yamanouchi domino tableau of
shape R(¢,t) contains «; + 1 horizontal dominoes in the ith row each containing an ¢
and (; vertical dominoes in the ¢th column, numbered i + 1,7+ 2,...,7 4+ ;.

From these descriptions, it follows that

o2 (R(t,9)) = (1) B = (—) X & (R(6,1)) = (~)Z
(6.5.6)
where we have used 7+ >, (a; + 3;) = n.

The second way to obtain the quotient (6.5.2) is when the finite N cut-off on Young
diagrams reduces the sum in (6.4.7) to a single Young diagram. From the LR rule
described in appendix D.2, this happens when t; = [k:%} for some £ > 0 and t»
is arbitrary, or vice versa. The corresponding t is obtained by placing k£ columns of
length % in front of the unrestricted ¢;. Formally, this is t = t; + t».

To find the associated R(t1,t2), one can use the definition (6.4.19), where the Frobe-

nius notation for £ columns of length % is

[k%] —(k—1,k—2,....,00N-1,N—2,....N — k) (6.5.7)
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6.6 The orientifold Z, action in the U(N) gauge theory

In this section we propose a candidate p for the Zs orientifold action in the U(N) gauge
theory. That is, the gauge theory equivalent of the map z — —z for z € S° along with
worldsheet reversal.

There is a natural candidate for p, namely the map induced by X — —X7T. How-
ever, on a single matrix multi-trace operator of degree n, this would act merely as
multiplication by (—1)". It was pointed out in [55] that the AdSs x RP® theory is
composed only of states from the AdS5 x S° theory that are invariant under the Zs
orientifold action. Therefore this naive map would correctly predict that all operators
with n odd would disappear in the SO(N) theory, however it would also imply that
the U(N) and SO(N) theories should have the same half-BPS sector for n even, which
is incorrect.

M) and its image

Certainly a property p should posses is that an operator (’)%
p (Og(m) have the same orientifold quotient. The formula (6.4.8) then suggests an
alternative candidate, since the Schur operators with Young diagrams R(t1,t2) and
R(t9,t1) have the same quotient, up to a sign. We therefore conjecture that inter-
changing the 2-quotient of a U(/N) Young diagram should be interpreted in the dual
AdS description as the geometric Zo action of inverting the S° and reversing worldsheet
orientation.

This action can be defined not just on operators of the form R(t1,t2), but also on
those with non-empty 2-core. Let R(A;t1,t2) be the Young diagram with 2-core A and

2-quotient (t1,t2). Then write
pR(Ast1,t2)] = R(Ajte, 1) (6.6.1)
On U(N) operators, the Zg action is
UN)) _ L »nUW)
0 (OR ) = 0"\ (6.6.2)

where for R with empty 2-core, the sign is e2(R)ea2(p(R)), while for R with non-empty 2-
core, it is non-obvious which choice of sign we should take, and we leave it undetermined
except for the consistency condition p? = 1.

We check that p makes sense as the geometric action x — —x along with worldsheet
inversion in two examples. One we expect to be invariant under the Zs from geometric
considerations in the dual AdS, and another we expect to be invariant from the gauge
theory.

Firstly, take R = [1?V], a single column of length N. This is dual to a single maximal
giant graviton wrapped around an S® equator of the S°. Under the action z — —z, we

expect this state to be invariant.
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The 2-quotient (¢1,%2) depends on whether N is even or odd. If N is even, then R
has empty 2-core, and the 2-quotient is ({1%} ,qﬁ), whereas if N is odd, R has 2-core

[1] and the 2-quotient is <¢, [1¥} ) Interchanging the 2-quotient, we have

[2, 1N_2] N even

[1YN] —
3,2,1¥7%] N odd

(6.6.3)

Visually, if N even

HEE N - (6.6.4)

and if NV odd

G, (6.6.5)
H [ ]

So this state is not invariant under the 2-quotient interchange action. However, it does
maintain its qualitative interpretation. For large IV, the image Young diagram still
has a single large column of length < N, interpreted as a single giant graviton. The
extra boxes in latter columns are treated as small perturbations that do not change the
qualitative behaviour.

It is worth noting that the maximal giant, wrapping an S® equator of S°, is a clas-
sical state, and invariance under the geometric Zs action does not necessarily transfer
to the full quantum theory. The quantisation of sphere giants has been investigated
in [27], and it would be interesting to see whether this approach can determine how
this geometric Zo behaves on the quantised Hilbert space.

For the second example, note that among those R with empty 2-core, the R with
even length columns and rows are invariant under interchange of the 2-quotient. This
was discussed above (6.4.22). In particular, one could consider R = [2¥] for even k of
order N. This corresponds to two sphere giants. The AdS dual state consists of two

D3-branes wrapped on 3-sphere of the same size within the S°. The two branes can be
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placed on anti-podal 3-spheres within S°, related by the map 2 — —x, thereby forming
a classical state invariant under the geometric Zs.

In this argument we made a choice about where to place the branes in order to
find a classically invariant state. Of course other classical states are possible where the
branes are not anti-podal, and are therefore not invariant. In general, the branes wrap
3-spheres that rotate within the S°, forming a S! x S3 worldvolume. Under a time-
averaging procedure, the branes are spread out evenly along the S!, and therefore the
choice of position for the branes becomes irrelevant. We expect that the quantisation
process will include such a step implicitly. As with the first example, it would be
interesting to investigate whether this behaviour emerges from the quantisation process
in [27].

It was observed below (6.2.7) that the projection coefficient a% can be viewed as
a refinement of the Littlewood-Richardson coefficient gr. ;. Interestingly, the same
coefficient also appears as the extremal correlator <(’)£J (N)(’)g (N)‘ O%(N)> in the U(N)
theory [22]. Given the correspondence between Young diagrams and branes, this ex-
tremal correlator is naturally interpreted as the amplitude for the overlap between the
composite system consisting of the pair of branes (¢,¢) and the brane R. The effect
of the orientifold operation is to change the amplitude of interaction ¢t ® ¢t — R by
introducing the sign in the projection coefficient (6.2.6).

An interesting direction of research is to investigate the action of p on the product
0.0, and in particular whether there is a relation to the sign change between (6.2.7)
and (6.2.6). This may shed light on the orientifold quotient in the dual string theory, or
even on the presence of Littlewood-Richardson coefficients in three point functions of
giant gravitons. While there have been various tests on the agreement of brane physics
in AdSs x S° with the correlator formula in terms of LR coefficients [23-26,92], a
general understanding, directly from the spacetime perspective, of why the interaction

of branes is given by the Littlewood-Richardson coeffients is not currently available.

6.7 SO(N)/Sp(N) giant gravitons

Half-BPS operators labelled by Young diagrams R with a single column of length com-
parable to N are dual to single giant gravitons which are S% expanding in S°. A single
row with length of order N is dual to a single giant graviton wrapping an S° inside AdSs.
Multiple column or multiple row Young diagrams where the number of columns/rows is
of order 1 and column/row lengths are comparable to N, are dual to multi-giants with
the S3 expanding in the appropriate factor. It is instructive to consider the domino
algorithm for ag in these regimes and develop a heuristic interpretation in terms of
branes and orientifolds.

A natural first postulate is that the analogous picture for the connection between
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branes and rows or columns of the Young diagram works for ¢ in the SO(N)/Sp(N)
theory. A single column ¢, with length comparable to IV, is a single giant graviton with
a large S3 world-volume in the directions inside RP® of AdS® x RP°. Multiple long
columns correspond to multi-giants of this type. A single long row with length of order
N corresponds to a single giant, with large spatial world-volume in AdS®. Multiple
long rows correspond to multiple giants of this type. Note that among the giants which
are large in the RP® we also have those with worldvolume RP3 [58] corresponding to
baryonic operators involving the e-invariant. Since our focus here is on the projection
to mesonic operators, these will not be part of the discussion that follows here.

It was demonstrated in [55] that the AdS5 x RP® theory is composed only of states
from the AdSs x S° theory that are invariant under the Zs orientifold action. Therefore
to understand the brane interpretation of SO(N)/Sp(N) operators, we can look at
states in the U(N) theory invariant under this Zs. The gauge theory version of this
action was discussed in the previous section.

Take a Young diagram t = [k, kg, ..., k,] with r = O(1) and k; = O(N) for each i.
Then a U(N) operator, invariant under the Zs action, that projects to (’)g,/ 2 s

(Or(tg) + (1) Orpp)) (6.7.1)

N | —

The Frobenius notation for tis t = (k1 — 1, ko —2,..., k. —rlr—1,r—2,...,0), so using
(6.5.4), the U(N) Young diagrams are

R(t,¢) = [2ky — 1,2ks — 2,... . 2k, — oy — 1, 1] (6.7.2)
R(p,t) = [2k1,2ks — 2,... 2k, — 7+ 1,0 —1,r — 2,...,1] (6.7.3)
r(r+l)

These consist of of r long rows of length O(N) with a staircase diagram of size =5~
attached beneath. Since r = O(1), both diagrams correspond to small perturbations of
r giant gravitons extended in AdSs. Therefore t can naturally be interpreted as r AdS
giants in the AdS5 x RP® theory.

The conjugation property (6.4.24) of the projection coefficients mean ¢ with r long
columns also receives a similar interpretations to the U (V) theory, as r giant gravitons

wrapped around an S® within the RP® factor.

6.8 Inverse projection coefficients and U(N) correlators of
SO(N)/Sp(N) operators

The U(N) half-BPS sector is spanned by multi-traces of the form

[T (mex)” (6.8.1)

%
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where p - n. The SO(N)/Sp(N) half-BPS sectors are spanned by multi-traces of the

form

[T (Tex)® (6.8.2)
i
where ¢ = §. Therefore one can consider the half-BPS sectors of the SO(N)/Sp(N)
theories as a subspace of the equivalent in the U(N) theory.

This leads to the question, what does the U(N) inner product look like on this
subspace? The SO(N)/Sp(N) theories have their own inner product, but this is a
different pairing with a different structure. In this thesis, we have made extensive use
of permutations as a way to describe bases of gauge-invariant operators in theories
with different gauge groups. They give us a uniform way of talking about operators in
different gauge theories, namely about how the indices of matrices X, Y are contracted
without being specific about whether these are generic matrices in the Lie algebra u(NV),
anti-symmetric matrices in s0(N), or matrices in sp(NN). These different theories, via
AdS/CFT duality, correspond to different string theory backgrounds. In this sense,
permutations are background independent structures, while the pairings we put on
them are theory-dependent. Here we will see that exploring the U(N) inner product
which survive the projection to SO(N) has interesting relations to an appropriately
defined inverse of the plethysm coefficients ag.

Consider the SO(N)/Sp(N) operators (5.6.12), but where X is an arbitrary complex

matrix rather than anti-symmetric. We can express this as a sum of U(N) operators
05/‘2] =3 pRob™ (6.8.3)
RFn

Then taking the Zo orientifold quotient of this expression, the left hand side returns to
the standard SO(N)/Sp(N) Schur operator, while we can evaluate the right hand side

using the coefficients a}Tz. We have

0y =375 sRak 0)f (6.8.4)

RFn T
Since this holds for all T', we have
> Bfak =61 (6.8.5)
RFn

so we call 675 inverse projection coefficients. They are not true inverses to ag, since R
has more degrees of freedom than 7', and summing over T" will not lead to (511.%,.
To find BE, we use the orthogonality relation (2.3.9) to invert the definition (2.3.14)
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and give traces in terms of U(N) Schur operators

[T (mex))" =3 xrp)oi™ (6.8.6)
i RFn

Substituting into the definition (5.6.12) for SO(N)/Sp(IN) Schur operators, we have

1 U(N)
Om‘ = xi(0) - xr(2p) 0% (6.8.7)
T Xeu(N) P2 22p };l R
and therefore
R 1 1
B = —xrp)xt(p) = Y 5 xr(2P)x:(p) (6.8.8)
pH2 22117 s 2 (p)zp
2 2

Note the similarities between this and the expression (6.1.18) for ag. There is an extra
factor of 27!P) inside the sum, and in general ,8713 are non-integer. We have not been
able to find a combinatoric interpretation of 6:,1?.

Using the formula (2.6.11) for the U(N) correlators, we have

5/ 5/ B RoR
<OT ’XGu(N)‘ OT/ ‘XGu(N)> - ];LBTBT’JER (689)

So the SO(N)/Sp(N) Schur operators are not orthogonal under the U (V) inner prod-

uct, even at large N.

6.9 The orientifold quotient in the free field quarter-BPS

sector

Consider a 2-matrix U(N) multi-trace TrTW*, where W (X,Y") is a matrix Lyndon word
on the letters X and Y. After replacing X and Y with so(V) or sp(N) matrices, this
trace may vanish or not depending on the relation (4.1.3). In section 4.1 we investigated
this formula in detail and gave a description of the non-vanishing traces in terms of
orthogonal Lyndon words. These are not simple objects to work with, and so rather
than working with multi-traces as we did in the half-BPS sector, we instead work with
permutations which allow a simpler description of the quotient.

The key results that enabled the evaluation of the projection coefficients in the
half-BPS sector were the expressions for U(N), SO(N) and Sp(IN) Schur operators
in terms of Schur symmetric functions. The quarter-BPS sector does not have the
same structure, and finding formulae for the coefficients is therefore more difficult. The
domino combinatorics of section 6.2 allows us to give sufficient conditions for when the

coefficients vanish, but we are not able to evaluate the non-zero coefficients.
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In section 3.6 we gave two different orthogonal bases that generalise the Schur basis
to the free field quarter-BPS sector, the restricted Schur basis and the covariant basis.
In this section we study the quotient of the restricted Schur basis in detail, and briefly
mention how one might approach the covariant basis.

In the restricted Schur basis, the SO(N) and Sp(IN) mesonic operators do not have
the same expression in terms of multi-traces, and therefore the exchange between the

two theories is slightly more complex. Define the projection coefficients

T7T17T27/\ 6 :
U(N) Zo, ) 2211 Tox CR Ry Ry OTm 1o 0 10 the SO(N) theory

6.9.1)
R,R1,Ra,p,v T, 11, To,\ Q . (
211 1o\ PR R By O 1m0 10 the Sp(N) theory

Under anti-symmetrisation of traces and conjugation of the labels T', Ty, T, the SO(N)
and Sp(N) transform into each other (5.6.73). For the U(N) operators, we have the

conjugation relation

U(N) o U(N)
ORC7R§1R§7M7V - Antl-sym <OR1R17R27H‘7V (6.9‘2)
Therefore
1,11, T2,A _ T T TSN
URe RS R = VR Ry, Ra v (6.9.3)

So the projection coefficients of the SO(N) theory determine the projection coefficients
of the Sp(N) theory. For the rest of this chapter we work with SO(N) for simplicity.
All results can be transferred across using (6.9.3).

Some of the free field operators considered in this section recombine into long mul-
tiplets when we turn on interactions. Therefore we cannot give an interpretation of
these projection coefficients in terms of giant gravitons, which are dual to strong cou-
pling quarter-BPS operators. In chapter 7, we give an approach to constructing weak
coupling operators. It is believed that there is no further change in the quarter-BPS
spectrum occurs as we travel from weak to strong coupling, and therefore it is these
operators that should be used to study the orientifold physics of quarter-BPS giant

gravitons. The work in this section is a first step along this path.

6.9.1 Quotient on SO(N) restricted Schurs

It follows from (5.3.16) that for o € S,

Tr (o XMy ) 22 o) (a(od‘ﬁ)l (xemy®n)’ (6.9.4)
I J
where ¢(°%) is the permutation o € S,, when S,, is embedded in S, by acting on only

the odd numbers. This embedding is called S,(fdd).
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From the definition (3.6.1) for a U(N) restricted Schur operator

U(N) Zs dr ©) ( (odd)\! [ v@niy-@na\d
O Rage \/dengn!m!nz! g; XA R R (9)C7 <U )J SO

(6.9.5)

Inverting the definition (5.6.70) to give a SO(N) multi-trace in terms of SO(N) re-

stricted Schurs, for any 7 € Sa,
0(5) (X®n1 Y®n2)

2"\/nlng ng! Z T,[S]| DT () |T1, T2, [A], ) O%,Tl,TQ,A

T, Ty, T2, A

(6.9.6)

Therefore

z
OR, Rawr > 2" \/
tl b 7#7
o dedR2 TTy Ty \
XR ,R1,Ra,p,v ( ) | DT Odd)) |T17 13, [A]v )‘> Og“,Tl,Tz,)\
oc€Sn

(6.9.7)

and the projection coefficient is

agpiEt =" Al Z XR,Ry,Ro i (0) (T, [S]] DT ( Odd) T1, Ty, [A], A)

R,R1,R2,p,v dedR2 2n 1,402,V

(6.9.8)

To investigate the properties of the projection coefficient, consider the intertwiner

Pll%%l, Ry used in the definition (3.6.2) of the restricted character. This can be

constructed explicitly as sum of permutations using the algebra Agh R, discussed in
appendix D.3. In particular, it is only non-zero in the representation R of S,,, and the
representation Ry ® Ry when restricted to a representation of S, X Sp,.

From the definition of Pgl

inside R to the vth copy, the transpose of the matrix representative of PR

Roysw 88 the operator taking the uth copy of Ry ® Ro

1 RQ,M—)I/
switches the role of u and v

[DR (PF};I,RQUJ«*)V)] = D" (PRI,RQ,VHM) (6.9.9)

From the orthogonality of representations of S, this corresponds to inverting each

permutation in the sum, referred to as linear inversion (5.5.3).
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It follow from standard properties of characters that

Z XR’RI’RQ’M’V(U)DT (G(Odd)> - Z XR (PI}?%LRQ;,LL—H/U) DT (J(Odd)>
o€Sn oc€Sn

_ T ( pR;(odd) dd
=Y xz(0)D (PRh;%HHUw ))
g€ESy,

n! 1 ( 5Ri(odd) (0dd)
= %D (PRl,RQ;V*)MPR )

n! 1 (5 R;(odd
=D (PR ) (6.9.10)

So the projection coefficients are given by

d .
T,T1, T2\ n T T ( pR;(odd)
afBTA o n!\/deRldM (TS D7 (PR, 1T T, [A]L ) (6.9.11)

(even)

S,(fdd), there is another embedding Sy, of S, into Sy, that acts only

In analogy to
on the even numbers. Given o € S,,, the product o(#a9) = glodd) z(even) jg iy the wreath

product group S,[S2]. As |T,[S]) is invariant under S,[S2], we have
-1
(T, 18] DT (o) |1, Ty, [4], A) = (T[] DT [(o“’mg)) a<0dd>} T4, T, [A], )

-1
— (T, [S]| DT [(a@vm)) ] Ty, Ty, [A],\)(6.9.12)
From (6.9.9) and the discussion below it, we have

(T,]8]| DT (PR‘("‘“) ) T, Ty, [A], \) =

Ry, Ro;v—p

(. (81D (P, ) 1T T, (AL ) (6.9.13)

There is another method to switch between the embeddings Sﬁf”en) and Sffdd) using
the permutation
m=(1,2)(3,4)...(2n — 1,2n) (6.9.14)

For any o € S,,, we have
no(0dd) o — (even) (6.9.15)

We observe that 7 is in both S,,[S2] and Sy, [S2] X Sp, [S2] with sign (—1)", and therefore

(T,[S]| DT (a<0dd>) 1, T, [A], \) = (—1)" (T, [S]| DT (mwdd)w) IT1, Ty, [A], \)

= (—1)"(T,[S]| DT [a(even)} Ty, Ty, [A], \) (6.9.16)
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On the projectors, we have

(T, 180 DT (PG, ) T3, T, [4], ) =

(=1)"(T,[S ]IDT( leg;@’ggu) Ty, Ty, [A], \) (6.9.17)

Comparing with (6.9.13), the projection coefficients are symmetric or anti-symmetric
in the U(N) multiplicity indices p, v depending on the parity of n
11, Te, A _ T,T1,T2,\
R7R11,1§2,M,V - (_1)naR,1*31171“232,V7M (6'9'18)
We now investigate the structure of the projection coefficient in terms of Littlewood-
Richardson multiplicity spaces, and prove that it can be expressed as a simple inner
product on one of these spaces.
Perform a Littlewood-Richardson decomposition of the T" representation of Sa, into
. (odd) (even)
representations of Sy~ X Sp,

(odd) (even)
Son __ Sn, S It
vitn= P v eVer o Vi (6.9.19)
S,5'Fn

where VT”,%‘%, is the multiplicity space of dimension gr.ss. The intertwiner ensures

that only the S = R representation of S,(LOdd)

Consider the embedding of S,, into Ss,, defined by

contributes to the projection coefficient.

o — glodd) gleven) (6.9.20)

Sgodd) % Sge'uen)

We call this embedding Sgdiag ) as it is the diagonal subgroup of . A rep-

resentation S ® S’ of Sffdd) X Sfleven) is a Clebsch-Gordon tensor product representation

)

of S,(ldiag). In particular, it contains the trivial representation of Sfldmg if and only if
S = 8'. As |T,[S]) is invariant under permutations of the form ¢(°%g(ven) it lies in
the trivial representation of S, (dwg), and therefore only the term with S = S’ = R in
(6.9.19) contribute to the projection coefficient.

Let |i) p be a basis for the R representation of S,,. Then the unit S, invariant vector

in R R is

|triv) 5 ® i) g (6.9.21)

=3 b

and we can write |71}, [S])

7 08)) = S [66iv) oy @ [+ B (6.9.22)
Rn

where |+)hp is a vector in Vr! }élﬁ;r, the +1 eigenspace of V'l under 7 introduced

170



CHAPTER 6. ORIENTIFOLD QUOTIENT FROM U(N) THEORY TO SO(N)
OR SP(N) THEORY

below (6.1.22).

So provided T contains a symmetric copy of R ® R, we have

I dr
BB Raspov ) drdpr,dg,(2n)!
({trivlr © (+ig) [DRCMD (PR pym) @ D (1) @ ] T3, T, [A], N
(6.9.23)

where I}gR is the identity operator on the multiplicity space Vﬂ%fﬁ%.
Now decompose the first (odd) copy of R further into representations 57 ® Sz of

Sfﬁdd) X ST(LOQdd), and the second (even) copy into representations S7 ® S5 of S,(Lelven)

Séezven). As before, the intertwiner ensures that only S; = Ry and So = Ry contribute,
while |11, T5, [A], A) enforces S| = S; and S = Ss.
Each element of (6.9.23) has a corresponding decomposition. For |T7,Ts, [A], \),

this is

Ty, T, [A], ) = |T1, [A]) ® T2, [A]) @ [N 7,

Z . T . T: T

= |tr1v>5151 ® ‘_>8151 ® |tr1v>5252 ® |_>S;SQ ® ’)\>T1T2 (6924)
SikFny
Sobng

where |)\>§1T2 is a basis vector for Vrﬁ?ﬁltﬂ and |—>§?

K3

. . mult;(—1)"
s, 1s a vector in V' g "o .

The vector [triv) R decomposes as

dr

|triv) g = \/ili Z DR®|)g

Sobng
1 Z T s . - \RR
e e— dslds2 ’trlv>slsl ® ‘tr1V>S2SZ ® |tr1V>SISIS252 (6925)
Vdr
Sikni
Saobnog

where |triv>§£~l $,5, 18 In the tensor product multiplicity space Vlf{,LgftSQ ® Vlf{,LgftSQ and

is given by
9R;Sq,So
- \RR R R
’trlv>51515252 = Z ’p>5152 & ’p>5152 (6926)
p=1
Finally, the intertwiner is
R (pR Ri®R R R;
D (PR1,R2;,LL—>V) =DM (1) V) Ry Ry (KR R, (6.9.27)
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where | ,u)ﬁl R, 18 a basis vector for Vﬁ”ﬁlf Ry

Before plugging these into the projection coefficient, note that

. 'RR R;(odd R R;(even)
<tr1V‘R1R1R2R2 |:D (odd) (PRLRQ;V—)M) ® IRIRQ }

9R;Rq,Ry

. odd) (even) R;(odd) (odd) ;(even)
= Z (p |R1R2 ® (p ’Rle [(|M>RlRQ (v ’Rle )®IRlR2 ]
p=1

9R;R{,Ry
o S R;(odd) R;(even)
- Z PR ‘Rle < ’R1R2

(odd even

= (v |R1R2) ® (1 ‘Rle ) (6.9.28)

Putting these together, the expression (6.9.23) for the projection coefficients simplifies
to

2"n! | d
T T\ T . ) . \RR T
R Ry = (2n)! <<t“"|R1R1 ® (11|, ® (61iVIR, Ry RoR, © <+|RR>

R;(odd) (odd
[DR1®R1®R2®R2(1) %) (|M>R1(1022 < |R11%2 :

) @ Inm " @ IgR}
T
<!tr1V>RlR1 © |V E, ry © 100V) gy, @ 1) Ro, © |)‘>T1T2)

2n! dr . ) . .
_ " 7(271)! (tmv]RlRl ’tr1V>R1R1 <tI‘lV‘R2R2 ‘tr1V>R2R2

T (odd even T
((HEx ® PR @ WEE™) (18 5, © 1), © WE, )
2 n! dT R;(odd) even
= (B @ GRS & B (105, © 1 R, @ W,

(6.9.29)

This is an inner product in the vector space Vﬁ”‘ﬁllt Ri.Ro.Ra> the multiplicity space for the
decomposition of T" as a representation of So,, into R} ® 1 ® Ra® Ro as a representation
of Sy, ® Spy ® Spy ® Sy,. The left hand side decomposes via the representation R ® R
of S, ® Sy, while the right hand side decomposes via the representation 1} ® Ty of
Son, X Sapn,. The difficulty in evaluating the projection coefficients is understanding
how these two decompositions interact.

The combinatoric discussion of domino tableaux in section 6.2 does play a role, as it
determines the dimensions of the various multiplicity spaces. Let R= R(R, R) be the
Young diagram with empty 2-core and 2-quotient (R, R), so that R = % and similarly
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for ﬁl and ]/%\2 Then

. mult; R
Dim (VT; Rj;) - Dk, (6.9.30)

Since |+)hp, ’_>,1R;iiRi belong to these spaces, if DET or Dﬁl)"i,Ti is zero then the

corresponding projection coefficient vanishes.

6.9.2 Covariant projection coefficients

In sections 3.6.2 and 5.7 we defined U (2) covariant bases for the U(N) and SO(N)/Sp(N)
quarter-BPS sectors. One could consider the effect of the orientifold quotient in terms
of these bases. This would most naturally be done using a covariant bases for U(N)
and SO(N)/Sp(N) multi-traces and a covariant version of characters, equivalent to the
restricted character used in restricted Schur operators.

Steps towards a covariant trace basis for the U(N) theory, labelled by an integer
partition which determines the single trace structure, are taken in section 7.3.2. We
have not investigated such bases for the SO(N) or Sp(N) theories, and leave this as

an interesting problem for the future.

173



Chapter 7

Quarter-BPS operators in the
U(N) theory at weak coupling

The construction of quarter BPS operators from the gauge theory side has been devel-
oped in [49,93-95]. At zero field theory coupling, the quarter BPS states are general
holomorphic operators built from two complex matrices X and Y. A subspace of these
operators is annihilated by the one-loop dilatation operator and forms the weak cou-
pling quarter BPS space. An important outcome of these papers is that the weak
coupling quarter BPS operators form the orthogonal subspace, in the free field inner
product, of the operators which contain commutators [X,Y] within a trace. This a
well-defined characterisation of the quarter-BPS operators at finite V.

In the free field U(2) covariant constructions of quarter BPS operators [43, 46]
having a total of n copies of X and Y, the labels consist of a Young diagram R with n
boxes and columns no longer than N, a Young diagram A with n boxes and columns
no longer than 2, along with a label 7 which runs over the multiplicity of trivial S,
irreps in R® R ® A. The Young diagram label A is also a representation of the global
symmetry U(2). The construction of weak-coupling quarter-BPS operators based on
this new understanding of the finite NV inner product was further developed in [51,96].
The finite N construction of quarter BPS operators was given in terms of a projector
Pn in C(S,), which projects to the intersection of two subspaces of C(S,) [51]. One
subspace is associated with the symmetrised traces at large N, another with the finite
N cut-off on the free field basis.

There has not been so far, a general construction of quarter-BPS operators at weak
coupling and finite N, which includes a U(2) Young diagram label alongside a U(N)
Young diagram label. In this chapter, we will address this open problem and give a basis
of operators which are quarter-BPS at weak coupling, orthogonal with respect to the
free field inner product, and labelled by a U(2) Young diagram, a U(N) Young diagram,

alongside an associated multiplicity label depending on these two Young diagrams. The
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virtue of having a U(N) Young diagram is that the disappearance of states upon a
reduction of N to N — 1 can be directly expressed in terms of this Young diagram -
the disappearing states as IV is reduced to N — 1 are precisely the ones corresponding
to Young diagrams with exactly N rows. We may therefore describe our basis as an
SEP-compatible (SEP = stringy exclusion principle) basis which is also U(2) covariant.

The key ingredient which allows us to find a manifestly SEP-compatible U(2) co-
variant construction of quarter BPS states is the mathematics of multi-symmetric func-
tions [97-99]. When gauge invariant functions of two matrices X,Y are evaluated on
diagonal matrices X = Diag(z1,z2, -+ ,zn) and Y = Diag(y1,y2, -+ ,yn), we get

polynomials which are invariant under the o € Sy acting simultaneously as

T; — mg(i) (7 0 1)
Yi = Yo (i)

These polynomials are called multi-symmetric functions. More generally, we can have
variables ¢ with a € {1,2,--- , M} and i € {1,2,--- , N}. Polynomials invariant under
simultaneous Sy permutations of all the M vectors are more general multi-symmetric
functions. There is a rich mathematics associated with changing between different
bases of multi-symmetric functions for any M which is relevant in this chapter and is
controlled by an underlying structure of set partitions.

The chapter is organised as follows. Section 7.1 is an introduction to the necessary
background and key mathematical tools we will use to derive a basis for weak coupling
quarter BPS operators. In section 7.2 we use the combinatorics of set partitions to
derive results on the transformation between two bases for multi-symmetric functions.
The first is the trace basis. Elements of this basis set are obtained by specifying a trace
structure for matrices X, Y, or more generally X!, --- , XM and specialising to diagonal
matrices. Another basis is the multi-symmetric monomial basis, which allows a simple
description of finite N cut-offs. In section 7.3, we start from the observation that every
vector partition p defines an associated partition p, which is invariant under the action
of the U(2) transformations which interchange X,Y. We use results on plethysms of
SU(2) representations to obtain detailed expressions for refined multiplicities depend-
ing on a pair of Young diagram A, p, where A is a U(2) Young diagram and p is a Young
diagram constrained to have no more than N rows, which we refer to as a U(N) Young
diagram. In section 7.4 we describe an algorithm for producing a basis of operators la-
belled by the pair of Young diagrams (A, p) alongside the appropriate multiplicity label.
The basis is orthogonal under the free field inner product. In section 7.5 we elucidate
the vector space geometry within C(S,), involving the interplay between a projector
for the U(2) flavour symmetry, a projector for the symmetrisation of traces P and an

operator Fny whose kernel implements finite N constraints. This discussion allows us
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to show that the counting and two-point correlators of quarter-BPS operators at weak
coupling can be expressed in terms of observables in two-dimensional topological field
theory based on permutation group algebras with appropriate defects.

This chapter consists of work originally presented in [2]

7.1 Background on construction of quarter BPS operators

When we turn the coupling on in N' = 4 SYM, some of the short quarter-BPS multiplets
at zero coupling recombine and form long non-BPS multiplets. We give two equivalent
ways of characterising which 2-matrix multi-trace operators remain quarter-BPS, and
which do not.

Firstly, non-BPS multi-traces of X,Y are SUSY descendants. It was explained
in [49] that these are exactly commutator traces. That is, they are multi-traces (or
linear combinations thereof) where at least one of the constituent single traces contains
a commutator [X,Y].

Secondly, consider the one-loop dilatation operator [50,100]

Hy = —Tr ([X, Y] [;X, aaYD (7.1.1)

Quarter-BPS operators are annihilated by Hs, and as Hs is hermitian in the free field
inner product, they are orthogonal to the image. It is clear from the definition (7.1.1)
that states in the image are commutator traces. While it is not immediately obvious
that all commutator traces live in the image, our numerical calculations indicate that
they are, and consistency with [49] implies they should be.

The dilatation operator (7.1.1) is Hermitian in the free field inner product (3.6.25),
therefore the multi-traces that remain quarter-BPS as we move to weak coupling are
those that are orthogonal to the commutator traces. This inner product is difficult to
evaluate on multi-trace operators, so [51] took a different approach, instead using the
Sy, inner product (3.6.26) and relating this to the physical inner product using operators
Fn and Gn.

Comparing the two inner products (3.6.25) and (3.6.26), the only difference is a
factor of Qy, defined in (2.3.17) (in this chapter, we add an N subscript to emphasise

the dependence on N). Fx implements multiplication by x on multi-trace operators
]:Noa,o = Oa,QNcr (712)

where the covariant multi-trace operator O, , was defined in (3.6.19). Comparing the
definitions (3.6.25) and (3.6.26), it follows that for any quarter-BPS operators O1, O

(01]09) = <Ol‘}—N02>Sn = <}—N01‘02>Sn (7.1.3)
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Since the physical inner product includes a Fp factor, we will also call it the F-weighted
inner product, and will sometimes use a F subscript to emphasise the difference between
it and the S, inner product.

In general Qp is not invertible in the full algebra C(S,), however it does have an

inverse in those representations with [(R) < N. Define

_ 1
oy =) f—RPR (7.1.4)
RFn
I(R)XN

where the projector Pr was defined in (2.3.13) and fg is given in (2.3.20). This is
inverse to {2y in all representations R with [(R) < N. If N > n, it is inverse to 2y in
the full group algebra C(S,,).

Define G to implement multiplication by QJ_\,l on multi-trace operators

gNOa,a = Oa@&l (715)

o

Then since only Young diagrams with I[(R) < N contribute to operator construction,
Fn and Gy are inverse to each other on the free field quarter-BPS operators. Therefore

for two operators 01, Oy, we have
(01|02) 5 = (O1|GNO2) z = (GNO1|O2) £ (7.1.6)

The U(2) generators (3.6.10) act only on the label a in O, while F and Gy act
only on o, and therefore the two commute. This means the same hermiticity condi-
tions (3.6.13) apply for the S, inner product as for the physical inner product, and
consequently operators with different U(2) quantum numbers are orthogonal in both
inner products.

The action of F and Gy is particularly simple on the covariant basis for free field

operators (3.6.20)

FNOnMpRr = fROA M R > (7.1.7)
1
72:08My R U(R) < N

GNOp My R = 4 77 : B (7.1.8)
0 I(R) > N

The relations (7.1.3) and (7.1.6) between the S,, and physical inner products can be
used to construct BPS operators. Let O¢ be a commutator trace, and O be a pre-BPS
operator, defined to be orthogonal to commutator traces under the S;, inner product.
Then

(O°1GNO*) = (0°|O%)s, =0 (7.1.9)
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So the operator Gy O? is a quarter-BPS operator at weak coupling.

The natural next step is to determine the form of the operators O°. It was demon-
strated in [51] that for N > n these are symmetrised traces. For a single trace, the
symmetrised version is

1
Tr(Xay Xay - Xa,) = — > Tr(Xa, 0 Xay, - - Xag ) =t Str(Xe, Xa, - - Xa,)

’ O'GSn

Ao (n)

(7.1.10)
where a; € {1,2} for each i and X; = X, Xy = Y. For a multi-trace, this process is
applied to each of the constituent single traces. A symmetrised trace is determined by
the field content of each single trace factor. For a particular total field content (ny,n2),
the possible symmetrised traces are labelled by vector partitions p. A vector partition
is a set of integer 2-vectors which sum to (n1,n2), which we denote by p F (n1,n2).

For a vector partition p = [(k1,01), ... (km, )] the associated symmetrised trace is
T, = Str (Xleh) Str (X’”Yl?) ...Str (kayzm) (7.1.11)
We conclude a generic quarter-BPS operator for N > n can simply be written as
OBPS = GNT, (7.1.12)

At finite NV, non-trivial relations among different multi-traces reduce the dimensionality
of the quarter-BPS sector, and correspondingly the pre-BPS operators as well. A finite
N relation among traces could have three distinct behaviours with respect to the large

N space of symmetrised traces

1. It is internal to the space of symmetrised traces. In this case, under an appropriate
choice of basis, a symmetrised trace reduces to the zero operator. Correspond-

ingly, the dimension of the pre-BPS and BPS sectors reduce by 1.

2. It is internal to the space of commutator traces. This does not affect the pre-BPS

or BPS sectors.

3. It is a linear combination of symmetrised traces and commutator traces. In this
case, under an appropriate choice of basis, a symmetrised trace reduces to a
commutator trace. This means it is no longer pre-BPS, as it is not S,, orthogonal
to descendants. Correspondingly, the dimension of the pre-BPS and BPS sectors
reduce by 1.

Therefore, SEP-compatibility in the pre-BPS sector has a different interpretation to
the BPS equivalent. A basis for pre-BPS operators is SEP-compatible if operators

with labels longer than N reduce to either the zero operator or a commutator trace
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after applying finite IV relations. After applying Gy to such a basis, we obtain an
SEP-compatible basis for the quarter-BPS sector.

7.1.1 Steps in the construction of an SEP-compatible orthogonal BPS
basis

The key ingredient that will allow the construction of an SEP-compatible basis for
pre-BPS operators is an isomorphism proved by Vaccarino [97] and Domokos [98],
summarised nicely by Procesi in [99].

From the definition (7.1.10), the non-commuting matrices X and Y commute within
a symmetrised trace, and therefore we naively expect that that symmetrised traces of
non-commuting matrices correspond to ordinary multi-traces of commuting matrices

via
Str(XFYh) .. Str(XPnylm) s Ty (A’“Bll) LT (Ak’”Blm> (7.1.13)

where A and B are two commuting N x N matrices. The isomorphism of [97-99] makes
this expectation rigorous.

Consider the ring R(X,Y") generated by the matrix elements of two N x N matrices
X,Y. This ring is acted on by U(N) via simultaneous conjugation of the two matrices.
Given a U € U(N), we have

(X,Y) = UXUT,UuYUT) (7.1.14)

Then invariants of R(X,Y) under this action are multi-traces of X and Y, and cor-
respond to the quarter-BPS sector at zero coupling. At weak coupling, we consider
R(X,Y) modulo the ideal I generated by the commutator [X,Y]. We call the quotient
ring Rs(X,Y). Each U(NN) invariant of the quotient ring corresponds to an equiva-
lence class of multi-trace operators related by addition of a commutator trace. In each
class there is a unique pre-BPS representative that is orthogonal to all commutator
traces (under the S,, inner product). There is also a unique BPS operator orthogonal
to commutator traces under the Fpy inner product. Conversely, given a pre-BPS or
BPS operator, there is a unique equivalence class to which it belongs. Therefore the
invariants of Rs(X,Y") give the combinatorics of the pre-BPS and BPS sectors, both at
large N and finite V.

Finding the pre-BPS operator in a given equivalence class is simple when N > n; as
discussed above (7.1.10), the representative is a symmetrised trace. When N < n, the
multi-trace expansion of an operator is non-unique, and it is more difficult to identify
the pre-BPS operator. In section 7.4, we describe how to find the pre-BPS operator by

orthogonalisation.
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On the other side of the isomorphism are multi-symmetric functions. Take two
commuting N x N matrices A = Diag(x1,z9, -+ ,xy) and B = Diag(y1,y2, - ,yn)-
Then a multi-trace of A and B will be a polynomial in the 2N variables invariant under

permutations

(zi,9i) — (:Ccr(i)vyo(i)) (7.1.15)

for 0 € Sy. These are called multi-symmetric functions, and generalise the symmetric
functions of section 2.7 to two families of variables. They are discussed in detail in
section 7.2.

The theorem in [97-99] tells us that the ring of invariants of Rs(X,Y") is isomorphic
to the ring of multi-symmetric functions in 2N variables.

This isomorphism is simple to give explicitly. Take a multi-trace of X and Y and
restrict the two matrices to be diagonal. This is now a multi-symmetric function in
the 2N eigenvalues. Clearly the commutator [X,Y] vanishes for the diagonal X and
Y, and therefore any multi-traces related by a commutator trace lead to the same
multi-symmetric function.

Conversely, given a multi-trace of two commuting matrices A and B, we use the
map (7.1.13) to pick a representative of the isomorphic equivalence class. At large NV,
this correctly identifies the pre-BPS operator. However, for N < n, this map does not
associate a unique symmetrised trace with a given multi-symmetric function. Finite N
relations mean a multi-symmetric function can be written in multiple ways as the trace
of commuting matrices. These different expressions give genuinely different operators
in the gauge theory, related by commutator traces. For the multi-symmetric functions
we use, we will give a defining representation as a multi-trace of commuting matrices,
and then (7.1.13) defines the equivalent symmetrised trace operator in an unambiguous
way.

We will generally use the same notation for either side of the isomorphism. For
example we will use X and Y to refer to both the commuting matrices on the right of
(7.1.13) and the non-commuting matrices of the super Yang-Mills theory on the left.
Similarly, both a symmetrised trace and its isomorphic multi-symmetric function will
be denoted T,. When the distinction is important, we will be clear which is under
discussion.

For symmetric functions, we introduced two SEP-compatible bases, the monomial
basis of section 2.7.1 and the Schur basis of section 2.7.3. There is no obvious analogue
of the Schur basis for multi-symmetric functions, however the monomial basis does
generalise, and provides a good finite N description for multi-symmetric functions. We
denote these monomials by My, where the label is a vector partition p, as already seen
for symmetrised traces in (7.1.11). The length of p determines the finite N behaviour.

In section 7.2 we study the basis change between T}, and My, both as multi-symmetric
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functions and their isomorphic image as symmetrised trace operators.

Under the map (7.1.13), the M give a basis for pre-BPS operators for N > n.
When N < n, the operators with {(p) > N reduce to commutator traces. As discussed
previously, this is a feature of an SEP-compatible basis of pre-BPS operators. How-
ever, the operators with [(p) < N are not S,, orthogonal to all commutator traces,
and therefore are not pre-BPS. This is because the map (7.1.13) did not choose the
correct pre-BPS operator from the equivalence class of operators related by addition
of a commutator trace. We say My is SEP-compatible modulo commutators for the
pre-BPS sector, and this is a key stepping stone to an SEP-compatible basis.

In section 7.3 we organise the My according to representations of the U(2) sym-
metry, replacing the label p with (A, Mj,p,v). A is a U(2) Young diagram with n
boxes, where n is the total number of X, Y matrices in the operator. My labels a basis
state in the A representation of U(2). p is an integer partition of n whose compo-
nents are related to the vector partition p simply by summing each of the two-vector
components of p. We call p the associated partition of p. Since I(p) = l(p), the SEP-
compatibility (modulo commutators) of My, is transferred to the covariant basis. This
restricts {(p) < N, which is the usual constraint associated with a U(/N) Young dia-
gram, and we will therefore refer to p as a U(N) Young diagram label. The final label
v runs over a multiplicity space of dimension My ,. Much of section 7.3 is devoted to
calculating and understanding My, as it describes the finite N combinatorics of the
weak coupling quarter-BPS sector.

Section 7.4 takes the covariant monomials My a7, and uses orthogonalisation
algorithms to produce an SEP-compatible basis of pre-BPS operators. There are three

separate steps in producing an orthogonal SEP-compatible basis of BPS operators.

1. For l(p) < N < n, the covariant monomial My s, p, differs from a pre-BPS
operator by a commutator trace. Orthogonalising Mx a7, p. against Ma ary q.n
with [(¢) > N using the S,, inner product identifies pre-BPS operators denoted
MA,MA,q,n- If N > n, this step is trivial.

2. Applying the operator Gy to the pre-BPS operators produces BPS operators. We
orthogonalize these BPS operators using the physical Fy inner product.

3. We normalize these orthogonal operators using the S, inner product. This ensures
that the basis is SEP-compatible: if we apply the construction using Gy and
matrices of size N, and subsequently substitute in our expressions matrices of
size N while making substitutions N — N , then all operators with I(p) > N
vanish and the non-zero operators with I(p) < N are those produced by applying
the 3-step construction directly at N.

The first step is explained in detail in section 7.5 in a more general context where the

181



CHAPTER 7. QUARTER-BPS OPERATORS IN THE U(N) THEORY AT WEAK
COUPLING

SEP-compatible U(2) covariant | BPS at N < n | Orthogonal

TIJ,BP S X X X X
MI])BP s modulo commutators X X X
BPS
M A Mapow modulo commutators v X X
TBPS
M A Mapw modulo commutators v v X
BPS
A,Mp,p,v 4 4 v v

Table 7.1: Properties of the different BPS bases constructed. All are BPS at N > n.

2-matrix problem is generalized to allow any number of matrices. Section 7.4 puts

BPS
S¥ My . indeed form an orthogonal

together all the steps and proves that the outcome
SEP-compatible basis for BPS operators.

The orthogonalisation and Gy application processes involved in the construction
are linear, so there is some flexibility in the order of the application of the different
steps. Figure 7.1 shows the algorithm we have implemented in SAGE to obtain the
basis S ﬁﬁfA pp Starting from symmetrised traces T,. The red arrows indicate the route
taken here, while the other arrows indicate different routes where Gy is applied at a
different stage.

The operators TEP s, MEP S and M fﬁi P obtained by applying Gy (and normal-
ising) to Tp, Mp or Ma , po respectively, are BPS bases at N > n, but in general
for N < n are no longer BPS, although the latter two do capture some of the finite NV
behaviour. Table 7.1 shows the properties of the different BPS bases.

In the case where A is taken to be [n], the Sﬁ%\ v are half-BPS operators built
purely from X. In section 7.4.9 we show that the construction for Young diagram p
reproduces the Schur operator (2.3.14) labelled by Young diagram R = p. Further,
for A = [n — 1,1], numerical calculations suggest that Sﬁﬁ/}i . match the free field
quarter-BPS operators (3.6.20) with R = p. This justifies the view that p is a U(2)
invariant, quarter-BPS generalization of the R-label of the half-BPS sector.

An important perspective on the half-BPS R label comes from the analysis of
the asymptotics of LLM geometries. Specifically U(N) Casimirs of R are measur-
able from the asymptotics of the supergravity fields [101]. We propose that that the
U(2) quadratic Casimir for A as well as the sequence of Casimirs identifying p should be
measurable from the multipole moments that can be read off from the long-distance ex-
pansions of the sugra fields of LLM geometries corresponding to quarter-BPS operators
at n ~ N2. Precision holography of LLM geometries is also developed using correlators
of small operators in the LLM background [38] which should provide complementary
insights into the labels A, p.
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Apply Gn
Symmetrised traces | and normalise. BPS symmetrised traces
T TBPS
q q
Multiply by Multiply by
matrix Cp. matrix Cp.
Apply Gn
Monomials and normalise. BPS monomials
BPS
M, M
Sort into U(2) Sort into U(2)
representations. representations.
Apply Gy
Covariant monomials| and normalise. BPS covariant monomials
BPS
Ma My po My N pv
Sy, orthogonalise. JFF orthogonalise.
Orthogonalised Apply g]\_f Orthogonalised BPS
. . and normalise. . .
covariant monomials covariant monomials
y TBPS
MA,MA,p,I/ MA:MAJ’:V
G orthogonalise. JF orthogonalise.
G-orthogonal SEP-compatible Orthogonal SEP-compatible
pre-BPS operators BPS operators
BPS
SAMap SKMp v
Apply Gn

and normalise.

Figure 7.1: An outline of the algorithm starting with symmetrised trace operators
Tp and deriving a U(2) covariant, orthogonal, SEP-compatible basis S/}\B,I;i‘\,p,u for BPS
operators. The route taken here is down the left side and across the bottom, shown in
red. The first step is studied in detail in section 7.2, the second step in section 7.3 and
the last three steps in section 7.4.
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The R Young diagram label of the half BPS sector is related to the free fermions
underlying the holomorphic sector of the complex matrix model which describes half-
BPS combinatorics [22,36,102]. Remarkably, this free fermion description also shows
up in the droplet description of half-BPS LLM geometries [37]. The droplet description
generalizes to the quarter-BPS LLM geometries, with some significant differences [41,
103,104] . We have colourings of regions in a four-dimensional space instead of a two-
dimensional plane. The two colours are now associated with the collapse of an S' C S°
or an S3 C S°. A natural conjecture is that the p-label of quarter-BPS operators is
analogously associated to colourings of regions in R* as the R-label of the half-BPS

operators is associated to colourings of the plane.

7.2 Finite N combinatorics from many-boson states: multi-

symmetric functions and set partitions

As explained in section 7.1, the key result that will enable us to give an SEP-compatible
construction of quarter-BPS operators is an isomorphism of Vaccarino and Domokos
[97,98] between multi-symmetric functions and the ring of gauge invariants of two ma-
trices modulo commutator traces. This section focuses on the multi-symmetric function
side of this isomorphism.

An important aspect of multi-symmetric functions, which plays a central role in find-
ing BPS operators, is the transformation between two bases for these multi-symmetric
functions. The first basis will be referred to as the “monomial multi-symmetric ba-
sis” and the second as the “multi-trace basis”. The physical importance of these two
bases, and their transformations, can be understood using perspectives from many-
body quantum mechanics [105]. This draws on an important insight from the Ad-
S/CFT correspondence: the strong coupling limit of the quarter BPS sector in N' = 4
SYM corresponds to a Hilbert space of N bosons in a two-dimensional harmonic oscil-
lator [27,40,106].

We begin this section by developing the link between multi-symmetric functions and
the Hilbert space of N identical bosons in a two-dimensional harmonic oscillator. We
then introduce the monomial and multi-trace bases and investigate the combinatorics of
the matrix that transforms between the two. This leads to the interesting mathematics

of the poset of set partitions and the associated Mobius function.

184



CHAPTER 7. QUARTER-BPS OPERATORS IN THE U(N) THEORY AT WEAK
COUPLING

7.2.1 Multi-symmetric functions as wavefunctions of a harmonic os-

cillator

The Lagrangian for one particle in a two-dimensional harmonic oscillator is

(i +32) - (a2 +1?) (7.2.1)

L=
2

N

In terms of creation and annihilation operators, the one-particle Hamiltonian is

H =ala, + a;;ay (7.2.2)
Define the coherent state
(2,y] = (0]¢?as+vey (7.2.3)
We have
(z,yl(a})*(a))"]0) = 2 " (7.2.4)

In this coherent state representation, the Hamiltonian acts as the degree operator for

the 2-variable polynomial
(g H(ab)Mal)10) = (22 + 32 wyl(al) (@l )0)
’ r Y Oz oy ’ LAY

B 0 0 Aop
= (A+ ) (= y") (7.2.5)
For the system of N-particles in the two-dimensional harmonic oscillator, we have the

coherent state
(@1, 91522, y23 - 2, Y| = (OTim FisisHvidiy (7.2.6)

The energy eigenstates of the Hamiltonian correspond to the product of one-particle

wavefunctions

A A A
<-:U17 Y1;22,Y2; - TN, yN‘(ailh,ac) ! (G‘Ly)ul (a;x) 2 (a12.;y)u2 s (az;x) k(a};;y)ﬂk ’O>

A A
= zptylt oty (7.2.7)

It is useful to write

A A
xllyllﬂ s :Ekkygk = 1/})\1,/1,1 (371, yl)qvb)\z,,ug (LUQ, yQ) T wAk:,Ufk ($k7 yk)

= Uny 1 (T1, Y1) - - U (T Y ) 0,0 (Tt 15 Ykt 1) - - - Yo,0(ZN, UN)
(7.2.8)
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In a system of NN identical bosons, we must symmetrise the product of annihilation
operators using Sy permutations. The product wavefunctions and their symmetrisa-
tions are a standard tool in many-body quantum mechanics (see. e.g. [105]). The

permutations o € Sy act as

(xhyi) — (xa(i)aya(i)) (729)

These states are polynomials, symmetric under these simultaneous permutations of x, y
pairs, which are exactly multi-symmetric functions. In fact these form the monomial
multi-symmetric functions that we will study presently. They have the nice property
that finite NV effects are nicely encoded in the fact that, by definition, &£ < N.

A quantum state where a single particle is excited, after symmetrisation, has a

coherent state representation

Oorpur (i, Y1) Z:v*l - (7.2.10)

When we have two particles excited, the symmetrisation of the product wavefunction

is proportional to

Z ;vg\llyfll f‘;yz‘? (7.2.11)
i1742
The restriction i1 # is, when extended to i1 # ig - -+ # g, is closely related to the finite
N property, but also has the consequence that the 2-particle wavefunction 7.2.11 is not
equal to the product of 1-particle wavefunctions. It is rather a linear combination of the
product wavefunction ¢y, ,, dx,, 4, along with a 1-particle wavefunction ¢x, 1 a, uy+pu0-
Defining diagonal matrices X = Diag(z1, -+ ,zn) and Y = Diag(yi,vy2, -+ ,yn),

we observe that the 1-particle wavefunction is a trace
O (i i) = Te(XMYH) (7.2.12)

We now draw on an idea from collective field theory, where one associates creation
operators to invariant traces [107-109] to define a map from traces and products of

traces to Fock space states

Te(X*Y*) = BY ,|0) (7.2.13)
k
>\a a T
l—IlT r(XAaYHe) — l_IlB o) (7.2.14)

This map is a homomorphism between the product structure on the polynomials and
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the product structure on oscillators. It can also be obtained from a coherent state

construction

(X, Y| = (0]eXrn BrnT(XAY*)
k k
(X, Y[ [ B, . 100 = [ Te(x?evre) (7.2.15)
a=1 a=1

In section 7.2.3 we will be studying in detail the transformation between the monomial
multi-symmetric functions and the trace wavefunctions. As a result of a triangular
property of this transformation, the finite N cutoff on multi-symmetric functions can
also be described by restricting the number of factors in the product of traces to be

less than or equal to V.

7.2.2 Monomial and trace bases for multi-symmetric functions

We now give a formal definition of multi-symmetric functions in a completely analo-
gous way to the symmetric functions of section 2.7, just with two families of variables
Z1,...,xn and y1,...,yn instead of one. They are polynomials in these 2N variables
that are invariant under all Sy permutations on the pairs (z;, ;). Given a polynomial

flx1, 2o, ..., xN; Y1, Y2, - - YN), [ is a multi-symmetric function if

@i, xnsy, Y2, UN) = T (To(1), Zo@)s - - Zo(N) Yo(1)s Yo (2)s - -+ Yo (N))
(7.2.16)
for all o € Sy.
We can take a large N limit and work with formal power series in an infinite
number of variables rather than polynomials. To return to the finite N case, we set
IN41 = YN+1 = TNy2 = Yny2 = - = 0.

We can also define multi-symmetric functions with M families of variables 2 ®)

., for
1<k<M,1<i<N,invariant under Sy permutations of the 7 index. These would
be relevant for systems of M commuting matrices.

For a mathematical overview of multi-symmetric functions and their properties
see [110].

The monomial and multi-trace (power-sum) bases for symmetric polynomials de-
fined in (2.7.6) and (2.7.8) have direct analogues in the multi-symmetric case. As
before, they are graded bases, this time graded by both the x degree n; and the y
degree no.

A vector partition p of (n1,n2) is defined to be a sequence of pairs of non-negative
integers (at least one of each pair must be non-zero) summing to (ni,n2). We use a
bold p to distinguish between vector and integer partitions, and write p - (n1,n2) to

denote that p sums to (n1,n2). The basis elements at degree (nj,ng) are labelled by
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p F (n1,n2) with length I(p) < N.
To construct the monomial basis, take a vector partition p = [(A1, u1), (A2, p2),

oy (Aky pg)] of (n1,n2) with [(p) = & < N and consider the un-symmetrised monomial

A A A
N TR T (7.2.17)
After adding all distinct permutations of the lower indices, one arrives at the monomial

basis element. Explicitly

12 Ak Mk
Z :I:G(I)y 1) U( Y02 Lok Yo (k) (7.2.18)
O’GSN
where the factor in front removes the normalisation introduced by redundancies in the
elements of p, so that the coefficient in front of each individual monomial is 1. Using
multiplicity notation for vector partitions, let p = [(0, 1)P©1 (1,0)P@.0 .. ]. Then the

normalisation is given by

Zp =[] pi.p)! (7.2.19)
i?j

As in the symmetric case, we will use a modified version of the monomial basis, obtained

by leaving out this normalisation factor

A
My = Zymp = Z :L‘U(l)y U% )3/5?2) . xa’(“k)yéffk) (7.2.20)
gESN

As discussed below (7.2.16), we can lower N to N — 1 by setting zy = yy = 0,
causing a reduction in the size of the space. Starting from N > ny + no and reducing
stepwise, this implies those monomial functions with {(p) > N vanish identically, while
the remaining My, with {(p) < N form a basis for the smaller space. So the monomial
basis is SEP-compatible for multi-symmetric functions.

Note that the the isomorphism, as described around (7.1.14), states that multi-
symmetric functions are isomorphic to invariants of matrices X, Y modulo commutator
traces. Therefore the isomorphic image of Mp, also referred to as My, is not necessarily
zero if I[(p) > N, but could instead be a commutator trace. This is the version of SEP-
compatibility for pre-BPS operators as discussed in section 7.1.

As multi-symmetric functions, the monomial functions My are SEP-compatible.
Using the map (7.1.13) to give the equivalent symmetrised trace operators, they form
a basis for pre-BPS operators at NV > n. As we decrease N < n, the SEP-compatibility
implies any operator with I(p) > N reduces to a commutator trace. However, the
operators with [(p) < N are not in general S,, orthogonal to commutator traces when
N < n, and therefore they do not form a basis for pre-BPS operators. This is due

o (7.1.13) not selecting the right representative of the equivalence class of operators
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isomorphic to the multi-symmetric function, as discussed below (7.1.14). We say the
Yang-Mills operators My are SEP-compatible modulo commutators, and in section
7.4, describe how to transform this into a genuinely SEP-compatible basis for pre-BPS
operators.

The multi-trace basis for multi-symmetric functions, also called the power-sum basis

in the mathematics literature, is built out of

N
T(nl,nz) = Z x;hy?z (7.2.21)
=1

Given a vector partition p = [(A1, p1), (A2, p2), - . . (Ak, pg)], the associated multi-symmetric

function is i
To = [T 70 (7.2.22)
=1

Introduce two N x N diagonal matrices X and Y with diagonal elements x1, zo,... TN
and y1,y2,...yn respectively. Then T(,, ,,) = TrX™Y "2 and the multi-trace multi-
symmetric functions are exactly given by the multi-traces of these two matrices, justi-
fying the name.

The isomorphism of [97, 98] identifies the multi-symmetric functions (7.2.22) with
the symmetrised trace operators (7.1.11), establishing the connection between multi-
symmetric functions and the quarter-BPS sector of NV = 4 super Yang-Mills at weak
coupling.

Note that while (7.2.22) and (7.1.11) are conceptually different, the isomorphism
between the two means we abuse notation slightly and use the same symbol 7}, for
both.

At finite IV, non-trivial relationships appear between the different multi-traces lead-
ing to a reduction in the dimensionality of the space of multi-symmetric functions.
Those multi-traces labelled by p with I(p) < N form a basis for the reduced space.
However, unlike the monomial functions, the remaining multi-traces (labelled by p with
l(p) > N) do not vanish, but become complicated linear combinations of the reduced
basis.

Define a matrix C¥, indexed by vector partitions p and q to be the change of basis

matrix from M to Ty, with inverse C
Ty =) CPM, My =" CaTy (7.2.23)
P q

At finite N, the p label for monomials is SEP-compatible (modulo commutators).
Therefore the second of the equations above gives the finite IV relations imposed on

commuting matrices. On the other side of the isomorphism, this gives the linear com-
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binations of symmetrised traces that reduce to commutator traces at finite V.
The C and C matrices have very interesting combinatorial properties, which we will

now investigate in depth.

7.2.3 Basis change for multi-symmetric functions

In this section, we show that the properties of the linear transformations C' and C are
illuminated by considering set partitions. Set partitions form a partially ordered set
(poset), and the Mobius inversion formula for posets plays an important role.

To find an expression for C§, first expand the product in the definition (7.2.22) for
multi-trace functions. For p = [(A1, p1), .-+, (Ak, pig)],

N
=11 (Z :r?jyi”) (7.2.24)

— A1, M1 A2, 12 )\k Hi
- Z ]11 y]l ]22y]2 c ch ka (7225)
.jlv"'zjk: 1
To further sort this sum, note the different ways the js could coincide. If, for example,

k = 3, we could have

J1=1J2=7J3 J1=1J2 # Js (7.2.26)
J1 =173 # J2 J1F# Jje=17J3 (7.2.27)
J1,J2, j3 all distinct (7.2.28)

These correspond to the 5 different ways of partitioning the set {1, 2,3} into subsets

m = {{1,2,3}} T = {{1,2},{3}} (7.2.29)
m = {{1,3},{2}} ma = {{1},{2,3}} (7.2.30)
ms = {{1},{2}, {3}} (7.2.31)

Continuing with the example, we can sort the sum (7.2.25) into the different partitions

_ A1+A2+A3 u1+u2+u3 Z )\1+>\2 H1+p2 )\3 143
Ty = E :a: + T Y T3 s
71,73 distinct

>\ +A3, p1tus, A2, 12 A M1 A2+Ag, pat+ps
+ Z 1 3yJ1 j;yjz + Z ]11yJ1 2 Sym (7.2.32)
J1,72 distinct 71,72 distinct

>\1 “1 Az 2 >\5 "3
+ Z ]ly.h ]2y.72 ]3y]3

J1,j2,J3 distinct

The first term is just the monomial function associated to the vector partition 71 (p) =

[(A1 4+ A2 + A3, 1 + p2 + ps)]. Similarly, the second term is related to the monomial
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function with vector partition ma(p) = [(A1 + A2, 1 + p2), (A3, p3)] via
Z m;\1+Azylf1+u2x}\3yys _ 2May(p) (A1t A2, 1+ pi) = (A3, is) (7.2.33)
1 7 J2 732 .
1.2 distinet My, p)  Otherwise

We can simplify this expression by noting that if (A + Ao, 1 + p2) = (A3, u3) then
Z

ma(p) = 2, and otherwise Zﬂz(p) = 1. Therefore
A+, pitpz A
Z xj11+ zyil #2%;%;3 = sz(p)mﬂz(p) = M7rz(p) (7'2'34)
j1,j2 distinct
Similarly the third, fourth and fifth terms of (7.2.32) are just M, py, My, py and M )
respectively, where

m3(P) = [(A1 + A3, p1 + p3), (A2, p2)] (7.2.35)
m4(P) = [(A1, 1), (A2 + A, p2 + p3)] (7.2.36)
m5(P) =P (7.2.37)

Putting this together, we have

5
To = Mpp) (7.2.38)
i=1

Repeating this analysis more generally, let the set of set partitions of {1,2,3,...k}
be denoted by II(k). Then given a set partition m € II(k) and a vector partition
p = [(A1, 1), -, (Mg, ux)] of length I(p) = k, we define the vector partition (k) to be
that with components

(Z N Z“i) (7.2.39)

ich ich

where the blocks b € 7 run over the subsets into which {1,2,3,...k} have been parti-
tioned. Conceptually, this should be thought of as summing up p into a new, shorter
vector partition, where the summation structure is given by .

Given this notation, we can now write the generalisation of (7.2.38) to any k

To= Y My, (7.2.40)
men((p))

Proving this result in the general case is just an exercise in repeating the logic that led
from (7.2.25) to (7.2.38).
So the coefficient of My, in Ty is just the number of set partitions = € II(I(q)) that
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have 7(q) = p.

CP= > pa@ (7.2.41)
rell(i(q))

We can see that for vector partitions of a particular length & = I(q), it is the set
partitions of {1,2,3,...,k} that control the behaviour.

The poset (partially ordered set) structure of set of set partitions is well studied
[111], and will help further explain the structure of the matrix C' and its inverse C.
The partial ordering is defined by saying that one set partition, 7, is less than another,
7', if every block b € 7 is contained within some block ' € 7/. We call 7 a refinement
of ©’ or «’ a coarsening of .

Intuitively, if # < #’, then the blocks of 7 are smaller in size than those in 7’.
However, this means that there are more blocks in 7 than in 7/, so confusingly = < 7/
implies that |7| > |7/|.

Now instead of looking at Ty, we look at Ty, for some m € II(I(p)). Clearly we
can still use the formula (7.2.40) just by replacing p with 7(p). Then summing over
7' € TI(I(m(p))) with summand M (p)) is equivalent to summing over all coarsenings

7" > 7 with summand M » ), so we can write

Teipy = Y Mu(p) (7.2.42)

' >

Considering T and M, as functions from vector partitions to multi-symmetric func-

tions, we have

Tr=)» My (7.2.43)

>
Equations like (7.2.43) are standard the theory of posets [111], and can be inverted
using the Mdbius inversion formula (7.2.49). We explain this formula in more detail in
section 7.2.4, including a combinatoric interpretation that allows a simple explanation
of the inversion property.

In this case, the Mobius inversion formula implies

My =Y p(m, 7' )T (7.2.44)

' >

where the Mébius function p(7w,7’) is defined in (7.2.53).

Choosing a vector partition p on which to act, we have

Me(py = Y 7)o (7.2.45)

' >

We can now use this to find an explicit expression for é’g. Let k =I(p) and ™ = 7y to
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be the minimal set partition in II(k), in which every element has its own block so that

m(p) = p. Applying (7.2.45) gives

My =" pu(mp, ™) Tr(p) (7.2.46)
mell(k)
and therefore
Cg = Z u(ﬂk,ﬂ) 5p 7(q) (7.2.47)
well(k)

7.2.4 Mobius function for the poset of set partitions and combinatoric
interpretation

In this section we introduce the Mobius function for a general poset, and give its
value on the poset of set partitions. There is a combinatoric interpretation for the
Mobius function in terms of permutations on the blocks of the set partitions, and this
interpretation allows us to simply see why the Mobius inversion formula works in this
case.

The Mobius function is defined recursively for a generic poset by

1 T=1
p(m, ') = —W;@/ p(m,7") m < (7.2.48)
0 otherwise

The key utility of this definition is in the M&bius inversion formula, which states that
given two functions f, g from a poset into a vector space, the following two relations

are equivalent

(7.2.49)
g(m) = ulm,x') f(x")

' >

In order to give an explicit expression for the Mdbius function on set partitions, consider
m = {b1,ba,...,b;} for k = |w|. We then look at the set partitions of 7 itself. For

example if k = 3 the five possible set partitions of 7 are

pr = {{b1,b2,b3}} p2 = {{b1,b2},{b3}}
p3 = {{b1,bs}, {b2}} pa = {{b1},{b2,b3}} (7.2.50)
ps = {{b1}, {b2}, {b3}}

The set of set partitions of 7 is denoted by II(7), and there is an obvious correspondence
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between this and II(|7|). For any particular 7 € II(n) and p € II(7), we define p(7) to
be the following set partition in II(n).

{ Jbv:Be p} (7.2.51)

beB

So for the examples in (7.2.50), we have

pl(ﬂ') :{blLJbQUbg} pg(ﬂ') :{blLJbQ,bg}
pg(ﬂ') = {bl U bs, bg} p4(7T) = {bl, by U bg} (7.2.52)
p5(m) = {b1, b, b3} =7

Given m < 7/, by definition each block b € 7 is a subset of a block ' € «/. Therefore

there is a set partition p € II(7) such that p(m) = 7/, we call this set partition 7’/7.
Using the definition of 7’/ for 7’ > 7, we can now give an expression for u(w, '),

which is a standard result in the field of posets [111]. Firstly, by definition pu(r,n’)

vanishes unless 7 < 7, so we assume 7’ > 7. This means 7’ /7 exists, and we can write

(') = (=) =TT (ol = 1) (7.2.53)

bern’ /7

There is a combinatoric interpretation for the magnitude of pu(w, ') in terms of per-
mutations, where the sign of u is given by the sign of these permutations. In or-
der to describe this, consider a permutation ¢ € S, and take an arbitrary subset
A C{1,2,...,n}. Then o acts on A by permuting the numbers 1 to n, leading to a
distinct subset o(A). We can then define the subgroup G(7) < S, by

G(m) = {0 : o(b) = b for all blocks b € 7w} (7.2.54)
For 7 with block sizes of [A1, A2, ..., A\x] F n, we have
G(?T)§S)\1 XS)\Q X-"XS)\k (7255)

Intuitively, the Sy, factor permutes the elements of the corresponding block with size

Ai. The exact embedding of Sy, x --- x S, into S, depends on the set partition.
Take a 0 € Sy,. The cycle structure of o defines a partition 7(o) € II(n). Formally,

the set partition (o) is simply the set of orbits of {1,2,...,n} under the action of o.

We also define a set of permutations associated with each 7 € II(n)

Perms(7) = {0 : w(0) = 7} (7.2.56)
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For any o € S, with m(0) = =, Perms(w) is just the conjugacy class of o under
conjugation by G(r).

Clearly Perms(w) are disjoint for different 7, and between them they cover S,,.

| | Perms(r) =S, (7.2.57)

We have a similar result for G(7), obtained by taking the decomposition (7.2.55) and

applying (7.2.57) to each factor individually.

|_| Perms(7') = G() (7.2.58)

' <z

To illustrate the above, we now give some examples. If we fix 7 = {{1,2,3},{4,5},{6}}
then

G(Tr) = 5{172,3} X 5{475} X S{6} = 53 X SQ X Sl (7.2.59)
Perms(7) = { (1,2,3)(4,5) , (1,3,2)(4,5) } (7.2.60)

Enumerating the elements of G(7), we can see that it splits as specified in (7.2.58).

G(m) = {e, (1,2),(1,3),(2,3),(1,2,3),(1,3,2),
(4,5),(1,2)(4,5), (1,3)(4,5), (2,3)(4,5), (1,2,3)(4,5), (1, 3,2)(4,5)}
={e}u{(1,2); U{(1,3)Fu{(23)}u{(1,2,3),(1,3,2)}
U{(4,5)} U{(1,2)(4,5)} U{(1,3)(4,5)} U{(2,3)(4,5)}
LU {(1,2,3)(4,5),(1,3,2)(4,5)}
= Perms({{1}, {2}, {3}, {4}, {5}, {6}}) U Perms({{1,2}, {3}, {4}, {5}, {6}})
U Perms({{1,3}, {2}, {4}, {5}, {6}}) U Perms({{1}, {2, 3}, {4}, {5}, {6}})
U Perms ({{1,2,3}, {4}, {5},{6}}) U Perms({{1}, {2}, {3}, {4,5},{6}})
U Perms({{1,2}, {3}, {4,5}, {6}}) U Perms({{1,3}, {2}, {45}, {6}})
U Perms({{1},{2,3},{4,5},{6}}) U Perms({{1,2,3},{4,5},{6}}) (7.2.61)
= |_| Perms(7’) (7.2.62)

7' <m

Equations (7.2.54-7.2.62) are based on using permutations o € S,, and set partitions
7 € II(n). However, if we pick m € II(n), we can use the exact same constructions for

permutations of 7 itself - we call this group S - and set partitions p € II(7). Then
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Perms(n’/m) provides our combinatoric interpretation for p

pm)y = > sgn(o) = (1) | Perms(n’ /7)) (7.2.63)

o€Perms(n’ /)

So the magnitude of y is just the number of permutations in a certain conjugacy class,
and its sign is just the sign of these permutations.
This permutation interpretation of u allows us to easily prove the Md&bius inversion

formula for set partitions. Fix m and «” with 7”7 > 7 and consider the sum

> () (7.2.64)

T >l >

The simplest way to parameterise the sum over 7’ is to look at the possible 7’ /7 € II().
The condition 7" > 7’ becomes (7" /7) > (7’/7), so instead of summing over " € II(n),

we sum over 7' /7 = p € II(m).

PO Z >, sen(o)

' > > (n'"/w) o€Perms(p)

= Z sgn(o)

ceG(n" /)

1 G(=" 28 xS x--x8
_ (w"/m) = S1 % 51 ' (7.2.65)
0 otherwise

Where we have used (7.2.58) to change the sum into one over G(7”/7), and the final
line is a simple fact from permutation group theory. Now the only case for which

G(r"/m) =2 Sy X --- x S1 is when 7 = 7, so we conclude that

> ) = G (7.2.66)

T >l >

Using this result and substituting (7.2.43), we have

Z :U’(ﬂ-a W,)Tﬂ" = Z /l(T(', 7T,)M7r//

' > ' >l >

= M, (7.2.67)

This proves the Mébius inversion formula for set partitions.
For a more thorough overview of the Mobius function on general posets and for the

poset of set partitions see [111].
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7.2.5 More general C' and C matrices for M-matrix systems

The structures explained in sections 7.2.3 and 7.2.4, involving the poset of set partitions
and the associated Mo6bius function, can be used not just for the two matrix system,
but for an M-matrix system. In (7.2.43) we introduced T and M, as functions from
2-vector partitions of length || into the space of multi-symmetric functions defined
on two families of variables, x; and ¥;. However, we could equally consider them
as functions from M-vector partitions of length |7| into the space of multi-symmetric

1(1)7 %@)7 . ,xZ(M). These multi-symmetric

functions defined on M families of variables, x
functions have monomial and multi-trace bases defined in direct analogy to the 2-vector
versions in section (7.2.2). For each M there are corresponding C' and C matrices,
defined in a completely analogous way to (7.2.41) and (7.2.47).

To think about these possibilities in a unified way, we define a more general C' and
C that transform between T, o and M.

Tp =Y CF My My => Cr'Tu (7.2.68)
! L

We already have expressions for these from (7.2.43) and (7.2.44), given by

1 7> ~,

Cr' = ((m, ) = Cr' = u(m, ) (7.2.69)
0 otherwise

where the first equation defines ((m,7’). The above also serves as the definition for
the ¢ function of a general poset, just with 7, 7’ arbitrary elements of the poset rather
than set partitions. We have already seen the Mobius function for a general poset in
(7.2.48). An equivalent way of stating the Mdbius inversion formula seen in (7.2.49) is

that the ¢ and p are inverses of each other when multiplied as matrices

ZC(W77TI)M(7T/77T”) = 57T7T” (7270)

The C and C for vector partitions (both 2-vectors and M-vectors) can easily be obtained
from these more general objects. For p,q F (n1,n92) and some 7 € II(n) such that
m([(1,0)"1,(0,1)"2]) = p, we have

ca= > cr ca= > cr (7.2.71)

7' €ll(n) n'€ll(n)

where the sums run over 7/ with 7 ([(1,0)™,(0,1)"2]) = q. Analogous formulae hold
for M-vectors.

We can think of the (7.2.71) as a flavour projection from the general system of

197



CHAPTER 7. QUARTER-BPS OPERATORS IN THE U(N) THEORY AT WEAK
COUPLING

My, Ty to the M-flavour system consisting of M, and T,. Physically, one flavour
corresponds to the half-BPS sector, two flavours to the quarter-BPS sector, and three
to the eighth-BPS sector. We give an alternative viewpoint on the flavour projection
using permutations in section 7.5.1.

As an example, consider n = 4. There are 15 different set partitions in II(4), so to
simplify things we only give the transformations for the five different orbits under Sy,
corresponding to the integer partitions of 4. The C' matrix can be read off from the

relationships showing 7T in terms of M.

Ti1234)) = Myp1234)) (7.2.72)
Ty 284y = Mgy 2341 + Miqi2,343 (7.2.73)
Ty 3.4y = M2y 341 + Miqu2343 (7.2.74)

Tin2n. 033001 = Mygn2y, 000 T Mig23), 041y T Mi(1,2,4.031)
+ M2y (343 + Mp1,2,341) (7.2.75)
Ty 208000 = Mgy (2360040 + Moy .00 + M3y (23,4
+ Mynayq23.060 + My 23304 T My(y,2.4.60
+ My 23,41 + Moy sy + Msy 24
+ My g2 T My2sy (4 + M{1.2.4),01
+ Myusay.q2) + Mgy 234y + Mp23.43) (7.2.76)

The C matrix can be shown in an analogous way by writing M, in terms of T7.

Myg123.41 = T{qr23.41 (7.2.77)
My 284 = Ty 284 — {12,341 (7.2.78)
M2y, 341 = Tin23.343) — Ti{1234) (7.2.79)

M0y, 8y003 = T2n, 84003 — T2,83,04 — T{,2,43, (31}
— T340 + 271,283,410 (7.2.80)

Mgy 23033001 = Ty 23,0040 — Ten2n 80001 — Tnan 204
— Tipa 21060 — Tronqean iy — Ty 241,81
—Tiy o140 T T2y 4 T T13). 240
T Tnay 2 1 2T 112334 T 211,203, 31)
+ 2T 343423y + 27701} 28y — 6T (12,347 (7.2.81)

We can then apply these to the vector partition [(1,0)2, (0,1)2] to get C' and C for field

content (2,2). Again we choose to display them by writing out the relations between
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Ty, and My, but this time all possibilities are included. The C' matrix is
StrX?Y? = M9 (7.2.82)
TrX2YTrY = M[(Q’l)’(071)] + M[(Q’Q)] (7.2.83)
TrX?TrY? = M[(Q,O)’(072)] + M[(Q’Q)] (7.2.84)
TrXY?TrX = M[(1,2)7(170)] + M{(g}g)] (7.2.85)
(TI'XY)2 = M[(l,l),(l,l)] + M[(272)] (7286)
TeX? (TrY)* = Mia0),0.0).0.) + Mi20).02) + 2Mi21) 0] + Mz (7:287)

TrXYTrXTY = Mia,),10),0,01 T Mia,0,0,0) + M .2),0,0)
+ Mi2,1),0,1)] + M2,2)] (7.2.88)
(TrX)* TrY? = Mi,0),1,0),02) T 2Mi1.2),01.0) + Mi20),02] + Mi22)  (7-2:89)
(TeX)* (TeY)* = M(1,0),(1,0),(0,0,000] + Mi(1,0),(1,0),0.2)] +4M[(1,1),(1.0),(0,)
+ Mi(2,0),0,0),0,1)] T 2M1,1),1,)) + 2M[(1,2),1,0)]
+ Mi2,0),00.2)) + 2M{2,1),0.1)] + M{2,2) (7.2.90)

The C matrix for (2,2) is

Mj(5,9) = StrX?Y” (7.2.91)
Mi2.1),01) = TTX?YTrY — StrX?Y? (7.2.92)
Mi(2,0),0,2)] = TrX*TrY? — StrX?Y? (7.2.93)
Mi1,2),1,0) = TrXY?*TrX — StrX?Y? (7.2.94)
M1 1)1 = (TrXY)? — StrX2y? (7.2.95)
Mi2.0),01),0.)) = TrX? (TrY)? — TeX?TrY? — 2T XY TrY + 2StrX 2y
(7.2.96)
M1y, 0,0.0)) = TEXYTEXTrY — (TrXY)? — TeXY2Te X
— TrX?YTrY + 2StrX2Y? (7.2.97)
Mi10),1.0),02) = (TrX)? TrY? — 2TeX V2 TrX — TrX?TrY? + 2Str X2y
(7.2.98)
Mi1,0), 1,000,001 = (TrX)?* (TrY)? — (TrX)? Try? — 4Te XY Tr X TrY’
— TrX?(TrY)? + 2(TrXY)? + 4Te XY ?Tr X
+ TrX?TrY? + 4Tr X2Y TrY — 6StrX2Y 2 (7.2.99)
Note that we have used
StrX?y? = %TrXQYQ + %Tr(XY)2 (7.2.100)
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rather than just TrX2Y?2. This means the expressions (7.2.82-7.2.99) give the relations
between Ty, and My, both as multi-symmetric functions and symmetrised trace operators
in N = 4 super Yang-Mills.

7.2.6 Relation to other combinatorial quantities

Stirling numbers of the second kind, S(n, k), are defined to be the number of ways of
partitioning a set of n objects into k£ non-empty subsets. Combinatorically, these are
a coarsened version of the 2-vector and set partition C' matrices. Starting with the

2-vector version, S(n, k) is given by

S k)= Y Cliom o1y (7.2.101)
pH(n1,n2)
l(p)=k
where ny + ng = n.
Alternatively, consider an arbitrary m > n and q F (m1, mg) with m; +mg = m to

be a vector partition with I(q) = n, then

Stn,k)= > CP (7.2.102)
pk(m1,m2)
l(p)=k
Define 7, € II(n) to be the unique set partition of length n, meaning each number has

its own block. Then in terms of the more general set partition C

Stn,k)= > CF (7.2.103)
well(n)
||=k

Or alternatively, taking 7 € II(m) to be any set partition with |7| = n, then

Stk)y= > CF (7.2.104)

' €Il(m)

' |=k
Unsigned Stirling numbers of the first kind, |s(n, k)|, are defined to be the number of
permutations in S,, with k& cycles. The signed Stirling numbers s(n, k) have the same
magnitude, but are multiplied by the sign of the permutations (—1)"~*. This is related
to the 2-vector and set partition C matrices in the same way as S(n, k) was related to

C'. Using the same notation as (7.2.101-7.2.104), we have

stuk) = Y CF gm0y s k)= Y CP (7.2.105)
pt(n1,n2) pk(m1,m2)
l(p)=k I(p)=Fk
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s(n, k)= Y CT. st k)= Y CF (7.2.106)
well(n) ' €ll(m)
|w|=Ek |7’ |=k

Bell numbers, B,,, count the number of set partitions of n objects. In terms of C, these

are
Bn:ZS(n,k): Z 0[15170)”1’(071)”2]: CP = Z cr = Z cr
k pk(n1,n2) pk(m1,m2) well(n) ' ell(m)
(7.2.107)

7.3 Counting: U(2)xU(N) Young diagram labels and mul-

tiplicities at weak coupling

The space of states spanned by symmetrised traces T}, of general matrices X,Y admits
a U(2) action on the pair X,Y as in section 3.6.2. These symmetrised traces are
representatives of the elements of the ring of gauge invariants modulo commutators.
Specialising to diagonal matrices X = Diag(x1,x2,--- ,xn),Y = Diag(y1,v2, - ,yn)
gives the isomorphism [97,99] to multi-symmetric polynomials in z;,y; discussed in
section 7.1.1. For economy of notation, we are generally using T}, also for the image
t(Tp) of the isomorphism. There is an analogous U(2) action on multi-symmetric
functions which transforms the pairs x;, y;. Applying the isomorphism and then doing a
U (2) transformation is equivalent to doing a U (2) transformation on symmetrised traces
and then applying the isomorphism. In other words the isomorphism between gauge
invariants modulo commutators and multi-symmetric polynomials is a U(2) equivariant
isomorphism. The U(2) transformations (3.6.10) on the monomial multi-symmetric
functions, My, are obtained either by expressing them in terms of T}, using the C
transformation or equivalently using the U(2) on the pairs (z;,y;). In this latter picture,

the U(2) generators are

N N
0 0 0 0
jo—z (xzax@—i_ylayz) ‘73_,Z<xi8xi_yi8yi)
i=1 =1
(7.3.1)
Yoo Yoo
\7+:;wiayi j:;yiaxi

A U(2) covariant basis will be sorted by U(2) representations A and an index My
labelling the basis states. As in section 3.6.2, M runs over the semi-standard tableaux
of shape A and determines the field content. In order to parameterise the space for a

specific A, we observe that for each vector partition p - (n1,n2), there is an associated
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integer partition p(p) F n1 + ny obtained by summing the pairs

pP= [()\la Ml)a ()\25 /’LQ)’ sy ()‘kvuk)] - p(p) = [>\1 + p1, >\2 +p2,., >\k + :U’]C] (732)
Consider the action of U(2) on a simple monomial 2 y*. We have

Jox Y = (A + p)z yt Tz x Yt = (A — p)z y”

7.3.3
j+ x)\yu — ,U/l'/\Jrly'uil J_ x)\yu — )\x)\flyprkl ( )

The operators Ji send A — A+ 1, p — p F 1 while Jy and J3 leave A, invariant.
For all U(2) generators, the sum A + p is unchanged. More generally, for a monomial
xi‘lyf v :L‘zk yi.*, the sums A; + p1; are unchanged in each monomial term arising from
the action of the U(2) generators.

Applying this analysis to each of the monomials in Mp, we see that U(2) preserves
the associated partition p(p), and therefore p serves as another label in the U(2) co-
variant basis. We denote the multiplicity of a given pair A, p in the covariant monomial
basis by My p.

For a given associated partition p = [1P1,2P2 .. .] we have monomial multi-symmetric
functions My with p(p) = p. The constituent monomials in My (recall the defining
equation (2.7.6)) contain products of p; factors each with ¢ variables that can be x or
y and are transformed between the two using J+. We will show that these fit into the

representation

RY®) = (X) Sym” (Sym’ (12)) (7.3.4)

where V3 is the 2-dimensional fundamental representation of U(2). We can decompose

Rg @) in terms of irreducible representations RX(Q)

RY® = @ R{® vyt (7.3.5)

AFn

1(A)<2
for some multiplicity space VK‘;“. The direct sum is restricted to run only over
A F n since Rg @ s a subspace of (V3)®", and therefore the U(1) weight of all sub-
representations is n. The analogous representation of the global symmetry U(3) in the
case of eighth-BPS states is discussed in [28,51]. The multiplicity of R/[{(Q) in RI[,] @) i

mult

just the dimension of the multiplicity space Vi, and is also the multiplicity of the

pair A, p in the covariant monomial basis
My = Mutt (A, RY®) = Dim (Vi) (7.3.6)

To find this multiplicity we split U(2) into its U(1) and SU(2) components as discussed

202



CHAPTER 7. QUARTER-BPS OPERATORS IN THE U(N) THEORY AT WEAK
COUPLING

in section 3.6.2. As already mentioned, T\’,g @ is in the weight n representation of U(1),

SO
U2) _ pU(1 SU(2
Ry = RYW @ RIVE) (7.3.7)

where R}jU(Q) is
RSV = Q) Sym” (Symi (R%» = Q) Sym? (R%) (7.3.8)

for R; the spin j representation of SU(2). Then the U(2) decomposition (7.3.5) of
RpU @ i equivalent to the SU(2) decomposition

RV = @ R; ® V[gf;%ﬂ]’p (7.3.9)
J

where we have used the correspondence, discussed in section 3.6.2, between a U(2)
representation A = [% +7J,5 — j] of U(1) weight n and an SU(2) representation of
spin j. The question of calculating the dimension of the multiplicity space in (7.3.9)
is called an SU(2) plethysm problem and is addressed in [112]. We will use a formula
derived there shortly.

(2)

The monomials M, with p(p) = p define states |p) in Rg , whose normalisation

is given by the S,, inner product on My

(pla) = <Mp|Mq> (7.3.10)

There is a change of basis to U(2) orthonormal covariant states of the form
A, My, p, ) (7.3.11)

where v is a multiplicity index with 1 < v < M, ,. This change of basis is implemented

using Clebsch-Gordan coefficients
|A7MA>p7 V> = Z BX7MA,p7V|p> (7312)
p:p(pP)=p
We define the covariant monomial operators by
Mypiypw = D, BR oMo (7.3.13)
p:p(pP)=p

As an example, consider the multi-symmetric monomials for field content (2,2), given
explicitly in (7.2.91-7.2.99). We only give the My and p labels, as the shape of the

Young tableau specifies A, and the multiplicity for these operators is trivial. The
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covariant monomials are
Mpmen), m = \/ngn (7.3.14)
Miara), 3.1) = % (M), 0] + Mi1.2),1.0)) (7.3.15)
M, l22) = 3\f (Mi20).02] + 2M{1.1),(1.1)) (7.3.16)

Miper), (211 = 4\ﬁ( 20,0000 T 4Mi0,0,00,00 T Mi(1,0,0.0,02))

(7.3.17)
1
Mg, nay = mM[(l,o),(1,0),(0,1),(0,1)] (7.3.18)
1
M,[371} - ﬁ (M[(QJ),(OJ)] - M[(L?),(LO)]) (7.3.19)
1
M T2 (21, = (M[(zm,(o,l),(o,l)] — Mi(1,0),(1,0),(0,2)) (7.3.20)
M7 [2,2] 7 (M[(QO ),02)] — Mi11),a, 1)]) (7.3.21)

Mm Tt ~ 6 (M[(z 0).0.,0.] ~ 2M(1,1),1.0),0.0)) T Mi(1,0).(10).02]) (7-3:22)
The associated partition has length I[(p(p)) = I(p), and therefore the SEP compatibility
(modulo commutators) of the My, basis is transferred to the new basis.

If p has length I(p) > N then the multi-symmetric function Ma as, p. vanishes
identically, while on the other side of the isomorphism, the operator Mx ar, p,, reduces
to a commutator trace and therefore is no longer pre-BPS. Operators with [(p) < N
are in general not pre-BPS, but differ from such an operator by a commutator trace.
In section 7.4 we show how to remove this commutator trace component to derive a
pre-BPS basis. For now, we note that the multiplicity M, , determines the finite IV
combinatorics of the quarter-BPS sector.

The half-BPS operators Or defined in (2.3.14) are dual to giant gravitons. There
are two types of giant gravitons: those that have an extended S® C S° as part of the
world-volume, and those that have an extended S® C AdSs. We will refer to these as
sphere giants and AdS giants respectively: they are also sometimes distinguished in the
AdS/CFT literature as giants versus dual-giants respectively. U(2) rotations of these
half-BPS giants produces giant graviton states in the A = [n] representation, where n
is the number of boxes in the Young diagram R. The nature of the Young diagram
R is related to the type of giant graviton system. As we deform A to A = [n —m,m]
we move away from the half-BPS sector. The deformations of sphere giant states are
described in terms of moduli spaces of polynomials in three complex variables [39] while

deformations of AdS giant states are described in terms of a family of solutions with
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S3 C AdSs world-volumes orbiting great circles on the S® [40].

In section 7.4 we will produce a basis Sﬁ% p for the quarter-BPS sector with
the same labels as (7.3.13). For A = [n], this basis agrees with the half-BPS Schur
basis (2.3.14) by identifying p with R. This matching between the Young diagrams
p labelling the quarter-BPS sector and R labelling the half-BPS states suggests that
for a particular diagram p, we can follow the half-BPS sector states into the quarter-
BPS sector by considering A = [n — m,m] and slowly increasing the length of the
second row, m. We expect that if we keep p fixed in this half to quarter transition, we
qualitatively preserve the physical nature of the giant graviton: Young diagrams with a
few long rows of lengths order NV correspond to AdS-giants while diagrams with a few
long columns of lengths order N correspond to sphere giants. It is reasonable to think
of Young diagrams p (for more general A) with k rows of length comparable to N as
an AdS-giant system formed as some form of composite of k giants. Likewise, in the
following discussion, we will think of a Young diagram p with k& rows of length order
N as some composite involving k sphere giants. There will be interesting differences
between sphere giants and AdS giants, so the precise meaning of “composite system of
k giants” is something which should be explored through future comparisons between
bulk physics and CFT correlators.

The multiplicities (7.3.6) interpolate from half-BPS in the case A = [n] to more
general quarter-BPS for A = [n — Ag, Ag], with small Ay being close to half-BPS.
These multiplicities should be reproducible from the stringy physics of D3-branes in
AdSs x S°. In each part of this section, we discuss the giant graviton interpretation of

the multiplicity results.

7.3.1 A, p multiplicities and plethysms of SU(2) characters

We consider the space of multi-symmetric functions My with a given associated parti-
tion p, and how this can be split into U(2) representations.

As discussed in section 3.6.2, U(2) can be split into a product of U(1) and SU(2).
The U(1) weight of a given p is just n = |p|, so to derive the U(2) representation we
first study the SU(2) part, then recombine with the U(1) piece at the end.

For the sake of simplicity, we will primarily work with non-symmetrised monomials,
since such a choice determines the associated multi-symmetric function by adding all
permuted monomials. The construction of the multi-symmetric function from the non-
symmetrised monomial can affect the SU(2) structure, and we will describe this in
more detail as it occurs.

Start by considering p = [n]. This allows p = [(A\, p)] for A + 4 = n. The non-
symmetrised monomials corresponding to these are just xi\yf , whose action under U (2)

we gave in (7.3.3). From the action of J., J3, they lie in the spin § representation of
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SU(2). Symmetrising the monomials does not change the SU(2) structure, so p = [n]
produces the Rz representation of SU(2).

Next consider p = [k1, k2]. This allows p = [(A1, p1), (A2, p2)], with corresponding
non-symmetrised monomials z7!y" 232y4? subject to A; + p; = k; for i = 1,2. There
are (k+1)(l+1) different states, living in the tensor product representation Ry, ® Rk, .
When k; # ko, this is the correct SU(2) representation for the syrmrnetrised2 version
as well. However, if k1 = ko, then the states 2319/ 252¢4? and x72y223"yb* both
lead to the same multi-symmetric function and should be identified with each other.
The correct representation here is the symmetric part of the tensor product, written as
Sym? <R Ky )

As our final example, take p = [ky, ko, k3], allowing p = [(A1, p1), (A2, p2), (A3, u3)].
By the same considerations as the previous two examples, the non-symmetrised mono-
mials 22yt 232 yh? 233ys® fit into the Rkl ® sz ® Rk3 representation of SU(2). If
all three of the ks are distinct, this is the correct representatlon for the symmetrised
monomials. If two of the ks coincide and the third is distinct, e.g. ki = ko # ks,
then the M, live in Sym? (Rﬁ ) ® Ryy. Finally, if k; = ko = ks, then there are 6
permutations of the basic mongomial thzat lead to the same multi-symmetric function
and should be identified. These are

A1, M1, A2, p2, A3 A2, B2, A3, 13 A1 A3, B3, A1, Bl A2

LY To Yy Xy y3 T1°Y1 To Yoy X3 ?/3 T17°Y1 Lo Yy T3 3/3
A1, M1 .23, U3, A2 A3, B3, A2, p2 A1 Ao, 2 A1, M1, A3
Y ey sy 2 Yyt sy 22y g s (7.3.23)

In an analogous way to the single coincidence, this leads to us using the completely

symmetric part of the triple tensor product, written Sym? (R ky ) This is the part of
2
R%’f’ that is invariant under all S3 permutations.

2

From the principles established in these three examples, we can generalise to a
generic integer partition p. The multi-symmetric functions with associated partition
p=[1P1,2P2 ] fit into the representation of SU(2) given by

RSVE) = RSV — Q) sym” (R, ) (7.3.24)

Restoring the U(1) weight, as a U(2) representation this is

Rg(Q) - Rg(l) ® R;?U(Q)
S s s (1)

= ® SymP: (Rly(l) ® Sym’ (R

=
~——
~—
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= ®Sympi (Symi (RlU(l) ® R%))

_ ® Sym?: (Symi ({/2)) (7.3.25)

where we have used R; = Sym® (R ) for SU(2) representations and the fundamental
2

~— ol

representation of U(2) is Vo = R?(l ® R1.
2
So the problem of finding M, , reduces to a U(2) representation theory problem

2) )

of finding the multiplicity of Rf{ within the representation RpU 2 , or equivalently the

SU(2) representation theory problem of finding the multiplicity of R; within Rg v@
and using the correspondence j <> A = [% + j, 2 — j] for U(2) representations of U(1)
weight n.

We will solve the SU(2) problem. In order to do this, we calculate the character
of the representation (7.3.24) and compare it to the known characters of the spin

representations. From standard SU(2) representation theory we know that

P I )
XRj(QB):qj‘i‘q] +-4gq J:q JW (7.3.26)
So the multiplicity of R; inside a direct sum representation R is given by
Mult (Rj, R) = Coeff [q_j, (1 —-q)xr (q‘]?’)] (7.3.27)

Taking a single factor of (7.3.24), the character of Sym”: (Ri) was calculated in [112]
2
and is given by

\ (%) =q % (- (L —g"*?)  (1-¢"")
Sym?i (Rg) (1-q) (1-¢) (1-¢')
_ g

=q 2 Fip(q) (7.3.28)

where " T "

1 — gPi 1 — gPi 1 — gPitt
Fop= L)) (1-g) (7.3.29)

(1-q) (1-¢) (1-4q)

So the multiplicity of R; inside Rj" ®) is
i _ i
Mult (R;, R5V® ) = Coeff (q N I U Fi,pi(q)>

= Coeff (qj, 1-qq 2] Fi,pi(Q)) (7.3.30)

Since the A = [n — m, m] representation of U(2) corresponds to spin j = § — m, this
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means

Mult([n — m,m],Rg(2)> = Coeff (qm_g, (1-— q)q_% HFi,pi(Q)>

= Coeff <qm, (1—4q) H F;p, (q)) (7.3.31)

Writing
Fy(q) = [[ Fimi(@) (7.3.32)

we can give a simple formula for the multiplicity in terms of the coefficients of F},

Mip—m,m)p = Coeff (¢, F)) — Coeff (qm_l, Fp) (7.3.33)

We now take two distinct approaches to studying F),. Firstly we derive a generic formula
for My, that allows simple computational calculations of the multiplicity for any A, p
of reasonable size. Secondly, we study sets of p which have identical multiplicities for

all A and give explicit results of My, for the simplest such sets.

7.3.2 Covariant trace bases

In the previous section we argued from the vector partition structure of the monomial
multi-symmetric functions that the My, fit in to the representation RpU @) of U(2), where
p is the integer partition associated to p. Performing a similar process on the multi-
trace multi-symmetric functions 7}, (or equivalently symmetrised trace operators), the
U(2) action not only preserves p(p), it has exactly the same form as the action on

monomials Mp. That is, given U € U(2) with action
UM, = af M, (7.3.34)
q
for some coefficients ap, then the action of & on symmetrised traces is
UT, =) adTy (7.3.35)
a

Therefore sorting My, into a U(2) covariant basis is mathematically identical to sorting
T, into a U(2) covariant basis. It follows that the linear maps C,C relating M, and

Tp are U(2) equivariant, and we can define a U(2) covariant symmetrised trace basis

TAMypv = Z B/I;MA’];’VTp (7.3.36)
p:p(p)=p
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In [51], the authors proved that the multiplicity of A,p in the symmetrised trace co-
variant basis is

Mp = XA(Pp) (7.3.37)

where y, is the S, character of A and P, is an element of C(S,,) that projects onto
symmetrised traces with cycle type p. We discuss this projector in section 7.3.7.

The formulae (7.3.33) and (7.3.37) give My, from U(2) and S, representation
theory respectively. The former is more amenable to explicit calculations.

As discussed above (7.2.23), the symmetrised trace operators T, with I(p) < N
form a basis for symmetrised traces (but not pre-BPS operators) at finite N. Since the
p label in (7.3.36) has the same length as p, this property also holds for Ty ar, p.o-

In addition to the symmetrised trace covariant basis, there is a corresponding U(2)
covariant basis for commutator traces. It follows from the definitions (3.6.10) that the

U(2) generators act on a simple commutator as
RIX,Y] =0 [X,Y] (7.3.38)

Any commutator trace, generically containing a more complicated commutator than
[X,Y], can be written as a linear combination of traces containing [X,Y]. So (7.3.38)
shows that the space of commutator traces forms a U(2) representation. By similar
considerations to My and T}, these can be further sorted by an integer partition p = n
that describes the factorisation of a commutator multi-trace into single traces.

In [49], the authors used superspace techniques in the SU(N) gauge theory to de-
velop candidate quarter-BPS operators and SUSY descendent operators. These are ex-
actly the covariant symmetrised trace and commutator trace bases respectively, though
they did not include partitions with components of size 1, since in the SU(N) theory,
traces of individual matrices vanish.

The covariant bases for symmetrised and commutator traces are used in appendices
G.1, G.2 and G.3 to describe the final BPS operators at n = 5,6. In this section
we will focus on the covariant monomials and not comment further on the covariant

symmetrised or commutator traces.

7.3.3 General multiplicity formula

We now find an expression for
Coeft (¢™, Fy(q)) (7.3.39)

This is done explicitly for m = 0,1, 2, 3, from which we extrapolate the general result.

The relevant parts of p to describe the coefficients in (7.3.32) are

ik = {i:i>j,pi > k}| j>0k>1 (7.3.40)
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P Young diagram Table of c; Table of s

S1 = 4
4,3,2,1] 2=
S3 =

S4 1
Cng k=1 k=2 S1 =
j=0 3 2 Sg =

[353525171] j= 2 1 33:2

[ ] = 2 1 1 S4 = 1

¢k | k=1 k=2 k=3 21:;
. 2 =
j= 1 1 1 B
- 4 =

j=2 1 1 1 5 =1

Figure 7.2: Examples of the non-zero c; and s; for various integer partitions p.

Let Yj(p), j > 0 be the Young diagram of p with the first j columns removed. Then
intuitively, c; 1 is the number of vertical edges of length k or greater in Y;(p). It follows
that ¢; is the number of corners in Yj(p), and cg 1 is the number of corners in the full
Young diagram Y (p). Figure 7.2 shows some examples to illustrate this. The full set
of ¢; 1, completely determines the partition p.

It will also be useful to define

si= Y ¢k (7.3.41)

k=l

We have included examples of the s; in figure 7.2. In contrast to the ¢;x, the s; do not
define the partition p. For example, p = [2] and p = [1,1] both have s; = 1, so = 1
and all others zero. The sets of partitions which have identical s; for all [ are studied
in section 7.3.4.

To find the coefficients of ¢>1%3 in F,(q), we look at the low order terms from the
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definitions (7.3.29) and (7.3.32). For all ¢ > 0, F;,, contains the factor
(1—¢" ) 2 :
(1—4q) ( )
For all i > 1, F;,, contains, in addition to the above, the factor
1 — gpPit2 .
=14+¢ " +0(¢" (7.3.44)
For all ¢ > 2, the factor F;,, contains, in addition to the above,
(1—g"*?) 3 :
AL S C)(1 = grit? 7.3.45
T = (L )1 = ) (7.3.45)
=1+¢ = ¢ +0(q" (7.3.46)

All other factors in the definition (7.3.29) of F; ,, are of the form 1 + O(g*) so we can

ignore them for our purposes, giving

Fy = fifafs + O(q") (7.3.47)
where
fi :H(1+q+q2+...+qpi) (7.3.48)
>0
fo = H(l + q2 _ qpi+2 +e0) (7.3.49)
i>1
f3 = H<1 + q3 _ qpi+3 + .. ) (7350)
i>2
From this we can read off
Coeft (qO,Fp) =1 (7.3.51)

All the gs in the expansion of F}, come from f;, with the coefficient given by the number

of p; > 1. From the definitions (7.3.40) and (7.3.41), we can express this as
Coeff (¢, Fp) = co1 = s1 (7.3.52)

There are three ways to arrive at a g2 from the product (7.3.47).

1. We can take a ¢ from a factor of fo and 1 from every other factor. Within f,
this happens whenever p; > 1 for ¢ > 1, so there are ¢, different ways of doing

this. Therefore this route contributes c; 1 to the coefficient of 7.
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2. We can take a ¢? from a factor of f;. Each factor contains a ¢?> term only if

p; > 2, so the number of different ways of doing this is cg 2.

3. We can take a g from a pair of the f; factors. There are (002’1) different ways of
doing this.

So we arrive at the expression

81(81 — 1)

5 (7.3.53)

C
Coeff (¢%, F) = co2 +ci,1 + ( (;1) met

Looking at ¢3, there are six distinct ways to arrive at a ¢% from the product (7.3.47).
1. We can take a ¢> from a factor of f3. There are c2,1 different ways of doing this.

2. We can take a ¢® from a factor of fo. This can only be done if p; = 1, as

1. The number of factors with p; = 1 is given by

it comes from the term ¢P:
c1,1 — c1,2. Noting that any ¢® obtained in this manner comes with a minus sign,

this contributes ci 2 — ¢1,1 to the coefficient.
3. We can take a ¢> from a factor of f;. There are co,3 ways of doing this.

4. We can take a ¢? from a factor of f» and a ¢ from a factor of f;. There are €1,1€0,1

ways of doing this.

5. We can take a ¢? from a factor of f; and a ¢ from a different factor of f;. There

are cp2(co1 — 1) different ways of doing this.

0,1

3 ) different ways

6. We can take a g from three different factors of fi;. There are (
of doing this.

Collecting everything, we have

co,1
Coeft (¢°, F))) = con + c12 — c11 + co3 + c1,1¢01 + co2(con — 1) + ( 3 )

€o,1
=co1+ci2+co3+ (cr1+co2)(cor — 1) + ( >

3
1(81 — 1)(51 — 2)
6

= 53+ 8o(s1 — 1) + 2 (7.3.54)

A similar process for the coefficient of ¢* leads to

Coeff (q4, Fp) =coa+c13+co2+c31+ (co3+cr2+c21)(con — 1)

co2 +C1,1 co,1 — 1 €o,1
+< 5 >+(co,2+c1,1)< 5 >+ ( A )

82(82 — 1) + 82(81 — 1)(81 — 2)

= -1
sq+s3(s1—1)+ 5 5
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L sils - 1)(8;4— 2)(s1—3) (7.3.55)

In (7.3.51), (7.3.52), (7.3.53), (7.3.54) and (7.3.55) we have expressed the first 5 coef-
ficients in the expansion of Fj, in terms of the s;. The terms in these sums correspond
to the partitions of the exponent of ¢q. For example in (7.3.55), the terms correspond
respectively to the partitions [4],[3,1],[2,2],[2,1,1] and [1,1,1,1]. This leads us to

suggest the general formula

Coeff (q™, F,) = > [H (s, —k+1)

AFm L ok

11 1] (7.3.56)

where we have used both the component notation A = [A1, Ag,...] and the multiplicity
notation A =< 1, pg, -+ > for A.

In work for this thesis, we have algebraically proved this formula for m < 6, and
have numerically checked it up to m = 20. A proof for general m and p is a problem
for future work.

It is interesting to note that since F), is a palindromic polynomial (arising from

the ¢ — ¢!

invariance of SU(2) characters), these coefficients form a palindromic
sequence. Explicitly,

Coeff (¢, F,) = Coeff (¢" ™", F,) (7.3.57)

As the sums over A in (7.3.56) get extremely complicated for large m, this is quite
surprising, and leads us to suspect there is more hidden structure in the sum (7.3.56).

Combining (7.3.33) with (7.3.56) gives us an explicit formula for M, ,,

M[nfm,m],p = Z [H (SAI@ —k+ 1)

AFm Lk

1
1:11%()\)!
— Z [H(S)\k—k—l—l)

AFm—1 L k

11 M(lx)'] (7.3.58)

Applying this to m = 0 to 4, the formulae are

My =1 (7.3.59)
M[nfl,l},p =5 —1 (7360)
-3
M[n*2,2},p = S + 51(512) (7361)
81(81 - 1)(81 - 5)

M[n_3,3]7p =53+ s2(s1 —2) + (7.3.62)

6
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M[n—4,4]7p = S84 + 83(81 — 2) + 52(52 _ 1) + 32(522)
s V(e =4 | sl = Do = 2)(1 = 7) (7.3.63)

2 24

These formulae are independent of N, so to get finite N multiplicities we impose the

finite NV cut-off on p. Including this, the general multiplicity formula is

(7.3.58) Il(p) <N
Mip—mm)p = (7.3.64)
0 l(p) >N

We can also look at the total A multiplicity M by summing over all p+n

M[n—m,m] = Z M[n—m,m] D

pEn,l(p) SN

= Y (Z [H(sM—k—l—l)

pFnl(p) <N \AFm L k

(7.3.65)

From representation theory considerations [10], the sectors with A = [n] and [n — 1,1]
do not undergo a step-change as we turn on the coupling constant. Therefore the weak
coupling combinatorics of these sectors should match the free field combinatorics of
section 3.6.2. A priori, the combinatorics should agree when considering the entire
A = [n] or [n — 1, 1] sector. We find a stronger result: the combinatorics of the Young
diagram label R in (3.6.20) matches the partition p of this section.

From (7.3.63), for A = [n] the multiplicity of any given p is 1, while for A = [n—1, 1]
recall that s; = cg,1 is the number of corners of p, so the multiplicity of p is simply
the number of corners subtract 1. As expected, these match (3.6.22) and (3.6.23)

respectively and therefore

C(R,R,A) = Mx R (7.3.66)

for A = [n] and [n — 1,1].

7.3.4 Hermite reciprocity and p-orbits of fixed M, ,

There are collections of p which lead to the same multiplicities for all A. To under-

stand these, we look at the definition (7.3.29) of F;,,. If i > p;, the numerator and
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denominator start cancelling, and we end up with
(1-¢™) 1—g*?) (1—g't7)

J - =F, 7.3.67
N e e M T (7367

We can rewrite this to be explicitly symmetric in ¢ <> p;

1 — gmax(i,p;)+1 1 — gmax(i,p;)+2 1 — gitpi
Fip-:Fp-i:( 1 )(1=q N G i) (7.3.68)
P i3 (1 _ q) (1 _ q2) (1 — qmln(zypi))

This symmetry is known as Hermite reciprocity [113] and can be viewed as a property
of SU(2) characters.

We can use this ¢ <> p; symmetry to do transformations on partitions that keep the
product F), the same, and by extension all the associated A multiplicities.

As our first example, take p to be rectangular, so p = [iP?] for some particular choice
of i. Then the conjugate partition p¢ = [(p;)] has the same F, leading to the same
multiplicities for all A. Note that p¢ = p if ¢ = p;.

Now suppose p = [?%, jPi] for i < j. Then there are three candidates for partitions

with the same F', namely

PV = [(p2)", 57] (7.3.69)
P = [i#, (p;)] (7.3.70)
PP = [(2)", ()] (7.3.71)

The partition given by p(!) will only produce the same F if j # p;. If j = p;, then pM)
should be written as [j7+?i] and the Fs no longer match. Similarly p will only match
if 7 # p; and p®) if p; # Dj-

To visualise the transformations taking p to p(123)

, split p into two rectangles
stacked on top of each other. Then p(!) is obtained by rotating the i rectangle through
90 degrees, reordering the two rectangles if appropriate, and re-stacking them. In the
same manner, p? is obtained by rotating the j rectangle, and p3) by rotating both.
We take p = [4, 3, 3] as an example

When one of the dimensions of the first rectangle coincides with one of the dimensions

of the second rectangle, one or more of these four options will reduce from two distinct
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rectangles into one larger rectangle, and hence to a different F'. If there is one coinci-
dence, for example p = [3, 2] where we have ps = p3 = 1, we only have three partitions
with the same F'

pM = p?@ =1 (7.3.73)

If there are two coincidences, then the partition is not related to any other via these
transformations. There are three distinct ways for these two coincidences to occur.
Firstly, three of the dimensions could be the same, while the fourth is different, for
example p = [2,2,1,1]. Secondly, both rectangles are squares, with distinct sizes, for
example p = [2,2,1]. Finally, the two rectangles are identical, but are non-square, for

example p = [2,1,1]. These three partitions are shown below

(7.3.74)

The generalisation to more rectangles is straightforward. A partition made from k
rectangles can be related to as many as 2* others by rotating a subset of the k rectangles.
These rotations are only valid if the widths of all the rotated rectangles are distinct. As

an example, consider all partitions of 5. These fall into 4 orbits under these rotations

olz{mjjjj,g} 02:{5333}
o~ ) -8
01—{[@333,@} 02:{53333} 03_{5333,?33753}
o4 = {533 , %} 05 = {gﬂj} 05 = {Eﬂj} (7.3.76)
-}

In appendices G.1, G.2 and G.3, we give explicit formulae for the n = 5, 6 basis elements.

(7.3.75)

As expected, the families of partitions above have the same multiplicities for all A.
The first orbit constructed from 2 rectangles to have all 4 dimensions distinct, and

therefore achieve the maximum size of 4 = 22 is found at n = 10 and is shown in
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(7.3.72). The first orbit constructed from 3 rectangles to have all 6 dimensions distinct

and have maximum size 8 = 23 is found at n = 28, and consists of

(

]
]
L]

[N
[N
T

LT

, (7.3.77)
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In the half-BPS sector, the Young diagram label of the Schur basis 2.3.14 gives us the
properties of the corresponding giant graviton in the AdS/CFT correspondence. A
partition with k& ~ 1 rows of length L ~ N describes k giant gravitons (or a single
giant graviton wrapped k times) extended in AdS5 of angular momentum L. Similarly,
a partition with k columns of length of length L describes k giant gravitons extended
in S° of angular momentum L.

These orbits of partitions with identical multiplicities at all A allow us to identify
families of different giant graviton states that behave the same under quarter-BPS
deformations.

Taking the simplest example of a single rectangle with p = [k%], this rectangle
rotation symmetry means k coincident giant gravitons rotating with angular momentum
L in AdS5 behave the same way as k coincident giant gravitons rotating with angular
momentum L in S°.

A system of two AdS giant gravitons with different angular momenta has p = [k, k2]
with k1, ko ~ N and k; # ks. Then we can rotate each of the rows individually to get
p = [k1,1%2] or p = [ks, 1%1], however we cannot rotate both at the same time. Therefore
the behaviour of two non-coincident sphere giants under quarter-BPS deformations is
different to that of two non-coincident AdS giants. This is studied further in the next

section.

7.3.5 Calculation of multiplicities for simplest orbits

For some of the simplest orbits of partitions under rectangle rotation, we can describe
the A multiplicities explicitly. These are dual to one or two giant gravitons wrapped
around the AdSs or S° factors of AdSs x S°.
Recall from (7.3.33) that (1—¢)F}, is the generating function for the A multiplicities.
More specifically, the coefficient of ¢ is the multiplicity of A = [n—m, m] for m < L%J .
We start with p = [1"] or equivalently p = [n].

(1= q)Fy=(1—-q)Fin=1-¢"" (7.3.78)
So A = [n]| appears with multiplicity 1, and all other A have multiplicity 0. In the
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dual string theory, this means a single half-BPS giant graviton cannot deform into the
quarter-BPS sector.
We next consider rectangles with side lengths 2 and k > 2, so p = [2*] or [k, k].

(1 _ qk+1)(1 _ qk+2)
(1= @) g =1 —q)Fox = =&

_ (1+q2 +q4+)(1 _qurl _qk+2 +q2k+3)

where |k, =2 L%J is k rounded down to the nearest multiple of 2. Since we are only
interested in the terms with exponent < k = 5, we can ignore the O(¢**1) parts of
the expression. Then A = [n — m,m] appears with multiplicity 1 if m is even, and 0
otherwise.

The dual interpretation of p = [k, k] is two coincident AdS giants, while p = [2*] is
two coincident sphere giants. Then (7.3.79) states that these states can be deformed
deep into the quarter-BPS sector. In some sense, the quarter-BPS state ‘furthest’ from
half-BPS is A = [§, 5], and this arrangement of giants can be deformed right up to
that limit if § is even (and only one away if § odd). However, not all quarter-BPS
deformations are available. In particular the ‘smallest’ deformation A = [n — 1, 1] does
not exist, and we must deform by ‘twice’ as much for each step into the quarter-BPS.

Now look at a combination of two rectangles, both with one dimension of length 1.
Let the other dimensions be k > I. If k = [, then the orbit has size 1, namely p = [k, 1*].
Otherwise, the orbit consists of three partitions, p = [k,1], p = [k, 1!], p = [I,1¥]. The
considerations of the orbit size do not affect the calculation of multiplicities. This

calculation is

(1 _ qk+1)(1 _ ql+1)

(1= gy =1 —q)F1pf1y =

l—gq
= (1 +q+q+..)(1 =gt — bt 4 g2
=l4+a+a*+-+d + 0" (7.3.80)

So A = [n — m,m| appears with multiplicity 1 if m <[ and 0 otherwise.

For k > [, based on the argument that keeping Y (p) fixed and deforming A = [n]
to A = [n — ng, no] preserves the qualitative physics of the giant states, we expect the
partition p = [k, ] corresponds to two non-coincident AdS giants when k, ! are of order
N. The multiplicity of A we are getting above is precisely the multiplicity of U(2)
reps in (A = [k]) ® (A =[l]). Indeed the U(2) representation for the quantum states
constructed from multi-symmetric functions My with associated partition p = [k, 1] is

Sym(Va) @ Sym! (Vo) = R G @ R G,

argument, to bound state of two AdS giants of angular momentum k. In this case

The case p = [k, k] corresponds, by the same
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the multi-symmetric construction gives the U(2) representation Sym?(SymF(V3)) =
Sym?(A = [k]), which is the symmetric subspace of RpUZ(QU)C] ® R;]:@U)C] The projection to
the symmetric part accounts for the missing powers of ¢ in (7.3.79) compared to the
p = [k, 1] case (7.3.80).

To look at two non-coincident sphere giants, we consider p = [,1,k — ] for k > [.
After rotating both rectangles, this is equivalent to p = [21, 1’“4], corresponding to two
sphere giants of momenta k and [ respectively. This has
(1 _ ql—l—l)(l _ ql+2)(1 _ qk:—l—i—l)

M=) ey =0 —q)Fo P = D)
—(1- AT S S O(qk))

(14+q+2¢>+2¢° +3¢* +3¢° +...) (7.3.81)

Where we can ignore terms of order k£ and higher as these exponents are greater than
n _ k+l

2 2
Let a,, = 0 for m < 0 and a,, = L%J + 1 for m > 0, the coefficient of ¢ in the

second factor of (7.3.81). Then the coefficient of ¢ in (7.3.81) is
M —mml Ll k1] = Om — Cm—kt1-1 — Gm—i—1 — Gm—]—2 + G213 (7.3.82)

The exact formulae for the multiplicities depend on the relative sizes of k and [. If
k < 2l, then

|2 +1 0<m<k—1I
Min—mml k- = § | 2] — |25 k—l+1<m<l  (7.3.83)

|2 — |mEHEL ) ] 41 <m < B

where we have used
c—1 c—2 c—1 ¢c—2 1
= ——=c—-2 3.84
{2J+{2J e T (7.3.84)
forc=m —1[.

If 21 < k < 3l, then

[3]+1 0<m<l
Mip—mml k- = § | %] —m+1+1 l+1<m<k-1 (7.3.85)

(7] - —mtl k-ldlsm< iR
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Finally, if £ > 3I
|2 +1 0<m<l
Mp—mml k- = § | 2] —m+1+1 1+1<m<2 (7.3.86)
0 20+1<m<EH

For two sphere giants of momenta k,! < N, the multiplicities fall into category (7.3.83).

Roughly speaking, the multiplicity of A = [n —m, m] increases as % until reaching %
It then stays constant until m reaches [ before turning around and decreasing for m > [,
reaching 0 at m = 3.
From the construction based on multi-symmetric functions, the states for p =

2!, 1%7] form, in all the cases, the U(2) representation

Sym'(Sym?(V2)) ® Sym*~(V2) = Sym?(Sym'(V2)) ® Sym*~(3)

U@ U
=Ry ® Ry ey

_ pUQ®) U(2)
= Rp=i1n @ Rp=ppe— (7.3.87)

So the construction implies that the 2-sphere-giant system for p = [2’“, 1k_l] have the
same multiplicities as a composite consisting of the 2-sphere-giant bound state p = [2']
along with a 1-sphere giant system [l(k_l)], while Hermite reciprocity further implies
that these multiplicities are also the same as those of an AdS 2-giant bound state of
angular momentum [ composed with a single AdS giant of angular momentum k — {.

We can see a marked difference between the behaviour of two non-coincident sphere
giants compared to two non-coincident AdS giants. In (7.3.80) the multiplicity of each A
was at most 1, so there was a unique way of deforming the arrangement of AdS giants
at each stage on their way into the quarter-BPS sector. Furthermore, the furthest
possible deformation was m = [, the lesser of the two momenta of the gravitons. With
(7.3.83) the multiplicities can be larger than 1, and are non-zero right up to m = . So
there are a multitude of ways of deforming sphere giants, and they can be deformed all
the way into the quarter-BPS. Interestingly, when the two momenta are more uneven,
and m can get as high as m = 2I, there is a cut-off on the possible deformations. This
is twice the equivalent cut-off for non-coincident AdS giants.

We have interpreted p = [2!,1¥7!] as corresponding to two non-coincident sphere
giants in order to compare with the equivalent system of AdS giants. However, when
I,k —1~ N, the rotation p = [l,1,k — [] is exactly the system of two coincident AdS
giants of momenta [ and a third giant of momenta k —[. So two separated sphere giants
have the same behaviour as a system of three AdS giants.

It is worth remarking that there are important differences in how the same Hilbert
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spaces of N free bosons in a harmonic oscillator are arrived at in the two problems
of quantizing moduli spaces of sphere giants [27] and the moduli space of AdS giants
[40]. In [27] quarter-BPS multi-giant systems are described by Fock space oscillators
associated with higher order polynomials in z,y. In [40] there is a relatively simpler
phase space of classical AdS solutions which is C? (and C3 in the more general eighth-
BPS case) and the full Hilbert space is obtained by considering an N particle boson
system based on this 1-particle system. This serves to explain why the gauge theory
construction of BPS operators we are giving here, which is intimately tied to a weak-
coupling gauge theory realization of the multi-free boson Hilbert space, leads to simpler

compositeness structures for the AdS giants as discussed above.

7.3.6 Partitions with one dominant row or column

There is another family of partitions that have nice properties. Consider p - n in which
the first row dominates the partition, i.e. p = [A1,p], where A\; > § and pF 7 =n— ;.
With one exception, when A\ = & and p = [A;] (this case has already been consid-

2
ered in (7.3.79)), this leads to

1 _ q/\l-‘r].
and therefore
(- @F, = (1- MH)F, (7.3.89)

Using the second equation in (7.3.33), we have

Mip—mm) a5 = Coeff

" (-] Fi,pi(q)]
— Coeff [qm, (1- qA1+1)Fﬁ} (7.3.90)

Since m < 5 for A to be valid Young diagram and A\; +1 > 5 by the dominant first
row property, it follows that

Coeft (qm, quHFﬁ) =0 (7.3.91)
and we can simplify (7.3.90) to
M n—m,m), 5 = Coeff (¢, Fp) (7.3.92)

Thus, the generating function for the A multiplicities is just F; and does not depend
on A1. We can now use our study of the coefficients of F' from section 7.3.3 to give the

A multiplicities. Note that the dominant first row condition has allowed us to obtain
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a simple formula for (1 — ¢)F}, in terms of Fj. As a result the multiplicities are being
obtained simply from the coefficients of a known generating function (F;). This is
simpler than the procedure of section 7.3.3 where the A multiplicities were obtained
from the difference of two consecutive coefficients in F},.

Using the formulae (7.3.59)-(7.3.63) we can write

s1(s1—1
Fyla) = quM[nfm,mL[Al,ﬁ] =1+s1g+ <82 + 1(1)> 7

2
si(s1 —1)(s1 — 2)) 3
A+

+ <83+52(51—1)+ 5

(7.3.93)

Where the s; refer to s;(p), not s;(p).
As previously observed in (7.3.57), the coefficients of Fj form a palindromic se-

quence, starting and ending with 1 at ¢° and ¢*. Adding this to (7.3.93), we have

s1(s1— 1)> 2

Z ¢ Mpp—mml ) = 1+ 514+ <82 + 5
m

+ <83 +sa(s1— 1)+ silsr = Do = 2)> q3

6
+ ...

+ (sg +s2(s1— 1)+ s1(s1 = 16)(81 — 2)> q?

s1(s1—1 X
+ (82 + 1(12)> 24 51" M4+ (7.3.94)
In summary, for p of the form p = [\, p], where p =7 and A\; > %, the multiplicities
of A = [n] and A = [n — n,n] are exactly 1, the multiplicities of A = [n — 1,1] and
A = [n—n+ 1,7 — 1] are the number of corners in p, and the general multiplicity
of A = [n — m,m| can be read from (7.3.56) with p = pif m < n oris 0if m > n.

Furthermore, when m < n, sending m — 7 — m does not affect the multiplicity :

M [n—m,m],[\1,p] — M [n—A+m,ii—m],[A1,p] (7395)

These properties have interesting implications. For a given n, i < 7, there are a large
class of partitions with a dominant single row of length n—n for which the combinatorics
of the deep quarter-BPS sector are determined by the combinatorics of the near half-
BPS sector. For A = [n — n,n|, there is a multiplicity of exactly 1 for any of the
partitions in this class, which is the same combinatorics as the half-BPS A = [n]. For
A = [n—n+1,n—1], the multiplicity is the same as the next to half-BPS A = [n—1,1].

For A = [n] and [n — 1, 1], there is no change in spectrum as we turn on the coupling
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constant. Therefore the combinatorics of the A = [n—n, nl, [n—n+1, 72— 1] sectors (for
this class of partitions) at weak coupling are determined by free field considerations.

It would be interesting to find out whether this unreasonable effectiveness of the
free theory has any connections to arguments in [47,114] that important features of
black hole physics in AdSs x S® are captured by the free theory.

More generally, if m < 7 < §, then A = [n —m,m] is a small deviation from
half-BPS while A = [n — 2+ m,7n — m] is a long way into the quarter-BPS sector,
and yet their combinatorics are identical for this class of partitions. An interesting
question is whether for these states with dominant first row in p (or dominant first
column) have a well-defined semi-classical brane or space-time interpretation which can
explain the coincidence of multiplicities between near-half-BPS and far-into-quarter-
BPS regimes. Near half-BPS states have been studied in the context of the BMN limit
of AdS/CFT [16]. In the context of giant gravitons, the physics of perturbations, in
some sense small, of well-separated multi-giants has been understood [31,35,52].

Using the rectangle rotation described in section 7.3.4, similar properties hold for
a single large column. Consider p with a first column of length p; and a partition p
attached to the right. This is denoted by p = [1#1] 4+ p. In terms of rectangles we can
use for the rotation symmetry, this is a partition [11(15)] + p with a single column below
it of length p1 — I(p). So setting \; = py — I(p) and p = [14P)] + 5, p is in the same
rotation orbit as [A1,p], and we can apply the logic of this section directly to p.

As an example, consider p; = 8 and p = [2, 1], with corresponding A\; = 6, p = [3, 2].

This is easiest to see visually

- rectangle | | l

p=H+=[]  retation (7.3.96)

It is clear that the conditions on a single dominant column are more difficult to work
with than those for a single dominant row. Let p; and ps be the length of the first
and second columns respectively, then to use the analysis of this section, we require
p1 — p2 > 5. This is a far smaller class of diagrams than given by the analogous

condition \; > 5 for a diagram with a single dominant row.

7.3.7 Identifying a multiplicity space basis

In discussing the decomposition (7.3.9) we have not specified a choice of basis for VX’;‘“,
instead introducing a multiplicity index v in the state (7.3.11). In this section we outline

an algebraic approach to choosing a basis and characterising v.
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As seen in (7.3.4), Rg@) is a subspace of (V5)®". There is an S, action on (V3)®"
U@)

by permutation of the tensor factors, and R, """ is the subspace invariant under the
subgroup G of S,,. For p = [1P1,2P2 . .| |- n, this subgroup, which is discussed in [51],
is

Gy =X Sy, [S] (7.3.97)

where Sy, [S;] is the wreath product of S, with S;. This is defined as the semi-direct
product of Sy, with (S;)P*, where S,, acts on (S;)P* by permutation of factors.

G)p contains as a subgroup the group G(m) given in (7.2.55), where 7 € II(n) is a
set partition with block size sizes given by p. G}, consists of G(7) with the addition of
the S, factors.

The projector onto the Gp-invariant space is

P, = |Gp| Y o (7.3.98)

oeGyp

which acts on a permutation 7 € S, via the adjoint action

— Z oro ! (7.3.99)

This projector was used in [51] to derive the formula (7.3.37) for My p.
On the full space (V2)®", the U(2) and S,, actions commute, and therefore they still

commute on the Rg @ subspace. Since Rg @) is the Gp-invariant subspace, we should
consider the action of the permutation subalgebra invariant under G)-conjugation,

rather than the full group algebra C(S,,). This algebra is
A, =P, [C(Sy)] = {a € C(Sy) |oac™ =a, Vo€ G,} (7.3.100)

Now A, acts on Rg (2), but commutes with U(2), which means in the decomposition
(7.3.9) it acts only on the multiplicity space components. So to choose a basis for Vm““,
we can choose a maximally commuting set of operators in A, and label the multiplicity
space basis by the eigenvalues of these operators.

The algebras A, are in general quite complicated, and finding a maximally com-
muting set of operators within them is an involved computational problem that we do
not attempt to find a general solution for. They are a generalisation of the algebras
studied in [63,115].
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7.4 Construction of orthogonal U(2)xU(N) Young-diagram-
labelled basis

In Section 7.5 we show that for any n, N, we can construct BPS operators by ap-
plying Gn to the subspace /\;IJSV C C(Sn), and using the map (3.6.19) from permu-
tations to gauge invariant operators built from N x N matrices. The physical in-
ner product on such operators obtained from 2-point functions uses the element Fy:
0((Gno1)FN(Gno2)) = 6(01Gn0o2). An orthogonal basis is obtained by choosing an
ordering (section 7.4.1) on the labels of the basis elements of ./\;IJSV and Gram-Schmidt
orthogonalising. The orthogonal basis elements Sﬁﬁ/}i py are normalised in the S,
inner product given in (3.6.26) (in section 7.5 this is the g, y inner product). This
construction algorithm gives a basis of BPS operators which is not only orthogonal but
also SEP-compatible.

In this section we explain the construction of this orthogonal SEP-compatible basis
of BPS operators from the covariant monomials M ar, p. We work with N x N
matrices X and Y, of which there are n in total, where we can consider N > n or
N < n.

The final output will be a basis of BPS operators of the form

SEhEpw = D SET(A;N)OA My R (7.4.1)
R, T
I(R)<N
where Op w1, r- are the free field operators defined in (3.6.20) and the expansion
coefficients s;,]f v (A; N) are functions of N. These will in general consist of a polynomial
numerator and a denominator that is the square root of a polynomial.

Let us give a precise statement of SEP-compatibility for these operators. Take some
N<N , and evaluate these operators on matrices X and Y of size N x N instead of size
N x N. This means the free field operators with {(R) > N vanish, and the coefficients
are evaluated at N rather than N. Then the operators with [(p) > N will vanish and
the operators with [(p) < N will form a basis for the reduced BPS sector. Moreover,
these are exactly the operators that would be produced by applying the construction
algorithm directly with matrices of size N x N.

Sections 7.4.1 through 7.4.4 describe how to construct S EIX/}S;\ v and prove that this
basis is indeed BPS and SEP-compatible. In section 7.4.5 we give an equivalent, shorter
construction that is represented in figure 7.1. The remaining sections investigate various

properties of the bases.
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7.4.1 Orthogonalisation and SEP compatibility

In order to construct the basis (7.4.1), we use results from section 7.5. Define

MZ(N) = Span {MA,MA,,,,V(N) HU(p) > 1\7} (7.4.2)

(V) = Span { Ma a1, (V) : 1p) < N} (7.4.3)

23N 2V

M

for some N < N. The operators My ar, p(N) are constructed by employing the
permutation to operator map in (3.6.19) with matrices X,Y of size N. Orthogonalise
./\/l]% against M% using the S, inner product (the 9o N inner product in section 7.5),
and (E%note the orthogonalised space by ./\;11% Note here the distinctionAbetween N
and N. The operators are defined using matrices of size N x N, while N is used to
separate the operators into two classes depending on the length of p, the partition label
for operators.

The result (7.5.48) and the discussion below it prove several useful facts.

1. Setting N = N, ./\;ljg\, is the entire pre-BPS sector.

2. The subspace MSN(N) is within the span of free field operators with I[(R) < N.
In particular, operators within ./\;l]SV do not receive any contribution from free
field operators with I[(R) > N. To see this, note that ./\;lj% = Im(P) N Im(Fg).

The general gauge invariant operators for matrices of size N are constructed

using permutation group algebra elements cut-off by I[(R) < N. The definition of

MJ%(N ) involves the stronger restriction [(R) < N.

3. MJ%(N ) gives a subspace of pre-BPS operators for matrices of size N. This
subspace is such that, when we reduce N to N by lowering the size of the matrices
XandY to Nx N , these operators remain pre-BPS, and in fact form the entire

pre-BPS sector.

The first of these results tells us the minimum work necessary to create BPS operators.
Take an operator M ar, po(N) with {(p) < N, and orthogonalise it against M7y, to
give a new operator My ar, p(IV). These form a basis for the quarter-BPS sector. If
N > n, then M3, is empty, and no orthogonalisation is necessary.

However, for N < N, operators My ar, p(IN) with I[(p) < N are not necessarily
orthogonal to ./\/l]>\7, and therefore upon lowering N to N <N , these are no longer
pre-BPS. In other words, this is not an SEP-compatible basis, and more work is needed
to find one. From the second and third points above, we have a sequence of pre-BPS

spaces

MF(N)C - C My5_(N) € M5(N) (7.4.4)

ZIA
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such that for any N SAN , the corresponding subspace /\;l]% is the entire pre-BPS sector
when we lower N to N.

It is now clear how we construct an SEP-compatible basis. Each operator My ar, p. (N)
must be orthogonalised in the S,, inner product against all operators My as, q.,(N) with
I(g) > I(p). Then for any N, the orthogonalised operators with I(p) < N form a basis
for /\;l]% Note that operators in different A sectors are already orthogonal from the
hermiticity properties of U(2), so we do not need to consider these. In the subsequent
discussion we will describe in more detail the steps involved in the construction of SEP-
compatible orthogonal BPS operators starting from My ar, p (V). We will henceforth
drop the label N and simply write M ar, p., With the fact that we are describing the
construction for matrices of size NV being understood. The parameter N < N will come
up in discussion of SEP compatibility of the construction.

In section 7.1.1, we explained that if N < n, then My a, p. picked an operator
that differed from a pre-BPS operator by addition of a commutator trace. Intuitively,
the orthogonalisation is removing the commutator trace part to leave only the pre-BPS
operator.

Before implementing the orthogonalisation, recall from section 7.1 that for N > n,
applying Gy to any basis of symmetrised traces gives BPS operators, without any
complicated orthogonalisation procedure. From the above, we can give a weaker bound
on N within a specific A sector.

Let p} be the longest (largest in the ordering (7.4.6)) partition with My px > 0. In

section 7.4.8 we prove that for A = [A1, As], we have

I(ph) =n — [A (7.4.5)

Then if N > I(p}), then M3, has no operators transforming on the A representation
of U(2) and the operators M ar, p. do not need to be orthogonalised before applying
gn to get BPS operators.

Returning to the construction, to carry out the procedure we will use Gram-Schmidt
orthogonalisation, which requires choosing an ordering on partitions. To ensure the
correct properties when we lower N to some N < N, we must begin with the longest
partition, and proceed to the shortest. For those with the same length, any ordering
would suffice to create an SEP-compatible basis. A natural choice is to compare the
length of the second column and start with the longer. If this is also the same length,
the comparisons proceed along the columns until one is longer. If the partitions are
the same and the operators occupy a multiplicity space, we do not specify an ordering.
Any will suffice.

More formally, this ordering on partitions is the conjugate of the standard lexico-

graphic ordering of partitions, which compares partitions based on the length of the
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first row, followed by the second row, etc. Given p¢ = [A1, Ae,...],q° = [p1, p2, .. .|,
then

. A= i<k
p>q <= thereis a k > 1 such that (7.4.6)
Ak > g

The operators obtained by performing the orthogonalisation are denoted by Q4. Ma,p,p-
In section 7.4.8 we prove that M Ap;, = 1, so we drop the multiplicity. For this

partition we have
QA My s = M ay ps (7.4.7)

If we are performing the algorithm with N < [(p}), then the associated operator
My, my py, will reduce to a commutator trace or vanish. In the former case, there is no
difference to the algorithm, while in the latter, we instead start the orthogonalisation
with the largest p such that My, > 0 and the associated operator does not vanish.
This partition will not necessarily have multiplicity 1.

For the remaining p, v the orthogonalised operators are defined inductively

= <MA MApllaQA Mp qn> _
Mu,p, Mp,qn)s
QA,MA,p,V = MA,MA,p,V - Z & QA7MA,q’q7 (748)

(q,n)>(p7l,) <QA7MA7Q7777 QA,MA7q717>Sn

where by (¢,n) > (p,v) we mean either ¢ > p in the ordering (7.4.6) or ¢ = p and
n>v.

Similarly to the first step, it may occur that Qa ar, p = 0 for some operators with
l(p) > N. Such operators are excluded from the rest of the orthogonalisation algorithm.
It is implicit that the sum in (7.4.8) does not run over these values of ¢, 7.

In order to compare the different Q A, M, p,vs We normalise to have S;, norm 1

= QnMapr (7.4.9)
\/<QA7MA7P7V|QA7MA7P7V>Sn

QA’MAyp’V

The new operators Qa ar, pv are an SEP-compatible basis for pre-BPS operators. They
are orthonormal under the S, inner product, and form a stepping stone on the way to
producing (7.4.1).

From the arguments above, we know that when expanding Qa s, p, in terms of
the free field BPS operators (3.6.20), only those operators with {(R) < [(p) contribute.

7.4.2 An example: field content (2,2)

We now give an explicit example of this construction for the field content (2,2) sector

at N > n = 4. While doing so, we will observe various features that generalise to
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My [M2M)| O G| GeE)| G
. o @ |f |§ |I9F |58
Normalisation @ @ @ @ @ 1 1 é @ @
Coofficient 24 24 12 24 2 4 4 12 | 12 12
(TrX)2(TrY)? |1 3 1 3 1 0 0 0 0 |0
TrX?(TrY)? 1 1 0 -1 -1 1 -1 1 -1 ] -1
TrXYTrXTrY |4 4 0 -4 -4 0 0 -2 2 |2
(TrX)?TrY? 1 1 0 -1 -1 -1 1 1 -1 -1
TrX2Y TrY 4 0 -2 0 4 2 2 0 0 |0
TrXY?TrX 4 0 -2 0 4 -2 -2 0 0 |0
TrX2TrY? 1 -1 1 -1 1 0 0 2 0 |2
(TrXY)? 2 -2 2 -2 2 0 0 -2 0 |-2
TrX?Y? 4 -4 0 4 4 0 0 2 2 | -2
Tr(XY)? 2 -2 0 2 -2 0 0 -2 -2 |2

Table 7.2: The covariant basis for field content (2,2) in terms of multi-traces. Each
element is identified by its M and R labels. We give the overall normalisation and the
coefficient of each multi-trace within the operator.

higher orders. These are discussed in later subsections.
We begin with the operators My ar, p. given in (7.3.14-7.3.22). The ordering (7.4.6)

for partitions of n =4 is
[1,1,1,1] > [2,1,1] > [2,2] > [3,1,1] > [4] (7.4.10)

Throughout the rest of this section we will continue using field content (2, 2) operators
as an example. In order to do this will need to express operators in terms of the free
field covariant basis defined in (3.6.20). The full set of covariant operators is given in

terms of multi-traces in table 7.2.

A = [4] and [3,1] sectors

Orthogonalising in the A = [4] sector, and normalising with respect to the S,, inner

product, we obtain

1
QuIer, 1,1,1,1] = NG —ATrX%Y? — 2Tr (XY)2 + 4Tr X2V TYY + 4T X TrXY?

+2(TrXY)? + TrX2TrY? — TrX? (TrY)?
—ATrXTrXYTrY — (TrX)? TrY? + (TrX)? (TrY)?
(7.4.11)
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1
= 4TrX%Y2 £ 2Tr (XY)? — 2(TeXY)? — TrX2TrY?
Conpr ey = 7 [ (XY)" —2(TrXY)
—TrX? (TrY)? —4Tr XTr XYTYY — (TrX)? Try?
+3(TrX)? (TrY)Q} (7.4.12)
1
Qs o] = ——= |2(TrXY)? + TrX?TrY? — 2Tr X2V TrY — 2Tr X Tr X Y2
+(Trx)? (Try)ﬂ (7.4.13)

1
Qurem. 1 = 1 /5 [—sz 2y2 2Ty (XY)? - 2(TrXY)? — Tt X>TrY?

+TrX? (TrY)? + AT XTe X YTYY + (TrX)? Try?
+3(TrX)? (Try)ﬂ (7.4.14)

1
Q. 1 = 7z [T XY 4+ 2T (XY)? 4 4TeXCY T 4 4TeX TeX Y

S

+2(TrXY)? + TrX?TrY? + (TrX)? (TrY)?
FTeX? (TrY)? + AT X TeX Y TEY + (TrX)? Tryﬂ
(7.4.15)

where we have suppressed the trivial multiplicity indices, and omitted A as this is
determined by the shape of the semi-standard tableau My .

For A = [3, 1], the orthogonalisation process produces

1
A o1~ 3 [—2TrX2YTrY FOTeXTeXY? 4+ TrX2 (TrY)? — (TeX)? Tryﬂ

(7.4.16)

1
Q5= 3 [QTrXQYTrY COTXTrXY? 4+ TeX2 (TrY)? — (TrX)? TrYQ}

(7.4.17)

For both these sectors, the operators obtained are identical to the free field BPS opera-
tors, given for field content (2,2) in table 7.2, where the weak coupling label p matches
the zero coupling label R. At n = 4, this is largely pre-determined by SEP-compatibility
of the two bases.

Since the A = [4] and [3, 1] sectors remain unchanged as we turn on interactions,
the free field BPS operators are also the weak coupling BPS operators. As they are also
eigen-operators of Fp, the space of free field BPS operators is the same as the space
of pre-BPS operators. Moreover, in these sectors there are no commutator traces, and
therefore SEP-compatibility for the pre-BPS operators is the same as that for BPS
operators, an operator with [(p) > N vanishes identically.

Therefore for A = [4] and [3,1], QA am, pv and Oa ar, v+ are both SEP-compatible
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bases for the same space. This means the spaces spanned by partitions of a given length
are the same. These spaces are all one-dimensional with the exception of A = [4],
p = [2,2] and p = [3, 1]. Therefore the matching of all but these two is trivial. A priori,
the matching between p and R for p = [3,1] and [2, 2] is surprising.

More generally, we find the same behaviour for all n < 7, which are within reach of
numerical calculations. The p label in Qa s, p,, matches the R label in Oy, g for
A = [n] and [n — 1,1]. Since neither basis specifies exactly how the multiplicities v and
7 are chosen, these will not necessarily match, but they do span the same space. We
go into this in more detail in section 7.4.9. For A = [n], the matching follows from the
fact the Kostka numbers converting the monomial basis to the Schur basis (2.7.12) are
upper diagonal in partition indices. For A = [n — 1, 1] we leave the matching at general

n as a conjecture.

A = [2,2] sector

The orthogonalised basis of pre-BPS operators for A = [2,2] is

1

OH 21 = (=2t + tp21) (7.4.18)
1

=275 g+t 7.4.19

Q,[2,2] 3\/5( (2,2] [2,1,1]) ( )

where the trace combinations are

tpiy = TrX? (TrY)? — 2TeX T XY TYY + (TrX)® Try? (7.4.20)
tpo = TIX?TrY? — (TrXY)? (7.4.21)

These trace combinations are the A = [2,2], My = parts of the symmetrised trace
covariant basis defined in (7.3.36).
In order to check the SEP-compatibility of (7.4.18) and (7.4.19), we express them

as a linear combination of the zero coupling basis given in table 7.2. We have

L (9 +v20 +30
QT 1y = “573 < mH- m.H ?) (7.4.22)

217"
QT 1po = - <‘/§O EEEhy O Hﬂ) (7.4.23)
MHea™ B\ B Bl
The only commutator trace at field content (2,2) is

Tr X[X,Y]Y = TeX?Y? - Tr(XY)?
V3 (0 +120 —0
=5 | B R @3 (7.4.24)
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It is simple to check that for N > 3

Tr X[X, Y]Y>sn = <Q,[2,21

Tr XX, Y]Y> =0  (7.4.25)

Qnm
< EE RPRRY ;

At N = 2, comparing (7.4.22) with (7.4.24) and recalling that (’) vanishes, we
1|1
By

1
= —-TrX[X,Y]Y 7.4.26
Q,mu 5 XX Y] ( )

have

Therefore (7.4.22) is no longer pre-BPS. The other operator (7.4.23) is still orthogonal
to the commutator.

At N =1, both (7.4.22) and (7.4.23) vanish identically. Combined with the be-
haviour at N = 2, this demonstrates that these two operators form an SEP-compatible
basis for pre-BPS operators in the A = [2, 2] sector.

At N = 2, the finite N relations mean that (7.4.22) can be written as both a sym-
metrised trace and a commutator trace. This is discussed in more generality in section
7.5, where we develop the finite N vector space geometry responsible for transforming

between the two types of traces.

7.4.3 Normalisation conventions for BPS operators

The final step to obtain an SEP-compatible basis for weakly coupled BPS operators
is to apply Gn to Qa iy pu, Where [(p) < N. However, the operators GNQa ay pv
contain denominators of the form (N — i) for i < I(p) which make it difficult to see how
they should behave when we lower N to N =i.

In this section we prove that by normalising GnQa v, p,» under the S, inner prod-
uct, we remove these denominators and obtain an SEP-compatible basis of BPS oper-
ators. We start by continuing the example of A = [2,2] from the previous subsection

to show some of the behaviour that occurs. Working at N > 3, we have

Gy Q = ! L o +@O
N i T TaaNV - (v ) \ N+ 2 BEHET N R
3

+——0
_ 7.4.27
N —2 @3) ( )
1 V2 1
@) ——0 7.4.28
<N+2 AN Hﬂ) (7.4.28)

Now consider lower N to N = 2 and imposing the finite N cut-off. It is unclear how we

OO 0 = ANV - DV £ 1)

should treat (7.4.27), since the operator O vanishes, yet we also have a division
i
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by zero. Let us resolve the ambiguity by declaring that this term should indeed vanish.
Then at N = 2 we have

1 1 1
=———=(39 +—=0 7.4.29
R AT TN <4 - Ve Hﬂ) (74:29)

This is a perfectly well defined operator, yet GnQa a1, p,» Was meant to be an SEP-
compatible basis. For BPS operators, this means (7.4.27) should vanish after reducing
N to N = 2.

The resolution of this problem is to normalise Gy QA M, p in the S, inner product.
Define

AyMA oV
\/ (ON QaMy pv|ON QaMy po) s,

For A = [2,2] we have
1
BPS N(N —2)0 +V2(N +2)(N - 2)0
B v = 37w U~ 2% AT eelas

F3N(N +2)0 @3> (7.431)
V2 NO (N +2)0
Q S T g f < Hjj + Hﬂ) (7.4.32)

where the normalisation polynomials are

QBES IN @AMy py (7.4.30)

P (N) =3N*+8N?+6N? +8 (7.4.33)
Py(N) =3N? 4+ 4N +4 (7.4.34)

There is now no ambiguity in the definitions of the operators after lowering N to
N = 1,2, and they vanish identically for N < [ (p), thereby forming an SEP-compatible
basis for BPS operators.

We now generalise to arbitrary A. Take some operator Qa ar, p With I(p) < N and

expand it in terms of free field operators

QA My pv Z qp 7O\ ML RT (7.4.35)
R,
Z(R)Sl(P)

for some coefficients qp » . The limit I(R) < I(p) on the sum was discussed below (7.4.9).
Define the set
Yo, ={R: qp,, # 0 for some T} (7.4.36)

Intuitively, Y, , is the set of Young diagrams R that contribute to Qa ar, p.. Define
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RS to be the minimal Young diagram that contains every R in Y}, and Rgfl’;” to be

the maximal Young diagram that is contained within every R in Y}, ,. Define
TN = frae (N) TN = frpn (V) (7.4.37)

where fr(N) is a polynomial in N depending on the shape of R. It is defined in (2.3.20)
as a product of linear factors. Intuitively, f)"* (N) is the lowest common multiple of
the different fr for R € Y),,, while mm(N ) is the highest common factor.

As an example, consider the previous example with A = [2,2] and p = [2,1,1]. We

have
Yio1,1) = {B:D, Hﬂ; Qj} (7.4.38)

and
1y = [ B (N) = (N +2)(N+ )N*(N = 1)(N —2)  (7.4.39)
Rty =H fB(N) = (N + 1)N(N —1) (7.4.40)

Using mc””(N), we can factor out the denominators in GNQa ary p,o- We have

OGNOQA My pv = OAM e ——— Gy~ ON My R
e = 2 WO RS = 2 By Ovn
l(R)<l( ) I(R)<I(p)

(7.4.41)

max (N)

. e
where the coefficients o)

linear factors. Therefore the .S,, norm of GNQa ary p,v 1S

are simple polynomials in N made up of products of

GN Qantapirls, = (GN Qapiy pwl ON QA by por) s, =

where the numerator polynomial is

_ R I (V)Y
By (N) = ; <qp,y fR(N)> (7.4.43)

I(R)<i(p)

This polynomial is a sum of squares, and therefore can only vanish if all terms are zero.

maac( )

Since £~
TrR(N)
there is linear factor common to every term. From the definition of f"'* as the lowest

is a product of simple linear factors in N, this in turn can only occur if

common multiple of the fr that appear in the sum, this does not happen. Therefore

P, ,(N) is positive for any N. In particular, it remains positive when we evaluate it on

234



CHAPTER 7. QUARTER-BPS OPERATORS IN THE U(N) THEORY AT WEAK
COUPLING

]/\7§N. We have

max (N)
Qi%x,p, Z q M) v OA My R T (7.4.44)

\% pV R,T

( )<I(p)

We now prove this vanishes when we lower N to some N < l(p). The properties

of P,,(N) mean there are no divisions by zero to concern us, and we focus on the

. o™ (N)
coefficients Z}R(N) .

By construction, Qa a, p. reduces to a commutator trace when we lower N to

N < I(p). Therefore it must contain at least one Oy My, R With I((R) = l(p ) otherwise

it would remain S,, orthogonal to commutator traces if we lowered N to N = I(p) —
Therefore
Up)-1
mer(N) > [ (V) (7.4.45)
i=0
where D means f,'7* contains these as factors. By definition
I(R)—1
frRN)D I (V=) (7.4.46)
i=0

it follows that if R € Y}, ,, the coefficient in front of O ar, g, contains

mazx l(p)—1
o (V)

f;(N) S H (N — 1) (7.4.47)

This ensures that if {(p) > N, all terms in the expansion (7.4.44) vanish when we lower
N to N. If I(R) > N, O, M, R+ vanishes by definition, while if I[(R) < N, the factors
n (7.4.47) set it to zero.

Therefore Qfﬁ/ﬁ\’p’y vanishes identically when we lower N to N < I(p), and hence
this is an SEP-compatible basis for weakly coupled BPS operators. This justifies the
statement made in section 7.1 that applying G to an SEP-compatible basis of pre-BPS
operators gives an SEP-compatible basis of BPS operators.

An alternative viewpoint is to look at the physical F-weighted inner product. We

have

BPS
= 7.4.48
‘QA,MA,pV‘]_‘ QA MAap,I/|QA My ,p,v >]-— Pp,y(N) ( )

where the new polynomial in the numerator is

2 fow (N)
RN = X @) Ty
R,T

U(R)<I(p)

(7.4.49)
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The overall factor of f]%*(N) in (7.4.48) ensures that it vanishes when we lower N to

p’lj
some N < I(p). As a consistency check, we also prove that it is non-vanishing when
N > 1(p).
This relies on noticing that the linear factors in == 0 NJ;[) are all of the form (N —1) for

frae (N)

= > . v )
iRk 0 when N > [(p). It follows that Py, (N) > 0

—n < i <I(p) — 1. Therefore

and the result follows.

In the planar (N — o0) limit, applying Gy reduces to division by N™, and therefore
after S,-normalising we have

QXN soe = @adiy (7.4.50)

Since Qa M, p,v 1S a symmetrised trace at large N, this means commutator traces are
sub-leading in the large N multi-trace expansion of Qfﬁ/}i,p,w

Having constructed an SEP-compatible basis of BPS operators, the natural next
question to ask is whether we can find a formula for their correlators. This uses the
physical F-weighted inner product. From the hermiticity of U(2), the Qfﬁf/\ pu ATe
F-orthogonal in the A, My labels, but in general are not in p,v. Therefore studying
correlators involves calculating a matrix of inner products. In the next section we F-
orthogonalise the Q/Jfﬁf{\ . 0 order to produce an F-orthogonal SEP-compatible basis
in which it is easier to study properties of correlators.

In this section we have normalised operators using the S,, inner product. This is
in some sense un-natural, as the Qfﬁfmny are not orthogonal in this inner product.
There is another, alternative normalisation we could consider. In (7.4.44) we have a
complicated normalisation factor of (P, , (N ))71/ 2 which if removed, would mean the
coefficients of the free field operators (and multi-traces) would be expressible purely as

polynomials in N. This is a natural normalisation to consider, and is given simply by

oo GN QA My v (7.4.51)
However, this is more difficult than the S,, normalisation, since it involves knowing
which free field operators appear in the expansion of Qa ar, p., and the free field
operators are computationally expensive to construct. In contrast, the S,, normalisation
can be deduced purely from an expression in terms of multi-traces, which is obtainable
explicitly from the construction of Qa ary pu-
In section 7.4.9 we prove that for A = [n], the Qa ar, p. exactly reproduce the
free field basis Op u, g+ up to a choice of multiplicity basis, and conjecture that the
same happens for A = [n — 1, 1]. If this is true, then for these A, applying G and S,

normalising leaves the operators unchanged and we have

BPS
QA,MA,p,V = QA,MA,p,I/ — OA,MA,R:p,T:V (7.4.52)
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7.4.4 F-orthogonalisation

To define an orthogonal SEP-compatible basis, we Gram-Schmidt orthogonalise the

QEﬁA,p:V operators using the physical F-weighted inner product and the same ordering
defined in (7.4.6). We denote the orthogonalised operators by S¥ ﬁf\ po and after

normalising them to have S,, norm 1, S}\BIX/E\ v

Let pj.y be the largest partition with Mjpp« > 0 and I(p}.5y) < N. Then in
analogy to (7.4.7), (7.4.8) and (7.4.9), we have

gBPS _ HBPS
SKMupiy = Qua iy (7.4.53)
BPS GBPS
QA M v A M _
BPS . BPS < AP, A7q777>]: BPS
SA,MA,pW - QA,MA,p,V - Z GBPS SBPS SA7MA7‘1777 (7454)
S
(g:m)>(pv) < AMa,qm A,Mmq,n>;
l(g)<N
Sk,
SBPsS = APV (7.4.55)

A, My ,p,v
GBPS ’ GBPS
A Map T AMapY [ o

where I(p) < N.

Note the difference in the starting point of the orthogonalisation compared to
(7.4.7). When S,, orthogonalising the pre-BPS operators, we began with p} = pj‘\;oo
even if [(p}) > N, whereas this time we apply the finite N cut-off to the partitions
being orthogonalised.

From the construction it follows that QE’% an only contributes to S f ij P if ¢ > p.
Upon lowering N to N , since the QPP operators with 1(q) > N vanish identically, the
SBPS will also vanish for I(p) > N, and therefore this is an SEP- compatible basis.

Note this relies on fov}g[\ .4y DOt appearing with a coefficient of 57— for i <i(q), a;
this would upset the SEP-compatibility in a way similar to that descrlbed in (7.4.29 )
As in the previous section, the S,, normalisation ensures this does not occur.

In the planar (N — oo) limit, the physical F-weighted inner product reduces
to N™ times the S, inner product, therefore F-orthogonalising is equivalent to S,-
orthogonalising. From (7.4.50), the QE’IZD\fA . Operators reduce to the pre-BPS opera-
tors Qa, M, p,v in the planar limit, which are already .S,, orthonormal. Therefore

Sf%\,p V‘N—)oo = QA,MA,p,Z/ (7456)

Below (7.4.9) we explained that only those free field operators with I(R) < I(p) con-

tribute to Qa,n, p,- After orthogonalisation, the Sﬁ%\,p,u can admit operators with

l(R) > Il(p), but (7.4.56) proves that these are sub-leading at large N.

Furthermore, just as discussed for Qfaﬁ;'AJ?,V below (7.4.50), commutator traces are

sub-leading in the large N multi-trace expansion of Sff/ﬁ\ o
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The A = [2,2] example

We begin with the operators (7.4.31) and (7.4.32). After F-orthogonalising and nor-

malising with respect to the .S,, inner product, we obtain
1
GBPS  _ <N(N ~2)0 +V2(N —2)(N +2)0q
B 2iu 2 /P Bm BEH
+3N(N +2)O
B

(7.4.57)
1
SBPS ( N + 1
5 2 2 2P(N) B Hﬂ
+O ?) (7.4.58)
HEk

where the normalisation polynomials P; and P, are given by

P(N)=3N*+8N?+6N%+38 (7.4.59)
Py(N) =3N%+2 (7.4.60)

Written in terms of traces, these operators are

1
SEES z[N2+2N—2t _ON (N 4+ 1)t
,[2,1,1] 2,/3P1(N) ( ) (2,1,1] ( )t
4(N + 1) TrX[X, Y]Y} (7.4.61)
1
SEE — [N try 11+ trog) — 2TrX[X, Y Y] 7.4.62
T 22~ GB (V) (fa1 +t22) X, Y] (7.4.62)

7.4.5 A shorter algorithm

In the previous sections we have given a method to derive an orthogonal SEP-compatible
basis S fyﬁ P This method goes through two orthogonalisation procedures, applying
Gy inbetween. The first step used the S, inner product and involved all the partitions,
the second used the F-weighted inner product and only included those partitions with
l(p) < N. This means the partitions with [(p) < N are orthogonalised among each
other twice. We now prove that one may simplify the first orthogonalisation procedure
to only orthogonalise against those p with I(p) > N and still obtain the same final out-
put. This simplifies the computational requirements, and is also conceptually simpler,
for reasons that will be outlined below.

To prove this streamlined procedure produces the same BPS operators, we first

recall some useful facts.
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General properties of Gram-Schmidt orthogonalisation

Consider two bases {v;} and {e;} of a vector space V', where the second is orthonormal.
Then orthogonalising v; results in the basis e; (up to normalisation constants) if and

only if the matrix connecting the two is lower diagonal.

{vi} RN {e;,} <= = Z Agvj (7.4.63)
Jj=i
Note that the orthogonalisation process here is the opposite way round to the standard
Gram-Schmidt orthogonalisation one would find in a textbook. Ordinarily, one starts
with minimal ¢ and proceeds to larger i, and therefore obtains an upper diagonal A
matrix. In (7.4.63), we start with maximal ¢ and decrease, since this is the approach
taken in (7.4.8).

Now introduce another basis {u;} for V', not necessarily orthogonal. This is related

to {v;} by a a matrix Bg
u; =Y Bl (7.4.64)

i

Then it follows from (7.4.63) that if Blj is lower diagonal, {u;} and {v;} orthogonalise

to the same orthonormal basis {e;} (up to normalisation constants).

Back to SEP-compatible bases

As explained below (7.4.3), the S,, orthogonalisation of ./\/IJSV against M3, gives us pre-
BPS operators. The continued S,, orthogonalisation among partitions with I(p) < N
gives us SEP-compatibility, but is not required for the operators to be pre-BPS.

To split these two steps us, define the pre-BPS basis M, AMypv DY

My, = M,y (7.4.65)

Z <MA7MA»ZLV7 M&Mmqﬂ»

5 Martyqn — (7.4.66)

MA M = M pm — = -
JMp,pv ,Mp,p,v Vi Vi
< A,Mnp,q,m> A,MA7q,77>Sn

(¢,1)>(p,v)

l(q)>N
where for p with [(p) > N, we have the same caveats as mentioned around (7.4.8)
regarding vanishing of operators. The My pr, ,., operators were briefly mentioned above

(7.4.4). The corresponding BPS operators, normalised in the S,, inner product, are

TBPS _ gNMA7MA)p7V
A, My ,pv

_ YN (7.4.67)
’gNMA,MA,p,z/|Sn

From their construction, orthogonalising M. AMypy all the way down the partitions

using the §,, inner product would result in the .S,, orthogonal basis QA ar, p, for pre-
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BPS operators. From (7.4.63), these two bases are related by a lower diagonal matrix.
Applying Gy and S, normalising both bases, the equivalent BPS operators are also
related by a (rescaled) lower diagonal matrix. Then from the discussion below (7.4.64),
it follows that orthogonalising the two bases in the physical F-weighted inner product

will result in the same final basis SIJ\B,IJT/E\ P

Therefore one may obtain the SEFA}’:\ p, Dasis in a simpler manner by F-orthogonalising

the MA,MA,p,l/ basis, much as we did in (7.4.53-7.4.55)

oBPS _ arBPS
SA,MAJ?X;N - MA,MA,p}*\;N (7.4.68)
MBPS QBPS
SBPS _ arBPS A Mp,pv2 = A Mn,q,m ]:SBPS 7.4.69
A7MA7P7V - A:MA,P:V - Z SBPS aGBPS A,MA#I,U ( T )
(am)>(pw) \PAMp,qn° PAMyan/ ¢
l(q)<N
QBPS
SBPS _ SA,MA7P7V (7 4 70
AMp,pv 4.70)
BPS | BPS
A JMpp,v 2 A My p,v S

where [(p) < N.

This approach to producing the Sﬁ%\ p.v Operators still involves two orthogonalisa-
tion steps, but the first is now computationally less demanding, and can be completely
skipped if N > 1(p}). Moreover, there is a clearer conceptual separation between the
two steps. The first one obtains pre-BPS operators, while the second one finds an
SEP-compatible basis.

This process skips the Qa a, p,, operators, but they still have physical relevance
as the planar limit of S}EIX/E\ o and were mathematically useful in proving the SEP-

compatibility of these operators.

7.4.6 Choice of SEP-compatible basis

In the section 7.4.4 we derived an orthogonal SEP-compatible basis of operators for
the A = [2,2] sector. This sector was also investigated in appendix C of [51], and
a different orthogonal SEP-compatible basis was found. One can check that the two
bases span the same two dimensional space for any N > 3, and when N = 2 we find
exact agreement of operators.

The SEP-compatibility determines the behaviour of such a basis for N = 1,2, but
for higher N there is a large degree of freedom. Define the F-normalised operators

Sﬁﬁ/ﬁ\ v for a generic A by

SRAT
SEhS = A 7.4.71
AMapv SBPS | GBPS ( )
A Map VA Mapv [ £
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Let ¢(N) and s(IN) be two functions of N satisfying
c(2) =1 5(2) =0 (N> +s(N)* =1 (7.4.72)
We can use ¢ and s to rotate the A = [2,2] F-normalised basis operators to a new
configuration
Oy = c(N)§ﬁ iy 5 Am] (7.4.73)
Os = —s(N)§~"j oyt c(N)§’[2’2] (7.4.74)

To avoid problems with vanishing denominators at N = 2, we normalise 01,03 to
have norm 1 in the S, inner product. These then define an alternative orthogonal,
SEP-compatible basis for weak coupling quarter-BPS operators in the A = [2, 2] sector.

As s(N) is determined by ¢(N), there is effectively a function’s worth of freedom
in defining an orthogonal SEP-compatible basis. Clearly the vast majority of these
will have definitions with far more complicated coefficients than those in (7.4.57) and
(7.4.58) (or equivalently (7.4.61) and (7.4.62)). An interesting question is whether we
can uniquely characterise a basis by having the ‘nicest’ coefficients. For example, the

coefficients in the basis of [51] are of the form

N+1++v2N2+1 (7.4.75)

These involve a sum of polynomial and surd terms, whereas the basis (7.4.57) and
(7.4.58) has coeflicients that are polynomial in N up to an overall normalisation. One
possible criterion would be to demand a basis with polynomial coefficients (up to overall
normalisation) whose polynomials have minimal degree. If unique, these operators
would in some sense be the ‘simplest’ orthogonal, SEP-compatible basis. It is reasonable
to conjecture that Sﬁ% v form this basis.

For more general A, take an N-dependent orthogonal rotation matrix R(A; N) of
size Mp x M, where

Ma= > My, (7.4.76)

pkn
l(p)<N

When evaluated at N < N , the matrix should split into diagonal blocks

(7.4.77)

RS(A; N) 0
0 R>(A;N)

R(A;N) = < ~

where R>(A; N) rotates those partitions with length I(p) > N among themselves and
RS(A; N) rotates those partitions with length I(p) < N among themselves.
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Then consider the S, normalised versions of the operators

> R(A;NpESPES (7.4.78)
l(qq)ygN

These form an alternative orthogonal, SEP-compatible basis for the weakly coupled

quarter-BPS sector.

7.4.7 Physical norms of BPS operators

For the free field operators (3.6.20), the physical norm fg is a polynomial in N that is
closely related to the corresponding Young diagram R. It has mathematical significance
as the numerator of the Weyl dimension formula for U (V) representations. We now
investigate the physical norms of the weak coupling BPS operators S ﬁﬁfj\ pye Deginning
with an example at A = [2,2]. These operators are given in (7.4.57) and (7.4.58), and

have physical F-weighted norms

3N?24+4N —2)(N+2)(N+1)N*N —1)(N —-2)
SEES _ ) (7.4.79)
’ [2»171] Pl
3N24+4N —2)(N+1)N%(N -1
8RS | = BN+ JIV+ VA ) (7.4.80)
7[272] PZ

This has two key features that will generalise. Firstly, the liner factors in the norms
reflect the SEP-compatibility, enforcing that the first operator vanish for when we lower
Nto N = 1,2 and the second operator vanish when we lower N to N =1. However,
both norms have more linear factors than just those required by SEP-compatibility. For
these two p, the numerators contain f, as a factor. This does not generalise to all p;
in (G.2.175) and (G.2.179) we see that the numerators in the norms of p = [2,2, 2] and
[3, 3] operators are one linear factor short of containing f,. It is unclear whether these
are exceptions, or whether at large n, very few operators contain f;, in the numerator
of the norm. It would be interesting to understand the linear factors that appear in
the numerator and whether these have a physical interpretation.

Secondly, the numerators share a factor of (3N2 + 2N — 2). In appendices G.1, G.2
and (.3 we see that consecutive partitions (in the ordering (7.4.6)) share a complicated
polynomial factor in the numerators. We believe this generalises to larger n, though
it may be an artefact of the orthogonalisation process. This is discussed further in
appendix G.2.4.

While the numerators of BPS norms have interesting properties, we have not found
any structure in the denominators. They arise by dividing through by the square root

of the S, norm, and from our numerical calculations do not seem to factorise into
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smaller units.

Norms of operators with multiplicity

The norms (7.4.79) and (7.4.80) can be considered as characteristic functions of A along
with the partitions [2, 1, 1] and [2, 2] respectively, just as the norms of the free field basis
are characteristic polynomials of the Young diagrams.

For the free field covariant basis (3.6.20), the physical norms depended only on R
and not the U(2) Young diagram A or the multiplicity 7. For the weak coupling basis,
the norms can now depend on A, p and v. The dependence on A and p is completely
determined by the construction, while the dependence on v is dictated by the choice
of multiplicity space basis. We now outline a way of extracting functions of N that do
not depend on this choice, and are therefore associated to the pair p, A.

In (7.4.71), a rescaled BPS basis §/]\3’1]\sz\ py Was defined, orthonormal in the physical
F-weighted inner product. A different choice of multiplicity basis would result in an
orthogonal rotation of these operators, and any trace over the multiplicity index is
therefore independent of the this choice.

In particular, consider the matrix of S,, inner products. For a trivial multiplicity
space, this would be a 1 x 1 matrix containing the reciprocal of the norm |S E’IXE\ MJ\Q.
The appropriate generalisation to non-trivial multiplicity should therefore be to take the
reciprocal of the trace, and we should also divide by the dimension of the multiplicity

space. So the invariant function is

-1

Map
1 , aBPS QBPS
fA’p = M Z < AvMA)p7V|SA’MA7p»V> (7481)
Ap 3

Note that the the hermiticity properties of U(2) imply that we can choose any semi-
standard tableau M and it will not affect the calculation.

We can also use the square/cube/... of the S,, inner product matrix to extract
further basis-invariant functions of V. Let A be the S,, inner product matrix. Then

we have

_1
£ = <1TrAk> ' (7.4.82)

Where we have taken the kth root in order to have functions of the same degree in
N. This stack of powers only goes up to k < My, before the invariants are no longer
independent.

In appendix G.2, we see two examples of non-trivial multiplicity spaces in the
A = [4,2] sector, both of dimension two. In section G.2.3 we show the calculation for

p=12,2,1,1] in some detail, while we are more schematic for p = [3,2,1].
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In both examples, the numerator of f /(\21)) is the same as f[(xlg, though the denominator
is not. As discussed below (7.4.80), this is further evidence that we should only look
at the numerators of the BPS norms, giving a single characteristic function for a given
A, p.

7.4.8 Longest p for a given A and explicit quarter-BPS operators

Due to the computational nature of the orthogonalisation process to derive SEP-
compatible BPS operators, it is difficult to give explicit formulae for many of the
Sﬁ%\ pw operators. The exception is for p}, the longest partition with My, > 0.
Shortly, we will prove that this has My« = 1, so we drop the multiplicity index.
Provided N > [ (p}), the operators with partition p} do not get orthogonalised, so we

have the formula

gNMA,M DA
s = ] (7.4.83)
‘gNMA,Mmp/*\ g
where

My vy pi = > BY vty 1 Mo (7.4.84)

pH(n1,n2) : p(P)=p}
- > BY pp 5 CoTy (7.4.85)

pH(n1,n2) : p(P)=p}

q-(n1,n2)

and we have used (7.3.13) to express M ar, pr in terms of Mp, (7.2.23) to write My, in
terms of T, and T is the symmetrised trace operator (7.1.11).

Explicit formulae for other Sﬁ]]\DfA v Operators in each A sector are much more
difficult to write down as they involve first orthogonalising down the partitions. Of
course one may find non-orthogonal BPS operators by applying Gy to the covariant
monomials My ar, po (provided N > 1(p})).

We can use the results of sections 7.3.5 and 7.3.6 to find p} explicitly. As discussed
at the end of section 7.3.6, we consider a partition p = [1#1] + p with a single dominant
column of length p; attached to a smaller partition p - n = n — p1. By rectangle
rotations, this has the same multiplicities as a single dominant row partition with
first row of length A\ = pu; — I(p) above a smaller partition p = [1/P)] 4+ 5, where
pkn=1(p)+n and we are using the notation of section 7.3.6. We give an example of
these relations between single dominant column and single dominant row partitions in
(7.3.96).

Applying the general formula (7.3.94) for a partition with a single dominant row,
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we see that A = [A1, Ag] only has non-trivial multiplicity with p if
Ay <n—puy +1U(p) (7.4.86)
Rearranging to constrain p in terms of A and p
p1 < A+ 1(p) (7.4.87)

Not only does (7.3.94) give this constraint on 1, it also tells us that the multiplicity is 1
if the inequality is saturated. If it is not quite saturated, and instead u; = A1 +1(p) —1,
then the multiplicity is the number of corners in p minus 1. Since p has a dominant
first column, this is just the number of corners in p.

Therefore the maximum possible p; is obtained when [(p) is at its largest. This

occurs when p = [1"] and I(p) = i = n — p;. Plugging this in, we have

A
g <n— 72 (7.4.88)
Ag
Therefore the maximal p; is n — [%1, with associated p = 1[ 2 W . If Ay is even then

(7.4.87) is saturated and the multiplicity is 1. If Ay is odd, then the multiplicity is the
number of corners in p, which is also 1. These multiplicities agree with the explicit
calculation for two column partitions in (7.3.82).

Stated fully, for A = [A1, Ag] F n, the longest p with non-trivial multiplicity is
A A€ Al L oA
i = [n_ [ﬂ , [;H _ [2(221,1 2| ﬂ} (7.4.89)

and this multiplicity is 1.

7.4.9 Orthogonalisation at A = [n] and [n — 1, 1]

In section 7.4.2, we observed that Gram-Schmidt orthogonalising the My rr, ., With
A = [4] or [3,1] in the S,, inner product led to the free field operators Oy, r,-. We
now prove that this behaviour is general for A = [n], and motivate a conjecture that
this also happens for A = [n — 1,1].

For this subsection, when we use A, we will be referring specifically to A = [n] or
[n — 1,1], and stated results will apply only to those A.

Recall that for these A, a free field BPS operator is also a weak coupling pre-BPS

operators. Therefore we have expansions of the form

v —1\R,7
OaMaRr = Y Ve Ma iy pw Mastypw =Y (671),0 Onatyme (7.4.90)
P,V R,T
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Next, recall from (3.6.28) that the free field operators are orthogonal in the S,, inner
product. Therefore from the property (7.4.63) of Gram-Schmidt orthogonalisation, the
My p, Will orthogonalise to Op ar, r,r if and only if b%;7 is lower diagonal. That is,

if the coefficients satisfy
VR =0 if (p,v) <(R,7) (7.4.91)

where the comparison between multiplicities makes sense since the size of the mul-
tiplicity space for a given p = R is the same for the two bases. This is proved in
(7.3.66).

More generally, since neither basis specifies a choice of multiplicity space basis, it

is sufficient to prove that
V=0 if p<R (7.4.92)

then after choosing the multiplicity space bases appropriately, (7.4.91) and the result

will follow.

A = n]

In the A = [n] sector at field content (n,0), the covariant monomials M s, p,. reduce to
the monomial symmetric functions M,, defined in (2.7.6), while the free field operators
O M, R, reduce to the Schur operators sp defined in terms of monomials in (2.7.12).

From these definitions, the two bases are related by the (rescaled) Kostka numbers

Kpg
Sp = Z H‘pi!Mp (7.4.93)

The Kostka numbers are the number of semi-standard Young tableaux of shape R and
evaluation p, where these terms are defined in section 3.6.2. To prove (7.4.92) in this
case we need

Kpry,=0 for R>p (7.4.94)

Consider R > p with column lengths R¢ = [A1, Ae,...] and p® = [p1,p2,...]. By
definition there is some [ for which A\; = p; for all ¢ < [ and \; > p;. Now take a
semi-standard Young tableaux of shape R and evaluation p. The entries in the first
column must strictly increase, so the entry at the bottom of the first column is > ;.
Since the evaluation is p, the available numbers to use are 1,2,...,p; = A1, so we must
fill this column with exactly the numbers 1 to A;. Similarly the second column must
be filled with the numbers 1 to Ay and so on until we reach the {th column. At this
point, the entry at the bottom of the [th column must be > \;, while the maximum

available number to use is p; < A;. So the Young tableaux cannot have evaluation p,
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and therefore Kp, = 0.
This proves (7.4.92) for A = [n] and the highest weight state M. Applying the
U(2) lowering operator [J_, the same will happen for any M within the A = [n] sector,

and this gives the result.

A=[n—-1,1]

For A = [n — 1,1], there are two principal reasons we might expect Qa ar, p to agree
with O ay R, Firstly, we know both bases are SEP-compatible. Since the space of
operators that vanish when N — N —1 is well-defined, it follows that for a fixed length
k =1(p) = I(R), the two bases must have the same span

Span {Sa my pr 1 U(p) =k} = Span {Oa v, rr : I(R) = k} (7.4.95)

Secondly, from (7.4.91) the multiplicity for a given p matches the multiplicity for R = p.
Mathematically

Dim(Span {Samypp 1<V < ./\/lAJ,})
= Dim(Span {Oa a7 : 1 <7 < C(R,R,A)}) (7.4.96)

A rigorous proof that the Qa a, p and Op ar, Rr,r Operators match is more difficult.
Numerical calculations indicate it holds true up to at least n = 7, and we leave the

general case as a conjecture.

7.4.10 Alternative algorithm

There is an alternative approach to capturing the finite N behaviour of the pre-BPS
sector starting from the free field operators. Following a similar process to that given
in sections 7.4.1-7.4.5, one may use this to derive an orthogonal SEP-compatible basis
of BPS operators. This alternative algorithm is outlined in figure 7.3. At first glance,
there is no reason to expect agreement between this and the Sﬁ%\ py Dasis defined in
(7.4.68). However our numerical calculations show that they do agree up to n = 6, and
we conjecture that this is a general result.

Start by considering the free field basis Oa a, r-. This has a symmetrised trace
component and a commutator trace component. As discussed around (7.3.38), there is
a U(2)-covariant basis for commutator traces that we will denote by ca ar, pe, Where
p b n is a partition that describes the trace structure of the commutator trace and £ is
a multiplicity index. For an example of these operators see (G.2.26-(.2.30), where we

give the highest weight states in the A = [4, 2] covariant commutator trace basis.
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Then Op um, g+ can be written

Oaptarr = D U My iy pw + D d5Scany pe (7.4.97)
DV j23

The coefficients b%VT are a generalisation of those seen in (7.4.90) to generic A.

The expansion coefficients in (7.4.97) are only defined uniquely at N > n. For
N < n, finite N relations make the choice non-unique. We will choose to use the large
N coefficient, even when working at NV < n. These coefficients are valid for all N and
are independent of V.

After removing the commutator trace component, we are left with

symm _ 123 — R
O rr = OnMu Ry — A cantype = D VR Ma vy o (7.4.98)
j 233 D,V

which is a redundant spanning set for symmetrised traces. These operators were con-
sidered in [51], where they were referred to as (9;%7 My R

Since O, are symmetrised traces, they form pre-BPS operators for N > n.
We also know from the construction that if N < I(R), the operator O}/ i, _ reduces
to a commutator trace. However, if [(R) < N < n, it is not necessarily true that QY™™
is orthogonal to all commutator traces. This is the same situation as the monomial
basis, discussed in section 7.1.1.

We may therefore use the same processes described in sections 7.4.1-7.4.5 in order
to find an orthogonal SEP-compatible basis for BPS operators. In this section, we sill
use the route given in sections 7.4.1-7.4.4 rather than the shorter one from section 7.4.5.

In particular, we produce a basis 010\7:5\}/}/\, Rp DY following the S,-orthogonalisation
procedure (7.4.7-7.4.9). We then apply Gy, F-orthogonalise the resulting operators
and Sy-normalise. The final basis is then denoted by Of,];/li R,p- This algorithm is
outlined in figure 7.3.

As the operators Of\yﬂn};n r.- are linearly dependent, some of the them will vanish
during the orthogonalisation process. Unlike the orthogonalisation of monomials, this
can occur for both [(R) > N and I(R) < N. At such a point, remove that operator and
continue with the orthogonalisation. This means the multiplicities for each pair A, R
with [(R) < N could reduce, and in some cases will reduce to zero. Denote the reduced
multiplicity for a pair by M?{’}? To indicate this reduction, we use a multiplicity index
p for the orthogonalised operators rather than 7.

The Of\f}t@m r,p With [(R) < N form a Sp-orthogonal SEP-compatible basis for pre-
BPS operators. The A, M, labels match the equivalents in Qa s, p,v, and by similar
reasoning to (7.4.95), the length of R must match the length of p. However, a priori,
there is no reason to suspect that the R label should match the p label, or even that

the multiplicities should be the same for any given partition.
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Free field operators
OA My R7

Remove commutator trace components.

Symmetrised operators
symm
A, Mp,R,T

Gram-Schmidt orthogonalise using the .S,
inner product. Multiplicity space is reduced.

Sp-orthogonal pre-BPS operators

orth
OR M Rop

Apply G, F-orthognalise and S,-normalise.

Orthogonal BPS operators

BPS
OX My R.p

Figure 7.3: Outline of the alternative algorithm of this section. Our numerical cal-
culations suggest that O,}\B’I&SA’ R, agrees (up to a choice of multiplicity basis) with the
operators SE’IX/ISAJ,’,, derived from the algorithm in figure 7.1.

From our numerical calculations up to n = 6, we find that for each pair A, R
the multiplicities match, and the span of the operators with those labels is the same.

Mathematically,

M = Map-r (7.4.99)
Span {OX%ZA,R,p 1<p< M?(’}’»f} = Span {Qa, My p=ry 1 1 <v < Mp,}t (7.4.100)

We conjecture that this is a general result for all A, R.

From this, it clearly follows that the BPS bases O}iﬁ/}i Rp and S ﬁ% P also match.

We can consider (7.4.99) and (7.4.100) as a generalisation to all A of the orthogo-
nalisation results discussed in section 7.4.9 for A = [n| and [n — 1,1]. In that case, we
showed that to prove the results, it was sufficient for the coefficients in (7.4.90) to be
lower diagonal in partition indices. We now prove a proposition that generalises this
lower diagonality to arbitrary A.

The proposition involves the coefficients b" in (7.4.98). Consider the sub-matrix

of bZ;%”T with p, R > q for some partition ¢ and denote this by (bq)%’VT. Then b, is an
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Mg:1 X Mg:2 Matrix where

Mgt = > May mg2 = _ C(R,R,A) (7.4.101)

p>q R>q

Denote the rank of b, by r,. This satisfies 7, < mg.1.
Proposition

Suppose the coeflicients b%l; are lower diagonal in the partition indices, so that
OV R = Z 053 M ay o (7.4.102)
p>R

In addition, suppose that b, has maximal rank 7, = mg; for each ¢q. Then (7.4.99) and
(7.4.100) hold.

Proof
Define
Vi = Span{Oy )" S > R, 1 <7 <C(S,S,A)} (7.4.103)
Vi = Span{Ma a1, po i 0 > Ry1 < v < My} (7.4.104)

It follows from (7.4.102) and the maximal rank condition for b that Vi = VR

Denote the partition immediately higher than R by R + 1. By construction, for R
with I(R) < N, the additional monomials included in Vi by lowering R + 1 to R are
linearly independent, and therefore the dimension increases by My p—g.

For Vg, we have C(R, R, A) new operators included by lowering R+ 1 to R, but the

dimension only increases by M‘”’th Then since Vi = XN/R, we have
M = M p-r (7.4.105)

Therefore for R with [(R) < N we may choose the multiplicity space basis such that
(’)iyﬁr R, 18 linearly independent of Vg1 if 1 <7 < My p=g, and is linearly dependent
on Vgy1 if 7> My p—pr. Under the orthogonalisation procedure, those operators with
T > My p—r will vanish. We can therefore equivalently start the procedure with a
reduced set of operators O/ , where we only consider 1 < p < My p—p. The
coefficients relating these with My ar, p, are still lower diagonal in partition indices.
Now split the orthogonalisation into two steps, first orthogonalising against the p

or R with I(p),l[(R) > N using the S,, inner product. For the monomials, this results
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in the MA, My, p,v operators given in (7.4.66). Let the equivalent operators for the
Osymm orthogonalisation be OiyﬁT r,- These are both basis for the set of pre-BPS
operators, and are still related by coefficients that are lower diagonal in partition indices.
Therefore, as discussed below (7.4.64), they must orthogonalise to the same basis, in
particular

010\7:5\}/},\71%,;: = QA,MA,p:R,V:p (7-4-106)

O

We have proved that (7.4.102), along with the maximal rank condition, is sufficient
for (7.4.99) and (7.4.100).

though we will not prove this here.

By a similar argument, it is also a necessary condition,

The maximal rank condition rq = mg, is equivalent to saying that we can choose

bases for the free field and covariant monomial multiplicity spaces such that

W, =0 if 7 >v (7.4.107)
vy, . #0 ifr=v (7.4.108)

where 1 < v < My, and 1 < 7 < C(p,p,A). Intuitively, this says that b is lower
diagonal in the multiplicity block with non-zero elements on the diagonal.

The coefficients b%VT are in some sense a covariant generalisation of the Kostka
numbers, which have a nice combinatoric interpretation. It would be interesting to
investigate whether there is a choice of normalisation for Of\%ﬁ;p’ - and M ar, po such
that these coefficients are integers, and whether they have any combinatoric interpre-

tation.

7.5 Vector space Geometry in C(S5,): BPS states from
Projectors for the intersection of finite N and sym-

metrisation constraints in symmetric group algebras

The construction algorithm for quarter BPS states in section 7.4 involves a U(2) global
symmetry which provides labels for the states constructed. Alongside the U(2) state
labels, there is a U(N) Young diagram Y (p) which emerges from the combinatorics of
multi-symmetric functions and their relation to the space of gauge invariant 2-matrix
operators modulo commutators [X,Y]. We have observed in Section 7.2.5 that the
combinatorics of multi-symmetric functions admits a generalization to the multi-matrix
case where we have M different matrices X', X2, ... XM  1In this section we take
a different viewpoint on the M-matrix system, using permutations to describe these

operators as explained in chapter 2.
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This is used to investigate the vector space geometry in C(S,,) that lies behind the
constructions of BPS bases in the previous sections, involving the interplay between a
projector Py for the U(M) flavour symmetry, a projector for the symmetrisation of
traces P and an operator Fy whose kernel implements finite N constraints. Restricting
to the image of Fy, there is a well-defined inverse Gy. These operators are M-matrix
analogues of F and Gy discussed in section 7.1. It was proved in [51] that BPS states

are in

Im(GnPw) (7.5.1)

where Py is an orthogonal (with respect to the \S,, inner product) projector acting on
C(S,) with

ImPy =ImPNImFy (7.5.2)

The isomorphism between multi-symmetric functions and the ring of gauge invariants
modulo commutators and the associated combinatorics of set partitions explained in
section 7.2 allows us to give a general explicit construction of Py. This general dis-
cussion also serves to explain why the construction algorithm in section 7.4 is able to
handle the finite IV constraints on BPS operators systematically. The flavour projec-
tion Py, for any chosen flavour group H, commutes with P and Fy and can be done
at the end.

7.5.1 Finite N relations and flavour projection in C(S,)

In section 2.1 we explained the vector space isomorphism between permutations in

C(S,) and multi-traces of n matrices of size N x N for N > n. Explicitly
o+ Oy =Tr(cZ) (7.5.3)

Further, in section 2.5 we described how to deal with N < n by removing the Fourier
basis elements 65 with {(R) > N. In this section we use a slightly different notation.
Define Fx and Gy on C(S,,) by

Fno = Qno gno = Q&la (7.5.4)

These are the n-matrix analogues of (7.1.2) and (7.1.5). Then the image and kernel of
Fn exactly splits C(S,,) into those permutations that survive the finite N cut-off and
those that don’t

Im Fy = Span{BF, : I[(R) < N} (7.5.5)
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Ker Fy = Span{3E, : I(R) > N} (7.5.6)

So (7.5.3) gives a vector space isomorphism between Im Fpy (or the quotient space
C(Sy)/ Ker Fy) and multi-traces of n matrices of size N x N, where N is now unre-
stricted.
There is a natural inner product on C(S,,). On permutations o, 7 € S, it is defined
by
gn(o,7) =6 (077 1) (7.5.7)

If N > n, this corresponds to the S,, inner product (3.6.26) when mapped to operators

using (7.5.3). For N < n we introduce a different inner product on C(S,) given by
gn.n(0,7) = 6n (0T 1) (7.5.8)

This corresponds to the S, inner product for any N, including N < n.
Note that if N < n, gn n is a degenerate inner product on C(S,). It vanishes on
Ker Fy, and is identical to g, on Im Fu. In particular, for an element oo € Im Fy, we

have

In.N(a, T) = gn(a,T) (7.5.9)

for any 7 € S,,.
It will be useful late to note that the Fourier basis elements are orthogonal in the

gn inner product (from standard character orthogonality relations), and therefore
(Im Fy)t = Ker Fy (7.5.10)

where (.)* denotes the orthogonal complement in the g, inner product.
In (2.1.9) we introduced the sub-algebra Ag of C(S,) that describes the degree

(n1,ng,...,nyr) subspace of an M-matrix system. Define the flavour projector Py
onto Agy by
1
Pu(o) = T Z ror ! (7.5.11)
’ ’ TEH

To check this is indeed a projector, we prove that it has the two properties
(PH)2 =Pu (PH)T =Py (7.5.12)

where the Hermitian conjugate is with respect to the g, inner product. These are both

simple consequences of the definition. We have

(Pn)* () = Pr(Pr(a))
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= Py(a) (7.5.13)

and

1 -
9(, Pu(B)) = ] PORICTE

ceH

= ]1H] Z S(c taop™)

occeH
= L aaa_l -1
- ’H| ;{6( B )
= g(Pu(a), 8) (7.5.14)

Finally, we check that Ay is the image of Py. Any o € Ap is invariant under con-
jugation by 7 € H, and therefore Py(a) = a. Conversely, for any o € C(S,,), we
have
Prla)r =1 Z cac r7l = Z ocaoc ! = Pg(a) (7.5.15)
ocH ocH
and therefore Py (a) € Ap.
The map (7.5.3) gives an isomorphism between Ay (or the quotient space C(S,,)/ Ker Py)

and the space of M-matrix multi-traces of degree (ni,...,nar).

7.5.2 Symmetrised traces from C(S,)

A symmetrised trace of 71, Zs, ..., Z, is defined in a completely analogous manner to
the 2-matrix version in (7.1.10), allowing a; € {1,2,...,n} instead of {1,2}. Degree
(1,...,1) symmetrised traces are labelled by set partitions m € II(n). These naturally
correspond to n-vector partitions of weight (1,...,1).

Take b C {1,2,...,n}. Then there is an associated symmetrised single trace

Ty, = Str (H ZZ-) (7.5.16)

i€b

where the symmetrisation implicit in Str means the ordering of the product is irrelevant.
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For a set partition m € II(n) we have

. =][T (7.5.17)
ber

where b runs over the blocks of .
The equivalent permutation picture comes from the set of permutations Perms(r),
defined in (7.2.56). We have

1
Tw_m Y o (7.5.18)

o€Perms(m)

where we use the same notation T for both the sum over permutations and the associ-
ated symmetrised trace operator. For the remainder of the section we only work with
the permutation sum, so this ambiguity will not be an issue.

More generally, one can define a symmetrisation projector P which projects a per-

mutation onto the space isomorphic to symmetrised traces. This is

o) = 71 ror !
P(o) |G(”(”))|Tecz<7;<a)> (7.5.19)

where the set partition 7(co) is defined naturally from the cycle structure of ¢ and
is discussed above (7.2.56). The subgroup G(m) for a given set partition is defined
in (7.2.54) and permutes each block of 7 within itself but does not mix the different

blocks. As mentioned below (7.2.56), the set Perms(w (o)) is just the conjugacy class

of o under G(m (o)), and therefore

P(U) = Tﬂ.(a) (7520)

P2 —p pr=p (7.5.21)

These follow immediately from the definition. We have

TP YD VR

T7€G(m(0)) peG(m(tor—1))

_ 1
= e (

1 _1 — — —
:m Z Z TT “UTOT 1M 17’7’ 1
_ 1
a (

P(P(o)) '

2

T€G(n(0)) peG(mw(ror—1))
~ ~—1 —1

Gr@)F 2. TRORT

T,EG(7(0))
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= # (o)) |rar?
B \wa»ragﬂg» i)

= P(a) (7.5.22)

where in the third line, we have defined i = 7 !ur. The conjugation by 7 takes

p € G(rn(ror™1)) to i € G(w(c)). To prove P is Hermitian, we note that

Z S(opru™h) (7.5.23)
peG(m (1))

g(o,P(7)) = m

is only non-zero if o, 7 belong to the same Perms(w). In particular, they have m(o) =
7(7). Therefore

_ o —17_—1
=[G 2 T

=g(P(o),7) (7.5.24)
Therefore the map (7.5.3) gives an isomorphism between the symmetrised traces of n
matrices with degree (1,...,1) and ImP (or the quotient C(S, )/ Ker P). This is true
when N > n. To deal with N < n we have to include the finite N relations as well,

which is discussed later.

As P is satisfies (7.5.21), it is expressible in the standard projector form
P = Z i) (i (7.5.25)
i

for orthonormal basis states |i) for Im(P). These states |i) = «; belong to C(S,), so to

avoid doubling of notation, we will write this as

P = Z o; Q oy (7.5.26)

which acts on o € 5, via

Plo) = Zg(ai,a)ai (7.5.27)

It is clear from (7.5.20) that T, spans ImP. For m # «’, Perms(7) is disjoint from

Perms(n’), and therefore

g (T, Tyr) ! Z S(or™h)

= /
|Perms(7)||Perms(7’)| sePems()

TE€Perms(r’)
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1

= " ! . -2
\Perms(7r)\67r’7r (7.5.28)

So an orthonormal basis for Im P is given by

ar =/ |Perms(m)| Ty (7.5.29)

and the corresponding expression for P is

P= Y |Perms(m)| Tr ® Ty (7.5.30)
well(n)

In section 7.2.3 we defined another T, as a map from 2-vector partitions to multi-
symmetric functions. Composing these with the map (7.1.13) between multi-symmetric
functions and symmetrised trace operators, we can identify T € C(S,,) with these using
the flavour projector Py with H = S, X Sp,.

Let p = (n1,n2) be a vector partition, and 7 a set partition such that =([(1,0)™, (0, 1)"2]) =

p, where the action of a set partition on a vector partition was given in (7.2.39). Then
Tp = Tr [Py (Tr) X] (7.5.31)

where T}, is the 2-matrix symmetrised trace operator given in (7.1.11).
Intuitively, the flavour projection and symmetrisation projectors should commute,
since symmetrising a trace and renaming matrices from Z; to X; are commuting oper-

ations. Indeed

1 1
P — - -1 -1
PP = (oo H] 2 PO
pEG(n(ror™1))
= __ Z T (Tﬁl/LT) o(t pr) 1

G 2
pEG(m(ror™1))

_ 1 ~ -1 _—1
~ G (o)) H] 2 Thoi'T
T€H
AEG(m(0))

— PuP(o) (7.5.32)

P was first considered in [51], though a slightly different group G(m) was used in the
definition. This involves wreath products and is given in section 7.3.7 for an integer

partition. The difference in the defining group does not affect the action of the projector.
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7.5.3 Multi-symmetric function isomorphism for n matrices

In section 7.1.1 we described the isomorphism of [97,98] between U () gauge invariant
of 2 complex matrices X; and Xo, modulo the ideal generated by commutators, and
the ring of multi-symmetric functions in 2 families of variables. This was then used to
construct a basis for 2-matrix symmetrised traces that respected the finite N behaviour.
We now generalise this to the n-matrix case, and use the previous section to identify
the space of multi-symmetric functions with sub-algebras of C(S,,). This will in turn
allow a construction of the projector Py that describes the interaction of the finite NV
cut-off with the symmetrisation projector P.

Consider the M matrix variables X1, Xo,--+, Xps. For each a € {1,--- , M}, we

have N2 variables
(Xa)s (7.5.33)

where 7,5 € {1,---,N}. Consider the ring of polynomials in these M N? variables. In

this ring, there is an ideal generated by the elements of the commutators

[Xas Xolip = D (Xa)ij (Xo)ji — (Xp)ij(Xa)jn (7.5.34)

J

where a # b € {1,2,---,M}. We can form a quotient ring from this ideal. The ring
of polynomial functions in the M matrix variables admits an action by & € U(N) (or
GL(N,QC)):

X, > UX U (7.5.35)

The ideal generated by the commutators is invariant under the action of U(N), so there
is a quotient ring of U(N) invariant polynomials. This is the ring of gauge invariants
modulo commutator traces. This quotient ring of gauge invariants consists of multi-
traces where any two traces differing by commutator traces define the same element of
the ring. This is denoted by A% in Theorem 3 of [97].

There is a polynomial ring D generated by z¢ fora € {1,--- ,M}andi € {1,--- ,N}.

These polynomials have an Sy action given by

The Sy invariant polynomials form multi-symmetric functions in M families of vari-
ables, and the ring of these functions is denoted DN. Theorem 3 of [97] states that
these two rings D~ and AJGD are isomorphic.

To summarise, we have an isomorphism between gauge invariant polynomial func-
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tions of M matrices, modulo commutator traces, and permutation invariant polynomial
functions of the M diagonal matrices. The map from the ring of U(N) gauge invari-
ant polynomial functions of matrices, modulo the commutator trace, to the space of
Sy invariant polynomials is obtained by evaluating the gauge invariant functions on
diagonal matrices. This map, denoted by ¢, is proved to be an isomorphism in [97,98].

In the following, we will use a special case of this isomorphism where we have M =n
matrices and we consider gauge invariants containing exactly one of each matrix.

The space of matrix invariants appearing in this special case is important for the
construction of BPS states. As discussed in section 7.1, the construction of quarter-
BPS states is based on finding the orthogonal complement to the operators which
are expressible as commutator traces at finite N. This orthogonalisation admits a
generalization to the present case of M = n matrices and gauge invariants containing
one matrix of each type. Using the permutation description of n-matrix traces given
in the previous section, it can be expressed as a problem in C(S,) or constructing the
orthogonal complement of Ker P + Ker Fy.

To see this, recall that permutations in KerP correspond to commutator traces
£

via (7.5.3), while those in Ker Fy correspond to the zero operator. Therefore any

permutation in Ker P + Ker Fy is a commutator trace. It follows that

Lemma 1

U(N)
((C[XI,XQ, Xl U X X i1 <a<b< n}>)

(1)17"' 71)

= C(S,)/(Ker P + Ker Fy) (7.5.37)

Composing this with the isomorphism of [97,98] gives an identification between multi-
symmetric functions and the quotient space of permutations.

The ring of multi-symmetric functions in n families of variables is spanned by multi-
traces of n commuting matrices or monomials functions, denoted by 75 and M, respec-
tively. As discussed in section 7.5.2, these are labelled by set partitions 7 € II(n) when
the degree of each family of variables is 1, since this is equivalent to a n-vector partition
of (1,...,1). The size N of each family of variables limit the number of subsets in the
7 to be less than N. This is denoted by |7| < N and follows immediately from the
definition of the M, given for 2 families of variables in (7.2.20).

We use the same notation T, and M, for the multi-symmetric functions and the
equivalent permutations. For 77, this is given in (7.5.18). The M, and Ty are related
by

My => CF'Tu Tr =Y CF My (7.5.38)
7 "

™

259



CHAPTER 7. QUARTER-BPS OPERATORS IN THE U(N) THEORY AT WEAK
COUPLING

where the C' and C' matrices are described in section 7.2.5.
We now investigate the decomposition of C(.S,,) in terms of the images and kernels
of P and Fy.

Lemma 2

Consider two subspaces 51, Sz of a vector space, equipped with an inner product. Let
Sf, 52L be the orthogonal complements to S, Sy respectively. Let S; + So be the set

of vectors of the form vy + vo, where v1 € S1,v9 € Sy. It is a standard result that
(514 Sy)t =5+ NSy (7.5.39)

which is stated as “The orthogonal complement of a sum of vector spaces is the inter-
section of orthogonal complements”.

Proof

Suppose w € Sf N Sj, then
vi-w =10y -w=0 (7.5.40)

for all v1 € S1,v9 € Sy. Tt follows that w- (v1 +v2) = w-v; +w-ve = 0. So we conclude
that w € (S1 + S2)*.

Conversely, suppose w ¢ Si NS5, then w ¢ S;- for i = 1 or 2. This means there is
some v € S;, such that w-v # 0. But v € S; + Sz, so w ¢ (S; + So)*+. O

Taking S; = ImP and S = Im Fy, we have an orthogonal decomposition for C(S,,)

with respect to g,

Lemma 2
C(Sn) = (ImP NIm Fn) &y, (KerP + Ker Fy) (7.5.41)

Using the fact that the monomial multi-symmetric functions form a basis, we have

ImP =M = Span{M, : 7 € II(n)} (7.5.42)
We will also define
M5, = Span{ M, : = € TI(n), |x| < N}
M3 = Span{M, : = € II(n),|r| > N} (7.5.43)

For n < N, we have to consider both operators Fy and P. They are both hermitian
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operators wrt the g, inner product, but they do not commute. The space KerP +
Ker Fu, spanned by sums of vectors in KerP and Ker Fy is in general bigger than

Ker P. There is non-trivial intersection
ImP N (Ker P + Ker Fy) (7.5.44)

The non-triviality of this intersection is reflected in the fact that some symmetrised
traces can also be written as as a symmetrised trace at finite N. An example of this is
given in (7.4.26).

Since P is a Hermitian projector, we have the orthogonal decomposition
C(Sn) = ImP @y, Ker P (7.5.45)

It follows that we have an orthogonal decomposition of Ker P + Ker Fy

Lemma 3
Ker P + Ker Fy = ((Ker P + Ker Fy) N Im P) g, Ker P (7.5.46)
Lemma 4
(Ker P 4+ Ker Fy) NIm P = M3, = Span{ M, |r| > N}
Proof

M3, is exactly the subspace of M which is not in the image of the isomorphism .
Therefore

M3, C Ker P + Ker Fy € C(Sy,) (7.5.47)

Additionally M7, C ImP = (Ker P)*. Then using Lemma 4, the result follows. [J

Using Lemmas 2, 3 and 4 we have the result

Theorem

C(Sn) = (Im P NIm Fy) By, M7 Dy, Ker P (7.5.48)
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Using the definition of Py in (7.5.2) we can also write this as
C(Sn) =Im Py By, M3 By, Ker P (7.5.49)

This gives a procedure, based on the combinatorics of multi-symmetric functions, for
constructing the projector Py. This projector is built by constructing the projector for
the susbspace of M orthogonal, with respect to the inner product g,, on C(.S,,), to Mﬁ
Since M ]SV+M]>V = Im P, this can be built by taking the vectors in /\/lJSV and subtracting
vectors in M3, to ensure the orthogonality. The construction of Im P NIm Fy uses the

following elements:
e Vectors M, in C(S5,,) labelled by set partitions, spanning Im P.

e Finite NV cut-off implemented using the set partition labels: the condition || < N
which defines MJSV

e Orthogonalization of MJSV to M3 with respect to the inner product g,.

This procedure is used in section 7.4 to construct quarter-BPS bases.

The result of this procedure is a vector subspace of Im Fy, and therefore the or-
thogonalisation can equivalently be done using the inner product g, 5 for any N >N,
as on these permutations the g, and g 5 inner products are the sa£ne.

We now give a construction of the 7projector Pn that captures this process. The

formula for this is given in (7.5.62).

7.5.4 Finite N symmetrisation operator on C(S5,)

We now construct the projector Py onto Im P NIm Fxn and prove it has the projector
properties
(Pn)? =Py (Pn) =Py (7.5.50)

and commutes with the flavour projector
PNPu = PuPn (7.5.51)

Before producing Py, we give an alternative formula for P, the large N symmetrisation

projector. Using (7.5.30) and substituting using (7.5.38), we have

P= > [Pems(m)|CFCI My @ Mpr = > (CDCT)T, My @ My
! w'' €ll(n) ' €Il(n)

(7.5.52)

where D is the diagonal matrix

7 = |Perms(m)|6x 7 (7.5.53)

7
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To understand the appearance of CDCT, note that this is the inverse metric on the
subspace Im(P) of C(S,,).

We know g is a positive definite inner product on the entirety of C(S,). It is
therefore also a positive definite inner product on the subspace ImP. Hence there is

an inverse metric on this subspace, which we call G. Using (7.5.38) we have
9(M, M) = > CPCr2g(Try, Try)
m1,m2€I(n)

CmCm
= 2 | [Perms(m)|

m €l(n
_ <C~’TD_15>7T/ (7.5.54)
Since C' and C are inverses of each other, this implies
G(My, M) = (CDCTYT, (7.5.55)

We can therefore write

P= Y (CDCT)L My@My= Y G(Mg,My)Mz® My (7.5.56)
' €ll(n) ! €ll(n)

This form for a projector is a generalisation of (7.5.25) to a basis of the image that is
not orthonormal. We now find a basis for Im Py, and can use the form above to write
down Py.

At finite N, we want to project onto the orthogonal complement of M3, within
ImP. The M, with |7| < N do not suffice for this as they are not orthogonal to M,
with || > N; we need to orthogonalise them first.

As already noted, g is an inner product on any subspace of C(S,,). This time the
relevant subspace is M7z,. This means that the matrix of inner products g(My, M)
for |x|,|x'| > N is invertible and has an inverse metric that we call G~. Note that
G~ is distinct to G, which is the inverse inner product on Im P = M. Practically, the

difference is

Z G( My, Mo )G (Moyry M) = O 7, " unrestricted (7.5.57)
' €Il(n)
> g(Me, My)GZ (Myr, M) = S 7|, |7"] > N (7.5.58)
' €ll(n)
|7’ |>N

We can use G~ to construct a basis for ./\/IJSV, labelled by those set partitions with
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|| < N.
My=My~ Y G (Mg, My,)g(Mz, My, )M, (7.5.59)
m1,m2€I1(n)
|m1l,|m2| >N

The simplest way of looking at this is to notice that the second term is using a projector

lvd

of the form (7.5.56) applied to M. This is the projector

P = Z G~ (Mzy, M) (Myy, @ My, ) (7.5.60)

m1,m2€I1(n)

|mil,|ma|>N
that orthogonally projects onto M3,. The construction of M, just applies 1 — P~ to
M to produce something orthogonal to M3, while remaining in ImP. We can now
use the M, to define the finite N symmetrisation projector. Again, we need to produce

a new inverse metric G on the space spanned by M,. This satisfies

> g(M, M) G= (Mo, Myr) = Sy 7|, |7"| < N (7.5.61)

' €ll(n)
|’ |<N

Using this, we construct the finite N symmetrisation projector

PN = Z GS (Mﬂ'a Mﬂ’)(Mﬂ' & Mﬂ'/) (7562)

' €ll(n)
|7l [<N

~
ot
t
—_
S—
—
o
=
=2

We now prove the properties (7.5.50) and (
Py is a projector

To prove this, we act with the square of the projector

PNPN(O() - PN Z GS(MWUMﬁz) 77T1 g(MW27 Oé)
m1,m2€Il(n)
[l 2| <N
= Y G (M, My )G (Mg, My )g(Mry, My )g (M @) Moy

71,m2,m3,m4€I(n)
|71ls|mal,| sl lma| <N

= Z 5(7r1,7r3)G§(Mm,Mm)g(Mm,a)Mﬂg

m1,m2,m3E€I(n)
|71, |m2l,lms| <N

= Z G!S (Mﬂ'laMﬂg)Mﬂ1g(Mﬂ'2’a)

m,m2€ll(n)
|71, |m2|<N

= PN(Oé) (7.5.63)
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where we have used (7.5.61) to get from the second to third line.
Pn is hermitian
This follows from the symmetry between 7 and 7’ in (7.5.62)
g(e, Pn(B)) = Z GS(MWMMﬂ'Q)g(Mﬂ'zaﬁ)g(aaMﬂ‘l)
m1,m2€lI(n)
|7i],ma| <N
=9(Pn(a),B) (7.5.64)
Py commutes with Py
This relies on some smaller results. We start with
0 o =Ty (7.5.65)

where we define o(7) as the set partition obtained by substituting ¢ — (i) in the set
partition 7. It is useful to recall the fact that o~ 'uo is the permutation obtained by

the substitution ¢ — () in the cycle decomposition of u, and therefore
Perms(o(n)) = o 'Perms(n)o = {U_l,ua : p € Perms(m) } (7.5.66)

It follows that

1

1 2 : —1

= -

g | gl |Per S(7‘[‘)| g “uo
uEPerms(m)

1 -
~ |Perms(o (7)) Z a

f€Perms(o(m))

= T4 (7.5.67)
We also observe that

cm = oo™ cm = o) (7.5.68)

o(m2) o(m2)

This is because the incidence relations of the poset of set partitions are unchanged
when we go from set partitions of {1,2,--- ,n} to set partitions of {o(1),--- ,0(n)}.
It follows from (7.5.65) and (7.5.68) that

o Mo = Z Cro o
' €ll(n)

_ Ao (n')
- Z Ca’(w) TU(“/)
' €ll(n)
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= 2. CamDe
' €ll(n)
= My (7.5.69)

where in going from the 2nd to 3rd line we have reparameterised the sum by 7" — o(7’),
which clearly just permutes the set partitions in II(n) among each other.

It is immediate from (7.5.7) that
gloao™ ! oBo™") = g(a, B) (7.5.70)
Applying this to a« = My, 5 = M, and using (7.5.69), we have
9(My(ry, My (rry) = g(My, M) (7.5.71)

We would like to show that G also has this property. To see this, note that G is defined
by the property (7.5.57), so we need to show that the matrix G(Mgy(r), My(5)) satisfies

the same relation.

Z g(Mﬂ'7M7T/)G(MO'(7F/)?MO’(T&'”)): Z g(MﬂvMofl(w’))G(Mﬂ”vMa(ﬂ”))

w'€ll(n) 7' €Xl(n)
= > 9(Myry, Mp)G(Myr, M)
' €Il(n)

= Og(m)a(x")

= Ot (7572)
Therefore

G(Ma(ﬂ)aMo(w’)> = G(MF7M7T/) (7573)

Next note that |7| = |o(7)|, so when changing variables from 7 to o (), the restrictions

|m| > N or |r| < N are maintained. This means we can repeat the steps in (7.5.72)

but using G~ or G< instead. Hence

G” (My(ry, My(nr)) = G7 (M, M) G=(My(r), My(nr)) = G= (M, M)
(7.5.74)
where 7, 7’ satisfy the appropriate constraints on their length for the two operations.
Using the definition (7.5.59), as well as (7.5.69), (7.5.70) and (7.5.74)

o 'Myo =0 Mo — Z G” (M, , M) g(My, My )o ' My,o

my,ma€ll(n)
|m1],|m2|>N
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= MO’(T() - Z G>(MTF17M7T2)9(M7HMﬁl)Ma(wg)

m1,m2€Il(n)
|1, [>N

= Mo(w) - Z G>(M7r1 ’ MU_l(WQ))g(Mﬂ'7 MTI’l)Mﬂ'Q
m1,m2€Il(n)
|71 ],|m2| >N

- Md(ﬂ') - Z G~ (Ma(m)a M7T2)g(M7r7 M7T1)M7F2
m1,m2€Il(n)
|71 ],| 72| >N

= Mo(w) - Z G>(M7T1 ) MWQ)g(Mﬂ'? Mo—l(m))Mﬂ'Q
w1,m2€ll(n)
|71 ],|m2| >N

= Mo'(ﬂ') - Z G>(M7T17M7T2>9<M0'(ﬂ')7 M?T1)M7r2

m1,m2€Il(n)
[1],|m2|>N

i) (7.5.75)

We can now prove that Py and Py commute

1 o _
PnPr(a) = ] Z Z G=(Myy, My, )My g(My,,c00™t)
o€H 71,m2€ll(n)
|71, |m2| <N

1 v — — _ _
N ﬁ Z Z GS(MWQ’MM)MMQ(U 1M7r1o-a a)
o€H 1,m2€ll(n)
|71, |m2| <N

1 _ _ _
= E Z Z GS(MW27M7T1)M7T29(MO'(71’1)7a)
o€H 71 ,m2€ll(n)
[m],|m2| <N

1 _ _ _ _
= W Z Z GS (M7T27 Mcrfl(m))Mmg(Mﬂlva)
o€H 71,m2€ll(n)
|71, |m2| <N

1 — — — _

=1 2 2 G Moty M) Mryg (M 0) (7.5.76)
o€H my,mo€ll(n)
1], w2 | <N

1 _ _ _
= E Z Z G= QUE Mm)Mo—l(m)g(vaa)
o€H 71 ,m2€ll(n)
|7f11|,|27f2|§N

1 o L
= W Z Z GS(Mm:Mm)UMWzU 19(M7T1a04)
o€H 71,m2€ll(n)
|71, |m2| <N

= PyPy(a) (7.5.77)

We can interpret this in words as follows. Recall that permutations o generate gauge

invariant operators via (7.5.3). Imagine we start with the n-flavour gauge invariant
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operator generated by o, and then symmetrise the traces, and map that to symmetrised

permutations. This means applying P then setting

20, 2y, Ty — X (7.5.78)
Zn1+17Z7L1+2, oisdn =Y

On the other hand, we could specialise the n-flavour gauge invariants to 2-flavour
gauge invariants before projecting to symmetrised traces. Intuitively, thinking about
traces, we don’t see any reason for a difference between the two orders of arriving at
symmetrised traces of two matrices. So we expect the two projectors to commute.

Indeed they do as shown above.

7.6 Hidden 2D topology: Permutation TFT2 for the count-

ing and correlators at weak coupling

The connection between delta functions on symmetric group algebras and two-dimensional
topological field theories (TFT2) is explained in [51]. We will give the delta function
formulae and explain the TFT2 defects.

Lemma 1

In the problem of gauge invariants of n matrices, each occuring once, the counting of

symmetrised traces at large N is given by

Y 6(P(a)P(a)) (7.6.1)

aESy,
Proof

The symmetrised traces form the image of the hermitian projector P. So the dimension

of the space of symmetrised traces is calculated as

Dim (ImP) = > g(e, P(a))

OéGSn

= > 9(a,P(P(a))

aESy,

= > 9(P(a),P(a))

OéGSn

= > §(Pla™")P(a)) (7.6.2)

aESy,
]

Proposition 2
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The counting of quarter-BPS operators in the large IV limit in the free theory is given

by

> §(Pu(a)a) (7.6.3)

aESn

where Pp is the flavour projector onto two flavours with H = S,,; x Sy, as described
in (7.5.11).
Proof

We know that permutations can be used to construct 2-matrix gauge invariants and
there is an equivalence up to conjugation by H = S,,, X Sp,. Using Burnside’s Lemma

to count the free field operators, we have

]I:;| Z Z S(yayta™l) = Z §(Pu(a)a™) (7.6.4)

YyEH a€Sy aESy

This is the free field counting of 2-matrix operators [51]. O
Proposition 3

The counting of 2-matrix symmetrised operators in the (n1,n2) sector is

> 6(PuP(a)P(a)) (7.6.5)

aGSn

Proof

Both P, Py are hermitian with respect to the standard inner product on CS,, and
they commute, so they can be simultaneously diagonalised. The dimension of the

intersection of their images is equal to the trace of their product

> 9(, PPu(a) = Y gla, P*Pu(a))

OlGSn aESn

= Y 9(P(a),PPu(a)

aES,

= > §(P(a”")YPPy(a))

aESn

= > §(PuP(a)P(a)) (7.6.6)

aES,
]

Proposition 4
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The counting formula for the finite N quarter-BPS operators is

> d(PuPN(a)Py(a) (7.6.7)

a€eSy
Proof

Given that we have proved the projector, hermiticity, and commutativity properties of
Pxn and Pg, we can calculate the dimension of the image of PyPy by repeating the
steps we had for P and Py

Dim (Im(PyPx)) = Y g(a, PxPr(a))

aESy

= g(e, PYPul(e))

aESy,

= Y 9(Pn(a), PnPr(a))

aESy

= Y 8(Pn(a " )PnPu(a))

aESn
= Y 8(PuPn(a)Pn(a)) (7.6.8)
aESn
O

Proposition 5

The finite N two-point function for BPS states can be written as

<Tr (gNPNa1X®n1Y®n2) . Tr (ngNa2X®n1y®n2)>
= 5<,PH,PN(041),PN(042_1)QE1) (7.6.9)

This follows as in [51]. Q5 Py () span the BPS states as o runs over C(S,). The free
field inner product is grr(a, 8) = g(a, QxnF). The step forward in this thesis is that
we have an explicit construction of Py using set partitions.

Now we will draw the TFT2 pictures corresponding to these delta function formulae.
Figure 7.4 gives us the counting of weak coupling BPS operators. Figure 7.5 gives the
TFT?2 formulation for the 2-point function of quarter BPS operators at weak coupling.
The one new ingredient in these TFT2 constructions is the Py-defect which can be
associated to a circle. The defect is defined by declaring that it modifies the permutation
a associated to that circle in the TFT2 to Py ().
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Pn ()
> -7 A
A PN(a_l) r- |
7 >

Figure 7.4: TFT2 partition function for finite N weak coupling BPS counting

Figure 7.5: TFT2 partition function for finite N BPS 2-point function
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Chapter 8

Conclusions

In this thesis we have explored aspects of the half and quarter-BPS sectors of N' = 4
super Yang-Mills theory with gauge groups U(N), SO(N) and Sp(N). These results,
interpreted through the AdS/CFT correspondence, have implications for our under-

standing of non-perturbative effects in string theory.

8.1 Word combinatorics

Motivated by the matching of generating functions between the planar quarter-BPS
sector in the U(N) gauge theory and an integrally graded word monoid, in chapter 3
we found a bijection between aperiodic single traces and Lyndon words, the factorisation
units of the monoid. This bijection led to a decomposition in both the vector space
structure of the quarter-BPS sector and the corresponding generating function.

In chapter 4 we derived the same structure for the SO(N) and Sp(IN) gauge theories,
where the Lyndon words of the U(N) theory are replaced by orthogonal Lyndon words
that satisfy a minimal periodicity condition, and gave two independent derivations of
the planar generating function.

The generating function (3.0.1) has been generalised to arbitrary U(N) quivers
[68,69]. The structure of the function, with its infinite product of a root function,
was found to be very general, and the root function had an interpretation in terms of
counting words made from loops in the quiver. A natural question to ask is whether
there is an analogue of Lyndon words in this setting. In a different direction, it would be
interesting to investigate the extension of the SO(N)/Sp(NN) counting function (4.3.21)
to a general SO(N)/Sp(N) quiver.
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8.2 Permutation structures in gauge theory

Since the derivation of a Young diagram basis for the half-BPS sector [22], permutations
have proved a powerful tool in studying U(N) gauge theory and matrix models. See
[62] for a summary of the various interesting applications that have been found. In
particular, Schur-Weyl duality has been a crucial element in describing finite N effects.
In chapter 5 we develop a permutation description of equivalent power for SO(N) and
Sp(N) gauge groups. This mathematical formalism can be used to study phenomenon
in the dual unoriented string theory as well as general SO(N)/Sp(N) matrix models.
Some subjects of particular interest that should be approachable with these techniques

are

¢ Investigating the spectrum of the one-loop dilatation operator in the quarter-BPS
sector of the SO(N)/Sp(N) theory, in a manner similar to that of chapter 7.

e Counting and correlators in general SO(N)/Sp(N) quiver theories.

More generally, the appearance of permutation structures in theories with different
gauge groups offers an interesting interpretation of permutations as a background in-
dependent structure in string theory. The U(N), SO(N) and Sp(NN) inner products on
permutations can be viewed as different (background-dependent) pairings on permu-
tations which are background independent characterisations of gauge invariants. An
interesting exercise is to revisit previous applications of permutations to stringy physics
and disentangle the aspects of permutations and associated representation theory which
contain information about specific backgrounds, and those that are common to different

backgrounds, or relate different backgrounds.

8.3 Orientifold quotient

In chapter 6 we developed a detailed gauge theory description of the orientifold map
that takes type IIB string theory on AdSs x S°, dual to a U(N) gauge group, to strings
on AdSs x RP?, dual to SO(N) or Sp(N) gauge group. This quotient was expressed
in terms of coefficients ozg for which we gave two distinct formulae, both related to
Littlewood-Richardson coefficients.

The first expression was in terms of domino tableaux that have a strong physical
interpretation as pairing up quanta of angular momenta in a precise way given by the
combinatorics of Young diagrams. The second was as a product of two SO(N)/Sp(N)
Schur operators, involving the mathematical concept of a 2-quotient of a partition. This
led to insight into the U(N) theory, and in particular a Zs action that is a candidate
for field theory dual of the orientifold action that takes z — —z for € S while also

reversing worldsheet orientation.
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Both interpretations of the coefficients have implications for the study of giant
gravitons in the theories dual to U(N), SO(N) and Sp(N) SYM. It will be intriguing

to see string theory derivations of this structure from D-brane physics.

8.4 Quarter-BPS sector of U(N) theory at weak coupling

In chapter 7 we gave a construction of quarter BPS operators in A” = 4 super Yang-Mills
with U(N) gauge group, built from two matrices X,Y and annihilated by the 1-loop
dilatation operator of the SU(2) sector. The construction depends on parameters n, N
which are arbitrary, with n being the number of X,Y matrices in the operator. The
construction produces an orthogonal basis of operators obeying an SEP-compatibility
condition. The labels for the basis operators include a U(2) Young diagram A and a
U(N) Young diagram p, alongside multiplicity labels. The SEP-compatibility means
that finite IV effects are captured simply by restricting the length of p to be less than V.
We have detailed formulae for the dimensions of the multiplicity spaces as a function
of A, p.

The understanding of holographic map between the quarter-BPS sector between
N =4 SYM and AdSs x S° is far less well-developed than the half-BPS sector. The
Young diagrams labels for half-BPS states have provided valuable tools for precision
mapping of states between SYM and the dual space-time. In the quarter BPS sec-
tor, there is a rich combinatoric structure involving A,p and the plethysm problem
underlying the multiplicities My p,, which control the structure of states. If will be
fascinating to uncover the role of these structures in the dual space-time. Concretely,
reproducing the refined multiplicity formulae for specified A,p from the the weakly
coupled gravitational dual, is an interesting problem.

Another interesting extension would be to investigate the quarter-BPS sector at
weak coupling in SO(N)/Sp(N) theories. Since the half-BPS sector can be expressed
in terms of symmetric functions in the squares of the eigenvalues, one might expect
that multi-symmetric functions could be used to capture the finite N behaviour of the
weakly coupled quarter-BPS operators. Beyond this, one could then use the orientifold
quotient to explore the relation between the U(N) and SO(N)/Sp(N) quarter-BPS

sectors at weak coupling.
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Appendix A

The Young basis and
Jucys-Murphy elements

A.1 Young basis for 5,

For a Young diagram R F n, a Young tableau of shape R is produced by placing a
positive integer into each box of R. The tableau is called semi-standard if the numbers
increase weakly along the rows and strictly down the columns. It is called standard if
in addition the n integers are the numbers 1 to n. As an example, the possible standard

Young tableaux of shape R = [3,2] are

1]2]3 124\ 125\ 134\ 135\
45 305 304 215 2

(A.1.1)

We can construct the irreducible representation R - n of S, by setting the basis vectors
to be the standard Young tableaux of shape R. The permutations (i,7 + 1) generate
Sn, so we only need to define the action for these.
Consider a standard Young tableau r of shape R. Let s;(r) be the tableau formed by
swapping the numbers ¢ and ¢+ 1 in r. This tableau could be standard or non-standard.
Let b; be the box labelled by i in . Then the distance p;;11(r) between the boxes
b; and b;41 is simply the difference in their contents, as defined in (2.3.19).

Pii+1(r) = coyy — Cb, (A.1.2)

Intuitively, this measures how many boxes it takes to travel from i to ¢ + 1 in r, where
the distance increases by 1 for each step upwards or to the right, and decreases by 1
for each step downwards or to the left.

We can now write the representatives of the permutation (i,7 + 1) on the Young
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basis
—L ) — /1 — L —|s;(r)) si(r) a standard Young tableau
DF [(i,i+ )] |r) = pii+1(r) Prip1' ! ’
) i-:l(”") ) otherwise
(A.1.3)
The simplest consequence of this is if a contiguous block of number 4,7 + 1,...,i 4+ j

are in ascending order in a single row, then that Young tableau is symmetric under all
permutations of ¢,4 + 1,...,7 + j. Conversely, if they lie in order in a column, that
Young tableau is anti-symmetric under all such permutations.

For example the first Young tableau in (A.1.1) is symmetric under permutations of
{1,2,3} and {4,5}, while the last one is anti-symmetric under permutations of {1, 2}
and {3,4}.

The Young basis has another crucial property. The position of the number n in a
tableau r tells us which representation of S,,_; the vector |r) lives in, when S, is
embedded into S, by acting on {1,2,...n — 1}. By removing n from r, we obtain a
tableau # of shape R F n — 1. Then |r) lives in the R representation of S,_1, and is the
|7) vector in this representation. So for example, the first, second and fourth tableaux
in (A.1.1) live in the R = [3, 1] representation of Sy, and form the Young basis for this
representation.

By iterating this process, the positions of the numbers in r determine the represen-
tation |r) lives in for each of S C Sy C --- C S,,. For example the fourth tableaux in

(A.1.1) belongs to the following representations of each

Sl : D 52 . Sg . 54 : | ‘ 55 . ‘ (A.1.4)

Conversely, given the sequence of representations that a vector lives in determines the
corresponding Young tableau.

For a more thorough discussion of the Young basis of a representation of S, see
[116]. A different construction involving the Jucys-Murphy elements defined in the
next section is used in [117].

An important subtlety to note is that the representation (A.1.3) uses the opposite
convention for permutation multiplication as this thesis, given below (2.1.1). The
effect on the representation theory is to transpose all representation matrices. We will
primarily be concerned with commuting products of linear combinations of swaps (i, 7).
The fact the products commute means the order of multiplication is irrelevant, and since
swaps are self-inverse, the representation matrix of any linear combination is symmetric.
Therefore this difference in convention does not affect any of our calculations.

The Young basis played an important role in understanding the behaviour of per-
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turbations around several giant gravitons that are well separated spatially [31,35,52].
From a Young diagram perspective, this corresponds to thinking about several rows,
each of O(NN) length, where the difference in lengths is also O(N). This situation is
called the ‘distant corners’ approximation, and in this limit the representation (A.1.3)

simplifies substantially.

A.2 Jucys-Murphy elements

The Jucys-Murphy elements are special elements of C(S,,), defined by

k—1
Jr=> (i,k) (A.2.1)
=1

for k =1,...,n. The Young basis vectors of R defined in A.1 are eigenvectors for the
Jucys-Murphy elements, with eigenvalues given by the contents of the Young tableau.
On a given standard Young tableau r of shape R, the eigenvalue of Ji is the contents
of the box labelled by & in r.

For example if we have R = [3,2,1] the contents of the cells are

01 2\
1l 0
9

so the eigenvalues of the Jucys-Murphy elements on 4 of the 16 different standard Young

tableaux are

1 3111 500[1]2]6]]]1 6
4 2 3 2
6 4 5 3

Jo 1 1 1 1

J3 2 1 1 2

Jy 1 2 0

Js 0 2 2

Jo 2 0 2 2

The Jucys-Murphy elements span a maximal commuting sub-algebra of C(S,,), and
therefore one can choose a basis of any irreducible representation to be simultaneous
eigenvectors of all the J;. The Young basis is exactly this choice [117]. For a more
thorough treatment of the Jucys-Murphy elements and their properties, see [118,119].

Any symmetric polynomial of the Ji lies in the centre of S,. In particular, it is a

277



APPENDIX A. THE YOUNG BASIS AND JUCYS-MURPHY ELEMENTS

standard result, see for example [118], that Q as defined in (2.3.17) can also be written

Q= ﬂ (N +J;) (A.2.2)

i=1

The expression (2.3.20) for the representative of  in a representation R of S,, follows
immediately from (A.2.2). Consider the action of 2 on a standard Young tableau r of
shape R. Each of the J; will pick up the contents of the box containing 7. Since ¢ runs
over all entries in a tableau, this covers all boxes in R and the eigenvalue is just the
product of N + ¢, for b € R, independent of the tableau r.

The importance of € for this work stems from its involvement in U(N) correlators,
seen in (2.6.2), (2.6.7) and (2.6.12). There are two other elements of C(S,,), defined
in terms of Jucys-Murphy elements, that are relevant for correlators of SO(N)/Sp(N)
mesonic operators and SO(N) baryonic operators respectively. The first of these, Q,
had been used before in [56,57,59,60] to calculate correlators in the Schur and restricted
Schur bases for SO(N) and Sp(N), but its importance for the O(+;) expansion of the
multi-trace basis had not been understood. The second, 2¢, has not previously been
studied.

For each of  and Q° , we give a definition in terms of Jucys-Murphy elements,
analogous to (A.2.2), the key result linking it to SO(N)/Sp(N) mesonic or baryonic
correlators, analogous to (2.3.17), and the action on the appropriate invariant vectors

from section 5.1.3.

A21 Q

Consider S,[S2], defined in section 5.1.2; as a subgroup of Sa,. Then one can choose

the set B of right coset representatives of S,[S2] such that

n

B B=2:=]](N+ Joi1) (A.2.3)
pBeB =1
where
Ch(8) = cf pre® (A.2.4)

and C}é) is n-fold tensor product of ¢;;, defined formally in (5.2.1). Since J;—; commute
with each other, we do not need to give an ordering for the product. (A.2.3) was the
key result that enabled the evaluation of the mesonic correlator in [56,59], and it is
proved inductively in [118].

Consider the sum over all elements of S,,[S2], and multiply by (A.2.3) on the right.

Since the 3 in (A.2.3) are representatives of the right cosets of S,,[Ss] and C? is invariant
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under multiplication by elements of S,[S2], the left-hand side is a sum over all of Sy,

Z Co(r)r = Z ol Q= 2"n!P[5]S~2 (A.2.5)

TES2n oE€SR[S2]

where Pjg) is the projector onto the symmetric representation of Sp[S2] defined in
(5.1.3).

This result is analogous to (2.3.17) for Q, with N°©) replaced by C°(s). We can
make this analogy closer by expressing C‘;(a) as a power of V.

Recall from section 5.3 that we can choose representatives of the double cosets (these
are not the right cosets of (A.2.3)) of S,,[S2] to be a permutation o, € S, of cycle type
p B n embedded into Sa, as a](f)dd) by acting on the odd number {1,3,...,2n — 1}.
Then we have

¢ (o) = 1 (Uéod@)I c) 7
J

= Oirj1 0z - + - Oinjn (UI(’Odd)>

11511272 indn shilighels  ghuln

kilikala...kpln
109 in £i1 57 jn skili shol Enln
=0iyjy - 5injn(Up);gllzlizuz,knéljlldl]; e 5zjn ortryRE 4§
= (op)itZrin = Nw) = NI (A.2.6)
where ¢(0)) is the number of cycles in o, and we have used the standard result (2.1.7)
for the trace of a permutation on a tensor space. This calculation is very similar to
(5.3.16), though here X is taken to be the identity matrix. An intuitive understanding

of how ¢(0dd)

turns an SO(N) type contraction pattern into a U(N) type contraction
of 0 € 5, is given in figure 5.5.

Since o0, is a representative of the double coset, a generic 7 in the p double coset
can be written © = o, for 7,7 € S,[Ss]. Since C°(o) is invariant under Sn[S2]

multiplication on the left or right
C%(mr) = NP (A.2.7)

Defining p; to be the partition labelling the double coset of 7 € Sy, we can rewrite
(A.2.5) as

Wpr). _ O _ O
Y ONPIr=| Y o] Q=2"nPg0 (A.2.8)
TESon 0ESn[S2]
We can now compare directly with the U (V) version (2.3.17). In both cases, there is a
partition p, associated to a permutation 7. Then 2 and Q are related to the sum over
7 (in the relevant permutation group) of N!®)r,

Above (A.2.2) we noted that any symmetric polynomial in the Jucys-Murphy ele-
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ments is in the centre of 5,. For odd Jucys-Murphy elements Jo; 1 there is a similar
result [120]. Any symmetric polynomial in the odd Jucys-Murphy elements, when
multiplied on the left or right by (Z 7€ Sn[Sa] O'), can be written as a sum over dou-
ble cosets. As described in section 5.3, this means it belongs to the Hecke algebra
Sn[SZ]\SZn/Sn[S2]-

There is a symplectic equivalent to C°(c), given by

o) = Vet (A.2.9)

where C}Q) is a n-fold tensor product of €;;, defined formally in (5.2.3).
Take o, € S, with the corresponding a,()Odd) € So, a representative of the p double

coset. Then

I
o9 <UZ()odd)) _ C}Q) (UI()odd)> @
J
- Q. Qs o 111822 indn yk1l1 yk2l2 knl
= Qiyji Qiggo - Qi (Up)klllkZZQ...knan Q22 [ QFnin
= Qiyjy Qg - - Qi (o) L2 571672 5] QhQbalz | Qfnln

kiko...kn 11
= (op)ie iy D@tz .. (")
= (op)ii2min = Nw) = N'P) (A.2.10)

where we have used QO7 = 1.
In Sy, the cycle type of o, is p+4[1"], and therefore the sign of o, is (—1)" (). We
deduce
Cay) = (—1)"(=1)% (=N} (A2.11)

Since C%}(¢) is anti-invariant under multiplication by S,[Ss] on either side, for a generic

T = T10pT2 in the p double coset we have
C(x) = (=1)"(—=1)"(—=N)®) (A.2.12)

Comparing with (A.2.7), we see that C** and C° are related by anti-symmetrisation of
permutations and N — —N, up to a factor of (—1)". This is an example of a very
general relation between the mesonic sector of the SO(N) theory and the Sp(/V) theory,
explained in (4.0.3) and (5.0.2).

More practically, this relation allows us to derive a symplectic result equivalent to

(A.2.8). Define the anti-symmetrisation of a permutation 7 to be

Anti-Sym(r) = (—1)"7 (A.2.13)
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and extend linearly to the whole of C(S,). Then C}(7) and C%(7) are related by
Cr) = (1) Anti-Sym(7)| 5,y (A.2.14)

Recall from the definition (A.2.1) that Jucys-Murphy elements are composed purely of

transpositions, and hence they will pick up a minus sign under anti-symmetrisation.
Therefore

Z CQ<7')7' = (—l)nAnti—Sym Z 06(7_)7_

TES2n _TESQn

= (—1)"Anti-Sym Z o | Q

UESn[SQ] N——N
=" > V)% | [J(-N = Jaisn)
7E€Sn[S2] i=1
= Y (1) | Q=2"nlPuQ (A.2.15)
UGS7L[S2]

where Py is the projector onto the anti-symmetric representation of S, [S2], defined in
(5.1.3).

Action of Q

Consider the state |R,[S]) (defined in (5.1.4)) in a representation R - 2n with even

row lengths. This state can be written as a sum over standard Young tableaux r

IR,[S]) = > arlr) (A.2.16)

r of
shape R

It is proved in [118] that the 7 in this sum (those with non-zero a,) must have a certain
form. The numbers 2i — 1 and 2¢ must appear in a pair, with the even number directly
to the right of the odd. For example, given R = [4,2,2], the r that contribute in the

sum (A.2.16) are

3|4\ 125|6\ 127|8\
r1=|5]|6 ro =314 r3=|3 |4 (A217)
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As a result, the odd numbers in r must lie in the odd-numbered columns of R. When
we act with O on these r, the Jo;_1 pick up the contents of all the boxes in the odd-

numbered columns. Therefore

DR(Q)IRISH = I (N +a)IR[S) = fAIR [S]) (A.2.18)

b € odd
columns of R

where this defines fl‘;.
Similarly, for R F 2n with even column lengths, |R,[A]) (defined in (5.1.4)) is an

eigenvector for 0

DR(Q) IR, [4)) =TT (N +a) IR, [A]) = FRIR,[A]) (A.2.19)

rows of 7
where this defines f}%.

If [(R) > N, then the Young diagram contains a box b in the (N + 1)th row and
the first column. The contents of b is ¢, = —INV, and therefore the factor associated to
bis N + ¢, = 0. This box is in an odd column, and therefore f$ = 0 for {((R) > N. For
the Sp(N) theory, N must be even, and hence this box is also in an odd row, meaning
fi#=0for I(R) > N. So Q enforces the finite N cut-off in R on the invariant vectors
R, [S]) and [R, [A]).

A.2.2 (F

The last element we consider is relevant for correlators of baryonic operators, and
therefore the group of interest is now Sy x Sy[S2] where ¢ =n — & (recall N must be
even for baryonic operators to exist) and we embed Sy in So, by acting on {1,2,..., N}

while S, [S2] acts on the pairs {N +2i — 1, N + 2i} for 1 <i < g. We define

q N N 2i—2
C=NT[|N+D GN+2-1)+> (GN+2)+ > (N+4N+2i—1)

=1 j=1 Jj=1 j=1

(A.2.20)

where the product is ordered [i = q][i = ¢ — 1]...[i = 1]. This can be written in terms

of Jucys-Murphy elements.

q —

OF = N [T [NV + Insaict + Tvsai — Jai (A.2.21)

i=1

282



APPENDIX A. THE YOUNG BASIS AND JUCYS-MURPHY ELEMENTS

where J; is the Jucys-Murphy element for the subgroup S, embedded into Sa, by
acting on {N +1,N +2,...,N + 2q = n}.

k—1
Jr=Y (N+i,N+k) (A.2.22)
i=1
In analogy to (A.2.3), we prove the proposition
Proposition

The set B of right coset representatives of Sy x 5,[S2] inside Sa,, can be chosen such
that

> (BB = (A.2.23)

BeB

where C¢(f3) is defined in (5.5.24). For o € Sy x S4[S2], let 01 be the Sy component.
It then immediately follows from (A.2.23) that

> ()T = Yo (=)o | o (A.2.24)
TES2n oE€SN XSq[S2]

where we have multiplied on the left by N!29!P g as defined in (5.1.24) and
used the definition of B and the invariance of C¢(f) to change the sums over B and

SN x S4[S2] into a sum over Sa,.

Proof
We begin by characterising the right cosets of Sy x S;[S2]. Define the set of pairs

wo = {{N+ 1N+ 2}, {N+3,N+4},... . {N+2¢— 1,N+2q}} (A.2.25)

Then o € Sy, acts on wy (and other possible pairings) by
o(wo) = {{o(N+1),0(N +2)} {o(N +3),c(N+4)},..., {o(N+2g—1),0(N +20)} }
(A.2.26)

It follows from the definition of S;[S2] that

o € Sy X Sq[SQ] <~ O'(U)o) = wWo (A.2.27)
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[ = ] [ = ] [ = ] [ e ]
L ¢ | L e | L ¢ | L ¢ |
p=1 B=(N,N+1) B=(N,N +2) B=(N,N+2)
(N—1,N+1)
Figure A.1l: Diagrammatic calculation of C*(8) for § =1,(N,N + 1), (N, N + 2) and
(N—1,N+1)(N, N+2) respectively. Two es fully contracted contribute silmiNeil“‘iN =

N! while a loop gives §;;6 = N. Since ¢ is anti-symmetric and § is symmetric, a
contraction between the two gives 0.

Therefore the left cosets of Sy x.S,;[S2] are labelled by a choice of ¢ pairsin {1,2,...,2n}.

For a given pairing
w = {{i1,1,i1,2}, {ig1,922}, -, {iq,l,iq,2}} (A.2.28)
any B € So, in the corresponding right coset satisfies
Blwo) = w (A.2.29)

Let W, denote the set of possible pairings, and /3,, the coset representative for w € Wj.
We prove (A.2.23) by induction on ¢ at fixed N. First we consider the base case
with ¢ = 1. The possible w € W7, along with the associated (3, and C¢(3,,) are

w | {{N+1L,N+2}} {kN+1}} {{k,N+2}} ({11, 15}}
B 1 (k,N+2)  (k,N+1) (I,N+1)(la, N +2)
C¢(Bw) NIN N! N! 0

where 1 < k,l1,lo < N and [y, s are distinct. It is simple to check that these 8, satisfy
the conditions in (A.2.29) and therefore serve as coset representatives. The calculations
for C¢(B,) are shown diagrammatically in figure A.1. For simplicity the figure shows
k = N in the pairings p = {{k, N + 1}},{{k, N +2}} and [; = N — 1,l = N in the
pairing p = {{l1,l2}}, but the results hold for all k,[;, l5.
Summing the contributions from each of the w € Wy, we have
N N
> C(Bu)Bu=NI [N+ G N+1)+> (N +2) (A.2.30)

weW, j=1 j=1

as claimed in (A.2.23). We could also consider the case ¢ = 0, where the product on
the right of (A.2.23) is empty, and we take the representative of the only coset to be
the identity, so the result is trivial.

Assume the claim is true for ¢ — 1. In particular this means that there is a map
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from Wy_1 — Sn42¢—2, namely w — By, such that for each w, Sy satisfies (A.2.29),
and the B3 combine so as to satisfy (A.2.23) for ¢ — 1.

Consider the case at g. The pairings w € W, fall into 5 categories depending on
how N +2q — 1 and N + 2q pair (or don’t pair) up with the first N + 2¢ — 2 numbers.

1. {N +2g—1,N + 2q} is a pair

2. {k1, N +2q—1} and {ko, N + 2q} are pairs, for some ki,ko < N +2q—1,k; # ko
3. N + 2q is unpaired and {k, N 4+ 2¢ — 1} is a pair, for some k < N +2¢q — 1

4. N +2q — 1 is unpaired and {k, N + 2¢} is a pair, for some k < N +2¢q — 1

5. N 4+2qg— 1 and N + 2q are both unpaired

We split up the sum over W, into five sums, one for each type of pairing.
Type 1

Let Wg.1 be the set of pairings that are of type 1. Given w € W1, first note that w
reduces uniquely to a w € W,_; given by w = w\{N +2¢ — 1, N + 2¢}. Using this w,

we choose the coset representative of w to be

Buw = B (A.2.31)

By which we mean that 3, acts as 8z on {1,2,..., N 4+ 2¢ — 2} and as the identity on
{N +2q—1,N + 2q}. It is simple to check that this satisfies the conditions (A.2.29).

To calculate C¢(f3,,), add an extra label ¢ onto the contractor C}E) to record how
many indices it has. So Cl-(ffﬂ)»NHq = Cl(fql_Nl +)2q,25i Ni2q_1ins2q- Lhis allows us to relate
C¢(Bw) and C%(Bg). The calculation is shown diagrammatically at the top left of figure
A.2. We find

C*(Bw) = NC*(Bw) (A.2.32)

Given a w € W,_1, there is a unique w € Wy, which reduces to w, namely w =
wU{N +2q — 1, N + 2q}. Therefore

S =N S C(Bu)Ba (A.2.33)

weWy1 weWy—1

Type 2

We follow the same route as for type 1. Let W2 be the set of pairings that are of
type 2. Given w € Wy, we define w € Wy_1 by w = (wU {k1, ko}) \{{k1, N + 2¢ —
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1}, {k2, N + 2¢}}. We then choose the coset representative of w to be
Buw = (B3 (k2), N +2¢ — 1) B = B (ka, N +2¢ — 1) (A.2.34)

Again, one can check that this satisfies the conditions (A.2.29).
The calculation for C¢(3,,) is shown diagrammatically in figure A.2 in the middle
of the top row. For simplicity, the calculation shown has ko = N + 2¢q — 2, but it is

clear that for any ko we arrive at the relation
C*(Bw) = C*(Bw) (A.2.35)
Consider an arbitrary w € W,_;. We can explicitly write this out as
= {{ll,h liot, {l2a, 022}, {lg-1,1, lq_l,z}} (A.2.36)

There are 2(q — 1) different w € Wy,» which reduce to w , two for each pair of w. For
1 <1< qg—1, these are

wig = (w U {{zm, N +2¢— 1}, {lit, N + 2q}}) \{{zu, zi,g}}

(A.2.37)
wio = (71} U {{lm,N +2q — 1}, {li2, N + QQ}}) \{{li,lali,Q}}
We split the sum over Wy.o into a sum over W,_1, 7 = 1,2,. —1land j =1,2. For
wj 1, we have ko = [;1 and for w; > we have ky = [; 2, so using (A 34) for the coset
representatives
qg—1 2
Y C Bu)Bu=>_> (Ba'liy), N+2¢—1) > C(Bs)Ba (A.2.38)
weWy;2 i=1 j=1 weWy_1

From (A.2.29) we know that {85 ({li;})} = {N+1,N+2,..., N +2¢—2}, so we can
simplify this to

2q—2
Y CBu)Bu=Y (N+iN+2-1) > C(Bs)Bu (A.2.39)
weWy;2 7j=1 weWy_1

Types 3 and 4

Let W,.3 be the set of pairings that are of type 3. Given w € W3, we define w € W,
by w = w\{k, N 4+ 2¢ — 1}. We then choose the coset representative of w to be

Bw = (B;l(k)v N + 2q) B'LT} = 5@ (ku N+ QQ) <A240)
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cEa |~ C(&a-1) C(&a—1)

AVA
h Y,

B B B
Clea-1) | A C(ea-1) C(ea-1)
Type 1 Type 2 Type 3

Figure A.2: Diagrammatic calculation of C®(f) for various 8 € Snyi24 corresponding
to type 1, 2, 3 and 5 pairings of {N +2¢g — 1, N +2¢} with {1,2,... N +2q —2}. The top
row shows 8 = Bg, fo(N +2¢ —2,N +2q — 1) and Bg(N + 2q — 2, N + 2q) respectively,
where B3 € Sn42¢—2. The bottom row shows a 8 with S(N — 1) = N 4+ 2¢ — 1 and
B(N) = N +2q. These two values of 3 are enough to ensure C*(3) = 0, so the remaining
parts of 8 are not included in the diagram.
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The calculation for C¢(8,) is shown diagrammatically at the top right of figure A.2,

and demonstrates that

C*(Bu) = C*(Bs) (A.2.41)

For simplicity, the calculation shown has k = N 4+ 2q — 2, but clearly k can be arbitrary
and we still arrive at the same result.

Take w € W,_1. This contains ¢ — 1 pairs from the set {1,2,... N + 2¢ — 2}, so
there are N numbers that are omitted. Let these be {li,...,Ix}. The different w
which reduce to w are then given by w U {l;; N +2q — 1} for i = 1,2,..., N with the
corresponding representative given by (A.2.40) with k& = [;. Splitting the sum over

w € Wg.3 into a sum over w € W,y and ¢ =1,2,..., N, we have
N
> CF(Bu)Bu = (Balli),N+29) > C(B (A.2.42)
weWy;3 i=1 weWy 1

From (A.2.29) we know that {51;1({11})} ={1,2,..., N}, therefore this simplifies to

N
Y C(Bu)Bu=) (hN+29) Y C(Ba)ba (A.2.43)
7=1

wGWq;3 wGWq,1
We can repeat the above process with N +2¢ — 1 and N 4 2¢g swapped to give the sum
over type 4 pairings

N

> CBuw)Bu=> (N+2¢—1) > C(Ba)Ba (A.2.44)

weEWg;4 7j=1 weWy1
Type 5

Let W5 be the set of pairings that are of type 5. Given w € W, 5, we can choose the

coset representative 3, such that
Bw(N—-1)=N+2¢—1 Buw(N) =N +2q (A.2.45)

We do not need to specify the remaining values of 3,! as this is enough to show that
C¢(Bw) vanishes. The calculation is shown diagrammatically on the bottom row of

figure A.2. This means
Z CE(/Bw)/Bw =0 (A'2‘46)

wEWq;s
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Adding together (A.2.33), (A.2.39), (A.2.43), (A.2.44) and (A.2.46), we get

N N
D CBu)Bu=|N+> (G, N+2¢—1)+ Y (j,N +2q)
7=1

weWy j=1

2q—2
+Y N+ N+20-1)] Y C(Ba)Ba (A247)
j=1 WEWg_1

The factor on the left is just the i = ¢ factor in (A.2.23), so plugging in the inductive
assumption proves the proposition.
O

Action of ¢

Consider the vector |[1V]) ® |R,[S]), defined in (5.1.23), inside the representation R
of Sg,. The restrictions on R and R and how the two diagrams are related is given at
the end of section D.2.1.

There are two ways of expressing ‘ [1N ]> ® |R,[S]) as a sum over Young tableaux.
Firstly, since it is a vector in the R representation of Ss,,, we can write it as a sum over

standard Young tableaux r of shape R

M) @RS = Y arlr) (A.2.48)

r of
shape R
and secondly, since it is in the [1V] ® R representation of Sy x Saq, We can write is as
a sum over tensor products of two Young tableaux of shapes [1V] and R respectively.
There is only one standard Young tableau of shape [1N ], so we will suppress this tensor

factor and just write |7), where 7 is the tableau of shape R

") @ RS = > b7 (A.2.49)

7 of _

shape R
We now investigate how these two expansions of |[1V]) ® | R, [S]) relate to each other.
Start by considering the tableaux in the second expansion (A.2.19). As explained
below (A.2.16), these are restricted so that the numbers 2i — 1 and 2i appear in pairs,
with the even number immediately to the right of the odd. As explained above (A.1.4),
the positions of the numbers in a Young tableau describe the behaviour under embedded
subgroups, and therefore the positions of each pair {2i — 1,2i} in the distinct tableaux
describe how 7 fits into representations of Sy(4_1), Sa(4—2) etc. In this case, if we remove

the numbers 2¢g — 1 and 2¢ from a tableau 7, the fact the two are paired mean the new
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reduced tableau also has a shape with even row lengths, and therefore admits a S;_1[S2]
invariant vector. Further, the reduced tableau will contribute to this invariant vector.
As discussed below (A.1.4), the decomposition of a vector in terms of its represen-
tations in embedded subgroups is equivalent to giving its tableau. For 7 contributing
(A.2.49), this decomposition does not need to include the diagrams with an odd number
of boxes, as those are determined as intermediate stages between the ones with an even
number of boxes. For a given tableau 7, we denote the equivalent even decomposition

by
F=R;— Ry1— -+ — Ry — R = Ry (A.2.50)

where R, = R, Ry =0 and Ry is the empty Young diagram. For example, the three
tableaux in (A.2.17) that contribute to the invariant vector for R = [4,2,2] have even

decompositions

Under this new labelling, (A.2.49) reads as

MDY @RS = D> b(Rg— - — Ri) [Rg— - — Ry) (A.2.52)

Ry—-—Ry

This gives us control of the S;[S2] behaviour of |[1V]) @ |R, [S]) for each 1 <1i < q.
Now consider how each term of (A.2.52) behaves under S, permutations, and
in particular the decomposition as we reduce to Sy(,,_1), Sz(n—2) and so on. Using the
correspondence between R and R (this time with N +2¢—2 and g—2 boxes respectively)
established at the end of section D.2.1, the diagram Rq_l determines a R, 1, the
diagram R, o determines a R, 2, etc. The full even decomposition R, — --- — Ry

of R gives a corresponding even decomposition R, — --- — Ry where R; = R and
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Rg = [1V]. Taking N =4 and R = [4,3,2,1,1,1], the R even decompositions (A.2.51)

have R equivalents

| [ 1] E
E
E

(A.2.53)

To describe the R decomposition explicitly from the R version, use the notation of
section D.2.1. We have R = [1V*#] + S, where S has k odd rows, such that if we add a
single box to each of these rows we get R. Let the set of odd rows be v = {v1,v, ..., v},
and denote the relation between S and R as R = S +, [1¥].

We can obtain R, from R = R, by removing two boxes from a single row u. Then
if u € v, the corresponding 5’,1_1 is obtained from S’q = S by removing a single box

from row u of S, and the corresponding R,_; is
Ry 1 =[N 45, (A.2.54)

i.e. we have also removed a box from the first column of R. So k — k;—1 = k — 1 and

v — vg—1 = v/{u}.
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If u ¢ v, S;—1 is obtained from S, by removing two boxes from row u, and R,_1 is
Rq_l = [1N+k] + gq_l (A.2.55)

so the first column is unchanged, as are k;_1 = k and v4—1 = v. Iterating this process
describes the R even decomposition associated to R, — - -+ — Ry.

This even decomposition of R gives some, but not all, of the information necessary
to construct (A.2.48). When R; — R;_1 has the form (A.2.54), there are two associated
Young tableaux. One has N + 2i — 1 at the bottom of the 1st column and N + 27 in
the uth row, while they can also be the other way round. For the action of Qf, these
two tableaux are equivalent since they have the same eigenvalue under Jy42;—1+ Jn2i
from the product (A.2.21). Even decompositions of form (A.2.55) completely fix the
position of N+2i—1 and N +2i, so there are no more ambiguities in the Young tableaux

corresponding to a particular even decomposition of R and R. We can therefore write

7)) =|Ry— - = Ri)=> c|r) (A.2.56)
r
where r runs over the standard Young tableaux of shape R whose even decompositions
agree with the decomposition R, — --- — Ry corresponding to Rq — .-~ — Rg. This
allows an identification between the two sums (A.2.48) and (A.2.49).
As an example of the tableaux r that contribute to a sum of the form (A.2.56),

consider the three decompositions in (A.2.53). Each has four Young tableaux r that
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contribute
4 4 2 4 2 4
5
B 7
T
EX EX 1| 1|
8 7 8 7
2|5 2|5 216 6 |
7 8 7 8
o : (A257)
6 | 6 | 5 5
8 7 8 7
7 8 7 8
T3
6 | 6 | 5] 5
8 7 8 7

where to fit the numbers in the tableaux we have used i to represent N + i.

Using the identification (A.2.56), each term in the product (A.2.21) for Q° has a
definite eigenvalue on the separate 7 in (A.2.49). Consider just the factor N+ Jy19;,—1+
JIN2i — Joi. Write ¢(j,7) for the contents of the box labelled by j in 7. Then .Jy; has
eigenvalue ¢(2i,7) on 7. If the ith stage of the reduction corresponding to 7 has the form
(A.2.54), then Jny9;—1 + Jny2; has eigenvalue (=N — k; + 1) + (¢(2i — 1,7) + 1), while
if it has form (A.2.54), then Jyi2;—1 + Jn+2; has eigenvalue ¢(2i — 1,7) + ¢(2i,7) + 2.
Noting that ¢(2i — 1,7) + 1 = ¢(2i,7), the total eigenvalue is

(N + C(2i — 1, 77) + 2) ’F) R, — R;_1 has

form (A.2.55)
(A.2.58)

So the factors in (A.2.21) commute on |7) and hence it is an eigenvector of Q°, where

DE(N + Inioic1 + Int2i — Joi) |F) =

the eigenvalue is the product of (A.2.58) over i = 1,2,...,¢ (then multiplied by N!).
Suppose R has [(R) > N. Then k > 1, and for every decomposition R; — --- — Ry,
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there will be some ¢ where 1 = k; — k;—; = 0. At this point, the eigenvalue (A.2.58)
will be 0. Therefore the eigenvalue of Qf on every 7 will be 0. Re-summing to form
HIN 1) ® |R,[S]), Q° will annihilate the invariant vector. Therefore Q¢ enforces the
finite N cut-off in R.

For [(R) = N, we have R = [1"¥]+R, and therefore every stage of the decomposition
R, — -+ — Ry is of the form (A.2.55). Taking the product to get the eigenvalue of Q2

DRE(Q) [7) = NI T] (N + e(2i — 1,7) + 2) |7)
=1
=N J[ N+a+2)r) (A.2.59)

bcodd
columns of R

Since this eigenvalue is independent of 7, we can sum over 7 to form ’ [1V]) @ | R, [S])

DR | @ R[S =N J] NV +a+2)|[1V])®|R,[S) (A.2.60)

beodd
columns of R

Interpret this eigenvalue in terms of the boxes of R rather than R. Firstly, we only

consider R with even length rows. Therefore we have

[l N+a+2)= J] V+a+1) (A.2.61)
bcodd _ bceven _
columns of R columns of R

In R, R has been moved one place to the right, so the contents of each cell increases
by 1. In this context, the even columns of R become the odd columns of R, excluding
the first column. Since the first column of R has length N, the product of (N + ¢) on

this column is N!, so we have

N J W +e+2)= ] (N+a) (A.2.62)
bcodd beodd
columns of R columns of R

Substituting into (A.2.60), we have

DRIV @R, [S) = I W +e) |[1]) @R, [S) = fR|[1V]) @ |R, [S])
bcodd
columns of R
(A.2.63)
where this defines f;. Note that from this definition, fj = 0 if I(R) > N, so (A.2.63)

holds true for all R, not just those with I(R) = N.

294



Appendix B

Mobius inversion formula for
positive integers

Proposition: The Mobius Inversion Formula

Let {a,} and {b,} be two sequences indexed by the positive integers. If a,, can be

ap = Zbd = Zb% (B.O.l)

dln dn

expressed as

where d runs over all divisors of n, denoted by d|n, then

by, = Zu (%) aq = Z,u(d)a% (B.0.2)

dln dln

where p is the Mobius function defined by

1 d=1
u(d) = § (=1)" d a product of n distinct prime factors (B.0.3)
0 d has a repeated prime in its prime factorisation

The proof of this proposition relies on

Lemma
1 n=1
> p(d) = (B.0.4)
Proof of Lemma
This is obvious for n = 1, so we will only prove the case n > 1. Writing n in terms of
its prime factors, we have

71,72

— Tk
n=p'py...py
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where r; > 1 for each i. The divisors of n which contribute to the sum (B.0.4) are those

which are square free. Explicitly, they can be written
d=pi'p3?...pF

where s; € {0,1} for each i.
We define S to be the set of distinct prime factors of n: S = {p1,p2,...pr}. Then

subsets of S correspond exactly to the divisors d defined above
d=pi'py> ...y = {piisi=1}CS (B.0.5)

From the definition (B.0.3), we see that

N(d) — (_1)|subset of S corresponding to d|

So

Z p(d) = # of subsets of S with even size — # of subsets of S with odd size
dln

But we have a bijective map between even subsets and odd subsets given by

Au{pm} pmgA
Al{p} mpmeA

A—

and therefore
> ud) =0
dln

g

Proof of Proposition

The first step in the proof is to note that the a, determine the b, uniquely via the
relation (B.0.1). Indeed, we have by = a1, bs = a2 — a1, b3 = ag — a;. To prove it in
general, we use strong induction with these three as the base cases. Assuming b, is

determined by the sequences of as for all n < k, we can rearrange (B.0.1) to get

brt1 = agy1 — Z ba

d|(k+1)
d#k+1

Then since the sum over d only includes d < k, we know inductively that b; is deter-

mined by the as, and hence b is also determined by the as.
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We now notice that the b,, as defined in (B.0.2), satisfy (B.0.1):

IESH WICT

dn din e|d

:a/TL

In going from the 1st to the 2nd line we have reordered the sums and reparameterised
by f = g, and in going from the 2nd to the 3rd we have used the lemma (B.0.4).
Since the b, have a unique solution, (B3.0.2) must therefore be the correct formula

for the b, as claimed. [J

Note that in this proposition, there was nothing special about addition, the result

and proof follow exactly the same way if we replace the addition by multiplication.

by, :Had:Ha%

dln dn

Explicitly, given

we can invert uniquely to get
a, = Hbg(ﬁ) - Hb’é(d) (B.0.6)
din dn

In chapters 3, we come across relations of the form
Qnyng = Z b%lf% (BO?)
dni,ns

we now prove a generalisation of the Mobius inversion formula for two variables that

will apply to the above. This generalisation is

Lemma

The by, n, are determined uniquely by (3.0.7), with
briny = Y p(d)an n (B.0.8)

dni,na

Proof

To prove this, consider fixing 71,712 to be coprime. We then define

Ak = Qkn, kny b, = bkn, kns (B.0.9)
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ae= Y big rg, (B.0.10)
d|kﬁ1,kn2
=) b (B.0.11)
d|k !

where we have used the fact that 71,79 are coprime to conclude that d|kni, kng is

equivalent to d|k. Then by the standard Mdébius inversion formula, we have

by, = Z”(d)as (B.0.12)
d|k
or in terms of as and bs
Dhis ke = D pld)arny rny (B.0.13)
d‘k’ﬁl,kﬁg ¢ ¢

This is true for all k, and coprime 71, fie. So to prove (B.0.8) for an arbitrary nq, ng
we ple k= ng(n17n2)7 ny = %, No = an

g

The Mobius inversion formula can be used to prove some useful identities. We start

with the well known identity

> o(d)=n (B.0.14)

dn

where ¢(n) is the Euler totient function that counts the number of numbers less than

n that are coprime to n. Applying the Mobius inversion formula gives

‘ﬁfn”) -y “Eid) (B.0.15)

dln

and applying it again gives

pn) =Y du(dys (5) = % (%) o) (B.0.16)

dln din

The Mobius inversion formula can be suitably generalised to any poset. In chapter 7

we use the Mobius inversion formula for the poset of set partitions.
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Appendix C

List of sequences and generating

functions

We introduce a lot of different single and multi-trace counting sequences in chapters 3
and 4. For simplicity we present all of them in one place. For each sequence we give
the definition of the (n1,n2)th term, the first few terms, the generating function and
(for the single trace sequences) the plethystic exponential of the generating function.
We also give the vector spaces which have these functions as Hilbert series.

Many of the results here can be found together with their derivations in sections
3.2 and only considered at infinite NV, while the multi-trace sequences are defined for
finite IV, but we have only found their generating functions at infinite V.

After listing the sequences, we give the relations between them and their generating

functions.

C.1 Single trace sequences

All of the following definitions are valid provided we have one of ni,ne # 0. For all

single-trace sequences, we implicitly set the n; = no = 0 term to 0.

C.1.1 A, .,

The A, n, count single traces of generic matrices (U(N) single traces). They are

defined by
n17n2 = Z ¢ (

d|n1,n2

) (C.1.1)

ol als

Their generating function is

= o(d)
fuvy(z,y) Zd)(d g(1—z% —y?) (C.1.2)
d=1
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which is the Hilbert series for the vector space Tsp. The plethystic exponential is

1 o
Fyny(z,y) = ,}_L ST v 1;[ — xk — (C.1.3)

which is the Hilbert series for the vector space T' = Sym (Ts7).

The values of A, ., for ni,no < 10 are shown below. These numbers form sequence
A047996 in the OEIS [82].

012 3 4 5 6 7 8 9 10
ojo11 1 1 1 1 1 1 1 1
11 11 1 1 1 1 1 1 1 1
21112 2 3 3 4 4 5 S 6
31112 4 5 7 10 12 15 19 22
41113 5 10 14 22 30 43 95 73
511 1 3 7 14 26 42 66 99 143 201
6 |1 1 4 10 22 42 80 132 217 335 504
711 1 4 12 30 66 132 246 429 715 1144
811 1 5 15 43 99 217 429 810 1430 2438
911 1 5 19 55 143 335 715 1430 2704 4862
101 1 6 22 73 201 504 1144 2438 4862 9252

C.1.2  ay p

The ay, n, count aperiodic single traces of generic matrices (U (V) aperiodic single

traces), or equivalently Lyndon words. They are defined by

1 n
nyny = > M(d)(gg) (C.1.4)
dni,n2 d
Their generating function is
_ > u(d)
fov Z(d g(1 -z —y?) (C.1.5)
d=1

which is the Hilbert series for the vector space TST) The plethystic exponential is

Fyan(z,y) =[] ( : S (C.1.6)

1 — gnigyn2)%ny,ng 1l—x—
s y"2) Yy

which is the Hilbert series for the vector space T™) = Sym (TST))

The values of ap, n, for ni,ny < 10 are shown below. Omitting the first row
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and column, these numbers form sequence A245558 in the OEIS [82]. The properties
of Ay, n, and ap, pn,, the relationship between them, and a generalisation to other

sequences were investigated in [73].

012 3 4 5 6 7 8 9 10
0jo10 0 0 O 0 0 0 0 0
1111 1 1 1 1 1 1 1 1
21011 2 2 3 3 4 4 5 5
31012 3 5 7 9 12 15 18 22
4101 2 5 8 14 20 30 40 95 70
510 1 3 7 14 25 42 66 99 143 200
6101 3 9 20 42 75 132 212 333 497
710 1 4 12 30 66 132 245 429 715 1144
810 1 4 15 40 99 212 429 800 1430 2424
910 1 5 18 55 143 333 715 1430 2700 4862
1010 1 5 22 70 200 497 1144 2424 4862 9225

C.1.3 A

ni,n2

The A" count matrix words (up to cyclic rotations) which don’t change when re-
ni,no Y

versed (up to cyclic rotations). They are defined by

o ) ©17)

ni,n2 L%J

Their generating function is

P tay+yi+aty

P (C.1.8)

finv($ay) =

which is the Hilbert series for the vector space Tg7.iny. The plethystic exponential is

1 N 2k+xkyk+y2k—|—:v + yF
Fipy(z,y) = exp [ (C.1.9)
o TL]l:’V[Q (1 - xnlynz Atliing ];[ 1 — a2k — y )

which is the Hilbert series for the vector space Tipn, = Sym (Ts7.iny)
The values of A”w , for n1,ny < 10 are shown below. These numbers form sequence

A119963 in the OEIS [82].
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0123 4 5 6 7 8 9 10
0/ 1111 1 1 1 1 1 1
11111 1 1 1 1 1 1 1
211122 3 3 4 4 5 5
311122 3 3 4 4 5 )
41113 3 6 6 10 10 15 15 21
511 1 3 3 6 6 10 10 15 15 21
61 1 4 4 10 10 20 20 35 35 56
711 1 4 4 10 10 20 20 35 35 56
8|11 1 5 5 15 15 35 35 70 70 126
911 1 5 5 156 15 35 35 70 70 126
101 1 6 6 21 21 56 56 126 126 252

C.1.4 a™

ni,n2

The aiﬁ”m count aperiodic matrix words (up to cyclic rotations) which don’t change

(up to cyclic rotations) when reversed. They are defined by

aim} — %J‘F{%J
n1,ma dgmu(d)( ) ) (C.1.10)

Their generating function is

2d y d,d _ ,2d
ZH x —i—ﬂcy + y?d 4 29 4 y4 (C.1.11)

fino(2,y)
mv 1:2d _ y2d

which is the Hilbert series for the vector space TélT)-mu' The plethystic exponential is

- 1 o0 l’2k+$kyk+y2k+l’ +y
Firw(-r» y) — H (1 _ m yn2) nlun2 - Ig €xp k’(l _ .Z'2k Qk % du
(C.1.12)

ni,n2

which is the Hilbert series for the vector space Tl(m)} Sym ( 5(*17’) mv)
The values of aiﬁf’w for n1,na < 10 are shown below. The diagonal entries am”

form sequence A045680 in the OEIS [82].
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0123 4 5 6 7 8 9 10
0/01 00 0 0 0 0 O 0 0
111111 1 1 1 1 1 1
2/j01 12 2 3 3 4 4 5
310121 3 3 3 4 5 4
41012 3 4 6 8 10 12 15 18
5101 3 3 6 5 10 10 15 15 20
601 3 3 8 10 17 20 32 33 33
710 1 4 4 10 10 20 19 35 35 56
810 1 4 5 12 15 32 35 64 70 120
910 1 5 4 15 15 33 35 70 68 126
1010 1 5 6 18 20 53 56 120 126 245

C.1.5 By,

The By, n, count single traces of anti-symmetric matrices (SO(N) single traces). They

are defined by

Bl 3 ¢(d)<%>+<—21>H<L%Jmt%> cL13)

2n+ 2m

Their generating function is

x2+a:y+y2—x—y
1— a2 —qy?

fsony (@, y) = % [— > (biid) log(1 —z% — y?) + ] (C.1.14)
d=1

which is the Hilbert series for the vector space TST. The plethystic exponential is

1
(1 — yn2 )Bnl,nQ

Fsowy(z,y) = H

0 2k k, k 2k k k
-1 ! exp [m AT } (C.1.15)
i V1 —ak —yk 2k(1 — x?F — y2F)

which is the Hilbert series for the vector space T’ = Sym <ng).
The values of By, p, for ni,no < 10 are shown below. For n = ny + na even, these
numbers match sequence A052307 in the OEIS [82].
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012 3 4 5 6 7 8 9 10
0jo o1 0 1 0 1 0 1 0 1
1/01 0 1 0 1 O 1 0 1 0
21102 0 3 0 4 0 ) 0 6
3/]010 3 1 5 3 8 5 12
41103 1 8 4 16 10 29 20 47
510 1 0 5 4 16 16 38 42 79 90
6|1 0 4 3 16 16 50 56 126 150 280
710 1 0 8 10 38 56 133 197 375 544
811 0 5 5 29 42 126 197 440 680 1282
910 1 0 12 20 79 150 375 680 1387 2368
1011 0 6 8 47 90 280 544 1282 2368 4752

C.1.6 by,

The by, n, count minimally periodic single traces of anti-symmetric matrices, or equiv-

alently orthogonal Lyndon words. They are defined by
1 1/% nf|2%] 4+ |
b =5 Y, uld) [=( L)+ (-1)a Lol + Lzl (C.1.16)
? n\j 2]
d|ni,no d 2d

Their generating function is

) 1 & 1 22 4 piyd 4 y2d _gd o
fsomn(z,y) = 5 Zﬂ(d) [_d log(1 — 2% — y¥) + 1— 724 _ 42 ]
d=1
. (C.1.17)
T mwn

which is the Hilbert series for the vector space Ty . The plethystic exponential is

1

(1 _ :L.n1 y?’lg )bnl,n2

Fsomn(z,y) = []

ni,n2

1 00 1 22k o phyk 2k _ gk _ ok
= H exp [ o " Y _Zky 2; . Zd“(d)
\/1—x—yk:1 2k 1—z%F —y o
(C.1.18)

which is the Hilbert series for the vector space T(min) — Sym (f g;m))
inv

The values of by, n, for ny,n2 < 10 are shown below. The diagonal entries b;;",
form sequence A045628 in the OEIS [82].
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012 3 4 5 6 7 8 9 10
0/001 0 0 0 O 0 0 0 0
1/01 0 1 0 1 O 1 0 1
2101 0 3 0 3 0 ) 0
3/]010 2 1 5 3 8 5 11
410 0 3 1 6 4 16 10 26 20 47
510 1 0 5 4 15 16 38 42 79 90
610 0 3 3 16 16 46 56 125 150 275
710 1 0 8 10 38 56 132 197 375 544
810 0 5 5 26 42 125 197 432 680 1278
910 1 0 11 20 79 150 375 680 1384 2368
1010 0 5 8 47 90 275 544 1278 2368 4735

c.1.7 el

The bﬁff,‘% count single traces of anti-symmetric matrices with a specified odd number

of periods. Note that ny, ng refer to the number of X's and Y's contained in the aperiodic

root of the trace, rather than in the whole trace. They are defined by

=

plod) :% S ud) [i(é) +(—1)"<Ln JLZJL%J)] (C.1.19)

dni,na 2d

&)
ISH

Their generating function is

[e.9]

2d d,d 2d d d
~(odd) 1 %+ 2% + y* + (1) + (—y)
fO(N) r,y) 52 |:—10g1—$ —y)—l— 1= 20— 2

(C.1.20)

which is the Hilbert series for the vector space Téf;jd). The plethystic exponential is

= (odd 1
Fé’O(]z/) (.’L‘, y) (odd) (C.1.21)

n1m2 (1 _ xnlyng)bnl ny

_ 1 ﬁ exp Z du(d) 2% + xkyk + 2% + (=1)4(2F + o)
Vi-z—y = T 2k 1 — a2k — g2k
(C.1.22)

which is the Hilbert series for the vector space T (odd) — Sym (Tv éfﬁd)).

The values of bﬁ{fﬁl for n1,no < 10 are shown below
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012 3 4 5 6 7 8 9 10
0/00O0 O O O O 0 0 0 0
1/01 0 1 0 1 O 1 0 1
2001 0 2 0 3 0 4 0
3/]010 2 1 5 3 8 5 11
4100 2 1 6 4 14 10 26 20 44
510 1 0 5 4 15 16 38 42 79 90
610 0 3 3 14 16 46 56 122 150 275
710 1 0 8 10 38 56 132 197 375 544
810 0 4 5 26 42 122 197 432 680 1272
910 1 0 11 20 79 150 375 680 1384 2368
1010 0 5 8 44 90 275 544 1272 2368 4735

C.1.8 be

The bﬁff’f{;) count single traces of anti-symmetric matrices with a specified even number
of periods. Note that ny, no refer to the number of X's and Y's contained in the aperiodic

root of the trace, rather than in the whole trace. They are defined by
1 1/n ny na
bglevzn) _ = Z u(d) | — Tfl + b J:_ LQ J (C.1.23)
1,12 2 n 71 I_TéJ
dni,n2

Their generating function is

=S 22 4 giyd 20 4 gd o
fe”e” > {—logl—x —y) + ]
SO( 2;:: 1 42d _ y2d

(C.1.24)
which is the Hilbert series for the vector space Té?fen). The plethystic exponential is

1

~(even) .
FSO(N) (CB7 y) - H (even)

nime (1 — xmym)bnl’"z

1 w%—l—xkyk—i-y%—i-x +yF
— du(d
\/1—1:— Hexp 1 — a2k —y2k %M()
(C.1.25)

which is the Hilbert series for the vector space Teven) — Sym (Tvé‘;?en)>

The values of bﬁff’fg) for n1,no < 10 are shown below
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012 3 4 5 6 7 8 9 10
0/j01 0 0 0 O 0 0 0 0 0
1/j1 11 1 1 1 1 1 1 1 1
21011 2 2 3 3 4 4 ) 5
3101 2 2 4 5 6 8 10 11 14
4101 2 4 6 10 14 20 26 35 44
510 1 3 5 10 15 26 38 57 79 110
6101 3 6 14 26 46 76 122 183 275
7101 4 8 20 38 76 132 232 375 600
810 1 4 10 26 57 122 232 432 750 1272
910 1 5 11 35 79 183 375 750 1384 2494
1010 1 5 14 44 110 275 600 1272 2494 4735

C.2 Multi-trace sequences

Ny

The N %)

infinite. They are defined by

count the multi-traces of generic N x N matrices, where N can be finite or

NU(N) —

ni,n2

(C.2.1)

2
E , 9R;R1,R>

RFn
RiFng
Ralno

I(R)XN

At infinite N, A,, ,, and N,ZELVQ)
generating function is given by (C.1.3), which is the Hilbert series for T
The values of NnUl(ff;) for n1,no < 10 are shown below. These numbers form sequence

A322210 in the OEIS [82].

are related by the plethystic exponential, so the
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0 1 4 ) 6 7 8 9 10
011 1 11 15 22 30 42
111 2 4 7 12 19 30 45 67 97 139
212 4 10 18 34 56 94 146 228 340 506
313 7 18 38 74 133 233 385 623 977 1501
4 |5 12 34 74 158 297 550 951 1614 2627 4202
5|7 19 56 133 297 602 1166 2133 3775 6437 10692
6 |11 30 94 233 550 1166 2382 4551 8424 14953 25835
7115 45 146 385 951 2133 4551 9142 17639 32680 58659
8 |22 67 228 623 1614 3775 8424 17639 35492 68356 127443
9 |30 97 340 977 2627 6437 14953 32680 68356 136936 264747
10 | 42 139 506 1501 4202 10692 25835 58659 127443 264747 530404

C.2.1 N
SO(N);6 . . . .
The Ny, n, '~ count the multi-traces of anti-symmetric N X N matrices, where N can

be finite or infinite. They are defined by

NZSON)0 > IR:Ry Ry (C.2.2)

ni,n2
RF2n with even row lengths
R1F2n1 with even column lengths
RoF2ng with even column lengths
I(R)XN

At infinite N, By, n, and N,i%év);é
generating function is given by (C.1.15), which is the Hilbert series for T.

The values of N,fﬂﬁ?)“s for ni,ny < 10 are shown below. These numbers form

sequence A045680 in the OEIS [82].

are related by the plethystic exponential, so the
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o1 2 3 4 5 6 7 10
0/1 0 1 O 2 0 3 0 7
110 1 0 2 0 4 0 7 12 0
211 0 4 0 9 0 19 0 35 0 62
310 2 0 9 1 23 4 52 10 105 22
412 0 9 1 33 6 85 21 198 56 410
510 4 0 23 6 8 33 243 114 600 313
613 0 19 4 8 33 297 152 845 512 2137
710 7 0 52 21 243 152 879 664 2646 2227
8|5 0 35 10 198 114 845 664 3003 2742 9168
910 12 0 105 56 600 512 2646 2742 9702 11033
107 0 62 22 410 313 2137 2227 9168 11033 33704
C.3 Relations between different sequences
The ay, n, are the Mobius transform of the A, ,,.
Am’n2 = Z aZ/ZZ aning = Z N(d)Ag,%
d|n1,n2 dlny,n2
oo
fony (@, y) ZfU(N) T,y) = Zﬂ(k)fU(N)(w ")
FU(N) r,y) HFU(N 72/ N) z,y) HFU(N) ( )
The a}ﬁ”m are the Mobius transform of the A;”l”m
A, = 3 at, Wt = S )AL,
d\nhng d|n17n2
finv(2,9) mev 7y fzm) r,y) ZH ) finw (2 ’yk)
k=1
'mvxy H zm}xy HFmv 7y (k)

The B, n, can be expressed in terms of the A, ,, and the A

Bm,nz =

N =N

fsom(z,y) =

309

ni,mne’

[Anyng + (=1)" A0, ]

[fU(N) (.%', y) + fim)(_xv _y)]

(C.3.1)

(C.3.2)

(C.3.3)

(C.3.4)

(C.3.5)

(C.3.6)

(C.3.7)

(C.3.8)
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The by, n, are the Mobius transform of the B, 5,.

Brim, = Z b% m bnyng = Z H(d)B%V% (C.3.9)

d‘nl,ng d|7'bl n2
fsow Zfso 205 fsomn (@) ZM ) fsomn (*,y")  (C.3.10)
Fsow H Fsow)(@*,4")  Fsow(x,y) H Fsom (z®, yF)»®  (C.3.11)

odd)

The bghm and b%i”f;’;) can be expressed in terms of the an, », and the ai™

ni,n2°

1 n i
b(odd) _ = [anl,nz + (_1)nauw ] b(euen) _

ni,n2 ni,n2 ni,n2

U s +ai™ ] (C.3.12)

»—ll\.’)\

2
o @y) = % [Fow (@ 9) + Fino(—2,=9)] o) @ 9) = 5 [foen (@) + fino (@.9)]
(C.3.13)
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Littlewood-Richardson

coeflicients

Given a representation R F n of S, we can act on R with the subgroup S,, x Sy,,
where ni+mno = n, and therefore it is a representation of this subgroup. The irreducible
representations of S,, x Sy, are of the form R; ® Ry for Ry - ny, Ry - na, so we have
a decomposition

Vit = @ Vi © Vil @ VK R, (D.0.1)

Ritny
Rotno

where Vﬁ?ﬁlﬁ R, is the multiplicity space for this decomposition. The Littlewood-Richardson
(abbreviated to LR) coefficient is defined to be

9R;R,,Ry = Dim V]g@}%llt Ry (D.0.2)
Since the subgroup Sy, X Sy, is conjugate to Sy, xSy, within S,,, it follows that gr.r, r,
is symmetric in Ry and Rs.

Take permutations o € S,,, and 7 € S,,,, and define o o 7 to the permutation in S,

that acts as o0 on {1,2,...,n1} and 7 on {n; +1,...,n}. Then from the decomposition
(D.0.1), we have
Xr(607) = D grRy RyXR (0)XR,(T) (D.0.3)
RiFnq
Rotno

Using the orthogonality relation (2.3.5)

1
9R;R1,Ry = 'n2 Z XR, (0)XR, (T)XR(0 0 T) (D.0.4)

o€Sn,
TESn,

LR coefficients have nice behaviour under conjugation of Young diagrams. From the
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relation (2.3.10) between representations with conjugate Young diagrams, we can trans-
pose each of the Young diagram labels in (D.0.1) by taking a tensor product with the

sign representation of S,,. This gives

Sn Sn Sn l
Vipe = @ VRE ''® VR§2 ® Vé?ﬁlﬁRQ (D.0.5)
RiFnq
RQ'_TLQ
and therefore
9R;R1,R2 = YR<;R§,Rs (D.0.6)

D.1 Schur function multiplication

Consider the tensor product V®", for the V the fundamental representation of U(N).
This is acted on by permutations in S,, by permuting the tensor factors, so as in (D.0.1),
we can break the space down into representations of Sy, x Sp,. There are two ways to

approach this. Firstly, we use Schur-Weyl duality (2.4.3) and then apply (D.0.1)

Sn Sn
V= (P Vit eVt e (@ Vi e V%ﬁm) (D.1.1)
iR

Secondly, we can split VO = V¥ @ V"2 and use Schur-Weyl duality on each of the
two factors
ver= @ vt @ Ve @ (Vi e vi™) (D.1.2)
RiFnq
Robno

Comparing the two expansions, we see

U(N U(N U(N mu
Ve @ V™ = @ vy e vt (D.1.3)
RFn

So the LR coefficients are Clebsch-Gordon coefficients for U(NN) representations. It
follows from the identification (2.7.15) of the U(N) characters as Schur symmetric

functions that

SR1SRy = Z 9R;R1,R2SR (D14)
RFn

D.2 Littlewood-Richardson rule and tableaux

The Littlewood-Richardson rule is a combinatoric description of the LR coefficient
9R:R.,R,- Given R = n and Ry F nq such that Ry fits within R, we define the skew
Young diagram R/R; to be the diagram obtained by removing R; from R. The boxes
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remaining in R/R; do not need to be connected. We give some examples

|

R =

R =

[ ]

—

R/Ry =

R/R; =

R/Ry =

5

L]

(D.2.1)

(D.2.2)

(D.2.3)

A skew tableau r of shape R/R; is the skew diagram R/R; with positive integers placed

in each box. The skew tableau is called semi-standard if the numbers increase weakly

along the rows and strictly down the columns. The evaluation of r is the sequence

w(r) = [k1, ke, ...

| where k; is the number of is inside r. We are concerned with the

case where the k; weakly decrease, meaning w(r) is a partition of ng. We give some

examples of semi-standard skew tableaux of shapes (1D.2.1-1).2.3) with their respective

evaluations. We leave empty boxes in the tableaux to show where R; has been removed

1
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r= 2 w(r) = [2,2,1,1] (D.2.6)
3
4]

The row reading of a tableau is the word obtained by concatenating the reversed rows.
The row reading of a tableau is a lattice word if every prefix of the word contains at
least as many is as (i + 1)s for every ¢ > 0. A Littlewood-Richardson tableau is a
semi-standard skew tableau where the row reading is a lattice word.

In the example (D.2.4), the row reading of r is 132546. If we take the prefix 13,
then 2 does not appear at all, while 3 appears once. Therefore this is not a lattice
word, and hence r is not a LR tableau. For (D.2.5) and (1).2.6), the row readings are
11111 and 112234, which are both lattice words, and thus the two r are LR tableaux.

The LR rule [121,122] states that the coefficient gg. g, r, is given by the number of
LR tableaux r of shape R/R; with evaluation w(r) = Ra.

We give two examples of calculations of particular coefficients, before moving on
to the calculation of coefficients for a general class of diagrams. Firstly, consider R =
[5,3,2,1,1], and Ry = Ry = [3,2,1]. Then gpr, r, = 4, with tableaux

1[1] 1[1]
1 2
= 2 ro = 1
2 2
3] 3]
(D.2.7)
1]1] 1]1]
2 2
ry = 2 Ty = 3
1 1
3] 2]

Our second example is relevant for the SO(N) restricted Schur basis (5.6.70). The
triple R = [6,4,4,2,2,2,2], Ry = [4,4,2,2,1,1] and Ry = [3, 3, 1, 1] are the lowest order
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example of a non-trivial multiplicity in this basis with gr.r, r, = 2. The tableaux are

1]1] t]1]

L = ro = (D.2.8)

D.2.1 Baryonic tableaux

The baryonic state spaces and auxiliary algebras in chapter 4 are anti-invariant under
Sy, meaning they lie in the single column [1V] representation, and invariant under
S,[S2], meaning they live in a representation R + 2g of Sy, where R has even row
lengths. We are interested in which R+ n = N + 2¢ can admit such representations of
SN % S4[52].

As an example, take Ry = [1*] (i.e. N =4) and Ry = [4,4,2]. Then the possible R
with non-zero gr.gr, r, are R = [5,5,3,1], [5,5,2,1%], [5,4,3,1%], [5,4,2,13], [4,4,3,13]
and [4,4,2,1%]. The corresponding tableaux are

1 111 1\
21212 2 2
2] 2
r = ro = r3 = 3
L 3 9]
EEERES
1
2212
22 2
3
T4 = T5 = re =
- _— 1
2 1 -
|~ - 2
3 2 .
=] L~ 3
(D.2.9)

Let # be r with the first column removed. Then in each of the above tableaux, we see
that the jth row of #; consists only of js. We now prove this fact for all LR tableaux r

of shape R/[1V] by inducting down the rows.
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By the lattice word property of the row reading of r, the first row of 7 must end
with a 1. By the semi-standard property, this means the entire row must be composed
of 1s. This establishes the base case of the induction.

Assume that the first j — 1 rows consist purely of the row number. Then since the
entries increase strictly down the columns, the jth row must consist only of numbers
> j. By the lattice word property of the row reading of r, the row must end with a j,
then since the row is weakly increasing, the jth row of 7 must consist entirely of js.

Now consider the first column of r. Since the numbers strictly increase down the
columns, it must contain at most 1 of each number. Therefore the numbers in this
column pick out a subset of the rows of R, and the shape of # is given by R with a single
box removed from each of the selected rows. This subset is not without restriction, since
R with the boxes removed must still remain a Young diagram. In (D.2.9), the subsets

used are respectively

¢, {3}, {2},{2,3},{1,2},{1,2,3} (D.2.10)

where ¢ is the empty subset. The subsets {1} and {1, 3} are not included as removing
these boxes from R would not result in a valid Young diagram.

For each choice of subset, we obtain a different R, and therefore the coefficient is
Ir;nvR =1

Since R has even row lengths, those with boxes removed have odd row lengths. This
means for a given R we can easily identify if a Sy x S4[S2] invariant is possible, and to
which R it belongs.

Consider R I 2n with a first column of length > N. It can be written as a single
column [1V**] combined with a Young diagram S of length I(S) < N + k. Formally,
R = [1N*k] + S where + is the addition operator for components of partitions defined
in (2.2.7).

From S, we can uniquely define an associated R by adding a single box to the end
of each odd length row. Then R admits the representation [1V]® R of Sy x Sy, if (and
only if) the number of odd length rows in S is k. If [(R) > N, there is the additional
condition that N + k > [(R). This characterises the allowable R in the baryonic state
spaces and auxiliary algebras, and proves that the R associated to a valid R is unique
and has LR coefficient 1.

The relation is even simpler when we restrict R to have at most N rows. In this
case we have k =0, S = Rand R = [1V] + R.

D.3 Basis for Littlewood-Richardson multiplicity space

Consider the action of the algebra A, ,,, defined in section 2.1, on the decomposition

(D.0.1). By construction, A, n, commutes with Sy, x Sp,, and therefore by Schur’s
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lemma it must act proportional to the identity on the space VRSI“1 ® Vg;z. Hence Ay, n,

acts only on the multiplicity space ngﬁﬁ R, in each term of the decomposition (D.0.1).
Define a sub-algebra .Agh R, Of Any ny by projecting onto the R representation of

Sy and the R; ® Rg representation of Sy, x Sy,,. Explicitly,

AR Ry = PrPR @Ry Any ny = SPan {Br Ry Royiw 1 1 < 10,V < gRiR1 Ry } (D.3.1)

where the projector Pgr,gr, is the tensor product of the projectors defined in (2.3.13)
and the g R, R, are defined in (3.6.3).
The projection onto Ry ® Re means ’4%1, R, acts only on the Ry ® Ry term of

D.0.1) and annihilates all others. Therefore A% acts purely on the multiplicity
R1,R2

mult
VR§R1 ,Ra*

: : mult R
One can then use the behaviour of vectors in VR; Ry R under ARL R, tO choose an

space

orthogonal basis. Simply choose a maximal commuting set of operators, and use the
eigenbasis.
For a more complete description of how one chooses these operators, or the maximal

commuting sub-algebra they span, see [63].
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Appendix E

Alternative derivation of free

field large N generating function

for SO(N) and Sp(N)

We now derive the generating function (4.3.21) for the quarter-BPS sector of the free
field theory with SO(N) or Sp(NN) gauge group directly from the expressions (5.6.74)
and (5.6.75) respectively for the number of operators with n; X's and ng Y's in the two
theories. This derivation works at infinite N, ignoring the finite NV constraint [(R) < N.
In this regime, the combinatorics of the SO(N) and Sp(N) theories are identical, so
we do not distinguish between them in this appendix.

The first step is to find an alternative formula for (5.6.74) that lends itself more
easily to explicit calculation of the generating function. This is done using results from
the theory of symmetric functions, and gives an expression involving the coefficients of
the cycle index polynomial of S,,[S2].

Using this alternative formula we can express the generating function as a product

of integrals, each of which can be explicitly evaluated.

E.1 An alternative counting formula

Start with the expression (5.6.74) at large N and re-express gr.r, R, in terms of char-

acters using (D.0.4)

NS,y = ) S S (00X, (T)xXR(7 0 7)

2n1)!(2n
RF2n with even row lengths ( 1) ( 2) UESin
R1F2n1 with even column lengths TES2n,
RoF2n2 with even column lengths

(E.1.1)
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where ¢ o 7 means the permutation in Sy, that acts as ¢ on the first 2n; objects and
T on the last 2ns. Since the characters only depend on the cycle type of o and 7, we

can rewrite this as

NO 3 T XR: (P)X Ry (2)XR(PU ) (F.1.2)

n1,n2 o
RF2n with even row lengths  pk2n; p=q
R1F2n; with even column lengths g-2n2
RaoF2no with even column lengths

where p U ¢ was defined in (2.2.9), and z, and z, arise because the number of permu-
tations in Sy, with cycle type p is given by (i—? This is explained in section 2.3.1.

We now evaluate

> xr(9q) (E.1.3)

RF2n with even
row/column lengths

From (2.7.10) we can rewrite this as

2q E Coeff (Ty; sg) = 24 Coeft | Ti; E SR (E.1.4)
R with even R with even
row/column lengths row/column lengths

where Ty, is the power-sum symmetric function defined in (2.7.8) and sg is the Schur
symmetric function defined in (2.7.10). Coeff (T3; sgr) is the coefficient of T, when sp
is written as a sum over power-sum symmetric functions.

The sum in (E.1.4), can range over all partitions with even row lengths, rather than
just those with |R| = 2n, since the coefficient of T is 0 in any sp with |R| # 2n.

In MacDonald’s book [64, Chapter 1.5] he shows that

1 1
S(tl,tg,...) = Z SR:H 2H e (E15)
L— 17 21—t

R with even 7
row lengths

To find the coefficient of T inside s we first look at log s

logs =— Zlog(l —12) — Zlog(l — tit;) (E.1.6)

1<j

o0
=> % SOty (E.1.7)
r=1 7

ij
=1
=3 o (T2 + ) (E.1.8)
r=1
1
= Z —Z%(T,, Tyy) (E.1.9)
T
r=1
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where Z°2 is the cycle index polynomial of the group Sy as defined in (4.3.7) and T} is

a component of a power-sum symmetric function as defined in (2.7.7). Therefore

o

1
Z ;ZSZ (17, Tor)

r=1

(E.1.10)

S = exp

We recall two useful facts. Firstly, the generating function for the cycle index polyno-
mials of S, is [65, Chapter 5.13]

oo [o.¢] 1
Za:"ZS"(tl,tg,...) = exp [Z mxmtm] (E.1.11)
n=0 m=1
Secondly, the cycle index polynomial of a wreath product group is [123, Chapter 15.5]
ZG[H](tl,tQ,...) :ZG(T‘l,?“Q,...) (E112)
where
r, = ZH(ti,tQi,tgi,...) (Ellg)

Combining (E.1.11) and (E.1.12) tells us that the generating function for the cycle

index polynomials of S,,[Ss] is

Zx”ZS"[S2] (t1,t2,...) Zw Z ZS" [S2] l_ItqZ = exp [Z :cTZS2 tr,tgr)]

n=0 n=0 q2n
(E.1.14)
Comparing (E.1.14) with (E.1.10), we have
oo oo
s=Y Z9(n T, ) =3y z5Pr, (E.1.15)
n=0 n=0g-2n
Therefore the sum over even length rows in (E.1.3) is
Z XRr(q) = z¢ Coeft (T;;s) = qug?"[S?} (E.1.16)

RF2n with even
row lengths

A Young diagram has even row lengths if and only if its conjugate has even column
lengths, so to evaluate the column version of (I.1.3), we just conjugate the summation

variable R. Since R¢ =sgn®R, the characters are related by

xre(q) = (=1)"xr(q) (E.1.17)
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Therefore
Yo xrle) = (-1)1z5 Ry, (E.1.18)

RF2n with even
column lengths

Plugging (12.1.16) and (E.1.18) into (E.1.2) gives

Ngl ny = Z (_1)puquUqZ5n1 [S2]Z(}9n2 [52}25&[{5'2] (E.1.19)
pH2n;
qF2nso

E.2 The generating function

The generating function for NV, n1 ny 18
niy, n 6 ni, n pUq Sny [52] 5 Snq[S2] Sn[Sz}
Fson Z YNy oy = Z aty™? Z -1z, Zy Zplq  Zpug
n1,m2 n1,n2 pH2ny

qH2n2
(B.2.1)

Our approach is to build candidate generating functions by introducing the terms on

the right hand side one by one. We begin by using (F.1.14) twice

Z 2y Z Z5n152 75n SalHtpﬁ% (E.2.2)

ni,n2 pH2n
q-2m

— 1 2
exp ﬂ(x —I—y)t + tor)

The third cycle index in (E.1.19) comes with a factor of (—1)PY4. To introduce this into
(E.1.14), we just replace t; with —tj for n even. Multiplying through by this modified

version with a new set of variables s; and no overall level (no equivalent to z,y) gives

1 =1
exp [Z ﬁ(sz — Sok) + Z ﬂ(xk + ) (t3 + tor)

k=1 k=1
Z 2y Z (—1)" Zgnl[sﬂ ZanQ[Sﬂ erm[sz]Htfﬁqi sl
n1,n2,m pH2nq 7
qF2ngo
r=2m
(E.2.3)

We introduce a factor of z,,, and enforce r = p U g in two steps, corresponding to the

two parts of
spug = | [ 7% (pi + @:)! (E.2.4)

i

To obtain the powers of i, we replace t; and s;, with vk s;, and VE t.

exp [Z (;si - \/127{5%>] exp !Z(g;k + yk) (;t% + \/127{:75%)] (E.2.5)

k=1 k=1
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_ Z xnlyng Z (_1)p(_1)qZ§n1 [SQ]Z&gnQ [52]Z§m[52] H Z% p¢+qz+n)tpz+qz i
ni,nz,m pH2ny
qF2ng

)
rH2m

(E.2.6)
To replace [[; 7" % s with 6, p,1q; (i + ¢;)!, we use the integral
dedz _ -
—_— =0, ,p! E.2.7
|G = by (8.27)

Replacing tj, with zz, s; with Zj,, multiplying by e~ 2=k *% _and integrating over a copy
of C for each k gives us

Frop(a) = 3 ey 3 -z 5nis) gl
n1,n2 pH2n
qF2m
oo o0
/ dzkd2k> [ <12 1 _ )]
H €xXp Z 5%k T T =R2%
(kl 2m k=1 2 V2k
[ 9] 1 9]
k k _
exp Z(aj +y") ( 22k>] exp [— szzk]
k=1 2% v k=1
dzdz 1
H exp |= (2% — 222+ (2" 4y
k odd

I/

k even

dzdz [1
exp | =
2T

To compute these two integrals, we split z into its real and imaginary parts

2z =u+iv, Z=u — iv, and for simplicity writing A = zF + y*, = x5 + yg we have

72 2274 N\ =

2
72— 2274 N2 — —

A

5 <22 — 227 + (2F + yF) 22 —

)|

. Using

—(1 = N (u+ iv)? — 40? (E.2.9)
. 1—p 2
—(1—)\) (U—FZU‘F\/E(I_)\))
i \? A—2u+ p?
—4 (v— 2\@) + RSy (E.2.10)

Changing variables from (z,z) to (u,v) (and remembering that dzdz = 2dudv), both
odd and even integrals can be evaluated using the standard Gaussian integral

.

a

(B.2.11)
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where a, b are complex numbers with Re(a) > 0. The integrals are

dzdz 1, ., B on| 1
/ o exXp |:2(Z — 222 + )\Z ):| = \/17_7)\ (E212)
and
dzdz 1{, _ ) \/5 _ 1 A =2+ p?
- —9 1/ 2(z= =
/ 5, CXP [2 (z 2Z+ Az 5 (z ,uz))] mexp [ (1 =)

(E.2.13)

Plugging these into (1£.2.8) gives

Fsomwy(7,y) ( )
( klo_gd\/l_xk

1 :rk—i-:v%yg—i—yk—x%—yg
H ex (E.2.14)
V1—axk—yk k(L — 2k —y*)
k even

x2k 4 .%’kyk 4 y2k _ l‘k _ yk:|

:E[\/l—xk—y Xp[ 2k(1 — 2k — y2k)

which matches the result (4.3.21).

(E.2.15)
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Construction and correlators of
SO(N) covariant basis

F.1 Generic representations of S,[S5]

Recall from section 5.1.2 that S,,[S2] is defined abstractly as a semi-direct product of
Sy with (S2)". For ny 4+ na = n, we can split S, into S,, X Sp, and perform the
corresponding split into (S2)™ x (S2)"?, so that the S,,, component acts by permuting
the factors of (S2)™. Define the subgroup G, n, of S,[S2] to be the semi-direct product

of these two splits
Gm,m - (Sm X Snz) X [(52)711 X (SQ)M] - [Sm X (52>n1] X [Sm X (SQ)M] (F'l'l)

We can then consider representations of Gy, n,. In particular, let Ry - n; and Ry - ng
be representations of S,,, and S, respectively. Denoting the the trivial representation
of (S2)™ by triv,, and the anti-symmetric representation of (S3)"? by sign,,, we define
the representation (Ry, R2) of Gy, n, to be Ry on the S, factor, triv,, on the (S2)™
factor, Ro on the Sy, factor and sign,, on the (S3)"* factor.

Vomm — yom @ 80" g i g v (F.1.2)

(R1,R2) trivn, $igNing

We can use the (R;, R2) representation of Gy, », to induce a representation of the full
group Sp[S2]. It is proved in [124] that this induced representation is irreducible. To
understand the (R;, R2) representation of the full group S,,[S2] requires an understand-
ing of the cosets of Gy, n, within S,[S2], however for our purposes, it will be enough
to understand the behaviour of just Gy, n, on the irreducible representations of S, [Sa],
for which (F.1.2) is a complete description.

From this description, the representation [S] (defined in section 5.1.2) of S,[S2] is
([n], ¢), where ¢ is the empty partition of 0, and the representation [A] is (¢, [n]).
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Using this understanding, when we embed S,[S3] into Sy, we can express an irre-
ducible representation of S,,[S2] by only looking at the subgroup Gy, »,. Explicitly, we

have the decomposition

Son __ Sn[S2] mult
Vit'= D Vigm © Vi m)
RiFni, Robneo
ni+n2=n

_ Gny,ng mult
= D VR eVilhm

RiFni, Robno

ni+n2=n

_ Snq (S2)" S
= @ [VRl @ Vigiv, © Vg
RiFni, Robneo

ni+n2=n

ny ® V(SQ)nQ

2 8igNng

® Vith R (F.1.3)

where Vg?(“}%th Ry 15 a multiplicity space.

In the decomposition (F.1.3), when we act with S,, on the left hand side, we
embed S, into S, by acting on the set of ny pairs {1,2},{3,4},...,{2n1 — 1,2n1},
and similarly S,,, is embedded by acting on the pairs {2n1+1,2n1+2},...,{2n—1,2n}.

Under conjugation of R the sign of all representatives is switched. The represen-
tations of S,, and S, are unchanged, since all permutations in these embeddings
are even. However, (S2)™ now has the representation sign,, and (S2)"* has triv,.
Therefore

Vit o) = Vi, i) (F.1.4)

F.2 Operator construction

In (5.7.1) we defined a generic U(2) covariant operator, labelled by o € S, and a €

V2" where V3 is the fundamental representation of U(2).
08, = Vol (X,)’ (F.2.1)

This definition has several invariant properties. Firstly, it follows from the structure of
C9 | defined in (5.2.1), that
0) . =05, (F.2.2)

a, 7o

for any 7 € S,,[S2]. Secondly, the anti-symmetry of X and Y imply that

0 5r = (1708, (F.2.3)

a,0T

for any 7 € (S3)".
Finally, consider 7 € S, embedded into So,. The definition of S,[S3] consists
of a semi-direct product between S, and (S2)" (see section 5.1.2). When S,[Ss]

is embedded into Say,, this S, subgroup from the definition permutes the n pairs
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{1,2},{3,4},...,{2n — 1,2n} by taking odd numbers to odd numbers and evens to

Sy(Ldiag)

evens. In chapter 6 this embedding is referred to as . Denote this embedding of

T € S, into Sy, by r(diag) - Then using a non-standard labelling for the 2n indices of

diag)

7( , we have

(T(dzag)) — (T(dzag)> 1,1%1,2%2,1%2,2 Atn2 511,1 511,2 5zn,1 57//7,,2 (F.2.4)
J

J1,191,252,192,2---Jn,1Jn,2 Jr(),1 7 Ir(0),2 Jr(n),1 Ir(n),2

It follows that the action of 7(%9) on X, is

. I . 11,191,212,1%92,2++.0n,1%n,2 S
d J d ) ) ) ) k) k)
(~ wg))J (%) = (o) (Xo, )12 (X,

J1,151,252,152,2--Jn,1Jn,2

(th1 )iT_l(l)’liT_l(l)’Q o (Xan)if_l(n),lir—l(n)g

)jn,ljn,2

n

J
- <X“T<1> ® Xa, ® @ Xa7<n>>

(X))’ (F.2.5)

where 7 € S, acts on a € V2®" by permutation of factors. Then

. J
Og,UT(diag) = C§5)O_‘1} (T(dwg)) (XG)K
é J
= 010 (Xr(w)

e
=02

7(a),0

K

(F.2.6)
We can view (F.2.1) as a map into the space of SO(N) operators from
V37" ® C(S2n) (F.2.7)

where there is a finite N cut-off on C(S2,) as described in section 2.5. It follows
from (1.2.2), eql".2.3 and (I".2.6) that this is a redundant description of the space of

operators. The redundancies on (F.2.7) are

(a,0) = (a,T0) T € S,[S2] (F.2.8)
(a,0) = (a,(=1)7oT) 7€ (S2)" (F.2.9)
(a,0) = (7(a), o (7(H49)) 1) TE Sy (F.2.10)

To remove these redundancies, we re-express (F.2.7) using Schur-Weyl duality, defined
in (2.4.3), and the decomposition of C(Ss,) into representations of S, given in (2.5.2).

Taking account of the finite N constraints on C(Ss,,), we have

VE 9 C(Sm) = D VP eV gyt gygmiriet (F.2.11)

Abn, 1[(A)<2
R-2n,l(R)<N
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In terms of the O? operators, this corresponds to setting

Oi,MA,mA,R,I,J = Z CX,MA,mADﬁJ(U)Oa,a (F.2.12)

a,o

where C§ /., is the Clebsch-Gordon coefficient for the Schur-Weyl decomposition
and I, J are basis indices for R.
On the new labelling space (F.2.11), the redundancies (F.2.8-F.2.10) are

(Mp, vp, v, vR) = (My, va, DE(1)0k, o) T € Sp[92] (F.2.13)
(Mp, vp, v, ) = (Mp,va, v, (—=1)"DE(1)0R) 7€ (S2)" (F.2.14)
(Mp,vp, v, v5) = (My, DM(r)op, vy, DE(F9))ry 7 e 8, (F.2.15)

where v% and v}, are vectors in ySmileft and V}‘?";”ght

Vi” and My is a vector in VX(N).

respectively, vy is a vector in

Studying (F.2.13), we see that to remove the redundancy we need to choose an
Sy [S2)-invariant vector in Vlg;Zlgft' Such a (non-zero) vector only exists if R has even
row lengths, and in that case there is a unique choice for the vector, |R,[S]) (explained
n 5.1.2). This means the index I in (F.2.12) should be contracted with the components
IR, [S]),.

To understand (F.2.14) and (F.2.15), we decompose Vlg%;”ght into representations
of S,[S2] as given in (F.1.3). To ensure anti-symmetry under the whole of (Ss)",

as given by (F.2.14), we only need to consider ny = 0, ng = n . In terms of the
Szn—hsn[SQ] ;J
R —(¢,A),m5l
the R representation of Sy, to the (¢, R2) representations of S,,[S2], where [ is a basis

operators (I.2.12), this means introducing branching coefficients B from
index for Ro and p is a multiplicity index for the decomposition.

Dropping the one-dimensional vectors space, we have reduced (F.2.11) to

U(2 Sn Sn mult
D VP evi o v @ v, (F.2.16)
AFn l(A)<2
RF2n,l(R)<XN
R with even row lengths
Rabkn

where the only remaining redundancy (I.2.15) acts as
(Mp,vp, VR, 1) = (Ma, D*(T)un, D2 (T)UR,, 1) T €Sy (F.2.17)

This implies we are looking for an .Sp,-invariant vector in VAS" ® Vg;. By standard
representation theory of S,,, this exists if and only if A = Rg, and then with multiplicity

1. Therefore after removing all the redundancies from the description, we are left with
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the labelling set

£5 vy ® @ vt (F.2.18)
AFn I(A)<2
RF2n,l(R) XN
R with even row lengths

and in terms of operators

1 )
5 _ R Son—Sn[S2] ;J N6
OA,MA,RM ~ onpl Z A "Mk { ) [SH D (0) JBR2 ~>(¢,A)2,y;k Oa,U
a,o. 7Jk

(F.2.19)
where the sum over k comes from projecting to the .S, invariant vector inside Vf "RV

The normalisation is chosen to give nice correlators in the next section.

F.3 Correlators

To calculate the two-point functions for (F.2.19), we start with two generic U(2) co-

variant operators from (F.2.1). This correlator is given in (5.7.5) and reproduced below

<0;§7Tyog,(,>: 3 5m(b)(—1)75(§my—17—1) (F.3.1)

~,mESn[S2]

where for v € S,[S2], ¥ € S, is defined as the S,, component of v from the semi-direct
product S,,[S2] = S, X (S2)". We also define 4 to be the (S2)" component.

The correlator of two operators is anti-linear in the first argument and linear in the
second argument. All coefficients in (I'.2.19) are real except for CX, My K which picks
up a complex conjugate as we remove it from the correlator.

We will need several properties of the coefficients in (I'.2.19). Firstly, since CK Mk
are the coefficients for the decomposition (2.4.3), it follows by applying o € S,, to both
sides that

CX,MA,k = DIIQI(U)CX,(X/}AJ (F.3.2)

The coefficients C§ ), , are a unitary change of basis for V2" and therefore
Z CX,MAJC (CRMFJ)* = OATO M\ My Ok (F.3.3)
a

Son—>Sn[S2] %
R —(o,A),uik

tation of S, to a basis index k in the uth copy of the (¢, A) representation of S,[S2],
and therefore for v € S,,[S5]

Finally, the branching coefficients B take a basis index J in the R represen-

Son—Sn[S2] ; Son—Sn[S2] ; 5 _
> By Tl B o DR () = 6w (1D () (F3.4)
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where 4 is the S,, component of v and ¥ is the (S2)" component.

There is one more property of the branching coefficients that will be useful not for
the calculation of correlators but for the comparison between symplectic and mesonic
covariant operators. It follows from the identification (F.1.4) of conjugate multiplicity

spaces that

Son—Sn[S2] ;I pSon—Sn[S2] ;I
B Lok = BR S (hg) gtk (F.3.5)

Using (F.3.2-F.3.4), we build up to the calculation of correlators for (F.2.19). Start
with

< Z DIS{L(T)O”’T| Z DﬁJ(U)Oav"> = Z 5aﬁ(b)(‘UWD}%J(U)DIS(L(T)(S (ﬁwav_lT_l)

TESan oc€San 0,TES2n
¥, TESn [52]

= Y daaw (-1 Dy (Qro7) Dy (18 (077
o,TES2y,
¥, mES[S2]

S buqw (1) DE (Qno) D5 L (0)
og€Son
¥, mESn [52]

2n)! ~
=ons &L ST sy (-1 DI (@)D ()
R resais]

(F.3.6)

where we have, respectively for each line, changed summation variables, summed over
7 using the § function, and summed over ¢ using the orthogonality of matrix elements
(2.3.4).

Introducing the vector |R, [S])

<Z [(S.[S11D5(r)] el ¥ | (R, 18) DR (o )Loava>

TGSQn 0'65277
2n)! ~
—ins Y Y G (~1)7 (R S]] @) R, [)) D ()
R res.(s
2n)12"n! £2
:535()dRR > busm(—1)D5(y) (F.3.7)
’YESTL[Sz]

where we have used the action of © (A.2.18) and the invariance of | R, [S]) under S,[95].

Introducing the coefficients C§ , .

<Z C pty. [ (S| D% (~ )]Job,A > CX,MM[(R, [S}|DR(J)LOCL7U>

TES2n €S2,
b a
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2n)12"n! 2 a *
= 5RS()dR Z Sa i) (=1 DF(V)CR ar, i (CIQ,MF,Z)
R 15, 5]
2n)12"n! f u S 1)\ *
=5RS()dR > (—)DFNCE i (CgM(pg)
B aes,s)
2n)12"n! f2 a _ o %
= s PLE I S 0 DB ()R g D) (o)
B es s
2n)127n) £9,
= dnstrdu 2 ST Cppfephe) (3
’YESH[Sﬂ

where we summed over b using the § function, then used (F.3.2) and (F.3.3) to remove
the Schur-Weyl coeflicients.

Finally introducing the branching coefficients

<(91§,A/Ir,s,u|0§s\,MA,R,u>
_ fh v 3S2n—Sn[S2] 5T pSan—+Sn[S2] 3 HR Az
= ORSOATOM\ My dromn] E (=) B i Ay wr B Sioiayon Dar(v)Dik(¥)

“/GS [52]
:6R56AF6MAMF6W% S )it Y DA DG
T 5€(S2)™ ¥ESn

5
= 0RrSOATOM \ My Opr (;TRP(SMC ou

= ORSOATO M Mp Oy 2 (F.3.9)

where we have used (F.3.4), split the sum over S,[Ss] into two over S, and (S3)"
respectively, noticed (—1)7 = (—1)7, applied the orthogonality of matrix coefficients
(2.3.4) and then used 0y, = dp for k a basis index of the A representation of S,.

F.4 Basis of multiplicity space

In a similar manner to section D.3, we can give a basis for the multiplicity space
VIQ’;L(%? R») defined by (I'.1.3), giving a systematic way of choosing the multiplicity label
pin (F.2.19).

Let B,, be the sub-algebra of C(Ss,) that commutes with S,,[S2], or equivalently, the
sub-algebra that is invariant under conjugation by S,[S2]. Then since B, commutes
with S,,[S2], by Schur’s lemma it must act purely on the multiplicity spaces in the
decomposition (F.1.3).

We can define a more refined version of B,, by projecting to the (Rj, Ry) represen-
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tation of Gy, n,. Define the projector

dr,dR, 3
P(Rl,Rg) = XR, (O'l)XRQ(02)(—1)T20'17'10'2’7'2 (F41)
2"??,1!712!
01€Sn, ;02€8n,
7—16(52)”1 ,TQG(SQ)”z
where Sy, Sn, are embedded into S, as described in section F.1. Then the more

refined algebra is
B(r,,r,) = P(ry 1) Bn (F.4.2)

Then B(g, r,) acts only on the space ng(“}li R») in the decomposition (F.1.3). A basis
for ng(“éi Ry) CAD then be chosen by taking the eigenbasis of a maximal commuting

sub-algebra of B(g, g,).
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Appendix G

Examples of quarter BPS

operators in specific A sectors

In this appendix we give explicit examples of quarter-BPS operators constructed using

the algorithm presented in chapter 7.

G.1 A =[3,2] sector

In this section we give the operators in the A = [3, 2] sector with My the highest weight
state, corresponding to field content (3,2). Other states in the U(2) representation can
be reached by applying the lowering operator [J_.

Throughout this section we will work with A = [3,2] and My = , so we will

suppress these indices in operator labels.

For each BPS operator, we will first present it as a sum over the free field basis
(3.6.20) and then as a sum over symmetrised traces and commutator traces, for which
we use the covariant bases discussed in section 7.3.2. The covariant symmetrised trace

basis is

tp = TrXPTrY? — 2T X?Y Tr XY + TrX*TrXY? ( )
tigay = TrX? (TrY)? — 2T X Te XY TrY + (TrX)® TrXY? (G.1.2)
tipoy = TEXTrX?TrY? — TrX (TrXY)? (G.1.3)
ta1y = TeXTeX? (TrY)? — 2(TeX)? TeXYTrY + (TrX)® TrY? ( )

and the covariant commutator trace basis is

cp = TrXPY? - TrX?Y XY = TrX?[X, Y]Y (G.1.5)
cuy = TrXTrX?Y? — TeXTr (XY)? = TiXTeX [X, Y]V (G.1.6)
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For these two bases, the partition label describes the cycle structure of the multi-traces.

The free field operators can be written in terms of symmetrised and commutator

traces
Ogm = ? (3t3.9) + tp3,1,1) + 4bp2,2,1) + t2,1,1,1) + 6¢ps) + 4 1)) (G.1.7)
Ogp = 7 (t3,a0) + t2a) + t21,1,1) — 3¢5) — 2¢4,1)) (G.1.8)
(’)sz odd \T (2t13.9) — tr2,1,1,1) — 4ca1)) (G.1.9)
OFP even = 7 (3,0 = tz21) + p5)) (G.1.10)
Op = \[ (t3.1,1) + t22,1) — b2,1,11) — 3¢5) + 2¢4,1]) (G.1.11)
OED v (=3t +t 1) + 421 — tpaaa) +6cs —4cuy)  (G1.12)

The odd/even labels for the R = [3, 1, 1] multiplicity come from the odd/even permu-
tations used to produce the respective traces. All other zero coupling operators are

defined uniquely by A and R.

G.1.1 BPS operators

Following the algorithm, the BPS operators in the A = [3, 2] sector are

SBPS | = 2\/1157]% (¥~ 2)(N — ) [2NOgzm — VBN + )0
+ N(N +3)(N - 3) [4V30g0 4y +3v20g0 ... |
—5(N +3)(N +2) [\/5(N—3)O§3+4NOEJD (G.1.13)
= 2\/% [(N3 +5N? 42N = 18)tp 111 — 4(N? + 3N = 3)(N + Dtpa
— (N?+3N —6)(N +2)t31,1 + 3N(N +2)(N + 1)t[3
+ 42N + 9)(N + 1epy — 18(N +2)(N + 1)%} (G.1.14)
SBDS, = 2\/;?2 (~VEY ~ )WV ~2) [2N O — VBN +3)0gz]
— N(N +3)(N = )5 [4V50g0 4y +3v20m .., |
—(15N* + 48 N? + 19N + 6) O+ 2V/5N(3N + 8)OEJ> (G.1.15)
_ 2\/% (5N +12 N2 — 12 + 6)t15 1.1 + 2B N — 2)(N = 1)tz
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— (BN +12N? —2N =AYt — N (5N* +8N —2) {39

— 4(8N +3)cyy + 6(5 N2 +8N—2)c[5}] (G.1.16)
1

~VBBN*+9N? 5N ~2)0m
+3V2(BN? + 6N — 4N +2)O0 .,

~(N (4 1) | V50 - 203 ) (@1.17)
1
= N3+ 3N? - 5N +2)t _AN?(N + 1)t
2/6P; [( T + ) (2,1,1,1] (N + Dt
+2(2N° +4N? =5 N +2)tj31 1) — 2N (N + D)tz 9
+ 8(N + (N = Ve 1) + 12N (N + Ve | (G.1.18)
1
BPS 2 9
= 2(bN“—=5N +2)O 5(4N“+5N —2)O
Sta = 2vasm; (20 +2) O + VB(AN® + ) O
+ 4V/3(N — DOgD 44~ 3\/§N0§:D,even
+(N +2) [\/5(9@3 - 2(9@) (G.1.19)
V6
= Tm |:N2(t[2,1,1,1] + 2t[2,271] + t[37171} + t[g}g]) — 4(N — 1)0[4’1} — 6NC[5}]

(G.1.20)

where the normalisation polynomials are

P =10 NS + 74 N° + 199 N* + 252 N3 4- 351 N? + 648 N + 702 (G.1.21)
Py =50 NS + 220 N + 192 N* — 78 N3 + 541 N? — 156 N + 78 (G.1.22)
P;=15N% + 50 N° 4+ 17 N* — 66 N® + 115 N2 — 60 N + 20 (G.1.23)
Py=3N*4+5N? 4N +2 (G.1.24)

In [49], these operators were studied, though in the SU(N) gauge theory rather than
the U(N) theory. This means all traces whose cycle structure p - n contained one or

more 1s do not contribute. In the A = [3,2] sector, they found the single operator

O = Ntj39) — bcp) (G.1.25)
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One can check that in each of the expansions above, ¢[39) and ¢[5 only appear in this
ratio. We have found that by expanding the gauge group to U (V) and allowing traces

of a single matrix, there are three additional quarter-BPS operators.

G.1.2 Norms of BPS operators

The physical F-weighted norms of the BPS operators are

\ngfi,u 2 _ (N +3)(N+2)(N + 1)N;5N DIV =2DIV=3)Q1 ) g6
‘55% 2 _ (N+1NAN ;21)(N —2)Q1Q> (G.1.27)
sos 2 _ (N+2)(N+ 1)N(]JD\ST — DV —2)Q2Q3 (G.1.28)
)sggs 2 _ (N+2)(NV +]131N3(N -~ 1@ (G.1.29)

Where the polynomials in the numerators are

Q1 =10N>+37N? + 11 N — 36 (G.1.30)
Qe =5N>+11N*—7TN +2 (G.1.31)
Q3 =3N>+5N? —5N +2 (G.1.32)

We discuss the combination of linear factors and ) polynomials in the numerators in

section G.2.4.

G.2 A =[4,2] sector

We give the BPS basis for the A = [4,2] sector with M, the highest weight state
corresponding to field content (4,2).
Throughout this section we will work with A = [4,2] and M) = , so we will

suppress these in operator labels.

G.2.1 Free field covariant basis from traces

When writing our operators as sums over the free field covariant basis (3.6.20), we
have made a choice about how to span the free field multiplicity space for R =
[4,2],[4,1,1],[3,2,1], [3,1,1,1],[2,2,1,1]. These choices are:
V10
Oy = 120 (= ta,2) — tpa,1,1] + 6t3,3) + 6t3,2,1),1 + 6t[3.2,1),2 — 3t[2,2,2] — 3t[2,2,1,1],1
+ 6c(6],2 + 6¢(5,1] — 4¢a,2) + 2¢[4,1,1]) (G.2.1)

V10
O = 50 (= 200,10 = Btg3,2,17,1 = 6t3,1,1,1) = 3tp2,2,1,10,1 + 912,2,1,11,2 = 3tp2,1,1,1,1)

335



APPENDIX G. EXAMPLES OF QUARTER BPS OPERATORS IN SPECIFIC A

SECTORS
+ 24cgg),1 + 12¢5,17 + 12¢(4,9] + 4epa,1,1]) (G.2.2)
V3
Ofm 1 = 105 (114,21 +34a,1,1) +62(3,8) +6(3,2,1],2 +6(3,1,1,1) = Bi2,2,0) +3¥(2,2,1,11,1
+61[2,2,1,1),2 + 12¢6),1 + 6,2 + 6¢(5,1) +2¢a2]) (G.2.3)
V15
OFm 5, = Togo (— 10%,2) = 48%[3,5) = 181[3,2,1],1 = 12¢[3,2,1],2 + 6 ¥[3,1,1,1] = 12[,2
+3t2,2,1,1)1 — 21221172 + 9¢[2,1,1,1,1]
— 24 0[6],1 — 48 C[G],Q + 60 C[5,1] + 20 C[4,2] + 60 C[4,1’1]) (G24)
V10
Ogr1 = 5o (= ta,2 + 63,3 = 3t,0,0,0) T 3t2,2,1,10,1 — 3t2,2,1,11,2 = 3¢[5,1] +2¢[a,2)) (G.2.5)
V5
Ogp ., = 15 (t3,2,17,2 + t12,2,2) = o)1 + Cle),2 + €fa,1,17) (G.2.6)
V5
OEEP,?, =90\~ ta1,1] — 6t[3,2,1),1 — 3t[3,2,1),2 + 3t2,1,1,1,1) + 12¢je),1 + 12 €672 — 4 ca,1,1)) (G.2.7)
V3
Ogm = 108 (—tpa,2) —3ta,1,1) + 63,3 — 6t3,2,1,2 + 6(3,1,1,1) +3t[2,2,2] + 3¢[2,2,1,1],1
+612,21,1),2 — 12¢g),1 — 6¢[g),2 +6¢[5,1) + 20[4,2]) (G.2.8)
V15
O, = 1oa0 (~ 10%.2l — 4813 +181.2,11,1 +12¢3,21)2 + 643,111 + 1281229
+3%12,2,1,1),1 —21¢2,2,1,1],2 — 9¢[2,1,1,1,1]
+ 24 Cle),1 + 48 Cle),2 + 60 Cl5,1] + 20 Cla,2] — 60 C[4,171]) (G.2.9)
V10
OE] 1= T30 (= ta,2) + b0 +6t3,3 — 632110 — 632,12 + 382,22 — 32,2111
— 6,2 +6¢p5,1) — 4 a2 — 2ca,1,1)) (G.2.10)
V10
OEH 2= 910 (2t(a,1,1) +63,2,11,1 = 683,1,1,1) = 3t2,2,1,10,10 + Itj2,2,1,1,2 + 3t2,1,1,1,1)
— 24 g1+ 12¢5,1) + 12¢pa,9) —4cpa,1,1)) (G.2.11)

The zero coupling operators with R = [5, 1], [3, 3], [2, 2, 2], [2, 1?] are defined uniquely
(up to a minus sign) by A and R. We use

Om = —g (8t(a,2] + 2t(a,1,1) + 24¢(3,3) + 30t(3 2,171 + 6t(3.1,1,1) + 12¢12,2.2] + 3t[2,2,1,1],1 — 21l[2,2,1,1],2
+3t[2’1,171’1] + 720[6],1 + 246[6],2 + 606[5,1] + 200[4,2] + 206[4’1,1]) (G.2.12)
Omg = g (ta,2) + tra1,1) — 6tz 3) — 12¢[3.0.1),1 — 18t(3,2.1),2 — 6t[3,1,1,1) — 3t[2,2,2] + 6t(2,2,1,1],1 + 3t[2,2,1,1),2
—3t[2,1,1,1,1] + 30¢(g],2 + 30¢;5,1) — 20¢(4,2) + 10¢(4,1,17) (G.2.13)
Om= % (ta,2) = tia,1,1) — 6t(z,3) + 1232171 + 18832112 — 6t[3,1,1,1) + 3t2,2.9) +6L12.2.1,1),1 + 32,2112
+3t12,1,1,1,1) — 30c(g],2 + 30¢(5,1] — 20¢[4,9] — 10¢(4,1,1]) (G.2.14)

V10
Ogﬂ = 730 (78ta,2 + 21,0 — 248135 +30(3,0,1),1 — 6t(z,1,1,1) + 1202,2,9) — 3b2,2,1,11,1 + 2Lb2,2,1,2

+3t[2y1’1’1‘1] + 726[6],1 + 240[6],2 — 60()[5’1] — 200[4,2] —+ 200[4‘1’1]) (G215)
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where the symmetrised trace combinations we use are defined by
tag = 3TrX*TrY? — 6ThXPYTrXY + 2Tr X2 TrX?Y? + TrX2Tr (XY)? (G.2.16)
tan1) = 3TrX* (TrY)? — 6Tr X Te XY TrY + 2 (TrX)? TrX2Y?2 + (TrX)? Tr (XY)? (G.2.17)
ta) = TeXPTrXY? — (TeX?Y)? (G.2.18)
t3,01],10 = TIXTrX3TrY? — 2Te X Te XY Tr XY + TrX Tr X2 TrXY? (G.2.19)
tz,21],2 = TIXPTrXYTrY — TeXTrX3Try? — TeX?TrX2Y TrY + TrX TrX Y TrXY (G.2.20)
tza,1,1) = TIXTrX? (TrY)? — 2(TrX)? TeX2Y TrY + (TrX)? TrXy? (G.2.21)
tpoo = (TrX?)? Try? — Tex? (TrXY)? (G.2.22)
t2,2,1,1)1 = (TrX?TrY)? — 2Te X Te X 2 TeX Y TrY + (TrXTrXY)? (G.2.23)
t2,0,1,1),2 = (TTXTrXY)? — (TrX)? TrX 2 Try? (G.2.24)
to11,1,1) = (TrX)? TrX? (TrY)? — 2(TrX)? TeXYTrY + (TrX)* Try? (G.2.25)

along with the commutators

o)1 = TrX*Y?2 — TiX3Y XY = TrX3[X, Y]Y (G.2.26)
o2 = TrXPY XY = Tr (X2Y)? = Trx2[X, Y]y (G.2.27)
s = TrIXTrX3Y? - TeXTrX2Y XY = TrXTrX?[X, Y]Y (G.2.28)
ca2) = TrX?TrX?y? — TeX?Tr (XY)? = X2 TrX [X, Y]Y (G.2.29)
cpan,1) = (TrX)? TrX?Y?2 — (TrX)? Tr (XY)? = (TrX)? T X[X, Y]V (G.2.30)

These are respectively the covariant symmetrised trace and commutator trace bases
for the A = [4, 2] sector with M the highest weight state, as discussed in section 7.3.2.

G.2.2 Quarter-BPS basis

We now give the end result of the construction algorithm for quarter-BPS operators in
the A = [4,2] sector. The operators in this section are very lengthy to write out, so
in the interests of brevity we only express them as a sum of free field operators. An
expression in terms of trace can be found by substituting (G.2.1-G.2.15).

For p = [3,2,1] and [2,2,1,1] there are two BPS operators. For these, we have
chosen the multiplicity space basis using the alternative orthogonalisation algorithm of
section 7.4.10, beginning with the choice of free field multiplicities in (G.2.5-G.2.7) and
(G.2.10-G.2.11) respectively.

We present the operators starting from the longest partition p = [2,1,1,1, 1] and
progressing to the shortest, p = [4, 2].

1

SBRS 1 = ST ((N = 1)(N = 3)(N = 4) [3VB(N — 2) { NOgan — (N + 4)Oggm»}
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~V2N(N +4) {2\/5(9@:371 - 11(9@::3,2} —2V3(N + 4)(N +3) {oggj,l +4 \/ioggas}]
+ V2N (N + 4)(N + 3)(N — 1)(N — 4) [10 \/EOEDJ + 2905372}
+ (N +4)(N +3)(N +2) [10\/§(N —3)(N - 4)0g

+3V3 (N —1)(N —4) {20?71 + 130?72} + 65V3N (N — I)OEJD (G.2.31)
where the normalisation polynomial is

Py =195 N0 + 2298 N9 + 9767 N® + 17008 N7 + 21041 N© + 74974 N® 4 135005 N* — 144704 N3

— 399936 N2 — 62976 N + 707328 (G.2.32)

For p = [2,2,1, 1] there is a two-dimensional multiplicity space. The first operator is

SBPS

1
(2,2,1,1,1 = 6\/77&
+VB(N = )Py [3(N + 1)(N — 2)Ogrm,y +5(N + 8)(N —2)Ogg — 12V3(N + 3)(N + 1)Ogp, |

(—20\/§N(N +1)(N — 2)(N — 3)Py 1 Ogem

+2VB(N + 1)(N = 3)Pys [3(N — 2)Oggm > + 8 V2(N +3)Ogp ]

+VION(N +1)Py 4 [(N —3)Om, —5(N + 3)0?,1]

—2V2(N +1) {5N(N —3)P150gm , + VO(N +3)(N — 3)P1eOgp, + 5N(N + 3)P1,7OHE’2}
+5V3(N +3)(N+2)(N +1)P s [5(N —3)0g+3(N — 1)0?71}

+10V3(N 4 3)(N 4+ 2)(N + 1)

8P190g , 26NP1,10(9§3] > (G.2.33)
where the normalisation and coefficient polynomials are

P = 1254825 N'6 25236900 N'° 4 212913135 N4 + 949347864 N3 + 2265287922 N2 + 2296326096 N !
— 483268806 N — 64991400 N° + 7717590681 N® + 4250132076 N7 — 14563157385 N©

— 5596987632 N° + 20300164460 N* + 5660498272 N3 — 5514459136 N? + 14594125824 N

+ 12396386304 (G.2.34)
P11 =78 N*+ 180 N3 — 411 N2 — 510 N + 788 (G.2.35)
P12 =195N% 4 1149 N* 4+ 687 N® — 3927 N? — 1552 N + 4448 (G.2.36)
P13 =195 N° 4 1257 N* + 801 N® — 5871 N? — 3656 N + 9024 (G.2.37)
P14 =975 N° 4 6177 N* 4+ 3891 N® — 27411 N? — 16176 N + 40544 (G.2.38)
P15 =507 N° + 3225 N* 4 2037 N® — 14487 N2 — 8664 N + 21632 (G.2.39)
P16 =195 N5 + 1041 N* + 573 N3 — 1983 N2 + 552 N — 128 (G.2.40)
P17 = 1443 N® + 9129 N* + 5745 N3 — 40335 N2 — 23688 N + 59456 (G.2.41)
Pig =117 N* 4 720 N3 + 1041 N? + 240 N + 992 (G.2.42)
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Py g = 429 N® 42247 N* 41215 N3 — 3585 N? 4 2056 N — 2112 (G.2.43)
Py 10 =54 N3 +273N? 4+ 120 N — 572 (G.2.44)

The second operator is

SBLS 2= 3\/% (\/E(N — 2)(N — 3)N P31 Ogm
— V3(N = 3)Pa2 [3(N + 1)(N = 2)Ogm , +5(N +3)(N — 2)O0gg — 12V2(N +3)(N +1)Ogp |
+V3(N —3)Pys [S(N — 2)Oggn 5 + 8V2(N + 3)(9@33’3]
+V10NPy 4 {(N ~3)Ogm;, — 5(N + 3)053’1} ~ V2(N = 3)NPy 5Ogm,

+2V3(N +3)(N = 3)P2.60gp | + V2N(N +3)P2,70gm ,

_5\/§(N + 3)(N + 2)(N — 3)P2’80@ + 3\/3P2’QOEH71 — 6\/§P2’10(9§3’2 — 2\/§NP2,11(9§3>

(G.2.45)

where the normalisation and coefficient polynomials are

Py = 64575225 N6 4 1221543180 N'1° 4 9292923450 N1* + 34312809600 N3 + 49747071546 N 12
— 49520811024 N1 — 212528733480 N10 + 81502221096 N° + 872883407025 N® + 609873915684 N7

— 949480261506 N® — 778095650280 N° + 986491220724 N* + 591265527264 N> — 532623199736 N2

— 150593123520 N + 181872634752 (G.2.46)
Py 1 =135 N® 4+ 423 N* + 999 N® + 1653 N2 + 1716 N + 74 (G.2.47)
Pyo =351 N° 41485 N* — 783 N3 — 3669 N2 + 5448 N — 1832 (G.2.48)
Py 3 =189 NS 4+ 903 N® — 429 N* — 4851 N® — 1590 N2 + 98 N — 1320 (G.2.49)
P4 =27 N% — 30 N5 — 1560 N* — 5250 N® — 4959 N2 — 3420 N — 808 (G.2.50)
Py 5 = 675 NS + 2589 N® — 7527 N* — 35553 N — 24606 N2 — 13386 N — 7192 (G.2.51)
P g = 1593 N® 4 8247 N® + 2379 N* — 22659 N 4 5526 N2 + 14562 N — 8648 (G.2.52)
P 7 =135 NS + 3189 N° 4 23673 N* + 69447 N 4 74574 N2 + 55014 N + 8968 (G.2.53)
P> g = 2835 N° + 17493 N* + 21549 N3 — 19317 N? — 10044 N + 15464 (G.2.54)

Py,9 = 10035 N® + 100587 N7 + 320580 NS + 201774 N® — 613761 N* — 529313 N + 665098 N2 4 243952 N

— 359952 (G.2.55)
P10 = 1131 N7 + 10440 N® + 29667 N® + 13182 N* — 54074 N® — 45886 N? + 22026 N + 24264 (G.2.56)
Py 11 = 2280 N® + 24384 N® + 95505 N* + 166002 N® + 120739 N? + 22034 N — 11694 (G.2.57)

For p = [3,1, 1, 1] the operator is

BPS

1
5[37171&] = W (—3N(N —2)(N — 3)P3,1 Ogrm
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+6(N —3)P3.5 [3(]\7 +1)(N —2)Oggm; +5 (N +3)(N — 2)Ogg — 12V2(N + 3)(N + 1)033312}
+3(N —3)Ps 3 [3 (N — 2)Oggm s + 8 V2(N + 3)(9@3,3]
+ (N -3) [2 VBON Py 4Om |, — V/ON Py 5 Om , — 6 (N + 3)P3,60§3371]

+2 \/30P3,7OHD |~ V6P3,80gm

—3(N +2)

10 (N +3)(N = 3)P5,00g — 6P3,100? - 3P3,110? ,t PB,IQOg{l ) (G.2.58)
where the normalisation and coefficient polynomials are

P3 = 93476025 N6 4 1612393695 N1° + 11013446394 N4 + 34526289987 N3 + 29660697936 N2
— 98498965581 N1 — 203072674968 N0 + 154945270125 N° + 449766055695 N&

— 624364696710 N7 — 1246035300318 NS + 1119952316004 N5 + 1953728842580 N*

— 1114329042600 N3 — 1086753482680 N2 + 1691309503680 N + 1297828640736 (G.2.59)
Pyq = 7155 N® 4 22752 N* — 21231 N3 — 76512 N? + 21066 N + 63020 (G.2.60)
Py =270 N + 1728 N* 4 1287 N® — 6762 N? — 4278 N + 9380 (G.2.61)
P33 = 2025 N® 4 14460 N° + 19239 N* — 46512 N® — 80274 N? + 42292 N + 71520 (G.2.62)
Ps 4 = 2295 N® 4 16458 N5 + 22254 N* — 51987 N3 — 91314 N2 + 47394 N + 80900 (G.2.63)
P35 = 24435 N® + 175044 N® + 235749 N* — 555432 N® — 971334 N? + 506028 N + 861760 (G.2.64)
P36 =135 N% + 1524 N® 4- 4881 N* + 2712 N® — 8046 N2 — 1476 N + 3520 (G.2.65)

P37 = 18630 N® + 168027 N7 + 436488 N® — 22071 N° — 1221552 N* — 330750 N® 4 1226756 N2
— 644796 N — 1298232 (G.2.66)

P35 = 37260 N® 4 400629 N7 4 1309611 N° + 387381 N°® — 4795443 N* — 5190456 N 4 4201270 N2

+ 6554016 N + 1298232 (G.2.67)

P39 =135 N5 + 609 N* — 1257 N® — 9444 N? — 12438 N — 5860 (G.2.68)
P310 = 525 NS + 3840 N® + 6681 N* — 8262 N3 — 49724 N? — 91728 N — 41832 (G.2.69)
P3,11 = 6825 N5 + 61005 N® + 175743 N* + 113439 N® — 265222 N? — 407694 N — 160596 (G.2.70)

Ps.12 = 22575 N 4 198375 N° + 553953 N* + 307269 N® — 994562 N2 — 1589994 N — 649116 (G.2.71)
For p = [2,2,2] the operator is

1
BPS _ —
Sian) = 6V (30 V2N(N — 2)Py,1 Oz

— 15V2Py2 [3(N + 1)(N — 2)Oggm,, + 5(N + 3)(N — 2)Ogg — 12V2(N + 3)(N + 1)Ogp |
+30V2P, 3 [3(N —2)Ogm 5 + 8V2(N + 3)(9@;)3] +10V/I5N P1,4Ogm | — 20 V3N Py 5Ogm

+ 60 \/E(N + 3)P4’GO§33,1 + 10V3N |:\/5P4y7(9§:u 1 + 2P4’SOH:D 2:| +3 \/§P4,9(9%
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,2

+45V2P1,100g , — 90 \@PMIOE —30 \/§NP4,12(’)EJ> (G.2.72)
where the normalisation and coefficient polynomials are

Py = 149226300 N4 + 2094533640 N3 + 10660893948 N2 + 20470965300 N ' — 2209082715 N 1°
— 23656646682 N° + 108969897216 N® 4 185022077310 N7 — 186235972937 N'©

— 216166001512 N° + 413959581308 N* + 246958572128 N® — 287690109584 N2

— 143358681600 N + 276161485248 (G.2.73)
Py1 =135N° — 18 N* — 15 N3 — 1022 N? — 76 N — 816 (G.2.74)
Py2 = 864 N° + 2430 N* — 5973 N3 — 6119 N? + 17876 N — 12228 (G.2.75)
Py3 =243 NS + 924 N° — 1152 N* — 3670 N® + 5307 N2 4 2256 N — 2988 (G.2.76)
P4 =108 NS + 402 N° — 1065 N* — 2588 N + 9471 N? 4 3376 N + 276 (G.2.77)
Py 5 =945 N® + 3576 N® — 5586 N* — 16186 N® + 34863 N? + 13520 N — 8412 (G.2.78)
Py = 1971 N® + 7512 N® — 8238 N* — 27854 N3 + 28821 N? + 13552 N — 27444 (G.2.79)
Py 7 = 906 N5 + 7485 N* 4 18394 N3 + 9099 N? — 14000 N — 13164 (G.2.80)
Py g = 285 N° 4 5955 N* 4 34507 N3 + 63369 N2 + 19738 N + 7536 (G.2.81)

Py9 = 48060 N7 4 429834 NS 4 1227525 N® 4 919710 N* — 762363 N3 — 208286 N2 4- 1345500 N 4 946584

(G.2.82)
Py 10 = 3702 NS + 290949 N® + 68544 N* + 7491 N3 — 79610 N2 + 45780 N + 78984 (G.2.83)
Py11 =699 N® 4+ 5163 N° + 8795 N* — 9599 N* — 20952 N2 4 21736 N + 26328 (G.2.84)
Py 12 = 1605 N° + 14460 N* + 42159 N® + 36288 N? — 16754 N — 19428 (G.2.85)

For p = [3,2, 1] there is a two-dimensional multiplicity space. The first operator is

1

SE5N 1= = (30 VIO(N — 2)NPs 1 Ogrm — 6V10(N — 2) P52 [3(N + 1)Oggn 1 + 5(N + 3)Ogg]
34yl 45 /}:05 ’

— 18 VIO(N — 2)P5,30gm2 — 20 V3N [Ps,40gm | — v5Ps,sOm , | — 12 VI0Ps,60gp

-6 \/5P5’7OEP,2 +3 \/5P518(9§33,3 — 20 \/gN |:P57QOE:D 1T \/5P5,1oog:n 2:|

3P5,12(QEg . 5NP5,130E:]> (G.2.86)

where the normalisation and coefficient polynomials are

—6V10(N 4 2)Ps 11 {50@ + 305371} — 6VI0(N +2)

P5 = 1329483780 N1 + 13761404280 N3 + 47552297508 N12 + 41944792356 N1 — 43156801080 N0
+ 23239162764 N9 — 47497601127 N® — 299164340106 N7 + 683116078397 N©
+ 45647911732 N° — 883683643044 N* + 341394177280 N3 + 617090703216 N2

— 378227252672 N 4 179121262144 (G.2.87)
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P51 = 3708 N5 4+ 2172 N* — 19509 N3 + 17427 N2 4 9416 N — 13724 (G.2.88)
Ps o = 1656 N° + 5619 N* — 10194 N® — 12393 N2 + 36194 N — 24704 (G.2.89)
Ps.3 = 5076 N® 4 23490 N° — 14985 N* — 85957 N® 4 116006 N2 + 32240 N — 75024 (G.2.90)
P54 = 11808 N 4 54255 N® — 34545 N* — 194501 N3 4 255813 N2 4- 75970 N — 174752 (G.2.91)
Ps 5 = 12492 N® 4 57498 N® — 36627 N* — 207175 N3 4 274254 N? 4 80120 N — 184816 (G.2.92)

P56 = 6462 N7 + 45960 N© + 66285 N° — 117979 N* — 124298 N 4 345680 N2 + 16132 N — 99960 (G.2.93)
Ps7 = 16326 N7 4 99666 N°® + 144600 N® — 54717 N* — 52871 N 4 89526 N? + 116 N + 579336  (G.2.94)

Ps.g = 165978 N7 + 1065798 N 4 1496280 N° — 1235731 N* — 1949513 N3 + 8498 N2 4 679228 N + 177528

(G.2.95)
P59 = 14061 N® + 85773 N* 4+ 110389 N3 — 97565 N2 — 111014 N + 4008 (G.2.96)
Ps.10 = 15126 N° + 66642 N* — 35467 N3 — 293389 N2 + 81536 N + 220812 (G.2.97)
Ps 11 = 1137 N® + 5721 N* — 3097 N3 — 35915 N2 — 21618 N — 12024 (G.2.98)
Ps.12 = 6462 N° + 40026 N* 4 56743 N3 — 30825 N? — 44698 N + 8016 (G.2.99)
Ps.13 = 4332 N* 4 26304 N3 + 32807 N2 — 32861 N — 35466 (G.2.100)
The second operator is
1
BPS  _ _ _ _ _
S22 = 18V, (—3(N — 2)NPs1Ogem — 3(N — 2)Ps 2 [3(N 4+ 1)Oggn 1 + 5 (N + 3)Ogg]

+ 9(N — 2)P6,3OEE‘:D,2 + V6N [\/5})6,4(9?:91 — P6750g:m’2] — 6P6,6(9§p’1

+12 \/5136770@3’2 —3Ps g [8 V2(N — 1)Ogp; = 3(N + 2)0? 2} + \/30NP6,QOEI L

_\/ENPGJOOH:: 5 —+ 3(N =+ 2)P6,11 [5@@ + 3053 1j| — 3N(N + 2)P6712(9§3> (G.2.101)

where the normalisation and coefficient polynomials are

Ps = 433202580 N + 4164719976 N3 + 11536183026 N'2 — 111051000 N'' — 29053464768 N '°
+ 10364014080 N° + 31360792437 N8 — 51088773768 N7 + 37140544622 N — 20831349568 N°

+ 55411748788 N* — 79360524160 N° + 66216685440 N2 — 31168716800 N + 6758052160

(G.2.102)
Ps,1 = 864 N° + 7734 N* — 29931 N3 + 34329 N2 — 2260 N — 8780 (G.2.103)
Ps2 = 5724 N® + 7509 N* — 30912 N® 4 37572 N? — 28648 N + 10144 (G.2.104)
Ps,5 = 4104 N® 4 12552 N5 — 15267 N* — 24025 N3 + 50968 N2 — 18276 N — 4944 (G.2.105)
Ps,4 = 2484 N® 4+ 11871 N® — 7131 N* — 54710 N3 + 93012 N? — 18048 N — 20032 (G.2.106)
Ps 5 = 22248 N6 + 85140 N — 74325 N* — 290915 N3 + 524952 N2 — 127020 N — 94960 (G.2.107)
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Ps,6 = 54810 N7 + 273690 NS + 107331 N° — 533633 N* + 371678 N — 35050 N2 — 241112 N + 130440

(G.2.108)

Ps.7 = 7830 N7 + 45693 N© + 36684 N® — 104202 N* — 1453 N® + 78398 N2 — 91900 N + 46392  (G.2.109)

Ps,s = 516 N° 4 5496 N* 4 12187 N3 — 4448 N? — 12124 N + 4416 (G.2.110)
Pg,9 = 3717 N® + 23415 N* 4 29524 N3 — 26804 N? — 15272 N + 2208 (G.2.111)
Ps,10 = 16416 N® + 68640 N* — 93347 N® — 401726 N? ++ 197500 N + 132600 (G.2.112)
Ps,11 = 2685 N° + 12423 N* 4 5150 N — 17908 N2 + 8976 N — 6624 (G.2.113)
Ps12 = 6918 N* + 41334 N® 4 46861 N? — 49160 N — 18420 (G.2.114)

For p = [4,1,1] the operator is

SBPS _

1
[4,1,1] — 6\/?7 (
—3(N — 2)P773OBEFD72 + V 30P774Og:m71 + \/6P7,5Og:m,2 —12(N +3) [P7,6Og3371 + \/§P7*7OE5U,2]

(N = 2)N Py, Ogmo — (N = 2)Pr.2 [3(N + 1)0ggm 1 +5 (N + 3)Ogg)

+ (N + 3) |:2P7’8 {8\/5(]\[ — 1)0@3,3 — 3(N + 2)053!2} — \/%]\7137’9(95:13’1 -+ 2\/6P7,1OOE:D!2:|

,(N + 3)(N + 2)P7’11 {50@ + 3053 1i| +2 (N + 3)(N + 2)P7,12(9§3> (G.2.115)
where the normalisation and coefficient polynomials are

P7 = 1691280 N4 + 14469840 N3 + 34933194 N'2 — 15345720 N'! — 97734483 N1° + 108829584 N°

+ 94236018 N® — 365252412 N7 + 332214736 NS + 23494544 N°® — 188670784 N* + 59358800 N3

+ 76067360 N2 — 55528000 N + 47136640 (G.2.116)

P71 = 2052 N® + 2592 N* — 7293 N® + 4232 N2 + 1320 N — 2240 (G.2.117)
P72 =108 N° + 477 N* — 348 N® — 7TT0N? + 1254 N — 772 (G.2.118)
P73 =612 N% + 3210 N° + 939 N* — 7568 N3 + 5760 N2 + 692 N — 2472 (G.2.119)
P74 = 1296 N7 4 6020 N© + 1473 N® — 11350 N* + 9484 N3 — 4114 N? — 3428 N + 3440 (G.2.120)
P75 =648 N7 + 4186 N® 4 1473 N® — 12472 N* 4- 8280 N® + 6672 N2 — 4760 N — 3440 (G.2.121)
Prg=13N° —7TN* £ 84N® — 120 N? 4222 N — 40 (G.2.122)
Pr7=15N° + 86 N* — 194 N3 + 278 N2 — 178 N + 284 (G.2.123)
Prg=69N*+222N% + 112 N? — 193N — 62 (G.2.124)
Pro=97N*+316 N* + 62 N? — 306 N — 164 (G.2.125)
P710 = 263 N® + 410 N* — 1216 N® — 953 N? 4 1060 N + 860 (G.2.126)
Pr11=15N* + 60 N3 — 262 N? — 146 N — 244 (G.2.127)
P72 =222 N* + 726 N* + TAN? — 725 N — 430 (G.2.128)
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For p = [3, 3] the operator is

1
BPS _ -~  (_ _ _
5[3,3] = 18vaDs < 60NP8,1OBI|:U+ 9P8,QOH}:D’1 18P8730E:D,2 V30NP8,4O§ID’1

— 10 \/ngg’s(Qg:m 9~ 3P8160EEH =+ 12P8’7OE5U 1 12\/§P8’80E5U 2

—6Ps g {8\/§(N ~1)Ogp, —3(N + 2)05312} + V6N [\/Bps,mogn’l - 10198,11053372

,S(N =+ 2)P8,12 [50@ =+ 3053’1:| — 60N(N + 2)P&130§3)

where the normalisation and coefficient polynomials are

(G.2.129)

Py = 64152 N2 + 209952 N1 — 137241 N0 — 640440 N° + 908640 N& — 322236 N7 — 116124 N6

— 675864 N° 4 2362028 N* — 3013280 N3 + 2221520 N? — 926400 N + 177280
Pg1=27N° —54N* 439 N3 + 7N? — 36 N 4 20
Pg.o = 540 N® 4 765 N® — 2364 N* 4 2098 N® — 686 N2 — 592 N + 488
Ps;3 =90N6 + 75 N — 198 N* 4156 N® — 202 N? 4+ 216 N — 104
Pgq =255 N* —78 N3 — 310 N? 4 218 N — 28
Ps 5 =69N* — 156 N3 + 52 N? 4 178 N — 164
Pg,6 = 1188 N® + 3519 N® — 2868 N* — 5066 N3 + 9654 N2 — 8560 N + 3000
Ps;7 =87 N® + 81 N* — 302 N 4 396 N? — 214 N + 60
Pss = 99N° — 12 N* — 486 N 4 706 N? — 640 N + 168
Pgg =21 N* 448 N3 —36 N2 —2N —12
Pg10 =51 N* + 138 N2 —86 N2 — 142 N — 12
Pg11 =33N* +48 N3 — 164 N2 + 2 N + 156
Pg 12 =33N* + 54 N3 — 58 N2 + 134 N — 36

P33 =3N?+9N? 5N —14
For p = [4, 2] the operator is

1
BPS — — —
5[4,2] = 6\/37 F9< \/§P9,10EPID 6\/5}392053:@1 3\/5P9,3OH}:D,2 4\/15NP9,4O§:ED’1

(G.2.130)
(G.2.131)
(G.2.132)
(G.2.133)
(G.2.134)
(G.2.135)
(G.2.136)
(G.2.137)
(G.2.138)
(G.2.139)
(G.2.140)
(G.2.141)
(G.2.142)

(G.2.143)

— 2V3Py,5Om , + (N +3) [—10\/§(N —1)Py,sOgg + 6V2Po 7 {Nogga,1 + 2\/5033372}

—V2Py 5 {8\/§(N ~1)Ogp 4 —3(N + 2)0?’2} +4V15(N + 1)(N —1)NO B

,2\/51:979@@3‘ - V2(N +2) {100% + 6(9537 .t Pg,mogg}D
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where the normalisation and coefficient polynomials are

Py =297 N0 4+ 378 N — 1260 N7 + 390 N® + 1080 N® — 1256 N* + 640 N°® + 760 N2 — 1920 N + 1440

(G.2.145)

Py1 =81 N° —129 N* 4 51 N3 + 76 N2 — 130 N 4 60 (G.2.146)
Pyo=9N°>+3N* —3N3 - 13N2 +13N -6 (G.2.147)
Py3=(9N*+13N? —13N +6)(3N? —2) (G.2.148)
Pyys=5N3—2N?2_5N+3 (G.2.149)
Py 5 =29N* - 65N34+24N? 4+ 70N — 60 (G.2.150)
Pyg=3N?-3N+2 (G.2.151)
Py7=N?—-2N+2 (G.2.152)
Pyg=3N%2—-2 (G.2.153)
Pyog=11N3 —18N? — 10N + 20 (G.2.154)
Po.10 =9N?% - 10 (G.2.155)

G.2.3 Norms of operators with multiplicity

As explained in section 7.4.7, for A, p with My , > 1, the BPS norms of the operators
are dependent on the choice of basis for the multiplicity space. In that section, we
described a process to extract norm-like functions of /N that characterise the multiplicity
space and are independent of the choice of basis.

In the A = [4, 2] sector, there are two partitions p = [2,2,1,1] and [3,2, 1] with
M, = 2. For the first of these, we go through the process described in section 7.4.7
in some detail, while for the second we only give the results.

We begin by renormalising the BPS operators to have norm 1 in the physical inner
product as given in (7.4.71). For p = [2,2,1,1], this replaces P, and P in the
expansions ((.2.33) and (G.2.45) with

Py =3(N +3)(N + 2)(N + 1)2N2(N = 1)(N = 2)(N — 3)Qumut Q1 (G.2.156)

P2 = 3(N+ 1)N2(N - 1)(N - 2)(N - 3)Q7nuth2 (G2157)
where ()1 and Q)2 are defined in (G.2.181) and ((G.2.182) and

Qe = 2145 N8 + 21570 N7 + 69156 N6 + 44856 N°® — 130747 N* — 117106 N3 + 138802 N2

+ 53280 N — 75456 (G.2.158)
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after normalising, the .S,, inner product matrix can be calculated, and is given by

(85519855 m0)s,  (SBESwaISBES ) S~ -~

2,2,1,1],11°[2,2,1,1],1 2,2,1,1],11°[2,2,1,1],2 I3 > 5

A = Sn S| = 1 PPy G.2.159

(2.2,1.1] gBPS |§BPS gBPS |§BPS A12 Az 2 ( )
(2,2,1,1,21°[2,2,1,1),1 / g | [2,2,1,1],217[2,2,1,1],2 / ¢ VP, Py P,

where

A1, = 1254825 N1 + 25236900 N5 4 212913135 N4 + 949347864 N3 4 2265287922 N2 4 2296326096 N1
— 483268806 N0 — 64991400 N° + 7717590681 N® + 4250132076 N7 — 14563157385 N6

— 5596987632 N°® + 20300164460 N* + 5660498272 N3 — 5514459136 N2 + 14594125824 N
+ 12396386304

(G.2.160)
Ay = 2V/5(394875 N'° 4 7400484 N + 57527991 N''3 4+ 231664914 N'2 + 476892396 N'! + 249273666 N1°

— 1301445666 N° — 4474130634 N® — 7919982621 N7 — 8401406142 N® — 6257132757 N®

— 4801800696 N4 — 1575438250 N — 1395294808 N2 — 4205573568 N — 1295069184) (G.2.161)

Ag,o = 64575225 N6 4 1221543180 N*° 4+ 9292923450 N14 + 34312809600 N3 + 49747071546 N2

— 49520811024 N — 212528733480 N0 + 81502221096 N° + 872883407025 N + 609873915684 N7

— 049480261506 N® — 778095650280 N° + 986491220724 N* + 591265527264 N3 — 532623199736 N2

— 150593123520 N + 181872634752 (G.2.162)

We now take the trace of A[2,27171], divide by ./\/lA,p, and take the reciprocal. This gives
the first p = (2,2, 1, 1] invariant

2

_ 2N 43N +2)(N + 12NN — (N —2)(N ~3)Q1Q2
TrAp221,1)

G.2.163
B (G-2.163)

where the denominator is

D1 = 3913650 N6 4 78795855 N'° + 656781957 N4 + 2811679470 N3 + 5818416030 N'2 + 1501757316 N1
— 15672370512 N0 — 14255947158 N° + 42286367112 N® + 71992040249 N7 — 32371301901 N

— 121059621624 N° — 22843286488 N* + 77152295508 N3 4 42542435352 N2 + 5036467584 N
+ 2255817600

(G.2.164)
We can also consider the trace of A[22 2.1,1]" This leads to the second invariant
2 A2 _ _ _
22 V2(N 4 3)(N +2)(N + 1)’ N3(N — 1)(N = 2)(N = 3)Q1Q2 (G.2.165)
TrA[272’1’1] VD2

where the denominator is

Dy = 7658328161250 N°2 + 308379397920750 N3! 4 5678040590961075 N30 + 62861883407800200 N2°
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+ 461553133569402069 N28 + 2323880655128992368 N27 + 7893896923770889320 N 26

+ 16200841926037924512 N2° + 9738474984510581700 N2* — 43140893567922372492 N2

— 100830809456338189482 N2 + 66300678032545590264 N2! + 576422366985618028290 N 20

+ 587496624365125252152 N9 — 1266939757691694906384 N '8 — 3370314414344723267400 N7

— 14422779155617085790 N1 4 8873284172309294711934 N1° 4 9228283693975324117807 N14

— 8309143471774592802944 N13 — 21871661389590847910159 N2 — 3725069874701998817592 N'1*
+25451491117140266214976 N1© + 18757146605106723110568 N° — 15395309506022451870416 N'®
— 22339442519546818907728 N7 + 3985689055612424950064 N® + 16657691069689910952704 N>
+ 3604888800092578331072 N* — 4775351642112978422784 N3 — 82696688563225374720 N2

+ 2740871464097166655488 N + 1006239182315089379328 (G.2.166)

For p = [3,2, 1], the same process produces

2 _ 2N AW DNV - DN~ 2)Qa@s (G.2.167)
TrA,2,1] B 2.

2 VAN +2)(N+ DN2(N — 1)(N — 2)QuQs
TrAf 5 1) N VE> (G.2.168)

where the denominators are

E1 = 41812200 N1'* 4 448198920 N13 4 1563219648 N'2 + 1093147920 N1 — 3204936072 N 1°
— 1375066305 N9 4 4730520504 N® — 3314823954 N7 4 4335640504 N — 6084970 N°
— 10209076192 N* + 9690911824 N3 — 2443216896 N2 + 3777810528 N — 538272768  ((.2.169)
E = 874130034420000 N2® + 18740182882824000 N27 + 166345754746996800 N 26
+ 753788224097235360 N2° 4 1608498415010610504 N2* 4 181361766700128024 N23
— 5390210561323512672 N2 — 4416942361725000252 N2 + 13381736971853528568 N2°
+ 14451638301852715944 N'*° — 26479800963850159935 N & — 31944440045187411534 N7
+47031196210114852566 N ¢ + 73597499966176725312 N'*° — 112834178522277863808 N14
— 122423268066628273308 N2 4 309535922049432602720 N2 4 10889533588200882344 N1
— 425645164341054775804 N0 + 196537079346722192144 N° + 367648860348492413280 N8
— 423712842979380230656 N7 + 67969647225996116864 N + 101859033408413821440 N°
— 27177241919312392192 N* — 38998356711672686592 N> + 48696174595572179968 N2

— 18571148044644937728 N + 3609255644969508864 (G.2.170)
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G.2.4 Norms of BPS operators

The physical norms of the BPS operators can be understood as characteristic functions
of the pair A, p and should be reproducible from stringy physics on the other side of
the AdS/CFT duality.

We give the norms for each of the BPS operators in the A = [4, 2] sector. For p =
[2,2,1,1] and [3,2, 1], we reproduce the invariants derived in the previous subsection

in order to compare with other operators.

2
‘S[g,lf,sl,l,u 2 _ (N 4+ 4)(N + 3)(N + 2)(N + 1)N2PEN —1)*(N —2)(N = 3)(N —4)@Q1 (G.2.171)
0
2
2 _2NA3IIN+ (N +1) N2(N = 1)(N = 2)(N —3)Q1Q2 (G.2.172)
TrAp 21,1 D,
2 _ V2N 43)(N +2)(N 4+ 1)’ N2(N = 1)(N = 2)(N = 3)Q1Q2
TYA[QZ’Q’M] = N (G.2.173)
‘Sﬁ,}ﬁ,u 2_ (N+2)(N+ DNV ;;)(N —2)(N —3)Q2Q3 (G.2.174)
3
|sB55, ‘2 _ (N+ NN - D&Y —~ 2)Q3Qa G2175)
4
. Az _ 2N+ 2)(V + 1)N2£gN — 1)(N —2)QuQs (@.2.176)
TA3,2,1] 1
2 _ V2(N 4 2)(N + )N?(N — 1)(N —2)QuQ5
TrA[z&QJ] = N (G.2.177)
]sggi] 2 (N4+3)(N+2)(N+ II)DN(N - (N —2)Q5Qs (G2.178)
7
‘Sg,};]sr _ (NA+2)(V + 1)1iV2(N - 1)Q6Q7 (G.2.179)
8
9 4 _ 2 _
‘Sﬁgﬂz _ (N +3)(N + 2)(N + 1)}1;7 (N—-1)(3N%2-2)Q~ (G.2.180)
9

where the polynomials in the denominator have been defined in previous subsections

and the polynomials in the numerator are

Q1 =195 N° 4+ 1149 N* 4+ 687 N — 3927 N? — 1552 N + 4448 (G.2.181)
Q2 = 10035 N® 4 94914 N7 + 264876 N® + 17268 N° — 819309 N* — 487830 N3 + 780722 N2

+ 189568 N — 432744 (G.2.182)
Q3 = 18630 N® + 160677 N7 + 371643 N® — 204495 N° — 1326729 N* — 15804 N3 + 1726178 N?

— 442368 N — 1298232 (G.2.183)

Q4 = 8010 N7 + 56214 NS 4 79800 N® — 132315 N* — 158273 N + 296994 N2 + 33500 N — 171336 (G.2.184)

Q5 = 2610 N7 + 12546 N® 4 3213 N® — 25152 N* + 20228 N® — 5238 N2 — 8000 N + 5160 (G.2.185)
Qo = 648 N7 42772 N® 4+ 51 N® — 5484 N* + 5438 N3 — 2026 N2 — 2000 N + 1720 (G.2.186)
Q7 =99 NS +162 N° — 324 N* 4 102 N3 + 152 N2 — 260 N + 120 (G.2.187)

Comparing these norms with those in sections G.1.2 and 7.4.7, we see a general pattern
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in the numerators. They typically contain a product of linear factors along with (in gen-
eral) two complicated () polynomials. These () polynomials appear in two consecutive
norms.

In (G.2.158) we saw that the ) polynomials appear in consecutive norms even in
the non-physical multiplicity space. This suggests they are an artefact of the orthogo-
nalisation process.

The linear factors are more interesting. Their presence is partially implied by SEP-
compatibility, but there are generally more factors than would be sufficient for this
purpose. The function f,, defined in (2.3.20), that gives the free field norms, is a
product of linear factors, and we can compare this with those found in the numerators
of weak coupling BPS norms. In all but two (p = [2,2,2] and [3, 3]) of the examples
we have calculated, the numerators contain f,, while some partitions have considerably
more factors. It would be interesting to enumerate the linear factors that appear in the

numerator for general A, p.

G.3 A =[3,3] sector

The final example we give here is the BPS basis for the A = [3, 3] sector at field content
(3,3).

Throughout this section we will work with A = [3,3] and M, = , so we will
suppress this index in operator labels.

For each BPS operator, we will first present it as a sum over the free field basis
(3.6.20) and then as a sum over symmetrised traces and commutator traces, for which
we use the covariant bases discussed in section 7.3.2. The covariant symmetrised trace

basis is

tp21 = TX°TrY TrY? — 2Te XY TrX Y TrY — TeX Tr XY Try?
+ TrX?Te XY2TrY + 2T X Te XY TrXY? — Te X Te X 2TrY?  (G.3.1)
tpiiy = TrX? (TrY)? — STeXTeX2Y (TrY)? + 3 (TrX)? Te X Y2 TrY
+ (TrX)* Try® (G.3.2)

and the covariant commutator trace basis is

e = TrX’YXY? — TrX?Y2XY = TiX?Y (X, Y]Y (G.3.3)
) = TeXPY?TrY — XY XYTrY — TeXTeX?Y? + TeXTr XY XY™
= TrX?[X,Y]YTrY — Tt XTr X[X, Y]Y? (G.3.4)

For these two bases, the partition label describes the cycle structure of the multi-traces.

The free field operators can be written in terms of symmetrised and commutator
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traces

Ogem = g (3t3.2.1) + tp3,1,1,1) + 65,1 (G.3.5)

OFF cven = \1/—5 (fs.,1 = 3ep.1) (G-3.6)

O, o0 = —%C[ﬁ] (G.3.7)

OEE gg (=3t3,2,1) + t31,11) + 6¢p5,1)) (G.3.8)

The odd/even labels for the R = [3,2, 1] multiplicity come from the odd/even per-
mutations used to produce the respective traces. All other zero coupling operators are
defined uniquely by A and R.

The BPS operators are

1
BPS  _ _ _ _
Sprs |~ o ( N(N = 3)O0g= + (N +3)(N = 3)0gp oy + 2(N + 3)NOEE)
(G.3.9)
1
= —3N(N + 1)t N? +3N —6)t + 18(N +1
12\/F1< (N + Dty + (N°+ )t3,1,1,1) ( )0[5,1])
(G.3.10)
1
S _ _
SEPS — \/Fz ((N )0z + (N + 1)0gp e OEE> (G.3.11)
Nt Nt —6 G.3.12
4\/3—132( 3,2,1] + {VE[3,1,1,1 0[51]) ( )
where the normalisation polynomials are
P, =2N* + 6N3 + 9N? + 27 P, =2N*+3 (G.3.13)
The norms of the BPS operators are
N +3)(N +2)(N +1)N?(N —1)(N —2)(N -3
‘ngﬁ* . 2 _ ( + )( + )( + ) p( )( )( )Q (G.3.14)
1
N +2)(N +1)N?(N - 1)(N -2
|S[J§12351‘]|2 _ ( + )( + ) ( )( )Q (G.3.15)
345 P2
where
Q=2N*+3N -3 (G.3.16)
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