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Abstract

In this thesis we perform calculations on the CFT side of the duality between N = 4

supersymmetric Yang-Mills theory and type IIB string theory on AdS5 × S5. The

results are used to study quantum gravity on AdS.

Chapters 3 and 4 explore the structure and combinatorics of the quarter BPS sector

with gauge groups U(N), SO(N) and Sp(N) in the planar free field limit. For U(N), we

identify the multi-traces with a word monoid, with aperiodic single traces corresponding

to Lyndon words. For SO(N) and Sp(N) we generalise Lyndon words using minimally

periodic conditions. We present the quarter-BPS generating function for SO(N)/Sp(N)

gauge groups.

Chapter 5 examines the permutation algebras behind operator construction in the

free field theory with SO(N) and Sp(N) gauge groups. There is a rich group in-

dependent structure, including formulae for correlators expressed purely in terms of

permutations. We introduce Schur and restricted Schur bases for the baryonic sector

of the SO(N) theory, derive covariant bases for the quarter-BPS sectors of SO(N) and

Sp(N) theories, and calculate their correlators.

Chapter 6 studies the projection of the half-BPS sector from the U(N) theory to the

SO(N)/Sp(N) theory, dual to an orientifold projection of S5 to RP5. This is charac-

terised by a plethystic refinement of Littlewood-Richardson coefficients, expressible in

terms of the combinatorics of domino diagrams. A second expression for the projection

is derived in terms of a product of SO(N)/Sp(N) giant graviton states.

Chapter 7 looks at the quarter-BPS sector of the U(N) theory at weak coupling.

Multi-symmetric functions allow systematic study of the finite N properties, involving

combinatorics of set partitions. We construct a quarter-BPS, finite N -compatible, U(2)

covariant, orthogonal basis, labelled by a U(N) Young diagram and a multiplicity,

for which we derive precise counting results. These are interpreted as quarter-BPS

deformations of the half-BPS giant graviton states.
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Chapter 1

Introduction

The AdS/CFT correspondence [3–5] has revolutionised theoretical physics over the last

twenty years. It is a conjectural identification between a string theory on d+ 1 dimen-

sional Anti-de-Sitter space (times a compact manifold) and a conformal theory living

on the d dimensional boundary manifold. What makes this conjecture both incred-

ibly interesting and difficult to prove, is the strong-weak nature of the duality. The

weakly coupled gauge theory, accessible to study via perturbation theory, is dual to

strongly interacting stringy physics, for which we have no good mathematical descrip-

tion, and vice versa. Consequently, assuming the validity of the conjecture, new features

of strongly coupled conformal field theory and gravity can be investigated through the

dual description. For a thorough review of AdS/CFT and its varied applications see [6].

The most studied example of the correspondence, and the one explored in this

thesis, is in d = 4 dimensions with the maximal amount of supersymmetry. On the

AdS side, this is type IIB string theory on AdS5 × S5, while on the CFT side, we have

the N = 4 super Yang-Mills theory with U(N) gauge group.

There are two parameters needed to define the Yang-Mills theory, the coupling gYM

and the rank N of the gauge group. In the dual theory, the two parameters are the

string coupling gs and the ratio R
ls

between the radius of AdS and the string length.

These are identified via

R4

4πl4s
= g2

YMN = λ gs = g2
YM =

λ

N
(1.0.1)

where λ is the ’t Hooft coupling.

It was shown by ’t Hooft [7] that in a U(N) gauge theory with fields in the adjoint,

one can take the large N limit while keeping λ fixed and obtain a perturbative expansion

in powers of 1
N with the gth term corresponding to double line Feynman diagrams on

surfaces of genus g. This matches the genus expansion of string theory, and was an

early indication of string-gauge duality.
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CHAPTER 1. INTRODUCTION

A result of particular importance coming from the ’t Hooft expansion is exactly

when the perturbative description of a U(N) gauge theory is valid. Naively, one would

expect this to be when gYM � 1, but if N is large then contributions from loops in the

diagrams can outweigh the coupling constant, rendering the perturbative description

invalid. In fact it is when λ� 1 that one can use the Feynman diagram computations.

The strong-weak nature of the duality is apparent from (1.0.1). Perturbative gauge

theory is valid at small λ, meaning the radius of curvature R of the AdS space is

comparable to the string length ls. In this regime, stringy effects become important,

and the supergravity description can no longer be trusted. On the other hand, at large

λ, inaccessible to gauge theory calculations, the curvature is much greater than the

string length scale, and the supergravity description is valid.

In principle, the matching between the two sides of the AdS/CFT duality depends

on two factors. Firstly, the Hilbert space must fit into the same representations of the

global symmetry group PSU(2, 2|4). In particular the energy of an AdS state must

match the scaling dimension of a CFT local operator (by the operator-state correspon-

dence, we use CFT local operators rather than states). Secondly, the correlators of the

AdS states and CFT local operators must agree. The conjectural identification between

states, operators and their respective correlators was given in [4, 5].

In general, these correlators are very hard to calculate precisely, and many can only

be given order by order in perturbation theory. An important and influential exception

to this rule is the planar limit of the N = 4 super Yang-Mills theory. This refers to the

N →∞ limit with λ fixed, so only the leading term in the ’t Hooft expansion survives,

and therefore only planar Feynman diagrams contribute. It was proved in [8] that

this theory is integrable, allowing the application of powerful mathematical techniques

that provide concrete results to all orders in λ. This has become a vast and extremely

fruitful area of research. A review of this huge topic can be found in [9].

A more difficult problem is to study the correspondence while including sub-leading

terms in the 1
N expansion, or explicitly at finite N . While many important results have

been found, the understanding is not as complete as for the planar limit.

In this thesis, we focus on half- and quarter-BPS local primary operators in N = 4

super Yang-Mills. These are annihilated by, respectively, a half and a quarter of the

16 Poincaré supercharges in the theory. As a result, they live in short or semi-short

representations and their conformal dimension is determined by their charges under

the SU(4) R-symmetry and the Lorentz group. This restriction means concrete results

can be found even at finite N .
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CHAPTER 1. INTRODUCTION

1.1 Half-BPS sector

In N = 4 super Yang-Mills, there are 6 real scalar fields φa, filling out the six dimen-

sional representation of the R-symmetry SU(4), which is a double cover for SO(6). On

the AdS side of the duality, the SO(6) symmetry corresponds to rotations of the S5

factor. The 6 scalar fields are combined into 3 complex scalar fields Xi = φi + iφi+3,

hiding some of the R-symmetry and leaving only an SU(3)×U(1) subgroup apparent.

Half-BPS operators in the the CFT are exactly the multi-traces of one of the complex

scalars, which we will refer to as X.

From arguments based purely on the representation theory of PSU(2, 2|4), the

spectrum of half-BPS multiplets remains unchanged for any value of the coupling con-

stant [10]. Additionally, there are strong non-renormalisation theorems on correla-

tors [11–15], so calculations can be performed on either side of the duality at any value

of the coupling and compared directly.

The half-BPS states have been well studied, and much is known about them. The

spectrum of single trace operators corresponds to Kaluza-Klein gravitons compactified

on the S5 factor of AdS5 × S5 [5]. The operator TrXn has charge n under a U(1)

subgroup of the SU(4) R-symmetry, and the dual AdS state has n units of angular

momentum around the S5. More generally, multi-trace operators are dual to multi-

graviton states.

This identification between operators and Kaluza-Klein gravitons is valid if n ∼
O(1) compared to N . However, if n is taken to grow in size comparable to N , then the

large energy of the state causes a backreaction and the supergravity approximation to

the full string theory no longer holds. The behaviour of the BPS states as n scales with

respect to N is an important problem that has illuminated many interesting physical

aspects of the two theories.

The first qualitatively different behaviour is observed when n ∼
√
N . It was found

in [16] that operators of the form TrXJ , where J ∼
√
N , can be understood as strings

with large angular momentum on the S5. These BMN states can be identified with

strings in the pp-wave background, which are an unusual case of strings that can be

quantised exactly, with the spectrum exactly matching that of the super Yang-Mills

operators.

Continuing to scale n, it was demonstrated in [17] that gravitons with angular

momentum J ∼ N expand into a D3-brane wrapped around a 3-cycle in the S5. These

giant gravitons also explained the string theoretical origins of the stringy exclusion

principle [18], a cut-off in the spectrum when the angular momentum of a single graviton

exceeds N . The radius of the S3 wrapped by a giant graviton increases with the angular

momentum, with an upper bound given by the radius of the S5. This upper bound

corresponds exactly to J ≤ N .
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The gauge theory origins of the stringy exclusion principle are much simpler, emerg-

ing from relations between traces at finite N . The Cayley-Hamilton theorem for a

matrix implies that a trace TrXn with n > N can be re-written in terms of products

of traces of size ≤ N .

Another family of brane states, called dual giants or AdS giants were found in [19].

These are D3-branes wrapping a S3 within the AdS5 factor, with similar properties to

sphere giants except they do not suffer from a stringy exclusion principle.

After early identifications of sphere giants as sub-determinant operators [20, 21],

a complete basis for half-BPS operators in the gauge theory was found in [22], valid

for all n and N . These are operators OR = χR(X) labelled by a Young diagram R

with n boxes and constrained to have length no greater than N . They can be simply

understood as the analytic continuation of the U(N) character χR(U) to a generic

complex matrix X.

The basis OR allowed a simple identification of all giant graviton states, dual giants,

and a smooth interpolation between the two. Take R to be a single column of length

J ∼ N . This is dual to a giant graviton of angular momentum J , and the cut-off on the

length of the Young diagrams corresponds to the stringy exclusion principle. Similarly,

a Young diagram with a single row of length J ∼ N is dual to an AdS giant of angular

momentum J , with no cut-off on the length of the row. Young diagrams with several

long columns or rows correspond to multi-giant states. This correspondence between

Young diagram operators and giants has been confirmed from a number of directions:

holographic comparison of correlators of two Young diagrams with a trace [23–26],

moduli space quantisation [27,28] and strings attached to giants [29–35].

Beyond the identification of OR with giant gravitons, [22] also demonstrated that

the half-BPS sector of N = 4 SYM is dual to N non-interacting fermions in a 1-

dimensional harmonic oscillator. The correspondence between free fermions, half-BPS

operators and giant gravitons was further developed in [36].

A complete classification of half-BPS excitations of AdS5 × S5 was given in [37].

These are referred to as LLM geometries, and are specified by a colouring of the LLM

plane, a 2-dimensional plane of boundary conditions split into coloured regions and

empty regions. Since this is a complete characterisation, all scaling behaviour of half-

BPS states can be seen in LLM solutions. The simple AdS5 × S5 appears as a circle.

Small perturbations of this correspond to Kaluza-Klein gravitons. A donut with large

radius corresponds to a sphere giant, while a central circle with a distant ring around

it is an AdS giant. When the energy of the BPS state is O(N2), we find different

topological or geometrical spaces. These correspond to states where the energy has

grown sufficiently large that the backreaction has changed the geometry of the space.

The colouring of the LLM plane is interpreted as the 2-dimensional phase space of

N fermions. Coloured areas of the plane, of total area N , correspond to occupation by
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fermions. This gives a natural correspondence between Young diagram operators and

LLM geometries via the free fermion interpretation. The detailed matching is described

in [38].

This scaling behaviour of the half-BPS states on both sides of the duality represents

a thorough understanding of this sub-sector of the U(N)N = 4 super Yang-Mills theory

and its AdS5 × S5 dual.

1.2 Quarter-BPS sector

There has been much work done on developing an understanding of the quarter-BPS

sector that can compare with the half-BPS equivalent. While many important results

have been found, this project is still incomplete.

We begin with the AdS side of the duality, as more is known here than for the dual

gauge theory. Giant gravitons were generalised to the quarter and eighth-BPS sectors

in [39], with worldvolumes given by the intersection of holomorphic surfaces in C3 with

a 5-sphere. These represent the entire quarter-BPS sector (for states with energy of the

appropriate order), but only a subsector of the eighth-BPS sector, since world-volume

fermions or gauge fields are set to zero [27]. These giant gravitons were quantised in [27],

where the authors proved that the space of quarter/eighth-BPS states correspond to a

system of N non-interacting bosons moving in a 2/3-dimensional harmonic oscillator.

Dual eighth-BPS giants were quantised in [40] and the same result was obtained for

the Hilbert space.

While giant gravitons have been generalised to the quarter and eighth-BPS sector,

these branes have not been studied as much as the half-BPS equivalents, and their

properties are not as well understood.

The quarter and eighth-BPS equivalent of LLM geometries were derived in [41].

Like the half-BPS case, solutions are expressed in terms of boundary conditions on

4 and 6 dimensional spaces. However the procedure to generate the metric from the

boundary conditions is more difficult, involving non-linear differential equations, and

the relation to free fermion dynamics no longer holds.

On the gauge theory side of the correspondence, a lack of non-renormalisation the-

orems means quarter-BPS operators at generic coupling are difficult to find. Represen-

tation theory only protects the spectrum of very special quarter-BPS multiplets (those

in the SU(4) R-symmetry representation with Young diagram [n− 1, 1]). Generic ones

are not protected.

More is known in the free field theory with λ = 0. In this limit, quarter-BPS

operators are exactly the multi-traces of two of the complex scalar fields, which we

will write as X and Y . Various Young diagram bases, generalisations of the half-BPS

operators OR, have been developed for this space [42–46].

14
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The spectrum changes discontinuously when interactions are turned on, as some of

the semi-short multiplets recombine into generic long multiplets which acquire anoma-

lous dimensions. From index calculations [47], it is expected that the spectrum then

remains fixed from λ � 1 to λ � 1. There are also non-renormalisation results for

correlators of quarter-BPS operators [15,48], and it is believed that 2 and 3-point func-

tions of quarter-BPS operators do not get renormalised as we travel from weak to strong

coupling.

Finding quarter-BPS operators at weak coupling is a difficult problem, and has not

yet been solved in full generality. A systematic method to find them was developed

in [49] and applied at low dimension. This approach gave candidate states and then

found the BPS operator by orthogonalising to descendent states.

In [50], the dilatation operator was shown to be an effective method for finding

quarter-BPS operators at weak coupling. After diagonalising the dilatation operator,

the quarter-BPS states are exactly those in the zero eigenspace. A lot of work has been

done to diagonalise the one-loop dilatation operator on the free-field bases. In [51],

one of the Young diagram bases called the covariant basis was investigated, and a

method was developed to find quarter-BPS states. An alternative basis, called the

restricted Schur basis, was explored in [31, 35, 52]. This latter approach succeeded in

finding quarter and eighth-BPS operators for Young diagrams in the distant corner

limit. Finally, a special class of quarter BPS operators at weak coupling was found to

be related to Brauer algebra constructions [53].

1.3 SO(N) and Sp(N) gauge theories

In a different direction, one can look at N = 4 super Yang-Mills with SO(N) and

Sp(N) gauge groups and ask whether they have a dual string theory description.

In the formalism of ’t Hooft, two line Feynman diagrams are used to describe the

perturbative expansion of a U(N) gauge theory with fields in the adjoint represen-

tation. These two lines have arrows pointing in opposite directions, as the adjoint is

composed of a product between the fundamental and anti-fundamental representations.

For SO(N) and Sp(N), the fundamental representation is real, and isomorphic to its

complex conjugate. It follows that the lines no longer have a preferred direction, and

consequently, in addition to the normal genus expansion of the U(N) theory, the per-

turbative description admits Feynman graphs that live on non-orientable surfaces such

as RP2 [54]. This implies not only that there is a string theory description of SO(N)

and Sp(N) gauge theories, but that it is given in terms of non-orientable strings.

The AdS/CFT dual of N = 4 super Yang-Mills with these gauge groups was found

in [55]. The S5 factor in the standard AdS/CFT correspondence is replaced by a RP5

factor by identifying x ∼ −x for x ∈ S5. At the same time, the string worldsheet has its
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orientation reversed. This is called the orientifold quotient, and maps the U(N) gauge

theory to SO(N) or Sp(N) theories. The gauge group that emerges depends on the

topological class of the two-form fields coupled to fundamental strings and D-strings.

Indeed, the SO(N) theory emerges quite naturally from this description. One

way of arriving at the U(N) correspondence is to place N D3-branes at the origin of

Minkowski space and note that these deform the near horizon geometry from flat space

to AdS5×S5. In this picture, the six real scalar fields of the Yang-Mills theory emerge

as the transverse displacement of the branes from the origin, which appear in the near-

horizon geometry as the radial direction of AdS times the S5. Correspondingly, the

identification x ∼ −x on S5 sets Xi ∼ −Xi, where Xi (i = 1, 2, 3) are the three complex

scalar fields.

In tandem, the (a, b)th component of the gauge field corresponds to the amplitude

of a string stretching from the ath brane to the bth. Reversing the orientation of a

string, this instead stretches from the bth to the ath. Therefore the gauge indices are

transposed. It follows that the orientifold quotient sets Xi ∼ −XT
i , which is exactly

the map from the complexified adjoint of u(N) to the complexified adjoint of so(N).

In order for the Sp(N) theory to emerge from the orientifold quotient, one needs to

consider the subtle topological factors, and a more detailed description is needed.

For half-BPS states of conformal dimension n = O(1), the picture for SO(N)/Sp(N)

gauge theory and its dual string theory is similar to that of U(N). Kaluza-Klein

gravitons, compactified on the RP5, correspond to single trace states TrXn. From the

gauge theory, nmust be even due to the constraints onX, while in the string theory, this

is because the U(1) R-symmetry charge of X is twice the quantised angular momentum

on the RP5. Multi-trace operators then correspond to multi-particle graviton states.

The allowed brane wrappings on AdS5 × RP5 were investigated in [55]. For both

SO(N) and Sp(N), there are the standard giant graviton branes wrapped on 3-spheres

within either the AdS5 or RP5 factors. However, for SO(N) with N even, there is an

additional brane state wrapped around a RP3 within the RP5. In the gauge theory,

this is a Pfaffian operator, consisting of N
2 copies of the scalar fields Xi contracted

using the SO(N) invariant tensor εa1...aN . Evidence that Pfaffian operators should be

considered as D-brane states was presented in [21], which demonstrated that the ’t

Hooft expansion of such states included string worldsheets with boundary.

A Young diagram basis for half-BPS SO(N) and Sp(N) multi-trace operators was

developed in [56, 57]. For SO(N) with N even, a basis for Pfaffian operators was also

derived, labelled by Young diagrams with first column of length N . It is expected that

these bases are dual to giant gravitons with the appropriate brane wrapping, in much

the same way as for the U(N) Young diagram basis operators.

Further, these Young diagram bases can be interpreted as N
2 non-interacting fermions

in a harmonic oscillator potential. This relates to the bubbling orientifold description
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of SO(N) and Sp(N) theory, derived in [58]. This replaces the LLM plane with a half-

plane, corresponding to fermions moving on a half-line. The free fermion picture nicely

summarises the correspondence between bubbling orientifold geometries of AdS5×RP5

and half-BPS operators in the SO(N) and Sp(N) theories.

There are few studies of the quarter-BPS sector for the SO(N) and Sp(N) theories.

A Young diagram basis was constructed for the free field theories in [59, 60], though

this did not include Pfaffian operators. Little is known about the quarter-BPS sector

at weak coupling.

1.4 Outline of thesis

We begin this thesis by giving some of the necessary mathematical background for the

following chapters. Chapter 2 introduces the permutation group Sn, and how it can

be used to construct gauge invariant operators in the U(N) theory taking account of

finite N effects.

In chapter 3 we study the quarter-BPS sector of N = 4 super Yang-Mills with

U(N) gauge group in the free field limit. This can be split into two distinct halves.

The first part examines the combinatorics of the matrix words that appear in the

multi-trace operators in the planar limit. The generating function for the planar free

field quarter-BPS sector was derived in [61], and is also the generating function for a

graded, non-commutative monoid. We investigate the correspondence between these

two systems, the structure this entails, and how this structure is reflected in the large

N generating function. The second half summarises the role of permutations in the

quarter-BPS sector and the different bases that can be used to describe it.

Chapter 4 studies the word combinatorics of the quarter-BPS sector for the SO(N)

and Sp(N) gauge theories, again in the planar free field theory. The anti-symmetry of

the matrix fields induces relations between traces of different matrix words. We study

these relations, examine the structure of the space of quarter-BPS sector, derive the

large N generating function and describe how different expressions for this function

reflect the structure of the space.

Chapter 5 studies the same sector as chapter 4 but with N finite. We describe the

rich structure of permutation algebras lying behind the construction of BPS operators

and give gauge group independent characterisations of operators and correlators.

Chapter 6 analyses in detail the dual description of the orientifold quotient taking

AdS5 × S5 to AdS5 ×RP5. We focus on the half-BPS U(N) multi-trace operators and

map this to an SO(N)/Sp(N) operator by replacing the generic complex matrix X in

the complexified adjoint of u(N) with an anti-symmetric matrix in the complexified

adjoint of so(N)/sp(N). By using the Young diagram bases in both gauge groups, we

obtain a description of the orieintifold quotient of the dual giant gravitons.
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Finally, chapter 7 looks at weak coupling quarter-BPS operators in the U(N) gauge

theory. We use the mathematics of multi-symmetric functions to derive the finite N

behaviour of this sector and give a construction algorithm for a Young diagram basis.
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Chapter 2

Mathematical Preliminaries:

Permutations, Traces and

Partitions

Permutations, and the wider symmetric group algebra C(Sn), have proved an important

tool in theoretical physics. For an overview of their varied applications see [62]. The

connection between symmetric and unitary groups established by Schur-Weyl duality

has played a major role in studying the BPS sector of N = 4 super Yang-Mills. The use

of permutations has been the key technical step in allowing the explicit construction of

operator bases, calculation of correlators and understanding the restrictions imposed by

finite N [22,29,32,42–46,56,57,59,60]. They have also, through the lens of AdS/CFT

provided a new viewpoint on the stringy exclusion principle and have enabled further

study into giant gravitons and the BPS sector of strongly coupled type IIB string theory

on AdS5 × S5.

We begin this chapter by reviewing how one constructs multi-traces from permu-

tations in Sn acting on the n-fold tensor product of the fundamental of U(N). We

describe how invariances on C(Sn) result in different permutation algebras controlling

this construction, and in particular define the algebras relevant for the half and quarter-

BPS sectors of N = 4 super Yang-Mills. Partitions are then discussed along with their

Young diagrams. Next we do a quick review of Sn representation theory, followed by

an explanation of Schur-Weyl duality and the consequences for both operators and al-

gebras when we allow n < N . Finally, we detail the uses of permutations in calculating

correlators, before finishing with a description of symmetric functions and their relation

to the half-BPS sector.
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2.1 Constructing traces from permutation algebras

Let V be the carrier space for the N -dimensional fundamental representation of U(N),

and consider the n-fold tensor product V ⊗n. Sn acts on this space by permutation of

the factors. We can write this action in components as

σIJ = σi1i2...inj1j2...jn
= δi1jσ(1)

δi2jσ(2)
. . . δinjσ(n)

= δ
iσ−1(1)

j1
δ
iσ−1(2)

j2
. . . δ

iσ−1(n)

jn
(2.1.1)

For permutations, we use the multiplication convention (στ)(i) = τ(σ(i)), or equiva-

lently (στ)IK = σIKτ
K
J .

By conjugating operators on the tensor space, Sn can act on these as well. Consider

n matrices Z1, Z2, . . . , Zn in the adjoint of U(N), and write Z for the tensor product

Z1 ⊗ Z2 ⊗ · · · ⊗ Zn. Then

(
σZσ−1

)I
L

= δ
iσ−1(1)

j1
. . . δ

iσ−1(n)

jn
(Z1)j1k1

. . . (Zn)jnkn δ
k1
lσ−1(1)

. . . δknlσ−1(n)

= (Z1)
iσ−1(1)

lσ−1(1)
(Z2)

iσ−1(2)

lσ−1(2)
. . . (Zn)

iσ−1(n)

lσ−1(n)

=
(
Zσ(1)

)i1
l1

(
Zσ(2)

)i2
l2
. . .
(
Zσ(n)

)in
ln

= [σ (Z)]IL (2.1.2)

where the last line defines σ (Z).

In order to construct a U(N) trace operator from this, we simply take the V ⊗n

trace of a permutation σ multiplied by Z.

Oσ = Tr (σZ) = (Z1)i1iσ(1)
(Z2)i2iσ(2)

. . . (Zn)iniσ(n)
(2.1.3)

The cycles of σ determine the structure of the trace. A single cycle (a1, a2, . . . , ak) in

σ leads to the single trace TrZa1Za2 . . . Zak , while a permutation with several cycles

leads to a multi-trace. For example

σ = (1, 2, . . . , n) Tr(σZ) = TrZ1Z2 . . . Zn (2.1.4)

σ = (1, 2, 3, 4)(5, 6, 7, 8) Tr (σZ) = (TrZ1Z2Z3Z4) (TrZ5Z6Z7Z8) (2.1.5)

σ = (1, 5, 3)(2, 6) Tr(σZ) = (TrZ1Z5Z3) (TrZ2Z6) (TrZ4) (2.1.6)

We can reverse this relation. Given a multi-trace of Z1, Z2, . . . , Zn in which each matrix

only appears once, we can identify the permutation σ ∈ Sn which produces this trace.

Therefore the full space of degree (1, 1, . . . , 1) multi-traces is in correspondence with

the group algebra C(Sn) via the identification Oσ ↔ σ.

An intuitive way to think about the index contractions in (2.1.3) is to use a con-

traction diagram like the one given in figure 2.1. The permutation σ connects the index
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σ

...

...

Z1 Z2 Zn

Figure 2.1: Diagrammatic representation of the index contraction of n matrices with a
permutation. Each vertical line represents an index, while the horizontal lines at the top
and bottom indicate we trace over these indices.

lines of the different Zi. By connecting the corresponding index lines at the top and

bottom, one acquires a set of loops, each corresponding to a single trace factor.

A simple consequence of this identification between permutations and traces is

obtained by setting Z1 = Z2 = · · · = Zn = I the identity matrix. Then each trace

factor contributes N , and we get

Trσ = σi1i2...ini1i2...in
= N c(σ) (2.1.7)

where c(σ) is the number of cycles in σ.

Similarly, to study an M -matrix system X1, X2, . . . , XM , we set each of the Zi to

be equal to one of the Xj . To study the degree (n1, n2, . . . , nM ) subspace of the matrix

system, we set Z1, Z2, . . . , Zn1 equal to X1; Zn1+1, . . . , Zn1+n2 equal to X2 and so on.

Looking at X, we see that there is a subgroup of Sn that leaves this invariant under

the action defined in (2.1.2). For any τ ∈ Sn1 × Sn2 × · · · × SnM , we have τ(X) = X.

Therefore

Oσ = Oτστ−1 (2.1.8)

where the notation Oσ = Tr (σX) is used to denote both the n and M -matrix operator.

It will be clear from context which is under discussion.

It follows that the degree (n1, n2, . . . , nM ) subspace of the M -matrix system cor-

responds to the subalgebra of C(Sn) invariant under conjugation by the subgroup

H = Sn1 × Sn2 × · · · × SnM . This is denoted

An1,n2,...,nM = AH =
{
α : α = σασ−1 for all σ ∈ H

}
(2.1.9)

The case M = 1 describes the half BPS sector of N = 4 SYM. The conjugating
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subgroup is the entirety of Sn, so the subalgebra of interest is invariant under

α→ σασ−1 σ ∈ Sn (2.1.10)

The invariant algebra An is the centre of C(Sn), and can be described in terms of the

standard conjugacy classes of Sn or the irreducible representations, which are both

reviewed in section 2.3. The consequences of understanding this algebra in the setting

of the half BPS sector were first explored in [22].

When considering just the single complex matrix X, a permutation σ of cycle type

p = [λ1, λ2, . . . , λk] = [1p1 , 2p2 , . . . ] (p is a partition, introduced in section 2.2) produces

the trace

Tr(σX) = Tp =
k∏
i=1

TrXλi =
∏
i

(
TrXi

)pi (2.1.11)

Setting M = 2, we obtain the quarter BPS sector of N = 4 SYM. The invariant algebra

An1,n2 is invariant under the action

α→ σασ−1 σ ∈ Sn1 × Sn2 (2.1.12)

An1,n2 has been studied in [63] and we will review the conjugacy class and Fourier

description in sections 3.5.3 and 3.6.1 respectively.

For the 2-matrix case we call our matrices X and Y rather than X1 and X2, and

will use the notation X⊗n1Y ⊗n2 = X. The form of the traces arising from An1,n2 is

harder to describe, involving partitions labelled by the Lyndon words of a monoid on

two letters. We give this description in section 3.5.2.

The eighth BPS sector of N = 4 SYM is larger than just multi-traces of three ma-

trices, since it also includes fermion contractions [50]. However, the scalar component

can be found by setting M = 3. Many of the techniques used for the M = 2 case are

directly applicable here, and the results can be generalised very simply, so we do not

study this in detail.

Other subalgebras of C(Sn) become relevant when we consider the traces with

SO(N) or Sp(N) gauge group in chapter 5 or symmetrised traces in chapter 7.

2.2 Partitions

The conjugacy classes and irreducible representations of Sn are labelled by integer

partitions p of n, for which we use the standard notation p ` n.

We write partitions in two ways, either in components: p = [λ1, λ2, . . .], where the

λi are weakly decreasing, or in terms of the multiplicities of i as a component of p:

p = [1p1 , 2p2 , 3p3 , . . .]. To interchange between the two, p1 is the number of λs equal to

1, p2 is the number of λs equal to 2 etc.
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The sum of a partition p is denoted by

|p| =
∑
i

λi =
∑
i

ipi = n (2.2.1)

and the number of components by

l(p) = # of non-zero λi =
∑
i

pi (2.2.2)

Since all permutations of cycle type p have the same sign, we define the sign of a

partition to be the sign of any permutation with that cycle type. In terms of components

and multiplicities

(−1)p =
∏
i

(−1)λi+1 =
∏
i even

(−1)pi (2.2.3)

The Young diagram of a partition p is a visual representation, formed by arranging

boxes such that the number of boxes in each row corresponds to the components of the

partition. So for example the partition p = [4, 4, 2] has the Young diagram

Y (p) = (2.2.4)

We will not distinguish between a partition and its Young diagram, and will use the

terms interchangeably. We denote Young diagrams in the same way as a partition,

p ` n.

At various points in this thesis, we will place numbers within the boxes of a Young

diagram. This is called a Young tableau, and there are many different varieties that

we will come across. Rather than introduce them all here, we will wait until each type

is relevant and define them then.

For a partition p ` n, we denote the conjugate (transposed) partition by pc. Visu-

ally, this reflects the Young diagrams in the diagonal, for example

p = ←→ pc = (2.2.5)

The relation in terms of components is

λi(p
c) = (# components of p that are ≥ i) (2.2.6)

23



CHAPTER 2. MATHEMATICAL PRELIMINARIES: PERMUTATIONS, TRACES
AND PARTITIONS

Two partitions p = [λ1, λ2, . . . , λk] ` n and q = [µ1, µ2, . . . , µl] ` m can be combined

into a partition p+ q ` n+m by adding together the components

p+ q = [λ1 + µ1, λ2 + µ2, . . . ] (2.2.7)

If one partition has length greater than the other (e.g. k ≥ l), then a suitable number

of zeros is appended to the shorter partition in order to define the components needed

for the addition (e.g. µl+1 = · · · = µk = 0). Addition of partitions can be thought of

intuitively as concatenating their two Young diagrams horizontally.

For p ` n, we define the partition 2p ` 2n by

2p = p+ p (2.2.8)

which has components double that of p. For any positive integer k, we define the

partition kp ` kn similarly.

We could also combine Young diagrams by concatenating them vertically. This can

be formalised by considering p = [1p1 , 2p2 , . . . ] and q = [1q1 , 2q2 , . . . ] in terms of their

multiplicities. We define

p ∪ q =
[
1p1+q1 , 2p2+q2 , . . .

]
(2.2.9)

This notation for the two ways of ‘adding’ permutations was used in [64].

2.3 Sn representation theory

2.3.1 Conjugacy classes

The conjugacy classes in Sn are labelled by a partition p ` n, where the members of

the p conjugacy class are just the permutations with cycle type p. For σ ∈ Sn of cycle

type p the centraliser of σ is define to be the subgroup of Sn that commutes with σ.

The form of this group is given in section 3.5. For now, we only need the size of the

centraliser, which is

zp =
∏
i

ipipi! (2.3.1)

Using the orbit-stabiliser theorem [65] then tells us that the size of the conjugacy class

(number of elements in Sn with cycle type p) is n!
zp

.

2.3.2 Representations

The irreducible representations of Sn are also labelled by partitions. The dimension dR

of the representation R ` n is given in terms of the ‘hook lengths’ of the boxes in the

Young diagram of R. The hook length of a box b ∈ R is the number of boxes contained
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in the ‘hook’ of b, consisting of b, all boxes to the right of b in its row, and all boxes

below b in its column. For example, using the same Young diagram as in (2.2.4), the

hook lengths of each box are

6 5 3 2

5 4 2 1

2 1

(2.3.2)

Then HR is defined to be the product of the hook lengths of each box in R. So for

(2.3.2) we have HR = 14400.

The dimension dR is given by the hook length formula

dR =
n!

HR
(2.3.3)

This dimension can be interpreted combinatorially as the number of standard Young

tableaux of shape R. The Young basis given in appendix A.1 is an explicit basis for R

that demonstrates this dimensionality.

The two simplest representations of Sn are the two 1-dimensional reps: the trivial

(symmetric), with R = [n] and the sign (anti-symmetric), with R = [1n].

It is well known that Sn representations are real and that the representation space

can be given an inner product so as to make them orthogonal. The matrix representa-

tives of group or group algebra elements are denoted by DR(σ). These matrices satisfy

the orthogonality relations

∑
σ∈Sn

DR
ij(σ)DS

kl(σ
−1) =

n!

dR
δRSδilδjk (2.3.4)

We write χR(σ) = TrDR(σ) for the character of a permutation. The orthogonality

relations for characters are

1

n!

∑
σ∈Sn

χR(σ)χS(σ) = δRS
∑
R`n

χR(σ)χR(τ) = zpσδpσpτ (2.3.5)

where pσ is the cycle type of σ. Setting τ = 1 in the right hand equation, we obtain

the resolution of the identity

1

n!

∑
R`n

dRχR(σ) = δ(σ) (2.3.6)

where δ is a function defined on Sn by

δ(σ) =

1 σ = 1

0 otherwsie
(2.3.7)
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The character of a permutation in an irrep R depends only on its cycle type, so taking

σ ∈ Sn to be of cycle type p ` n we define

χR(p) = χR(σ) (2.3.8)

This notation neatens the orthogonality relations (2.3.5)

∑
p`n

1

zp
χR(p)χS(p) = δRS

∑
R`n

χR(p)χR(q) = zpδpq (2.3.9)

For a representation R ` n, the conjugate representation Rc is isomorphic to the tensor

product of R with the sign representation, so

Rc = [1n]⊗R DRc

ij (σ) = (−1)σDR
ij(σ) χRc(p) = (−1)pχR(p)

(2.3.10)

2.3.3 Centre of C(Sn)

The centre of C(Sn) is the sub-algebra that commutes with everything in C(Sn). A

basis for the algebra can be found by summing over the conjugacy classes. Using any

τ ∈ Sn of cycle type p, we define

αp =
1

n!

∑
σ∈Sn

στσ−1 (2.3.11)

By reparameterising the sum to run over σ′ = πσ instead of σ, it follows that αp

commutes with any permutation π ∈ Sn.

In the 1-matrix system, when the centre is the algebra of interest, multiplying αp

by X and tracing over V ⊗n produces a simple multi-trace, just as seen in (2.1.11)

Tr (αpX) = Tp =
∏
i

(
TrXi

)pi (2.3.12)

There is another important basis for the centre, constructed using the irreducible rep-

resentations R ` n
PR =

dR
n!

∑
σ∈Sn

χR(σ)σ (2.3.13)

It follows from the conjugation invariance of χR that PR commutes with the whole of

Sn. Multiplying PR by X and tracing over V ⊗n, we obtain the Schur operators

OR =
1

dR
Tr (PRX) =

1

n!

∑
σ∈Sn

χR(σ)Tr (σX) (2.3.14)

where we have normalised the operators with respect to the two-point functions intro-
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duced later in section 2.6.

These were first defined in [22] and are named Schur operators since when written

as a function of the eigenvalues of X, they are exactly the symmetric Schur functions

sR. For more on symmetric functions and the relation they have to the half-BPS sector

see section 2.7.

It is a simple consequence of Schur’s lemma and the orthogonality relations (2.3.5)

that PR is represented by the identity matrix in R and by the zero matrix in all other

irreps

DS(PR) = δRS (2.3.15)

It also follows from the orthogonality relations (2.3.5) that the PR satisfy the multipli-

cation identity

PRPS = PSPR = δRSPR (2.3.16)

This means that in any representation of Sn, PR acts as a projector onto the R subspace.

There is a particular element of the centre that will be especially important

Ω =
∑
σ∈Sn

(Trσ)σ =
∑
σ∈Sn

N c(σ)σ (2.3.17)

where c(σ) = l(p(σ)) is the number of cycles in σ, and we have used (2.1.7) to evaluate

the trace of σ over V ⊗n. Ω commutes with Sn because conjugate permutations have

the same c(σ)

αΩα−1 =
∑
σ∈Sn

N c(σ)ασα−1 =
∑
σ∈Sn

N c(α−1σα)σ = Ω (2.3.18)

Since Ω commutes with Sn, by Schur’s lemma it must act proportionally to the identity

on any irrep R ` n. The constant of proportionality is given in terms of the contents of

the boxes of the Young diagram of R. Let (r, c) label the box of R in the rth row and

the cth column. Then the content of box (r, c) is r− c. So for example for R = [4, 4, 2],

the contents of each box are
0 1 2 3

−1 0 1 2

−2 −1

(2.3.19)

For a box b ∈ R, the contents of b is written cb. Then in rep R ` n, Ω has representative

DR (Ω) =
∏
b∈R

(N + cb) := fR(N) (2.3.20)

where this serves as a definition for the polynomial fR(N). This result is explained in

more detail using Jucys-Murphy elements in appendix A.
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Since PR is the projector onto the R representation of Sn, it follows from (2.3.20)

that

Ω =
∑
R

fR(N)PR (2.3.21)

In a Young diagram of length l(R) > N , the (N + 1)th box in the first column has

content −N , and therefore the factor (N + cb) in (2.3.20) vanishes. Consequently,

fR(N) = 0 if l(R) > N (2.3.22)

So Ω = 0 in representations with l(R) > N . The significance of this is discussed in

section 2.6.

In Ω we see our first example of an N -dependent element of C(Sn). There are two

possible interpretations of N in this context. Firstly, we can view N as a number given

by the rank of the gauge group U(N). This is more useful when working with matrices.

Secondly, we can view N as a formal variable, in which case our correlators and other

gauge invariants are formal power series in this variable. This latter interpretation is

more helpful when working with permutation algebras.

2.4 Schur-Weyl duality

Schur-Weyl duality connects the representation theory of Sn with that of U(N), and is

the key mathematical link that allows us to talk about U(N) matrix invariants using

permutations.

2.4.1 U(N) representations

Irreducible representations of U(N) are labelled by partitions p with l(p) ≤ N , with

the sum |p| unrestricted. The dimension of the representation R is given by

d
U(N)
R =

fR
HR

(2.4.1)

where fR and HR are defined in (2.3.20) and (2.3.2) respectively.

Using the Hook length formula (2.3.3) and the expression for Ω in an Sn represen-

tation in (2.3.20), we can write

d
U(N)
R =

χR(Ω)

n!
(2.4.2)

Similarly to the Sn representation dimension formula (2.3.3), we can interpret this

dimensionality combinatorially as the number of semi-standard Young tableaux one can

construct using the letters 1, 2, . . . , N . These semi-standard tableaux are described in

28



CHAPTER 2. MATHEMATICAL PRELIMINARIES: PERMUTATIONS, TRACES
AND PARTITIONS

section 3.6.2, along with a corresponding Young basis that exhibits this dimensionality.

2.4.2 Schur-Weyl duality and the double centraliser theorem

Consider the tensor product space V ⊗n. As discussed in section 2.1, there is an action

of Sn on this space defined by permuting the factors. Since V carries the fundamental of

U(N), V ⊗n also carries the tensor product representation of U(N). This representation

is the diagonal action of a U(N) matrix on each of the tensor factors. Since the action

is the same on each factor, this will commute with any permutation of the factors.

Therefore V ⊗n is a representation of the direct product group Sn × U(N).

We give two statements of Schur-Weyl duality, the first of these is the nature of the

decomposition of V ⊗n into representations of Sn × U(N)

V ⊗n =
⊕
R`n

l(R)≤N

V Sn
R ⊗ V U(N)

R (2.4.3)

We already mentioned that the Sn and U(N) actions on V ⊗n commute. More formally,

we can say that Sn and U(N) both embed into the endomorphism algebra End (V ⊗n),

and that these two sub-algebras commute with each other. The second statement of

Schur-Weyl duality is that these two sub-algebras are each other’s centraliser within

End (V ⊗n). In simpler terms, if any A ∈ End (V ⊗n) commutes with the U(N) action,

it must be (the endomorphism corresponding to) an element of C(Sn). Similarly if A

commutes with Sn, it must be part of the algebra generated by the U(N) action.

The relation between these two forms of Schur-Weyl duality can be understood

by noting the form of the sum in (2.4.3). For a generic representation W of a direct

product group G×H, we can decompose W as

W =
⊕

RG,RH

VRG ⊗ VRH ⊗ V
mult
RG,RH

(2.4.4)

where RG and RH run over the irreducible representations of G and H respectively,

while V mult
RG,RH

is the multiplicity space whose dimension is just the multiplicity of the

representation RG⊗RH . If this multiplicity space has a dimension greater than 1, then

there are endomorphisms of W that act only on V mult
RG,RH

while keeping VRG , VRH fixed.

These endomorphisms must commute with both G and H, so they are not each other’s

centraliser within End (W ).

There is a second condition before we can conclude G and H are each other’s

centraliser. For a given representation RG of G that appears in the decomposition

(2.4.4), there must be a unique representation RH of H that pairs with RG. If this

were not the case, we could construct an endomorphism of W that commuted with

both G and H by swapping the RG components of RG ⊗RH,1 and RG ⊗RH,2.
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In the case of Schur-Weyl duality, the multiplicity spaces are one-dimensional, and

each R on the left corresponds to the same R on the right, and therefore the two algebras

are each others’ full centraliser. This is related to the double centraliser theorem, an

important result of abstract algebra.

In appendices D.3 and F.4, we see examples where we do have multiplicity spaces,

and have to consider the sub-algebras of End (W ) that commute with both G and H.

2.5 Finite N constraints

The Schur-Weyl decomposition (2.4.3) hides an important detail that we emphasise

here. In section 2.1 we explained how the relevant algebra for constructing multi-traces

in the half-BPS sector is the centre of C(Sn). In equation (2.3.13) we defined PR, the

elements of this algebra that we contract with X to give the Schur operators of [22].

However (2.4.3) states that when considering permutations acting on V ⊗n, only those

representations R with l(R) ≤ N contribute. Those PR with l(R) > N are represented

by the zero operator on V ⊗n, and thus the Schur operators with l(R) > N must vanish.

From an algebra point of view, this restricts us further to a subalgebra of the centre,

spanned by those PR with l(R) ≤ N . Since R ` n, this restriction only has any effect

when n > N , and we will use the term ‘large N ’ to refer to any N ≥ n, and ‘finite N ’

for any N < n.

There are similar cut-offs in the full C(Sn) algebra. This can be expressed using

the Fourier basis for C(Sn), defined by

βRij =
∑
σ∈Sn

DR
ij(σ)σ (2.5.1)

where R ` n and i, j are basis indices for the representation R. Then at finite N , the

Fourier basis is restricted to those R with l(R) ≤ N , and those R with l(R) > N are

removed from the algebra.

In more abstract terms, the Fourier basis is an explicit identification of the decom-

position of C(Sn) as a representation of Sn

C(Sn) =
⊕
R`n

V left
R ⊗ V right

R (2.5.2)

where V left
R indicates that this space is in the R representation of Sn under left mul-

tiplication of C(Sn), and in the trivial representation under right multiplication, while

for V right
R it is vice versa. At finite N , we consider the smaller algebra obtained by

removing the terms with l(R) > N from the sum (2.5.2).

The quarter-BPS algebra An1,n2 also gets reduced when we consider N < n. This

is described in more detail in section 3.6.1 when we define the restricted Schur basis.
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Schur-Weyl duality is a very nice way of introducing this finite N cut-off, but there

are other ways of understanding this result. We can see the vanishing of these operators

as a consequence of relations between multi-traces of degree > N when considering

N×N matrices. These relations come, for example, from the Cayley-Hamilton theorem.

We could also understand it as a result of the expansion of the projectors PR in terms

of Young symmetrisers, which involve anti-symmetrisation down the columns of R.

Therefore if l(R) > N , we have an anti-symmetrisation on more than N indices, which

must vanish for an object whose indices can only take N values.

The final interpretation of this result is in terms of the AdS/CFT correspondence.

Half-BPS operators are dual to giant gravitons, D3-branes that wrap an S3 in the S5

factor of AdS5 × S5 [17]. The length of a column in a Young diagram corresponds to

the angular momentum of the D3, which in turn determines the radius of the S3. This

radius is bounded from above by the radius of the S5, and this restriction limits the

column to length at most N . From this viewpoint, the restriction l(R) ≤ N is ensuring

that the S3 doesn’t expand beyond the S5 which contains it. This is called the stringy

exclusion principle [18], and finding the dual interpretation in terms of Young diagrams

was one of the major results of [22].

2.5.1 SEP-compatible bases

Throughout this thesis, we will define and use various different bases of degree n op-

erators; these will (nearly) all come with a partition label p ` n. They will also have

other labels that will depend on which space we are considering at the time; for now

we bundle these together in u.

For N < n, only a subset of the operators Op,u will be needed to form a basis,

specifically those with l(p) ≤ N . This means the operators with l(p) > N can be

written as a linear combination of the shortened basis

Op,u =
∑
q,v

l(q)≤N

cq,vp,uOq,v (2.5.3)

We call the basis SEP-compatible (where SEP stands for Stringy Exclusion Principle)

if cq,vp,u = 0 for all p, u, q, v, i.e. if the operators with l(p) > N vanish identically.

Intuitively, these bases are aligned along the direction of the finite N quotient, and in

this sense better capture the finite N behaviour of the space.

In general, multi-trace bases such as (2.3.12) are not SEP-compatible, while Young

diagram bases such as (2.3.14) are.
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2.6 Correlators

Starting with the generic n-matrix system, the correlator of two U(N) matrix fields is〈
(Zs)

k
l | (Zr)

i
j

〉
= δrsδ

i
lδ
k
j (2.6.1)

For two operators Oσ,Oτ of the form given in (2.1.3), this translates to

〈Oτ |Oσ〉 = δ(Ωστ−1) (2.6.2)

where Ω is defined in (2.3.17).

The properties of Ω encode the finite N cut-off into the inner product (2.6.2). In

(2.3.22) we explained how Ω vanishes in a representation R if l(R) > N . Therefore

(2.6.2) is identically zero for any operators that disappear after imposing the finite N

restrictions, or equivalently for any permutations in the l(R) > N sector of C(Sn).

Using the correspondence between Oσ and σ, (2.6.2) defines the physical inner

product on C(Sn). This means for large N we can work completely in C(Sn), and

largely forget about the matrices Z1, . . . , Zn. At finite N , if we wish to work purely

with permutation algebras, we must be careful to incorporate the restrictions imposed

by removing elements of the Fourier basis (2.5.1) with l(R) > N .

There is also the standard inner product on C(Sn), given by

〈τ |σ〉Sn = δ(στ−1) = δστ (2.6.3)

Reversing the correspondence between Oσ and σ, this defines the Sn inner product on

U(N) gauge-invariant operators. We denote this with a Sn subscript on the brackets.

After incorporating the finite N cut-off, the Sn inner product is

〈Oτ |Oσ〉Sn = δN (στ−1) (2.6.4)

where

δN (σ) =
1

n!

∑
R`n

l(R)≤N

dRχR(σ) (2.6.5)

From the resolution of the identity (2.3.6), this reduces to δ(σ) if N ≥ n.

From the definition (2.3.17), the large N expansion of Ω is

Ω = Nn

[
1 +O

(
1

N

)]
(2.6.6)

Therefore in the leading N limit, the physical inner product differs from the Sn inner

product only by a factor of Nn. This large N limit is called the planar limit, and we
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therefore often use the Sn inner product to give planar results. However the Sn inner

product is not the same as the planar inner product, since in the planar inner product

we would also take the leading N limit in any operator coefficients, while in the Sn inner

product we retain these N -dependencies. When all coefficients are N -independent, we

can use the Sn inner product to derive planar results.

From the definition (2.6.4), we see that Oσ and Oτ are orthogonal if σ 6= τ and

N ≥ n. So in the large N limit, different multi-traces are orthogonal.

For all correlators here, and in subsequent chapters, we have suppressed the position

dependence as this is purely determined by conformal invariance. For a thorough

description of why we can do this see [22].

2.6.1 Half-BPS sector

Consider the 1-matrix system, as described in section 2.1, in which all the Zi become

X and the appropriate algebra is the centre of C(Sn). When calculating correlators

we must now consider Wick contractions between the copies of X. This leads to the

physical and Sn inner products

〈Oτ |Oσ〉 =
∑
α∈Sn

δ
(
Ωασα−1τ−1

)
(2.6.7)

〈Oτ |Oσ〉Sn =
∑
α∈Sn

δN
(
ασα−1τ−1

)
(2.6.8)

We can see that in the Sn inner product, Oσ and Oτ are orthogonal if σ and τ are in

different conjugacy classes and N ≥ n. So as in the general n-matrix case, different

multi-traces are orthogonal to each other in the planar limit. Using the notation Tp

defined in (2.1.11) the normalisation is

〈Tp|Tq〉Sn = zpδpq (2.6.9)

where we have used the result from section 2.3.1 that the size of the centraliser for a

permutation of cycle type p is zp. Therefore zp has a physical interpretation in the

planar limit as the norm of multi-trace operators.

The physical inner product mixes traces of different types and does not admit a

nice formula on multi-traces.

For the Schur operators defined in (2.3.14), we can use orthogonality of characters,

(2.3.5), and the representation of Ω in a representation R, (2.3.20), to show

〈OR|OS〉 = δRSfR (2.6.10)

〈OR|OS〉Sn =

δRS l(R) ≤ N

0 l(R) > N
(2.6.11)
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So the Schur basis is exactly orthogonal to all orders in N using both inner products.

Three and higher point function can be calculated using product rules involving

Littlewood-Richardson coefficients. For a description of these rules, and associated

subtleties relating to the position dependence of the scalar field involved, see [22].

2.6.2 Quarter-BPS sector

In the 2-matrix system we set n1 of the Zi to be X and n2 of the Zi to be Y . This

leads to the physical and Sn inner products

〈Oτ |Oσ〉 =
∑

α∈Sn1×Sn2

δ
(
Ωασα−1τ−1

)
(2.6.12)

〈Oτ |Oσ〉Sn =
∑

α∈Sn1×Sn2

δN
(
ασα−1τ−1

)
(2.6.13)

We study these further in section 3.5.3 for quarter-BPS multi-trace operators and sec-

tion 3.6 for the restricted Schur and covariant bases, generalisations of the half-BPS

Schur basis to the quarter-BPS sector.

2.7 Symmetric functions

The half-BPS sector is composed of multi-traces of a single complex matrix X. Diago-

nalising in terms of its eigenvalues, we have

X =



x1 0 0 . . . 0

0 x2 0 . . . 0

0 0 x3 . . . 0
...

...
...

. . .
...

0 0 0 . . . xN


(2.7.1)

Thus any multi-trace of X can instead be written as a function of the eigenvalues

x1, x2, . . . , xN . These functions must be completely symmetric in the N variables, and

are called symmetric functions. The theory of symmetric functions is well studied in

mathematics, and they have many interesting properties [64]. In this section we review

some basic concepts from this field.

Symmetric functions are defined as polynomials in the N variables x1, x2, x3, . . . , xN

that are invariant under all permutations of the xi. More explicitly, given a polynomial

f(x1, x2, . . . , xN ), f is a symmetric function if

f(x1, x2, . . . , xN ) = f(xσ(1), xσ(2), . . . , xσ(N)) (2.7.2)
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for all σ ∈ SN .

We can take the infinite N limit of this definition by defining symmetric functions

as formal power series in infinitely many variables x1, x2, . . . . To return to the finite

N case (or to reduce a symmetric function in M > N variables to one in N variables),

we can set xN+1 = 0, xN+2 = 0, . . . .

There are many different bases for the ring of symmetric functions, of which we will

look at three. In each of these bases, each basis element consists of polynomials of a

single degree, n, and the basis for the degree n subspace is labelled by the partitions of

n.

2.7.1 Monomial basis

We start with the monomial basis. Given a partition p = [λ1, λ2, . . . , λk] of n, take the

monomial

xλ1
1 xλ2

2 . . . xλkk (2.7.3)

and then add all distinct permutations of the lower indices to form a symmetric function.

So for example if we take p = [3, 1, 1] (and use N = 3 for simplicity), the associated

monomial basis element is

m[3,1,1] = x3
1x2x3 + x1x

3
2x3 + x1x2x

3
3 (2.7.4)

For p = [1p1 , 2p2 , . . . ], we can define the monomial functions more formally by

mp =

(∏
i

1

pi!

) ∑
σ∈SN

xλ1

σ(1)x
λ2

σ(2) . . . x
λl(p)
σ(l(p)) (2.7.5)

where N ≥ l(p) and the normalisation in front accounts for non-trivial coefficients

introduced by redundancies in the components of p.

For future convenience, we also define the rescaled monomial function Mp to be

(2.7.5) without the normalisation factor.

Mp =
∑
σ∈SN

xλ1

σ(1)x
λ2

σ(2) . . . x
λl(p)
σ(l(p)) (2.7.6)

The notion of SEP-compatibility defined in (2.5.1) applies equally well to symmetric

functions as it does to gauge-invariant operators. Since the definitions (2.7.5) and

(2.7.6) involve l(p) distinct xs, if N < l(p), some of these are zero, and therefore

mp = Mp = 0. Hence the monomial symmetric functions are an SEP-compatible basis.
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2.7.2 Power-sum basis

The second basis we consider is the power-sum basis. This is constructed from polyno-

mials of the form

Tk =

N∑
i=1

xki (2.7.7)

Note we use a T rather than the more standard P to denote the power-sum functions.

This is to emphasise the relations between these symmetric functions and the multi-

trace operators of the half-BPS sector.

For a partition p = [λ1, λ2, . . . λk] = [1p1 , 2p2 , . . . ], the power-sum symmetric func-

tion is

Tp =
k∏
i=1

Tλi =
∏
i

(Ti)
pi (2.7.8)

Consider a N × N diagonal matrix X with entries xi, as in (2.7.1). Then (2.7.7) can

be written in terms of X as Tk = TrXk. For the general symmetric function (2.7.8) we

have

Tp =
∏
i

(
TrXi

)pi (2.7.9)

Identifying this with the multi-trace operators (2.1.11) provides the link between sym-

metric functions and the half-BPS sector of N = 4 super Yang-Mills with gauge group

U(N).

2.7.3 Schur basis

Finally, we look at the Schur basis. These are labelled by partitions R ` n, thought of

as representations of the symmetric group Sn.

sR =
∑
p`n

1

zp
χR(p)Tp (2.7.10)

where zp is defined in (2.3.1). Through the identification of Tp with the multi-trace

operator (2.1.11) and noting that the size of the p conjugacy class in Sn is n!
zp

, we see

sR are exactly the Schur basis (2.3.14) for half-BPS states

OR = sR(x1, x2, . . . , xN ) (2.7.11)

Since the Schur and monomial functions form a basis for the degree n symmetric func-

tions, there is a basis change matrix transforming between them. This is given by the

Kostka numbers KRp

sR =
∑
p`n

KRpmp (2.7.12)
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The Kostka numbers have a combinatoric interpretation in terms of the number of

semi-standard Young tableaux of shape R and evaluation p. These Young tableaux are

defined in section 3.6.2.

As discussed in section 2.5 for the equivalent Schur operators, the Schur basis is

SEP-compatible.

The Schur functions are also connected to the characters of U(N) representations.

Consider a matrix U ∈ U(N) and the projector PR ∈ C(Sn), defined in (2.3.13), acting

on the tensor product V ⊗n. Using the Schur-Weyl decomposition (2.4.3), we have

TrV ⊗nPRU =
(

Tr
V SnR

PR

)(
Tr

V
U(N)
R

U
)

= dR χ
U(N)
R (U) (2.7.13)

where χ
U(N)
R is the character of the U(N) representationR. We can also write TrV ⊗nPRU

as a sum over permutations

dRχ
U(N)
R (U) =

dR
n!

∑
σ∈Sn

χSnR (σ)TrV ⊗n (σU) (2.7.14)

which is dR times the Schur operators defined in (2.3.14), with X replaced by U .

Since the Schur operators are Schur functions in the eigenvalues of X, it follows

that

χ
U(N)
R (U) = sR (u1, u2, . . . , uN ) (2.7.15)

where u1, u2, . . . , uN are the eigenvalues of U .

A formula for the multiplication of Schur function in terms of Littlewood-Richardson

coefficients is given in appendix D.1.
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Chapter 3

Structure, combinatorics and

correlators of the free field

quarter-BPS sector with U(N)

gauge group

All fields in the N = 4 super Yang-Mills theory lie in the adjoint representation of the

gauge group. Therefore gauge invariant operators are constructed by taking a trace

over words on the alphabet of local operators. This forms a strong connection between

the classification of gauge invariant operators and the combinatorics of words. For more

on the links between these two topics see [61,66,67].

The counting of quarter-BPS operators in the planar free field limit was given in

terms of an infinite product generating function in [61].

FU(N)(x, y) =
∞∏
k=1

1

1− xk − yk
(3.0.1)

The individual factors in the product are obtained by substituting xk, yk into a root

function, given by (1− x− y)−1 . In [68], this root function was found to be a generic

feature in free quiver gauge theories with U(N) gauge groups, and an interpretation of

the root function in terms of word counting was given in [69]. This combinatorics of

gauge invariants is closely related to paths on graphs, which have interesting number

theoretic aspects studied recently [70].

Consider the root function
1

1− x− y
(3.0.2)

The coefficient of xn1yn2 is
(
n
n1

)
, which counts the number of different ways of ordering
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n1 xs and n2 ys, or equivalently the number of different words that can be made from

n1 x̂s and n2 ŷs, in the space of words generated freely by two generators x̂, ŷ. This

space of words form a monoid, where the product is given by concatenation.

Consider the implications of interpreting the whole infinite product FU(N)(x, y) in

terms of words. The coefficient of x2n1y2n2 in (1 − x2 − y2)−1 counts the number of

words formed from n1 x̂s and n2 ŷs, so now the letters have weight 2. We denote the x̂s

and ŷs with weight one by x̂1 and ŷ1 and those with weight 2 by x̂2 and ŷ2. Multiplying

the two generating functions then counts words made from all four available letters,

where the weight 1 letters commute with weight 2 letters. So the coefficient of xn1yn2

in
1

(1− x− y)(1− x2 − y2)
(3.0.3)

counts words constructed from n1,1 x̂1s, n2,1 ŷ1s, n1,2 x̂2s and n2,2 ŷ2s such that n1,1 +

2n1,2 = n1 and n2,1+2n2,2 = n2, subject to an equivalence between two words when they

are obtained from each other by commuting letters of different weights (equivalently,

we could say all weight 1 letters precede all weight 2 letters).

Repeating this process, we see that FU(N)(x, y) counts words constructed from x̂s

and ŷs of all weights (i.e. x̂k, ŷk with k any positive integer), where within each level,

x̂k and ŷk are non-commutative, but different levels commute with each other. We will

refer to this kind of word counting problem as an integrally-graded word combinatorics.

A natural problem is to give a bijection between the words in this counting and the

traces of two matrices X,Y in the large N limit. This is given in section 3.3.

The first part of this chapter, section 3.1, is devoted to understanding the structure

of the multi-traces in the large N quarter-BPS sector, and in particular how the entire

space is related to the much smaller set of aperiodic single traces. Along the way we

derive the Hilbert series for various intermediate structures, which are quarter BPS

generating functions. In section 3.3, we show the integrally-graded words exhibit the

exact same structure, with Lyndon words playing the role of aperiodic traces. The

bijection is then constructed by matching Lyndon words with aperiodic traces. This

bijection allows transferring the concatenation product on words to a non-commutative

product on traces.

In the second half of the chapter, we use the theory of permutations developed

in chapter 2 to describe the different bases one can use for the quarter-BPS sector.

Section 3.5 starts by considering the multi-trace basis, corresponding to a conjugacy

class description of the permutation algebra. This has a labelling set consisting of

a partition for each Lyndon word, generalising of the partition label of the half-BPS

sector to the quarter-BPS.

In section 3.6, we define two different orthogonal SEP-compatible bases for the

free field quarter-BPS sector, the restricted Schur basis first defined in [44,45] and the
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covariant basis introduced in [43, 46]. Both give different combinatoric expressions for

the dimension of the degree (n1, n2) subspace. We give the physical two-point functions

for both bases, expressed in terms of the Young diagram label R that they share. We

use these two bases in later chapters to study the orientifold quotient to SO(N)/Sp(N)

gauge theory and the U(N) theory at weak coupling.

This chapter consists of work originally presented in [1].

3.1 Structure of the space of U(N) multi-traces of two

matrices

We consider the global structure of the set of multi-traces, as well as how this structure

is reflected in (3.0.1). We find it is simplest to express this in the language of vector

spaces, so we consider T , the space spanned by the U(N) multi-traces.

The generating function (3.0.1) is the Hilbert series of T , where T is graded by how

many Xs and Y s appear in each multi-trace. More explicitly, we can split T into a

direct sum of subspaces T(n1,n2) spanned by the degree (n1, n2) multi-traces. Then the

Hilbert series is defined by

HT (x, y) =
∑
n1,n2

xn1yn2 DimT(n1,n2) (3.1.1)

Note that we use the term ‘Hilbert Series’ only with reference to graded vector spaces.

When the vector space also has the structure of an algebra, the Hilbert series imparts

information about the relations between the generating elements of the algebra. While

some of the vector spaces we consider do have an algebra structure, indeed T(n1,n2) is

isomorphic (as a vector space) to the algebra An1,n2 defined in section 2.1, we will not

focus on this aspect.

To describe the factorisation of multi-traces into single traces, the full space T is

divided into subspaces Tr spanned by multi-traces formed from r single traces.

T =

∞⊕
r=0

Tr (3.1.2)

T0 is the one-dimensional space spanned by 1, thought of as the trivial multi-trace (the

multi-trace containing no single traces). We define TST to be the space spanned by the

single traces, so that T1 is just TST . T2 contains multi-traces with two single traces in

their factorisation. Naively this space appears to be TST ⊗TST , but in this space there

is a distinction between t1⊗ t2 and t2⊗ t1, whereas given the two traces t1 and t2, there

is a unique multi-trace formed from their product. Instead we have T2 = Sym2 (TST ),

defined to be the symmetric part of TST ⊗ TST . Similarly, Tr = Symr (TST ), defined to
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be the completely symmetric part of (TST )⊗r. So we have

T = C⊕ TST ⊕ Sym2 (TST )⊕ . . .

=
∞⊕
r=0

Symr (TST )

:= Sym (TST ) (3.1.3)

where (3.1.3) is the definition of the Sym operator on vector spaces.

The Hilbert series for TST is the generating function for the counting of single traces,

which is related to the counting of multi-traces via the plethystic exponential. Given

the generating function

f(x, y) =
∑
n1,n2

An1,n2x
n1yn2 (3.1.4)

for the single traces, the generating function for the multi-traces is given by

F (x, y) = PExp(f)(x, y) = exp

( ∞∑
k=1

f(xk, yk)

k

)

=
∏
n1,n2

1

(1− xn1yn2)An1,n2
(3.1.5)

We can see this diverges if f(0, 0) = A0,0 6= 0. This is expected, since a single trace

operator of weight 0 would lead to an infinite number of multi-trace operators of weight

0. Since there is no single trace operator containing no matrices, this is not a problem.

For an explanation of why the plethystic exponential takes the single trace counting

to the multi-trace counting, and for more details on the interesting properties of the

plethystic exponential, see [71,72].

The plethystic exponential can be inverted using the plethystic logarithm

f(x, y) = PLog(F )(x, y) =

∞∑
k=1

µ(k)

k
logF (xk, yk) (3.1.6)

where µ is the Möbius function defined in (B.0.3). The proof that (3.1.5) and (3.1.6) are

inverses of each other comes from the identity (B.0.4). See appendix B for a detailed

description of the useful properties of the Möbius function.

The Hilbert series for T and TST are related by

HT = PExp (HTST ) HTST = PLog (HT ) (3.1.7)

Now consider the structure of TST . A single trace can be written as

TrW k (3.1.8)
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where W is an aperiodic matrix word, and k is the number of periods. The number

of periods and the aperiodic matrix word (which is only defined up to cyclic rotations)

identify the trace. Therefore we can write

TST = K ⊗ T (1)
ST (3.1.9)

where T
(1)
ST is spanned by the aperiodic single traces and K is spanned by the positive

integers. Consider an element k ⊗ w, where w is an aperiodic single trace of weight

(n1, n2), then the weight of k ⊗ w is (kn1, kn2). So the tensor factors interact non-

trivially with respect to the weightings. Taking account of this, the Hilbert series of

TST and T
(1)
ST are related by

HTST (x, y) =
∞∑
k=1

H
T

(1)
ST

(xk, yk) (3.1.10)

where the kth term in the sum corresponds to the subspace k ⊗ T (1)
ST of TST . Defining

the coefficients of the two Hilbert series by

HTST (x, y) =
∑
n1,n2

An1,n2x
n1yn2 H

T
(1)
ST

(x, y) =
∑
n1,n2

an1,n2x
n1yn2 (3.1.11)

the relation (3.1.10) becomes

An1,n2 =
∑

d|n1,n2

an1
d
,
n2
d

(3.1.12)

where d|n1, n2 means d is a divisor of both n1 and n2.

This relation can be inverted using the Möbius inversion formula (B.0.8) to get

an1,n2 =
∑

d|n1,n2

µ(d)An1
d
,
n2
d

(3.1.13)

In terms of the Hilbert series, this becomes

H
T

(1)
ST

(x, y) =

∞∑
k=1

µ(k)HTST (xk, yk) (3.1.14)

We call H
T

(1)
ST

the Möbius transform of HTST

H
T

(1)
ST

=M (HTST ) HTST =M−1
(
H
T

(1)
ST

)
(3.1.15)
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In full, T can be decomposed as

T = Sym
(
K ⊗ T (1)

ST

)
(3.1.16)

and the corresponding decomposition in the generating function is

HT = PExp
[
M−1

(
H
T

(1)
ST

)]
= PExp

[ ∞∑
k=1

H
T

(1)
ST

(xk, yk)

]

=

∞∏
k=1

PExp
[
H
T

(1)
ST

]
(xk, yk) (3.1.17)

The expressions (3.1.16) and (3.1.17) reflect splitting the multi-traces into single traces,

and then decomposing the single traces by the number of periods. This can be done

the other way round. A multi-trace can be split into factors, where each factor consists

only of single traces with a specified number of periods. These factors can then be

decomposed into those single traces. Doing things in this order gives the structure

T =
[
T (1)

]⊗K
:=
[
Sym

(
T

(1)
ST

)]⊗K
(3.1.18)

where by V ⊗K , we mean

V ⊗K = V1 ⊗ V2 ⊗ V3 ⊗ . . . =

∞⊗
k=1

Vk (3.1.19)

and each Vk is a copy of V but with all weights multiplied by k. The Hilbert series of

V ⊗K is then given by

HV ⊗K (x, y) =
∞∏
k=1

HV (xk, yk) (3.1.20)

Just as for the sum (3.1.10), we can invert this

HV (x, y) =

∞∏
k=1

[
HV ⊗K (xk, yk)

]µ(k)
(3.1.21)

The proof of this inversion relies on the multiplicative version of the Möbius inversion

formula, (B.0.6). We say HV is the multiplicative Möbius transform of HV ⊗K

HV =Mmult (HV ⊗K ) HV ⊗K =M−1
mult (HV ) (3.1.22)
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Using this notation, the generating function version of (3.1.18) is

HT =M−1
mult (HT (1)) =M−1

mult

[
PExp

(
H
T

(1)
ST

)]
HT (x, y) =

∞∏
k=1

HT (1)(xk, yk) =

∞∏
k=1

PExp
[
H
T

(1)
ST

]
(xk, yk) (3.1.23)

which matches (3.1.17). From that the (not immediately obvious) result

Sym (K ⊗ V ) = (SymV )⊗K (3.1.24)

corresponds to the trivial result

PExp

( ∞∑
k=1

HV (xk, yk)

)
=
∞∏
k=1

PExp [HV ] (xk, yk) (3.1.25)

Comparing (3.1.23) with (3.0.1) we see that HT (1) is what we called the root function.

Additionally, we find the root function is not the most fundamental object. It is

the plethystic exponential of H
T

(1)
ST

, and we should think of this Hilbert series as the

fundamental object of interest. It would be interesting to see whether this additional

structure of the root function has an analogue in the general quiver theory explored

in [69].

The structure described above, both for the vector spaces and their associated

Hilbert series, is summarised in figure 3.1.

3.2 Generating functions at large N

In figure 3.1 and the work leading to it, we showed the relations between the vector

spaces T , TST , T (1) and T
(1)
ST and their associated Hilbert series, which are the quarter

BPS generating functions. Since these relations are invertible, we can find all the

Hilbert series from just one of them. We already know from (3.0.1) that

HT (x, y) = F (x, y) =
∞∏
k=1

1

1− xk − yk
(3.2.1)

which counts the full set of 2-matrix U(N) multi-traces. Comparing with (3.1.23), we

see that

HT (1)(x, y) =
1

1− x− y
(3.2.2)

which counts aperiodic multi-traces. This allows us to interpret the product in (3.2.1).

The factor (1 − x − y)−1 counts multi-traces constructed only from aperiodic single

traces, while the factor (1−xk−yk)−1 counts multi-traces constructed only from single
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T
(1)
ST

H
T

(1)
ST

Counts aperiodic single traces

TST = K ⊗ T (1)
ST

HTST =M−1
(
H
T

(1)
ST

)
Counts single traces

T (1) = Sym
(
T

(1)
ST

)
HT (1) = PExp

(
H
T

(1)
ST

)
Counts aperiodic multi-traces

T = Sym
(
K ⊗ T (1)

ST

)
= Sym

(
T

(1)
ST

)⊗K
HT = PExp

[
M−1

(
H
T

(1)
ST

)]
=M−1

mult

[
PExp

(
H
T

(1)
ST

)]
Counts all multi-traces

Tensor with K

M−1

Sym

PExp

Sym

PExp

Tensor power of K

M−1
mult

Figure 3.1: Diagram summarising the structure of T , the space of U(N) 2-matrix

multi-traces, and its relation to T
(1)
ST , the space of U(N) aperiodic single traces. Each

box contains the vector space in question, the corresponding Hilbert series and the trace
description of what these are counting. The outer labels on the arrows show the vector
space operations to travel between the boxes, while the inner labels show the equivalent
Hilbert series operations.
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traces with k periods.

Applying the plethystic logarithm to (3.2.1) and (3.2.2) gives

HTST (x, y) =
∞∑
l=1

µ(l)

l
log

( ∞∏
k=1

1

1− xkl − ykl

)

= −
∞∑

k,l=1

µ(l)

l
log
(

1− xkl − ykl
)

= −
∞∑
d=1

log
(

1− xd − yd
)∑

l|d

µ(l)

l

= −
∞∑
d=1

φ(d)

d
log
(

1− xd − yd
)

(3.2.3)

H
T

(1)
ST

(x, y) = −
∞∑
d=1

µ(d)

d
log
(

1− xd − yd
)

(3.2.4)

where in the first calculation we have changed variables from (k, l : 1 ≤ k, l ≤ ∞) to

(d, l : 1 ≤ l ≤ ∞, l|d) by setting d = kl. We have also used the identity (B.0.15), and

φ(d) is the Euler totient function defined in (B.0.14).

These two series (3.2.3) and (3.2.4) count single traces and aperiodic single traces

respectively. Later it will be important to have explicit formulae for the coefficients

An1,n2 , an1,n2 of these series as defined in (3.1.11). Expanding the logarithm in (3.2.3)

and reparameterising

HTST (x, y) =
∞∑

d,k=1

φ(d)

dk
(xd + yd)k

=
∞∑

d,k=1

φ(d)

dk

k∑
r=0

(
k

r

)
xdryd(k−r)

=
∑
n1,n2

xn1yn2
1

n

∑
d|n1,n2

φ(d)

( n
d
n1
d

)
(3.2.5)

where the sum excludes n = n1 + n2 = 0. Similarly we find

H
T

(1)
ST

(x, y) =
∑
n1,n2

xn1yn2
1

n

∑
d|n1,n2

µ(d)

( n
d
n1
d

)
(3.2.6)

Comparing with (3.1.11), we see that, for n 6= 0

An1,n2 =
1

n

∑
d|n1,n2

φ(d)

( n
d
n1
d

)
(3.2.7)
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an1,n2 =
1

n

∑
d|n1,n2

µ(d)

( n
d
n1
d

)
(3.2.8)

and A0,0 = a0,0 = 0. The combinatoric interpretation of these sequences is as follows:

an1,n2 is the number of aperiodic single traces that can be constructed from n1 Xs and

n2 Y s, while An1,n2 is the number of single traces (with any number of periods) that

can be constructed from n1 Xs and n2 Y s. Tables of values for these sequences are

given in appendix C. They are related by (3.1.12) and (3.1.13).

The generating functions (3.2.1) and (3.2.3) were first presented in [61], while the

properties of (3.2.2) and generalisations were studied in [69]. We believe this is the first

time (3.2.4) has been interpreted in the context of the quarter BPS sector of N = 4

super Yang-Mills, though it has been found in other mathematical contexts [73].

3.3 Bijection between words and traces

The result of section 3.1 is to identify the aperiodic single traces as the fundamental

building block from which we can construct the space of all multi-traces. The equivalent

objects in the integrally-graded monoid of words are Lyndon words. We define these,

exhibit how these play the same role as aperiodic traces, and then give the bijection

between aperiodic traces and Lyndon words.

3.3.1 Lyndon words

For legibility, we will use the alphabet {0, 1} in the definition of Lyndon words, and

then replace this with {x̂, ŷ} when constructing the bijection.

A Lyndon word is an aperiodic word which is smallest (for x̂, ŷ, this is first alphabet-

ically) among cyclic rotations of its letters. For example the word 000101 is aperiodic

and is smaller than its cyclic rotations 001010, 010100, 101000, 010001,100010, and is

therefore a Lyndon word. The Lyndon words of length ≤ 5 are

0 , 1

01

001 , 011

0001 , 0011 , 0111

00001 , 00011 , 00101 , 00111 , 01011 , 01111

(3.3.1)

The utility of Lyndon words comes from the Chen-Fox-Lyndon theorem [74, Theorem

5.1.5] which states that all words can be uniquely factorised as a sequence of ‘non-

increasing’ Lyndon words.

In this context, ‘non-increasing’ refers to the lexicographic ordering of words. View
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the strings as being the binary expansions of numbers between 0 and 1. Then the

ordering is just the same as the ordinary ordering of numbers between 0 and 1. If two

words would form the same number after the decimal point (for example 01, 010, 0100,

etc), then the longer word is larger. When using letters x̂, ŷ, this ordering is just the

normal alphabetical order.

We provide some factorisations as an example

100101 = 1 ◦ 00101

110010 = 1 ◦ 1 ◦ 001 ◦ 0

011010 = 011 ◦ 01 ◦ 0

where we have used ◦ as the binary operation in the free monoid on 0 and 1. Note that

we require the restriction to non-increasing sequences of Lyndon words, otherwise for

example we could also factorise the first word as 1 ◦ 001 ◦ 01, or even 1 ◦ 0 ◦ 0 ◦ 1 ◦ 0 ◦ 1.

Now consider words constructed not just from x̂1, ŷ1, but also x̂2, ŷ2, x̂3, ŷ3, . . .. To

deal with this we use the set of Lyndon words for each level. The factorisation of

a multi-level word then consists of the factorisation of its level one component, the

factorisation of its level two component, etc.

3.3.2 Structure of the space of words

In section 3.1 we saw the structure of the vector space of traces. Clearly for a bijection

to exist between traces and words, the vector space of words must also have the same

structure. Define W to be the space spanned by the multi-level words. By repeating the

arguments of 3.1, the factorisation of words into (multi-level) Lyndon words corresponds

to

W = Sym (WLW ) (3.3.2)

where WLW is the space spanned by the Lyndon words of all levels. Now a levelled

Lyndon word is identified by its level and an un-levelled Lyndon word on just x̂, ŷ. As

in section 3.1, this corresponds to

WLW = K ⊗W (1)
LW (3.3.3)

where the weight of a levelled Lyndon word k ⊗ l is given by k times the weight of the

un-levelled Lyndon word l. This is exactly the structure we saw in T .

3.3.3 Bijection between Lyndon words and aperiodic single traces

An aperiodic trace is equivalent to an aperiodic matrix word constructed from X and

Y up to cyclic rotations. In particular we can choose a representative from the orbit
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of cyclic rotations as that which is alphabetically smallest (this is equivalent to the

ordering as defined in section 3.3.1 with X replaced by 0 and Y by 1). Then the

aperiodic word, by definition, is just a Lyndon word on the two letters X and Y .

Replacing those letters with x̂ and ŷ gives the bijection.

In order to reconstruct the full bijection, we just match the two factorisations (words

into Lyndon words and multi-traces into single traces) and the two level structures

(periodicities and word level).

3.3.4 Products across the bijection

This bijection allows the definition of an interesting and surprising non-commutative as-

sociative product on the quarter-BPS multi-traces. The integrally-graded word monoid

has a non-commutative product given by concatenation, and through the bijection we

can investigate this product on the other side. Due to the factorisation properties of

Lyndon words, this has some unusual behaviours, very different from the standard prod-

uct. We give some examples below, using only aperiodic traces as multiplying traces

with different numbers of periods will just revert to ordinary trace multiplication.

(TrXY )n ◦ TrY = Tr(XY )nY (3.3.4)

TrY ◦ (TrXY )n = (TrXY )n TrY (3.3.5)

(TrXY )n ◦ TrX = (TrXY )n TrX (3.3.6)

TrX ◦ (TrXY )n = TrX(XY )n (3.3.7)

TrXY TrX3Y ◦ TrX2Y = TrXY TrX3Y X2Y (3.3.8)

TrX2Y ◦ TrXY TrX3Y = TrX2Y XY TrX3Y (3.3.9)

We see that within traces of a certain periodicity, this product can concatenate con-

stituent traces to form longer traces, though still of the same periodicity.

Since all words on x̂, ŷ can be generated by concatenating x̂ and ŷ, all aperiodic

multi-traces of X and Y can be written as a ◦-product of only the traces TrX and TrY .

We do not explore this product any further here, and leave investigations of its

properties and significance as an interesting problem for the future.

3.4 SO(2, 1) representation

The structure found in section 3.1 carries a representation of the algebra so(2, 1). Let

ek (k = 1, 2, 3, . . .) be the basis vectors for K. The generators for so(2, 1) are J+, J−, J3.

We define their action on K by

J+ek = k ek+1
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J3ek = k ek

J−ek =

kek−1 k > 1

0 k = 1

The commutation relations for these are

[J3, J+] = J+

[J3, J−] = −J−
[J+, J−] = −2J3

Which are indeed the commutation relations for so(2, 1).

Using the standard rules of tensor product representations, TST = K ⊗ T (1)
ST carries

a representation of so(2, 1), where T
(1)
ST is given the trivial representation.

Let V be the carrier space for an arbitrary representation of so(2, 1). We note that

Symr (V ) is an invariant subspace of V ⊗r with the standard tensor product represen-

tation. Therefore Symr (V ) is also the carrier space for a representation of so(2, 1).

Therefore T = Sym (TST ) carries a representation of so(2, 1).

Consider what this action looks like on a generic single trace with aperiodic matrix

word W and k periods

J+TrW k = kTrW k+1 (3.4.1)

J3TrW k = kTrW k (3.4.2)

J−TrW k =

kTrW k−1 k > 1

0 k = 1
(3.4.3)

So this so(2, 1) produces traces with more periods from those with less, and in doing

so mixes traces of different degree. However it does not change the total number of

traces; a single trace remains a single trace, a double trace remains a double trace etc.

Each aperiodic trace forms the lowest weight state (with J3 = 1) of an irreducible

representation. More generally, any product of m aperiodic multi-traces is the lowest

weight state (with J3 = m) of an irreducible representation. There are many other

irreducible representations, for example there is a lowest weight state (with J3 = 3) of

the form TrW1TrW 2
2 − TrW 2

1 TrW2 for W1,W2 two different aperiodic matrix words.

This action plays a complementary role to the non-commutative product defined

in section 3.3.4. There, the number of periods within a trace could not be changed,

but different traces with the same periodicity could be combined into a longer trace.

Here, we can change the number of periods, but the aperiodic matrix word inside the

trace is fixed. Combining the ◦ product with the so(2, 1) action allows us to generate
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all multi-traces of X and Y .

It will be interesting to investigate whether this so(2, 1) can be interpreted geomet-

rically in terms of spectrum generating algebras (SGAs) in the dual space-time. SGAs

of the form SO(p, 1) were discussed in the context of AdS/CFT in [75].

3.5 Labelling of multi-traces and conjugacy classes

The conjugation action (2.1.10) splits Sn into orbits, called conjugacy classes, labelled

by p ` n. In section 2.3 we explained that in the half-BPS sector, these conjugacy

classes provide a basis (2.3.11) for the centre of Sn, the algebra responsible for operator

construction. This basis produced the multi-trace basis of operators. In this section

we extend that description to the quarter-BPS sector by considering the 2-matrix con-

jugation action (2.1.12).

We quickly review some facts on the half-BPS sector that were not included in

section 2.3, before moving to the more general quarter-BPS case.

3.5.1 Half-BPS sector

As explained in (2.1.11), the half-BPS traces are labelled by a partition p ` n. Any

permutation σ ∈ Sn of cycle type p will, when contracted with X⊗n, produce the trace

Tp =
∏
i

(
TrXi

)pi (3.5.1)

Similarly, the element αp, defined in (2.3.11) as a sum over the conjugacy class, will

produce Tp when contracted with X⊗n. To give the size of the conjugacy class, we use

the orbit-stabiliser theorem on the action (2.1.10).

The stabiliser of a permutation σ of cycle type p = [1p1 , 2p2 , . . . ] is just those

elements that commute with σ. This is composed of a semi-direct product. The first

factor comes from powers of the cycles of σ, which generate a group of the form

G1 =×
i

(Zi)pi (3.5.2)

Intuitively, these rotate the cycles of σ. The second factor comes from permuting cycles

of the same length. This has the form

G2 =×
i

Spi (3.5.3)

In the semi-direct product, the component Spi of G2 acts on (Zi)pi by permuting the

factors. This is called the wreath product of Spi with Zi and is denoted by Spi [Zi]. For

more on the wreath product, see section 5.1.2.
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Overall, we have the stabiliser

Stab(σ) ∼= G2 nG1 =×
i

[Spi n (Zi)pi ] =×
i

Spi [Zi] (3.5.4)

which has size zp, defined in (2.3.1). Applying the orbit-stabiliser theorem, the size of

the conjugacy class is
n!

zp
(3.5.5)

3.5.2 Quarter-BPS labelling

As discussed in section 3.1, a single trace is described by a Lyndon word w and the

number of periods, while a multi-trace is defined by a collection of these single traces.

Consider a generic multi-trace, and let the number of constituent single traces with

Lyndon word w and number of periods i be pw,i, then the multi-trace can be written

TP =
∏
w,i

(
TrW i

)pw,i (3.5.6)

where W is the matrix word equivalent of the Lyndon word w. This trace is charac-

terised by the set of numbers P = {pw,i}. A convenient way to package these numbers

is to define a partition pw for each Lyndon word

pw = [1pw,1 , 2pw,2 , . . .] (3.5.7)

Then the label for a U(N) multi-trace is

P = {pw : w a Lyndon word} =
{
px, py, pxy, px2y, pxy2 , . . .

}
(3.5.8)

The partition px is the partition used to label the half-BPS traces, and the remaining

partitions have the same interpretation, replacing the matrix X with a matrix word.

Consider just the pw partition inside P. Then the corresponding multi-trace is

TwP =
∏
i

(
TrW i

)(pw)i (3.5.9)

Comparing with (3.5.1), we can see X has been substituted for W . A general TP is a

product of these for each w.

TP =
∏
w

TwP =
∏
w,i

(
TrW i

)(pw)i (3.5.10)

Define lx(w), ly(w) and l(w) be the number of xs, the number of ys and the total length

of w respectively. Then clearly l(w) = lx(w) + ly(w), and the number of Xs and Y s in
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P TP
px = [1, 1] , py = [1, 1] (TrX)2 (TrY )2

px = [1, 1] , py = [2] (TrX)2 (TrY 2
)

px = [2] , py = [1, 1]
(
TrX2

)
(TrY )2

px = [1] , py = [1] , pxy = [1] (TrX) (TrXY ) (TrY )
px = [2] , py = [2]

(
TrX2

) (
TrY 2

)
pxy = [1, 1] (TrXY )2

px2y = [1] , py = [1]
(
TrX2Y

)
(TrY )

pxy2 = [1] , px = [1] (TrX)
(
TrXY 2

)
pxy = [2] Tr(XY )2

px2y2 = [1] TrX2Y 2

Table 3.1: The 10 different U(N) multi-traces at n1 = n2 = 2 along with their labels.
Any constituent partitions of P that are not explicitly listed are set to zero.

a multi-trace is

n1 =
∑
w

lx(w)|pw| n2 =
∑
w

ly(w)|pw| (3.5.11)

We summarise this with P 
 (n1, n2).

As an example of this labelling, table 3.1 lists the 10 different P 
 (2, 2) and their

associated multi-traces.

3.5.3 Quarter-BPS conjugacy classes

For the 2-matrix case, rather than conjugation by Sn in (2.1.10), we have conjugation

by Sn1 × Sn2 . We still call the orbits under this reduced conjugation action ‘conjugacy

classes’. Since permutations in a particular conjugacy class lead to the same multi-

trace, and conversely each multi-trace corresponds to a conjugacy class, the labelling

set for the conjugacy classes is exactly the same as that for the traces, the P defined

in (3.5.8).

As in section 3.5.1, the size of these conjugacy classes is found using the orbit-

stabiliser theorem. Take σ to be a representative member of the conjugacy class P.

From the examples given in (2.1.4-2.1.6), and the general case given above them, we

can see how the cycles of σ produce the single trace components of TP : a number in

{1, 2, . . . , n1} corresponds to an X while a number in {n1 +1, n1 +2, . . . , n} corresponds

to a Y .

The stabiliser of σ is composed of the elements of Sn1 × Sn2 that commute with

σ. As in the half-BPS, each cycle has a rotation subgroup attached to it. However,

conjugation by Sn1 × Sn2 rather than by Sn means we can only rotate the numbers

1, 2, . . . , n1 amongst themselves (and similarly for n1 +1, n1 +2, . . . , n). Therefore for a

single cycle labelled by Lyndon word w and number of repetitions i (remember cycles

correspond to single traces), the rotation group has size i (rather than il(w), which is
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the length of the cycle). As in the half-BPS case, different cycles with the same labels

can be permuted, and therefore the stabiliser is given by

Stab(σ) ∼=×
w,i

Spw,i [Zi] (3.5.12)

which has size

ZP =
∏
w,i

ipw,i (pw,i)! =
∏
w

zpw (3.5.13)

So by the orbit-stabiliser theorem, the size of Sn1 × Sn2 conjugacy classes is

n1!n2!

ZP
(3.5.14)

Sums over the conjugacy classes span the invariant algebra An1,n2 . Let σP be any

permutation in the conjugacy class labelled by P. Then a basis for An1,n2 is

αP =
1

n1!n2!

∑
τ∈Sn1×Sn2

τσPτ
−1 (3.5.15)

These are the elements of An1,n2 that produce the corresponding multi-trace operator

TP .

We can use (3.5.13) to evaluate the Sn inner product of 2-matrix multi-traces using

the formula (2.6.13)

〈TP |TQ〉Sn = ZPδPQ (3.5.16)

As expected, ZP plays the same role as zp in the half-BPS case, (2.6.9), and can be

interpreted physically in the planar limit as the norm of a multi-trace operator.

3.6 Orthogonal Young diagram bases and correlators

For N < n, the multi-trace bases, at half and quarter-BPS, acquire highly non-trivial

relations between the different elements, and the finite N behaviour is difficult to

determine. In the language of section 2.5.1, they are not SEP-compatible.

For half-BPS operators, the Schur basis defined in (2.3.14) is exactly orthogonal

at all order in N and is SEP-compatible. We now introduce two generalisations of

this basis to the quarter-BPS sector, the restricted Schur basis and the covariant basis.

Both have the same key properties, they are exactly orthogonal to all orders in N and

are SEP-compatible.
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3.6.1 Restricted Schur basis

Operator basis

The restricted Schur basis was first constructed in [44, 45] following earlier work in

[29, 32]. It gives a basis for the space of degree (n1, n2) traces, and is labelled by

R ` n,R1 ` n1, R2 ` n2, along with two Littlewood-Richardson multiplicity indices

µ, ν that satisfy 1 ≤ µ, ν,≤ gR;R1,R2 . The operators are given by

OR,R1,R2,µ,ν =

√
dR

dR1dR2n!(n1)!(n2)!

∑
σ∈Sn

χR,R1,R2,µ,ν(σ)Tr
(
σX⊗n1 ⊗ Y ⊗n2

)
(3.6.1)

The first expression inside the sum is called the restricted character of σ, and is defined

by

χR,R1,R2,µ,ν(σ) = TrR
[
PRR1,R2;µ→νD

R(σ)
]

(3.6.2)

where TrR is the trace over the representation R of Sn, and PRR1,R2;µ→ν is an intertwiner

that takes the µth copy of R1 ⊗R2 (a representation of Sn1 × Sn2) inside R to the νth

copy, and is zero on everything else. For more on the Littlewood-Richardson multiplicity

indices µ and ν, including a systematic way of choosing a basis for the multiplicity space,

see appendix D.

At finite N < n, R is restricted to have at most N rows. Since R1, R2 are such

that there is a non-zero multiplicity of R1 ⊗ R2 inside R, the same restriction applies

to R1 and R2.

When n1 = n and n2 = 0, the restricted character reverts to just the ordinary

character χR, and (3.6.1) become exactly the Schur operators defined in (2.3.14).

Algebra basis

In the equivalent algebra picture, the restricted Schur elements give a basis for An1,n2

βR,R1,R2,µ,ν =
dR
n!

∑
σ∈Sn

χR,R1,R2,µ,ν(σ)σ (3.6.3)

where we have used a different normalisation to the operators (3.6.1). The normali-

sation for operators was chosen to give nice expressions for the correlators in (3.6.8),

whereas the normalisation in (3.6.3) is chosen to give nice multiplicative properties in

An1,n2 , given below.

This basis for An1,n2 gives an explicit identification of the Wedderburn-Artin de-

composition of the algebra, since they have the multiplication property

βR,R1,R2,µ1,µ2βS,S1,S2,ν1,ν2 = δRSδR1S1δR2S2δµ2ν1βR,R1,R2,µ1,ν2 (3.6.4)
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From this, we can think of the βR,R1,R2,µ,ν as block diagonal matrices with a block for

each trio (R,R1, R2). This block has size gR;R1,R2 . The matrix for βR,R1,R2,µ,ν is the

zero matrix in each block except the (R,R1, R2) block, in which there is a single 1 in

the (µ, ν)th position.

Using this matrix picture, we can see that as a matrix algebra, An1,n2 has the form

An1,n2 =
⊕
R`n
R1`n1
R2`n2

M(gR;R1,R2) (3.6.5)

where M(k) is the algebra of k × k matrices. Representations of M(k) are the same

as representations of GL(k) and therefore the irreducible representations of An1,n2 are

labelled by the triple R,R1, R2 and a GL(gR;R1,R2) Young diagram.

At finite N , we lose the basis elements with l(R) > N , and only those with l(R) ≤ N
contribute to operator construction.

For more properties of this algebra see [63].

Combinatorics

From the labelling of the restricted Schur basis, we see the dimension of the degree

(n1, n2) space can be written

NN
n1,n2

=
∑
R`n
R1`n1
R2`n2
l(R)≤N

g2
R;R1,R2

(3.6.6)

From section 3.1, these dimensions (for infinite N) are generated by

∑
n1,n2

N∞n1,n2
xn1yn2 = F (x, y) =

∞∏
k=1

1

1− xk − yk
(3.6.7)

Correlators

The two-point function of restricted Schur operators is given by

〈OR,R1,R2,µ1,µ2 |OS,S1,S2,ν1,ν2〉 = δRSδR1S1δR2S2δµ1ν1δµ2ν2fR (3.6.8)

〈OR,R1,R2,µ1,µ2 |OS,S1,S2,ν1,ν2〉Sn =

δRSδR1S1δR2S2δµ1ν1δµ2ν2 l(R) ≤ N

0 l(R) > N
(3.6.9)

where fR was defined in (2.3.20).

Three-point and higher functions can be obtained by using the product rule for

restricted Schur operators explained in [45].
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3.6.2 Covariant basis

The covariant basis was first introduced in [43,46]. In chapter 7 we use it to investigate

quarter-BPS operators in the weakly coupled theory.

U(2) action on traces

Let X1 = X and X2 = Y . Then there is an action of U(2) on the i index in Xi.

By extension this acts on all traces and operators, so we can choose our basis to be

U(2) covariant. Since U(2) turns Xs into Y s and vice versa, this basis mixes states

with different numbers of Xs and Y s while keeping the total number of matrices, n,

constant. We will say an operator has field content (n1, n2) if it contains n1 Xs and n2

Y s.

The u(2) operators on traces are given by

Rij =

(
X J+

J− Y

)
=

(
TrX ∂

∂X TrX ∂
∂Y

TrY ∂
∂X TrY ∂

∂Y

)
=

Xi
j
∂
∂Xi

j
Xi
j
∂
∂Y ij

Y i
j

∂
∂Xi

j
Y i
j

∂
∂Y ij

 (3.6.10)

The operator X counts the number of X matrices in a trace, similarly for Y. The

lowering operator J− ‘lowers’ a trace by turning an X into a Y , and the raising operator

J+ ‘raises’ a trace by turning a Y into an X.

Acting on the matrices Xi with a U(2) index

RijXk = δikXj (3.6.11)

Define new operators

J0 = X + Y J3 = X − Y (3.6.12)

Then J0 counts the total number of matrices, while J3 counts the difference between

the number of Xs and Y s. As the notation suggests, J3,J± form an su(2) subalgebra

of u(2), while J0 spans a u(1) that commutes with the su(2). This split decomposes

u(2) into a sum of su(2) and u(1).

The operators (3.6.10) obey standard hermiticity conditions
(
Rij

)†
= Rji for R-

symmetry generators

(J0)† = J0 (J3)† = J3 (J+)† = J− (3.6.13)

It follows that operators with different U(2) quantum numbers must be orthogonal.
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U(2) representations

Semi-standard Young tableaux are defined to be Young tableaux in which the positive

integers in the boxes increase weakly along the rows and strictly down the columns. For

example if we take R = [2, 1] and allow entries of 1,2 and 3, the possible semi-standard

tableaux are:

1 1

2

1 1

3

1 2

2

1 2

3

1 3

2

1 3

3

2 2

3

2 3

3
(3.6.14)

The evaluation of a semi-standard tableau r is a sequence of numbers ρ(r) = [ρ1, ρ2, . . . ]

where

ρi = (# of occurences of the number i in r) (3.6.15)

So for example the evaluations of the tableaux in (3.6.14) are respectively

[2, 1, 0] [2, 0, 1] [1, 2, 0] [1, 1, 1] [1, 1, 1] [1, 0, 2] [0, 2, 1] [0, 1, 2] (3.6.16)

When the evaluation ρ(r) is a partition (i.e. ρ1 ≥ ρ2 ≥ . . . ), these tableaux contribute

to the Kostka number KRρ seen in (2.7.12).

For a representation Λ ` n of U(2) with l(Λ) ≤ 2, the basis vectors of Λ are

labelled by the semi-standard Young tableaux of shape Λ containing only 1s and 2s.

For Λ =
[
n
2 + j, n2 − j

]
, there are 2j + 1 possible tableaux, where j runs over the

non-negative half-integers up to n
2 . These possibilities are

n
2 − j k 2j − k

1 1

2 2 . . .

. . . 1 1 1

2

. . . 1 2 2 . . . 2
(3.6.17)

where 0 ≤ k ≤ 2j.

We can understand the representation Λ =
[
n
2 + j, n2 − j

]
in terms of the u(1)

spanned by J0 and the su(2) spanned by J3,J±. All states in Λ have weight n under

u(1), and form a spin j of su(2). The identification of basis vectors is

n
2 − j j +mj j −mj

1 1

2 2 . . .

. . . 1 1 1

2

. . . 1 2 2 . . . 2
= |j,mj〉 (3.6.18)

where |j,mj〉 is the standard basis spanning the spin j representation of su(2) with

−j ≤ mj ≤ j.
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Operator basis

Consider V ⊗n2 , where V2 is the fundamental of U(2), and in particular the basis vector

a = ea1 ⊗ ea2 ⊗ · · · ⊗ ean of V ⊗n2 where aj ∈ {1, 2} for each j. Then we define Xa =

Xa1 ⊗Xa2 ⊗ · · · ⊗Xan . Combined with a permutation σ ∈ Sn, we write

Oa,σ = Tr (σXa) (3.6.19)

The covariant basis is labelled by Λ ` n, a partition with at most 2 rows; MΛ, a semi-

standard tableau of shape Λ that indexes the basis vector of the Λ representation of

U(2); R ` n, a partition with at most N rows; and τ , a multiplicity index satisfying

1 ≤ τ ≤ C(R,R,Λ). C(R,R,Λ) is the multiplicity of Λ (as an Sn representation this

time) within R⊗R, or equivalently the multiplicity of the trivial representation within

R⊗R⊗ Λ.

Using these labels, the covariant basis operators are

OΛ,MΛ,R,τ =

√
dR
n!

∑
σ,a,i,j,m

SRRΛ, τ
i j m DR

ij(σ)CaΛ,MΛ,m
Oa,σ (3.6.20)

where CaΛ,MΛ,m
are the Clebsch-Gordon coefficients for the Schur-Weyl decomposition

V ⊗n2 =
⊕
Λ`n
l(Λ)≤2

V
U(2)

Λ ⊗ V Sn
Λ (3.6.21)

and SRRΛ τ
i j m are the Clebsch-Gordon coefficients for the τth copy of the trivial Sn

representation inside R⊗R⊗ Λ.

The field content (n1, n2) is the evaluation of the tableau MΛ. The number of 1s in

MΛ is n1, while the number of 2s is n2.

When Λ = [n] and MΛ is the highest weight state, the operators (3.6.20) reduce

to the standard Schur operators (2.3.14). Therefore the Λ = [n] sector is (part of)

an ultra-short multiplet and has the same properties as the half-BPS operators. The

multiplicity index τ is trivial since R ⊗ R always contains a unique copy of the trivial

representation

C(R,R, [n]) = 1 (3.6.22)

The Λ = [n − 1, 1] sector also has special properties. In [10] it was proved that these

multiplets cannot recombine to form long non-BPS multiplets and therefore must re-

main quarter-BPS at all values of the coupling. In these cases, the multiplicity τ in

(3.6.20) runs over the number of corners of R minus 1.

C(R,R, [n− 1, 1]) = (# of corners in R)− 1 (3.6.23)
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This is proved most simply by comparing the covariant basis with the combinatorics of

the restricted Schur basis defined in (3.6.6).

Combinatorics

In the Λ = [n− j, j] sector, there is a tableau MΛ with field content (n1, n2) if and only

if n1, n2 ≥ j. So using the labelling of the covariant basis, we can write the dimension

of the degree (n1, n2) space as

NN
n1,n2

=
∑
R`n

j≤min(n1,n2)
l(R)≤N

C(R,R, [n− j, j]) (3.6.24)

Correlators

The physical and Sn correlators of generic U(2) covariant multi-traces Oa,σ are

〈Ob,τ |Oa,σ〉 =
∑
α∈Sn

δα(a),bδ
(
Ωασα−1τ−1

)
(3.6.25)

〈Ob,τ |Oa,σ〉Sn =
∑
α∈Sn

δα(a),bδN
(
ασα−1τ−1

)
(3.6.26)

These are the same as the inner products (2.6.12) and (2.6.13), only with additional

U(2) covariant labels. The δα(a),b factor enforces that α ∈ Sn1×Sn2 for the appropriate

embedding of Sn1 × Sn2 into Sn.

Both inner products are diagonal on the covariant basis, and similarly to the Schurs

and restricted Schurs, it is R that determines the physical norm [43].

〈
OΛ,MΛ,R,τ |OΛ′,MΛ′ ,R

′,τ ′
〉

= δΛ,Λ′δMΛ,MΛ′ δR,R′δτ,τ ′fR (3.6.27)

〈
OΛ,MΛ,R,τ |OΛ′,MΛ′ ,R

′,τ ′
〉
Sn

=

δΛ,Λ′δMΛ,MΛ′ δR,R′δτ,τ ′ l(R) ≤ N

0 l(R) > N
(3.6.28)

Higher point (extremal) correlation functions can be obtained by using a product rule.

For the covariant basis this was given, for the more general case of a quiver theory,

in [68]. For the procedure to reinsert the position dependences into higher point corre-

lation functions see [22].

In both the restricted Schur (3.6.1) and covariant, (3.6.20), bases we have a label

R ` n, restricted to l(R) ≤ N , that governs the Sn behaviour of the operator and also

determines the norm. As might be expected, these labels coincide for the two bases,

and the other labels are just different ways of parameterising the distinct R subspaces.

In [76], the author gives an explicit basis change between the two bases for fixed field

content (n1, n2), demonstrating that R is unchanged between the two.
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Chapter 4

Structure and combinatorics of

the planar free field quarter-BPS

sector with SO(N) and Sp(N)

gauge groups

Familiar AdS/CFT connects N = 4 super Yang-Mills with U(N) gauge group with

string theory on AdS5 × S5. In [55], the gravity dual of different gauge groups was

considered. It was found that the appropriate space to consider was AdS5 × RP5, ob-

tained from the standard space by taking an orientifold quotient that identifies opposite

points of the S5 while also reversing string worldsheet orientation. Depending on the

cohomology class of the field strengths associated to the 2-form fields of the original

S5-based theory, this is dual to either an orthogonal or symplectic gauge group.

On the CFT side of the duality, this quotient is rather simpler to understand, we

replace all fields in the complex adjoint of u(N) with those in the complex adjoint of

so(N) or sp(N) respectively. In the half and quarter-BPS sectors, this entails replacing

the complex matrices X and Y with anti-symmetric matrices for the orthogonal group,

or for the symplectic group, matrices satisfying the symplectic condition

XT = −ΩXΩT (4.0.1)

where

Ω =

(
0 I

−I 0

)
(4.0.2)

and I is the N
2 by N

2 identity matrix (the symplectic group only exists for N even).

There are deep connections between the orthogonal group (for even N) and the sym-

plectic group. It was proved in [77] that dimensions of SO(N) and Sp(N) irreducible
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representations (both labelled by a Young diagram R) are related by the transformation

R→ Rc N → −N (4.0.3)

This relation was extended to all (non-baryonic) gauge invariant quantities in [78].

This general pattern of anti-symmetrisation (conjugation) and N → −N was observed

in [57, 60], and will occur repeatedly in chapter 5. For the purposes of this chapter, it

is sufficient to note that the combinatorics of the two theories will match in the planar

limit where finite N cut-offs on Young diagrams do not enter.

When we consider the gauge group SO(N) (with N even), there is a qualitative dif-

ference in the spectrum of BPS primary operators compared to both U(N) and Sp(N).

The latter two theories consist purely of multi-trace (mesonic) operators, while the

orthogonal group also allows Pfaffian type (baryonic) operators. From the CFT per-

spective, this stems from the invariant tensor εi1i2...iN , and in [55] a D3-brane wrapped

around a RP3 subspace of RP5 was presented as a candidate for the gravity dual. These

Pfaffian operators were studied further in [21], where more evidence was provided that

a wrapped D3-brane is the correct interpretation. These have conformal dimension N
2 ,

so do not contribute to the planar quarter-BPS sector or generating function studied

in this chapter. They will be considered in detail in chapter 5.

This chapter focuses on the planar structure of the SO(N) and Sp(N) theories,

and in particular how the aperiodic matrix words of the U(N) theory are replaced

by ‘minimally periodic’ words for SO(N) and Sp(N) multi-traces. This is expressed

in the equivalent combinatorics of words by defining orthogonal Lyndon words which

play the role of Lyndon words from the U(N) theory. We derive two distinct ways

of decomposing the space of 2-matrix multi-traces at large N , one in terms of the

minimally periodic words, the other in terms of the aperiodic words. The associated

generating functions are then calculated.

This chapter consists of results originally presented in [1].

4.1 Constraints on single traces, orthogonal Lyndon words

and labelling of multi-traces

We start by considering the SO(N) theory, where we replace the generic complex

matrices of the U(N) theory with anti-symmetric complex matrices. We then move on

to the symplectic case, where the new matrices satisfy the condition (4.0.1). This turns

out to result in exactly the same set of traces.

In the SO(N) half-BPS sector, TrXn vanishes for n odd, and hence there are no

gauge invariant operators if n is odd. If n is even, they are labelled by a partition p ` n
2

62



CHAPTER 4. STRUCTURE AND COMBINATORICS OF THE PLANAR FREE
FIELD QUARTER-BPS SECTOR WITH SO(N) AND SP (N) GAUGE GROUPS

with corresponding operator

Tp =
∏
i

(
TrX2i

)pi (4.1.1)

To look at the quarter-BPS sector, begin by considering the trace of an arbitrary matrix

word. It is specified by k, the number of periods, and an aperiodic matrix word W .

Since a trace is invariant under transposition, we have

TrW k = Tr
(
W T

)k
(4.1.2)

As X and Y are anti-symmetric, the relation (4.1.2) reduces the number of linearly

independent single traces. The transpose reverses the matrix word - we call the reversed

word W (r) - and introduces a factor of (−1)k l(W ), where l(W ) is the length of W .

TrW k = (−1)k l(W )Tr
(
W (r)

)k
(4.1.3)

There are now two sets of two possibilities: either W and W (r) are the same (up to

cyclic rotations), or they are not, and k l(W ) is either even or odd.

If W 6= W (r), then (4.1.3) tells us that two distinct traces that were previously

unrelated are no longer independent. The parity of k l(W ) affects whether they are

related with a positive or negative sign, but does not change the combinatorics.

If W = W (r), then the combinatorics is dependent on the parity of k l(W ). If k l(W )

is even, then (4.1.3) is trivial, and gives us no new information. If it is odd, then (4.1.3)

implies that the trace vanishes. So for example, TrX, TrY 3, TrX2Y and Tr(X4Y )5 all

vanish.

We can therefore write the linearly independent SO(N) single traces as

Tr
(
W̃
)k

(4.1.4)

where W̃ , rather than being aperiodic, is instead minimally periodic. From the cases

above, there are three different possibilities for W̃ , that we call types 1A, 1B and 2.

Type 1A: W̃ is a Lyndon word of even length which is invariant under reversal (up

to cyclic rotations)

Type 1B: W̃ is the square of a Lyndon word of odd length that is invariant under

reversal (up to cyclic rotations)

Type 2: W̃ is the first (lexicographically) of a pair of Lyndon words that transform

into each other under reversal (up to cyclic rotations)

For type 2, there is nothing special about our choice of using the first of the pair, we

merely need to choose a representative.
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xy
Type 1A x3y , x2y2 , xy3

x5y, x4y2, x3yxy, x3y3, x2y4, xyxy3, xy5

x2, y2

Type 1B x2yx2y, xy2xy2

x4yx4y, x3y2x3y2, x2yxyx2yxy, x2y3x2y3, xyxy2xyxy2, xy4xy4

x2yxy2

Type 2 x3yxy2, x2yxy3

x3yx2y2, x4yxy2, x3yxy3, x2yxyxy2, x2yxy4, x2y2xy3

Table 4.1: Lowest order examples of the three distinct types of orthogonal Lyndon
words

We define type 1A, 1B and 2 orthogonal Lyndon words in the same manner as

above, but on formal letters x, y rather than matrices X and Y . These play the same

role for SO(N) traces as the normal Lyndon words did for U(N) traces. The lowest

order examples of the three types of orthogonal Lyndon words are shown in table 4.1.

Although the orthogonal Lyndon words defined here play the same role in the

labelling of traces for SO(N) as the normal Lyndon words did for U(N), there are two

important differences. Firstly, the orthogonal words are not aperiodic; type 1B words

contain two periods, hence the ‘minimally periodic’ condition. Secondly, the orthogonal

Lyndon words do not form the factorisation units in a free monoid on two letters. This

means we cannot define a product on the SO(N) traces as we did for the U(N) version

in section 3.3.4.

4.1.1 Labelling of multi-traces

In section 3.5.2, we saw that to label U(N) multi-traces, we gave each Lyndon word w

a partition pw. The analogous statement is true for SO(N) with orthogonal Lyndon

words.

We define pw̃,i to be the number of single traces with i repetitions of the min-

imally periodic W̃ that appear in a multi-trace. These combine into a partition

pw̃ = [1pw̃,1 , 2pw̃,2 , . . . ] for each orthogonal Lyndon word. We define P̃ to be the set

of these partitions

P̃ = {pw̃ : w̃ an orthogonal Lyndon word}

=
{
px2 , pxy, py2 , px3y, px2y2 , pxy3 , . . . , px2yxy2 , . . .

}
(4.1.5)

The multi-trace corresponding to P̃ is

TP̃ =
∏
w̃

T w̃P̃ =
∏
w̃,i

(
TrW̃ i

)pw̃,i
(4.1.6)
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P̃ TP̃
px2 = [1] , pxy = [1] , py2 = [1]

(
TrX2

)
(TrXY )

(
TrY 2

)
pxy = [1, 1, 1] (TrXY )3

px3y = [1] , py2 = [1]
(
TrX3Y

) (
TrY 2

)
px2y2 = [1] , pxy = [1]

(
TrX2Y 2

)
(TrXY )

pxy3 = [1] , px2 = [1]
(
TrXY 3

) (
TrX2

)
pxy = [2, 1] Tr (XY )2 (TrXY )
px3y3 = [1] TrX3Y 3

px2yxy2 = [1] TrX2Y XY 2

pxy = [3] Tr(XY )3

Table 4.2: The 9 different SO(N) multi-traces at n1 = n2 = 3 along with their labels.

Any constituent partitions of P̃ that are not explicitly listed are set to zero.

Let lx(w̃), ly(w̃) and l(w̃) be the number of xs, number of ys and total length of w̃

respectively. Then

n1 =
∑
w̃

lx(w̃)|pw̃| n2 =
∑
w̃

ly(w̃)|pw̃| (4.1.7)

We use the same notation P̃ 
 (n1, n2) as for the U(N) traces in section 3.5.2. It will

always be clear whether we are referring to a SO(N) or U(N) trace.

As an example of the new notation, we give the 9 different P̃ 
 (3, 3) in table 4.2.

It will also be helpful to consider traces of symmetric matrices X and Y . We use

a tilde to refer to anti-symmetric matrix objects, while a bar is used for those related

to symmetric matrices. A single trace of symmetric matrices is labelled by a Lyndon

word up to reversal, w̄, and the number of periods. The w̄ can be split into two types;

either it is a Lyndon word that is invariant under reversal (type 1), or it is the first

(lexicographically) of a pair of Lyndon words that transform into each other under

reversal (type 2). This differs from the SO(N) case only in that there is no distinction

between odd and even length words of type 1. We define pw̄, P̄, W̄ , lx(w̄), ly(w̄), l(w̄)

and 
 in an analogous way to the U(N) and SO(N) traces.

4.1.2 Symplectic gauge group

We now study the single trace constraints and multi-trace labelling in the Sp(N) setting.

Rather than anti-symmetric X and Y , we have matrices satisfying (4.0.1). In the half-

BPS sector, this implies

TrXn = Tr(XT )n = Tr (ΩXΩ)n = Tr
(
Ω2X

)n
= Tr (−X)n

= (−1)nTrXn (4.1.8)
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where we have used Ω2 = −1. So, just as in the SO(N) case, the odd order 1-matrix

single traces vanish while the even ones remain unchanged, and Sp(N) of degree n are

labelled by a partition p ` n
2 .

Applying the same logic to the quarter-BPS case, we again find the Sp(N) relations

between traces are the same as those for SO(N). For a trace with k periods and

aperiodic matrix word W , we have

TrW k = (−1)k l(W )Tr
(
W (r)

)k
(4.1.9)

As claimed, this is identical to (4.1.3). Therefore symplectic single traces are specified

by an orthogonal Lyndon word and a number of periods k, while multi-traces are

labelled by P̃ 
 (n1, n2).

4.2 Structure of the space of SO(N) multi-traces of two

matrices

In section 3.1, we investigated the structure of T , the space of U(N) gauge-invariant

functions of two matrices in the large N limit. In particular we looked at the level

structure corresponding to the number of periods in a trace, and the factorisation arising

from the decomposition of multi-traces into their single trace constituents. These two

processes were reflected in the generating functions by the inverse Möbius transform

M−1 (3.1.10) and the plethystic exponential (3.1.5). This structure was deduced from

the equation (3.1.8) for a generic U(N) single trace. Since the equation (4.1.4) has the

exact same form, we must have the same structure for T̃ , the space of SO(N) multi-

traces at large N . The only difference is to replace the aperiodic traces of U(N) with

the minimally periodic traces of SO(N). This is shown in figure 4.1.

As indicated by the name, minimally periodic traces have either one or two periods.

This leads to an alternate structure for T̃ which respects the absolute number of periods,

rather than the number of repetitions of the minimally periodic units. This second

structure is summarised in figure 4.2.

Both these structures give relations between the Hilbert series for the relevant vec-

tors spaces, and therefore they can all be determined from the generating function for

T̃ . This function is not given in the literature, although similar results are presented

in [79], in the context of SO(N) superconformal indices, and [80], for free matrix

models. We derive it in two distinct ways, firstly in section 4.3 using the structure

built up from minimally periodic words and known results about cycle polynomials

of dihedral groups. In appendix E we give an alternative method starting from the

counting formula (5.6.74) giving the size of the large N quarter-BPS sector in terms

of Littlewood-Richardson coefficients. This formula is derived independently of the
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structures given in this section, and instead comes from studying Fourier bases for the

permutation algebras relevant for operator construction.

In order to calculate the various Hilbert series for the SO(N) vector spaces of

interest, we will relate them to the U(N) equivalents defined in section 3.1. We use

the notation T −→
Z2

T̃ to denote that replacing generic matrices with anti-symmetric

matrices sends the space T of U(N) multi-traces to the space T̃ of SO(N) multi-traces.

Similar notation will be used for subspaces of T .

As in chapter 3, we will consider various different vector spaces in addition to T̃ . In

general, those relating to SO(N) traces will have a tilde on top, whereas those primarily

to do with U(N) objects will not. Some vector spaces we define will be relevant to both,

so the divide is not a sharp one. Similarly to the notation used in section 3.1, we use

superscripts in brackets to refer to a space with a specified number of periods, and

subscripts to add extra information on the type of traces being considered.

4.2.1 Structure from minimally periodic traces

Equation (4.1.3) gave new relations between traces of anti-symmetric matrices com-

pared to unrestricted matrices, and we subsequently split the Lyndon words relevant

for U(N) traces into three categories. We can encode this structure into the U(N)

vector space of aperiodic single traces T
(1)
ST , defined in (3.1.9), by splitting it into three

distinct subspaces

T
(1)
ST = T

(1)
ST ;inv;even ⊕ T

(1)
ST ;inv;odd ⊕ T

(1)
ST ;var (4.2.1)

The first space is spanned by those traces of even length with W = W (r) up to cyclic

rotations (‘inv’ stands for invariant); the second space is spanned by traces of odd length

with W = W (r); the third space is spanned by traces of any length with W 6= W (r) (‘var’

stands for variant). From (4.1.3), T
(1)
ST ;inv;even is unchanged under the Z2 quotient. This

is spanned by orthogonal Lyndon words of type 1A. The other two spaces, corresponding

to types 1B and 2, are more complex.

In section 4.1, we demonstrated that for reversal-invariant W of odd length, the

discriminating factor determining whether the trace vanishes or not is whether k is odd

or even respectively. If k is even, T
(1)
ST ;inv;odd is unchanged by the quotient, while if k is

odd, it vanishes. So we have

K ⊗ T (1)
ST ;inv;odd −→Z2

Keven ⊗ T (1)
ST ;inv;odd (4.2.2)

where Keven is the space spanned by the even integers. This is isomorphic to K as a

vector space but not as a graded vector space, since replacing Keven with K would lose

information about the weight of a given trace. However, we can recover K as a tensor

factor by doubling the weight of the space TST ;inv;odd to make up for halving the weight
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of the Keven factor. We have

Keven ⊗ T (1)
ST ;inv;odd = K ⊗

(
T

(2)
ST ;inv;odd

)
(4.2.3)

Effectively this says rather than consider X (or Y , X2Y , X4Y , . . . ) as the aperiodic

word identifying the trace, instead consider X2 (or Y 2, (X2Y )2, (X4Y )2, . . . ) as the

minimally periodic word. These are exactly the type 1B orthogonal Lyndon words.

Finally consider T
(1)
ST ;var. It is spanned by aperiodic matrix words (up to cyclic

rotations) which change under reversal. So we can split the spanning set into orbits

(of size 2) under reversal. Define T̃
(1)
ST ;var to be the space spanned by these orbits, or

equivalently by orthogonal Lyndon words of type 2. Then

T
(1)
ST ;var = T̃

(1)
ST ;var ⊕ T̃

(1)
ST ;var −→Z2

T̃
(1)
ST ;var (4.2.4)

In full, the Z2 quotient of TST is

TST = K ⊗ T (1)
ST −→Z2

T̃ST = K ⊗ T̃ (min)
ST = K ⊗

(
T

(1)
ST ;inv;even ⊕ T

(2)
ST ;inv;odd ⊕ T̃

(1)
ST ;var

)
(4.2.5)

where the ‘min’ superscript refers to the words being minimally periodic as opposed to

aperiodic. Extrapolating to the full space of multi-traces

T = Sym
(
K ⊗ T (1)

ST

)
−→
Z2

T̃ = Sym
(
K ⊗ T̃ (min)

ST

)
(4.2.6)

We see this has the same structure as (3.1.16), but with a base space T̃
(min)
ST . This

allows us to reproduce figure 3.1, but with the new base space, shown in figure 4.1.

Furthermore, we saw in section 3.4 that the structure (3.1.16) allowed T to carry a

representation of so(2, 1). By the same argument, T̃ will also carry such a representa-

tion.

4.2.2 Structure from absolute periodicity

Briefly return to the description of the U(N) single trace space TST . Breaking down

the decomposition (3.1.9) further, we have

TST = K ⊗ T (1)
ST =

(
1⊗ T (1)

ST

)
⊕
(

2⊗ T (1)
ST

)
⊕
(

3⊗ T (1)
ST

)
⊕ . . . (4.2.7)

T̃ST also has this structure, but there is a difference in interpretation. The subspace

k⊗T (1)
ST of TST corresponds to the traces with k periods, whereas the subspace k⊗T̃ (min)

ST

of T̃ST does not, instead it contains traces with k repetitions of the minimally periodic

words. Since these words can contain two periods (if they are of type 1B), k ⊗ T̃ (min)
ST
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T̃
(min)
ST

H
T̃

(min)
ST

Counts minimally periodic single traces

T̃ST = K ⊗ T̃ (min)
ST

H
T̃ST

=M−1
(
H
T̃

(min)
ST

)
Counts single traces

T̃ (min) = Sym
(
T̃

(min)
ST

)
H
T̃ (min) = PExp

(
H
T̃

(min)
ST

)
Counts minimally periodic multi-traces

T̃ = Sym
(
K ⊗ T̃ (min)

ST

)
= Sym

(
T̃

(min)
ST

)⊗K
H
T̃

= PExp
[
M−1

(
H
T̃

(min)
ST

)]
=M−1

mult

[
PExp

(
H
T̃

(min)
ST

)]
Counts all multi-traces

Tensor with K

M−1

Sym

PExp

Sym

PExp

Tensor power of K

M−1
mult

Figure 4.1: Diagram summarising the structure of T̃ , the space of SO(N) multi-traces,

and its relation to T̃
(min)
ST , the space of SO(N) minimally periodic single traces.
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contains traces with k or 2k periods. We can instead decompose T̃ST into subspaces

corresponding to the number of periods rather than the number of repetitions.

T̃ST = (1⊗ V1)⊕ (2⊗ V2)⊕ (3⊗ V3)⊕ . . . (4.2.8)

where k ⊗ Vk is the vector space of single traces with k periods.

From (4.1.3) it follows that for odd length, reversal invariant aperiodic matrix words,

only the even periodicities survive the Z2 projection. For all other aperiodic matrix

words, there is no distinction between even and odd periodicities. Therefore Vk will

depend only on whether k is even or odd. From the discussions in section 4.1, we can

write down the appropriate vector spaces. They are

T̃
(odd)
ST = T

(1)
ST ;inv;even ⊕ T̃

(1)
ST ;var (4.2.9)

T̃
(even)
ST = T

(1)
ST ;inv ⊕ T̃

(1)
ST ;var

= T
(1)
ST ;inv;even ⊕ T

(1)
ST ;inv;odd ⊕ T̃

(1)
ST ;var (4.2.10)

Note that the odd and even superscripts refer to periodicities, while the odd and even

subscripts refer to the length of the aperiodic trace/matrix word. Splitting K = Kodd⊕
Keven in the obvious way, we have

T̃ST =
(
Kodd ⊗ T̃

(odd)
ST

)
⊕
(
Keven ⊗ T̃ (even)

ST

)
(4.2.11)

Now the combination of Kodd and Keven keeps track of the true periodicities of the

traces.

Doing a analysis of the Hilbert series associated with these vector spaces, simi-

lar to that done in section 3.1, we arrive at the relations shown in figure 4.2. The

transformations S and Smult are defined by

S [f, g] (x, y) =
∑
k odd

f(xk, yk) +
∑
k even

g(xk, yk) (4.2.12)

Smult [f, g] (x, y) =

( ∏
k odd

f(xk, yk)

)( ∏
k even

g(xk, yk)

)
(4.2.13)

Note that S, while being similar to M−1, has a distinct disadvantage to it’s analogue,

namely it is not invertible. Given S[f, g], there are multiple f, g which would produce

the same S. This means we cannot instantly find the Hilbert series for T̃
(odd)
ST and

T̃
(even)
ST just from the Hilbert series for T̃ . Instead we need to investigate the structures

(4.2.9) and (4.2.10).

In order to do this, we introduce names for the coefficients of various Hilbert series.

These are shown in table 4.3, along with a description of which set of traces these coef-
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T̃
(odd)
ST

H
T̃

(odd)
ST

Counts single traces of a specified periodicity

T̃ST = Kodd ⊗ T̃
(odd)
ST ⊕Keven ⊗ T̃ (even)

ST

H
T̃ST

= S
(
H
T̃

(odd)
ST

, H
T̃

(even)
ST

)
Counts all single traces

T̃ (odd) = Sym
(
T̃

(odd)
ST

)
H
T̃ (odd) = PExp

(
H
T̃

(odd)
ST

)
Counts multi-traces of a specified periodicity

T̃ = Sym
(
Kodd ⊗ T̃

(odd)
ST ⊕Keven ⊗ T̃ (even)

ST

)

H
T̃

= PExp
[
S
(
H
T̃

(odd)
ST

, H
T̃

(even)
ST

)]
= Smult

[
PExp

(
H
T̃

(odd)
ST

)
,PExp

(
H
T̃

(even)
ST

)]
Counts all multi-traces

Tensor with Kodd and

S

Sym

PExp

Sym

PExp

Smult

T̃
(even)
ST

H
T̃

(even)
ST

T̃ (even) = Sym
(
T̃

(even)
ST

)
H
T̃ (even) = PExp

(
H
T̃

(even)
ST

)

Keven respectively

Tensor power of Kodd
and Keven respectively

= Sym
(
T̃

(odd)
ST

)⊗Kodd
⊗ Sym

(
T̃

(even)
ST

)⊗Keven

Figure 4.2: Diagram summarising the structure of T̃ , the space of SO(N) multi-traces,

and its relation to T̃
(odd)
ST , the space of SO(N) single traces with a specified odd number

of periods, and T̃
(even)
ST , the space of SO(N) single traces with a specified even number

of periods.
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Hilbert series Vector space Counting interpretation

coefficients

bn1,n2 T̃
(min)
ST minimally periodic SO(N) single traces

Bn1,n2 T̃ST = K ⊗ T̃ (min)
ST all SO(N) single traces

ainvn1,n2
T

(1)
ST ;inv

aperiodic, reversal invariant

U(N) single traces

avarn1,n2
T̃

(1)
ST ;var

aperiodic pairs of U(N) single traces

that reverse into each other

Ainvn1,n2
TST ;inv = K ⊗ T (1)

ST ;inv all reversal invariant U(N) single traces

Avarn1,n2
T̃ST ;var = K ⊗ T̃ (1)

ST ;var

all pairs of U(N) single traces

that reverse into each other

b
(odd)
n1,n2 T̃

(odd)
ST

SO(N) single traces with a

specified odd number of periods

b
(even)
n1,n2 T̃

(even)
ST

SO(N) single traces with a

specified even number of periods

Table 4.3: Definition of various single trace counting sequences. Formally, they are
defined as the coefficients of Hilbert series for certain vector spaces. We also give the
counting interpretation.

ficients count. Tables of values are given in appendix C. Note that since the coefficients

listed all count single traces, they all vanish when n1 = n2 = 0. Therefore in the later

explicit expressions for these sequences, we implicitly set the n1 = n2 = 0 term to be

0.

Recall that an1,n2 are the coefficients in the Hilbert series for T
(1)
ST , defined in (3.2.8).

Then from definition (4.2.1), and recalling (4.2.4), we have

an1,n2 = ainvn1,n2
+ 2avarn1,n2

(4.2.14)

The lower case sequences count aperiodic single traces, while the upper case ones count

single traces of all periodicities. This leads to relations (3.1.12) and (3.1.13) between

the as and As (although shown only for the undecorated versions, this is also true for

both superscripts). Using these, we have

An1,n2 = Ainvn1,n2
+ 2Avarn1,n2

(4.2.15)

From the definitions (4.2.9) and (4.2.10), we have the relations

b(even)
n1,n2

= avarn1,n2
+ ainvn1,n2
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=
1

2

[
an1,n2 + ainvn1,n2

]
(4.2.16)

b(odd)
n1,n2

=

avarn1,n2
+ ainvn1,n2

n even

avarn1,n2
n odd

=
1

2

[
an1,n2 + (−1)nainvn1,n2

]
(4.2.17)

So to find the Hilbert series for T̃
(odd)
ST and T̃

(even)
ST , we first need to find the generating

function for the ainvn1,n2
, or equivalently the Ainvn1,n2

, since they are related by (3.1.12)

and (3.1.13).

In (4.2.1) we decomposed T
(1)
ST into subspaces that were invariant or variant under

reversal. We now do the same to TST .

TST = TST ;inv ⊕ TST ;var = (TST ;inv;odd ⊕ TST ;inv;even)⊕ TST ;var (4.2.18)

where the odd and even parts refer to the length of the entire single trace, not (as

in (4.2.1)) the length of the aperiodic matrix word which, along with the number of

periods, defined the single trace. We have

TST ;inv = K ⊗ T (1)
ST ;inv TST ;var = K ⊗ T (1)

ST ;var (4.2.19)

but the split into odd and even parts does not respect the K tensor product. Instead,

we have

TST ;inv;even =
(
K ⊗ T (1)

ST ;inv;even

)
⊕
(
Keven ⊗ T (1)

ST ;inv;odd

)
(4.2.20)

TST ;inv;odd = Kodd ⊗ T
(1)
ST ;inv;odd (4.2.21)

By repeating the analysis from section 4.2.1, under the Z2 quotient TST ;inv;odd disap-

pears, TST ;inv;even is unchanged, and TST ;var is ‘halved’ to T̃ST ;var as seen previously for

the aperiodic version in (4.2.4). Therefore the quotient on the full set of single traces

is

TST −→
Z2

T̃ST = TST ;inv;even ⊕ T̃ST ;var (4.2.22)

The coefficients of H
T̃ST

are Bn1,n2 , so using (4.2.15) we find

Bn1,n2 =

Avarn1,n2
+Ainvn1,n2

n even

Avarn1,n2
n odd

=
1

2

[
An1,n2 + (−1)nAinvn1,n2

]
(4.2.23)

We previously found a formula for An1,n2 , (3.2.7), and in the next section we find an
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expression for Bn1,n2 , (4.3.17). Comparing these with (4.2.23) allows us to find Ainvn1,n2
.

Since ainvn1,n2
are related to Ainvn1,n2

via the Möbius transform, we can then use (4.2.16)

and (4.2.17) to find the Hilbert series for T̃
(even)
ST and T̃

(odd)
ST .

4.2.3 Symplectic gauge group

In section 4.1.2 we observed that Sp(N) and SO(N) multi-traces were labelled by

the same set, P̃ 
 (n1, n2), and consisted of the same matrix words. At large N , all

distinct matrix words produce linearly independent gauge-invariant trace operators,

and therefore the spaces of traces have the same structure.

From another point of view, the key relation on traces of SO(N) matrix words is

(4.1.3). From this equation, the entire structure of the space, exhibited in figures 4.1

and 4.2, was derived. The Sp(N) relation, given in (4.1.9) is identical, hence we can

follow the exact same process to get the same results.

Therefore, at large N , the structures of the Sp(N) quarter-BPS sector is given in

4.1 in terms of orthogonal Lyndon words, the ‘minimally periodic’ matrix words of the

theory, or 4.2 in terms of the true periodicity of aperiodic matrix words. All associated

generating functions are given below in 4.3.

4.3 Generating functions at large N

Figures 4.1 and 4.2 give the structure of the large N space of multi-traces T̃ , the various

sub-spaces that contribute, and the relations between the corresponding Hilbert series

(generating functions).

As explained in section 3.2, any of the Hilbert series in figure 4.1 determines all

others, and from the argument at the end of the previous section, we know finding

the Bn1,n2 (or equivalently H
T̃ST

) will give all the series in figure 4.2. It is therefore

sufficient to find just the series H
T̃ST

.

This section gives a direct approach to finding H
T̃ST

that gives insight into its

structure. In appendix E we present an independent argument that derives H
T̃

from

the combinatorics of the restricted Schur basis defined in section 5.6.3. This generating

function is of interest to mathematicians [81], and we believe that our explicit evaluation

of it is a new mathematical result.

To find Bn1,n2 , consider the matrix words contained inside the traces. These words

are constructed from n1 Xs and n2 Y s with n1 + n2 = n. In the U(N) gauge theory,

they are equivalent up to cyclic rotations only, but in the SO(N) gauge theory, we also

have to consider the effect of transposition. As seen in (4.1.3), this reverses the word

and also multiplies by a factor of (−1)n. The cyclic rotations and the reversal act as

Dn on the matrix word.
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To deal with the factor of (−1)n, instead of considering Dn acting on the set of

words, we consider Dn acting on the vector space spanned by the words. Let V2 be the

vector space spanned by two vectors, eX and eY . A basis for V ⊗n2 is labelled by the set

of words of length n constructed from X and Y . Define an operator Q on V2 by

QeX = xeX QeY = yeY (4.3.1)

Then the xn1yn2 eigenspace of Q⊗n is spanned by words constructed from n1 Xs and

n2 Y s.

Let σ be the generator of rotations in Dn and τ the reflection/transposition. These

act on the basis vectors for V ⊗n2 as

σ [ei1 ⊗ ei2 ⊗ . . .⊗ ein ] = ei2 ⊗ ei3 ⊗ . . .⊗ ein ⊗ ei1 (4.3.2)

τ [ei1 ⊗ ei2 ⊗ . . .⊗ ein ] = (−1)nein ⊗ . . .⊗ ei2 ⊗ ei1 (4.3.3)

where ij ∈ {X,Y }. These commute with the action of Q⊗n. This action of the dihedral

group on the space of matrix words was considered in [80].

To get the vector space spanned by traces of anti-symmetric matrices, we project

down to those states which are invariant under the action of Dn using

PDn =
1

2n

∑
ρ∈Dn

ρ =
1

2n

n∑
i=1

σi(1 + τ) (4.3.4)

After projecting the xn1yn2 eigenspace of Q⊗n, the dimension of the reduced eigenspace

is Bn1,n2 . Therefore

Tr (PDnQ
⊗n) =

∑
n1+n2=n

xn1yn2Bn1,n2 (4.3.5)

Forgetting the factor of (−1)n in (4.3.3), then σ, τ act as permutations on V ⊗n2 . We

can therefore use the techniques of section 2.1 to express (4.3.5) in terms of traces of

Q. Since TrQi = xi + yi, this is

∑
n1+n2=n

xn1yn2Bn1,n2 =
1

2n

[
n∑
i=1

(x+ y)c1(σi)(x2 + y2)c2(σi)(x3 + y3)c3(σi) . . .

+ (−1)n
n∑
i=1

(x+ y)c1(σiτ)(x2 + y2)c2(σiτ)(x3 + y3)c3(σiτ) . . .

]
(4.3.6)

where cj(ρ) is the number of cycles of length j in the permutation ρ.

We can evaluate (4.3.6) using the cycle index polynomial of Dn. For a subgroup H
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of the symmetric group Sn, the cycle index polynomial of H is defined to be

ZH(t1, t2, . . .) =
1

|H|
∑
ρ∈H

t
c1(ρ)
1 t

c2(ρ)
2 t

c3(ρ)
3 . . .

=
∑
p`n

ZHp
∏
i

tpii (4.3.7)

where ZHp is the number of elements of H with cycle type p normalised by |H|.
The cycle polynomials of the dihedral group is well known

ZDn(t1, t2, . . .) =
1

2n

∑
d|n

φ(d)t
n
d
d +

1
2 t1t

M−1
2

2 n odd

1
4 t

M−2
2

2

(
t21 + t2

)
n even (and ≥ 2)

(4.3.8)

where φ(d) is the Euler totient function defined in (B.0.14). The first part of the poly-

nomials is just half the cycle index polynomial of the cyclic group Zn. This corresponds

to the rotations σi in Dn. The second part correspond to the reflections σiτ . Therefore

(4.3.6) is

∑
n1+n2=n

xn1yn2Bn1,n2 =
1

2n

∑
d|n

φ(d)(xd + yd)
M
d

+

−1
2(x+ y)(x2 + y2)

n−1
2 n odd

1
4(x2 + y2)

n−2
2

[
(x+ y)2 + (x2 + y2)

]
n even

(4.3.9)

To findBn1,n2 explicitly we binomially expand the above. The first half of the expression

was already expanded in (3.2.5), and is (half) the order n generating function for the

An1,n2 , so we focus on the second half. For n odd, we have

(x+ y)
(
x2 + y2

)n−1
2 =

n−1
2∑

r=0

(n−1
2

r

)(
x2r+1yn−2r−1 + x2ryn−2r

)
(4.3.10)

and for n even

(x2 + xy + y2)
(
x2 + y2

)n−2
2 =

n−2
2∑

r=0

(n−2
2

r

)(
x2r+2yn−2r−2 + x2r+1yn−2r−1 + x2ryn−2r

)
(4.3.11)

Consider the coefficient of xn1yn2 if both n1 and n2 are even. Two of the three terms in

(4.3.11) can contribute. Provided n1, n2 ≥ 2, we get contributions from r = n1
2 ,

n1
2 − 1.
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This leads to the coefficient(n
2 − 1
n
2

)
+

( n
2 − 1
n1
2 − 1

)
=

(n1
2 + n2

2
n1
2

)
(4.3.12)

Checking the cases where n1 = 0 or n2 = 0, we get 1 as a coefficient, which agrees with

(4.3.12).

Performing similar analyses for the other possible parity combinations leads to the

coefficients (n1
2 + n2−1

2
n1
2

)
n1 even, n2 odd (4.3.13)(n1−1

2 + n2
2

n1−1
2

)
n1 odd, n2 even (4.3.14)(n−1

2 + n2−1
2

n−1
2

)
n1 odd, n2 odd (4.3.15)

All four cases can be summarised by the coefficient(
bn1

2 c+ bn2
2 c

bn1
2 c

)
(4.3.16)

Taking account of the signs and factors of a half in (4.3.9), we have

Bn1,n2 =
1

2
An1,n2 +

(−1)n

2

(
bn1

2 c+ bn2
2 c

bn1
2 c

)
=

1

2n

∑
d|n1,n2

φ(d)

(n
d
n
d

)
+

(−1)n

2

(
bn1

2 c+ bn2
2 c

bn1
2 c

)
(4.3.17)

where we have used the expression for An1,n2 from (3.2.7).

Comparing (4.2.23) with (4.3.17), we find

Ainvn1,n2
=

(
bn1

2 c+ bn2
2 c

bn1
2 c

)
(4.3.18)

which have generating function

HTST ;inv
(x, y) =

(1 + x)(1 + y)

1− x2 − y2
− 1 =

x2 + xy + y2 + x+ y

1− x2 − y2
(4.3.19)

where the −1 comes from setting Ainv0,0 = 0.

To find the full generating function for Bn1,n2 , we sum (4.3.9) from n = 1 to ∞.

For the first half of this expression, this was already done in (3.2.3) (the generating
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function for An1,n2), and similarly for the second half in (4.3.19). Therefore

fSO(N)(x, y) = H
T̃ST

(x, y) =
1

2

[
−
∞∑
d=1

φ(d)

d
log(1− xd − yd) +

x2 + xy + y2 − x− y
1− x2 − y2

]
(4.3.20)

We can now take the plethystic exponential, given in (3.1.5), to get the multi-trace

generating function

FSO(N)(x, y) = H
T̃

(x, y) =
∞∏
k=1

1√
1− xk − yk

exp

[
x2k + xkyk + y2k − xk − yk

2k(1− x2k − y2k)

]
(4.3.21)

where to evaluate the infinite products/sums we have used a change of variables similar

to those in (3.2.4) and (3.2.5) as well as the identity (B.0.14).

Using the relations given in figure 4.1, we can find H
T̃ (min) and H

T̃
(min)
ST

. Taking the

Möbius transform (see (3.1.14)) of (4.3.20) gives

H
T̃

(min)
ST

(x, y) =
1

2

∞∑
d=1

µ(d)

[
−1

d
log(1− xd − yd) +

x2d + xdyd + y2d − xd − yd

1− x2d − y2d

]
(4.3.22)

where we have used the identity (B.0.16). Expanding to find the coefficients gives

bn1,n2 =
1

2

∑
d|n1,n2

µ(d)

[
1

n

( n
d
n1
d

)
+ (−1)

n
d

(
bn1

2d c+ bn2
2d c

bn1
2d c

)]
(4.3.23)

Taking the plethystic exponential of (4.3.22), we get

H
T̃ (min)(x, y) =

1√
1− x− y

∞∏
k=1

exp

 1

2k

x2k + xkyk + y2k − xk − yk

1− x2k − y2k

∑
d|k

dµ(d)


(4.3.24)

where we have used the identity (B.0.4). This is the root function, equivalent to (3.0.2)

from the U(N) theory.

The numbers appearing in the exponential here, ck =
∑

d|k dµ(d), form an inter-

esting mathematical sequence. It is sequence A023900 in the OEIS [82], and has the

alternative expression

ck =
∏
p|k

p prime

(1− p) (4.3.25)

This completes the description of the Hilbert series in 4.1.

To find the Hilbert series for the vector spaces shown in figure 4.2, we apply the
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Möbius transform to (4.3.19) to find

H
T

(1)
ST ;inv

(x, y) =M
(
HTST ;inv

)
(x, y) =

∞∑
d=1

µ(d)
x2d + xdyd + y2d + xd + yd

1− x2d − y2d
(4.3.26)

Then using the Hilbert series equivalents of the formulae (4.2.16) and (4.2.17), we have

H
T̃

(odd)
ST

(x, y) =
1

2

[
H
T

(1)
ST

(x, y) +H
T

(1)
ST ;inv

(−x,−y)

]
(4.3.27)

=
1

2

∞∑
d=1

µ(d)

[
−1

d
log(1− xd − yd)

+
x2d + xdyd + y2d + (−x)d + (−y)d

1− x2d − y2d

]
(4.3.28)

H
T̃

(even)
ST

(x, y) =
1

2

[
H
T

(1)
ST

(x, y) +H
T

(1)
ST ;inv

(x, y)

]
(4.3.29)

=
1

2

∞∑
d=1

µ(d)

[
−1

d
log(1− xd − yd) +

x2d + xdyd + y2d + xd + yd

1− x2d − y2d

]
(4.3.30)

Note the similarities between these series, which count single traces with odd and even

numbers of periods, and the minimally periodic version (4.3.22). The only difference

between the three series is in the sign of the last two terms.

From these three Hilbert series we can derive explicit expressions for the coefficients

ainvn1,n2
, b

(odd)
n1,n2 and b

(even)
n1,n2 . These are given in appendix C.

Taking the plethystic exponential of (4.3.28) and (4.3.30) gives

H
T̃ (odd)(x, y) =

1√
1− x− y

∞∏
k=1

exp

∑
d|k

dµ(d)

2k

x2k + xkyk + y2k + (−1)d(xk + yk)

1− x2k − y2k


(4.3.31)

H
T̃ (even)(x, y) =

1√
1− x− y

∞∏
k=1

exp

x2k + xkyk + y2k + xk + yk

2k(1− x2k − y2k)

∑
d|k

dµ(d)

 (4.3.32)

where we have used the identity (B.0.4). This gives us all the Hilbert series featured

in figure 4.2.
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4.3.1 Half-BPS sector

The generating function for the half-BPS sector was given in [57]. By setting y = 0 in

(4.3.21), we obtain the same results

FSO(N)(x, 0) =

∞∏
n=1

1

(1− xn)Bn,0
(4.3.33)

Setting n2 = 0 in (4.3.17) and using (B.0.14) we get

Bn,0 =
1

2
(1 + (−1)n) =

1 n even

0 n odd
(4.3.34)

Plugging this into (4.3.33)

FSO(N)(x, 0) =

∞∏
n=1

1

1− x2n
(4.3.35)

which matches the result found in [57].
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Chapter 5

Algebraic structure of the free

field SO(N) and Sp(N) gauge

theories

In this chapter we study the permutation construction of SO(N) and Sp(N) operators

at finite N . The major difference compared to the U(N) theory is that we work

with permutations in S2n rather than Sn. This understanding was first used in [56]

in order to construct a Young diagram basis for the half-BPS sector of the SO(N)

theory, shortly followed by the generalisation to Sp(N) in [57]. This basis was used

to calculate correlators to all orders in N , and is directly analogous to the original

U(N) Schur operators of [22]. These results included a Young diagram basis for half-

BPS baryonic operators constructed from εi1...iN , though correlators for these operators

were not found. An extension to the free field quarter-BPS sector was found in [59,60],

giving a restricted Schur basis similar to the U(N) version introduced in [44,45].

We expand upon this picture, introducing a gauge group independent way of look-

ing at the permutation construction of operators, valid for SO(N), Sp(N) and U(N).

For each sector there is a permutation state space A that, when contracted with the

appropriate invariant tensors, produces the gauge-invariant operators. A has two asso-

ciated auxiliary algebras, AL and AR,that act on the left and right respectively. Each

of A, AL and AR are defined in terms of an action α → σ(α) for σ ∈ G where G is

permutation group. This action splits C(S2n) into orbits that are called double cosets

for SO(N)/Sp(N) and conjugacy classes for U(N). In the SO(N) and Sp(N) theories,

the double cosets can be split into two categories depending on the sign associated with

the action σ(α). The odd double cosets do not contribute to the algebras A,AL and

AR, while the sums over the even double cosets form a basis. For the SO(N) mesonic

and Sp(N) operators A, this double coset basis constructs the multi-trace basis of

operators.
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By transforming to a Fourier basis of C(S2n) and studying the defining actions,

we find Fourier bases of A,AL and AR valid at finite N . These have nice multipli-

cation properties within and between the algebras, allowing an identification of the

Wedderburn-Artin decomposition of AL and AR. Under the action of AL×AR on the

state space, A forms representations which can be given explicitly.

In each theory there is a special theory dependent element Ω(G) of C(S2n). This has

nice eigenvalues on AL and A and commutes with AL. However, its most important

property is its role in correlators. For appropriately defined operators Oα depending

on a permutation α ∈ A, we find

〈Oβ|Oα〉 =
∑
σ∈G

δ
(

Ω(G)σ(α)β−1
)

(5.0.1)

This is a theory independent correlator formula depending only on the permutation

construction of operators.

For SO(N) and Sp(N) permutation state spaces, the Fourier bases construct or-

thogonal bases of operators labelled by Young diagrams. In the half-BPS sector, these

are the Schur operators introduced in [56, 57]. For SO(N) mesonic and symplectic

operators in the quarter-BPS sectors, they are the restricted Schur basis first defined

in [59,60]. For quarter-BPS operators in the SO(N) baryonic sector, they form a new

baryonic restricted Schur basis.

In order to compare permutation algebras between the SO(N) and Sp(N) theories,

we find that there is a slightly different relation from the link (4.0.3) between invariants.

This is

R→ Rc σ → (−1)σσ (5.0.2)

We will generally start by deriving the results for the orthogonal group, and follow up

with remarks on the generalisation to the symplectic case. The exception is when we

deal with SO(N) baryonic objects, which have no Sp(N) equivalent.

In the final part of this chapter we define the U(2) covariant basis for quarter-

BPS mesonic, symplectic and baryonic operators. The U(N) equivalent (3.6.20) has

been used in [51] and chapter 7 of this thesis to construct quarter-BPS weak coupling

operators.

A minority of the material in this chapter was originally presented in [1], while the

majority is unpublished.
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5.1 Technical differences from U(N)

In section 2.1 we considered V , the carrier space for the N -dimensional fundamental

representation of U(N). The matrices Xi
j and Y i

j in the adjoint of u(N) were given

one up and one down index. This reflected the fact that V is a complex representation

of U(N) and the conjugate space V ∗ forms a non-isomorphic representation (the anti-

fundamental). The upper index of Xi
j lives in V , while the lower index lives in V ∗.

Compare this with SO(N). V also carries the fundamental representation of SO(N).

This is a real representation, and therefore the conjugate representation is isomorphic

to V . Therefore the two indices of matrices in the adjoint of so(n) lie in the same space.

Hence we use the index structure Xij and Y ij . Indeed, as X and Y are anti-symmetric,

their indices must lie in the same space.

Consequently, for SO(N) tensors, there is no difference between upper and lower

indices. For our purposes, we will (in general) use downstairs indices for SO(N) invari-

ant tensors that we use to contract the indices of X and Y , while using upstairs indices

for the operators. That being said, when it is convenient to break these conventions

we will do so. We still use a combination of downstairs and upstairs indices for objects

(such as permutations) acting on the tensor space V ⊗2n.

Similar statements hold true for Sp(N), and we use the same index structure for

these fields. The condition (4.0.1) is equivalent to saying that (ΩX)ij is symmetric,

which is an easier condition to work with, and we therefore use ΩX and ΩY in the

construction of operators rather than the bare matrices.

5.1.1 Invariant tensors

The invariant tensors for SO(N) are δij and εi1i2...iN , while for Sp(N) we only have

Ωij , where Ω is as defined in (4.0.2). εi1i2...iN is invariant in the symplectic theory, but

is related to the N
2 -fold tensor product (recall N is even in symplectic theories) of Ωij

εi1i2...iN =
1

2
N
2

(
N
2

)
!

∑
σ∈SN

Ωiσ(1)iσ(2)
Ωiσ(3)iσ(4)

. . .Ωiσ(N−1)iσ(N)
(5.1.1)

Therefore the baryonic operators in the symplectic theory are linearly dependent on

the mesonic ones, and we will not consider them.

5.1.2 The wreath product Sn[S2]

Gauge invariant operators will be constructed by contracting the indices of X⊗n1Y ⊗n2 ,

or (ΩX)⊗n1 (ΩY )⊗n2 , which lie in the space V ⊗2n. It is therefore appropriate to consider

permutations in S2n rather than Sn. There is a particularly important subgroup of S2n

that will play a crucial role in this construction, the wreath product group Sn[S2].
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1

2

3

4

5

6

. . .

2n− 1

2n

Figure 5.1: The set on which Sn[S2] acts. A group element can permute the n pairs,
while switching or not switching each individual pair

Intuitively, Sn[S2] can be thought of as the permutations of n pairs of objects. Each

pair can be individually switched, and the n pairs can be permuted among themselves,

so we have |Sn[S2]| = 2nn!. By labelling the 2n objects as {1, 2}, {3, 4}, . . . , {2n−1, 2n},
we see that Sn[S2] naturally lies within S2n. It is simple to check that it is the centraliser

of the permutation (1, 2)(3, 4) . . . (2n−1, 2n). Figure 5.1 shows the set on which Sn[S2]

acts.

More formally, Sn[S2] is defined as the wreath product of Sn with S2, or equivalently

as the semi-direct product of Sn with (S2)n, where the Sn acts on (S2)n by permutation

of the factors.

Since Sn[S2] is a subgroup of S2n it acts on V ⊗2n. The properties of this action are

easiest to see if we label the indices slightly differently. Consider A ∈ V ⊗2n with the

indices labelled as follows

AI = Ai1,1i1,2i2,1i2,2...in,1in,2 (5.1.2)

Then the Sn part of Sn[S2] act on the first index (j in ij,k) while the n copies of S2

acts on the second index (k). Therefore if M is a symmetric (anti-symmetric) matrix,

(M⊗n)
I

will be invariant (anti-invariant) under the action of Sn[S2].

We can define projection operators onto irreducible representations of Sn[S2] just

as we did with Sn representations in (2.3.13). There are two one-dimensional rep-

resentations of Sn[S2] that are important for our analysis. The trivial (symmetric)

representation takes σ to 1, and the anti-symmetric (sign) representation takes σ to

(−1)σ, defined by considering σ ∈ Sn[S2] ≤ S2n. We denote these two representations

by [S] and [A] respectively. The projectors of [S] and [A] are given by

P[S] =
1

2nn!

∑
σ∈Sn[S2]

σ P[A] =
1

2nn!

∑
σ∈Sn[S2]

(−1)σσ (5.1.3)

For a description of a generic irreducible representation of Sn[S2] see appendix F
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5.1.3 Invariant vectors

There are three distinct types of invariant vectors that are important in the construction

of SO(N) and Sp(N) operators. The first two are relevant for SO(N) mesonic and

Sp(N) operators, while the third is used in SO(N) baryonic operators.

The vectors |R, [S]〉 and |R, [A]〉

Firstly, consider vectors in a representation R ` 2n of S2n that are invariant or anti-

invariant under Sn[S2]. Each invariant vector corresponds to a copy of [S] when R is

decomposed into irreducible representations of Sn[S2], and similarly the anti-invariant

vectors correspond to the copies of [A]. It is proved in [64, Chapter VII.2] that [S]

appears in the decomposition of R if and only if R has an even number of boxes in

each row, and then it appears with multiplicity 1. By conjugation of Young diagrams,

[A] appears in the decomposition if and only if R has an even number of boxes in each

column, and then it appears with multiplicity 1. We denote the unit vectors in R that

lie in the [S] and [A] representations (when they exist) as

|R, [S]〉 |R, [A]〉 (5.1.4)

More detail is provided on how |R, [S]〉 and |R, [A]〉 embed into R in appendix A.

In a representation, P[S] and P[A] can be given in terms of these invariant vectors

DR
(
P[S]

)
=

|R, [S]〉 〈R, [S]| if R has even row lengths

0 otherwise
(5.1.5)

DR
(
P[A]

)
=

|R, [A]〉 〈R, [A]| if R has even column lengths

0 otherwise
(5.1.6)

Consider an R ` 2n with both even row lengths and even column lengths, so that it

admits both an invariant and anti-invariant vector of Sn[S2]. Such an R has n even

and is made up of 2 × 2 blocks . Define R
4 `

n
2 to be the ‘quartered’ version of R

where each 2× 2 block is replaced by a single box. In terms of components

R = [R1, R1, R2, R2, . . . , Rk, Rk] → R

4
=

[
R1

2
,
R2

2
, . . . ,

Rk
2

]
(5.1.7)
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For example

R = [6, 6, 2, 2] = ←→ R

4
= [3, 1] = (5.1.8)

Define S
(odd)
n to be the embedding of Sn into S2n that acts on only the odd numbers.

For σ ∈ Sn, we denote the equivalent permutation in S
(odd)
n by σ(odd). In the paper [83],

the author derives the matrix element of σ(odd) in a representation R with respect to

the Sn[S2] invariant vector on the left and the Sn[S2] anti-invariant vector on the right.

Suppose the cycle type p ` n of σ ∈ Sn has an odd component. Then

〈R, [S]|DR
(
σ(odd)

)
|R, [A]〉 = 0 (5.1.9)

If there is no odd component in p, then σ has cycle type 2p, for p ` n
2 . In this case

〈R, [S]|DR
(
σ(odd)

)
|R, [A]〉 =

2l(p)

2nn!

√
(2n)!

dR
χR

4
(p) (5.1.10)

Consider the behaviour of the vectors (5.1.4) under conjugation of R. If R has even

row lengths and admits a vector |R, [S]〉, then the conjugate representation Rc has even

column lengths and admits a vector |Rc, [A]〉.
Let VR be the representation space for R. Then since Rc =sgn⊗R, we have an

orthogonal map ρ from VR to VRc satisfying

DRc(σ) = (−1)σρDR(σ)ρ−1 (5.1.11)

Then for σ ∈ Sn[S2]

DRc(σ)ρ|R, [S]〉 = (−1)σρDR(σ)|R, [S]〉 = (−1)σρ |R, [S]〉 (5.1.12)

and hence

|Rc, [A]〉 = ρ |R, [S]〉 (5.1.13)

Similarly, if R had even column lengths, we have

|Rc, [S]〉 = ρ |R, [A]〉 (5.1.14)

So the invariant and anti-invariant vectors switch places under conjugation of Young

diagrams.
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The vectors |R1, R2, [S], λ〉 and |R1, R2, [A], λ〉

We will also be interested in vectors invariant or anti-invariant under Sn1 [S2]×Sn2 [S2],

for n1 + n2 = n. To understand these, consider the Littlewood-Richardson decomposi-

tion of S2n representations into S2n1 × S2n2 representations

R =
⊗
R1`n1
R2`n2

R1 ⊗R2 ⊗ V mult
R;R1,R2

(5.1.15)

where V mult
R;R1,R2

is a Littlewood-Richardson multiplicity space of dimension gR;R1,R2 . For

more detail on this decomposition, how gR;R1,R2 is calculated and a way of choosing a

basis for V mult
R:R1,R2

see appendix D.

We can then look at the decompositions of the Ri representations of S2ni into Sni [S2]

representations in exactly the same manner as discussed above for R. If both R1 and R2

have even row lengths, then R contains a corresponding gR;R1,R2 copies of the [S]⊗ [S]

representation of Sn1 [S2]× Sn2 [S2]. We denote the unit vectors spanning these by

|R1, R2, [S], λ〉 (5.1.16)

where λ indexes a basis element of V mult
R;R1,R2

.

Similarly, if both R1 and R2 have even column lengths, then R contains a corre-

sponding gR;R1,R2 copies of the [A]⊗ [A] representation of Sn1 [S2]×Sn2 [S2], whose unit

vectors are denoted by

|R1, R2, [A], λ〉 (5.1.17)

The projectors to the [S] ⊗ [S] and [A] ⊗ [A] representations of Sn1 [S2] × Sn2 [S2] are

defined by

P[S]⊗[S] =
1

2nn!

∑
σ∈Sn1 [S2]×Sn2 [S2]

σ P[A]⊗[A] =
1

2nn!

∑
σ∈Sn1 [S2]×Sn2 [S2]

(−1)σσ

(5.1.18)

In a representation R ` 2n, these projectors have representatives in terms of the in-

variant vectors

DR
(
P[S]⊗[S]

)
=

∑
R1`2n1
R2`2n2

gR;R1,R2∑
λ=1

|R1, R2, [S], λ〉 〈R1, R2, [S], λ| (5.1.19)

DR
(
P[A]⊗[A]

)
=

∑
R1`2n1
R2`2n2

gR;R1,R2∑
λ=1

|R1, R2, [A], λ〉 〈R1, R2, [A], λ| (5.1.20)

where the sum runs over R1, R2 with even row lengths for P[S]⊗[S] and even column
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lengths for P[A]⊗[A].

Using the same notation as (5.1.13), the two vectors (5.1.16) and (5.1.17) transform

into each other under conjugation of Young diagrams. If R contains a copy of R1⊗R2

where R1, R2 have even row lengths, then

|Rc1, Rc2, [A], λ〉 = ρ |R1, R2, [S], λ〉 (5.1.21)

where the vector on the left lives in the representation Rc of S2n. Similarly, if R contains

a copy of R1 ⊗R2 where R1, R2 have even column lengths, then

|Rc1, Rc2, [S], λ〉 = ρ |R1, R2, [A], λ〉 (5.1.22)

The vector
∣∣[1N]〉⊗ |R̄, [S]〉

The final vector of interest is (anti-)invariant under the subgroup SN × Sq[S2], where

2n = N + 2q and the SN factor acts on {1, 2, . . . , N} while the Sq[S2] factor acts of the

pairs {N+2i−1, N+2i} for 1 ≤ i ≤ q. This subgroup is relevant for baryonic operators

in the SO(N) theory. We are interested in vectors anti-invariant under the SN factor

and invariant under the Sq[S2] factor. Such a vector lives in a representation [1N ]⊗ R̄
of SN × S2q where R̄ has even row lengths. In appendix D.2.1, we characterise the R

that admit such a representation, and prove that there is always a unique R̄ associated

to a given R, with Littlewood-Richardson coefficient gR;[1N ],R̄ = 1. Therefore there is

a unique unit vector (up to a minus sign) with the sought-after invariance. We write

this as a tensor product in [1N ]⊗ R̄

∣∣[1N]〉⊗ |R̄, [S]〉 (5.1.23)

where
∣∣[1N]〉 is the vector spanning the one-dimensional representation [1N ] of SN and

|R̄, [S]〉 is the unit Sq[S2]-invariant vector in R̄ as defined in (5.1.4).

If R is restricted to have l(R) = N (note it must have l(R) ≥ N in order to contain

a copy of [1N ]), then the relation between R and R̄ simplifies to R = [1N ] + R̄.

Define the projector onto the [1N ]⊗ [S] representation of SN × Sq[S2] by

P[1N ]⊗[S] =
1

N !2qq!

∑
σ∈SN×Sq [S2]

(−1)σ1σ (5.1.24)

where for σ ∈ SN × Sq[S2], we define σ1 to be the SN component.
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β

. . . . . .

. . . . . .

δ δ δ δ δ

X X X Y Y

Figure 5.2: A diagrammatic representation of the index contraction in a mesonic oper-
ator, where each line represents an index. There are n1 Xs and n2 Y s, and β ∈ C(S2n).

In a representation, this projector is represented in terms of the invariant vector

DR
(
P[1N ]⊗[S]

)
=


( ∣∣[1N]〉⊗ |R̄, [S]〉

)( 〈[
1N
]∣∣⊗ 〈R̄, [S]|

)
if R of appropriate form

0 otherwise

(5.1.25)

5.2 Permutation state spaces and auxiliary algebras

Consider permutations σ ∈ S2n acting on the 2n indices of the SO(N) matrix tensor

product X⊗n1Y ⊗n2 . As discussed beneath (5.1.2), this will be anti-invariant under

Sn1 [S2] × Sn2 [S2] permutations. For the symplectic case, (ΩX)⊗n1 (ΩY )⊗n2 will be

invariant under Sn1 [S2]× Sn2 [S2].

Now consider the possible contractions we can use. From the discussion of invariant

tensors in section 5.1.1, there are two possibilities for the SO(N) theory

C
(δ)
I = δi1i2δi3i4 . . . δi2n−1i2n (5.2.1)

C
(ε)
I = εi1i2...iN δiN+1iN+2δiN+3iN+4 . . . δi2n−1i2n (5.2.2)

where the baryonic contractor C(ε) is only available when N is even.

Looking at the action of permutations on these contractors, C(δ) is invariant under

Sn[S2] permutations. Defining q = n− N
2 the invariances of C(ε) are controlled by the

group SN × Sq[S2]. It is anti-invariant under the SN factor of and invariant under the

Sq[S2] factor.
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β

. . .

δ δ

. . . . . .

X X X Y Y

. . .

ε

Figure 5.3: A diagrammatic representation of the index contraction in a baryonic
operator. The ε vertex has N legs and there are n1 Xs, n2 Y s and q

(
= n− N

2

)
δs. For

convenience, this diagram shows N = 2n1, but in general this does not have to be the
case.

For the symplectic gauge group we have

C
(Ω)
I = Ωi1i2Ωi3i4 . . .Ωi2n−1i2n (5.2.3)

which is anti-invariant under Sn[S2].

For α ∈ C(S2n), we define orthogonal mesonic and baryonic operators by

Oδα = C
(δ)
I αIJ

(
X⊗n1Y ⊗n2

)J
(5.2.4)

Oεα = C
(ε)
I αIJ

(
X⊗n1Y ⊗n2

)J
(5.2.5)

and symplectic operators by

OΩ
α = C

(Ω)
I αIJ

[
(ΩX)⊗n1 (ΩY )⊗n2

]J
(5.2.6)

We refer to these as the SO(N) mesonic, baryonic and Sp(N) contraction patterns

respectively, in contrast to the U(N) contraction pattern (2.1.3). Figures 5.2, 5.3 and

5.4 show these three types of contractions diagrammatically.

Each of (5.2.4), (5.2.5) and (5.2.6) is invariant under left and right multiplication by

different subgroups of S2n. These lead to different sub-algebras of C(S2n) that control

the construction of operators in each of the three cases. We first consider the SO(N)

mesonic and symplectic case, since they involve the action of the same groups, before

moving on to the baryonic case.
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β

. . . . . .

. . . . . .

ΩX ΩX ΩX ΩY ΩY

Ω Ω Ω ΩΩ

Figure 5.4: Diagrammatic representation of the contraction pattern for symplectic
mesonic operators.

5.2.1 Mesonic and symplectic sectors

For SO(N) mesonic operators, the invariances of the contraction (5.2.4) lead to Aδn1,n2
,

defined by invariance under

Aδn1,n2
: α 7→ (−1)τ σατ−1 σ ∈ Sn[S2] , τ ∈ Sn1 [S2]× Sn2 [S2] (5.2.7)

the equivalent for symplectic operators is AΩ
n1,n2

, defined by invariance under

AΩ
n1,n2

: α 7→ (−1)σ σατ−1 σ ∈ Sn[S2] , τ ∈ Sn1 [S2]× Sn2 [S2] (5.2.8)

which come from the contraction (5.2.6). Take two elements α, β ∈ Aδn1,n2
. Then using

(5.2.7) first on β and then on α, we have

αβ = α(1, 2)β = −αβ = 0 (5.2.9)

So the multiplication in Aδn1,n2
is trivial. We therefore do not call Aδn1,n2

a sub-algebra

of C(S2n), instead it is a subspace, which we call a permutation state space. AΩ
n1,n2

also has this property.

Despite (5.2.9), Aδn1,n2
andAΩ

n1,n2
do have interesting multiplication properties when

multiplied by other sub-algebras of C(S2n) that we call auxiliary algebras. Consider

A+
n and A−n , defined respectively by invariance under

A+
n : α 7→ σατ−1 σ, τ ∈ Sn[S2] (5.2.10)

A−n : α 7→ (−1)σ(−1)τσατ−1 σ, τ ∈ Sn[S2] (5.2.11)

These two definitions are similar to the half-BPS versions of (5.2.7) and (5.2.8) but have

91



CHAPTER 5. ALGEBRAIC STRUCTURE OF THE FREE FIELD SO(N) AND
SP (N) GAUGE THEORIES

the same sign behaviour on the left and right, leading to a non-trivial multiplication.

In section 5.4.1 we give a Fourier basis for A±n , prove that they are Abelian algebras

and give a description of the different one-dimensional irreducible representations.

The algebras A±n act by left multiplication on Aδ/Ωn1,n2 respectively.

A+
nAδn1,n2

⊆ Aδn1,n2
A−nAΩ

n1,n2
⊆ AΩ

n1,n2
(5.2.12)

We could also consider other products between the auxiliary algebras and the permu-

tation state space. By similar reasoning to (5.2.9), we have

A−nAδn1,n2
= Aδn1,n2

A+
n = 0 (5.2.13)

A+
nAΩ

n1,n2
= AΩ

n1,n2
A−n = 0 (5.2.14)

The products Aδn1,n2
A−n and AΩ

n1,n2
A+
n are non-zero, but are in general quite complex

and we will not study them here. Instead, we use a different pair of algebras to act on

the right of Aδ/Ωn1,n2 . These are called A±n1,n2
and are defined respectively by invariance

under

A+
n1,n2

: α 7→ σατ−1 σ, τ ∈ Sn1 [S2]× Sn2 [S2] (5.2.15)

A−n1,n2
: α 7→ (−1)σ(−1)τσατ−1 σ, τ ∈ Sn1 [S2]× Sn2 [S2] (5.2.16)

Intuitively, A±n match the left-hand actions of (5.2.7) and (5.2.8) while A±n1,n2
match

the right-hand actions. As a result, A±n1,n2
naturally act on the right of the permutation

state spaces

Aδn1,n2
A−n1,n2

⊆ Aδn1,n2
AΩ
n1,n2
A+
n1,n2

⊆ AΩ
n1,n2

(5.2.17)

Fourier bases for A±n1,n2
are given in section 5.4.2. These allow us to identify a matrix

description of the auxiliary algebras and describe the different irreducible representa-

tions.

The actions of A±n and A±n1,n2
on Aδ/Ωn1,n2 commute, since one acts by left mul-

tiplication and the other on the right. This means Aδ/Ωn1,n2 can be decomposed into

representations of the product algebra A±n × A∓n1,n2
. These decompositions are given

in (5.6.63) and (5.6.64) respectively.

The description of the state spaces Aδ/Ωn1,n2 and the respective auxiliary algebras

give our first concrete example of the anti-symmetrisation relation (5.0.2) between

the SO(N) mesonic sector and the Sp(N) theory. The state spaces Aδ/Ωn1,n2 are anti-

symmetrisations of each other, the left auxiliary algebras A±n are anti-symmetrisations

of each other, and similarly for the right auxiliary algebras A±n1,n2
.
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In the half-BPS sector, the state spaces Aδ/Ωn1,n2 reduce to Aδ/Ωn , defined by

Aδn : α 7→ (−1)τ σατ−1 σ, τ ∈ Sn[S2] (5.2.18)

AΩ
n : α 7→ (−1)σ σατ−1 σ, τ ∈ Sn[S2] (5.2.19)

while the right auxiliary algebras A±n1,n2
reduce to the left auxiliary algebras A±n , so

for the half-BPS permutation state spaces we have the left and right actions

A+
nAδn ⊆ Aδn AδnA−n ⊆ Aδn (5.2.20)

A−nAΩ
n ⊆ AΩ

n AΩ
nA+

n ⊆ AΩ
n (5.2.21)

At large N , (5.2.7), (5.2.8), (5.2.10), (5.2.11), (5.2.15), (5.2.16), (5.2.18) and (5.2.19)

define Aδ/Ωn1,n2 , A±n , A±n1,n2
, Aδ/Ωn respectively, but for N < n there are finite N cut-offs

to consider. We denote the reduced algebras by adding ‘;N ’ (for example Aδ;Nn1,n2) to

the upper index labels, and they are defined formally in section 5.6 in terms of their

generators. Schematically, they are the intersection of the unrestricted versions with

the N -restricted sub-algebra of C(S2n) as described in section 2.5.

In this section we have repeatedly referred to section 5.4 where we will introduce

Fourier bases for each of the auxiliary algebras, give multiplication rules for them, de-

scribe their representations and give their finite N behaviour. For the permutation

state spaces, the equivalent is done in section 5.6, where in addition we give the decom-

positions of the states spaces as representations of the auxiliary algebras and describe

the operators constructed by the state spaces.

There is another basis described in section 5.3 for each of the spaces/algebras,

obtained by summing over the orbits of the defining actions. These orbits are called

double cosets. For the state spaces these bases correspond to the multi-trace operators.

The two types of bases, Fourier and double coset, are the SO(N)/Sp(N) equivalent

of the Fourier and conjugacy class bases for the U(N) algebra An1,n2 as described in

sections 3.5.3 and 3.6.1.

5.2.2 Baryonic sector

The definition of baryonic operators (5.2.5) is invariant under the transformation

AεN ;n1,n2
: α 7→ (−1)σ1(−1)τσατ−1 σ ∈ SN × Sq[S2] , τ ∈ Sn1 [S2]× Sn2 [S2]

(5.2.22)

where for σ ∈ SN×Sq[S2], σ1 is the SN component. This defines the sub-space AεN ;n1,n2

of C(S2n). However, this is not the permutation state space responsible for operator

construction. The definition (5.2.22) relies on N being finite, and therefore we need to
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restrict the group algebra C(S2n) to only incorporate those Young diagram components

with l(R) ≤ N , as explained in section 2.5. The intersection of this restriction with

AεN ;n1,n2
is called Aε;NN ;n1,n2

, and it is this space which captures the true degrees of

freedom of the system. We give a formal definition for the restricted space in terms of

its generators in (5.6.80).

At this point it is worth clarifying the terminology ‘finite N cut-off’. For the mesonic

and symplectic sectors, this refers to the restriction of the group algebra to l(R) ≤ N , as

this is the only effect of N from the permutation point of view. For the baryonic sector,

the terminology is potentially confusing since we require N to be finite in order for it to

exist, yet we can also consider the space AεN ;n1,n2
on which we have not implemented

the ‘finite N cut-off’. For ease of notation, we will refer to the restriction, even in the

baryonic sector, as the ‘finite N cut-off’. For similar reasons, we refer to AεN ;n1,n2
as a

permutation state space, even though it does not describe any physical state space of

operators.

By similar logic to (5.2.9), AεN ;n1,n2
and Aε;NN ;n1,n2

have a trivial product (unless

2n = N). However, like the mesonic and symplectic cases, there are auxiliary algebras

acting on the left and right that have interesting multiplication properties withAεN ;n1,n2
.

On the left we have

BεN,q : α 7→ (−1)σ1(−1)τ1σατ−1 σ, τ ∈ SN × Sq[S2] (5.2.23)

where σ1 is the SN component of σ.

On the right we have A−n1,n2
defined in (5.2.16). As with the permutation state

space, we should consider the restricted versions Bε;NN,q and A−;N
n1,n2 as there is no large N

limit for baryonic operators. These are defined in terms of their generators in section

5.4.

Since the actions of Bε;NN,q and A−;N
n1,n2 commute on Aε;NN ;n1,n2

, it forms a representation

of Bε;NN,q ×A
−;N
n1,n2 . This representation is described in (5.6.83).

The half-BPS equivalent of (5.2.22) is

Aεn : α 7→ (−1)σ1(−1)τσατ−1 σ ∈ SN × Sq[S2] , τ ∈ Sn[S2] (5.2.24)

which, along with its restrictionAε;NN ;n, is acted on the left and right by auxiliary algebras

Bε;NN,q and A−;N
n respectively.

5.3 Double cosets

In section 5.2 we defined various algebras and permutation state spaces by invariance

(or anti-invariance) under multiplication on the left and right by subgroups of S2n.

These actions were (5.2.7), (5.2.8), (5.2.10), (5.2.11), (5.2.15), (5.2.16), (5.2.18), (5.2.19)
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Permutation algebra/state space GL GR (−1)(σ,τ)

Half-BPS state space Aδn Sn[S2] Sn[S2] (−1)τ

Half-BPS state space AΩ
n Sn[S2] Sn[S2] (−1)σ

Auxiliary algebra A+
n Sn[S2] Sn[S2] 1

Auxiliary algebra A−n Sn[S2] Sn[S2] (−1)σ(−1)τ

Quarter-BPS state space Aδn1,n2
Sn[S2] Sn1 [S2]× Sn2 [S2] (−1)τ

Quarter-BPS state space AΩ
n1,n2

Sn[S2] Sn1 [S2]× Sn2 [S2] (−1)σ

Auxiliary algebra A+
n1,n2

Sn1 [S2]× Sn2 [S2] Sn1 [S2]× Sn2 [S2] 1

Auxiliary algebra A−n1,n2
Sn1 [S2]× Sn2 [S2] Sn1 [S2]× Sn2 [S2] (−1)σ(−1)τ

Half-BPS state space AεN ;n SN × Sq[S2] Sn[S2] (−1)σ1(−1)τ

Quarter-BPS state space AεN ;n1,n2
SN × Sq[S2] Sn1 [S2]× Sn2 [S2] (−1)σ1(−1)τ

Baryonic auxiliary algebra BεN,q SN × Sq[S2] SN × Sq[S2] (−1)σ1(−1)τ1

Table 5.1: The permutation algebras and state spaces we consider in this chapter. Each
is defined by invariance under multiplication by GL on the left and GR on the right, up
to a sign change of (−1)(σ,τ) for (σ, τ) ∈ GL ×GR.

(5.2.22), (5.2.23) and (5.2.24). If we ignore the minus signs in each of these, they give

an action purely on S2n rather than the wider algebra C(S2n). The orbits under these

unsigned actions are called double cosets. Given the subgroup GL on the left and GR

on the right, we denote the set of double cosets by

GL\S2n/GR (5.3.1)

When the left and right groups are the same, GL = GR, these doubles cosets span

algebras that are known in the mathematics literature as Hecke algebras. Further,

when the Hecke algebra is commutative, the groups G and GL = GR are known as a

Gelfand pair. See [64] for more on these mathematical concepts.

When we include the minus signs in the actions, the double cosets are split into two

categories, even and odd. Denote the sign associated to the action of (σ, τ) ∈ GL×GR
by (−1)(σ,τ). Depending on the action being considered, this may or may not be equal

to (−1)σ(−1)τ . The choice of sign is restricted by the nature of a group action: it

always satisfies

(−1)(σσ′,ττ ′) = (−1)(σ,τ)(−1)(σ′,τ ′) (5.3.2)

The permutations groups GL and GR and the associated sign (−1)(σ,τ) for the different

algebras are given in table 5.1.

Let π be a representative member of a double coset. We define this to be an odd

double coset if there exists a (σ, τ) ∈ GL ×GR such that

(−1)(σ,τ)σπτ−1 = −π (5.3.3)
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If there is no such (σ, τ), the double coset is even. Note it does not matter which

representative π we chose; if we take π′ = απβ−1 to be an alternative representative

then σ′ = ασα−1 and τ ′ = βτβ−1, so (5.3.3) is true either for all π in the double coset

or none.

The distinction between even and odd double cosets is important when we consider

summing over the action of GL ×GR. Consider π ∈ S2n. By summing over the action

on π, we obtain an element of the invariant algebra/space

απ =
∑
σ∈GL
τ∈GR

(−1)(σ,τ)σπτ−1 (5.3.4)

If π is in an odd double coset, then there is some (σπ, τπ) ∈ GL×GR with (−1)(σπ ,τπ) =

−1 and σππτ
−1
π = π. The element (σπ, τπ) generates a subgroup {(σπ, τπ)k : 1 ≤ k ≤ m}

of GL×GR, where m is the smallest integer such that σmπ = τmπ = 1. The sign associated

to a member of this subgroup is

(−1)(σπ ,τπ)k =
[
(−1)(σπ ,τπ)

]k
= (−1)k (5.3.5)

Therefore

(−1)(σπ ,τπ)kσkππτ
−k
π = (−1)kπ (5.3.6)

Since the sign associated to (σπ, τπ)m = (1, 1) is 1, m must be even. Now take right

coset representatives (β, γ) of GL ×GR over this subgroup. Then

απ =
∑
(β,γ)

(−1)(β,γ)β

(
m∑
k=1

(−1)(σπ ,τπ)kσkππτ
−k
π

)
γ−1

=
∑
(β,γ)

(−1)(β,γ)β
(m

2
π − m

2
π
)
γ−1

= 0 (5.3.7)

So the odd double cosets are those that vanish when summed over the (signed) group

action.

The map π → απ in (5.3.4) projects an arbitrary element of C(S2n) into the invariant

algebra/space, and therefore elements of the form απ constitute a spanning set. Any

two elements π, π′ of the same double coset have the same απ (up to a potential minus

sign), and therefore if we choose π to run over set of double coset representatives, απ

generate the invariant algebra/space. (5.3.7) demonstrates that odd double cosets do

not contribute, and therefore we restrict to π that are representatives of an even double

coset. These απ form a basis for the invariant algebras/spaces.

The existence of odd double cosets depend on the sign (−1)(σ,τ) in the particular
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action. In the defining action of A+
n and A+

n1,n2
, the sign is (−1)(σ,τ) = 1, so clearly all

double cosets are even. Similarly, if (σ, τ) are such that σπτ = π, then clearly σ and

τ have the same sign and (−1)σ(−1)τ = 1. Therefore A−n and A−n1,n2
also do not have

odd double cosets.

The other algebras/state spaces in table 5.1 all have odd double cosets that do

not contribute. For Aδ/Ωn and Aδ/Ωn1,n2 , setting σ = τ = (1, 2) implies the double coset

containing the identity is odd. For Aεn and Aεn1,n2
, set σ = τ = (N + 1, N + 2), and

again the double coset containing the identity is odd. Finally, the defining action for

BN,q has an odd double coset containing π = (1, N + 1, 2, N + 2) since

(1, 2)π(N + 1, N + 2) = π (5.3.8)

For the actions defining the permutation state spaces Aδ/Ωn1,n2 , Aδ/Ωn , Aεn1,n2
and Aεn,

different elements in the same double coset produce the same operators when inserted

in the appropriate contractions: (5.2.4), (5.2.5) or (5.2.6). The defining property (5.3.3)

of odd double cosets means operators produced by odd double cosets are identically

zero. Therefore the even double cosets are responsible for operator construction.

In the remainder of this section we give a more explicit understanding of the double

cosets associated with the (unsigned) actions

α 7→ σατ−1 σ, τ ∈ Sn[S2] (5.3.9)

α 7→ σατ−1 σ ∈ Sn[S2] , τ ∈ Sn1 [S2]× Sn2 [S2] (5.3.10)

The first of these is associated to the left auxiliary algebras A±n , as well as the half-BPS

state spaces Aδ/Ωn . The second is associated to the quarter-BPS state spaces Aδ/Ωn1,n2 .

As previously discussed, the actions (5.2.10) and (5.2.11) defining A±n do not have

odd double cosets, so do not split the double cosets of (5.3.9). In principle the split

into even and odd could be different for the different actions (5.2.18) and (5.2.19)

corresponding to Aδ/Ωn . However, if σπτ−1 = π it follows that σ and τ have the same

sign, so splitting the double cosets by the sign (−1)σ is the same as splitting them by

(−1)τ . Therefore there is only a single consistent way of splitting (5.3.9) into even and

odd double cosets, and from now on we use this definition for even and odd, independent

of the sign of the particular action being considered.

We have a similar situation for the defining actions (5.2.7) and (5.2.8) for Aδ/Ωn1,n2

splitting the double cosets of (5.3.10), and therefore there is no ambiguity in the defi-

nition of even and odd double cosets.

For each of (5.3.9) and (5.3.10) we will give a labelling set for the double cosets,

provide descriptions of representative members, write down the size of a given double

coset and identify which of these are even and odd. We then use sums over even double
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cosets to construct bases. For the permutation state spaces Aδ/Ωn1,n2 and Aδ/Ωn , these

bases are responsible for the construction of multi-traces, and the labelling sets of the

even double cosets are the same as those for the multi-traces.

For the auxiliary algebras A±n1,n2
and BεN,q and the baryonic state spaces AεN ;n1,n2

and AεN ;n not covered by (5.3.9) and (5.3.10), explicit descriptions of the double cosets

are more involved and we do not give them here. In the interests of completeness, the

double coset bases are

A+
n1,n2

: απ =
∑

σ,τ∈Sn1 [S2]×Sn2 [S2]

σπτ−1 (5.3.11)

A−n1,n2
: απ =

∑
σ,τ∈Sn1 [S2]×Sn2 [S2]

(−1)σ(−1)τσπτ−1 (5.3.12)

BεN,q : απ =
∑

σ,τ∈SN×Sq [S2]

(−1)σ1(−1)τ1σπτ−1 (5.3.13)

AεN ;n1,n2
: απ =

∑
σ∈SN×Sq [S2]

τ∈Sn1 [S2]×Sn2 [S2]

(−1)σ1σπτ−1 (5.3.14)

AεN ;n : απ =
∑

σ∈SN×Sq [S2]
τ∈Sn[S2]

(−1)σ1σπτ−1 (5.3.15)

where in each case π runs over the representatives of the even double cosets, and for

σ ∈ SN × Sq[S2], σ1 is the SN component.

5.3.1 Action of Sn[S2]× Sn[S2]: the half-BPS sector

Above (5.3.9), we explained that any two permutations in the same (even) double coset

produce the same operator up to a possible minus sign. For mesonic operators at large

N , the converse is true: if two permutations produce the same operator (up to a sign),

they belong to the same double coset. Therefore the labels for multi-traces considered

in section 4.1 are the same as the labels for even double cosets. In the half-BPS sector,

this means the labels for even double cosets are partitions q ` n
2 .

Consider the action (5.3.9). This is the algebra invariance produced if we replaced

the anti-symmetric matrix X in the (half-bps) construction of operators (5.2.4) with

a symmetric matrix. Since multi-traces of this matrix would be labelled by partitions

p ` n, the double cosets under (5.3.9) are also labelled by p. From the previous

paragraph, the odd double cosets would be those p which have an odd component

while the even double cosets have p = 2q, where the partition 2q is defined to have

components that are double the components of q.

To give representatives for the double cosets, consider a permutation σ ∈ Sn of

cycle type p. Embed Sn into S2n by acting only on the odd numbers {1, 3, . . . , 2n− 1},
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and let σ(odd) ∈ S2n be the embedding of σ. Then σ(odd) is a representative member

of the double coset labelled by p. As expected, the operator (5.2.4) constructed from

σ(odd) is the standard trace operator of type p

Oδ
σ(odd) = C

(δ)
I

(
σ(odd)

)I
J

(
X⊗n

)J
= δi1j1δi2j2 . . . δinjn

(
σ(odd)

)i1j1i2j2...injn
k1l1k2l2...knln

Xk1l1Xk2l2 . . . Xknln

= δi1j1 . . . δinjnσ
i1i2...in
k1k2...kn

δj1l1 δ
j2
l2
. . . δjnlnX

k1l1Xk2l2 . . . Xknln

= σi1i2...ink1k2...kn
Xk1i1Xk2i2 . . . Xknin

= Xk1kσ(1)Xk2kσ(2) . . . Xknkσ(n)

=
∏
i

(
TrXi

)pi (5.3.16)

where we have evaluated the last line by noting that this is a U(N) type contraction as

considered in (2.1.11) with the generic U(N) matrix replace with the anti-symmetric

SO(N) matrix.

The calculation (5.3.16) (excluding the last line), is shown diagrammatically in 5.5,

which makes the structure of the argument clearer. Intuitively, placing σ(odd) in the

SO(N) contraction formula (5.2.4) reduces it to the U(N) contraction formula (2.1.11).

In (5.3.16), we have not used any symmetry or anti-symmetry properties of X, so

the result applies for both. Taking X to be anti-symmetric, we deduce that if p has an

odd component, the trace vanishes, and therefore we conclude again that it is these p

which label the odd double cosets and p = 2q label the even double cosets.

The same calculation can be performed for the symplectic contraction (5.2.6)

OΩ
σ = C

(Ω)
I

(
σ(odd)

)I
J

[
(ΩX)⊗n

]J
= Ωi1j1Ωi2j2 . . .Ωinjn

(
σ(odd)

)i1j1i2j2...injn
k1l1k2l2...knln

(ΩX)k1l1 (ΩX)k2l2 . . . (ΩX)knln

= Ωi1j1Ωi2j2 . . .Ωinjnσ
i1i2...in
k1k2...kn

δj1l1 δ
j2
l2
. . . δjnln (ΩX)k1l1 (ΩX)k2l2 . . . (ΩX)knln

= Ωi1j1 (ΩX)j1k1 Ωi2j2 (ΩX)j2k2 . . .Ωinjn (ΩX)jnkn σi1i2...ink1k2...kn

= σi1i2...ink1k2...kn

(
Ω2X

)i1k1
(
Ω2X

)i2k2 . . .
(
Ω2X

)inkn
= (−1)nσi1i2...ink1k2...kn

Xi1k1Xi2k2 . . . Xinkn

= (−1)nX
i1iσ−1(1)X

i2iσ−1(2) . . . X
iniσ−1(n)

=
∏
i

(
TrXi

)pi (5.3.17)

This is shown more intuitively, excluding the last line, via a diagram in figure 5.6. The

fact (5.3.17) matches (5.3.16) serves as another demonstration that the SO(N) and

Sp(N) traces have the same form, as argued in section 4.1.2.
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σ(odd)

. . .

. . .

δ

X X

δ

X

δ

=
σ

. . .

. . .XX X

= σ

. . .

. . .XX X

Figure 5.5: A diagrammatic version of (5.3.16). The dotted lines represent the fact
that σ(odd) fixes all even numbers. The first row keeps the index positions in X constant,
while the second breaks our index conventions and uses the index structure Xi

j = Xij

to illustrate that using σ(odd) ∈ S2n has changed the SO(N) type contraction into the
U(N) type contraction (cf. figures 5.2 and 2.1)
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σ(odd)

Ω

Ω X

Ω

Ω X

Ω

Ω X. . .

. . .

= (−1)n
σ

. . .

. . .X X X

= (−1)n
σ−1

. . .

. . .X X X

Figure 5.6: A diagrammatic version of (5.3.17). The dotted lines represent the fact
that σ(odd) fixes all even numbers. By following the index lines on the left, we see that
σ(odd) is contracted with n copies of the matrix ΩXΩT . Using the condition (4.0.1),
this is just −XT . We have pulled out the factors of −1 and the transpose means the X
indices switch roles (compare with figure 5.5). In the second row, we convert this result
into a U(N) type contraction by breaking our index conventions and setting Xi

j = Xij .
The role switch of the X indices on the first line means σ is inverted on the second line.
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Take a σ ∈ Sn of cycle type p and consider the stabiliser of σ(odd) under (5.3.9).

For each cycle of length i, it consists of a rotation group and a reflection element that

together generate a copy of Di, the dihedral group of order 2i. Similarly to the U(N)

case in section 3.5.1, there is also a Spi factor that acts on the pi cycles of length i.

For a more detailed description of how these properties appear in the stabiliser of σ,

see [1]. In total the stabiliser group is

Stab(σ) ∼=×
i

(
Spi n (Di)

pi
)

=×
i

Spi [Di] (5.3.18)

which has size ∏
i

(2i)pi(pi)! = z2p (5.3.19)

Applying the orbit-stabiliser theorem, the size of a double coset is

|Sn[S2]× Sn[S2]|
|stabiliser|

=
22n(n!)2

z2p
(5.3.20)

In terms of q ` n
2 , the size of an even double coset is

22n(n!)2

z4q
(5.3.21)

where 4q is the partition of 2n with components quadruple those of q. For a formal

mathematical proof of the fact that partitions label double cosets, as well as a derivation

of their size, see [64, Chapter VII.2].

The double coset bases for A±n and Aδ/Ω are

A+
n : αp =

∑
τ,π∈Sn[S2]

τσ(odd)
p π−1 (5.3.22)

A−n : αp =
∑

τ,π∈Sn[S2]

(−1)τ (−1)πτσ(odd)
p π−1 (5.3.23)

Aδn : αq =
1

22n (n!)2

∑
τ,π∈Sn[S2]

(−1)πτσ
(odd)
2q π−1 (5.3.24)

AΩ
n : αq =

1

22n (n!)2

∑
τ,π∈Sn[S2]

(−1)ττσ
(odd)
2q π−1 (5.3.25)

where σp ∈ Sn is a permutation of cycle type p ` n. The sign of αq will in general

depend on the choice of σ2q, but this ambiguity is not an issue for our purposes, and

we do not resolve it here.
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5.3.2 Action of Sn[S2]× (Sn1 [S2]× Sn2 [S2]): the quarter-BPS sector

This section closely follows the half-BPS discussion above, and much of the logic is

repeated.

In the quarter-BPS sector, double cosets are defined to be orbits in S2n under the

action (5.3.10) where this is the unsigned version of (5.2.7) and (5.2.8). This is the

invariance we would have obtained had we taken X and Y to be symmetric matrices in

the construction of operators (5.2.4), and so the double cosets correspond to the traces

of symmetric matrices, and are therefore labelled by P̄ as defined at the end of section

4.1.1.

Take σ ∈ Sn. Then by the same logic as in (5.3.16), we have

C
(δ)
I

(
σ(odd)

)I
J

(
X⊗n1Y ⊗n2

)J
= Xk1kσ(1) . . . Xkn1kσ(n1)Y kn1+1kσ(n1+1) . . . Y knkσ(n)

(5.3.26)

By comparing with the explanation of quarter-BPS U(N) traces offered in section 3.5.3

we see that the trace is determined by the cycles of σ. Each cycle is a single trace, where

a number in {1, 2, . . . , n1} corresponds to an X and a number in {n1 + 1, n1 + 2, . . . n}
corresponds to a Y . Arranging the Xs and Y s in the order specified by the cycle gives

the trace. We say σ ∈ Sn is of ‘cycle type’ P̄ if it produces (up to a sign) the multi-trace

TP̄ =
∏
w̄,i

(
TrW̄

)(pw̄)i (5.3.27)

where W̄ is the matrix word corresponding to the Lyndon word (up to reversal) w̄ as

described at the end of section 4.1.1. For any σ ∈ Sn with ‘cycle type’ P̄, σ(odd) is a

representative member of the double coset labelled by P̄.

The stabiliser under the action (5.3.10) for such a representative σ(odd) is more

complex than the half-BPS statement (5.3.18). Each cycle, labelled by w̄, i has an

associated rotation group Zi. If the word w̄ is reversal invariant (i.e. of type 1), we

also have a reflection symmetry, enhancing the rotation group to the dihedral group

Di. This is the same dihedral group that played a crucial role in determining the

generating function for single traces in section 4.3. There is also the permutation

factor Spw̄,i permuting cycles with the same labels. For a more detailed description of

this stabiliser group see [1]. This leads to the stabiliser

Stab(σ) ∼=

 ×
w̄ of type 1

i

Spw̄,i [Di]

×
 ×
w̄ of type 2

i

Spw̄,i [Zi]

 (5.3.28)

103



CHAPTER 5. ALGEBRAIC STRUCTURE OF THE FREE FIELD SO(N) AND
SP (N) GAUGE THEORIES

which has size

Z̄P̄ =

 ∏
w̄ of type 1

z2pw̄

 ∏
w̄ of type 2

zpw̄

 (5.3.29)

Applying the orbit-stabiliser theorem, the size of the double coset is

22nn!n1!n2!

Z̄P̄
(5.3.30)

In the construction of the stabiliser group (5.3.28), all rotations of a cycle w̄, i are

given by even permutations σ ∈ Sn[S2], τ ∈ Sn1 [S2]×Sn2 [S2] under the action (5.3.10),

while the reflection action is given by σ, τ with signs (−1)σ = (−1)τ = (−1)il(w̄). So

the double coset is odd if there are one or more cycles labelled by w̄ with odd length

and odd i. This happens when one of the constituent partitions pw̄ in P̄ has an odd

component, for w̄ of type 1 and odd length. So for even double cosets, the partitions

pw̄ for w̄ of type 1 and odd length are of the form pw̄ = 2pw̄w̄ where pw̄w̄ is a partition

with half the sum, and w̄w̄ as is an orthogonal Lyndon word of type 1B. The remaining

partitions pw̄, for w̄ of type 1 and even length (an orthogonal Lyndon word of type 1A)

or for w̄ of type 2 (an orthogonal Lyndon word of type 2), can have any form for the

even double cosets.

Recall that P̄ is defined as a set of partitions. Then replacing the partitions pw̄ =

2pw̄w̄ for an even double coset means this set of partitions is now of the form P̃ as

defined in (4.1.5). So, as expected, the even double cosets have the same labels as the

quarter-BPS multi-traces.

In terms of the label P̃, the stabiliser of an even double coset is

Stab(σ) ∼=

 ×
w̃ of type 1A

i

Spw̃,i [Di]

×
 ×
w̃ of type 1B

i

Spw̃,i [D2i]

×
 ×
w̃ of type 2

i

Spw̃,i [Zi]


(5.3.31)

with size

Z̃P̃ =

 ∏
w̃ of type 1A

z2pw̃

 ∏
w̃ of type 1B

z4pw̃

 ∏
w̃ of type 2

zpw̃

 (5.3.32)

and the size of an even double coset is

|Sn[S2]× (Sn1[S2]× Sn2 [S2])|
|stabiliser|

=
22nn!n1!n2!

Z̃P̃
(5.3.33)

Similarly to the half-BPS case, even double cosets produce the traces for both orthog-
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onal and symplectic gauge theory. Sums over the even double cosets form bases for the

invariant algebras at large N . The bases for Aδn1,n2
and AΩ

n1,n2
are

Aδn1,n2
: αP̃ =

1

22nn!n1!n2!

∑
τ∈Sn[S2]

π∈Sn1 [S2]×Sn2 [S2]

(−1)πτσ
(odd)

P̃
π−1 (5.3.34)

AΩ
n1,n2

: αP̃ =
1

22nn!n1!n2!

∑
τ∈Sn[S2]

π∈Sn1 [S2]×Sn2 [S2]

(−1)ττσ
(odd)

P̃
π−1 (5.3.35)

where σP̃ ∈ Sn is of ‘cycle type’ P̃.

5.3.3 Equivalent Sn description

In the previous section we have described the equivalence classes in S2n that lead, via

the contractions (5.2.4) and (5.2.6), to the different SO(N) and Sp(N) multi-traces.

These classes were orbits under the group action (5.3.10), and we separated the orbits

into odd and even depending on whether they produced non-vanishing traces.

The U(N)-type contraction, (2.1.3), also produces SO(N) traces if we treat X and

Y as antisymmetric matrices (after performing the flavour projection to the 2-matrix

system), and therefore we can give an equivalent description using equivalence classes

in Sn. Explicitly, given σ ∈ Sn, we have

σ ∼ ασα−1 α ∈ Sn1 × Sn2 (5.3.36)

and in addition, σ is related to any permutation that can be obtained by inverting some

subset of the cycles of σ. If the cycle decomposition of σ is σ = c1c2 . . . cr then

σ ∼ ci11 c
i2
2 . . . c

ir
r ij ∈ {−1, 1} (5.3.37)

As before, we can split these equivalence classes into those that produce non-zero traces

and those that don’t. If σ contains a cycle c of odd length such that c is conjugate

(under Sn1 × Sn2) to c−1, then the contraction vanishes. If σ contains no such cycle,

then it and the corresponding equivalence class produce a non-vanishing trace.

The combination of (5.3.36) and (5.3.37) in Sn is equivalent to (5.3.10) in S2n.

We see that the Sn version is more complicated, and explicitly depends on the cycle

structure of σ. It therefore cannot be described as a group action on Sn and would be

difficult to deal with as a result. We can clearly see the advantages of using S2n.
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5.4 Fourier bases for auxiliary algebras

In section 5.3 we schematically gave bases for the auxiliary algebras A±n1,n2
in terms of

double cosets, and more explicitly for A±n . These bases were only valid at large N .

In the first two parts of this section we give a different set of bases labelled by Young

diagrams. These make explicit the Wedderburn-Artin decomposition of the algebras

and allow identification of representations. They are also valid at finite N , and have

definite eigenvalues when acting on the Schur and restricted Schur bases (introduced

in section 5.6) of the appropriate permutation state spaces Aδ/Ωn , Aδ/Ωn1,n2 , AεN ;n and

AεN ;n1,n2
.

The baryonic auxiliary algebra BεN,q, defined in (5.2.23) was also considered in 5.3,

and a schematic double coset basis was given. However, baryonic operators can only

be defined at finite N , and therefore the correct auxiliary algebra to consider is the

restricted version Bε;NN,q . In the final part of this section we give a Young diagram basis

for BεN,q that allows us to define Bε;NN,q in terms of its generators. After this definition, we

will in general study Bε;NN,q as the algebra of interest, and only mention the unrestricted

version BεN,q in passing when the distinction is important. This is in contrast to the

SO(N) mesonic and Sp(N) cases, where we focus on the large N algebras and only

mention the finite N versions in passing.

In each case, the Fourier basis can be obtained by transforming from the permuta-

tion basis of C(S2n) to the Fourier basis (2.5.1) and considering the effect of invariance

under the defining action of each algebra. For a detailed account of a basis construction

of this type see [1], or the construction of the mesonic covariant basis in appendix F.

There are two special elements of C(S2n) relevant for correlator calculations in

SO(N) and Sp(N) theories. Ω̃ is important for the SO(N) mesonic sector and the

Sp(N) theory, while Ωε is important for the baryonic sector of the SO(N) theory. For

the left auxiliary algebras, the corresponding Ω element has eigenvalues on the Fourier

basis determined by the Young diagram labels. For a definition of the two elements

and a description of their properties, see appendix A. For their role in correlators see

section 5.5.

The equivalent Fourier bases for the permutation state spaces are given in section

5.6.

5.4.1 A±n

The Fourier basis for A+
n is labelled by R ` 2n with even row lengths

β+
R =

dR
(2n)!

∑
σ∈S2n

〈R, [S]|DR(σ)|R, [S]〉σ (5.4.1)
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where the vector |R, [S]〉 is invariant under Sn[S2]. It was defined, along with the

anti-symmetric version |R, [A]〉, in (5.1.4).

The basis for A−n is labelled by the conjugate set of Young diagrams to (5.4.1). This

is given by R ` 2n with even column lengths

β−R =
dR

(2n)!

∑
σ∈S2n

〈R, [A]|DR(σ)|R, [A]〉σ (5.4.2)

It follows from the behaviour of DR(σ) and |R, [S]〉 under conjugation of R, given in

(5.1.11) and (5.1.14), that these two bases are directly related to each other by anti-

symmetrisation and conjugation of Young diagrams

β+
Rc = Anti-Sym(β−R ) (5.4.3)

where the operator Anti-Sym sends σ → (−1)σσ and extends linearly to C(S2n).

This is another example of the anti-symmetrisation relation (5.0.2) between the

SO(N) and Sp(N) theories. A+
n , spanned by β+

R , is the left auxiliary algebra for SO(N)

mesonic operators while A−n , spanned by β−R , is the left auxiliary algebra for Sp(N)

operators, so (5.4.3) shows the exchange of the two algebras under anti-symmetrisation

and R→ Rc.

When we restrict to N < n, the basis elements β±R with l(R) > N will annihilate

the relevant permutation state spaces Aδ/Ω;N
n and Aδ/Ω;N

n1,n2 under left multiplication.

Therefore we restrict the auxiliary algebras to A±;N
n by restricting the R labels to have

l(R) ≤ N .

The normalisations of (5.4.1) and (5.4.2) are chosen so that they have the multipli-

cation property

β+
Rβ

+
S = δRSβ

+
R β−Rβ

−
S = δRSβ

−
R (5.4.4)

where we have evaluated the product using the orthogonality relation (2.3.4). This

proves that A±n are commutative algebras. They can be realised as matrices with rows

labelled by R (subject to the appropriate row and column length conditions), where

β±R has a 1 in the Rth diagonal entry and 0 everywhere else.

The Wedderburn-Artin theorem [84] states that any (semi-simple) algebra is iso-

morphic to a matrix algebra consisting of block diagonal components. The matrix

interpretation above gives the Wedderburn-Artin decomposition of A±n . As complex

algebras, they are

A+
n =

⊕
R`2n with

even row lengths

C A−n =
⊕

R`2n with
even column lengths

C (5.4.5)
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Where C is understood as the space of 1× 1 matrices. Using these decompositions, we

can identify the distinct irreducible representations of A±n . Since representations of C
are labelled by a complex numbers, the irreducible representations of A± are labelled

by a Young diagram R ` 2n (satisfying the appropriate conditions) and a complex

number c.

When acted on by Ω̃, the β±R form eigenvectors on both the left and the right. It

follows from the action of Ω̃ on the vectors |R, [S]〉 and |R, [A]〉, given in (A.2.18) and

(A.2.19), that

Ω̃β+
R = β+

R Ω̃ = f δRβ
+
R Ω̃β−R = β−R Ω̃ = fΩ

Rβ
−
R (5.4.6)

where

f δR =
∏

b∈ odd
columns of R

(N + cb) (5.4.7)

fΩ
R =

∏
b∈ odd

rows of R

(N + cb) (5.4.8)

Since the β±R generate A±n , it follows that Ω̃ commutes with these algebras. Note that

f δR, f
Ω
R = 0 if l(R) > N , so Ω̃ takes the unrestricted algebras A±n to the finite N versions

A±;N
n .

The projectors P[S] and P[A], defined in (5.1.3), are invariant under the respective

defining actions (5.2.10) and (5.2.11) of A+
n and A−n , and are therefore members of the

algebras. They therefore commute with Ω̃

Ω̃P[S] = P[S]Ω̃ Ω̃P[A] = P[A]Ω̃ (5.4.9)

5.4.2 A±n1,n2

The Fourier basis for A+
n1,n2

is labelled by R ` 2n; R1, T1 ` 2n1; R2, T2 ` 2n2

and two Littelwood-Richardson multiplicity indices µ, ν for the triples (R;R1, R2) and

(R;T1, T2) respectively. R1, R2, T1 and T2 are restricted to have even row lengths, while

the only restriction on R is that gR;R1,R2 , gR;T1,T2 > 0. The basis is given by

β+
R,(R1,R2,µ),(T1,T2,ν) =

dR
(2n)!

∑
σ∈S2n

〈R1, R2, [S], µ|DR(σ) |T1, T2, [S], ν〉σ (5.4.10)

where the vector |R1, R2, [S], µ〉 is defined in (5.1.16) and is invariant under Sn1 [S2]×
Sn2 [S2]. The anti-invariant version |R1, R2, [A], µ〉 is defined in (5.1.17).

The basis for A−n1,n2
is labelled by the conjugate set of Young diagrams to (5.4.10),

given by R ` 2n; R1, T1 ` 2n1; R2, T2 ` 2n2 and two Littelwood-Richardson multi-
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plicity indices µ, ν for the triples (R;R1, R2) and (R;T1, T2) respectively. R1, R2, T1

and T2 are restricted to have even columns, while the only restriction on R is that

gR;R1,R2 , gR;T1,T2 > 0.

β−R,(R1,R2,µ),(T1,T2,ν) =
dR

(2n)!

∑
σ∈S2n

〈R1, R2, [A], µ|DR(σ) |T1, T2, [A], ν〉σ (5.4.11)

These two bases are related to each other by conjugation of Young diagrams. It follows

from the behaviour of DR(σ) and |R1, R2, [S], µ〉 under R→ Rc, given in (5.1.11) and

(5.1.22), that

β+
Rc,(Rc1,R

c
2,µ),(T c1 ,T

c
2 ,ν) = Anti-Sym

(
β−R,(R1,R2,µ),(T1,T2,ν)

)
(5.4.12)

Similarly to the discussion under (5.4.3), this shows the right auxiliary algebras of the

SO(N) mesonic and Sp(N) sector switch places under anti-symmetrisation.

When we restrict to N < n, the basis elements β±R,(R1,R2,µ),(T1,T2,ν) with l(R) > N

will annihilate the relevant permutation state spaces Aδ/Ω;N
n1,n2 and Aε;NN ;n1,n2

under right

multiplication. Therefore we restrict the auxiliary algebras to A±;N
n1,n2 by restricting the

R labels to have l(R) ≤ N .

The normalisations of (5.4.10) and (5.4.11) are chosen so that they have the multi-

plication property

β+
R,(R1,R2,µ),(T1,T2,ν)β

+
S,(S1,S2,λ),(U1,U2,ρ) = δRS δ(T1,T2,ν)(S1,S2,λ) β

+
R,(R1,R2,µ),(U1,U2,ρ)

(5.4.13)

β−R,(R1,R2,µ),(T1,T2,ν)β
−
S,(S1,S2,λ),(U1,U2,ρ) = δRS δ(T1,T2,ν)(S1,S2,λ) β

−
R,(R1,R2,µ),(U1,U2,ρ)

(5.4.14)

where we have evaluated the product using the orthogonality relation (2.3.4).

The multiplication relations (5.4.13) and (5.4.14) can be realised by matrices with

rows labelled by R,R1, R2, µ, subject to the appropriate conditions. The matrices are

block diagonal in the R label, and β±R,(R1,R2,µ),(T1,T2,ν) has a 1 in the (R1, R2, µ)th row

and (T1, T2, ν)th column of the Rth block, with zeroes everywhere else in that block

and in all other blocks.

Define

m+
R =

∑
R1`2n1 with even row lengths
R2`2n2 with even row lengths

gR;R1,R2 (5.4.15)
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m−R =
∑

R1`2n1 with even column lengths
R2`2n2 with even column lengths

gR;R1,R2 (5.4.16)

Then the Wedderburn-Artin decomposition of the algebras A±n1,n2
is

A+
n1,n2

=
⊕
R`2n

M(m+
R) (5.4.17)

A−n1,n2
=
⊕
R`2n

M(m−R) (5.4.18)

where M(k) is the algebra of k × k matrices. Representations of M(k) are the same

as representations of GL(k), and therefore the irreducible representations of A±n1,n2
are

labelled by R (satisfying the appropriate conditions) and a GL(m±R) Young diagram.

5.4.3 BεN,q and Bε;NN,q
The Fourier basis for BεN,q is

βεR =
dR

(2n)!

∑
σ∈S2n

( 〈[
1N
]∣∣⊗ 〈R̄, [S]|

)
DR(σ)

( ∣∣[1N]〉⊗ |R̄, [S]〉
)
σ (5.4.19)

where R ` 2n contains a copy of the SN × S2q representation [1N ]⊗ R̄ for R̄ a Young

diagram with even length rows. In section D.2.1, a characterisation of these R is given,

along with a proof that for these R, there is a unique associated R̄ with Littewood-

Richardson coefficient gR;[1N ],R̄ = 1. The unit vector
∣∣[1N]〉 ⊗ |R̄, [S]〉, defined in

(5.1.23), is the unique vector in R that is anti-invariant under SN and invariant under

Sq[S2].

Any basis element βεR with l(R) > N will annihilate the permutation state spaces

Aε;NN ;n and Aε;NN ;n1,n2
. The appropriate sub-algebra is Bε;NN,q , defined by

Bε;NN,q = Span
{
βεR : l(R) ≤ N

}
(5.4.20)

Since R must include a copy of the [1N ] representation of SN , the restriction l(R) ≤ N
implies l(R) = N , and the relation between R and R̄ becomes R = [1N ] + R̄. Therefore

R̄ could be used as a label for the restricted algebra.

The multiplication rule for (5.4.19) is

βεRβ
ε
S = δRSβ

ε
R (5.4.21)

where we have evaluated the product using the orthogonality relation (2.3.4). This

proves that both Bε;NN,q and BεN,q are commutative algebras. They can be realised as

matrices with rows labelled by R (subject to the appropriate conditions). The basis
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element βεR has a 1 in the Rth diagonal entry and 0 everywhere else.

From this matrix interpretation of βεR, the Wedderburn-Artin decomposition of Bε;NN,q
is

Bε;NN,q =
⊕

R`2n with odd row lengths
l(R)=N

C =
⊕

R̄`2q with even row lengths
l(R̄)≤N

C (5.4.22)

Therefore the irreducible representations of Bε;NN,q are one dimensional, labelled by a

Young diagram R ` 2n (satisfying the appropriate conditions) and a complex number

c. We could of course replace the R label with the equivalent R̄ ` 2q.

When acted on by Ωε, the βεR form eigenvectors on both the left and right. It follows

from the action of Ωε on
∣∣[1N]〉⊗ |R̄, [S]〉, given in (A.2.63) that

ΩεβεR = βεRΩε = f εRβ
ε
R (5.4.23)

where

f εR =
∏
b∈odd

columns of R

(N + cb) (5.4.24)

This definition is identical to f δR in (5.4.7), however the constraints on the allowable

Young diagrams are different in the baryonic case, so we use the different notation to

emphasise that these are a different class of R.

Since βεR generate Bε;NN,q , (5.4.23) implies that Ωε commutes with the entire algebra

(both the unrestricted and restricted versions). Note that f εR = 0 if l(R) > N , so Ωε

maps the unrestricted algebra BεN,q to Bε;NN,q .

The projector P[1N ]⊗[S], defined in (5.1.24), is invariant under the defining action

(5.2.23) of BεN,q, and is therefore a member of the unrestricted algebra. It therefore

commutes with Ωε

ΩεP[1N ]⊗[S] = P[1N ]⊗[S]Ω
ε (5.4.25)

5.5 Correlators from permutations

In (2.6.7) and (2.6.12) we saw that in the U(N) theory we can express correlators

of operators purely in terms of permutations. In this section we develop analogous

formulae for the mesonic and baryonic sectors of SO(N) theory and the Sp(N) theory.

These formulae are given in (5.5.10), (5.5.27) and (5.5.22) respectively.

In each of these theories, including U(N), the construction of operators and the

formulae for correlators obey a common pattern.

Take α ∈ Sn. Then there is a corresponding operator Oα. There are redundancies
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in the map α → Oα described by the action of a permutation group G. Take σ ∈ G
and let the action of σ be denoted by σ(α). Then

Oα = Oσ(α) α ∈ Sn σ ∈ G (5.5.1)

In the SO(N) and Sp(N) theories, G is the direct product group GL ×GR considered

in section 5.3 and acts by both left and right multiplication. In the U(N) theory, G is

Sn1 × · · · × SnM and acts by conjugation as described in section 2.1.

Define the permutation state spaceA to be the sub-algebra of C(Sn) that is invariant

under the action of G. Then the map from α ∈ A to Oα is redundancy-free.

There are two auxiliary algebras AL and AR that act naturally on A by multi-

plication on the left and right respectively. For the SO(N) and Sp(N) theories, AL

is defined to be sub-algebra of C(Sn) that is invariant (up to a sign) under left and

right multiplication of GL, while AR is invariant (up to a sign) under left and right

multiplication of GR. In the U(N) theory, AL = AR = A.

In each theory there is a special N -dependent element Ω(G) ∈ C(Sn) that appears

in correlator formulae. We have

〈Oβ|Oα〉 =
∑
σ∈G

δ
(

Ω(G)σ(α)β−1
)

(5.5.2)

where for β ∈ C(S2n), the inverse is defined to invert each element of S2n and then

extend to C(S2n) linearly. We call this the linear inversion of β. Explicitly ∑
σ∈S2n

aσσ

−1

:=
∑
σ∈S2n

aσσ
−1 (5.5.3)

For the U(N) theory, the Ω(G) element is Ω, defined in (2.3.17). For the SO(N) mesonic

sector and Sp(N), Ω(G) = Ω̃ seen in the previous section, while for the SO(N) baryonic

sector Ω(G) = Ωε.

Although the element Ω(G) changes from theory to theory, it has similar properties

in each

� The state space A has nice eigenvalues under left multiplication by Ω(G).

� The left auxiliary algebra AL commutes with Ω(G) and has nice eigenvalue under

left or right multiplication by Ω(G).

� Ω(G) enforces the finite N cut-off on Young diagrams in the algebras A and AL.

� In the leading N limit, Ω(G) reduces to a multiple of the identity in Sn.

� Ω(G) is constructed from Jucys-Murphy elements.
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For the mathematical results behind these properties see appendix A.

In each case, expressing the two-point function in the form (5.5.2) allows us to define

an alternative Sn inner product on operators by replacing Ω(G) with the identity of Sn

(and imposing a cut-off on Young diagrams by replacing δ with δN ). In the N → ∞
limit, the Sn inner product is the planar inner product.

In table 5.2, we give G, σ(α), ΩG, A, AL and AR for each of the U(N), SO(N)

mesonic, SO(N) baryonic and Sp(N) theories in both the half and quarter-BPS sectors.

A summary of permutations and their role in N = 4 SYM with U(N) gauge group

was given in [62]. The structure described above generalises many of these structures

to the SO(N) and Sp(N) gauge theories. With these techniques, it should be possible

to simply extend many of the results obtained in the U(N) theories to SO(N) and

Sp(N). This applies not only to N = 4 SYM, but also to general quiver theories such

as those considered in [68].

In [85] it was shown that the embedding properties of classical Lie algebras imply

that the existence of a Schur basis for the half-BPS sector is a gauge group independent

property. Since Ω(G) acts nicely on these Schur operators, we expect there to be some

relation. This is an interesting problem for future study.

5.5.1 Mesonic SO(N) operators

The inner product of two SO(N) matrix fields is〈
Xkl|Xij

〉
= δikδ

j
l − δ

i
lδ
j
k =

〈
Y kl|Y ij

〉
(5.5.4)

When extended to tensor products of X and Y using Wick contractions, this becomes〈(
X⊗n1Y ⊗n2

)J | (X⊗n1Y ⊗n2
)I〉

=
∑

σ∈Sn1 [S2]×Sn2 [S2]

(−1)σσIJ = 2nn1!n2!
(
P[A]⊗[A]

)I
J

(5.5.5)

where the projector P[A]⊗[A] was defined in (5.1.18).

We define

Cδ(β) = C
(δ)
I βIJC

(δ) J (5.5.6)

where C
(δ)
I is the mesonic contractor defined in (5.2.1). Cδ(β) is invariant under linear

inversion (see (5.5.3)) of β and also under left and right multiplication of β by Sn[S2].

This action of Sn[S2] on both sides was given in (5.3.9) and studied in section 5.3.1. It

splits the permutations in S2n into double cosets labelled by a partition p ` n. If we

take σp to be any permutation in the p double coset, then

Cδ(σp) = N l(p) (5.5.7)
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U(N) U(N) SO(N) mesonic SO(N) mesonic
half-BPS quarter-BPS half-BPS quarter-BPS

G Sn Sn1 × Sn2 Sn[S2]× Sn[S2] Sn[S2]× (Sn1 [S2]× Sn2 [S2])
σ(α) σασ−1 σασ−1 (−1)τσατ−1 (−1)τσατ−1

Ω(G) Ω Ω Ω̃ Ω̃
A centre of Sn An1,n2 Aδn Aδn1,n2

AL centre of Sn An1,n2 A+
n A+

n

AR centre of Sn An1,n2 A−n A−n1,n2

Sp(N) half-BPS Sp(N) quarter-BPS

G Sn[S2]× Sn[S2] Sn[S2]× (Sn1 [S2]× Sn2 [S2])
σ(α) (−1)σσατ−1 (−1)σσατ−1

Ω(G) Ω̃ Ω̃
A Aδn Aδn1,n2

AL A−n A−n
AR A+

n A+
n1,n2

SO(N) baryonic half-BPS SO(N) baryonic quarter-BPS

G (SN × Sq[S2])× Sn[S2] (SN × Sq[S2])× (Sn1 [S2]× Sn2 [S2])
σ(α) (−1)σ1(−1)τσατ−1 (−1)σ1(−1)τσατ−1

Ω(G) Ωε Ωε

A Aε;Nn Aε;Nn1,n2

AL Bε;NN,q Bε;NN,q
AR Aε;NN ;n Aε;NN ;n1,n2

Table 5.2: We give the theory dependent parts of the correlator formula (5.5.2) for each
sector of interest in the U(N), SO(N) and Sp(N) gauge theories. For U(N), we use
σ ∈ G, and when G is a direct product group G = GL ×GR for the SO(N) and Sp(N)
theories, we use σ ∈ GL and τ ∈ GR. For σ ∈ SN × Sq[S2], we define σ1 to be the SN
component. The different Ω(G) are defined in appendix A while the various permutation
state spaces and algebras were introduced in section 5.2. For the non-baryonic sectors,
all algebras are defined at large N . As the baryonic sector only exists at finite N , we
give the finite N versions of the algebras defined in 5.2 here.
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this is proved in (A.2.7).

The Ω(G) relevant for SO(N) mesonic operators is Ω̃, which is related to the sum

of (5.5.7) over S2n. Define pσ to be the partition labelling the double coset of σ. Then

∑
σ∈S2n

N l(pσ)σ =
∑
σ∈S2n

Cδ(σ)σ = Ω̃

 ∑
τ∈Sn[S2]

τ

 = 2nn!Ω̃P[S] (5.5.8)

where the projector P[S] is defined in (5.1.3). This result is proved in (A.2.5). Relative

to the statement there, we have commuted Ω̃ past P[S] using (5.4.9).

Using (5.5.5), the two-point function of the operators (5.2.4) is〈
Oδβ|Oδα

〉
= 2nn1!n2!Cδ

(
αP[A]⊗[A]β

−1
)

(5.5.9)

where β−1 is the linear inversion (5.5.3) of β.

We can re-express (5.5.9) by introducing a spurious sum over S2n, using the invari-

ance of Cδ under (linear) inversion, and substituting (5.5.8)〈
Oδβ|Oδα

〉
=

∑
τ∈Sn1 [S2]×Sn2 [S2]

(−1)τCδ
(
ατ−1β−1

)
=

∑
π∈S2n

τ∈Sn1 [S2]×Sn2 [S2]

(−1)τCδ(π) δ
(
π−1ατ−1β−1

)
=

∑
σ∈Sn[S2]

τ∈Sn1 [S2]×Sn2 [S2]

(−1)τδ
(

Ω̃σατ−1β−1
)

(5.5.10)

This is the SO(N) equivalent of the formula (2.6.12). In that formula, Ω imposed the

finite N cut-off in the algebra C(Sn). Here, Ω̃ plays the same role, as explained below

(A.2.19).

The leading large N behaviour of Ω̃ is

Ω̃ = Nn

[
1 +O

(
1

N

)]
(5.5.11)

So at large N , (5.5.10) reduces to Nn times the S2n inner product, defined by〈
Oδβ|Oδα

〉
S2n

:=
∑

σ∈Sn[S2]
τ∈Sn1 [S2]×Sn2 [S2]

(−1)τδ
(
σατ−1β−1

)
(5.5.12)

Similarly to the U(N) Sn inner product (2.6.13), this can be viewed as the planar inner

product for SO(N) provided the coefficients of operators are N -independent. Using

(5.5.12) and the properties of even double cosets as explained in section 5.3, we can
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evaluate the large N inner product of two SO(N) multi-traces as defined in (4.1.1) and

(4.1.6)

〈Tp|Tq〉S2n
= δpqz4p (5.5.13)〈

TP̃ |TQ̃
〉
S2n

= δP̃Q̃Z̃P̃ (5.5.14)

This follows the general rule established for U(N) multi-trace planar inner products in

section 3.5. The size of the stabiliser of a double coset representative receives a physical

interpretation as the planar inner product of two operators. From (5.5.10) we see that

the finite N corrections to the planar result are controlled by Ω̃, just as the finite N

corrections to the U(N) correlator are controlled by Ω.

5.5.2 Symplectic operators

The two point function for symplectic matrices is〈
Xkl|Xij

〉
= δikδ

j
l − Ωi

lΩ
j
k =

〈
Y kl|Y ij

〉
(5.5.15)

which is equivalent to〈
(ΩX)kl | (ΩX)ij

〉
= δikδ

j
l + δilδ

j
k =

〈
(ΩY )kl | (ΩY )ij

〉
(5.5.16)

Using Wick contractions, we can apply this to tensor products of ΩX and ΩY〈[
(ΩX)⊗n1 (ΩY )⊗n2

]J | [(ΩX)⊗n1 (ΩY )⊗n2
]I〉

=
∑

σ∈Sn1 [S2]×Sn2 [S2]

σIJ

= 2nn1!n2!
(
P[S]⊗[S]

)I
J

(5.5.17)

Using the symplectic contractor C
(Ω)
I introduced in (5.2.3), we define

CΩ(β) = C
(Ω)
I βIJC

(Ω) J (5.5.18)

This is invariant under (linear) inversion of β and anti-invariant under left and right

multiplication of β by Sn[S2]. The symplectic versions of (5.5.7) and (5.5.8) are

CΩ(σp) = (−1)n(−1)σp(−N)l(p) (5.5.19)

(−1)n
∑
σ∈S2n

(−1)σ(−N)l(pσ)σ =
∑
σ∈S2n

CΩ(σ)σ = Ω̃

 ∑
τ∈Sn[S2]

(−1)ττ

 = 2nn!Ω̃P[A]

(5.5.20)
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where the projector P[A] is defined in (5.1.3). These results are proved in (A.2.12) and

(A.2.15) respectively. Relative to the statement in (A.2.15), we have commuted Ω̃ past

P[A] using (5.4.9).

Comparing (5.5.19) and (5.5.20) with the SO(N) equivalents (5.5.7) and (5.5.8)

we see that they are related (up to a factor of (−1)n) by anti-symmetrisation of σ

and N → −N . This is an example of the general connection (4.0.3) between gauge

invariants of the SO(N) and Sp(N) theories.

Using (5.5.17), the two-point function of the operators (5.2.6) is

〈
OΩ
β |OΩ

α

〉
= 2nn1!n2!CΩ

(
αP[S]⊗[S]β

−1
)

(5.5.21)

where β−1 is the linear inversion (5.5.3) of β.

In analogy to (5.5.10), we can rearrange (5.5.21) by introducing a sum over S2n,

using the invariance of CΩ under linear inversion, and substituting (5.5.20)

〈
OΩ
β |OΩ

α

〉
=

∑
σ∈Sn[S2]

τ∈Sn1 [S2]×Sn2 [S2]

(−1)σδ
(

Ω̃σατ−1β−1
)

(5.5.22)

This has the same properties as (5.5.10). Ω̃ imposes the finite N cut-off (see below

(A.2.19)), and at large N , it reduces to Nn times the S2n inner product, defined by

〈
OΩ
β |OΩ

α

〉
S2n

:=
∑

σ∈Sn[S2]
τ∈Sn1 [S2]×Sn2 [S2]

(−1)σδ
(
σατ−1β−1

)
(5.5.23)

As explained in section 4.1.2, the Sp(N) multi-traces have exactly the same form as

the SO(N) traces, and their large N inner product is exactly as given in (5.5.13) and

(5.5.14) for the half-BPS and quarter-BPS sectors respectively.

5.5.3 Baryonic SO(N) operators

Define

Cε(β) = C
(ε)
I βIJC

(ε) J (5.5.24)

where C
(ε)
I is the baryonic contractor introduced in (5.2.2). This is invariant under

(linear) inversion of β and has nice transformation properties under left and right

multiplication of β by SN × Sq[S2]. Under the SN factor Cε(β) is anti-invariant, while

under the Sq[S2] factor it is invariant.

This action of SN × Sq[S2] on both sides was given in (5.2.23) and is the defining

action for the baryonic auxiliary algebra BεN,q. It follows that if σ is in an odd double

coset of this action we have Cε(σ) = 0. From the definition of the baryonic contractor

(5.5.24), it is simple to see that for σ in an even double coset, we have Cε(σ) = ±N !Nk
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for some k. We expect that the even double cosets are characterised by a partition

and k is exactly the length of this partition, giving a baryonic equivalent to (5.5.7) and

(5.5.19).

For the baryonic sector, the element Ω(G) is Ωε. This is related to sums of (5.5.24)

over S2n by

∑
σ∈S2n

Cε(σ)σ = Ωε

 ∑
σ∈SN×Sq [S2]

(−1)σ1σ

 = N !2qq!ΩεP[1N ]⊗[S] (5.5.25)

where for σ ∈ SN × Sq[S2], σ1 is the SN component and the projector P[1N ]⊗[S] is

defined in (5.1.24). This result is proved in (A.2.24). Relative to the statement there,

we have commuted Ωε past P[1N ]⊗[S] using (5.4.25).

We can use (5.5.5) to deduce the two-point function of two baryonic operators as

defined in (5.2.5)

〈
Oεβ|Oεα

〉
= 2nn1!n2!Cε

(
αP[A]⊗[A]β

−1
)

(5.5.26)

where β−1 is the linear inversion (5.5.3) of β.

As in (5.5.10), we can rearrange (5.5.26) by introducing a sum over S2n, using the

invariance of Cε under (linear) inversion and substituting (5.5.25)

〈
Oεβ|Oεα

〉
=

∑
σ∈SN×Sq [S2]

τ∈Sn1 [S2]×Sn2 [S2]

(−1)σ1(−1)τδ
(
Ωεσατ−1β−1

)
(5.5.27)

This allows the definition of an S2n inner product of baryonic operators

〈
Oεβ|Oεα

〉
S2n

=
∑

σ=(σ1,σ2)∈SN×Sq [S2]
τ∈Sn1 [S2]×Sn2 [S2]

(−1)σ1(−1)τδ
(
σατ−1β−1

)
(5.5.28)

However baryonic operators are intrinsically finite N objects, so the S2n inner product

is not the large N limit of the physical inner product, unlike (5.5.12) and (5.5.23).

5.6 Fourier bases for permutation state spaces; the Schur

and restricted Schur basis of operators; and correla-

tors

In section 5.4 we gave Fourier bases for the various auxiliary algebras. In this section

we do the same for the permutation state spaces Aδ/Ωn , Aε;NN ;n, Aδ/Ωn1,n2 and Aε;NN ;n1,n2
.

When inserted into the appropriate operator construction formulae (5.2.4), (5.2.5) and
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(5.2.6), these Fourier bases lead to orthogonal Young diagram bases for the space of

operators. In the half-BPS case, these are called the (mesonic, symplectic or baryonic)

Schur basis, while the quarter-BPS versions are the (mesonic, symplectic or baryonic)

restricted Schur basis.

The programme of finding Young diagram bases for the half and quarter-BPS sectors

was first started, for the U(N) theory, in [22]. This was applied to the SO(N) theory

in [56], which defined the Schur basis for mesonic operators and calculated their corre-

lators. This was soon followed by [57], which introduced the symplectic and baryonic

Schur bases, though did not calculate correlators for the baryonic basis. The extension

to the restricted Schur basis for mesonic quarter-BPS operators first appeared in [59]

including correlator results, and [60] did the equivalent for the symplectic Schur basis.

The correlators for the baryonic Schur basis were found in [1], which also introduced

the restricted Schur extension.

For each permutation state space, we split the discussion into four sections. We

start by introducing the Fourier basis, the associated labelling set and describing the

algebraic properties. This includes giving the action of the associated left and right

auxiliary algebras and the corresponding decomposition as a representation of the prod-

uct auxiliary algebra. We also give the eigenvalues of the basis under the left action of

the appropriate one of Ω̃ and Ωε. After introducing the algebra basis we move on to the

operators they construct. For the half-BPS sector we can interpret these in terms of

symmetric functions of the N
2 distinct eigenvalues. The third section uses the labelling

of the Fourier basis to give a combinatorial description of the size of the space. This

connects to the large N generating functions found in section 4.3. For the half-BPS

sector, we also have expressions for the finite N generating functions. Finally, we give

the physical and S2n correlators of the basis.

5.6.1 Aδn and AΩ: the mesonic and symplectic Schur bases

Algebra basis

The state spaces Aδn and AΩ
n are defined by invariance under the group actions given in

(5.2.18) and (5.2.19) respectively. From these actions, we can derive the Fourier bases

αδR =
1

2nn!

√
dR

(2n)!

∑
σ∈S2n

〈R, [S]|DR(σ)|R, [A]〉σ (5.6.1)

αΩ
R =

1

2nn!

√
dR

(2n)!

∑
σ∈S2n

〈R, [A]|DR(σ)|R, [S]〉σ (5.6.2)

where in both bases R ` 2n is a Young digram with even length rows and columns.

Note this implies n even; for n odd the spaces Aδ/Ωn are zero-dimensional.
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The normalisation of αδR and αΩ
R are chosen to give a nice form for correlators, given

later in (5.6.23) and (5.6.24).

These two bases are closely related. Firstly, consider conjugating the Young diagram

R. The behaviours of DR(σ), |R, [S]〉 and |R, [A]〉 under R→ Rc were given in (5.1.11),

(5.1.13) and (5.1.14) respectively. From these it follows that

αδRc = Anti-Sym
(
αΩ
R

)
(5.6.3)

So the mesonic and symplectic bases are related by anti-symmetrisation and conjugation

of Young diagrams. In (5.4.3) we proved that under the same transformation the left

auxiliary algebra for the mesonic operators switches with the left auxiliary algebra for

symplectic operators. Since for half-BPS operators these are also the right auxiliary

algebras, we see that this transformation exchanges all three spaces, the permutation

state space and both auxiliary algebras, between the SO(N) and Sp(N) theories.

The bases are also related by interchange of the factors in the decomposition (2.5.2)

of C(Sn), or equivalently they transform into each under linear inversion.

The left auxiliary algebra for Aδn is A+
n , and the right auxiliary algebra is A−n , while

for AΩ
n it is the other way round. Using the Fourier bases (5.4.1) and (5.4.2) for A±n

the actions are given by

β+
S α

δ
R = δRSα

δ
R αδRβ

−
S = δRSα

δ
R (5.6.4)

β−S α
Ω
R = δRSα

Ω
R αΩ

Rβ
+
S = δRSα

Ω
R (5.6.5)

In section 5.4.1, we explained the algebra structure of A±n and showed that represen-

tations were labelled by a Young diagram R ` 2n and a complex number c. For A+
n ,

R was restricted to have even row lengths, while for A−n , R has even column lengths,

so the R in (5.6.1) and (5.6.2) falls into both categories. Since A+
n acts on the left of

Aδn and A−n acts on the right, the two actions commute, and Aδn can be sorted into

representations of the product algebra A+
n ×A−n . From (5.6.4), this decomposition is

V δ =
⊕

R`2n with even
row and column lengths

V +
R,c=1 ⊗ V

−
R,c=1 (5.6.6)

Similarly, AΩ
n can be sorted into representations of A−n ×A+

n

V Ω =
⊕

R`2n with even
row and column lengths

V −R,c=1 ⊗ V
+
R,c=1 (5.6.7)

In both representations there is no multiplicity space, and the R on the left matches

the R on the right. As discussed in section 2.4.2 in the context of the double centraliser
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theorem, this shows that A±n are each others’ centraliser within the endomorphism

algebras of Aδ/Ωn .

To give a more concrete realisation of the algebraic structure of A±n , in section 5.4.1

we gave a matrix interpretation of β±R as matrices with rows labelled by R. We can

repeat this for (5.6.6) and (5.6.7), to give a more intuitive understanding.

In this matrix picture αδR is a the tensor product of column vector with a single 1

in the Rth row with respect to A+
n , and a row vector with a single 1 in the Rth column

with respect to A−n . For αΩ
R just switch ‘row’ and ‘column’.

The action of Ω̃ on α
δ/Ω
R follows from its action on the vectors |R, [S]〉 and |R, [A]〉

given in (A.2.18) and (A.2.19)

Ω̃αδR = f δRα
δ
R αδRΩ̃ = fΩ

Rα
δ
R

Ω̃αΩ
R = fΩ

Rα
Ω
R αΩ

RΩ̃ = f δRα
Ω
R

(5.6.8)

So the eigenvalues of Ω̃ are given in terms of the Young diagram labelR. The eigenvalues

on the left are relevant for correlators. Since f δR = fΩ
R = 0 for l(R) > N , Ω̃ maps the

large N state spaces Aδ/Ωn to the restricted finite N versions Aδ/Ω;N
n .

Operator basis

To construct the mesonic and symplectic Schur bases of operators we insert (5.6.1) and

(5.6.2) into the contraction formulae (5.2.4) and (5.2.6) respectively

OδR =
1

2nn!

√
dR

(2n)!

∑
σ∈S2n

〈R, [S]|DR(σ)|R, [A]〉 C(δ)
I σIJ

(
X⊗n

)J
(5.6.9)

OΩ
R =

1

2nn!

√
dR

(2n)!

∑
σ∈S2n

〈R, [A]|DR(σ)|R, [S]〉 C(Ω)
I σIJ

[
(ΩX)⊗n

]J
(5.6.10)

At finite N , those Oδ/ΩR with l(R) > N vanish, and the remaining Oδ/ΩR form a basis

for the reduced space.

When n = O(N), these operators are dual to giant gravitons wrapped around

3-cycles within AdS5 × RP5.

In [57], the authors gave a different way of writing the Schur SO(N) and Sp(N)

Schur operators in terms of the matrix X2. Consider the n
2 times tensor product of X2

as an operator on V ⊗
n
2 , denoted by X2. Then in a completely analogous way to the X

version (2.1.11), for a permutation σ ∈ Sn
2

of cycle type p ` n
2 , we have

Tr
(
σX2

)
=
∏
i

(
TrX2i

)pi (5.6.11)

Since R ` 2n has even column lengths and row lengths, it can be ‘quartered’ into a
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partition R
4 `

n
2 as described in (5.1.7). Then (5.6.9) and (5.6.10) can be rewritten as

OδR =
1(
n
2

)
!

∑
σ∈Sn

2

2−c(σ)χR
4

(σ)Tr
(
σX2

)
(5.6.12)

OΩ
R =

1(
n
2

)
!

∑
σ∈Sn

2

2−c(σ)χR
4

(σ)Tr
(
σX2

)
(5.6.13)

where c(σ) is the number of cycles in σ. Note that this means that SO(N) and Sp(N)

operators have the same expressions when written in terms of multi-traces.

In the SO(N) gauge theory with N even, we can put X in the form

X =



0 x1 0 0 . . . 0 0

−x1 0 0 0 . . . 0 0

0 0 0 x2 . . . 0 0

0 0 −x2 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 xN
2

0 0 0 0 . . . −xN
2

0


(5.6.14)

which means

X2 = Diag
(
−x2

1,−x2
1,−x2

2,−x2
2, . . . ,−x2

N
2

,−x2
N
2

)
(5.6.15)

If N is odd, then xN
2

in (5.6.14) and (5.6.15) is replaced with xN−1
2

and an extra 0 is

added to the diagonal in both. In either case, it follows that

TrX2k = (−1)k2
∑
i=1

x2k
i = 2Tk

(
−x2

1,−x2
2, . . . ,−x2

bN2 c
)

(5.6.16)

where Tk is the power-sum symmetric function defined in (2.7.7) and
⌊
N
2

⌋
is N

2 rounded

down to the closest integer. Applying this to each factor of (5.6.11)

Tr
(
σX2

)
= 2c(σ)Tp

(
−x2

1,−x2
2, . . . ,−x2

bN2 c
)

(5.6.17)

where σ ∈ Sn
2

is of cycle type p ` n
2 and Tp is the power-sum symmetric function

defined in (2.7.8).

Re-expressing (5.6.12) in terms of Sn
2

conjugacy classes and comparing with the

definition (2.7.10) of a Schur symmetric function, we have

OδR =
∑
p`n

2

1

zp
χR

4
(p)Tp

(
−x2

1,−x2
2, . . . ,−x2

bN2 c
)

= sR
4

(
−x2

1,−x2
2, . . . ,−x2

bN2 c
)

(5.6.18)
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So, in direct analogy to the U(N) statement (2.7.11), the SO(N) operators are Schur

functions in the
⌊
N
2

⌋
distinct eigenvalues of the matrix X2.

For the Sp(N) gauge theory, N is always even and we can put X in the form

X =



x1 0 . . . 0

0 x2 . . . 0
...

...
. . .

...

0 0 . . . xN
2

−x1 0 . . . 0

0 −x2 . . . 0
...

...
. . .

...

0 0 . . . −xN
2


(5.6.19)

which leads to a relative minus sign compared to (5.6.15) in the expression for X2, and

therefore in terms of eigenvalues

OΩ
R = sR

4

(
x2

1, x
2
2, . . . , x

2
N
2

)
(5.6.20)

Combinatorics

The Young diagrams R
4 `

n
2 are unrestricted at large N , and hence the number of Schur

operators of degree n is p
(
n
2

)
if n even and 0 if n odd. This matches the counting of

multi-traces from (4.1.1), and the generating function is known [64]

∞∏
n=1

1

1− x2n
(5.6.21)

which matches (4.3.35) as expected.

At finite N , the cut-off is l
(
R
4

)
≤ N

2 . The generating function for these cut-off

partitions numbers is
N∏
n=1

1

1− x2n
(5.6.22)

Correlators

The correlator of two SO(N) mesonic Schur operators follows from the formula (5.5.10)

for correlators of mesonic operators, orthogonality of matrix elements (2.3.4) and the

action (5.6.8) of Ω̃ on |R, [S]〉 〈
OδR|OδS

〉
= δRSf

δ
R (5.6.23)
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Similarly the correlator for symplectic Schurs follows from (5.5.22), (2.3.4) and (5.6.8)

〈
OΩ
R|OΩ

S

〉
= δRSf

Ω
R (5.6.24)

In the S2n inner product both bases are orthonormal.

Consider the effect of the transformation (4.0.3) on (5.4.7). Conjugating a Young

diagram R takes the odd rows of R to the odd columns of Rc, and for a box b ∈ R, the

conjugated box bc ∈ Rc has contents cbc = −cb (see (2.3.19)). Therefore

f δRc(−N) =
∏

b∈ odd
columns of Rc

(−N + cb) (5.6.25)

= (−1)n
∏

b∈ odd
columns of Rc

(N − cb) (5.6.26)

= (−1)n
∏

b∈ odd
rows of R

(N + cb) (5.6.27)

= (−1)nfΩ
R (N) (5.6.28)

Since n is even for half-BPS operators, we have〈
OδRc |OδSc

〉∣∣∣
N→−N

=
〈
OΩ
R|OΩ

S

〉
(5.6.29)

This is an explicit example of the relation (4.0.3) between SO(N) and Sp(N) gauge

invariant quantities.

As the Schur operators are Schur symmetric functions in the eigenvalues of X2,

product rules for these operators are expressed in terms of Littlewood-Richardson co-

efficients (D.1.4). Therefore three-point functions and higher are given in terms of

these.

5.6.2 Aε;NN ;n: the baryonic Schur basis

Algebra basis

The permutation state space that constructs half-BPS baryonic operators is Aε;NN ;n.

Such operators only exist when N is even, 2n ≥ N , and for the half-BPS case, when

q = n − N
2 is even. Aε;NN ;n is invariant under the action (5.2.24), but also requires a

cut-off on Young diagrams. The Fourier basis for the unrestricted version AεN ;n is

αεR =

√
dR

N !2qq!2nn!(2n)!

∑
σ∈S2n

( 〈[
1N
]∣∣⊗ 〈R̄, [S]|

)
DR(σ)|R, [A]〉σ (5.6.30)
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where R has even column lengths and admits a representation [1N ] ⊗ R̄ of SN × S2q

where R̄ has even row lengths. The constraints this condition puts on R are given in

section D.2.1. When we impose the cut-off l(R) ≤ N , the constraints simplify, and R

must be of the form R = [1N ] + R̄. This implies R̄ also has even column lengths, and

is therefore of the same form as Young diagram used to label the mesonic Schur basis

(5.6.9). This gives a simple description of the state space Aε;NN ;n

Aε;NN ;n = Span
{
αεR : R = [1N ] + R̄ for R̄ with even row and column lengths

}
(5.6.31)

The auxiliary algebras Bε;NN,q and A−;N
n act on the left and right of Aε;NN ;n respectively.

Using the Fourier bases (5.4.2) and (5.4.19), these actions are given by

βεSα
ε
R = δRSα

ε
R αεRβ

−
S = δRSα

ε
R (5.6.32)

The state space Aε;Nn can be given as a representation of Bε;NN,q ×A
−;N
n . In sections 5.4.3

and 5.4.1 respectively, the representations of Bε;NN,q and A−;N
n were classified. Both are

labelled by a Young diagram R and a complex number c. For Bε;NN,q , R is restricted to

have form R = [1N ] + R̄ for R̄ with even row lengths and l(R̄) ≤ N , while for A−;N
n ,

R must have even column lengths and l(R) ≤ N . Therefore the R in (5.6.30) falls into

both categories. The representation is

V ε =
⊕

R`2n with odd
row and even column lengths

l(R)=N

V ε
R,c=1 ⊗ V −R,c=1 (5.6.33)

The lack of a multiplicity space in this decomposition, and the matching of R be-

tween the two factors means Bε;NN,q and A−;N
n are each others’ centralisers within the

endomorphism algebra of Aεn.

In sections 5.4.3 and 5.4.1 we give a matrix interpretation of Bε;NN,q and A−;N
n , with

rows labelled by the Young diagram R. In this picture, αεR is a column vector with a 1

in the Rth row with respect to Bε;NN,q and a row vector with a 1 in the Rth column with

respect to A−;N
n .

The action of Ωε on αεR follows from its action (A.2.63) on the vector
∣∣[1N]〉⊗|R̄, [S]〉

ΩεαεR = f εRα
ε
R (5.6.34)

There is also an action of Ω̃ on the right, though this is not relevant for correlators

αεRΩ̃ = fΩ
Rα

ε
R (5.6.35)

Since f εR = fΩ
R = 0 for R with l(R) > N , Ωε imposes the cut-off in Young diagrams in
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the unrestricted space AεN ;n.

Operator basis

To construct the baryonic Schur basis we insert the basis elements (5.6.30) into the

baryonic contraction formula (5.2.5)

OεR =

√
dR

N !2qq!2nn!(2n)!

∑
σ∈S2n

( 〈[
1N
]∣∣⊗ 〈R̄, [S]|

)
DR(σ)|R, [A]〉 C(ε)

I σIJ
(
X⊗n

)J
(5.6.36)

If R is a single column of length N , this is dual to a giant graviton wrapped around

a RP3 within the RP5 factor. More general R with n = O(N) boxes is a multi-giant

state, with one wrapped around a RP3 and the others wrapped on S3.

We saw in (5.6.18) that the SO(N) mesonic Schur basis are Schur functions in the

eigenvalues of X2. The baryonic Schur basis has an equivalent interpretation involving

the Pfaffian of X. For a generic anti-symmetric matrix with N even, this is defined to

be the square root of the determinant. For X of the form (5.6.14), it is simply

Pf(X) = x1x2 . . . xN
2

(5.6.37)

This appears in baryonic operators through the identity

εi1i2i3i4...iN−1iNX
i1i2Xi3i4 . . . XiN−1iN = 2

N
2

(
N

2

)
! Pf(X) (5.6.38)

Consider a permutation τ ∈ Sq of cycle type p. This is embedded into S2q by acting

on the odd numbers, and embedded into S2n by acting on the odd numbers greater

than N . In both these embeddings we denote the equivalent to τ by τ (odd). Then from

(5.6.38) and (5.3.16)

C
(ε)
I

(
τ (odd)

)I
J

(
X⊗n

)J
= 2

N
2

(
N

2

)
! Pf(X)C

(δ)
I

(
τ (odd)

)I
J

(
X⊗q

)J
= 2

N
2

(
N

2

)
! Pf(X)

∏
i

(
TrXi

)pi (5.6.39)

To express this in terms of ORε , we use a similar approach to that taken in [57] to prove

the equality of expressions (5.6.9) and (5.6.12). For α ∈ S2n, define

Oε;αR =
∑
σ∈S2n

χR(σ)C
(ε)
I (ασ)IJ

(
X⊗n

)J
(5.6.40)
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Using the resolution of the identity (2.3.6), it follows that

1

(2n)!

∑
R`2n

dROε;αR = C
(ε)
I αIJ

(
X⊗n

)J
(5.6.41)

We now rearrange (5.6.40) to compare it to (5.6.36)

Oε;αR =
∑
σ∈S2n

χR(α−1σ)C
(ε)
I σIJ

(
X⊗n

)J
=
∑
σ∈S2n

χR(α−1σ)C
(ε)
I

(
P[1N ]⊗[S]σP[A]

)I
J

(
X⊗n

)J
=
∑
σ∈S2n

χR

(
α−1P[1N ]⊗[S]σP[A]

)
C

(ε)
I σIJ

(
X⊗n

)J
(5.6.42)

where the projectors P[1N ]⊗[S] and P[A] are defined in (5.1.24) and (5.1.3) respectively.

Using the expressions (5.1.25) and (5.1.6) for the projectors in a representation, we

have

Oε;αR = 〈R, [A]|DR
(
α−1

) ( ∣∣[1N]〉⊗ |R̄, [S]〉
)

∑
σ∈S2n

( 〈[
1N
]∣∣⊗ 〈R̄, [S]|

)
DR (σ) |R, [A]〉C(ε)

I σIJ
(
X⊗n

)J
=
( 〈[

1N
]∣∣⊗ 〈R̄, [S]|

)
DR (α) |R, [A]〉

√
N !2qq!2nn!(2n)!

dR
OεR (5.6.43)

The matrix element can be evaluated by decomposing R as a representation of SN×S2q.

We have

V S2n
R =

⊕
rN`N
r2q`2q

V SN
rN
⊗ V S2q

r2q ⊗ V mult
R;rN ,r2q

(5.6.44)

where V mult
R;rN ,r2q

is the Littlewood-Richardson multiplicity space for the decomposition.

The tensor product vector on the left of the matrix element means only the rN =
[
1N
]
,

r2q = R̄ term will contribute. It is proved in appendix D that the multiplicity space is

trivial for these values of rN and r2q.

For τ ∈ S2q embedded into S2n by acting on {N + 1, . . . , 2n}, the rN =
[
1N
]
,

r2q = R̄ component of the decomposition of DR (τ) is

DR (τ) ∼ I[1N ] ⊗Dr2q(τ) (5.6.45)

where I[1N ] is the identity operator on V SN
[1N ]

.

Similarly, the relevant component of the vector |R, [A]〉 is

|R, [A]〉 ∼ aR[1N ],R̄

(
|[1N ]〉 ⊗ |R̄, [A]〉

)
(5.6.46)
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where |[1N ]〉 appears as this is the vector |rN , [A]〉 anti-invariant under Sn[S2] for the

representation rN = [1N ]. The coefficient is

aR[1N ],R̄ =
( 〈[

1N
]∣∣⊗ 〈R̄, [A]|

)
|R, [A]〉 =

√
χR

(
P[1N ]⊗[A]P[A]

)
(5.6.47)

where for the second equality we have used the representative (5.1.6) of the projector

P[A] defined in (5.1.3), and introduced a new projector P[1N ]⊗[A] defined analogously to

P[1N ]⊗[S] in (5.1.24) with representative analogous to (5.1.25). We have not been able

to find a simple formula for aR
[1N ],R̄

.

Using the components (5.6.45) and (5.6.46), for τ ∈ Sq of cycle type 2p we can write

the matrix element of (5.6.43) as( 〈[
1N
]∣∣⊗ 〈R̄, [S]|

)
DR

(
τ (odd)

)
|R, [A]〉

= aR[1N ],R̄

( 〈[
1N
]∣∣⊗ 〈R̄, [S]|

)(
I[1N ] ⊗DR̄

(
τ (odd)

))( ∣∣[1N]〉⊗ |R̄, [A]〉
)

= aR[1N ],R̄ 〈R̄, [S]|DR̄
(
τ (odd)

)
|R̄, [A]〉

= aR[1N ],R̄

2l(p)

2qq!

√
(2q)!

dR̄
χ R̄

4

(p) (5.6.48)

where we have used (5.1.10) to evaluate the final R̄ matrix element.

Putting the pieces together, for σ ∈ Sn
2

of cycle type p, we have

2
N
2

(
N

2

)
! Pf(X)Tr

(
σX2

)
= 2

N
2

(
N

2

)
! Pf(X)

∏
i

(
TrX2i

)pi
=
∑
R`2n

aR[1N ],R̄

√
N !2nn!dR(2q)!

2qq!(2n)!dR̄
2c(σ)χ R̄

4

(σ)OεR (5.6.49)

Inverting this relation using orthogonality relations (2.3.5) gives

2
N
2

(
N

2

)
! Pf(X)

1( q
2

)
!

∑
σ∈S q

2

χ R̄
4

(σ)2−c(σ)Tr(σX2) =

√
N !2nn!

2qq!

√
dR(2q)!

(2n)!dR̄
aR[1N ],R̄O

ε
R

(5.6.50)

Comparing with the mesonic Schur operators (5.6.12), we see the baryonic Schurs are,

up to normalisation, the Pfaffian operator multiplied by a mesonic Schur

2
N
2

(
N

2

)
! Pf(X)OδR̄ =

√
N !2nn!

2qq!

√
dR(2q)!

(2n)!dR̄
aR[1N ],R̄O

ε
R (5.6.51)

In terms of eigenvalues, the baryonic Schur is, up to normalisation, the product of

the Pfaffian (5.6.37) with the Schur symmetric function labelled by R̄
4 , as described in
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(5.6.18).

Combinatorics

The combinatorics of the baryonic sector are determined in much the same way as the

mesonic sector, with R̄ playing the role of R from section 5.6.1. The only restriction on
R̄
4 is l

(
R̄
4

)
≤ N

2 , so the size of the degree n baryonic sector is the number of partitions

of q
2 with length ≤ N

2 . The generating function for these is

x
N
2

N
2∏

n=1

1

1− x2n
(5.6.52)

Comparing with (5.6.22), we see the generating function for the entire half-BPS sector

of the SO(N) gauge theory at finite even N is

(
1 + x

N
2

) N
2∏

n=1

1

1− x2n
(5.6.53)

which matches the results of [57].

Correlators

The two-point function of two baryonic operators can be calculated using the formula

(5.5.27) for the correlator of baryonic operators, orthogonality of matrix elements (2.3.4)

and the action (5.6.34) of Ωε on
∣∣[1N]〉⊗ |R̄, [S]〉

〈OεR|OεS〉 = δRSf
ε
R (5.6.54)

Under the S2n inner product, the OεR are orthonormal.

This correlator should be reproducible by studying the stringy physics of branes

wrapped around a non-trivial 3-cycle in the RP5 factor of AdS5 × RP5.

5.6.3 Aδn1,n2
and AΩ

n1,n2
: the mesonic and symplectic restricted Schur

bases

Algebra basis

The state spaces Aδn1,n2
and AΩ

n1,n2
are defined to be invariant under the group actions

given in (5.2.7) and (5.2.8) respectively. From these actions, we can derive the Fourier

bases

αδR,R1,R2,λ =
1

2n

√
dR

(2n)!n!n1!n2!

∑
σ∈S2n

〈R, [S]|DR(σ)|R1, R2, [A], λ〉σ (5.6.55)
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αΩ
R,R1,R2,λ =

1

2n

√
dR

(2n)!n!n1!n2!

∑
σ∈S2n

〈R, [A]|DR(σ) |R1, R2, [S], λ〉σ (5.6.56)

where the labelling sets and their restrictions are

SO(N) Sp(N)

R ` 2n with even row lengths R ` 2n with even column lengths

R1 ` 2n1 with even column lengths R1 ` 2n1 with even row lengths

R2 ` 2n2 with even column lengths R2 ` 2n2 with even row lengths

1 ≤ λ ≤ gR;R1R2 1 ≤ λ ≤ gR;R1R2

(5.6.57)

More formally, the µ, ν indices label basis vectors in the Littlewood-Richardson multi-

plicity space. In section D.3 we give a prescription for how to choose this basis. When

N < n, we also impose the finite N condition l(R) ≤ N .

Since Littlewood-Richardson coefficients are invariant under conjugation (D.0.6),

at large N the labels for an SO(N) operator are conjugate to the labels for an Sp(N)

operator. From the behaviour of DR(σ), |R, [S]〉 and |R1, R2, [A], λ〉 under conjugation,

given in (5.1.11), (5.1.14) and (5.1.21) respectively, the two bases are related directly

by conjugation of R and anti-symmetrisation

αδRc,Rc1,Rc2,λ = Anti-Sym
(
αΩ
R,R1,R2,λ

)
(5.6.58)

This is a generalisation of the half-BPS version (5.6.3), and has the same interpretation

as explained there.

The auxiliary algebras for Aδn1,n2
are A+

n on the left and A−n1,n2
on the right. For

AΩ
n1,n2

, we have A−n on the left and A+
n1,n2

on the right. Using the Fourier bases defined

in sections 5.4.1 and 5.4.2, these actions are

β+
S α

δ
R,R1,R2,λ = δRS α

δ
R,R1,R2,λ (5.6.59)

αδR,R1,R2,λβ
−
S,(S1,S2,µ),(T1,T2,ν) = δRS δ(R1,R2,λ)(S1,S2,µ) α

δ
R,T1,T2,ν (5.6.60)

β−S α
Ω
R,R1,R2,λ = δRS α

Ω
R,R1,R2,λ (5.6.61)

αΩ
R,R1,R2,λβ

+
S,(S1,S2,µ),(T1,T2,ν) = δRS δ(R1,R2,λ)(S1,S2,µ) α

Ω
R,T1,T2,ν (5.6.62)

The state space Aδn1,n2
can be decomposed as representations of the direct product

algebra A+
n × A−n1,n2

. In sections 5.4.1 and 5.4.2, we classified the representations of

A+
n and A−n1,n2

. For A+
n , representations are labelled by a Young diagram R with even

row lengths and a complex number c, while for A−n1,n2
, representations are labelled by a

Young diagram R and a GL(m−R) Young digram r, where m−R is defined in (5.4.16) and

R is restricted to admit gR;R1,R2 > 0 for some R1 ` 2n1, R2 ` 2n2 with even column

lengths. The R in (5.6.55) satisfies both conditions. From (5.6.59) and (5.6.60), the
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decomposition of Aδn1,n2
is

V δ =
⊕

R`2n with
even row lengths

V +
R,c=1 ⊗ V

−
R,r= (5.6.63)

Similarly, AΩ
n1,n2

has auxiliary algebras A−n on the left and A+
n1,n2

on the right. Repre-

sentations of A−n are labelled by R with even column lengths and a complex number c,

while representations of A+
n1,n2

are labelled by R (which admits gR;R1,R2 > 0 for some

R1 ` 2n2, R2 ` n2 with even row lengths) and a GL(m+
R) Young digram r, where m+

R

is defined in (5.4.15). Then as a A−n ×A+
n1,n2

representation, AΩ
n1,n2

is

V Ω =
⊕

R`2n with
even column lengths

V −R,c=1 ⊗ V
+
R,r= (5.6.64)

In both representations there is no multiplicity space, and the Rs on either side match,

so A±n and A∓n1,n2
are each other’s centraliser within the endomorphism algebras of

Aδ/Ωn1,n2 .

We gave a matrix interpretation of A±n and A±n1,n2
in sections 5.4.1 and 5.4.2. In

this picture αδR,R1,R2,λ
is a column vector with a single 1 in the Rth row with respect

to A+
n and a row vector with a single 1 in the (R1, R2, λ)th column of the R block with

respect to A−n1,n2
. Similarly, αΩ

R,R1,R2,λ
is a column vector with a single 1 in the Rth

row with respect to A−n and a row vector with a single 1 in the (R1, R2, λ)th column

of the R block with respect to A+
n1,n2

.

There is one more interesting multiplication property of Aδn1,n2
and AΩ

n1,n2
. When

multiplied on the right by the basis (3.6.3) of the U(N) algebra A2n1,2n2 , we have

αδR,R1,R2,λβ
U(N)
S,S1,S2,µ,ν

= δRSδR1S1δR2S2δµλα
δ
R,R1,R2,ν (5.6.65)

αΩ
R,R1,R2,λβ

U(N)
S,S1,S2,µ,ν

= δRSδR1S1δR2S2δµλα
Ω
R,R1,R2,ν (5.6.66)

So Aδn1,n2
forms a representation over A2n1,2n2 . In section 3.6.1 we give a description of

the representations ofA2n1,2n2 . They are labelled by a triple R,R1, R2 with gR;R1,R2 > 0

and a GL(gR;R1,R2) Young diagram r. Using this labelling, Aδn1,n2
and AΩ

n1,n2
are

V δ =
⊕

R`2n with even row lengths
R1`2n1 with even column lengths
R2`2n2 with even column lengths

V(R,R1,R2),r= (5.6.67)

V Ω =
⊕

R`2n with even column lengths
R1`2n1 with even row lengths
R2`2n2 with even row lengths

V(R,R1,R2),r= (5.6.68)

Thinking of the U(N) elements as block diagonal matrices as explained in section 3.6.1,
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αδR,R1,R2,λ
form row vectors with zero entries in all blocks except that corresponding to

(R,R1, R2), in which it has a single 1 at the λth position.

This gives a nice interpretation of the form of the SO(N) and Sp(N) counting formu-

lae (5.6.74) and (5.6.75) and their U(N) equivalent (3.6.6). The U(N) counting contains

squares of Littlewood-Richardson coefficients because An1,n2 lives in the adjoint repre-

sentation of An1,n2 . The SO(N) and Sp(N) counting contains Littlewood-Richardson

coefficients to the first power because they lie in the fundamental representation (of a

subset of the blocks) of An1,n2 .

The action of Ω̃ on Aδ/Ωn1,n2 follows from its action on |R, [S]〉 and |R, [A]〉, given in

(A.2.18) and (A.2.19)

Ω̃αδR,R1,R2,λ = f δRα
δ
R,R1,R2,λ Ω̃αΩ

R,R1,R2,λ = fΩ
Rα

Ω
R,R1,R2,λ (5.6.69)

Unlike the half-BPS sector equivalent (5.6.8), in the quarter-BPS sector Ω̃ only has

definite eigenvalues when acting on Aδn1,n2
and AΩ

n1,n2
on the left. Since f δR = fΩ

R = 0

if l(R) > N , it still enforces the finite N cut-off.

Operator basis

The restricted Schur basis operators for SO(N) and Sp(N) are constructed by inserting

(5.6.55) and (5.6.56) into the contraction formulae (5.2.4) and (5.2.6) respectively

OδR,R1,R2,λ =
1

2n

√
dR

(2n)!n!n1!n2!

∑
σ∈S2n

〈R, [S]|DR(σ)|R1, R2, [A], λ〉 C(δ)
I σIJ

(
X⊗n1Y ⊗n2

)J
(5.6.70)

OΩ
R,R1,R2,λ =

1

2n

√
dR

(2n)!n!n1!n2!

∑
σ∈S2n

〈R, [A]|DR(σ) |R1, R2, [S], λ〉C(Ω)
I σIJ

[
(ΩX)⊗n1 (ΩY )⊗n2

]J
(5.6.71)

In the half-BPS sector, the Schur bases for SO(N) and Sp(N) have the same expres-

sions in terms of multi-traces. This is not true in the quarter-BPS. Instead, it follows

from (5.6.58) that restricted Schurs with conjugate labels are anti-symmetrisations of

each other. Define the anti-symmetrisation operator on a single trace by

Anti-Sym (TrW ) = (−1)l(W )+1TrW (5.6.72)

for a matrix word W . The definition is extended in the obvious way to multi-traces

and linear combinations thereof. This is directly analogous to the operator Anti-Sym

on permutations. Then

OδRc,Rc
1,R

c
2,λ

= Anti-Sym
(
OΩ
R,R1,R2,λ

)
(5.6.73)
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SO(N) mesonic and Sp(N) Schur operators in the half-BPS sector could be expressed

as Schur symmetric functions in the distinct eigenvalues of X2. In the quarter-BPS,

the matrices X and Y cannot be simultaneously diagonalised, so there is no equivalent

expression for the restricted Schur operators in terms of the two sets of eigenvalues.

Combinatorics

From the labelling sets for the restricted Schur operators, the number of field content

(n1, n2) operators in the two theories is

N (δ;N)
n1,n2

=
∑

R`2n with even row lengths
R1`2n1 with even column lengths
R2`2n2 with even column lengths

l(R)≤N

gR;R1,R2
(5.6.74)

N (Ω;N)
n1,n2

=
∑

R`2n with even column lengths
R1`2n1 with even row lengths
R2`2n2 with even row lengths

l(R)≤N

gR;R1,R2
(5.6.75)

It follows from the invariance of Littlewood-Richardson coefficients under conjugation

(D.0.6) that for large N the combinatorics for SO(N) mesonic operators and Sp(N)

operators are the same. In fact, since baryonic operators do not exist at large N , this

is the combinatorics of the entire quarter-BPS sector for both gauge groups. The large

N generating function for both N
(δ;∞)
n1,n2 and N

(Ω;∞)
n1,n2 is given in (4.3.21). We prove this

directly from the formula (5.6.74) in appendix E.

The combinatorics (5.6.74) and (5.6.75) have also been derived from group integrals

in [59] for SO(N) and [60] for Sp(N).

Correlators

The correlator of two restricted Schur operators can be calculated from the formula

(5.5.10) for the correlator of two mesonic operators, orthogonality of matrix elements

(2.3.4) and the action (A.2.18) of Ω̃ on |R, [S]〉〈
OδR,R1,R2,λ1

|OδS,S1,S2,λ2

〉
= δRSδR1S1

δR2S2
δλ1λ2

f δR (5.6.76)

while the symplectic equivalent follows from (5.5.22), (2.3.4) and (A.2.19)

〈
OΩ
R,R1,R2,λ1

|OΩ
S,S1,S2,λ2

〉
= δRSδR1S1

δR2S2
δλ1λ2

fΩ
R (5.6.77)

Under the S2n inner product, both bases are orthonormal.
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It follows from (5.6.28) that the SO(N) and Sp(N) operators with conjugate labels

have norms related by〈
OδRc,Rc

1,R
c
2,λ1
|OδSc,Sc

1 ,S
c
2 ,λ2

〉∣∣∣
N→−N

= (−1)n
〈
OΩ
R,R1,R2,λ1

|OΩ
S,S1,S2,λ2

〉
(5.6.78)

This is another example of the relation (4.0.3) between mesonic and symplectic gauge

invariants.

More general correlation functions can be calculated using product rules for the

restricted Schurs [60].

5.6.4 Aε;Nn1,n2
: the baryonic restricted Schur basis

Algebra basis

The permutation state space that constructs quarter-BPS baryonic operators is Aε;Nn1,n2 .

Such operators only exist when N is even and 2n ≥ N . Unlike the half-BPS case, the

quarter-BPS sector does admit operators when q = n− N
2 is odd. Aε;NN ;n1,n2

is invariant

under the action (5.2.22), but also requires a cut-off on Young diagrams. The Fourier

basis for the unrestricted version AεN ;n1,n2
is

αεR,R1,R2,λ =

√
dR

N !2qq!2nn1!n2!(2n)!

∑
σ∈S2n

(
〈
[
1N
]
|⊗ 〈R̄, [S]|

)
DR(σ)|R1, R2, [A], λ〉σ

(5.6.79)

where R ` 2n has two types of Littlewood-Richardson decompositions. Firstly, it ad-

mits a representation R1⊗R2 of S2n1
×S2n2

where R1 and R2 have even columns lengths.

λ is a Littlewood-Richardson index for this decomposition. Secondly, it contains a rep-

resentation [1N ] ⊗ R̄ of SN × S2q where R̄ has even row lengths. The conditions for

such an R are complex and are given in section D.2.1. When we impose the cut-off

l(R) ≤ N , they simplify considerably to R = [1N ]+ R̄. This allows a simple description

of the state space Aε;NN ;n1,n2

Aε;NN ;n1,n2
= Span

{
αεR,R1,R2,λ : R = [1N ]+R̄ for R̄ with even row lengths, 1 ≤ λ ≤ gR;R1,R2

}
(5.6.80)

The auxiliary algebras for Aε;NN ;n1,n2
are Bε;NN,q on the left and A−n1,n2

on the right. Using

the Fourier bases defined in (5.4.19) and (5.4.11) respectively their actions are

βεSα
ε
R,R1,R2,λ = δRSα

ε
R,R1,R2,λ (5.6.81)

αεR,R1,R2,λβ
−
S,(S1,S2,µ),(T1,T2,ν) = δRS δ(R1,R2,λ)(S1,S2,µ) α

ε
T,T1,T2,ν (5.6.82)
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Under these actions, Aε;NN ;n1,n2
can be decomposed as representations of the product

algebra Bε;NN,q × A
−;N
n1,n2 . The irreducible representations of the two auxiliary algebras

were classified in sections 5.4.3 and 5.4.2. For Bε;NN,q , a representation is labelled by a

complex number c and a Young diagram R of form R = [1N ] + R̄ where R̄ with even

row lengths and l(R̄) ≤ N , while for A−;N
n1,n2 , representations are labelled by a Young

diagram R ` 2n with l(R) ≤ N and a GL(m−R) Young diagram r, where m−R is defined

in (5.4.16) and R is restricted to admit gR;R1,R2
> 0 for some R1 ` 2n1, R2 ` n2 with

even column lengths. The R in (5.6.79) satisfies both constraints. From (5.6.81) and

(5.6.82), the decomposition of Aε;NN ;n1,n2
is

V ε =
⊕

R`2n with
odd row lengths

l(R)=N

V ε
R,c=1 ⊗ V −R,r= (5.6.83)

In both representations there is no multiplicity space and the R on either side match,

so Bε;NN,q and A−;N
n1,n2 are each other’s centraliser within the endomorphism algebra of

Aε;NN ;n1,n2
.

In sections 5.4.3 and 5.4.2 we gave a matrix interpretation of the Wedderburn-Artin

decompositions of Bε;NN,q and A−;N
n−1,n2

. Using this language, αεR,R1,R2,λ
is a column vector

with a single 1 in the Rth row with respect to Bε;NN,q and a row vector with a single 1 in

the (R1, R2, λ)th column of the R block with respect to A−;N
n1,n2 .

We can also give a Aε;Nn1,n2 as a representation of the U(N) algebra A2n1,2n2
in a

similar manner to (5.6.67) and (5.6.68). There is no mathematical difference between

the baryonic case and the mesonic and symplectic version already considered, so we

will not spell it out explicitly here.

The action of Ωε on αεR,R1,R2,λ
follows from its action (A.2.63) on the vector

∣∣[1N]〉⊗
|R̄, [S]〉

ΩεαεR,R1,R2,λ = f εRα
ε
R,R1,R2,λ (5.6.84)

As f εR = 0 for R with l(R) > N , Ωε enforces the cut-off in Young diagrams in the

unrestricted space Aε;NN ;n1,n2
.

Operator basis

To construct the baryonic Schur basis we insert the basis elements (5.6.79) into the

baryonic contraction formula (5.2.5)

OεR,R1,R2,λ =

√
dR

N !2qq!2nn1!n2!(2n)!

∑
σ∈S2n

(〈[
1N
]∣∣∣⊗ 〈R̄, [S]|

)
DR(σ)|R1, R2, [A], λ〉C(ε)

I σIJ
(
X⊗n1Y ⊗n2

)J
(5.6.85)
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Combinatorics

From the labelling of the operators (5.6.85), the dimension of the degree (n1, n2) space

of baryonic operators is

N ε;N
n1,n2

=
∑

R`2n with odd row lengths
R1`2n1 with even column lengths
R2`2n2 with even column lengths

l(R)=N

gR;R1,R2
(5.6.86)

Correlators

The two-point function of two baryonic operators can be calculated using the baryonic

correlator formula (5.5.27), the orthogonality of matrix elements (2.3.4) and the action

(5.6.84) of Ωε on
∣∣[1N]〉⊗ |R̄, [S]〉

〈
OεR,R1,R2,λ1

|OεS,S1,S2,λ2

〉
= δRSδR1S1

δR2S2
δλ1λ2

f εR (5.6.87)

Under the S2n inner product, the OεR,R1,R2,λ
are orthonormal.

5.7 Covariant bases

For each of the mesonic, symplectic and baryonic sectors, we can define U(2) covariant

bases in much the same way as we did for the U(N) theory in section 3.6.2. The U(N)

covariant basis has been used, first in [63], and subsequently in chapter 7 of this thesis,

to construct quarter-BPS operators at weak coupling. This is the first construction of

the SO(N) and Sp(N) equivalents, and we expect that they could be used in a similar

way.

In this section, we present the key concepts necessary for the construction of the

bases, give a formula for the operators, and develop their combinatorics and correlators.

The detailed mathematical work involved in the construction of the mesonic operators

and the calculation of their correlators is given in appendix F. The symplectic and

baryonic basis are mathematically very similar to the mesonic version, so we are more

schematic for these two, and leave out some of the details both here and in appendix

F.

When introducing the U(N) covariant basis in section 3.6.2, we described some

basic U(2) representation theory. In this section we use the same notation.

Define X1 = X and X2 = Y . Then the i index in Xi is in the fundamental

representation of U(2), as described in section 3.6.2. Similarly to that section, consider

V ⊗n2 , where V2 is the fundamental of U(2), and in particular the basis vector a =

ea1
⊗ ea2

⊗ · · · ⊗ ean
of V ⊗n2 where aj ∈ {1, 2} for each j. Then we define Xa =

Xa1
⊗Xa2

⊗ · · · ⊗Xan
.
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5.7.1 SO(N) mesonic basis

Operator basis

Combining Xa with a permutation σ ∈ S2n, we define

Oδa,σ = C
(δ)
I σIJ (Xa)J (5.7.1)

In appendix F we discuss this definition, determine the redundancies in labelling oper-

ators by a and σ and derive a different labelling set that removes these redundancies.

These operators are

OδΛ,MΛ,R,µ =
1

2nn!

√
dR

dΛ(2n)!

∑
a,σ,J,k

CaΛ,MΛ,k

[
〈R, [S]|DR(σ)

]
J
B
S2n→Sn[S2] ;J
R →(φ,Λ),µ;kO

δ
a,σ

(5.7.2)

where the labels are R ` 2n with even column lengths satisfying l(R) ≤ N , Λ ` n with

l(Λ) ≤ 2, MΛ a basis index for the Λ U(2) representation and µ a multiplicity index.

The coefficients involved in the definition are:

� CaΛ,MΛ,k
is a Clebsch-Gordon coefficient for the Schur-Weyl decomposition (2.4.3)

of V ⊗n2 . k is an index for the Λ representation of Sn.

�

[
〈R, [S]|DR(σ)

]
J

is the representative of σ in the R representation of S2n mul-

tiplied on the left by the Sn[S2]-invariant vector |R, [S]〉. J is a basis index for

R.

� B
S2n→Sn[S2];J
R→(φ,Λ);k,µ is the branching coefficient taking the R representation of S2n to

the (φ,Λ) representation of Sn[S2] (see section F.1 for a description of Sn[S2] rep-

resentation theory). µ is a multiplicity index for the S2n → Sn[S2] decomposition.

For more properties of these coefficients and an explanation of their appearance in

(5.7.2), see appendix F.

Combinatorics

In [86] the authors give an expression for the multiplicity Mδ
R,Λ of a representation

(φ,Λ) of Sn[S2] when reduced from a representation R of S2n. They give two formulae,

the first in terms of terms of the plethysm of the symmetric functions sΛ and the

elementary symmetric function e2. The plethsym of two Schur functions is described

in the introduction to chapter 6, but we will not define the more general case for

generic symmetric functions. The second formula is in terms of Littlewood-Richardson
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coefficients. For Λ = [Λ1,Λ2], we have

Mδ
R,Λ =

∑
R1`2Λ1 , R2`2Λ2

with even column lengths

gR;R1,R2
−

∑
R1`2(Λ1+1) , R2`2(Λ2−1)
with even column lengths

gR;R1,R2
(5.7.3)

These are exactly the Littlewood-Richardson coefficients found in the multiplicity (5.6.74)

of the restricted Schur basis. Indeed, the first term in (5.7.3) is the number of linearly

independent mesonic quarter-BPS operators with field content (Λ1,Λ2). The second

term is the number of operators with field content (Λ1 + 1,Λ2 − 1), so by subtracting

those we remove the operators which are U(2) descendants and are left only with those

that are highest weight states of a Λ = [Λ1,Λ2] representation.

Correlators

Consider the two point function of two U(2) covariant tensor operators Xa. We can use

Wick contractions along with the two-point function (5.5.4) for the matrices X and Y

to find the correlator of Xa〈
(Xb)J | (Xa)I

〉
=

∑
σ∈Sn[S2]

δa,σ̄(b)(−1)σ
(
σ−1

)I
J

(5.7.4)

where for σ ∈ Sn[S2], σ̄ ∈ Sn is defined as the Sn component of σ from the semi-direct

product Sn[S2] = Sn n (S2)n.

In (5.5.10) we derived a formula for SO(N) mesonic correlators involving the el-

ement Ω̃. There is an analogous formula for covariant mesonic operators. Using the

expression (5.5.8) giving Ω̃ as a sum of the contraction Cδ, the correlator of the (5.7.1)

operators is 〈
Oδb,τ |Oδa,σ

〉
=

∑
γ∈Sn[S2]

δa,γ̄(b)(−1)γCδ(σγ−1τ−1)

=
∑

γ,π∈Sn[S2]

δa,γ̄(b)(−1)γδ
(

Ω̃πσγ−1τ−1
)

(5.7.5)

In appendix F.3 we use (5.7.5) to evaluate the correlator of the covariant basis operators

(5.7.2). We find 〈
OδΓ,MΓ,S,ν |O

δ
Λ,MΛ,R,µ

〉
= δΛΓδMΛMΓ

δRSδµνf
δ
R (5.7.6)

In the S2n inner product, the operators are orthonormal.
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5.7.2 Symplectic basis

Operator basis

The matrix combination with definite symmetry in the symplectic theory is ΩXi rather

than Xi, so define

(ΩXa)I = (ΩXa1
)i1i2 (ΩXa2

)i3i4 . . . (ΩXan
)i2n−1i2n (5.7.7)

Then a generic quarter-BPS symplectic operator can be written

OΩ
a,σ = C

(Ω)
I σIJ(ΩXa)J (5.7.8)

The covariant basis is

OΩ
Λ,MΛ,R,µ =

1

2nn!

√
dR

dΛ(2n)!

∑
a,σ,J,k

CaΛ,MΛ,k

[
〈R, [A]|DR(σ)

]
J
B
S2n→Sn[S2] ;J
R →(Λ,φ),µ;kO

Ω
a,σ

(5.7.9)

where R ` 2n has even row lengths and satisfies l(R) ≤ N , Λ ` n with l(Λ) ≤ 2, MΛ

is a basis index for the U(2) representation Λ and µ is a multiplicity index, this time

for the reduction of R to the (Λ, φ) representation of Sn[S2] (compared with (φ,Λ) in

(5.7.2)).

As with the Schur and restricted Schur bases, the mesonic and symplectic bases are

related by conjugation and anti-symmetrisation. Define Ea,σΛ,MΛ,R,µ
to be the coefficient

of Oδa,σ in (5.7.2) and F a,σΛ,MΛ,R,µ
to be the coefficient of OΩ

a,σ in (5.7.9). Then it follows

from the behaviour under conjugation of the representative DR(σ), the vector |R, [A]〉
and the branching coefficient, given in (5.1.11), (5.1.13) and (F.3.5) respectively, that

Ea,σΛ,MΛ,Rc,µ = (−1)σF a,σΛ,MΛ,R,µ
(5.7.10)

Combinatorics

The reduction of a representation R of S2n to the representation (Λ, φ) of Sn[S2] was

also investigated in [86]. The multiplicityMΩ
R,Λ can be given in terms of the plethysm

of sΛ with the power-sum symmetric polynomial p2 or instead in terms of Littlewood-

Richardson coefficients. For Λ = [Λ1,Λ2] we have

MΩ
R,Λ =

∑
R1`2Λ1 , R2`2Λ2

with even row lengths

gR;R1,R2
−

∑
R1`2(Λ1+1) , R2`2(Λ2−1)

with even row lengths

gR;R1,R2
(5.7.11)

which matches the multiplicity from the restricted Schur basis as expected.
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Correlators

By considering Wick contractions and using the formula (5.5.16) for the two-point

function of ΩX and ΩY , the correlators of two copies of ΩX is〈
(ΩXb)J | (ΩXa)I

〉
=

∑
σ∈Sn[S2]

δa,σ̄(b)

(
σ−1

)I
J

(5.7.12)

Using the relation (5.5.20) between sums of the contraction CΩ and Ω̃, we can express

the correlator of two generic covariant symplectic operators of the form (5.7.8) as〈
Oδb,τ |Oδa,σ

〉
=

∑
γ∈Sn[S2]

δa,γ̄(b)C
Ω(σγ−1τ−1)

=
∑

γ,π∈Sn[S2]

δa,γ̄(b)(−1)πδ
(

Ω̃πσγ−1τ−1
)

(5.7.13)

Employing similar techniques to those used in appendix F to calculate the correlators

of the mesonic basis, we can give the two-point function of the symplectic covariant

basis operators (5.7.9)

〈
OΩ

Γ,MΓ,S,ν |O
Ω
Λ,MΛ,R,µ

〉
= δΛΓδMΛMΓ

δRSδµνf
Ω
R (5.7.14)

They are orthonormal in the S2n inner product.

5.7.3 Baryonic basis

Operator basis

For a permutation σ ∈ S2n, define a generic covariant baryonic operator by

Oεa,σ = C
(ε)
I σIJ(Xa)J (5.7.15)

The covariant basis is

OΩ
Λ,MΛ,R,µ =

√
dR

dΛ(2n)!N !2qq!2nn!

∑
a,σ,J,k

CaΛ,MΛ,k

[(
〈[1N ]| ⊗ 〈R̄, [S]|

)
DR(σ)

]
J
B
S2n→Sn[S2] ;J

R →(φ,Λ),µ;kO
ε
a,σ

(5.7.16)

where R = [1N ] + R̄ for R̄ ` 2q with even row lengths satisfying l(R̄) ≤ N , Λ ` n
with l(Λ) ≤ 2, MΛ is a basis index for the U(2) representation Λ and µ is a multiplicity

index for the reduction from the R representation of S2n to the (φ,Λ) representation

of Sn[S2].
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Combinatorics

The combinatorics of the baryonic basis are identical to the mesonic case, just with a

different class of Young diagrams R, so we refer the reader to the description (5.7.3).

Correlators

Using the formula (5.7.4) for the correlator of two copies of Xa and the relation (5.5.25)

between sums of the contraction Cε and the element Ωε, we write the correlator of two

generic baryonic operators of the form (5.7.15) as

〈
Oεb,τ |Oεa,σ

〉
=

∑
γ∈Sn[S2]

δa,γ̄(b)(−1)γCε(σγ−1τ−1)

=
∑

γ,π∈Sn[S2]

δa,γ̄(b)(−1)π1(−1)γδ
(
Ωεπσγ−1τ−1

)
(5.7.17)

Then using the same methodology as that of appendix F to calculate the correlators of

the mesonic basis, the correlators of baryonic covariant basis operators (5.7.16) are

〈
OεΓ,MΓ,S,ν |O

ε
Λ,MΛ,R,µ

〉
= δΛΓδMΛMΓ

δRSδµνf
ε
R (5.7.18)

In the S2n inner product the operators are orthonormal.
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Chapter 6

Orientifold quotient from U(N)

theory to SO(N) or Sp(N) theory

In [55], N = 4 super Yang-Mills with SO(N) and Sp(N) gauge groups were demon-

strated to be the dual of type IIB string theory on AdS5×RP5. This string theory was

obtained from the standard AdS5 × S5 theory by identifying anti-podal points on the

S5 and reversing worldsheet orientation at the same time. Depending on topological

considerations, this orientifold quotient can lead to either a SO(N) or a Sp(N) gauge

group in the dual CFT. We now study this quotient in the BPS sector from the gauge

theory point of view. The distinction between the orthogonal and symplectic quotient

is much less subtle here, we either put the scalar fields X and Y in the adjoint of so(N)

or sp(N).

The majority of this chapter examines the quotient in the half-BPS sector. A

Young diagram basis of the U(N) half-BPS sector was derived in [22], while in [56,57]

equivalents were found for the SO(N) and Sp(N) theories. When we perform the

orientifold quotient on an arbitrary U(N) state, it becomes a linear combination of the

SO(N)/Sp(N) basis. The coefficients in this expansion describe how a giant graviton

in AdS5 × S5 reduces to those in AdS5 × RP5. We investigate these coefficients using

two different approaches.

Firstly, we find that these coefficients have a simple and elegeant expression in terms

of a classic concept in the combinatorics of Young diagrams, called plethysms of Young

diagrams.

Consider a Young diagram t with m boxes and a positive integer k. There is a

representation Vt of U(N) corresponding to t. We take N to be large here, more

precisely N ≥ mk. Now consider the tensor product V ⊗kt . This is a representation

of U(N) under the diagonal action where the group element U ∈ U(N) acts as U ⊗
U ⊗ · · ·U . This diagonal action of U(N) commutes with the Sk permutation group

acting on V ⊗kt by permuting the different factors of the tensor product. So we can
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decompose V ⊗kt according to irreps of U(N) × Sk which correspond to pair (R,Λ)

where R is a Young diagram with km boxes and Λ is a Young diagram with k boxes.

The multiplicity of (R,Λ), denoted P(t,Λ, R) is known as a plethysm coefficient. They

were defined by D. E. Littlewood [87] and remain the subject of important questions

in combinatorics [88]. The sum over Λ of P(t,Λ, R) can be expressed in terms of

Littlewood-Richardson coefficients. For the case where k = 2, the Young diagram

Λ can be either the symmetric with a row of length 2, denoted as Λ = [2], or it

can be anti-symmetric, denoted as Λ = [1, 1] for two rows of length 1. The sum

P(t, [2], R) + P(t, [1, 1], R) is a Littlewood-Richardson coefficient: the number of times

R appears in V ⊗2
t when this is decomposed into irreps of the diagonal U(N). Thus

P(t, [2], R) and P(t, [1, 1], R) are plethystic refinements of the Littlewood-Richardson

coefficients. It turns out that the orientifold projection map can be expressed in terms of

the plethysm coefficients P(t, [2], R) and P(t, [1, 1], R). A combinatorial rule for finding

these coefficients was given in [89], refining the Littlewood-Richardson rule by replacing

the standard Littlewood-Richardson tableaux with Yamanouchi domino tableaux.

The second approach uses another mathematical result described in [89]. Since both

U(N) and SO(N)/Sp(N) Young diagram bases can be described as Schur symmetric

functions, there is an operation on symmetric functions equivalent to the orientifold

quotient, denoted by φ2. [89] gives a formula for φ2 on a U(N) Young diagram R in

terms of the 2-quotient, a pair of Young diagrams (t1, t2) that gives an alternative

parameterisation of R. Interestingly, this gives a Z2 symmetry on the U(N) theory,

interchanging t1 and t2, that does not affect the quotient operator. We conjecture this

is dual to inversion of the S5 and worldsheet orientation.

At the end of the chapter, we use the restricted Schur bases for U(N) [44, 45] and

SO(N)/Sp(N) [59,60] to examine the quotient in the free field quarter-BPS sectors.

This chapter concerns only the mesonic sector of the SO(N) theory, since the U(N)

operators are all multi-traces, and replacing a genericX with an anti-symmetricX takes

multi-traces to multi-traces. The baryonic operators, and associated branes wrapped

on an RP3 within RP5 do not arise from the quotient in this way.

Some of the material in this chapter was originally presented in [1].

6.1 Projection coefficients in the half-BPS sector

Consider the quotient of a half-BPS U(N) single trace operator. We have

TrXk Z2−→

TrXk k even

0 k odd
(6.1.1)
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Note that on the left-hand side, X is an unconstrained complex matrix, while on the

right it is either anti-symmetric or obeys the symplectic condition (4.0.1), depending

on our choice of quotient.

Extending this quotient in the obvious way to multi-traces and linear combinations

thereof, we can examine the behaviour of the Schur operators (2.3.14). Let R ` n (with

n even, otherwise the quotient always vanishes) index a U(N) operator, then

OU(N)
R

Z2−→
∑

T`2n with even
row and column lengths

αTRO
δ/Ω
T (6.1.2)

where the SO(N) and Sp(N) operators are defined in (5.6.12) and (5.6.13). Note

that since the expressions for OδT and OΩ
T in terms of multi-traces are identical, the

projection coefficients αTR are independent of the gauge group. We will use δ/Ω in the

upper label of operators throughout to indicate this property.

If we consider the definition (6.1.2) at large N , then since all coefficients of multi-

traces in OU(N) and Oδ/Ω are independent of N , so are the αTR. At finite N , the

same quotient relation holds, though now some or all of the operators may vanish.

Consistency of the finite N cut-offs on the two bases require that αTR is only non-zero

when l(T ) ≥ l(R).

As an example of the quotient we look at n = 4. Using the definition (2.3.14) the

U(N) operators are

OU(N)
=

1

4
TrX4 +

1

8

(
TrX2

)2
+

1

4

(
TrX2

)
(TrX)2 +

1

3

(
TrX3

)
(TrX) +

1

24
(TrX)4

(6.1.3)

OU(N)
= −1

4
TrX4 −1

8

(
TrX2

)2
+

1

4

(
TrX2

)
(TrX)2 +

1

8
(TrX)4

(6.1.4)

OU(N)
=

1

4

(
TrX2

)2 −1

3

(
TrX3

)
(TrX) +

1

12
(TrX)4

(6.1.5)

OU(N)
=

1

4
TrX4 −1

8

(
TrX2

)2 − 1

4

(
TrX2

)
(TrX)2 +

1

8
(TrX)4

(6.1.6)

OU(N)
= ︸ ︷︷ ︸

Survive the Z2 quotient

− 1

4
TrX4 +

1

8

(
TrX2

)2 ︸ ︷︷ ︸
Annihilated by the Z2 quotient

− 1

4

(
TrX2

)
(TrX)2 +

1

3

(
TrX3

)
(TrX) +

1

24
(TrX)4

(6.1.7)

144



CHAPTER 6. ORIENTIFOLD QUOTIENT FROM U(N) THEORY TO SO(N)
OR SP (N) THEORY

R
T

[6,6] [4,4,2,2] [2,2,2,2,2,2]

[6] 1 0 0

[5,1] -1 0 0

[4,2] 1 1 0

[4,1,1] 0 -1 0

[3,3] -1 -1 0

[3,2,1] 0 0 0

[3,1,1,1] 0 1 0

[2,2,2] 0 1 1

[2,2,1,1] 0 -1 -1

[2,1,1,1,1] 0 0 1

[1,1,1,1,1,1] 0 0 -1

Table 6.1: Projection coefficients αTR at n = 6.

while from (5.6.12) and (5.6.13), the SO(N)/Sp(N) operators

Oδ/Ω =
1

4
TrX4 +

1

8

(
TrX2

)2
(6.1.8)

Oδ/Ω = −1

4
TrX4 +

1

8

(
TrX2

)2
(6.1.9)

So the quotient is

OU(N) Z2−→ Oδ/Ω (6.1.10)

OU(N) Z2−→ −Oδ/Ω (6.1.11)

OU(N) Z2−→ Oδ/Ω +Oδ/Ω (6.1.12)

OU(N) Z2−→ −Oδ/Ω (6.1.13)

OU(N) Z2−→ Oδ/Ω (6.1.14)

More examples of projection coefficients for n = 6 and n = 8 are shown in tables 6.1

and 6.2. These are calculated using the formula (6.1.18) derived presently.

To give an explicit expression for the projection coefficients, we recall that the size

of the conjugacy class in Sn with cycle type p ` n is n!
zp

. Using this we write the U(N)
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R
T

[8,8] [6,6,2,2] [4,4,4,4] [4,4,2,2,2,2] [2,2,2,2,2,2,2,2]

[8] 1 0 0 0 0

[7,1] -1 0 0 0 0

[6,2] 1 1 0 0 0

[6,1,1] 0 -1 0 0 0

[5,3] -1 -1 0 0 0

[5,2,1] 0 0 0 0 0

[5,1,1,1] 0 1 0 0 0

[4,4] 1 1 1 0 0

[4,3,1] 0 0 -1 0 0

[4,2,2] 0 1 1 1 0

[4,2,1,1] 0 -1 0 -1 0

[4,1,1,1,1] 0 0 0 1 0

[3,3,2] 0 -1 0 -1 0

[3,3,1,1] 0 1 1 1 0

[3,2,2,1] 0 0 -1 0 0

[3,2,1,1,1] 0 0 0 0 0

[3,1,1,1,1,1] 0 0 0 -1 0

[2,2,2,2] 0 0 1 1 1

[2,2,2,1,1] 0 0 0 -1 -1

[2,2,1,1,1,1] 0 0 0 1 1

[2,1,1,1,1,1,1] 0 0 0 0 -1

[1,1,1,1,1,1,1,1] 0 0 0 0 1

Table 6.2: Projection coefficients αTR at n = 8.
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operators (2.3.14) in terms of traces

OU(N)
R =

∑
p`n

χR(p)

zp

∏
i

(
TrXi

)pi (6.1.15)

To give this as a sum of SO(N)/Sp(N) Schur operators, invert (5.6.12)/(5.6.13) to give∏
i

(
TrX2i

)qi = 2l(q)
∑
t`n

2

χt(q)Oδ/ΩT (6.1.16)

where q ` n
2 and T is obtained from t by replacing each box of t by the 2 × 2 block

. In the notation of section 5.6.1, t = T
4 , and in the partition notation of section 2.2,

T = 2t ∪ 2t.

It follows that

OU(N)
R

Z2−→
∑
p`n

2

χR(2p)

z2p
2l(p)

∑
t`n

2

χt(p)Oδ/ΩT

=
∑
t`n

2

∑
p`n

2

1

zp
χR(2p)χt(p)

Oδ/ΩT (6.1.17)

where we have used z2p = 2l(p)zp. Therefore

αTR =
∑
p`n

2

1

zp
χR(2p)χt(p) (6.1.18)

Introduce

π =
(

1, 1 +
n

2

)(
2, 2 +

n

2

)
. . .
(n

2
, n
)

(6.1.19)

For a permutation σ ∈ Sn
2
, embedded into Sn by acting on

{
1, 2, . . . , n2

}
, the product

σπ has cycle type 2p. So we have

αTR =
1(
n
2

)
!

∑
σ∈Sn

2

χR (σπ)χt(σ) =
1

dt
χR (Ptπ) (6.1.20)

where Pt, defined in (2.3.13), is the projector onto the t representation of Sn
2
.

Since π switches the sets
{

1, 2, . . . , n2
}

and
{
n
2 + 1, n2 + 2, . . . , n

}
, the conjugate of

Pt by π is the projector P̂t onto the t representation of Sn
2

with a different embedding,

acting on {n2 + 1, n2 + 2, . . . , n} instead of
{

1, 2, . . . , n2
}

. Then

αTR =
1

dt
χR (PtPtπ) =

1

dt
χR

(
PtπP̂t

)
=

1

dt
χR (Pt⊗tπ) (6.1.21)

where Pt⊗t = PtP̂t = P̂tPt is the projector onto the representation t⊗ t of Sn
2
× Sn

2
.
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Decomposing R into representations Sn
2
× Sn

2
, we have

V Sn
R =

⊕
r,s`n

2

V
Sn

2
r ⊗ V

Sn
2

s ⊗ V mult
R;r,s (6.1.22)

where V mult
R;r,s is the multiplicity space of dimension gR;r,s. Consider the action of π

on a vector in the (r, s) subspace. Since π exchanges the two copies of Sn
2
, it is

mapped to a different vector in the (s, r) subspace. This induces a map between the

multiplicity spaces V mult
R;r,s and V mult

R;s,r . For the subspaces with r = s, this is a map from

the multiplicity space to itself. Since π2 = 1, we can split V mult
R;r,r into the +1 and −1

eigenspaces, which we denote by V mult;±
R;r,r .

The projector Pt⊗t in (6.1.21) means only the r = s = t term in the decomposition

contributes. On this term, π splits into

π = πt ⊗ πmult (6.1.23)

where πt acts on t⊗ t by switching the factors, and πmult acts on the multiplicity space.

Only the diagonal terms in t⊗ t contribute to the trace, and therefore

χt⊗t(πt) = dt (6.1.24)

It follows that

αTR =
1

dt
χt⊗t(πt)TrVmultR;t,t

(πmult) = Dim
(
V mult;+
R;t,t

)
−Dim

(
V mult;−
R;t,t

)
(6.1.25)

These dimensions are Sn plethysm coefficients. We now use Schur-Weyl duality, given

in (2.4.3), to give the equivalent expression in terms of U(N) plethysm coefficients that

have been studied in [89]. Since the projection coefficients are N -independent, we work

at large N to avoid issues with finite N cut-offs.

Let V be the fundamental of U(N). Then U(N) and Sn act on V ⊗n, with the

interaction between the two given by Schur-Weyl duality. Explicitly, for σ ∈ Sn and

U ∈ U(N), we have the decomposition

TrV ⊗n (σU) =
∑
R`n

χ
U(N)
R (U)χSnR (σ) (6.1.26)

In direct analogy to the projector (2.3.13) we can define an operator that projects onto

the R irrep of U(N). Since U(N) is a compact Lie group, the sum is replaced by an

integral over the Haar measure (normalised so that the volume of the group is 1).

P
U(N)
R =

∫
dU χU(N)

R

(
U−1

)
U (6.1.27)
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which has representative 1 in the R representation of U(N) and 0 in all others. We can

use this to express αTR as a trace over the whole of V ⊗n

αTR =
1

dt
χSnR (Pt⊗t π)

=
1

d
U(N)
R dt

χ
U(N)
R

(
P
U(N)
R

)
χSnR (Pt⊗t π)

=
1

d
U(N)
R dt

TrV ⊗n
(
P
U(N)
R Pt⊗t π

)
(6.1.28)

Perform a Schur-Weyl decomposition on each factor in V ⊗n = V ⊗
n
2 ⊗ V ⊗

n
2 .

V ⊗n =

⊕
r`n

2

V U(N)
r ⊗ V

Sn
2

r

⊗
⊕
s`n

2

V U(N)
s ⊗ V

Sn
2

s


=
⊕
r,s`n

2

V U(N)
r ⊗ V U(N)

s ⊗ V
Sn

2
r ⊗ V

Sn
2

s (6.1.29)

Examine the action of π on this decomposition, just as we did for (6.1.22). Since π

exchanges the two copies of V ⊗
n
2 , it exchanges the spaces labelled by (r, s) and (s, r)

for r 6= s. On the spaces with r = s, π splits into a tensor product operator

π = πU(N) ⊗ πSn (6.1.30)

where πU(N) exchanges the factors of V
U(N)
r ⊗V U(N)

r and πSn is πr as defined in (6.1.23).

Therefore

αTR =
1

d
U(N)
R dt

TrV ⊗n
(
Pt⊗tP

U(N)
R π

)
=

1

d
U(N)
R dt

Tr
V
U(N)
t ⊗V U(N)

t ⊗V
Sn

2
t ⊗V

Sn
2

t

(
P
U(N)
R π

)
=

1

d
U(N)
R dt

χ
U(N)
t⊗t

(
P
U(N)
R πU(N)

)
χ
Sn

2
t⊗t
(
πSn

)
=

1

d
U(N)
R

χ
U(N)
t⊗t

(
P
U(N)
R πU(N)

)
(6.1.31)

Splitting the U(N) representation t ⊗ t into its symmetric and anti-symmetric parts

S2(t) and Λ2(t), we have

αTR =
1

d
U(N)
R

[
χS2(t)

(
P
U(N)
R

)
− χΛ2(t)

(
P
U(N)
R

)]
(6.1.32)

Each of the two terms is just the multiplicity of the R irrep of U(N) in S2 (t) and Λ2 (t)
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respectively. By definition, these are the U(N) plethsym coefficients P(t, [2], R) and

P(t, [1, 1], R). Keeping track of the π eigenspaces (for example by using 1±π
2 instead

of π) in the above, we see that these plethsym coefficients agree with the Sn plethsym

coefficients of (6.1.25)

P(t, [2], R) := Mult
(
R,S2(t)

)
= Dim

(
V mult;+
R;t,t

)
(6.1.33)

P(t, [1, 1], R) := Mult
(
R,Λ2(t)

)
= Dim

(
V mult;−
R;t,t

)
(6.1.34)

where the partitions [2] and [1, 1] denote the fact that we took the symmetric and

anti-symmetric parts of t⊗ t.
So we have

αTR = P(t, [2], R)− P(t, [1, 1], R) (6.1.35)

The Littlewood-Richardson coefficient is

gR;t,t = P(t, [2], R) + P(t, [1, 1], R) (6.1.36)

so αTR is a refined version of gR;t,t. We see that gR;t,t = 0 is a sufficient condition for

αTR = 0 and the parity of gt,t;R is the same as the parity of αTR.

The plethysm coefficients P(t, [2], R) and P(t, [1, 1], R) were the subject of the pa-

per [89]. They present two combinatorial rules, the first gives the difference P(t, [2], R)−
P(t, [1, 1], R) = αTR directly, while the second gives the two plethysm coefficients indi-

vidually. Both rules involve Yamanouchi domino tableaux, which we now define.

6.2 Domino tableaux and combinatorics of plethysms

A domino tiling of shape R ` n (n even) is a tiling of the shape R with 2× 1 or 1× 2

rectangles, which are called dominoes. A domino tableau is a tiling where each domino

contains a positive integer, such that the numbers increase weakly along the rows and

strictly down the columns. Note that each domino occupies 2 rows and 1 column (or 2

columns and 1 row), and the integers contained within the dominoes must be correctly

ordered in both rows (columns). This is analogous to the semi-standard Young tableau

introduced in section 3.6.2.

Each row in a domino tableau defines a word by reading the numbers in the row

from right to left, where vertical dominoes, which span two row, only contribute to

the upper row. The row reading of the tableau is then defined by concatenating these

words starting with the top row and proceeding downwards.

A lattice word is a word on the alphabet of positive integers such that each prefix

contains at least as many 1s as 2s, at least as many 2s as 3s, and, more generally, at
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Figure 6.1: The possible Yamanouchi domino tableaux of shape [4,4,3,3,1,1]. The
evaluation and row reading of each tableau is given beneath.

least as many is as (i + 1)s for every i. A Yamanouchi domino tableau is a domino

tableau for which the row reading is a lattice word.

In the original paper [89], they use the column reading instead of the row reading,

which must be Yamanouchi words, defined to be the reversal of a lattice word. The

two forms are equivalent. In this work we use lattice words to make clearer the analogy

between Yamanouchi domino tableaux and the Littlewood-Richardson tableaux defined

in appendix D.

For a given Yamanouchi domino tableau, let the number of integers i in the tableau

be given by λi. We define the evaluation of the tableau to be λ = [λ1, λ2, . . .]. Clearly∑
i λi = n

2 , and the lattice word condition on the row reading ensures that λ is a

partition of n
2 , i.e. the λi are weakly decreasing.

As an example of the above definitions, figure 6.1 gives the ten Yamanouchi domino

tableaux of shape [4, 4, 3, 3, 1, 1] along with their row readings and evaluations.

A key property of a domino tiling is the number of horizontal or vertical dominoes.

Take R ` n, with components R1, R2, . . . , Rk. Assume that R admits a domino tiling,

and let r be such a tiling. Then define hi(r) to be the number of horizontal dominoes

in row i of r, vi(r) be the number of vertical dominoes with their uppermost box in row
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i, and h(r) and v(r) be the total number of horizontal and vertical dominoes. Then we

have

R1 = 2h1(r) + v1(r)

R2 = 2h2(r) + v1(r) + v2(r)

R3 = 2h3(r) + v2(r) + v3(r)

...

Rk−1 = 2hk−1(r) + vk−2(r) + vk−1(r)

Rk = 2hk(r) + vk−1(r)

(6.2.1)

Therefore

(−1)R1+R3+... = (−1)2(h1(r)+h3(r)+...)+v1(r)+v2(r)+...+vk−1(r) = (−1)v(r) (6.2.2)

Crucially, if a domino tiling of shape R exists, the parity of v(r) (similarly the parity

of h(r)) depends only on R, and not on how the dominoes are arranged. In light of

this, we define ε2(R), the 2-sign of R, to be (−1)v(r) if R admits a domino tiling, and

0 otherwise.

Under conjugation of R, horizontal dominoes turn into vertical ones and vice versa.

Since h(r) + v(R) = n
2 , it follows that

ε2(Rc) = (−1)
n
2 ε2(R) (6.2.3)

We can now give the first combinatorial rule, proved in [89], for finding αTR. Defining

DR
λ to be the number of Yamanouchi domino tableau of shape R and evaluation λ, we

have

αTR = P(t, [2], R)− P(t, [1, 1], R) = ε2(R)DR
t (6.2.4)

Note this means the sign of the non-zero αTR depends only on R and not T , since

DR
t ≥ 0. This can be seen in tables 6.1 and 6.2, where each row consists only of zeroes

and positive numbers, or zeroes and negative numbers.

For the second rule, consider T ` 2n, constructed from 2×2 blocks. Clearly we can

tile T with dominoes by putting 2 horizontal dominoes in each 2× 2 block. Therefore

in any domino tableau of T , there must be an even number of horizontal (and vertical)

dominoes. We split the domino tableau of shape T into two classes, based on the

number of pairs of horizontal dominoes. If a tableau has an even number of pairs, we

say it has spin 1, while if it has an odd number of pairs it has spin −1. For T of this

type, we define DT
+,R and DT

−,R to be the number of Yamanouchi domino tableaux of

evaluation R and positive and negative spin respectively. The second combinatorial
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rule, which gives the two plethysm coefficients individually, is

P (t, [2], R) = DT
+,R P (t, [1, 1], R) = DT

−,R (6.2.5)

This leads to a second expression for (6.1.35)

αTR = DT
+,R −DT

−,R (6.2.6)

In tables 6.1 and 6.2 we gave some low n (n = 6, 8) examples of αTR, calculated using

(6.1.18). In addition, the n = 4 coefficients can be read off from (6.1.10-6.1.14). These

tables have been checked against both combinatorial rules (6.2.4) and (6.2.5). In all

cases the results match.

From (6.1.36), the total number of domino tableau of any spin is the Littlewood-

Richardson coefficient

gR;t,t = DT
+,R +DT

−,R = DT
R (6.2.7)

So αTR may be viewed as a refinement of the Littlewood-Richardson coefficient gR;t,t.

The two combinatoric methods of finding αTR are independent of each other. For

example if we take R = [3, 2, 1], then there are no domino tableau of shape R, so

(6.2.4) gives 0 trivially. However if we look at Yamanouchi domino tableau of shape

T = [4, 4, 2, 2] (corresponding to t = [2, 1]) and evaluation R, we find two such tableaux,

one contributing to each of the two plehtysm coefficients. These two tableaux are

3

2

1 1
1

2

2 3

1 1
1

2
(6.2.8)

The first tableau has spin +1 while the second has spin −1. Using (6.2.5), P(t, [2], R) =

P(t, [1, 1], R) = 1, and therefore αTR = 0.

The two tableaux in (6.2.8) can also be interpreted with the roles of T and R

switched. If we take R = [4, 2, 2] and t = [3, 2, 1] then these tableaux contribute to DR
t ,

and by (6.2.4) we find αTR = 2. This is the lowest n example of a projection coefficient

taking a value with modulus greater than 1.

6.3 Brane interpretation of domino algorithm

We can also formulate a detailed brane interpretation of the domino algorithm. For a

single column Young diagram R, a domino tiling exists only if the length of the column is

even. Single giant gravitons with L units of angular momentum can be usefully thought

of as composites of L quanta. Pairs of quanta are invariant under the orientifold action,
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consistent with the fact that only single column Young diagrams of even length survive

the projection. The projection of these single column Young diagrams R are single

column Young diagrams t, which should therefore also be interpreted as single giants in

the orientifold theory. Similarly the quanta of angular momentum forming a single long

row (AdS giant) are paired by the domino algorithm into Z2 invariant pairs, resulting

in a single giant in the quotient.

Now consider a 2-row Young diagrams R = [r1, r2], in the regime where r1, r2

are comparable to N and their difference is also comparable to N , e.g. [r1, r2] =

[2N,N ]. Consider a domino tiling with a number s1 < r2 of vertical dominoes, with

the remaining boxes [r1 − s1, r2 − s1] occupied by horizontal dominoes.

s1 r2 − s1 r1 − r2

1 1 . . . 1
1

2

. . .

. . .
1

2

1 . . . 1 (6.3.1)

This has evaluation t =
[
r1+s1

2 , r2−s12

]
. The vertical dominoes stretch across boxes in

the first and second row, which can be viewed as quanta constituting the two branes

described by R. The horizontal dominoes are constituents of the same brane. A hori-

zontal domino in the first or second row of R contributes a box to the first or second

row of t. The vertical dominoes, even though they span row one and two of R, con-

tribute to the first row of t only. The domino combinatorics thus encodes, in a precise

way, a recombination of angular momentum quanta between the two branes of angu-

lar momenta r1, r2 described by R, which accompanies the orientifold procedure. For

multi-row Young diagrams, the domino algorithm pairs quanta of angular momentum

in adjacent rows, equivalently adjacent giant gravitons in the LLM plane. An analo-

gous discussion holds for multi-column states, where horizontally tiled dominoes pair

quanta from distinct giants and vertically tiled dominoes pair quanta within a giant

worldvolume.

It would be interesting to deduce connections between the brane interpretation of

the orientifold projection coefficients discussed heuristically above, from more general

frameworks for brane dynamics in the presence of orientifolds, as developed for example

in [90,91]. In the AdS/CFT context, a useful discussion of orientifolds is in [58].

6.4 The quotient operator as a product

Beyond the combinatorial rules (6.2.4) and (6.2.5), the paper [89] gives an expression for

the quotient of a U(N) operator OU(N)
R as a product of two SO(N)/Sp(N) operators.

Expressed in the language of symmetric functions, they define a map φ2 which takes
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a Schur function sR in the N variables x1, x2, . . . , xN and returns a symmetric function

φ2(sR) in the N
2 variables y1, y2, . . . , yN

2
. This is defined by

φ2(sR)
(
y1, y2, . . . , yN

2

)
= sR

(
y1,−y1, y2,−y2, . . . , yN

2
,−yN

2

)
(6.4.1)

The authors then explain that

φ2(sR) = ε2(R)st1

(
y2

1, y
2
2, . . . , y

2
N
2

)
st2

(
y2

1, y
2
2, . . . , y

2
N
2

)
(6.4.2)

where the ordered pair of Young diagrams (t1, t2) are the 2-quotient of R, which will

be described shortly.

The Z2 quotient from the U(N) theory replaces the generic matrix X with an anti-

symmetric or symplectic matrix. In terms of the N eigenvalues of X, for SO(N) (N

even) the quotient acts as

x1 → ix1 , x2 → −ix1 , . . . , xN−1 → ixN
2
, xN → −ixN

2
(6.4.3)

while for N odd, we have

x1 → ix1 , x2 → −ix1 , . . . , xN−2 → ixN−1
2
, xN−1 → −ixN−1

2
, xN → 0 (6.4.4)

and for Sp(N)

x1 → x1 , x2 → −x1 , . . . , xN−1 → xN
2
, xN → −xN

2
(6.4.5)

Since the U(N) Schur operators are Schur symmetric functions in the N eigenvalues

of X, this means the SO(N) quotient can be evaluated by setting yi = ixi in (6.4.1),

while the Sp(N) quotient sets yi = xi. Using the formulae (5.6.18) and (5.6.20) for

SO(N) and Sp(N) Schur operators in terms of Schur symmetric functions, we see that

OU(N)
R

Z2−→ ε2(R)Oδ/ΩT1
Oδ/ΩT2

(6.4.6)

where Ti = 2ti ∪ 2ti. Intuitively, Ti is obtained from ti by replacing each box of ti with

the 2× 2 block .

In the dual string theory, this suggests that the orientifold quotient of a giant gravi-

ton state in AdS5 × S5 can be expressed as a composite system of two SO(N)/Sp(N)

giant graviton states.

The product of two Schur symmetric functions is expressed in terms of Littlewood-

Richardson coefficients (D.1.4). Therefore

OU(N)
R

Z2−→ ε2(R)Oδ/ΩT1
Oδ/ΩT2
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= ε2(R)st1st2

= ε2(R)
∑
t`n

2

l(t)≤N
2

gt;t1,t2st

= ε2(R)
∑
t`n

2

l(t)≤N
2

gt;t1,t2O
δ/Ω
T (6.4.7)

and consequently

αTR = ε2(R)gt;t1,t2 (6.4.8)

We now explain how the 2-quotient Young diagrams (t1, t2) are derived from a partition

R ` n.

6.4.1 2-core and 2-quotient of a partition

Take a partition R ` n. For the definitions of this section, we do not require n to be

even. The 2-core and 2-quotient of R are discussed in [64, Chapter I].

Consider removing dominoes from R until you obtain either the empty diagram, or

a ‘staircase’ diagram of the form ∆k = [k, k − 1, . . . , 2, 1], from which no domino can

be removed. Then the 2-core of R is the resulting ∆k. This is independent of the order

in which dominoes are removed from R.

A simple way to determine the 2-core is to colour the boxes of R. A box is white

if the content, defined in (2.3.19), is even, and black if the content is odd. This forms

a chessboard pattern on the boxes of R, with a white square in the top left. Let

nw(R) be the number of white boxes in R and nb(R) the number of black boxes. Then

nw − nb is unchanged by adding a domino to the diagram. The staircase diagram ∆k

has nw − nb = k+1
2 if k is odd and nw − nb = −k

2 if k is even. Inverting these gives k

in terms of nw − nb, and therefore nw − nb determines the 2-core.

If the 2-core of R is ∆k for k > 0, then R does not admit a domino tableau.

Therefore the projection coefficients αTR will vanish unless R has 2-core ∆0, the empty

Young diagram.

Split the rows of R into two types, even and odd, depending on whether the last

box of the row has even or odd contents. Similarly, a column of R is even/odd if the

last box in the column has even/odd contents. Then t1 is defined to be the diagram

composed of the boxes in the intersection between the even rows and the odd columns.

Similarly t2 is the intersection of the odd rows with the even columns.
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As an example of this process, take R = [5, 5, 4, 2]. This can be tiled by dominoes

(6.4.9)

and therefore the 2-core of R is empty.

The 1st and 4th rows of R are even, while the 1st, 4th and 5th columns are odd.

Correspondingly, the 2nd and 3rd rows are odd and the 2nd and 3rd columns are even.

Colouring the intersection of even rows and odd columns green, and the intersection of

odd rows and even columns red, we have

R = (6.4.10)

so the 2-quotient (t1, t2) of R is

t1 = = [3, 1] t2 = = [2, 2] (6.4.11)

The algorithm above constructs the 2-core and 2-quotient for any partition R. Con-

versely, given a choice of ∆k and a pair of partitions (t1, t2), there is a unique R `
|∆k|+ 2(|t1|+ |t2|) with the 2-core ∆k and 2-quotient (t1, t2). We now give a construc-

tion of R with empty 2-core and 2-quotient (t1, t2), which we denote by R(t1, t2).

To describe R(t1, t2) we introduce the Frobenius notation for a partition, as de-

scribed in [64]. The depth of a partition p is the largest r such that there is a box in

the (r, r)th position. So for example the depth of any hook diagram [k, 1l] is 1, while

the depth of [2, 2] and [3, 2, 1] is 2.

For a partition p = [λ1, λ2, . . . , λk] of depth r, define αi = λi− i for 1 ≤ i ≤ r. This

is the number of boxes to the right of (i, i) in the ith row of p. Given the conjugate of

p is pc = [µ1, µ2, . . . , µl], define βi = µi − i. This is the number of boxes below (i, i) in

the ith column of p. We have α1 > α2 > · · · > αr ≥ 0 and β1 > β2 > · · · > βr ≥ 0, and

we denote p by

p = (α1, α2, . . . , αr|β1, β2, . . . , βr) (6.4.12)

Intuitively, the pair αi, βi specify the hook of the box (i, i), and we can construct the
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entire partition from this information. Visually

p =

.. .

· · ·

...

β1 β2
βr

α1

α2

αr
(6.4.13)

The size of p is

|p| = r +
r∑
i=1

(αi + βi) (6.4.14)

It is clear that conjugating p swaps the αi and βi.

We now move on to the construction of R(t1, t2). In Frobenius notation, let

t1 = (α1, α2, . . . , αr|β1, β2, . . . , βr) (6.4.15)

t2 = (γ1, γ2, . . . , γs|δ1, δ2, . . . , δs) (6.4.16)

Then consider the sets

A = {2α1, 2α2, . . . , 2αr, 2γ1 + 1, 2γ2 + 1, . . . 2γs + 1} (6.4.17)

B = {2β1 + 1, 2β2 + 1, . . . , 2βr + 1, 2δ1, 2δ2, . . . , 2δs} (6.4.18)

The even members of A are just double the αi, and it follows that they are all distinct.

Similarly the odd members of A are all different, and therefore all members of A are

distinct. Let ai be the ith largest member of A for 1 ≤ i ≤ r + s. Similarly, let bi be

the ith largest member of B. Then R(t1, t2) is given in Frobenius notation by

R(t1, t2) = (a1, a2, . . . , ar+s|b1, b2, . . . , br+s) (6.4.19)

The length of R(t1, t2) is

l
(
R(t1, t2)

)
= b1 + 1 = max(2β1 + 2, 2δ1 + 1) = max(2l(t1), 2l(t2)− 1) (6.4.20)

Therefore the finite N cut-off on R(t1, t2) is equivalent to

l(t1), l(t2) ≤ N

2
(6.4.21)
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As a special example of the 2-quotient, consider t1 = t2 = r. In this case R = R(r, r)

has even length rows and columns, and is built of 2×2 blocks . As discussed earlier,

this allows the definition of R
4 by replacing each 2 × 2 block with a single box. Then

R
4 = r. This gives an alternative expression for the relation between T and t = T

4 for

the SO(N)/Sp(N) theories:

T = R(t, t) (6.4.22)

From the definition (6.4.19), under conjugation of R, we have

R(t1, t2)c = R(tc2, t
c
1) (6.4.23)

From this relation we can derive the conjugation behaviour of the projection coefficients.

Using the expression (6.4.8) for αTR, the behaviour (6.2.3) of ε2(R) under conjugation,

and properties of Littlewood-Richardson coefficients, it follows that

αT
c

Rc = ε2

(
Rc
)
gtc;tc2,tc1 = (−1)

n
2 ε2(R)gt;t1,t2 = (−1)

n
2 αTR (6.4.24)

6.5 Simple families of projection coefficients

We can use the 2-core and 2-quotient to better understand the physics of the orientifold

quotient. There are three families of R which have particularly nice properties.

Firstly, we have R with

OU(N)
R

Z2−→ 0 (6.5.1)

These are exactly the R with non-empty 2-core. As a special case, this includes all

diagrams with R ` n and n odd. More generally, these R are ‘staircases + dominoes’,

i.e. they are constructed by taking a ∆k with k > 0 and adding dominoes on to the

diagram. One can check in examples (6.1.10-6.1.14) and tables 6.1 and 6.2 that all

coefficients αTR with R of this form vanish.

The other two families of R have quotient

OU(N)
R

Z2−→ ε2(R)Oδ/ΩT (6.5.2)

for a unique Young diagram T . This can occur in two distinct ways.

Firstly, consider R = R(t, φ) or R = R(φ, t), where φ is the empty partition. Then

it follows from (6.4.6) that the orientifold quotient projects OU(N)
R project to a single

SO(N)/Sp(N) operator. Let t = (α1, α2, . . . , αr|β1, β2, . . . , βr) in Frobenius notation.

Then (6.4.19) reduces to

R(t, φ) = (2α1, 2α2, . . . , 2αr|2β1 + 1, 2β2 + 1, . . . , 2βr + 1) (6.5.3)

R(φ, t) = (2α1 + 1, 2α2 + 1, . . . , 2αr + 1|2β1, 2β2, . . . , 2βr) (6.5.4)

159



CHAPTER 6. ORIENTIFOLD QUOTIENT FROM U(N) THEORY TO SO(N)
OR SP (N) THEORY

For this t and these R, we have αTR = ε2(R). To determine the sign, we need to

construct a domino tableau of shape R. From the domino rule (6.2.4), there is a unique

Yamanouchi domino tableau of shape R and evaluation t. We now describe this tableau,

both to determine ε2(R) and to give an example of the domino rule at work.

Before doing the general case, consider an example with t = (4, 2, 0|3, 2, 1) =

[5, 4, 3, 3]. ThenR(t, φ) = (8, 4, 0|7, 5, 3) = [9, 6, 3, 3, 3, 3, 2, 1] andR(φ, t) = (9, 5, 1|6, 4, 2) =

[10, 7, 4, 3, 3, 2, 1], shown below. The Yamanouchi domino tableaux that contribute to

αTR(t,φ) and αTR(φ,t) respectively are

4

3

2

1

4

3

2

4

3

2 2

1 1 1 1

4

3

2

4

3

4

3

2 2 2

1 1 1 1 1

(6.5.5)

Counting the number of vertical dominoes, we conclude the 2-sign of R(t, φ) is −1,

while the 2-sign of R(φ, t) is +1.

In more generality, the Yamanouchi domino tableau of shape R(t, φ) contains αi

horizontal dominoes in the ith row, each containing an i and βi + 1 vertical dominoes

in the ith column, numbered i, i + 1, . . . , i + βi. The Yamanouchi domino tableau of

shape R(φ, t) contains αi + 1 horizontal dominoes in the ith row each containing an i

and βi vertical dominoes in the ith column, numbered i+ 1, i+ 2, . . . , i+ βi.

From these descriptions, it follows that

ε2

(
R(t, φ)

)
= (−1)r+

∑r
i=1 βi = (−1)

∑r
i=1 αi ε2

(
R(φ, t)

)
= (−1)

∑r
i=1 βi

(6.5.6)

where we have used r +
∑

i(αi + βi) = n.

The second way to obtain the quotient (6.5.2) is when the finite N cut-off on Young

diagrams reduces the sum in (6.4.7) to a single Young diagram. From the LR rule

described in appendix D.2, this happens when t1 =
[
k
N
2

]
for some k > 0 and t2

is arbitrary, or vice versa. The corresponding t is obtained by placing k columns of

length N
2 in front of the unrestricted ti. Formally, this is t = t1 + t2.

To find the associated R(t1, t2), one can use the definition (6.4.19), where the Frobe-

nius notation for k columns of length N
2 is[

k
N
2

]
= (k − 1, k − 2, . . . , 0|N − 1, N − 2, . . . , N − k) (6.5.7)
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6.6 The orientifold Z2 action in the U(N) gauge theory

In this section we propose a candidate ρ for the Z2 orientifold action in the U(N) gauge

theory. That is, the gauge theory equivalent of the map x→ −x for x ∈ S5 along with

worldsheet reversal.

There is a natural candidate for ρ, namely the map induced by X → −XT . How-

ever, on a single matrix multi-trace operator of degree n, this would act merely as

multiplication by (−1)n. It was pointed out in [55] that the AdS5 × RP5 theory is

composed only of states from the AdS5 × S5 theory that are invariant under the Z2

orientifold action. Therefore this naive map would correctly predict that all operators

with n odd would disappear in the SO(N) theory, however it would also imply that

the U(N) and SO(N) theories should have the same half-BPS sector for n even, which

is incorrect.

Certainly a property ρ should posses is that an operator OU(N)
R and its image

ρ
(
OU(N)
R

)
have the same orientifold quotient. The formula (6.4.8) then suggests an

alternative candidate, since the Schur operators with Young diagrams R(t1, t2) and

R(t2, t1) have the same quotient, up to a sign. We therefore conjecture that inter-

changing the 2-quotient of a U(N) Young diagram should be interpreted in the dual

AdS description as the geometric Z2 action of inverting the S5 and reversing worldsheet

orientation.

This action can be defined not just on operators of the form R(t1, t2), but also on

those with non-empty 2-core. Let R(∆; t1, t2) be the Young diagram with 2-core ∆ and

2-quotient (t1, t2). Then write

ρ [R(∆; t1, t2)] = R(∆; t2, t1) (6.6.1)

On U(N) operators, the Z2 action is

ρ
(
OU(N)
R

)
= ±OU(N)

ρ(R) (6.6.2)

where for R with empty 2-core, the sign is ε2(R)ε2(ρ(R)), while for R with non-empty 2-

core, it is non-obvious which choice of sign we should take, and we leave it undetermined

except for the consistency condition ρ2 = 1.

We check that ρ makes sense as the geometric action x→ −x along with worldsheet

inversion in two examples. One we expect to be invariant under the Z2 from geometric

considerations in the dual AdS, and another we expect to be invariant from the gauge

theory.

Firstly, take R = [1N ], a single column of length N . This is dual to a single maximal

giant graviton wrapped around an S3 equator of the S5. Under the action x→ −x, we

expect this state to be invariant.
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The 2-quotient (t1, t2) depends on whether N is even or odd. If N is even, then R

has empty 2-core, and the 2-quotient is
([

1
N
2

]
, φ
)

, whereas if N is odd, R has 2-core

[1] and the 2-quotient is
(
φ,
[
1
N−1

2

])
. Interchanging the 2-quotient, we have

[
1N
]
−→


[
2, 1N−2

]
N even[

3, 2, 1N−5
]

N odd
(6.6.3)

Visually, if N even

...
−→ ...

(6.6.4)

and if N odd

...
−→

...
(6.6.5)

So this state is not invariant under the 2-quotient interchange action. However, it does

maintain its qualitative interpretation. For large N , the image Young diagram still

has a single large column of length . N , interpreted as a single giant graviton. The

extra boxes in latter columns are treated as small perturbations that do not change the

qualitative behaviour.

It is worth noting that the maximal giant, wrapping an S3 equator of S5, is a clas-

sical state, and invariance under the geometric Z2 action does not necessarily transfer

to the full quantum theory. The quantisation of sphere giants has been investigated

in [27], and it would be interesting to see whether this approach can determine how

this geometric Z2 behaves on the quantised Hilbert space.

For the second example, note that among those R with empty 2-core, the R with

even length columns and rows are invariant under interchange of the 2-quotient. This

was discussed above (6.4.22). In particular, one could consider R = [2k] for even k of

order N . This corresponds to two sphere giants. The AdS dual state consists of two

D3-branes wrapped on 3-sphere of the same size within the S5. The two branes can be
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placed on anti-podal 3-spheres within S5, related by the map x→ −x, thereby forming

a classical state invariant under the geometric Z2.

In this argument we made a choice about where to place the branes in order to

find a classically invariant state. Of course other classical states are possible where the

branes are not anti-podal, and are therefore not invariant. In general, the branes wrap

3-spheres that rotate within the S5, forming a S1 × S3 worldvolume. Under a time-

averaging procedure, the branes are spread out evenly along the S1, and therefore the

choice of position for the branes becomes irrelevant. We expect that the quantisation

process will include such a step implicitly. As with the first example, it would be

interesting to investigate whether this behaviour emerges from the quantisation process

in [27].

It was observed below (6.2.7) that the projection coefficient αTR can be viewed as

a refinement of the Littlewood-Richardson coefficient gR;t,t. Interestingly, the same

coefficient also appears as the extremal correlator
〈
OU(N)
t OU(N)

t

∣∣∣OU(N)
R

〉
in the U(N)

theory [22]. Given the correspondence between Young diagrams and branes, this ex-

tremal correlator is naturally interpreted as the amplitude for the overlap between the

composite system consisting of the pair of branes (t, t) and the brane R. The effect

of the orientifold operation is to change the amplitude of interaction t ⊗ t → R by

introducing the sign in the projection coefficient (6.2.6).

An interesting direction of research is to investigate the action of ρ on the product

OtOt and in particular whether there is a relation to the sign change between (6.2.7)

and (6.2.6). This may shed light on the orientifold quotient in the dual string theory, or

even on the presence of Littlewood-Richardson coefficients in three point functions of

giant gravitons. While there have been various tests on the agreement of brane physics

in AdS5 × S5 with the correlator formula in terms of LR coefficients [23–26, 92], a

general understanding, directly from the spacetime perspective, of why the interaction

of branes is given by the Littlewood-Richardson coeffients is not currently available.

6.7 SO(N)/Sp(N) giant gravitons

Half-BPS operators labelled by Young diagrams R with a single column of length com-

parable to N are dual to single giant gravitons which are S3 expanding in S5. A single

row with length of orderN is dual to a single giant graviton wrapping an S3 inside AdS5.

Multiple column or multiple row Young diagrams where the number of columns/rows is

of order 1 and column/row lengths are comparable to N , are dual to multi-giants with

the S3 expanding in the appropriate factor. It is instructive to consider the domino

algorithm for αTR in these regimes and develop a heuristic interpretation in terms of

branes and orientifolds.

A natural first postulate is that the analogous picture for the connection between
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branes and rows or columns of the Young diagram works for t in the SO(N)/Sp(N)

theory. A single column t, with length comparable to N , is a single giant graviton with

a large S3 world-volume in the directions inside RP5 of AdS5 × RP5. Multiple long

columns correspond to multi-giants of this type. A single long row with length of order

N corresponds to a single giant, with large spatial world-volume in AdS5. Multiple

long rows correspond to multiple giants of this type. Note that among the giants which

are large in the RP5 we also have those with worldvolume RP 3 [58] corresponding to

baryonic operators involving the ε-invariant. Since our focus here is on the projection

to mesonic operators, these will not be part of the discussion that follows here.

It was demonstrated in [55] that the AdS5×RP5 theory is composed only of states

from the AdS5×S5 theory that are invariant under the Z2 orientifold action. Therefore

to understand the brane interpretation of SO(N)/Sp(N) operators, we can look at

states in the U(N) theory invariant under this Z2. The gauge theory version of this

action was discussed in the previous section.

Take a Young diagram t = [k1, k2, . . . , kr] with r = O(1) and ki = O(N) for each i.

Then a U(N) operator, invariant under the Z2 action, that projects to Oδ/ΩT is

1

2

(
OR(t,φ) + (−1)rOR(φ,t)

)
(6.7.1)

The Frobenius notation for t is t = (k1−1, k2−2, . . . , kr−r|r−1, r−2, . . . , 0), so using

(6.5.4), the U(N) Young diagrams are

R(t, φ) = [2k1 − 1, 2k2 − 2, . . . , 2kr − r, r, r − 1, . . . , 1] (6.7.2)

R(φ, t) = [2k1, 2k2 − 2, . . . , 2kr − r + 1, r − 1, r − 2, . . . , 1] (6.7.3)

These consist of of r long rows of length O(N) with a staircase diagram of size r(r±1)
2

attached beneath. Since r = O(1), both diagrams correspond to small perturbations of

r giant gravitons extended in AdS5. Therefore t can naturally be interpreted as r AdS

giants in the AdS5 × RP5 theory.

The conjugation property (6.4.24) of the projection coefficients mean t with r long

columns also receives a similar interpretations to the U(N) theory, as r giant gravitons

wrapped around an S3 within the RP5 factor.

6.8 Inverse projection coefficients and U(N) correlators of

SO(N)/Sp(N) operators

The U(N) half-BPS sector is spanned by multi-traces of the form∏
i

(
TrXi

)pi (6.8.1)
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where p ` n. The SO(N)/Sp(N) half-BPS sectors are spanned by multi-traces of the

form ∏
i

(
TrX2i

)qi (6.8.2)

where q ` n
2 . Therefore one can consider the half-BPS sectors of the SO(N)/Sp(N)

theories as a subspace of the equivalent in the U(N) theory.

This leads to the question, what does the U(N) inner product look like on this

subspace? The SO(N)/Sp(N) theories have their own inner product, but this is a

different pairing with a different structure. In this thesis, we have made extensive use

of permutations as a way to describe bases of gauge-invariant operators in theories

with different gauge groups. They give us a uniform way of talking about operators in

different gauge theories, namely about how the indices of matrices X,Y are contracted

without being specific about whether these are generic matrices in the Lie algebra u(N),

anti-symmetric matrices in so(N), or matrices in sp(N). These different theories, via

AdS/CFT duality, correspond to different string theory backgrounds. In this sense,

permutations are background independent structures, while the pairings we put on

them are theory-dependent. Here we will see that exploring the U(N) inner product

which survive the projection to SO(N) has interesting relations to an appropriately

defined inverse of the plethysm coefficients αTR.

Consider the SO(N)/Sp(N) operators (5.6.12), but whereX is an arbitrary complex

matrix rather than anti-symmetric. We can express this as a sum of U(N) operators

Oδ/ΩT

∣∣∣
X∈u(N)

=
∑
R`n

βRTO
U(N)
R (6.8.3)

Then taking the Z2 orientifold quotient of this expression, the left hand side returns to

the standard SO(N)/Sp(N) Schur operator, while we can evaluate the right hand side

using the coefficients αTR. We have

Oδ/ΩT =
∑
R`n

∑
T ′

βRT α
T ′
R O

δ/Ω
T ′ (6.8.4)

Since this holds for all T , we have ∑
R`n

βRT α
T ′
R = δT

′
T (6.8.5)

so we call βRT inverse projection coefficients. They are not true inverses to αTR, since R

has more degrees of freedom than T , and summing over T will not lead to δRR′ .

To find βRT , we use the orthogonality relation (2.3.9) to invert the definition (2.3.14)
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and give traces in terms of U(N) Schur operators∏
i

(
TrXi

)pi =
∑
R`n

χR(p)OU(N)
R (6.8.6)

Substituting into the definition (5.6.12) for SO(N)/Sp(N) Schur operators, we have

Oδ/ΩT

∣∣∣
X∈u(N)

=
∑
p`n

2

1

z2p
χt(p)

∑
R`n

χR(2p)OU(N)
R (6.8.7)

and therefore

βRT =
∑
p`n

2

1

z2p
χR(2p)χt(p) =

∑
p`n

2

1

2l(p)zp
χR(2p)χt(p) (6.8.8)

Note the similarities between this and the expression (6.1.18) for αTR. There is an extra

factor of 2−l(p) inside the sum, and in general βRT are non-integer. We have not been

able to find a combinatoric interpretation of βRT .

Using the formula (2.6.11) for the U(N) correlators, we have〈
Oδ/ΩT

∣∣∣
X∈u(N)

∣∣∣∣ Oδ/ΩT ′

∣∣∣
X∈u(N)

〉
=
∑
R`n

βRT β
R
T ′fR (6.8.9)

So the SO(N)/Sp(N) Schur operators are not orthogonal under the U(N) inner prod-

uct, even at large N .

6.9 The orientifold quotient in the free field quarter-BPS

sector

Consider a 2-matrix U(N) multi-trace TrW k, where W (X,Y ) is a matrix Lyndon word

on the letters X and Y . After replacing X and Y with so(N) or sp(N) matrices, this

trace may vanish or not depending on the relation (4.1.3). In section 4.1 we investigated

this formula in detail and gave a description of the non-vanishing traces in terms of

orthogonal Lyndon words. These are not simple objects to work with, and so rather

than working with multi-traces as we did in the half-BPS sector, we instead work with

permutations which allow a simpler description of the quotient.

The key results that enabled the evaluation of the projection coefficients in the

half-BPS sector were the expressions for U(N), SO(N) and Sp(N) Schur operators

in terms of Schur symmetric functions. The quarter-BPS sector does not have the

same structure, and finding formulae for the coefficients is therefore more difficult. The

domino combinatorics of section 6.2 allows us to give sufficient conditions for when the

coefficients vanish, but we are not able to evaluate the non-zero coefficients.
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In section 3.6 we gave two different orthogonal bases that generalise the Schur basis

to the free field quarter-BPS sector, the restricted Schur basis and the covariant basis.

In this section we study the quotient of the restricted Schur basis in detail, and briefly

mention how one might approach the covariant basis.

In the restricted Schur basis, the SO(N) and Sp(N) mesonic operators do not have

the same expression in terms of multi-traces, and therefore the exchange between the

two theories is slightly more complex. Define the projection coefficients

OU(N)
R,R1,R2,µ,ν

Z2−→


∑

T,T1,T2,λ
aT,T1,T2,λ
R,R1,R2,µ,ν

OδT,T1,T2,λ
in the SO(N) theory∑

T,T1,T2,λ
bT,T1,T2,λ
R,R1,R2,µ,ν

OΩ
T,T1,T2,λ

in the Sp(N) theory
(6.9.1)

Under anti-symmetrisation of traces and conjugation of the labels T, T1, T2, the SO(N)

and Sp(N) transform into each other (5.6.73). For the U(N) operators, we have the

conjugation relation

OU(N)
Rc,Rc1,R

c
2,µ,ν

= Anti-Sym
(
OU(N)
R,R1,R2,µ,ν

)
(6.9.2)

Therefore

aT,T1,T2,λ
Rc,Rc1,R

c
2,µ,ν

= b
T c,T c1 ,T

c
2 ,λ

R,R1,R2,µ,ν
(6.9.3)

So the projection coefficients of the SO(N) theory determine the projection coefficients

of the Sp(N) theory. For the rest of this chapter we work with SO(N) for simplicity.

All results can be transferred across using (6.9.3).

Some of the free field operators considered in this section recombine into long mul-

tiplets when we turn on interactions. Therefore we cannot give an interpretation of

these projection coefficients in terms of giant gravitons, which are dual to strong cou-

pling quarter-BPS operators. In chapter 7, we give an approach to constructing weak

coupling operators. It is believed that there is no further change in the quarter-BPS

spectrum occurs as we travel from weak to strong coupling, and therefore it is these

operators that should be used to study the orientifold physics of quarter-BPS giant

gravitons. The work in this section is a first step along this path.

6.9.1 Quotient on SO(N) restricted Schurs

It follows from (5.3.16) that for σ ∈ Sn

Tr
(
σX⊗n1Y ⊗n2

) Z2−→ C
(δ)
I

(
σ(odd)

)I
J

(
X⊗n1Y ⊗n2

)J
(6.9.4)

where σ(odd) is the permutation σ ∈ Sn when Sn is embedded in S2n by acting on only

the odd numbers. This embedding is called S
(odd)
n .
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From the definition (3.6.1) for a U(N) restricted Schur operator

OU(N)
R,R1,R2,µ,ν

Z2−→

√
dR

dR1dR2n!n1!n2!

∑
σ∈Sn

χR,R1,R2,µ,ν(σ)C
(δ)
I

(
σ(odd)

)I
J

(
X⊗n1Y ⊗n2

)J
(6.9.5)

Inverting the definition (5.6.70) to give a SO(N) multi-trace in terms of SO(N) re-

stricted Schurs, for any τ ∈ S2n

C
(δ)
I τ IJ

(
X⊗n1Y ⊗n2

)J
=

2n
√
n!n1!n2!

∑
T,T1,T2,λ

√
dT

(2n)!
〈T, [S]|DT (τ) |T1, T2, [A], λ〉OδT,T1,T2,λ

(6.9.6)

Therefore

OU(N)
R,R1,R2,µ,ν

Z2−→ 2n

√
dR

dR1dR2

∑
T,T1,T2,λ

√
dT

(2n)!∑
σ∈Sn

χR,R1,R2,µ,ν(σ) 〈T, [S]|DT (σ(odd)) |T1, T2, [A], λ〉OδT,T1,T2,λ

(6.9.7)

and the projection coefficient is

aT,T1,T2,λ
R,R1,R2,µ,ν

= 2n

√
dRdT

dR1dR2(2n)!

∑
σ∈Sn

χR,R1,R2,µ,ν(σ) 〈T, [S]|DT
(
σ(odd)

)
|T1, T2, [A], λ〉

(6.9.8)

To investigate the properties of the projection coefficient, consider the intertwiner

PRR1,R2;µ→ν used in the definition (3.6.2) of the restricted character. This can be

constructed explicitly as sum of permutations using the algebra ARR1,R2
discussed in

appendix D.3. In particular, it is only non-zero in the representation R of Sn, and the

representation R1 ⊗R2 when restricted to a representation of Sn1 × Sn2 .

From the definition of PRR1,R2;µ→ν as the operator taking the µth copy of R1 ⊗ R2

inside R to the νth copy, the transpose of the matrix representative of PRR1,R2;µ→ν
switches the role of µ and ν

[
DR

(
PRR1,R2;µ→ν

)]T
= DR

(
PRR1,R2;ν→µ

)
(6.9.9)

From the orthogonality of representations of Sn, this corresponds to inverting each

permutation in the sum, referred to as linear inversion (5.5.3).
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It follow from standard properties of characters that∑
σ∈Sn

χR,R1,R2,µ,ν(σ)DT
(
σ(odd)

)
=
∑
σ∈Sn

χR
(
PRR1,R2;µ→νσ

)
DT

(
σ(odd)

)
=
∑
σ∈Sn

χR (σ)DT
(
P
R;(odd)
R1,R2;ν→µσ

(odd)
)

=
n!

dR
DT

(
P
R;(odd)
R1,R2;ν→µP

(odd)
R

)
=

n!

dR
DT

(
P
R;(odd)
R1,R2;ν→µ

)
(6.9.10)

So the projection coefficients are given by

aT,T1,T2,λ
R,R1,R2,µ,ν

= 2nn!

√
dT

dRdR1dR2(2n)!
〈T, [S]|DT

(
P
R;(odd)
R1,R2;ν→µ

)
|T1, T2, [A], λ〉 (6.9.11)

In analogy to S
(odd)
n , there is another embedding S

(even)
n of Sn into S2n that acts only

on the even numbers. Given σ ∈ Sn, the product σ(diag) = σ(odd)σ(even) is in the wreath

product group Sn[S2]. As |T, [S]〉 is invariant under Sn[S2], we have

〈T, [S]|DT
(
σ(odd)

)
|T1, T2, [A], λ〉 = 〈T, [S]|DT

[(
σ(diag)

)−1
σ(odd)

]
|T1, T2, [A], λ〉

= 〈T, [S]|DT

[(
σ(even)

)−1
]
|T1, T2, [A], λ〉 (6.9.12)

From (6.9.9) and the discussion below it, we have

〈T, [S]|DT
(
P
R;(odd)
R1,R2;ν→µ

)
|T1, T2, [A], λ〉 =

〈T, [S]|DT
(
P
R;(even)
R1,R2;µ→ν

)
|T1, T2, [A], λ〉 (6.9.13)

There is another method to switch between the embeddings S
(even)
n and S

(odd)
n using

the permutation

π = (1, 2)(3, 4) . . . (2n− 1, 2n) (6.9.14)

For any σ ∈ Sn, we have

πσ(odd)π = σ(even) (6.9.15)

We observe that π is in both Sn[S2] and Sn1 [S2]×Sn2 [S2] with sign (−1)n, and therefore

〈T, [S]|DT
(
σ(odd)

)
|T1, T2, [A], λ〉 = (−1)n 〈T, [S]|DT

(
πσ(odd)π

)
|T1, T2, [A], λ〉

= (−1)n 〈T, [S]|DT
[
σ(even)

]
|T1, T2, [A], λ〉 (6.9.16)
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On the projectors, we have

〈T, [S]|DT
(
P
R;(odd)
R1,R2;ν→µ

)
|T1, T2, [A], λ〉 =

(−1)n 〈T, [S]|DT
(
P
R;(even)
R1,R2;ν→µ

)
|T1, T2, [A], λ〉 (6.9.17)

Comparing with (6.9.13), the projection coefficients are symmetric or anti-symmetric

in the U(N) multiplicity indices µ, ν depending on the parity of n

aT,T1,T2,λ
R,R1,R2,µ,ν

= (−1)naT,T1,T2,λ
R,R1,R2,ν,µ

(6.9.18)

We now investigate the structure of the projection coefficient in terms of Littlewood-

Richardson multiplicity spaces, and prove that it can be expressed as a simple inner

product on one of these spaces.

Perform a Littlewood-Richardson decomposition of the T representation of S2n into

representations of S
(odd)
n × S(even)

n

V S2n
T =

⊕
S,S′`n

V S
(odd)
n

S ⊗ V S
(even)
n

S′ ⊗ V mult
T ;S,S′ (6.9.19)

where V mult
T ;S,S′ is the multiplicity space of dimension gT ;S,S′ . The intertwiner ensures

that only the S = R representation of S
(odd)
n contributes to the projection coefficient.

Consider the embedding of Sn into S2n defined by

σ → σ(odd)σ(even) (6.9.20)

We call this embedding S
(diag)
n as it is the diagonal subgroup of S

(odd)
n ×S(even)

n . A rep-

resentation S⊗S′ of S
(odd)
n ×S(even)

n is a Clebsch-Gordon tensor product representation

of S
(diag)
n . In particular, it contains the trivial representation of S

(diag)
n if and only if

S = S′. As |T, [S]〉 is invariant under permutations of the form σ(odd)σ(even), it lies in

the trivial representation of S
(diag)
n , and therefore only the term with S = S′ = R in

(6.9.19) contribute to the projection coefficient.

Let |i〉R be a basis for the R representation of Sn. Then the unit Sn invariant vector

in R⊗R is

|triv〉RR =

dR∑
i=1

1√
dR
|i〉R ⊗ |i〉R (6.9.21)

and we can write |T, [S]〉

|T, [S]〉 =
∑
R`n
|triv〉RR ⊗ |+〉

T
RR (6.9.22)

where |+〉TRR is a vector in V mult;+
T ;R,R , the +1 eigenspace of V mult

T ;R,R under π introduced
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below (6.1.22).

So provided T contains a symmetric copy of R⊗R, we have

aT,T1,T2,λ
R,R1,R2,µ,ν

= 2nn!

√
dT

dRdR1dR2(2n)!(
〈triv|RR ⊗ 〈+|

T
RR

) [
DR;(odd)

(
PRR1,R2;ν→µ

)
⊗DR;(even) (1)⊗ ITRR

]
|T1, T2, [A], λ〉

(6.9.23)

where ITRR is the identity operator on the multiplicity space V mult
T ;R,R.

Now decompose the first (odd) copy of R further into representations S1 ⊗ S2 of

S
(odd)
n1 × S(odd)

n2 , and the second (even) copy into representations S′1 ⊗ S′2 of S
(even)
n1 ×

S
(even)
n2 . As before, the intertwiner ensures that only S1 = R1 and S2 = R2 contribute,

while |T1, T2, [A], λ〉 enforces S′1 = S1 and S′2 = S2.

Each element of (6.9.23) has a corresponding decomposition. For |T1, T2, [A], λ〉,
this is

|T1, T2, [A], λ〉 = |T1, [A]〉 ⊗ |T2, [A]〉 ⊗ |λ〉TT1T2

=
∑
S1`n1
S2`n2

|triv〉S1S1
⊗ |−〉T1

S1S1
⊗ |triv〉S2S2

⊗ |−〉T2
S2S2
⊗ |λ〉TT1T2

(6.9.24)

where |λ〉TT1T2
is a basis vector for V mult

T ;T1,T2
and |−〉TiSiSi is a vector in V

mult;(−1)ni

Ti;Si,Si
.

The vector |triv〉RR decomposes as

|triv〉RR =
1√
dR

dR∑
i=1

|i〉R ⊗ |i〉R

=
1√
dR

∑
S1`n1
S2`n2

dS1∑
j=1

dS2∑
k=1

gR;S1,S2∑
ρ=1

(
|j〉S1

⊗ |k〉S2
⊗ |ρ〉RS1S2

)
⊗
(
|j〉S1

⊗ |k〉S2
⊗ |ρ〉RS1S2

)

=
1√
dR

∑
S1`n1
S2`n2

√
dS1dS2 |triv〉S1S1

⊗ |triv〉S2S2
⊗ |triv〉RRS1S1S2S2

(6.9.25)

where |triv〉RRS1S1S2S2
is in the tensor product multiplicity space V mult

R;S1,S2
⊗ V mult

R;S1,S2
and

is given by

|triv〉RRS1S1S2S2
=

gR;S1,S2∑
ρ=1

|ρ〉RS1S2
⊗ |ρ〉RS1S2

(6.9.26)

Finally, the intertwiner is

DR
(
PRR1,R2;µ→ν

)
= DR1⊗R2(1)⊗ |ν〉RR1R2

〈µ|R;
R1R2

(6.9.27)
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where |µ〉RR1R2
is a basis vector for V mult

R;R1,R2
.

Before plugging these into the projection coefficient, note that

〈triv|RRR1R1R2R2

[
DR;(odd)

(
PRR1,R2;ν→µ

)
⊗ IR;(even)

R1R2

]
=

gR;R1,R2∑
ρ=1

〈ρ|R;(odd)
R1R2

⊗ 〈ρ|R;(even)
R1R2

[(|µ〉R;(odd)
R1R2

〈ν|R;(odd)
R1R2

)
⊗ IR;(even)

R1R2

]

=

gR;R1,R2∑
ρ=1

δρµ 〈ν|R;(odd)
R1R2

⊗ 〈ρ|R;(even)
R1R2

= 〈ν|R;(odd)
R1R2

⊗ 〈µ|R;(even)
R1R2

(6.9.28)

Putting these together, the expression (6.9.23) for the projection coefficients simplifies

to

aT,T1,T2,λ
R,R1,R2,µ,ν

=
2nn!

dR

√
dT

(2n)!

(
〈triv|R1R1

⊗ 〈triv|R2R2
⊗ 〈triv|RRR1R1R2R2

⊗ 〈+|TRR
)

[
DR1⊗R1⊗R2⊗R2(1)⊗

(
|µ〉R;(odd)

R1R2
〈ν|R;(odd)

R1R2

)
⊗ IR;(even)

R1R2
⊗ ITRR

]
(
|triv〉R1R1

⊗ |−〉T1
R1R1

⊗ |triv〉R2R2
⊗ |−〉T2

R2R2
⊗ |λ〉TT1T2

)
=

2nn!

dR

√
dT

(2n)!
〈triv|R1R1

|triv〉R1R1
〈triv|R2R2

|triv〉R2R2(
〈+|TRR ⊗ 〈ν|

R;(odd)
R1R2

⊗ 〈µ|R;(even)
R1R2

)(
|−〉T1

R1R1
⊗ |−〉T2

R2R2
⊗ |λ〉TT1T2

)
=

2nn!

dR

√
dT

(2n)!

(
〈+|TRR ⊗ 〈ν|

R;(odd)
R1R2

⊗ 〈µ|R;(even)
R1R2

)(
|−〉T1

R1R1
⊗ |−〉T2

R2R2
⊗ |λ〉TT1T2

)
(6.9.29)

This is an inner product in the vector space V mult
T ;R1,R1,R2,R2

, the multiplicity space for the

decomposition of T as a representation of S2n into R1⊗R1⊗R2⊗R2 as a representation

of Sn1 ⊗ Sn1 ⊗ Sn2 ⊗ Sn2 . The left hand side decomposes via the representation R⊗R
of Sn ⊗ Sn, while the right hand side decomposes via the representation T1 ⊗ T2 of

S2n1 × S2n2 . The difficulty in evaluating the projection coefficients is understanding

how these two decompositions interact.

The combinatoric discussion of domino tableaux in section 6.2 does play a role, as it

determines the dimensions of the various multiplicity spaces. Let R̂ = R(R,R) be the

Young diagram with empty 2-core and 2-quotient (R,R), so that R = R̂
4 , and similarly
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for R̂1 and R̂2. Then

Dim
(
V mult;+
T ;R,R

)
= DR̂

+,T (6.9.30)

Dim
(
V
mult;(−1)ni

Ti;Ri,Ri

)
= DR̂i

(−1)ni ,Ti
(6.9.31)

Since |+〉TRR, |−〉TiRiRi belong to these spaces, if DR̂
+,T or DR̂i

(−1)ni ,Ti
is zero then the

corresponding projection coefficient vanishes.

6.9.2 Covariant projection coefficients

In sections 3.6.2 and 5.7 we defined U(2) covariant bases for the U(N) and SO(N)/Sp(N)

quarter-BPS sectors. One could consider the effect of the orientifold quotient in terms

of these bases. This would most naturally be done using a covariant bases for U(N)

and SO(N)/Sp(N) multi-traces and a covariant version of characters, equivalent to the

restricted character used in restricted Schur operators.

Steps towards a covariant trace basis for the U(N) theory, labelled by an integer

partition which determines the single trace structure, are taken in section 7.3.2. We

have not investigated such bases for the SO(N) or Sp(N) theories, and leave this as

an interesting problem for the future.
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Chapter 7

Quarter-BPS operators in the

U(N) theory at weak coupling

The construction of quarter BPS operators from the gauge theory side has been devel-

oped in [49, 93–95]. At zero field theory coupling, the quarter BPS states are general

holomorphic operators built from two complex matrices X and Y . A subspace of these

operators is annihilated by the one-loop dilatation operator and forms the weak cou-

pling quarter BPS space. An important outcome of these papers is that the weak

coupling quarter BPS operators form the orthogonal subspace, in the free field inner

product, of the operators which contain commutators [X,Y ] within a trace. This a

well-defined characterisation of the quarter-BPS operators at finite N .

In the free field U(2) covariant constructions of quarter BPS operators [43, 46]

having a total of n copies of X and Y , the labels consist of a Young diagram R with n

boxes and columns no longer than N , a Young diagram Λ with n boxes and columns

no longer than 2, along with a label τ which runs over the multiplicity of trivial Sn

irreps in R⊗R⊗ Λ. The Young diagram label Λ is also a representation of the global

symmetry U(2). The construction of weak-coupling quarter-BPS operators based on

this new understanding of the finite N inner product was further developed in [51,96].

The finite N construction of quarter BPS operators was given in terms of a projector

PN in C(Sn), which projects to the intersection of two subspaces of C(Sn) [51]. One

subspace is associated with the symmetrised traces at large N , another with the finite

N cut-off on the free field basis.

There has not been so far, a general construction of quarter-BPS operators at weak

coupling and finite N , which includes a U(2) Young diagram label alongside a U(N)

Young diagram label. In this chapter, we will address this open problem and give a basis

of operators which are quarter-BPS at weak coupling, orthogonal with respect to the

free field inner product, and labelled by a U(2) Young diagram, a U(N) Young diagram,

alongside an associated multiplicity label depending on these two Young diagrams. The
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virtue of having a U(N) Young diagram is that the disappearance of states upon a

reduction of N to N − 1 can be directly expressed in terms of this Young diagram -

the disappearing states as N is reduced to N − 1 are precisely the ones corresponding

to Young diagrams with exactly N rows. We may therefore describe our basis as an

SEP-compatible (SEP = stringy exclusion principle) basis which is also U(2) covariant.

The key ingredient which allows us to find a manifestly SEP-compatible U(2) co-

variant construction of quarter BPS states is the mathematics of multi-symmetric func-

tions [97–99]. When gauge invariant functions of two matrices X,Y are evaluated on

diagonal matrices X = Diag(x1, x2, · · · , xN ) and Y = Diag(y1, y2, · · · , yN ), we get

polynomials which are invariant under the σ ∈ SN acting simultaneously as

xi → xσ(i)

yi → yσ(i)

(7.0.1)

These polynomials are called multi-symmetric functions. More generally, we can have

variables xai with a ∈ {1, 2, · · · ,M} and i ∈ {1, 2, · · · , N}. Polynomials invariant under

simultaneous SN permutations of all the M vectors are more general multi-symmetric

functions. There is a rich mathematics associated with changing between different

bases of multi-symmetric functions for any M which is relevant in this chapter and is

controlled by an underlying structure of set partitions.

The chapter is organised as follows. Section 7.1 is an introduction to the necessary

background and key mathematical tools we will use to derive a basis for weak coupling

quarter BPS operators. In section 7.2 we use the combinatorics of set partitions to

derive results on the transformation between two bases for multi-symmetric functions.

The first is the trace basis. Elements of this basis set are obtained by specifying a trace

structure for matrices X,Y , or more generally X1, · · · , XM and specialising to diagonal

matrices. Another basis is the multi-symmetric monomial basis, which allows a simple

description of finite N cut-offs. In section 7.3, we start from the observation that every

vector partition p defines an associated partition p, which is invariant under the action

of the U(2) transformations which interchange X,Y . We use results on plethysms of

SU(2) representations to obtain detailed expressions for refined multiplicities depend-

ing on a pair of Young diagram Λ, p, where Λ is a U(2) Young diagram and p is a Young

diagram constrained to have no more than N rows, which we refer to as a U(N) Young

diagram. In section 7.4 we describe an algorithm for producing a basis of operators la-

belled by the pair of Young diagrams (Λ, p) alongside the appropriate multiplicity label.

The basis is orthogonal under the free field inner product. In section 7.5 we elucidate

the vector space geometry within C(Sn), involving the interplay between a projector

for the U(2) flavour symmetry, a projector for the symmetrisation of traces P and an

operator FN whose kernel implements finite N constraints. This discussion allows us
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to show that the counting and two-point correlators of quarter-BPS operators at weak

coupling can be expressed in terms of observables in two-dimensional topological field

theory based on permutation group algebras with appropriate defects.

This chapter consists of work originally presented in [2]

7.1 Background on construction of quarter BPS operators

When we turn the coupling on inN = 4 SYM, some of the short quarter-BPS multiplets

at zero coupling recombine and form long non-BPS multiplets. We give two equivalent

ways of characterising which 2-matrix multi-trace operators remain quarter-BPS, and

which do not.

Firstly, non-BPS multi-traces of X,Y are SUSY descendants. It was explained

in [49] that these are exactly commutator traces. That is, they are multi-traces (or

linear combinations thereof) where at least one of the constituent single traces contains

a commutator [X,Y ].

Secondly, consider the one-loop dilatation operator [50,100]

H2 = −Tr

(
[X,Y ]

[
∂

∂X
,
∂

∂Y

])
(7.1.1)

Quarter-BPS operators are annihilated by H2, and as H2 is hermitian in the free field

inner product, they are orthogonal to the image. It is clear from the definition (7.1.1)

that states in the image are commutator traces. While it is not immediately obvious

that all commutator traces live in the image, our numerical calculations indicate that

they are, and consistency with [49] implies they should be.

The dilatation operator (7.1.1) is Hermitian in the free field inner product (3.6.25),

therefore the multi-traces that remain quarter-BPS as we move to weak coupling are

those that are orthogonal to the commutator traces. This inner product is difficult to

evaluate on multi-trace operators, so [51] took a different approach, instead using the

Sn inner product (3.6.26) and relating this to the physical inner product using operators

FN and GN .

Comparing the two inner products (3.6.25) and (3.6.26), the only difference is a

factor of ΩN , defined in (2.3.17) (in this chapter, we add an N subscript to emphasise

the dependence on N). FN implements multiplication by ΩN on multi-trace operators

FNOa,σ = Oa,ΩNσ (7.1.2)

where the covariant multi-trace operator Oa,σ was defined in (3.6.19). Comparing the

definitions (3.6.25) and (3.6.26), it follows that for any quarter-BPS operators O1,O2

〈O1|O2〉 = 〈O1|FNO2〉Sn = 〈FNO1|O2〉Sn (7.1.3)
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Since the physical inner product includes a FN factor, we will also call it the F-weighted

inner product, and will sometimes use a F subscript to emphasise the difference between

it and the Sn inner product.

In general ΩN is not invertible in the full algebra C(Sn), however it does have an

inverse in those representations with l(R) ≤ N . Define

Ω−1
N =

∑
R`n

l(R)≤N

1

fR
PR (7.1.4)

where the projector PR was defined in (2.3.13) and fR is given in (2.3.20). This is

inverse to ΩN in all representations R with l(R) ≤ N . If N ≥ n, it is inverse to ΩN in

the full group algebra C(Sn).

Define GN to implement multiplication by Ω−1
N on multi-trace operators

GNOa,σ = Oa,Ω−1
N σ (7.1.5)

Then since only Young diagrams with l(R) ≤ N contribute to operator construction,

FN and GN are inverse to each other on the free field quarter-BPS operators. Therefore

for two operators O1,O2, we have

〈O1|O2〉Sn = 〈O1|GNO2〉F = 〈GNO1|O2〉F (7.1.6)

The U(2) generators (3.6.10) act only on the label a in Oa,σ, while FN and GN act

only on σ, and therefore the two commute. This means the same hermiticity condi-

tions (3.6.13) apply for the Sn inner product as for the physical inner product, and

consequently operators with different U(2) quantum numbers are orthogonal in both

inner products.

The action of FN and GN is particularly simple on the covariant basis for free field

operators (3.6.20)

FNOΛ,MΛ,R,τ = fROΛ,MΛ,R,τ (7.1.7)

GNOΛ,MΛ,R,τ =

 1
fR
OΛ,MΛ,R,τ l(R) ≤ N

0 l(R) > N
(7.1.8)

The relations (7.1.3) and (7.1.6) between the Sn and physical inner products can be

used to construct BPS operators. Let Oc be a commutator trace, and Os be a pre-BPS

operator, defined to be orthogonal to commutator traces under the Sn inner product.

Then

〈Oc|GNOs〉 = 〈Oc|Os〉Sn = 0 (7.1.9)
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So the operator GNOs is a quarter-BPS operator at weak coupling.

The natural next step is to determine the form of the operators Os. It was demon-

strated in [51] that for N ≥ n these are symmetrised traces. For a single trace, the

symmetrised version is

Tr(Xa1Xa2 . . . Xan)→ 1

n!

∑
σ∈Sn

Tr(Xaσ(1)
Xaσ(2)

. . . Xaσ(n)
) =: Str(Xa1Xa2 . . . Xan)

(7.1.10)

where ai ∈ {1, 2} for each i and X1 = X, X2 = Y . For a multi-trace, this process is

applied to each of the constituent single traces. A symmetrised trace is determined by

the field content of each single trace factor. For a particular total field content (n1, n2),

the possible symmetrised traces are labelled by vector partitions p. A vector partition

is a set of integer 2-vectors which sum to (n1, n2), which we denote by p ` (n1, n2).

For a vector partition p = [(k1, l1), . . . (km, lm)] the associated symmetrised trace is

Tp = Str
(
Xk1Y l1

)
Str
(
Xk2Y l2

)
. . . Str

(
XkmY lm

)
(7.1.11)

We conclude a generic quarter-BPS operator for N ≥ n can simply be written as

OBPS = GNTp (7.1.12)

At finite N , non-trivial relations among different multi-traces reduce the dimensionality

of the quarter-BPS sector, and correspondingly the pre-BPS operators as well. A finite

N relation among traces could have three distinct behaviours with respect to the large

N space of symmetrised traces

1. It is internal to the space of symmetrised traces. In this case, under an appropriate

choice of basis, a symmetrised trace reduces to the zero operator. Correspond-

ingly, the dimension of the pre-BPS and BPS sectors reduce by 1.

2. It is internal to the space of commutator traces. This does not affect the pre-BPS

or BPS sectors.

3. It is a linear combination of symmetrised traces and commutator traces. In this

case, under an appropriate choice of basis, a symmetrised trace reduces to a

commutator trace. This means it is no longer pre-BPS, as it is not Sn orthogonal

to descendants. Correspondingly, the dimension of the pre-BPS and BPS sectors

reduce by 1.

Therefore, SEP-compatibility in the pre-BPS sector has a different interpretation to

the BPS equivalent. A basis for pre-BPS operators is SEP-compatible if operators

with labels longer than N reduce to either the zero operator or a commutator trace
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after applying finite N relations. After applying GN to such a basis, we obtain an

SEP-compatible basis for the quarter-BPS sector.

7.1.1 Steps in the construction of an SEP-compatible orthogonal BPS

basis

The key ingredient that will allow the construction of an SEP-compatible basis for

pre-BPS operators is an isomorphism proved by Vaccarino [97] and Domokos [98],

summarised nicely by Procesi in [99].

From the definition (7.1.10), the non-commuting matrices X and Y commute within

a symmetrised trace, and therefore we naively expect that that symmetrised traces of

non-commuting matrices correspond to ordinary multi-traces of commuting matrices

via

Str(Xk1Y l1) . . . Str(XkmY lm)←→ Tr
(
Ak1Bl1

)
. . .Tr

(
AkmBlm

)
(7.1.13)

where A and B are two commuting N×N matrices. The isomorphism of [97–99] makes

this expectation rigorous.

Consider the ring R(X,Y ) generated by the matrix elements of two N×N matrices

X,Y . This ring is acted on by U(N) via simultaneous conjugation of the two matrices.

Given a U ∈ U(N), we have

(X,Y )→ (UXU†,UY U†) (7.1.14)

Then invariants of R(X,Y ) under this action are multi-traces of X and Y , and cor-

respond to the quarter-BPS sector at zero coupling. At weak coupling, we consider

R(X,Y ) modulo the ideal I generated by the commutator [X,Y ]. We call the quotient

ring Rs(X,Y ). Each U(N) invariant of the quotient ring corresponds to an equiva-

lence class of multi-trace operators related by addition of a commutator trace. In each

class there is a unique pre-BPS representative that is orthogonal to all commutator

traces (under the Sn inner product). There is also a unique BPS operator orthogonal

to commutator traces under the FN inner product. Conversely, given a pre-BPS or

BPS operator, there is a unique equivalence class to which it belongs. Therefore the

invariants of Rs(X,Y ) give the combinatorics of the pre-BPS and BPS sectors, both at

large N and finite N .

Finding the pre-BPS operator in a given equivalence class is simple when N ≥ n; as

discussed above (7.1.10), the representative is a symmetrised trace. When N < n, the

multi-trace expansion of an operator is non-unique, and it is more difficult to identify

the pre-BPS operator. In section 7.4, we describe how to find the pre-BPS operator by

orthogonalisation.
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On the other side of the isomorphism are multi-symmetric functions. Take two

commuting N × N matrices A = Diag(x1, x2, · · · , xN ) and B = Diag(y1, y2, · · · , yN ).

Then a multi-trace of A and B will be a polynomial in the 2N variables invariant under

permutations

(xi, yi)→
(
xσ(i), yσ(i)

)
(7.1.15)

for σ ∈ SN . These are called multi-symmetric functions, and generalise the symmetric

functions of section 2.7 to two families of variables. They are discussed in detail in

section 7.2.

The theorem in [97–99] tells us that the ring of invariants of Rs(X,Y ) is isomorphic

to the ring of multi-symmetric functions in 2N variables.

This isomorphism is simple to give explicitly. Take a multi-trace of X and Y and

restrict the two matrices to be diagonal. This is now a multi-symmetric function in

the 2N eigenvalues. Clearly the commutator [X,Y ] vanishes for the diagonal X and

Y , and therefore any multi-traces related by a commutator trace lead to the same

multi-symmetric function.

Conversely, given a multi-trace of two commuting matrices A and B, we use the

map (7.1.13) to pick a representative of the isomorphic equivalence class. At large N ,

this correctly identifies the pre-BPS operator. However, for N < n, this map does not

associate a unique symmetrised trace with a given multi-symmetric function. Finite N

relations mean a multi-symmetric function can be written in multiple ways as the trace

of commuting matrices. These different expressions give genuinely different operators

in the gauge theory, related by commutator traces. For the multi-symmetric functions

we use, we will give a defining representation as a multi-trace of commuting matrices,

and then (7.1.13) defines the equivalent symmetrised trace operator in an unambiguous

way.

We will generally use the same notation for either side of the isomorphism. For

example we will use X and Y to refer to both the commuting matrices on the right of

(7.1.13) and the non-commuting matrices of the super Yang-Mills theory on the left.

Similarly, both a symmetrised trace and its isomorphic multi-symmetric function will

be denoted Tp. When the distinction is important, we will be clear which is under

discussion.

For symmetric functions, we introduced two SEP-compatible bases, the monomial

basis of section 2.7.1 and the Schur basis of section 2.7.3. There is no obvious analogue

of the Schur basis for multi-symmetric functions, however the monomial basis does

generalise, and provides a good finite N description for multi-symmetric functions. We

denote these monomials by Mp, where the label is a vector partition p, as already seen

for symmetrised traces in (7.1.11). The length of p determines the finite N behaviour.

In section 7.2 we study the basis change between Tp and Mp, both as multi-symmetric
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functions and their isomorphic image as symmetrised trace operators.

Under the map (7.1.13), the Mp give a basis for pre-BPS operators for N ≥ n.

When N < n, the operators with l(p) > N reduce to commutator traces. As discussed

previously, this is a feature of an SEP-compatible basis of pre-BPS operators. How-

ever, the operators with l(p) ≤ N are not Sn orthogonal to all commutator traces,

and therefore are not pre-BPS. This is because the map (7.1.13) did not choose the

correct pre-BPS operator from the equivalence class of operators related by addition

of a commutator trace. We say Mp is SEP-compatible modulo commutators for the

pre-BPS sector, and this is a key stepping stone to an SEP-compatible basis.

In section 7.3 we organise the Mp according to representations of the U(2) sym-

metry, replacing the label p with (Λ,MΛ, p, ν). Λ is a U(2) Young diagram with n

boxes, where n is the total number of X,Y matrices in the operator. MΛ labels a basis

state in the Λ representation of U(2). p is an integer partition of n whose compo-

nents are related to the vector partition p simply by summing each of the two-vector

components of p. We call p the associated partition of p. Since l(p) = l(p), the SEP-

compatibility (modulo commutators) of Mp is transferred to the covariant basis. This

restricts l(p) ≤ N , which is the usual constraint associated with a U(N) Young dia-

gram, and we will therefore refer to p as a U(N) Young diagram label. The final label

ν runs over a multiplicity space of dimension MΛ,p. Much of section 7.3 is devoted to

calculating and understanding MΛ,p as it describes the finite N combinatorics of the

weak coupling quarter-BPS sector.

Section 7.4 takes the covariant monomials MΛ,MΛ,p,ν and uses orthogonalisation

algorithms to produce an SEP-compatible basis of pre-BPS operators. There are three

separate steps in producing an orthogonal SEP-compatible basis of BPS operators.

1. For l(p) ≤ N < n, the covariant monomial MΛ,MΛ,p,ν differs from a pre-BPS

operator by a commutator trace. Orthogonalising MΛ,MΛ,p,ν against MΛ,MΛ,q,η

with l(q) > N using the Sn inner product identifies pre-BPS operators denoted

M̄Λ,MΛ,q,η. If N ≥ n, this step is trivial.

2. Applying the operator GN to the pre-BPS operators produces BPS operators. We

orthogonalize these BPS operators using the physical FN inner product.

3. We normalize these orthogonal operators using the Sn inner product. This ensures

that the basis is SEP-compatible: if we apply the construction using GN and

matrices of size N , and subsequently substitute in our expressions matrices of

size N̂ while making substitutions N → N̂ , then all operators with l(p) > N̂

vanish and the non-zero operators with l(p) ≤ N̂ are those produced by applying

the 3-step construction directly at N̂ .

The first step is explained in detail in section 7.5 in a more general context where the
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SEP-compatible U(2) covariant BPS at N < n Orthogonal

TBPSp × × × ×

MBPS
p modulo commutators × × ×

MBPS
Λ,MΛ,p,ν

modulo commutators X × ×

M̄BPS
Λ,MΛ,p,ν

modulo commutators X X ×

SBPSΛ,MΛ,p,ν
X X X X

Table 7.1: Properties of the different BPS bases constructed. All are BPS at N ≥ n.

2-matrix problem is generalized to allow any number of matrices. Section 7.4 puts

together all the steps and proves that the outcome SBPSΛ,MΛ,p,ν
indeed form an orthogonal

SEP-compatible basis for BPS operators.

The orthogonalisation and GN application processes involved in the construction

are linear, so there is some flexibility in the order of the application of the different

steps. Figure 7.1 shows the algorithm we have implemented in SAGE to obtain the

basis SBPSΛ,MΛ,p,ν
starting from symmetrised traces Tp. The red arrows indicate the route

taken here, while the other arrows indicate different routes where GN is applied at a

different stage.

The operators TBPSp , MBPS
p and MBPS

Λ,MΛ,p,ν
, obtained by applying GN (and normal-

ising) to Tp, Mp or MΛ,MΛ,p,ν respectively, are BPS bases at N ≥ n, but in general

for N < n are no longer BPS, although the latter two do capture some of the finite N

behaviour. Table 7.1 shows the properties of the different BPS bases.

In the case where Λ is taken to be [n], the SBPSΛ,MΛ,p,ν
are half-BPS operators built

purely from X. In section 7.4.9 we show that the construction for Young diagram p

reproduces the Schur operator (2.3.14) labelled by Young diagram R = p. Further,

for Λ = [n − 1, 1], numerical calculations suggest that SBPSΛ,MΛ,p,ν
match the free field

quarter-BPS operators (3.6.20) with R = p. This justifies the view that p is a U(2)

invariant, quarter-BPS generalization of the R-label of the half-BPS sector.

An important perspective on the half-BPS R label comes from the analysis of

the asymptotics of LLM geometries. Specifically U(N) Casimirs of R are measur-

able from the asymptotics of the supergravity fields [101]. We propose that that the

U(2) quadratic Casimir for Λ as well as the sequence of Casimirs identifying p should be

measurable from the multipole moments that can be read off from the long-distance ex-

pansions of the sugra fields of LLM geometries corresponding to quarter-BPS operators

at n ∼ N2. Precision holography of LLM geometries is also developed using correlators

of small operators in the LLM background [38] which should provide complementary

insights into the labels Λ, p.
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Symmetrised traces
Tq

Monomials
Mp

Covariant monomials
MΛ,MΛ,p,ν

Orthogonalised
covariant monomials

M̄Λ,MΛ,p,ν

G-orthogonal SEP-compatible
pre-BPS operators

SΛ,MΛ,p,ν

BPS symmetrised traces
TBPSq

BPS monomials
MBPS

p

BPS covariant monomials
MBPS

Λ,MΛ,p,ν

Orthogonalised BPS
covariant monomials

M̄BPS
Λ,MΛ,p,ν

Orthogonal SEP-compatible
BPS operators
SBPSΛ,MΛ,p,ν

Multiply by
matrix C̃q

p .

Sort into U(2)
representations.

Sn orthogonalise.

G orthogonalise.

Multiply by
matrix C̃q

p .

Sort into U(2)
representations.

FF orthogonalise.

F orthogonalise.

Apply GN
and normalise.

Apply GN
and normalise.

Apply GN
and normalise.

Apply GN
and normalise.

Apply GN
and normalise.

Figure 7.1: An outline of the algorithm starting with symmetrised trace operators
Tp and deriving a U(2) covariant, orthogonal, SEP-compatible basis SBPSΛ,MΛ,p,ν

for BPS
operators. The route taken here is down the left side and across the bottom, shown in
red. The first step is studied in detail in section 7.2, the second step in section 7.3 and
the last three steps in section 7.4.

183



CHAPTER 7. QUARTER-BPS OPERATORS IN THE U(N) THEORY AT WEAK
COUPLING

The R Young diagram label of the half BPS sector is related to the free fermions

underlying the holomorphic sector of the complex matrix model which describes half-

BPS combinatorics [22, 36, 102]. Remarkably, this free fermion description also shows

up in the droplet description of half-BPS LLM geometries [37]. The droplet description

generalizes to the quarter-BPS LLM geometries, with some significant differences [41,

103,104] . We have colourings of regions in a four-dimensional space instead of a two-

dimensional plane. The two colours are now associated with the collapse of an S1 ⊂ S5

or an S3 ⊂ S5. A natural conjecture is that the p-label of quarter-BPS operators is

analogously associated to colourings of regions in R4 as the R-label of the half-BPS

operators is associated to colourings of the plane.

7.2 Finite N combinatorics from many-boson states: multi-

symmetric functions and set partitions

As explained in section 7.1, the key result that will enable us to give an SEP-compatible

construction of quarter-BPS operators is an isomorphism of Vaccarino and Domokos

[97,98] between multi-symmetric functions and the ring of gauge invariants of two ma-

trices modulo commutator traces. This section focuses on the multi-symmetric function

side of this isomorphism.

An important aspect of multi-symmetric functions, which plays a central role in find-

ing BPS operators, is the transformation between two bases for these multi-symmetric

functions. The first basis will be referred to as the “monomial multi-symmetric ba-

sis” and the second as the “multi-trace basis”. The physical importance of these two

bases, and their transformations, can be understood using perspectives from many-

body quantum mechanics [105]. This draws on an important insight from the Ad-

S/CFT correspondence: the strong coupling limit of the quarter BPS sector in N = 4

SYM corresponds to a Hilbert space of N bosons in a two-dimensional harmonic oscil-

lator [27,40,106].

We begin this section by developing the link between multi-symmetric functions and

the Hilbert space of N identical bosons in a two-dimensional harmonic oscillator. We

then introduce the monomial and multi-trace bases and investigate the combinatorics of

the matrix that transforms between the two. This leads to the interesting mathematics

of the poset of set partitions and the associated Möbius function.
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7.2.1 Multi-symmetric functions as wavefunctions of a harmonic os-

cillator

The Lagrangian for one particle in a two-dimensional harmonic oscillator is

L =
1

2

(
ẋ2 + ẏ2

)
− 1

2

(
x2 + y2

)
(7.2.1)

In terms of creation and annihilation operators, the one-particle Hamiltonian is

H = a†xax + a†yay (7.2.2)

Define the coherent state

〈x, y| = 〈0|exax+yay (7.2.3)

We have

〈x, y|(a†x)λ(a†y)
µ|0〉 = xλyµ (7.2.4)

In this coherent state representation, the Hamiltonian acts as the degree operator for

the 2-variable polynomial

〈x, y|H(a†x)λ(a†y)
µ|0〉 =

(
x
∂

∂x
+ y

∂

∂y

)
〈x, y|(a†x)λ(a†y)

µ|0〉

=

(
x
∂

∂x
+ y

∂

∂y

)
(xλyµ)

= (λ+ µ)(xλyµ) (7.2.5)

For the system of N -particles in the two-dimensional harmonic oscillator, we have the

coherent state

〈x1, y1;x2, y2; . . . ;xN , yN | = 〈0|e
∑N
i=1 xiai;x+yiai;y (7.2.6)

The energy eigenstates of the Hamiltonian correspond to the product of one-particle

wavefunctions

〈x1, y1;x2, y2; · · · ;xN , yN |(a†1;x)λ1(a†1;y)
µ1(a†2;x)λ2(a†2;y)

µ2 . . . (a†k;x)λk(a†k;y)
µk |0〉

= xλ1
1 yµ1

1 · · ·x
λk
k y

µk
k (7.2.7)

It is useful to write

xλ1
1 yµ1

1 . . . xλkk y
µk
k = ψλ1,µ1(x1, y1)ψλ2,µ2(x2, y2) · · ·ψλk,µk(xk, yk)

= ψλ1,µ1(x1, y1) . . . ψλk,µk(xk, yk)ψ0,0(xk+1, yk+1) . . . ψ0,0(xN , yN )

(7.2.8)
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In a system of N identical bosons, we must symmetrise the product of annihilation

operators using SN permutations. The product wavefunctions and their symmetrisa-

tions are a standard tool in many-body quantum mechanics (see. e.g. [105]). The

permutations σ ∈ SN act as

(xi, yi)→ (xσ(i), yσ(i)) (7.2.9)

These states are polynomials, symmetric under these simultaneous permutations of x, y

pairs, which are exactly multi-symmetric functions. In fact these form the monomial

multi-symmetric functions that we will study presently. They have the nice property

that finite N effects are nicely encoded in the fact that, by definition, k ≤ N .

A quantum state where a single particle is excited, after symmetrisation, has a

coherent state representation

φλ1,µ1(xi, yi) =
N∑
i=1

xλ1
i y

µ1
i (7.2.10)

When we have two particles excited, the symmetrisation of the product wavefunction

is proportional to

N∑
i1 6=i2

xλ1
i1
yµ1
i1
xλ2
i2
yµ2
i2

(7.2.11)

The restriction i1 6= i2, when extended to i1 6= i2 · · · 6= ik, is closely related to the finite

N property, but also has the consequence that the 2-particle wavefunction 7.2.11 is not

equal to the product of 1-particle wavefunctions. It is rather a linear combination of the

product wavefunction φλ1,µ1φλ2,µ2 along with a 1-particle wavefunction φλ1+λ2,µ1+µ2 .

Defining diagonal matrices X = Diag(x1, · · · , xN ) and Y = Diag(y1, y2, · · · , yN ),

we observe that the 1-particle wavefunction is a trace

φλ1,µ1(xi, yi) = Tr(Xλ1Y µ1) (7.2.12)

We now draw on an idea from collective field theory, where one associates creation

operators to invariant traces [107–109] to define a map from traces and products of

traces to Fock space states

Tr(XλY µ)→ B†λ,µ|0〉 (7.2.13)

k∏
a=1

Tr(XλaY µa)→
k∏
a=1

B†λa,µa |0〉 (7.2.14)

This map is a homomorphism between the product structure on the polynomials and
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the product structure on oscillators. It can also be obtained from a coherent state

construction

〈X,Y | = 〈0|e
∑
λ,µBλ,µTr(XλY µ)

〈X,Y |
k∏
a=1

B†λa,µa |0〉 =

k∏
a=1

Tr(XλaY µa) (7.2.15)

In section 7.2.3 we will be studying in detail the transformation between the monomial

multi-symmetric functions and the trace wavefunctions. As a result of a triangular

property of this transformation, the finite N cutoff on multi-symmetric functions can

also be described by restricting the number of factors in the product of traces to be

less than or equal to N .

7.2.2 Monomial and trace bases for multi-symmetric functions

We now give a formal definition of multi-symmetric functions in a completely analo-

gous way to the symmetric functions of section 2.7, just with two families of variables

x1, . . . , xN and y1, . . . , yN instead of one. They are polynomials in these 2N variables

that are invariant under all SN permutations on the pairs (xi, yi). Given a polynomial

f(x1, x2, . . . , xN ; y1, y2, . . . , yN ), f is a multi-symmetric function if

f (x1, x2, . . . , xN ; y1, y2, . . . , yN ) = f
(
xσ(1), xσ(2), . . . , xσ(N); yσ(1), yσ(2), . . . , yσ(N)

)
(7.2.16)

for all σ ∈ SN .

We can take a large N limit and work with formal power series in an infinite

number of variables rather than polynomials. To return to the finite N case, we set

xN+1 = yN+1 = xN+2 = yN+2 = · · · = 0.

We can also define multi-symmetric functions with M families of variables x
(k)
i , for

1 ≤ k ≤ M , 1 ≤ i ≤ N , invariant under SN permutations of the i index. These would

be relevant for systems of M commuting matrices.

For a mathematical overview of multi-symmetric functions and their properties

see [110].

The monomial and multi-trace (power-sum) bases for symmetric polynomials de-

fined in (2.7.6) and (2.7.8) have direct analogues in the multi-symmetric case. As

before, they are graded bases, this time graded by both the x degree n1 and the y

degree n2.

A vector partition p of (n1, n2) is defined to be a sequence of pairs of non-negative

integers (at least one of each pair must be non-zero) summing to (n1, n2). We use a

bold p to distinguish between vector and integer partitions, and write p ` (n1, n2) to

denote that p sums to (n1, n2). The basis elements at degree (n1, n2) are labelled by
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p ` (n1, n2) with length l(p) ≤ N .

To construct the monomial basis, take a vector partition p = [(λ1, µ1), (λ2, µ2),

. . . , (λk, µk)] of (n1, n2) with l(p) = k ≤ N and consider the un-symmetrised monomial

xλ1
1 yµ1

1 xλ2
2 yµ2

2 . . . xλkk y
µk
k (7.2.17)

After adding all distinct permutations of the lower indices, one arrives at the monomial

basis element. Explicitly

mp =
1

Zp

∑
σ∈SN

xλ1

σ(1)y
µ1

σ(1)x
λ2

σ(2)y
µ2

σ(2) . . . x
λk
σ(k)y

µk
σ(k) (7.2.18)

where the factor in front removes the normalisation introduced by redundancies in the

elements of p, so that the coefficient in front of each individual monomial is 1. Using

multiplicity notation for vector partitions, let p = [(0, 1)p(0,1) , (1, 0)p(1,0) , . . . ]. Then the

normalisation is given by

Zp =
∏
i,j

p(i,j)! (7.2.19)

As in the symmetric case, we will use a modified version of the monomial basis, obtained

by leaving out this normalisation factor

Mp = Zpmp =
∑
σ∈SN

xλ1

σ(1)y
µ1

σ(1)x
λ2

σ(2)y
µ2

σ(2) . . . x
λk
σ(k)y

µk
σ(k) (7.2.20)

As discussed below (7.2.16), we can lower N to N − 1 by setting xN = yN = 0,

causing a reduction in the size of the space. Starting from N > n1 + n2 and reducing

stepwise, this implies those monomial functions with l(p) > N vanish identically, while

the remaining Mp with l(p) ≤ N form a basis for the smaller space. So the monomial

basis is SEP-compatible for multi-symmetric functions.

Note that the the isomorphism, as described around (7.1.14), states that multi-

symmetric functions are isomorphic to invariants of matrices X,Y modulo commutator

traces. Therefore the isomorphic image of Mp, also referred to as Mp, is not necessarily

zero if l(p) > N , but could instead be a commutator trace. This is the version of SEP-

compatibility for pre-BPS operators as discussed in section 7.1.

As multi-symmetric functions, the monomial functions Mp are SEP-compatible.

Using the map (7.1.13) to give the equivalent symmetrised trace operators, they form

a basis for pre-BPS operators at N ≥ n. As we decrease N < n, the SEP-compatibility

implies any operator with l(p) > N reduces to a commutator trace. However, the

operators with l(p) ≤ N are not in general Sn orthogonal to commutator traces when

N < n, and therefore they do not form a basis for pre-BPS operators. This is due

to (7.1.13) not selecting the right representative of the equivalence class of operators
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isomorphic to the multi-symmetric function, as discussed below (7.1.14). We say the

Yang-Mills operators Mp are SEP-compatible modulo commutators, and in section

7.4, describe how to transform this into a genuinely SEP-compatible basis for pre-BPS

operators.

The multi-trace basis for multi-symmetric functions, also called the power-sum basis

in the mathematics literature, is built out of

T(n1,n2) =
N∑
i=1

xn1
i y

n2
i (7.2.21)

Given a vector partition p = [(λ1, µ1), (λ2, µ2), . . . (λk, µk)], the associated multi-symmetric

function is

Tp =
k∏
i=1

T(λi,µi) (7.2.22)

Introduce two N ×N diagonal matrices X and Y with diagonal elements x1, x2, . . . xN

and y1, y2, . . . yN respectively. Then T(n1,n2) = TrXn1Y n2 , and the multi-trace multi-

symmetric functions are exactly given by the multi-traces of these two matrices, justi-

fying the name.

The isomorphism of [97, 98] identifies the multi-symmetric functions (7.2.22) with

the symmetrised trace operators (7.1.11), establishing the connection between multi-

symmetric functions and the quarter-BPS sector of N = 4 super Yang-Mills at weak

coupling.

Note that while (7.2.22) and (7.1.11) are conceptually different, the isomorphism

between the two means we abuse notation slightly and use the same symbol Tp for

both.

At finite N , non-trivial relationships appear between the different multi-traces lead-

ing to a reduction in the dimensionality of the space of multi-symmetric functions.

Those multi-traces labelled by p with l(p) ≤ N form a basis for the reduced space.

However, unlike the monomial functions, the remaining multi-traces (labelled by p with

l(p) > N) do not vanish, but become complicated linear combinations of the reduced

basis.

Define a matrix Cp
q , indexed by vector partitions p and q to be the change of basis

matrix from Mp to Tq, with inverse C̃

Tq =
∑
p

Cp
qMp Mp =

∑
q

C̃q
pTq (7.2.23)

At finite N , the p label for monomials is SEP-compatible (modulo commutators).

Therefore the second of the equations above gives the finite N relations imposed on

commuting matrices. On the other side of the isomorphism, this gives the linear com-
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binations of symmetrised traces that reduce to commutator traces at finite N .

The C and C̃ matrices have very interesting combinatorial properties, which we will

now investigate in depth.

7.2.3 Basis change for multi-symmetric functions

In this section, we show that the properties of the linear transformations C and C̃ are

illuminated by considering set partitions. Set partitions form a partially ordered set

(poset), and the Möbius inversion formula for posets plays an important role.

To find an expression for Cp
q , first expand the product in the definition (7.2.22) for

multi-trace functions. For p = [(λ1, µ1), . . . , (λk, µk)],

Tp =
k∏
j=1

(
N∑
i=1

x
λj
i y

µj
i

)
(7.2.24)

=

N∑
j1,...,jk=1

xλ1
j1
yµ1
j1
xλ2
j2
yµ2
j2
. . . xλkjk y

µk
jk

(7.2.25)

To further sort this sum, note the different ways the js could coincide. If, for example,

k = 3, we could have

j1 = j2 = j3 j1 = j2 6= j3 (7.2.26)

j1 = j3 6= j2 j1 6= j2 = j3 (7.2.27)

j1, j2, j3 all distinct (7.2.28)

These correspond to the 5 different ways of partitioning the set {1, 2, 3} into subsets

π1 = {{1, 2, 3}} π2 = {{1, 2}, {3}} (7.2.29)

π3 = {{1, 3}, {2}} π4 = {{1}, {2, 3}} (7.2.30)

π5 = {{1}, {2}, {3}} (7.2.31)

Continuing with the example, we can sort the sum (7.2.25) into the different partitions

Tp =
∑
j

xλ1+λ2+λ3
j yµ1+µ2+µ3

j +
∑

j1,j3 distinct

xλ1+λ2
j1

yµ1+µ2
j1

xλ3
j3
yµ3
j3

+
∑

j1,j2 distinct

xλ1+λ3
j1

yµ1+µ3
j1

xλ2
j2
yµ2
j2

+
∑

j1,j2 distinct

xλ1
j1
yµ1
j1
xλ2+λ3
j2

yµ2+µ3
j2

+
∑

j1,j2,j3 distinct

xλ1
j1
yµ1
j1
xλ2
j2
yµ2
j2
xλ3
j3
yµ3
j3

(7.2.32)

The first term is just the monomial function associated to the vector partition π1(p) =

[(λ1 + λ2 + λ3, µ1 + µ2 + µ3)]. Similarly, the second term is related to the monomial
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function with vector partition π2(p) = [(λ1 + λ2, µ1 + µ2), (λ3, µ3)] via

∑
j1,j2 distinct

xλ1+λ2
j1

yµ1+µ2
j1

xλ3
j2
yµ3
j2

=

2mπ2(p) (λ1 + λ2, µ1 + µ2) = (λ3, µ3)

mπ2(p) otherwise
(7.2.33)

We can simplify this expression by noting that if (λ1 + λ2, µ1 + µ2) = (λ3, µ3) then

Zπ2(p) = 2, and otherwise Zπ2(p) = 1. Therefore∑
j1,j2 distinct

xλ1+λ2
j1

yµ1+µ2
j1

xλ3
j2
yµ3
j2

= Zπ2(p)mπ2(p) = Mπ2(p) (7.2.34)

Similarly the third, fourth and fifth terms of (7.2.32) are just Mπ3(p),Mπ4(p) and Mπ5(p)

respectively, where

π3(p) = [(λ1 + λ3, µ1 + µ3), (λ2, µ2)] (7.2.35)

π4(p) = [(λ1, µ1), (λ2 + λ3, µ2 + µ3)] (7.2.36)

π5(p) = p (7.2.37)

Putting this together, we have

Tp =

5∑
i=1

Mπi(p) (7.2.38)

Repeating this analysis more generally, let the set of set partitions of {1, 2, 3, . . . k}
be denoted by Π(k). Then given a set partition π ∈ Π(k) and a vector partition

p = [(λ1, µ1), . . . , (λk, µk)] of length l(p) = k, we define the vector partition π(k) to be

that with components (∑
i∈b

λi ,
∑
i∈b

µi

)
(7.2.39)

where the blocks b ∈ π run over the subsets into which {1, 2, 3, . . . k} have been parti-

tioned. Conceptually, this should be thought of as summing up p into a new, shorter

vector partition, where the summation structure is given by π.

Given this notation, we can now write the generalisation of (7.2.38) to any k

Tp =
∑

π∈Π(l(p))

Mπ(p) (7.2.40)

Proving this result in the general case is just an exercise in repeating the logic that led

from (7.2.25) to (7.2.38).

So the coefficient of Mp in Tq is just the number of set partitions π ∈ Π(l(q)) that
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have π(q) = p.

Cp
q =

∑
π∈Π(l(q))

δp π(q) (7.2.41)

We can see that for vector partitions of a particular length k = l(q), it is the set

partitions of {1, 2, 3, . . . , k} that control the behaviour.

The poset (partially ordered set) structure of set of set partitions is well studied

[111], and will help further explain the structure of the matrix C and its inverse C̃.

The partial ordering is defined by saying that one set partition, π, is less than another,

π′, if every block b ∈ π is contained within some block b′ ∈ π′. We call π a refinement

of π′ or π′ a coarsening of π.

Intuitively, if π < π′, then the blocks of π are smaller in size than those in π′.

However, this means that there are more blocks in π than in π′, so confusingly π < π′

implies that |π| > |π′|.
Now instead of looking at Tp, we look at Tπ(p), for some π ∈ Π(l(p)). Clearly we

can still use the formula (7.2.40) just by replacing p with π(p). Then summing over

π′ ∈ Π(l(π(p))) with summand Mπ′(π(p)) is equivalent to summing over all coarsenings

π′′ ≥ π with summand Mπ′′(p), so we can write

Tπ(p) =
∑
π′≥π

Mπ′(p) (7.2.42)

Considering Tπ and Mπ as functions from vector partitions to multi-symmetric func-

tions, we have

Tπ =
∑
π′≥π

Mπ′ (7.2.43)

Equations like (7.2.43) are standard the theory of posets [111], and can be inverted

using the Möbius inversion formula (7.2.49). We explain this formula in more detail in

section 7.2.4, including a combinatoric interpretation that allows a simple explanation

of the inversion property.

In this case, the Möbius inversion formula implies

Mπ =
∑
π′≥π

µ(π, π′)Tπ′ (7.2.44)

where the Möbius function µ(π, π′) is defined in (7.2.53).

Choosing a vector partition p on which to act, we have

Mπ(p) =
∑
π′≥π

µ(π, π′)Tπ′(p) (7.2.45)

We can now use this to find an explicit expression for C̃q
p . Let k = l(p) and π = πk to
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be the minimal set partition in Π(k), in which every element has its own block so that

πk(p) = p. Applying (7.2.45) gives

Mp =
∑

π∈Π(k)

µ(πk, π)Tπ(p) (7.2.46)

and therefore

C̃p
q =

∑
π∈Π(k)

µ(πk, π) δp π(q) (7.2.47)

7.2.4 Möbius function for the poset of set partitions and combinatoric

interpretation

In this section we introduce the Möbius function for a general poset, and give its

value on the poset of set partitions. There is a combinatoric interpretation for the

Möbius function in terms of permutations on the blocks of the set partitions, and this

interpretation allows us to simply see why the Möbius inversion formula works in this

case.

The Möbius function is defined recursively for a generic poset by

µ(π, π′) =


1 π = π′

−
∑

π≤π′′<π′
µ(π, π′′) π < π′

0 otherwise

(7.2.48)

The key utility of this definition is in the Möbius inversion formula, which states that

given two functions f, g from a poset into a vector space, the following two relations

are equivalent

f(π) =
∑
π′≥π

g(π′)

g(π) =
∑
π′≥π

µ(π, π′)f(π′)
(7.2.49)

In order to give an explicit expression for the Möbius function on set partitions, consider

π = {b1, b2, . . . , bk} for k = |π|. We then look at the set partitions of π itself. For

example if k = 3 the five possible set partitions of π are

ρ1 = {{b1, b2, b3}} ρ2 = {{b1, b2}, {b3}}

ρ3 = {{b1, b3}, {b2}} ρ4 = {{b1}, {b2, b3}}

ρ5 = {{b1}, {b2}, {b3}}

(7.2.50)

The set of set partitions of π is denoted by Π(π), and there is an obvious correspondence
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between this and Π(|π|). For any particular π ∈ Π(n) and ρ ∈ Π(π), we define ρ(π) to

be the following set partition in Π(n).{⋃
b∈B

b : B ∈ ρ

}
(7.2.51)

So for the examples in (7.2.50), we have

ρ1(π) = {b1 ∪ b2 ∪ b3} ρ2(π) = {b1 ∪ b2, b3}

ρ3(π) = {b1 ∪ b3, b2} ρ4(π) = {b1, b2 ∪ b3}

ρ5(π) = {b1, b2, b3} = π

(7.2.52)

Given π ≤ π′, by definition each block b ∈ π is a subset of a block b′ ∈ π′. Therefore

there is a set partition ρ ∈ Π(π) such that ρ(π) = π′, we call this set partition π′/π.

Using the definition of π′/π for π′ ≥ π, we can now give an expression for µ(π, π′),

which is a standard result in the field of posets [111]. Firstly, by definition µ(π, π′)

vanishes unless π′ < π, so we assume π′ ≥ π. This means π′/π exists, and we can write

µ(π, π′) = (−1)|π|−|π
′|
∏

b∈π′/π

(|b| − 1)! (7.2.53)

There is a combinatoric interpretation for the magnitude of µ(π, π′) in terms of per-

mutations, where the sign of µ is given by the sign of these permutations. In or-

der to describe this, consider a permutation σ ∈ Sn and take an arbitrary subset

A ⊆ {1, 2, . . . , n}. Then σ acts on A by permuting the numbers 1 to n, leading to a

distinct subset σ(A). We can then define the subgroup G(π) ≤ Sn by

G(π) = {σ : σ(b) = b for all blocks b ∈ π} (7.2.54)

For π with block sizes of [λ1, λ2, . . . , λk] ` n, we have

G(π) ∼= Sλ1 × Sλ2 × · · · × Sλk (7.2.55)

Intuitively, the Sλi factor permutes the elements of the corresponding block with size

λi. The exact embedding of Sλ1 × · · · × Sλk into Sn depends on the set partition.

Take a σ ∈ Sn. The cycle structure of σ defines a partition π(σ) ∈ Π(n). Formally,

the set partition π(σ) is simply the set of orbits of {1, 2, . . . , n} under the action of σ.

We also define a set of permutations associated with each π ∈ Π(n)

Perms(π) = {σ : π(σ) = π} (7.2.56)
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For any σ ∈ Sn with π(σ) = π, Perms(π) is just the conjugacy class of σ under

conjugation by G(π).

Clearly Perms(π) are disjoint for different π, and between them they cover Sn.⊔
π∈Π(n)

Perms(π) = Sn (7.2.57)

We have a similar result for G(π), obtained by taking the decomposition (7.2.55) and

applying (7.2.57) to each factor individually.

⊔
π′≤π

Perms(π′) = G(π) (7.2.58)

To illustrate the above, we now give some examples. If we fix π = {{1, 2, 3}, {4, 5}, {6}}
then

G(π) = S{1,2,3} × S{4,5} × S{6} ∼= S3 × S2 × S1 (7.2.59)

Perms(π) = { (1, 2, 3)(4, 5) , (1, 3, 2)(4, 5) } (7.2.60)

Enumerating the elements of G(π), we can see that it splits as specified in (7.2.58).

G(π) = {e, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2),

(4, 5), (1, 2)(4, 5), (1, 3)(4, 5), (2, 3)(4, 5), (1, 2, 3)(4, 5), (1, 3, 2)(4, 5)}

= {e} t {(1, 2)} t {(1, 3)} t {(2, 3)} t {(1, 2, 3), (1, 3, 2)}

t {(4, 5)} t {(1, 2)(4, 5)} t {(1, 3)(4, 5)} t {(2, 3)(4, 5)}

t {(1, 2, 3)(4, 5), (1, 3, 2)(4, 5)}

= Perms
(
{{1}, {2}, {3}, {4}, {5}, {6}}

)
t Perms

(
{{1, 2}, {3}, {4}, {5}, {6}}

)
t Perms

(
{{1, 3}, {2}, {4}, {5}, {6}}

)
t Perms

(
{{1}, {2, 3}, {4}, {5}, {6}}

)
t Perms

(
{{1, 2, 3}, {4}, {5}, {6}}

)
t Perms

(
{{1}, {2}, {3}, {4, 5}, {6}}

)
t Perms

(
{{1, 2}, {3}, {4, 5}, {6}}

)
t Perms

(
{{1, 3}, {2}, {4, 5}, {6}}

)
t Perms

(
{{1}, {2, 3}, {4, 5}, {6}}

)
t Perms

(
{{1, 2, 3}, {4, 5}, {6}}

)
(7.2.61)

=
⊔
π′≤π

Perms(π′) (7.2.62)

Equations (7.2.54-7.2.62) are based on using permutations σ ∈ Sn and set partitions

π ∈ Π(n). However, if we pick π ∈ Π(n), we can use the exact same constructions for

permutations of π itself - we call this group Sπ - and set partitions ρ ∈ Π(π). Then
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Perms(π′/π) provides our combinatoric interpretation for µ

µ(π, π′) =
∑

σ∈Perms(π′/π)

sgn(σ) = (−1)|π|−|π
′| ∣∣Perms(π′/π)

∣∣ (7.2.63)

So the magnitude of µ is just the number of permutations in a certain conjugacy class,

and its sign is just the sign of these permutations.

This permutation interpretation of µ allows us to easily prove the Möbius inversion

formula for set partitions. Fix π and π′′ with π′′ ≥ π and consider the sum∑
π′′≥π′≥π

µ(π, π′) (7.2.64)

The simplest way to parameterise the sum over π′ is to look at the possible π′/π ∈ Π(π).

The condition π′′ ≥ π′ becomes (π′′/π) ≥ (π′/π), so instead of summing over π′ ∈ Π(n),

we sum over π′/π = ρ ∈ Π(π).∑
π′′≥π′≥π

µ(π, π′) =
∑

ρ≤(π′′/π)

∑
σ∈Perms(ρ)

sgn(σ)

=
∑

σ∈G(π′′/π)

sgn(σ)

=

1 G(π′′/π) ∼= S1 × S1 × · · · × S1

0 otherwise
(7.2.65)

Where we have used (7.2.58) to change the sum into one over G(π′′/π), and the final

line is a simple fact from permutation group theory. Now the only case for which

G(π′′/π) ∼= S1 × · · · × S1 is when π′′ = π, so we conclude that∑
π′′≥π′≥π

µ(π, π′) = δππ′′ (7.2.66)

Using this result and substituting (7.2.43), we have∑
π′≥π

µ(π, π′)Tπ′ =
∑

π′′≥π′≥π
µ(π, π′)Mπ′′

= Mπ (7.2.67)

This proves the Möbius inversion formula for set partitions.

For a more thorough overview of the Möbius function on general posets and for the

poset of set partitions see [111].
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7.2.5 More general C and C̃ matrices for M-matrix systems

The structures explained in sections 7.2.3 and 7.2.4, involving the poset of set partitions

and the associated Möbius function, can be used not just for the two matrix system,

but for an M -matrix system. In (7.2.43) we introduced Tπ and Mπ as functions from

2-vector partitions of length |π| into the space of multi-symmetric functions defined

on two families of variables, xi and yi. However, we could equally consider them

as functions from M -vector partitions of length |π| into the space of multi-symmetric

functions defined on M families of variables, x
(1)
i , x

(2)
i , . . . , x

(M)
i . These multi-symmetric

functions have monomial and multi-trace bases defined in direct analogy to the 2-vector

versions in section (7.2.2). For each M there are corresponding C and C̃ matrices,

defined in a completely analogous way to (7.2.41) and (7.2.47).

To think about these possibilities in a unified way, we define a more general C and

C̃ that transform between Tπ and Mπ.

Tπ =
∑
π′

Cπ
′

π Mπ′ Mπ =
∑
π′

C̃π
′

π Tπ′ (7.2.68)

We already have expressions for these from (7.2.43) and (7.2.44), given by

Cπ
′

π = ζ(π, π′) =

1 π′ ≥ π

0 otherwise
C̃π
′

π = µ(π, π′) (7.2.69)

where the first equation defines ζ(π, π′). The above also serves as the definition for

the ζ function of a general poset, just with π, π′ arbitrary elements of the poset rather

than set partitions. We have already seen the Möbius function for a general poset in

(7.2.48). An equivalent way of stating the Möbius inversion formula seen in (7.2.49) is

that the ζ and µ are inverses of each other when multiplied as matrices∑
π′

ζ(π, π′)µ(π′, π′′) = δππ′′ (7.2.70)

The C and C̃ for vector partitions (both 2-vectors andM -vectors) can easily be obtained

from these more general objects. For p,q ` (n1, n2) and some π ∈ Π(n) such that

π([(1, 0)n1 , (0, 1)n2 ]) = p, we have

Cq
p =

∑
π′∈Π(n)

Cπ
′

π C̃q
p =

∑
π′∈Π(n)

C̃π
′

π (7.2.71)

where the sums run over π′ with π′ ([(1, 0)n1 , (0, 1)n2 ]) = q. Analogous formulae hold

for M -vectors.

We can think of the (7.2.71) as a flavour projection from the general system of
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Mπ, Tπ to the M -flavour system consisting of Mp and Tp. Physically, one flavour

corresponds to the half-BPS sector, two flavours to the quarter-BPS sector, and three

to the eighth-BPS sector. We give an alternative viewpoint on the flavour projection

using permutations in section 7.5.1.

As an example, consider n = 4. There are 15 different set partitions in Π(4), so to

simplify things we only give the transformations for the five different orbits under S4,

corresponding to the integer partitions of 4. The C matrix can be read off from the

relationships showing Tπ in terms of Mπ.

T{{1,2,3,4}} = M{{1,2,3,4}} (7.2.72)

T{{1},{2,3,4}} = M{{1},{2,3,4}} +M{{1,2,3,4}} (7.2.73)

T{{1,2},{3,4}} = M{{1,2},{3,4}} +M{{1,2,3,4}} (7.2.74)

T{{1,2},{3},{4}} = M{{1,2},{3},{4}} +M{{1,2,3},{4}} +M{{1,2,4},{3}}

+M{{1,2},{3,4}} +M{{1,2,3,4}} (7.2.75)

T{{1},{2},{3},{4}} = M{{1},{2},{3},{4}} +M{{1,2},{3},{4}} +M{{1,3},{2},{4}}

+M{{1,4},{2},{3}} +M{{1},{2,3},{4}} +M{{1},{2,4},{3}}

+M{{1},{2},{3,4}} +M{{1,2},{3,4}} +M{{1,3},{2,4}}

+M{{1,4},{2,3}} +M{{1,2,3},{4}} +M{{1,2,4},{3}}

+M{{1,3,4},{2}} +M{{1},{2,3,4}} +M{{1,2,3,4}} (7.2.76)

The C̃ matrix can be shown in an analogous way by writing Mπ in terms of Tπ.

M{{1,2,3,4}} = T{{1,2,3,4}} (7.2.77)

M{{1},{2,3,4}} = T{{1},{2,3,4}} − T{{1,2,3,4}} (7.2.78)

M{{1,2},{3,4}} = T{{1,2},{3,4}} − T{{1,2,3,4}} (7.2.79)

M{{1,2},{3},{4}} = T{{1,2},{3},{4}} − T{{1,2,3},{4}} − T{{1,2,4},{3}}
− T{{1,2},{3,4}} + 2T{{1,2,3,4}} (7.2.80)

M{{1},{2},{3},{4}} = T{{1},{2},{3},{4}} − T{{1,2},{3},{4}} − T{{1,3},{2},{4}}
− T{{1,4},{2},{3}} − T{{1},{2,3},{4}} − T{{1},{2,4},{3}}
− T{{1},{2},{3,4}} + T{{1,2},{3,4}} + T{{1,3},{2,4}}

+ T{{1,4},{2,3}} + 2T{{1,2,3},{4}} + 2T{{1,2,4},{3}}

+ 2T{{1,3,4},{2}} + 2T{{1},{2,3,4}} − 6T{{1,2,3,4}} (7.2.81)

We can then apply these to the vector partition [(1, 0)2, (0, 1)2] to get C and C̃ for field

content (2, 2). Again we choose to display them by writing out the relations between
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Tp and Mp, but this time all possibilities are included. The C matrix is

StrX2Y 2 = M[(2,2)] (7.2.82)

TrX2Y TrY = M[(2,1),(0,1)] +M[(2,2)] (7.2.83)

TrX2TrY 2 = M[(2,0),(0,2)] +M[(2,2)] (7.2.84)

TrXY 2TrX = M[(1,2),(1,0)] +M[(2,2)] (7.2.85)

(TrXY )2 = M[(1,1),(1,1)] +M[(2,2)] (7.2.86)

TrX2 (TrY )2 = M[(2,0),(0,1),(0,1)] +M[(2,0),(0,2)] + 2M[(2,1),(0,1)] +M[(2,2)] (7.2.87)

TrXY TrXTrY = M[(1,1),(1,0),(0,1)] +M[(1,1),(1,1)] +M[(1,2),(1,0)]

+M[(2,1),(0,1)] +M[(2,2)] (7.2.88)

(TrX)2 TrY 2 = M[(1,0),(1,0),(0,2)] + 2M[(1,2),(1,0)] +M[(2,0),(0,2)] +M[(2,2)] (7.2.89)

(TrX)2 (TrY )2 = M[(1,0),(1,0),(0,1),(0,1)] +M[(1,0),(1,0),(0,2)] + 4M[(1,1),(1,0),(0,1)]

+M[(2,0),(0,1),(0,1)] + 2M[(1,1),(1,1)] + 2M[(1,2),(1,0)]

+M[(2,0),(0,2)] + 2M[(2,1),(0,1)] +M[(2,2)] (7.2.90)

The C̃ matrix for (2, 2) is

M[(2,2)] = StrX2Y 2 (7.2.91)

M[(2,1),(0,1)] = TrX2Y TrY − StrX2Y 2 (7.2.92)

M[(2,0),(0,2)] = TrX2TrY 2 − StrX2Y 2 (7.2.93)

M[(1,2),(1,0)] = TrXY 2TrX − StrX2Y 2 (7.2.94)

M[(1,1),(1,1)] = (TrXY )2 − StrX2Y 2 (7.2.95)

M[(2,0),(0,1),(0,1)] = TrX2 (TrY )2 − TrX2TrY 2 − 2TrX2Y TrY + 2StrX2Y 2

(7.2.96)

M[(1,1),(1,0),(0,1)] = TrXY TrXTrY − (TrXY )2 − TrXY 2TrX

− TrX2Y TrY + 2StrX2Y 2 (7.2.97)

M[(1,0),(1,0),(0,2)] = (TrX)2 TrY 2 − 2TrXY 2TrX − TrX2TrY 2 + 2StrX2Y 2

(7.2.98)

M[(1,0),(1,0),(0,1),(0,1)] = (TrX)2 (TrY )2 − (TrX)2 TrY 2 − 4TrXY TrXTrY

− TrX2 (TrY )2 + 2 (TrXY )2 + 4TrXY 2TrX

+ TrX2TrY 2 + 4TrX2Y TrY − 6StrX2Y 2 (7.2.99)

Note that we have used

StrX2Y 2 =
2

3
TrX2Y 2 +

1

3
Tr(XY )2 (7.2.100)
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rather than just TrX2Y 2. This means the expressions (7.2.82-7.2.99) give the relations

between Tp andMp both as multi-symmetric functions and symmetrised trace operators

in N = 4 super Yang-Mills.

7.2.6 Relation to other combinatorial quantities

Stirling numbers of the second kind, S(n, k), are defined to be the number of ways of

partitioning a set of n objects into k non-empty subsets. Combinatorically, these are

a coarsened version of the 2-vector and set partition C matrices. Starting with the

2-vector version, S(n, k) is given by

S(n, k) =
∑

p`(n1,n2)
l(p)=k

Cp
[(1,0)n1 ,(0,1)n2 ] (7.2.101)

where n1 + n2 = n.

Alternatively, consider an arbitrary m > n and q ` (m1,m2) with m1 +m2 = m to

be a vector partition with l(q) = n, then

S(n, k) =
∑

p`(m1,m2)
l(p)=k

Cp
q (7.2.102)

Define πn ∈ Π(n) to be the unique set partition of length n, meaning each number has

its own block. Then in terms of the more general set partition C

S(n, k) =
∑

π∈Π(n)
|π|=k

Cππn (7.2.103)

Or alternatively, taking π ∈ Π(m) to be any set partition with |π| = n, then

S(n, k) =
∑

π′∈Π(m)
|π′|=k

Cπ
′

π (7.2.104)

Unsigned Stirling numbers of the first kind, |s(n, k)|, are defined to be the number of

permutations in Sn with k cycles. The signed Stirling numbers s(n, k) have the same

magnitude, but are multiplied by the sign of the permutations (−1)n−k. This is related

to the 2-vector and set partition C̃ matrices in the same way as S(n, k) was related to

C. Using the same notation as (7.2.101-7.2.104), we have

s(n, k) =
∑

p`(n1,n2)
l(p)=k

C̃p
[(1,0)n1 ,(0,1)n2 ] s(n, k) =

∑
p`(m1,m2)
l(p)=k

C̃p
q (7.2.105)
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s(n, k) =
∑

π∈Π(n)
|π|=k

C̃ππn s(n, k) =
∑

π′∈Π(m)
|π′|=k

C̃π
′

π (7.2.106)

Bell numbers, Bn, count the number of set partitions of n objects. In terms of C, these

are

Bn =
∑
k

S(n, k) =
∑

p`(n1,n2)

Cp
[(1,0)n1 ,(0,1)n2 ] =

∑
p`(m1,m2)

Cp
q =

∑
π∈Π(n)

Cππn =
∑

π′∈Π(m)

Cπ
′

π

(7.2.107)

7.3 Counting: U(2)×U(N) Young diagram labels and mul-

tiplicities at weak coupling

The space of states spanned by symmetrised traces Tp of general matrices X,Y admits

a U(2) action on the pair X,Y as in section 3.6.2. These symmetrised traces are

representatives of the elements of the ring of gauge invariants modulo commutators.

Specialising to diagonal matrices X = Diag(x1, x2, · · · , xN ), Y = Diag(y1, y2, · · · , yN )

gives the isomorphism [97, 99] to multi-symmetric polynomials in xi, yi discussed in

section 7.1.1. For economy of notation, we are generally using Tp also for the image

ι(Tp) of the isomorphism. There is an analogous U(2) action on multi-symmetric

functions which transforms the pairs xi, yi. Applying the isomorphism and then doing a

U(2) transformation is equivalent to doing a U(2) transformation on symmetrised traces

and then applying the isomorphism. In other words the isomorphism between gauge

invariants modulo commutators and multi-symmetric polynomials is a U(2) equivariant

isomorphism. The U(2) transformations (3.6.10) on the monomial multi-symmetric

functions, Mp, are obtained either by expressing them in terms of Tp using the C̃

transformation or equivalently using the U(2) on the pairs (xi, yi). In this latter picture,

the U(2) generators are

J0 =

N∑
i=1

(
xi

∂

∂xi
+ yi

∂

∂yi

)
J3 =

N∑
i=1

(
xi

∂

∂xi
− yi

∂

∂yi

)

J+ =

N∑
i=1

xi
∂

∂yi
J− =

N∑
i=1

yi
∂

∂xi

(7.3.1)

A U(2) covariant basis will be sorted by U(2) representations Λ and an index MΛ

labelling the basis states. As in section 3.6.2, MΛ runs over the semi-standard tableaux

of shape Λ and determines the field content. In order to parameterise the space for a

specific Λ, we observe that for each vector partition p ` (n1, n2), there is an associated
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integer partition p(p) ` n1 + n2 obtained by summing the pairs

p = [(λ1, µ1), (λ2, µ2), . . . , (λk, µk)]→ p(p) = [λ1 + µ1, λ2 + µ2, . . . , λk + µk] (7.3.2)

Consider the action of U(2) on a simple monomial xλyµ. We have

J0 x
λyµ = (λ+ µ)xλyµ J3 x

λyµ = (λ− µ)xλyµ

J+ x
λyµ = µxλ+1yµ−1 J− xλyµ = λxλ−1yµ+1

(7.3.3)

The operators J± send λ → λ ± 1, µ → µ ∓ 1 while J0 and J3 leave λ, µ invariant.

For all U(2) generators, the sum λ + µ is unchanged. More generally, for a monomial

xλ1
1 yµ1

1 . . . xλkk y
µk
k , the sums λi + µi are unchanged in each monomial term arising from

the action of the U(2) generators.

Applying this analysis to each of the monomials in Mp, we see that U(2) preserves

the associated partition p(p), and therefore p serves as another label in the U(2) co-

variant basis. We denote the multiplicity of a given pair Λ, p in the covariant monomial

basis by MΛ,p.

For a given associated partition p = [1p1 , 2p2 , . . . ] we have monomial multi-symmetric

functions Mp with p(p) = p. The constituent monomials in Mp (recall the defining

equation (2.7.6)) contain products of pi factors each with i variables that can be x or

y and are transformed between the two using J±. We will show that these fit into the

representation

RU(2)
p =

⊗
i

Sympi
(
Symi (V2)

)
(7.3.4)

where V2 is the 2-dimensional fundamental representation of U(2). We can decompose

RU(2)
p in terms of irreducible representations R

U(2)
Λ

RU(2)
p =

⊕
Λ`n
l(Λ)≤2

R
U(2)
Λ ⊗ V mult

Λ,p (7.3.5)

for some multiplicity space V mult
Λ,p . The direct sum is restricted to run only over

Λ ` n since RU(2)
p is a subspace of (V2)⊗n, and therefore the U(1) weight of all sub-

representations is n. The analogous representation of the global symmetry U(3) in the

case of eighth-BPS states is discussed in [28, 51]. The multiplicity of R
U(2)
Λ in RU(2)

p is

just the dimension of the multiplicity space V mult
Λ,p , and is also the multiplicity of the

pair Λ, p in the covariant monomial basis

MΛ,p = Mult
(

Λ,RU(2)
p

)
= Dim

(
V mult

Λ,p

)
(7.3.6)

To find this multiplicity we split U(2) into its U(1) and SU(2) components as discussed
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in section 3.6.2. As already mentioned, RU(2)
p is in the weight n representation of U(1),

so

RU(2)
p = RU(1)

n ⊗RSU(2)
p (7.3.7)

where RSU(2)
p is

RSU(2)
p =

⊗
i

Sympi
(

Symi
(
R 1

2

))
=
⊗
i

Sympi
(
R i

2

)
(7.3.8)

for Rj the spin j representation of SU(2). Then the U(2) decomposition (7.3.5) of

RU(2)
p is equivalent to the SU(2) decomposition

RSU(2)
p =

⊕
j

Rj ⊗ V mult
[n2 +j,n

2
−j],p (7.3.9)

where we have used the correspondence, discussed in section 3.6.2, between a U(2)

representation Λ =
[
n
2 + j, n2 − j

]
of U(1) weight n and an SU(2) representation of

spin j. The question of calculating the dimension of the multiplicity space in (7.3.9)

is called an SU(2) plethysm problem and is addressed in [112]. We will use a formula

derived there shortly.

The monomials Mp with p(p) = p define states |p〉 in RU(2)
p , whose normalisation

is given by the Sn inner product on Mp

〈p|q〉 = 〈Mp|Mq〉 (7.3.10)

There is a change of basis to U(2) orthonormal covariant states of the form

|Λ,MΛ, p, ν〉 (7.3.11)

where ν is a multiplicity index with 1 ≤ ν ≤MΛ,p. This change of basis is implemented

using Clebsch-Gordan coefficients

|Λ,MΛ, p, ν〉 =
∑

p : p(p)=p

Bp
Λ,MΛ,p,ν

|p〉 (7.3.12)

We define the covariant monomial operators by

MΛ,MΛ,p,ν =
∑

p : p(p)=p

Bp
Λ,MΛ,p,ν

Mp (7.3.13)

As an example, consider the multi-symmetric monomials for field content (2, 2), given

explicitly in (7.2.91-7.2.99). We only give the MΛ and p labels, as the shape of the

Young tableau specifies Λ, and the multiplicity for these operators is trivial. The
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covariant monomials are

M 1 1 2 2 , [4] =

√
3

2
M[(2,2)] (7.3.14)

M 1 1 2 2 , [3,1] =

√
3

14

(
M[(2,1),(0,1)] +M[(1,2),(1,0)]

)
(7.3.15)

M 1 1 2 2 , [2,2] =
1

3
√

2

(
M[(2,0),(0,2)] + 2M[(1,1),(1,1)]

)
(7.3.16)

M 1 1 2 2 , [2,1,1] =
1

4
√

15

(
M[(2,0),(0,1),(0,1)] + 4M[(1,1),(1,0),(0,1)] +M[(1,0),(1,0),(0,2)]

)
(7.3.17)

M 1 1 2 2 , [1,1,1,1] =
1

4
√

6
M[(1,0),(1,0),(0,1),(0,1)] (7.3.18)

M 1 1 2
2

, [3,1]
=

1√
2

(
M[(2,1),(0,1)] −M[(1,2),(1,0)]

)
(7.3.19)

M 1 1 2
2

, [2,1,1]
=

1

4

(
M[(2,0),(0,1),(0,1)] −M[(1,0),(1,0),(0,2)]

)
(7.3.20)

M 1 1
2 2

, [2,2]
=

1√
6

(
M[(2,0),(0,2)] −M[(1,1),(1,1)]

)
(7.3.21)

M 1 1
2 2

, [2,1,1]
=

1

6

(
M[(2,0),(0,1),(0,1)] − 2M[(1,1),(1,0),(0,1)] +M[(1,0),(1,0),(0,2)]

)
(7.3.22)

The associated partition has length l(p(p)) = l(p), and therefore the SEP compatibility

(modulo commutators) of the Mp basis is transferred to the new basis.

If p has length l(p) > N then the multi-symmetric function MΛ,MΛ,p,ν vanishes

identically, while on the other side of the isomorphism, the operator MΛ,MΛ,p,ν reduces

to a commutator trace and therefore is no longer pre-BPS. Operators with l(p) ≤ N

are in general not pre-BPS, but differ from such an operator by a commutator trace.

In section 7.4 we show how to remove this commutator trace component to derive a

pre-BPS basis. For now, we note that the multiplicity MΛ,p determines the finite N

combinatorics of the quarter-BPS sector.

The half-BPS operators OR defined in (2.3.14) are dual to giant gravitons. There

are two types of giant gravitons: those that have an extended S3 ⊂ S5 as part of the

world-volume, and those that have an extended S3 ⊂ AdS5. We will refer to these as

sphere giants and AdS giants respectively: they are also sometimes distinguished in the

AdS/CFT literature as giants versus dual-giants respectively. U(2) rotations of these

half-BPS giants produces giant graviton states in the Λ = [n] representation, where n

is the number of boxes in the Young diagram R. The nature of the Young diagram

R is related to the type of giant graviton system. As we deform Λ to Λ = [n −m,m]

we move away from the half-BPS sector. The deformations of sphere giant states are

described in terms of moduli spaces of polynomials in three complex variables [39] while

deformations of AdS giant states are described in terms of a family of solutions with
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S3 ⊂ AdS5 world-volumes orbiting great circles on the S5 [40].

In section 7.4 we will produce a basis SBPSΛ,MΛ,p,ν
for the quarter-BPS sector with

the same labels as (7.3.13). For Λ = [n], this basis agrees with the half-BPS Schur

basis (2.3.14) by identifying p with R. This matching between the Young diagrams

p labelling the quarter-BPS sector and R labelling the half-BPS states suggests that

for a particular diagram p, we can follow the half-BPS sector states into the quarter-

BPS sector by considering Λ = [n − m,m] and slowly increasing the length of the

second row, m. We expect that if we keep p fixed in this half to quarter transition, we

qualitatively preserve the physical nature of the giant graviton: Young diagrams with a

few long rows of lengths order N correspond to AdS-giants while diagrams with a few

long columns of lengths order N correspond to sphere giants. It is reasonable to think

of Young diagrams p (for more general Λ) with k rows of length comparable to N as

an AdS-giant system formed as some form of composite of k giants. Likewise, in the

following discussion, we will think of a Young diagram p with k rows of length order

N as some composite involving k sphere giants. There will be interesting differences

between sphere giants and AdS giants, so the precise meaning of “composite system of

k giants” is something which should be explored through future comparisons between

bulk physics and CFT correlators.

The multiplicities (7.3.6) interpolate from half-BPS in the case Λ = [n] to more

general quarter-BPS for Λ = [n − Λ2,Λ2], with small Λ2 being close to half-BPS.

These multiplicities should be reproducible from the stringy physics of D3-branes in

AdS5 × S5. In each part of this section, we discuss the giant graviton interpretation of

the multiplicity results.

7.3.1 Λ, p multiplicities and plethysms of SU(2) characters

We consider the space of multi-symmetric functions Mp with a given associated parti-

tion p, and how this can be split into U(2) representations.

As discussed in section 3.6.2, U(2) can be split into a product of U(1) and SU(2).

The U(1) weight of a given p is just n = |p|, so to derive the U(2) representation we

first study the SU(2) part, then recombine with the U(1) piece at the end.

For the sake of simplicity, we will primarily work with non-symmetrised monomials,

since such a choice determines the associated multi-symmetric function by adding all

permuted monomials. The construction of the multi-symmetric function from the non-

symmetrised monomial can affect the SU(2) structure, and we will describe this in

more detail as it occurs.

Start by considering p = [n]. This allows p = [(λ, µ)] for λ + µ = n. The non-

symmetrised monomials corresponding to these are just xλ1y
µ
1 , whose action under U(2)

we gave in (7.3.3). From the action of J±,J3, they lie in the spin n
2 representation of
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SU(2). Symmetrising the monomials does not change the SU(2) structure, so p = [n]

produces the Rn
2

representation of SU(2).

Next consider p = [k1, k2]. This allows p = [(λ1, µ1), (λ2, µ2)], with corresponding

non-symmetrised monomials xλ1
1 yµ1

1 xλ2
2 yµ2

2 subject to λi + µi = ki for i = 1, 2. There

are (k+1)(l+1) different states, living in the tensor product representation R k1
2

⊗R k2
2

.

When k1 6= k2, this is the correct SU(2) representation for the symmetrised version

as well. However, if k1 = k2, then the states xλ1
1 yµ1

1 xλ2
2 yµ2

2 and xλ2
1 yµ2

1 xλ1
2 yµ1

2 both

lead to the same multi-symmetric function and should be identified with each other.

The correct representation here is the symmetric part of the tensor product, written as

Sym2
(
R k1

2

)
.

As our final example, take p = [k1, k2, k3], allowing p = [(λ1, µ1), (λ2, µ2), (λ3, µ3)].

By the same considerations as the previous two examples, the non-symmetrised mono-

mials xλ1
1 yµ1

1 xλ2
2 yµ2

2 xλ3
3 yλ3

3 fit into the R k1
2

⊗ R k2
2

⊗ R k3
2

representation of SU(2). If

all three of the ks are distinct, this is the correct representation for the symmetrised

monomials. If two of the ks coincide and the third is distinct, e.g. k1 = k2 6= k3,

then the Mp live in Sym2
(
R k1

2

)
⊗ R k3

2

. Finally, if k1 = k2 = k3, then there are 6

permutations of the basic monomial that lead to the same multi-symmetric function

and should be identified. These are

xλ1
1 yµ1

1 xλ2
2 yµ2

2 xλ3
3 yλ3

3 xλ2
1 yµ2

1 xλ3
2 yµ3

2 xλ1
3 yλ1

3 xλ3
1 yµ3

1 xλ1
2 yµ1

2 xλ2
3 yλ2

3

xλ1
1 yµ1

1 xλ3
2 yµ3

2 xλ2
3 yλ2

3 xλ3
1 yµ3

1 xλ2
2 yµ2

2 xλ1
3 yλ1

3 xλ2
1 yµ2

1 xλ1
2 yµ1

2 xλ3
3 yλ3

3 (7.3.23)

In an analogous way to the single coincidence, this leads to us using the completely

symmetric part of the triple tensor product, written Sym3
(
R k1

2

)
. This is the part of

R⊗3
k1
2

that is invariant under all S3 permutations.

From the principles established in these three examples, we can generalise to a

generic integer partition p. The multi-symmetric functions with associated partition

p = [1p1 , 2p2 , . . . ] fit into the representation of SU(2) given by

RSU(2)
p = RSU(2)

p =
⊗
i

Sympi
(
R i

2

)
(7.3.24)

Restoring the U(1) weight, as a U(2) representation this is

RU(2)
p = RU(1)

n ⊗RSU(2)
p

=
⊗
i

R
U(1)
ipi
⊗ Sympi

(
Symi

(
R 1

2

))
=
⊗
i

Sympi
(
R
U(1)
i ⊗ Symi

(
R 1

2

))
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=
⊗
i

Sympi
(

Symi
(
R
U(1)
1 ⊗R 1

2

))
=
⊗
i

Sympi
(
Symi (V2)

)
(7.3.25)

where we have used R i
2

= Symi
(
R 1

2

)
for SU(2) representations and the fundamental

representation of U(2) is V2 = R
U(1)
1 ⊗R 1

2
.

So the problem of finding MΛ,p reduces to a U(2) representation theory problem

of finding the multiplicity of R
U(2)
Λ within the representation RU(2)

p , or equivalently the

SU(2) representation theory problem of finding the multiplicity of Rj within RSU(2)
p

and using the correspondence j ↔ Λ =
[
n
2 + j, n2 − j

]
for U(2) representations of U(1)

weight n.

We will solve the SU(2) problem. In order to do this, we calculate the character

of the representation (7.3.24) and compare it to the known characters of the spin

representations. From standard SU(2) representation theory we know that

χRj
(
qJ3
)

= qj + qj−1 + · · ·+ q−j = q−j
(1− q2j+1)

(1− q)
(7.3.26)

So the multiplicity of Rj inside a direct sum representation R is given by

Mult (Rj , R) = Coeff
[
q−j , (1− q)χR

(
qJ3
)]

(7.3.27)

Taking a single factor of (7.3.24), the character of Sympi
(
R i

2

)
was calculated in [112]

and is given by

χ
Sympi

(
R i

2

) (qJ3
)

= q−
ipi
2

(1− qpi+1)

(1− q)
(1− qpi+2)

(1− q2)
· · · (1− q

pi+i)

(1− qi)

= q−
ipi
2 Fi,pi(q) (7.3.28)

where

Fi,pi =
(1− qpi+1)

(1− q)
(1− qpi+2)

(1− q2)
· · · (1− q

pi+i)

(1− qi)
(7.3.29)

So the multiplicity of Rj inside RSU(2)
p is

Mult
(
Rj ,RSU(2)

p

)
= Coeff

(
q−j , (1− q)

∏
i

q−
ipi
2 Fi,pi(q)

)

= Coeff

(
q−j , (1− q)q−

n
2

∏
i

Fi,pi(q)

)
(7.3.30)

Since the Λ = [n −m,m] representation of U(2) corresponds to spin j = n
2 −m, this
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means

Mult
(

[n−m,m],RU(2)
p

)
= Coeff

(
qm−

n
2 , (1− q)q−

n
2

∏
i

Fi,pi(q)

)

= Coeff

(
qm, (1− q)

∏
i

Fi,pi(q)

)
(7.3.31)

Writing

Fp(q) =
∏
i

Fi,pi(q) (7.3.32)

we can give a simple formula for the multiplicity in terms of the coefficients of Fp

M[n−m,m],p = Coeff (qm, Fp)− Coeff
(
qm−1, Fp

)
(7.3.33)

We now take two distinct approaches to studying Fp. Firstly we derive a generic formula

forMΛ,p that allows simple computational calculations of the multiplicity for any Λ, p

of reasonable size. Secondly, we study sets of p which have identical multiplicities for

all Λ and give explicit results of MΛ,p for the simplest such sets.

7.3.2 Covariant trace bases

In the previous section we argued from the vector partition structure of the monomial

multi-symmetric functions that the Mp fit in to the representation RU(2)
p of U(2), where

p is the integer partition associated to p. Performing a similar process on the multi-

trace multi-symmetric functions Tp (or equivalently symmetrised trace operators), the

U(2) action not only preserves p(p), it has exactly the same form as the action on

monomials Mp. That is, given U ∈ U(2) with action

UMp =
∑
q

aqpMq (7.3.34)

for some coefficients aqp, then the action of U on symmetrised traces is

UTp =
∑
q

aqpTq (7.3.35)

Therefore sorting Mp into a U(2) covariant basis is mathematically identical to sorting

Tp into a U(2) covariant basis. It follows that the linear maps C, C̃ relating Mp and

Tp are U(2) equivariant, and we can define a U(2) covariant symmetrised trace basis

TΛ,MΛ,p,ν =
∑

p : p(p)=p

Bp
Λ,MΛ,p,ν

Tp (7.3.36)
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In [51], the authors proved that the multiplicity of Λ, p in the symmetrised trace co-

variant basis is

MΛ,p = χΛ(Pp) (7.3.37)

where χΛ is the Sn character of Λ and Pp is an element of C(Sn) that projects onto

symmetrised traces with cycle type p. We discuss this projector in section 7.3.7.

The formulae (7.3.33) and (7.3.37) give MΛ,p from U(2) and Sn representation

theory respectively. The former is more amenable to explicit calculations.

As discussed above (7.2.23), the symmetrised trace operators Tp with l(p) ≤ N

form a basis for symmetrised traces (but not pre-BPS operators) at finite N . Since the

p label in (7.3.36) has the same length as p, this property also holds for TΛ,MΛ,p,ν .

In addition to the symmetrised trace covariant basis, there is a corresponding U(2)

covariant basis for commutator traces. It follows from the definitions (3.6.10) that the

U(2) generators act on a simple commutator as

Rij [X,Y ] = δij [X,Y ] (7.3.38)

Any commutator trace, generically containing a more complicated commutator than

[X,Y ], can be written as a linear combination of traces containing [X,Y ]. So (7.3.38)

shows that the space of commutator traces forms a U(2) representation. By similar

considerations to Mp and Tp, these can be further sorted by an integer partition p ` n
that describes the factorisation of a commutator multi-trace into single traces.

In [49], the authors used superspace techniques in the SU(N) gauge theory to de-

velop candidate quarter-BPS operators and SUSY descendent operators. These are ex-

actly the covariant symmetrised trace and commutator trace bases respectively, though

they did not include partitions with components of size 1, since in the SU(N) theory,

traces of individual matrices vanish.

The covariant bases for symmetrised and commutator traces are used in appendices

G.1, G.2 and G.3 to describe the final BPS operators at n = 5, 6. In this section

we will focus on the covariant monomials and not comment further on the covariant

symmetrised or commutator traces.

7.3.3 General multiplicity formula

We now find an expression for

Coeff (qm, Fp(q)) (7.3.39)

This is done explicitly for m = 0, 1, 2, 3, from which we extrapolate the general result.

The relevant parts of p to describe the coefficients in (7.3.32) are

cj,k = |{i : i > j, pi ≥ k}| j ≥ 0, k ≥ 1 (7.3.40)
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p Young diagram Table of cj,k Table of sl

[4, 3, 2, 1]

cj,k k = 1

j = 0 4
j = 1 3
j = 2 2
j = 3 1

s1 = 4
s2 = 3
s3 = 2
s4 = 1

[3, 3, 2, 1, 1]

cj,k k = 1 k = 2

j = 0 3 2
j = 1 2 1
j = 2 1 1

s1 = 3
s2 = 4
s3 = 2
s4 = 1

[3, 3, 3]

cj,k k = 1 k = 2 k = 3

j = 0 1 1 1
j = 1 1 1 1
j = 2 1 1 1

s1 = 1
s2 = 2
s3 = 3
s4 = 2
s5 = 1

Figure 7.2: Examples of the non-zero cj,k and sl for various integer partitions p.

Let Yj(p), j ≥ 0 be the Young diagram of p with the first j columns removed. Then

intuitively, cj,k is the number of vertical edges of length k or greater in Yj(p). It follows

that cj,1 is the number of corners in Yj(p), and c0,1 is the number of corners in the full

Young diagram Y (p). Figure 7.2 shows some examples to illustrate this. The full set

of cj,k completely determines the partition p.

It will also be useful to define

sl =
∑
j+k=l

cj,k (7.3.41)

We have included examples of the sl in figure 7.2. In contrast to the cj,k, the sl do not

define the partition p. For example, p = [2] and p = [1, 1] both have s1 = 1, s2 = 1

and all others zero. The sets of partitions which have identical sl for all l are studied

in section 7.3.4.

To find the coefficients of q0,1,2,3 in Fp(q), we look at the low order terms from the
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definitions (7.3.29) and (7.3.32). For all i > 0, Fi,pi contains the factor

(1− qpi+1)

(1− q)
= 1 + q + q2 + · · ·+ qpi (7.3.42)

For all i > 1, Fi,pi contains, in addition to the above, the factor

(1− qpi+2)

(1− q2)
= (1 + q2 + q4 + · · · )(1− qpi+2) (7.3.43)

= 1 + q2 − qpi+2 +O(q4) (7.3.44)

For all i > 2, the factor Fi,pi contains, in addition to the above,

(1− qpi+3)

(1− q3)
= (1 + q3 + · · · )(1− qpi+3) (7.3.45)

= 1 + q3 − qpi+3 +O(q4) (7.3.46)

All other factors in the definition (7.3.29) of Fi,pi are of the form 1 + O(q4) so we can

ignore them for our purposes, giving

Fp = f1f2f3 +O(q4) (7.3.47)

where

f1 =
∏
i>0

(1 + q + q2 + · · ·+ qpi) (7.3.48)

f2 =
∏
i>1

(1 + q2 − qpi+2 + · · · ) (7.3.49)

f3 =
∏
i>2

(1 + q3 − qpi+3 + · · · ) (7.3.50)

From this we can read off

Coeff
(
q0, Fp

)
= 1 (7.3.51)

All the qs in the expansion of Fp come from f1, with the coefficient given by the number

of pi ≥ 1. From the definitions (7.3.40) and (7.3.41), we can express this as

Coeff (q, Fp) = c0,1 = s1 (7.3.52)

There are three ways to arrive at a q2 from the product (7.3.47).

1. We can take a q2 from a factor of f2 and 1 from every other factor. Within f2,

this happens whenever pi ≥ 1 for i > 1, so there are c1,1 different ways of doing

this. Therefore this route contributes c1,1 to the coefficient of q2.
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2. We can take a q2 from a factor of f1. Each factor contains a q2 term only if

pi ≥ 2, so the number of different ways of doing this is c0,2.

3. We can take a q from a pair of the f1 factors. There are
(c0,1

2

)
different ways of

doing this.

So we arrive at the expression

Coeff
(
q2, Fp

)
= c0,2 + c1,1 +

(
c0,1

2

)
= s2 +

s1(s1 − 1)

2
(7.3.53)

Looking at q3, there are six distinct ways to arrive at a q3 from the product (7.3.47).

1. We can take a q3 from a factor of f3. There are c2,1 different ways of doing this.

2. We can take a q3 from a factor of f2. This can only be done if pi = 1, as

it comes from the term qpi+1. The number of factors with pi = 1 is given by

c1,1 − c1,2. Noting that any q3 obtained in this manner comes with a minus sign,

this contributes c1,2 − c1,1 to the coefficient.

3. We can take a q3 from a factor of f1. There are c0,3 ways of doing this.

4. We can take a q2 from a factor of f2 and a q from a factor of f1. There are c1,1c0,1

ways of doing this.

5. We can take a q2 from a factor of f1 and a q from a different factor of f1. There

are c0,2(c0,1 − 1) different ways of doing this.

6. We can take a q from three different factors of f1. There are
(c0,1

3

)
different ways

of doing this.

Collecting everything, we have

Coeff
(
q3, Fp

)
= c2,1 + c1,2 − c1,1 + c0,3 + c1,1c0,1 + c0,2(c0,1 − 1) +

(
c0,1

3

)
= c2,1 + c1,2 + c0,3 + (c1,1 + c0,2)(c0,1 − 1) +

(
c0,1

3

)
= s3 + s2(s1 − 1) +

s1(s1 − 1)(s1 − 2)

6
(7.3.54)

A similar process for the coefficient of q4 leads to

Coeff
(
q4, Fp

)
= c0,4 + c1,3 + c2,2 + c3,1 + (c0,3 + c1,2 + c2,1)(c0,1 − 1)

+

(
c0,2 + c1,1

2

)
+ (c0,2 + c1,1)

(
c0,1 − 1

2

)
+

(
c0,1

4

)
= s4 + s3(s1 − 1) +

s2(s2 − 1)

2
+
s2(s1 − 1)(s1 − 2)

2
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+
s1(s1 − 1)(s1 − 2)(s1 − 3)

24
(7.3.55)

In (7.3.51), (7.3.52), (7.3.53), (7.3.54) and (7.3.55) we have expressed the first 5 coef-

ficients in the expansion of Fp in terms of the sl. The terms in these sums correspond

to the partitions of the exponent of q. For example in (7.3.55), the terms correspond

respectively to the partitions [4], [3, 1], [2, 2], [2, 1, 1] and [1, 1, 1, 1]. This leads us to

suggest the general formula

Coeff (qm, Fp) =
∑
λ`m

[∏
k

(sλk − k + 1)

][∏
i

1

µi!

]
(7.3.56)

where we have used both the component notation λ = [λ1, λ2, ...] and the multiplicity

notation λ =< µ1, µ2, · · · > for λ.

In work for this thesis, we have algebraically proved this formula for m ≤ 6, and

have numerically checked it up to m = 20. A proof for general m and p is a problem

for future work.

It is interesting to note that since Fp is a palindromic polynomial (arising from

the q → q−1 invariance of SU(2) characters), these coefficients form a palindromic

sequence. Explicitly,

Coeff (qm, Fp) = Coeff
(
qn−m, Fp

)
(7.3.57)

As the sums over λ in (7.3.56) get extremely complicated for large m, this is quite

surprising, and leads us to suspect there is more hidden structure in the sum (7.3.56).

Combining (7.3.33) with (7.3.56) gives us an explicit formula for MΛ,p

M[n−m,m],p =
∑
λ`m

[∏
k

(sλk − k + 1)

][∏
i

1

µi(λ)!

]

−
∑

λ`m−1

[∏
k

(sλk − k + 1)

][∏
i

1

µi(λ)!

]
(7.3.58)

Applying this to m = 0 to 4, the formulae are

M[n],p = 1 (7.3.59)

M[n−1,1],p = s1 − 1 (7.3.60)

M[n−2,2],p = s2 +
s1(s1 − 3)

2
(7.3.61)

M[n−3,3],p = s3 + s2(s1 − 2) +
s1(s1 − 1)(s1 − 5)

6
(7.3.62)
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M[n−4,4],p = s4 + s3(s1 − 2) + s2(s2 − 1) +
s2(s2 − 1)

2

+
s2(s1 − 1)(s1 − 4)

2
+
s1(s1 − 1)(s1 − 2)(s1 − 7)

24
(7.3.63)

These formulae are independent of N , so to get finite N multiplicities we impose the

finite N cut-off on p. Including this, the general multiplicity formula is

M[n−m,m],p =

(7.3.58) l(p) ≤ N

0 l(p) > N
(7.3.64)

We can also look at the total Λ multiplicity MΛ by summing over all p ` n

M[n−m,m] =
∑

p`n,l(p)≤N

M[n−m,m],p

=
∑

p`n,l(p)≤N

(∑
λ`m

[∏
k

(sλk − k + 1)

][∏
i

1

µi(λ)!

]

−
∑

λ`m−1

[∏
k

(sλk − k + 1)

][∏
i

1

µi(λ)!

])
(7.3.65)

From representation theory considerations [10], the sectors with Λ = [n] and [n− 1, 1]

do not undergo a step-change as we turn on the coupling constant. Therefore the weak

coupling combinatorics of these sectors should match the free field combinatorics of

section 3.6.2. A priori, the combinatorics should agree when considering the entire

Λ = [n] or [n− 1, 1] sector. We find a stronger result: the combinatorics of the Young

diagram label R in (3.6.20) matches the partition p of this section.

From (7.3.63), for Λ = [n] the multiplicity of any given p is 1, while for Λ = [n−1, 1]

recall that s1 = c0,1 is the number of corners of p, so the multiplicity of p is simply

the number of corners subtract 1. As expected, these match (3.6.22) and (3.6.23)

respectively and therefore

C(R,R,Λ) =MΛ,R (7.3.66)

for Λ = [n] and [n− 1, 1].

7.3.4 Hermite reciprocity and p-orbits of fixed MΛ,p

There are collections of p which lead to the same multiplicities for all Λ. To under-

stand these, we look at the definition (7.3.29) of Fi,pi . If i > pi, the numerator and
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denominator start cancelling, and we end up with

Fi,pi =

(
1− qi+1

)
(1− q)

(1− qi+2)

(1− q2)
· · · (1− q

i+pi)

(1− qpi)
= Fpi,i (7.3.67)

We can rewrite this to be explicitly symmetric in i↔ pi

Fi,pi = Fpi,i =

(
1− qmax(i,pi)+1

)
(1− q)

(1− qmax(i,pi)+2)

(1− q2)
· · · (1− qi+pi)(

1− qmin(i,pi)
) (7.3.68)

This symmetry is known as Hermite reciprocity [113] and can be viewed as a property

of SU(2) characters.

We can use this i↔ pi symmetry to do transformations on partitions that keep the

product Fp the same, and by extension all the associated Λ multiplicities.

As our first example, take p to be rectangular, so p = [ipi ] for some particular choice

of i. Then the conjugate partition pc = [(pi)
i] has the same F , leading to the same

multiplicities for all Λ. Note that pc = p if i = pi.

Now suppose p = [ipi , jpj ] for i < j. Then there are three candidates for partitions

with the same F , namely

p(1) =
[
(pi)

i, jpj
]

(7.3.69)

p(2) =
[
ipi , (pj)

j
]

(7.3.70)

p(3) =
[
(pi)

i, (pj)
j
]

(7.3.71)

The partition given by p(1) will only produce the same F if j 6= pi. If j = pi, then p(1)

should be written as [ji+pj ] and the F s no longer match. Similarly p(2) will only match

if i 6= pj and p(3) if pi 6= pj .

To visualise the transformations taking p to p(1,2,3), split p into two rectangles

stacked on top of each other. Then p(1) is obtained by rotating the i rectangle through

90 degrees, reordering the two rectangles if appropriate, and re-stacking them. In the

same manner, p(2) is obtained by rotating the j rectangle, and p(3) by rotating both.

We take p = [4, 3, 3] as an example

p = p(1) = p(2) = p(3) = (7.3.72)

When one of the dimensions of the first rectangle coincides with one of the dimensions

of the second rectangle, one or more of these four options will reduce from two distinct
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rectangles into one larger rectangle, and hence to a different F . If there is one coinci-

dence, for example p = [3, 2] where we have p2 = p3 = 1, we only have three partitions

with the same F

p = p(1) = p(2) = (7.3.73)

If there are two coincidences, then the partition is not related to any other via these

transformations. There are three distinct ways for these two coincidences to occur.

Firstly, three of the dimensions could be the same, while the fourth is different, for

example p = [2, 2, 1, 1]. Secondly, both rectangles are squares, with distinct sizes, for

example p = [2, 2, 1]. Finally, the two rectangles are identical, but are non-square, for

example p = [2, 1, 1]. These three partitions are shown below

(7.3.74)

The generalisation to more rectangles is straightforward. A partition made from k

rectangles can be related to as many as 2k others by rotating a subset of the k rectangles.

These rotations are only valid if the widths of all the rotated rectangles are distinct. As

an example, consider all partitions of 5. These fall into 4 orbits under these rotations

o1 =

{
,

}
o2 =

{ }
o3 =

{
, ,

}
o4 =

{ } (7.3.75)

The equivalent classification for partitions of 6 is

o1 =

{
,

}
o2 =

{ }
o3 =

{
, ,

}
o4 =

{
,

}
o5 =

{ }
o6 =

{ }
o7 =

{ } (7.3.76)

In appendices G.1, G.2 and G.3, we give explicit formulae for the n = 5, 6 basis elements.

As expected, the families of partitions above have the same multiplicities for all Λ.

The first orbit constructed from 2 rectangles to have all 4 dimensions distinct, and

therefore achieve the maximum size of 4 = 22 is found at n = 10 and is shown in
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(7.3.72). The first orbit constructed from 3 rectangles to have all 6 dimensions distinct

and have maximum size 8 = 23 is found at n = 28, and consists of
, , , , , , ,


(7.3.77)

In the half-BPS sector, the Young diagram label of the Schur basis 2.3.14 gives us the

properties of the corresponding giant graviton in the AdS/CFT correspondence. A

partition with k ∼ 1 rows of length L ∼ N describes k giant gravitons (or a single

giant graviton wrapped k times) extended in AdS5 of angular momentum L. Similarly,

a partition with k columns of length of length L describes k giant gravitons extended

in S5 of angular momentum L.

These orbits of partitions with identical multiplicities at all Λ allow us to identify

families of different giant graviton states that behave the same under quarter-BPS

deformations.

Taking the simplest example of a single rectangle with p = [kL], this rectangle

rotation symmetry means k coincident giant gravitons rotating with angular momentum

L in AdS5 behave the same way as k coincident giant gravitons rotating with angular

momentum L in S5.

A system of two AdS giant gravitons with different angular momenta has p = [k1, k2]

with k1, k2 ∼ N and k1 6= k2. Then we can rotate each of the rows individually to get

p = [k1, 1
k2 ] or p = [k2, 1

k1 ], however we cannot rotate both at the same time. Therefore

the behaviour of two non-coincident sphere giants under quarter-BPS deformations is

different to that of two non-coincident AdS giants. This is studied further in the next

section.

7.3.5 Calculation of multiplicities for simplest orbits

For some of the simplest orbits of partitions under rectangle rotation, we can describe

the Λ multiplicities explicitly. These are dual to one or two giant gravitons wrapped

around the AdS5 or S5 factors of AdS5 × S5.

Recall from (7.3.33) that (1−q)Fp is the generating function for the Λ multiplicities.

More specifically, the coefficient of qm is the multiplicity of Λ = [n−m,m] for m ≤
⌊
n
2

⌋
.

We start with p = [1n] or equivalently p = [n].

(1− q)F[n] = (1− q)F1,n = 1− qn+1 (7.3.78)

So Λ = [n] appears with multiplicity 1, and all other Λ have multiplicity 0. In the
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dual string theory, this means a single half-BPS giant graviton cannot deform into the

quarter-BPS sector.

We next consider rectangles with side lengths 2 and k ≥ 2, so p = [2k] or [k, k].

(1− q)F[k,k] = (1− q)F2,k =
(1− qk+1)(1− qk+2)

1− q2

= (1 + q2 + q4 + . . . )(1− qk+1 − qk+2 + q2k+3)

= 1 + q2 + q4 + · · ·+ qbkc2 +O(qk+1) (7.3.79)

where bkc2 = 2
⌊
k
2

⌋
is k rounded down to the nearest multiple of 2. Since we are only

interested in the terms with exponent ≤ k = n
2 , we can ignore the O(qk+1) parts of

the expression. Then Λ = [n −m,m] appears with multiplicity 1 if m is even, and 0

otherwise.

The dual interpretation of p = [k, k] is two coincident AdS giants, while p = [2k] is

two coincident sphere giants. Then (7.3.79) states that these states can be deformed

deep into the quarter-BPS sector. In some sense, the quarter-BPS state ‘furthest’ from

half-BPS is Λ = [n2 ,
n
2 ], and this arrangement of giants can be deformed right up to

that limit if n
2 is even (and only one away if n

2 odd). However, not all quarter-BPS

deformations are available. In particular the ‘smallest’ deformation Λ = [n− 1, 1] does

not exist, and we must deform by ‘twice’ as much for each step into the quarter-BPS.

Now look at a combination of two rectangles, both with one dimension of length 1.

Let the other dimensions be k ≥ l. If k = l, then the orbit has size 1, namely p = [k, 1k].

Otherwise, the orbit consists of three partitions, p = [k, l], p = [k, 1l], p = [l, 1k]. The

considerations of the orbit size do not affect the calculation of multiplicities. This

calculation is

(1− q)F[k,l] = (1− q)F1,kF1,l =
(1− qk+1)(1− ql+1)

1− q
= (1 + q + q2 + . . . )(1− ql+1 − qk+1 + qk+l+2)

= 1 + q + q2 + · · ·+ ql +O(qk+1) (7.3.80)

So Λ = [n−m,m] appears with multiplicity 1 if m ≤ l and 0 otherwise.

For k > l, based on the argument that keeping Y (p) fixed and deforming Λ = [n]

to Λ = [n− n2, n2] preserves the qualitative physics of the giant states, we expect the

partition p = [k, l] corresponds to two non-coincident AdS giants when k, l are of order

N . The multiplicity of Λ we are getting above is precisely the multiplicity of U(2)

reps in (Λ = [k]) ⊗ (Λ = [l]). Indeed the U(2) representation for the quantum states

constructed from multi-symmetric functions Mp with associated partition p = [k, l] is

Symk(V2)⊗ Syml(V2) = RU(2)
p=[k] ⊗R

U(2)
p=[l]. The case p = [k, k] corresponds, by the same

argument, to bound state of two AdS giants of angular momentum k. In this case
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the multi-symmetric construction gives the U(2) representation Sym2(Symk(V2)) =

Sym2(Λ = [k]), which is the symmetric subspace of RU(2)
p=[k]⊗R

U(2)
p=[k]. The projection to

the symmetric part accounts for the missing powers of q in (7.3.79) compared to the

p = [k, l] case (7.3.80).

To look at two non-coincident sphere giants, we consider p = [l, l, k − l] for k > l.

After rotating both rectangles, this is equivalent to p = [2l, 1k−l], corresponding to two

sphere giants of momenta k and l respectively. This has

(1− q)F[l,l,k−l] = (1− q)F2,lF1,k−l =
(1− ql+1)(1− ql+2)(1− qk−l+1)

(1− q)(1− q2)

=
(
1− qk−l+1 − ql+1 − ql+2 + q2l+3 +O(qk)

)
(1 + q + 2q2 + 2q3 + 3q4 + 3q5 + . . . ) (7.3.81)

Where we can ignore terms of order k and higher as these exponents are greater than
n
2 = k+l

2 .

Let am = 0 for m < 0 and am =
⌊
m
2

⌋
+ 1 for m ≥ 0, the coefficient of qm in the

second factor of (7.3.81). Then the coefficient of qm in (7.3.81) is

M[n−m,m],[l,l,k−l] = am − am−k+l−1 − am−l−1 − am−l−2 + am−2l−3 (7.3.82)

The exact formulae for the multiplicities depend on the relative sizes of k and l. If

k ≤ 2l, then

M[n−m,m],[l,l,k−l] =



⌊
m
2

⌋
+ 1 0 ≤ m ≤ k − l⌊

m
2

⌋
−
⌊
m−k+l−1

2

⌋
k − l + 1 ≤ m ≤ l⌊

m
2

⌋
−
⌊
m−k+l−1

2

⌋
−m+ l l + 1 ≤ m ≤ k+l

2

(7.3.83)

where we have used⌊
c− 1

2

⌋
+

⌊
c− 2

2

⌋
=
c− 1

2
+
c− 2

2
− 1

2
= c− 2 (7.3.84)

for c = m− l.
If 2l ≤ k ≤ 3l, then

M[n−m,m],[l,l,k−l] =



⌊
m
2

⌋
+ 1 0 ≤ m ≤ l⌊

m
2

⌋
−m+ l + 1 l + 1 ≤ m ≤ k − l⌊

m
2

⌋
−
⌊
m−k+l−1

2

⌋
−m+ l k − l + 1 ≤ m ≤ k+l

2

(7.3.85)
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Finally, if k ≥ 3l

M[n−m,m],[l,l,k−l] =



⌊
m
2

⌋
+ 1 0 ≤ m ≤ l⌊

m
2

⌋
−m+ l + 1 l + 1 ≤ m ≤ 2l

0 2l + 1 ≤ m ≤ k+l
2

(7.3.86)

For two sphere giants of momenta k, l / N , the multiplicities fall into category (7.3.83).

Roughly speaking, the multiplicity of Λ = [n−m,m] increases as m
2 until reaching k−l

2 .

It then stays constant until m reaches l before turning around and decreasing for m ≥ l,
reaching 0 at m = n

2 .

From the construction based on multi-symmetric functions, the states for p =

[2l, 1k−l] form, in all the cases, the U(2) representation

Syml(Sym2(V2))⊗ Symk−l(V2) = Sym2(Syml(V2))⊗ Symk−l(V2)

= RU(2)

p=[2l]
⊗RU(2)

p=[1k−l]

= RU(2)
p=[l,l] ⊗R

U(2)
p=[k−l] (7.3.87)

So the construction implies that the 2-sphere-giant system for p = [2k, 1k−l] have the

same multiplicities as a composite consisting of the 2-sphere-giant bound state p = [2l]

along with a 1-sphere giant system [1(k−l)], while Hermite reciprocity further implies

that these multiplicities are also the same as those of an AdS 2-giant bound state of

angular momentum l composed with a single AdS giant of angular momentum k − l.
We can see a marked difference between the behaviour of two non-coincident sphere

giants compared to two non-coincident AdS giants. In (7.3.80) the multiplicity of each Λ

was at most 1, so there was a unique way of deforming the arrangement of AdS giants

at each stage on their way into the quarter-BPS sector. Furthermore, the furthest

possible deformation was m = l, the lesser of the two momenta of the gravitons. With

(7.3.83) the multiplicities can be larger than 1, and are non-zero right up to m = n
2 . So

there are a multitude of ways of deforming sphere giants, and they can be deformed all

the way into the quarter-BPS. Interestingly, when the two momenta are more uneven,

and m can get as high as m = 2l, there is a cut-off on the possible deformations. This

is twice the equivalent cut-off for non-coincident AdS giants.

We have interpreted p = [2l, 1k−l] as corresponding to two non-coincident sphere

giants in order to compare with the equivalent system of AdS giants. However, when

l, k − l ∼ N , the rotation p = [l, l, k − l] is exactly the system of two coincident AdS

giants of momenta l and a third giant of momenta k− l. So two separated sphere giants

have the same behaviour as a system of three AdS giants.

It is worth remarking that there are important differences in how the same Hilbert
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spaces of N free bosons in a harmonic oscillator are arrived at in the two problems

of quantizing moduli spaces of sphere giants [27] and the moduli space of AdS giants

[40]. In [27] quarter-BPS multi-giant systems are described by Fock space oscillators

associated with higher order polynomials in x, y. In [40] there is a relatively simpler

phase space of classical AdS solutions which is C2 (and C3 in the more general eighth-

BPS case) and the full Hilbert space is obtained by considering an N particle boson

system based on this 1-particle system. This serves to explain why the gauge theory

construction of BPS operators we are giving here, which is intimately tied to a weak-

coupling gauge theory realization of the multi-free boson Hilbert space, leads to simpler

compositeness structures for the AdS giants as discussed above.

7.3.6 Partitions with one dominant row or column

There is another family of partitions that have nice properties. Consider p ` n in which

the first row dominates the partition, i.e. p = [λ1, p̂], where λ1 ≥ n
2 and p̂ ` n̂ = n−λ1.

With one exception, when λ1 = n
2 and p̂ = [λ1] (this case has already been consid-

ered in (7.3.79)), this leads to

Fp = Fλ1,1Fp̂ =
1− qλ1+1

1− q
Fp̂ (7.3.88)

and therefore

(1− q)Fp = (1− qλ1+1)Fp̂ (7.3.89)

Using the second equation in (7.3.33), we have

M[n−m,m],[λ1,p̂] = Coeff

[
qm, (1− q)

∏
i

Fi,pi(q)

]
= Coeff

[
qm, (1− qλ1+1)Fp̂

]
(7.3.90)

Since m ≤ n
2 for Λ to be valid Young diagram and λ1 + 1 > n

2 by the dominant first

row property, it follows that

Coeff
(
qm, qλ1+1Fp̂

)
= 0 (7.3.91)

and we can simplify (7.3.90) to

M[n−m,m],[λ1,p̂] = Coeff (qm, Fp̂) (7.3.92)

Thus, the generating function for the Λ multiplicities is just Fp̂ and does not depend

on λ1. We can now use our study of the coefficients of F from section 7.3.3 to give the

Λ multiplicities. Note that the dominant first row condition has allowed us to obtain
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a simple formula for (1 − q)Fp in terms of Fp̂. As a result the multiplicities are being

obtained simply from the coefficients of a known generating function (Fp̂). This is

simpler than the procedure of section 7.3.3 where the Λ multiplicities were obtained

from the difference of two consecutive coefficients in Fp.

Using the formulae (7.3.59)-(7.3.63) we can write

Fp̂(q) =
∑
m

qmM[n−m,m],[λ1,p̂] = 1 + s1q +

(
s2 +

s1(s1 − 1)

2

)
q2

+

(
s3 + s2(s1 − 1) +

s1(s1 − 1)(s1 − 2)

6

)
q3 + . . .

(7.3.93)

Where the si refer to si(p̂), not si(p).

As previously observed in (7.3.57), the coefficients of Fp̂ form a palindromic se-

quence, starting and ending with 1 at q0 and qn̂. Adding this to (7.3.93), we have

∑
m

qmM[n−m,m],[λ1,p̂] = 1 + s1q +

(
s2 +

s1(s1 − 1)

2

)
q2

+

(
s3 + s2(s1 − 1) +

s1(s1 − 1)(s1 − 2)

6

)
q3

+ . . .

+

(
s3 + s2(s1 − 1) +

s1(s1 − 1)(s1 − 2)

6

)
qn̂−3

+

(
s2 +

s1(s1 − 1)

2

)
qn̂−2 + s1q

n̂−1 + qn̂ (7.3.94)

In summary, for p of the form p = [λ1, p̂], where p̂ ` n̂ and λ1 ≥ n
2 , the multiplicities

of Λ = [n] and Λ = [n − n̂, n̂] are exactly 1, the multiplicities of Λ = [n − 1, 1] and

Λ = [n − n̂ + 1, n̂ − 1] are the number of corners in p̂, and the general multiplicity

of Λ = [n − m,m] can be read from (7.3.56) with p = p̂ if m ≤ n̂ or is 0 if m > n̂.

Furthermore, when m ≤ n̂, sending m→ n̂−m does not affect the multiplicity :

M[n−m,m],[λ1,p̂] =M[n−n̂+m,n̂−m],[λ1,p̂] (7.3.95)

These properties have interesting implications. For a given n, n̂ ≤ n
2 , there are a large

class of partitions with a dominant single row of length n−n̂ for which the combinatorics

of the deep quarter-BPS sector are determined by the combinatorics of the near half-

BPS sector. For Λ = [n − n̂, n̂], there is a multiplicity of exactly 1 for any of the

partitions in this class, which is the same combinatorics as the half-BPS Λ = [n]. For

Λ = [n− n̂+1, n̂−1], the multiplicity is the same as the next to half-BPS Λ = [n−1, 1].

For Λ = [n] and [n − 1, 1], there is no change in spectrum as we turn on the coupling

222



CHAPTER 7. QUARTER-BPS OPERATORS IN THE U(N) THEORY AT WEAK
COUPLING

constant. Therefore the combinatorics of the Λ = [n− n̂, n̂], [n− n̂+1, n̂−1] sectors (for

this class of partitions) at weak coupling are determined by free field considerations.

It would be interesting to find out whether this unreasonable effectiveness of the

free theory has any connections to arguments in [47, 114] that important features of

black hole physics in AdS5 × S5 are captured by the free theory.

More generally, if m � n̂ . n
2 , then Λ = [n − m,m] is a small deviation from

half-BPS while Λ = [n − n̂ + m, n̂ − m] is a long way into the quarter-BPS sector,

and yet their combinatorics are identical for this class of partitions. An interesting

question is whether for these states with dominant first row in p (or dominant first

column) have a well-defined semi-classical brane or space-time interpretation which can

explain the coincidence of multiplicities between near-half-BPS and far-into-quarter-

BPS regimes. Near half-BPS states have been studied in the context of the BMN limit

of AdS/CFT [16]. In the context of giant gravitons, the physics of perturbations, in

some sense small, of well-separated multi-giants has been understood [31,35,52].

Using the rectangle rotation described in section 7.3.4, similar properties hold for

a single large column. Consider p with a first column of length µ1 and a partition p̄

attached to the right. This is denoted by p = [1µ1 ] + p̄. In terms of rectangles we can

use for the rotation symmetry, this is a partition [1l(p̄)] + p̄ with a single column below

it of length µ1 − l(p̄). So setting λ1 = µ1 − l(p̄) and p̂ = [1l(p̄)] + p̄, p is in the same

rotation orbit as [λ1, p̂], and we can apply the logic of this section directly to p.

As an example, consider µ1 = 8 and p̄ = [2, 1], with corresponding λ1 = 6, p̂ = [3, 2].

This is easiest to see visually

p = + =
rectangle
rotation−→ (7.3.96)

It is clear that the conditions on a single dominant column are more difficult to work

with than those for a single dominant row. Let µ1 and µ2 be the length of the first

and second columns respectively, then to use the analysis of this section, we require

µ1 − µ2 ≥ n
2 . This is a far smaller class of diagrams than given by the analogous

condition λ1 ≥ n
2 for a diagram with a single dominant row.

7.3.7 Identifying a multiplicity space basis

In discussing the decomposition (7.3.9) we have not specified a choice of basis for V mult
Λ,p ,

instead introducing a multiplicity index ν in the state (7.3.11). In this section we outline

an algebraic approach to choosing a basis and characterising ν.
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As seen in (7.3.4), R
U(2)
p is a subspace of (V2)⊗n. There is an Sn action on (V2)⊗n

by permutation of the tensor factors, and R
U(2)
p is the subspace invariant under the

subgroup Gp of Sn. For p = [1p1 , 2p2 , . . . ] ` n, this subgroup, which is discussed in [51],

is

Gp =×
i

Spi [Si] (7.3.97)

where Spi [Si] is the wreath product of Spi with Si. This is defined as the semi-direct

product of Spi with (Si)
pi , where Spi acts on (Si)

pi by permutation of factors.

Gp contains as a subgroup the group G(π) given in (7.2.55), where π ∈ Π(n) is a

set partition with block size sizes given by p. Gp consists of G(π) with the addition of

the Spi factors.

The projector onto the Gp-invariant space is

Pp =
1

|Gp|
∑
σ∈Gp

σ (7.3.98)

which acts on a permutation τ ∈ Sn via the adjoint action

Pp(τ) =
1

|Gp|
∑
σ∈Gp

στσ−1 (7.3.99)

This projector was used in [51] to derive the formula (7.3.37) for MΛ,p.

On the full space (V2)⊗n, the U(2) and Sn actions commute, and therefore they still

commute on the R
U(2)
p subspace. Since R

U(2)
p is the Gp-invariant subspace, we should

consider the action of the permutation subalgebra invariant under Gp-conjugation,

rather than the full group algebra C(Sn). This algebra is

Ap = Pp [C(Sn)] =
{
α ∈ C(Sn) |σασ−1 = α , ∀σ ∈ Gp

}
(7.3.100)

Now Ap acts on R
U(2)
p , but commutes with U(2), which means in the decomposition

(7.3.9) it acts only on the multiplicity space components. So to choose a basis for V mult
Λ,p ,

we can choose a maximally commuting set of operators in Ap and label the multiplicity

space basis by the eigenvalues of these operators.

The algebras Ap are in general quite complicated, and finding a maximally com-

muting set of operators within them is an involved computational problem that we do

not attempt to find a general solution for. They are a generalisation of the algebras

studied in [63,115].

224



CHAPTER 7. QUARTER-BPS OPERATORS IN THE U(N) THEORY AT WEAK
COUPLING

7.4 Construction of orthogonal U(2)×U(N) Young-diagram-

labelled basis

In Section 7.5 we show that for any n,N , we can construct BPS operators by ap-

plying GN to the subspace M̄≤N ⊂ C(Sn), and using the map (3.6.19) from permu-

tations to gauge invariant operators built from N × N matrices. The physical in-

ner product on such operators obtained from 2-point functions uses the element FN :

δ((GNσ1)FN (GNσ2)) = δ(σ1GNσ2). An orthogonal basis is obtained by choosing an

ordering (section 7.4.1) on the labels of the basis elements of M̄≤N and Gram-Schmidt

orthogonalising. The orthogonal basis elements SBPSΛ,MΛ,p,ν
are normalised in the Sn

inner product given in (3.6.26) (in section 7.5 this is the gn,N inner product). This

construction algorithm gives a basis of BPS operators which is not only orthogonal but

also SEP-compatible.

In this section we explain the construction of this orthogonal SEP-compatible basis

of BPS operators from the covariant monomials MΛ,MΛ,p,ν . We work with N × N

matrices X and Y , of which there are n in total, where we can consider N ≥ n or

N < n.

The final output will be a basis of BPS operators of the form

SBPSΛ,MΛ,p,ν
=

∑
R,τ

l(R)≤N

sR,τp,ν (Λ;N)OΛ,MΛ,R,τ (7.4.1)

where OΛ,MΛ,R,τ are the free field operators defined in (3.6.20) and the expansion

coefficients sR,τp,ν (Λ;N) are functions of N . These will in general consist of a polynomial

numerator and a denominator that is the square root of a polynomial.

Let us give a precise statement of SEP-compatibility for these operators. Take some

N̂ ≤ N , and evaluate these operators on matrices X and Y of size N̂×N̂ instead of size

N ×N . This means the free field operators with l(R) > N̂ vanish, and the coefficients

are evaluated at N̂ rather than N . Then the operators with l(p) > N̂ will vanish and

the operators with l(p) ≤ N̂ will form a basis for the reduced BPS sector. Moreover,

these are exactly the operators that would be produced by applying the construction

algorithm directly with matrices of size N̂ × N̂ .

Sections 7.4.1 through 7.4.4 describe how to construct SBPSΛ,MΛ,p,ν
and prove that this

basis is indeed BPS and SEP-compatible. In section 7.4.5 we give an equivalent, shorter

construction that is represented in figure 7.1. The remaining sections investigate various

properties of the bases.
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7.4.1 Orthogonalisation and SEP compatibility

In order to construct the basis (7.4.1), we use results from section 7.5. Define

M>

N̂
(N) = Span

{
MΛ,MΛ,p,ν(N) : l(p) > N̂

}
(7.4.2)

M≤
N̂

(N) = Span
{
MΛ,MΛ,p,ν(N) : l(p) ≤ N̂

}
(7.4.3)

for some N̂ ≤ N . The operators MΛ,MΛ,p,ν(N) are constructed by employing the

permutation to operator map in (3.6.19) with matrices X,Y of size N . Orthogonalise

M≤
N̂

against M>

N̂
using the Sn inner product (the g

n,N̂
inner product in section 7.5),

and denote the orthogonalised space by M̄≤
N̂

. Note here the distinction between N

and N̂ . The operators are defined using matrices of size N × N , while N̂ is used to

separate the operators into two classes depending on the length of p, the partition label

for operators.

The result (7.5.48) and the discussion below it prove several useful facts.

1. Setting N̂ = N , M̄≤N is the entire pre-BPS sector.

2. The subspace M̄≤
N̂

(N) is within the span of free field operators with l(R) ≤ N̂ .

In particular, operators within M̄≤
N̂

do not receive any contribution from free

field operators with l(R) > N̂ . To see this, note that M̄≤
N̂

= Im(P) ∩ Im(F
N̂

).

The general gauge invariant operators for matrices of size N are constructed

using permutation group algebra elements cut-off by l(R) ≤ N . The definition of

M̄≤
N̂

(N) involves the stronger restriction l(R) ≤ N̂ .

3. M̄≤
N̂

(N) gives a subspace of pre-BPS operators for matrices of size N . This

subspace is such that, when we reduce N to N̂ by lowering the size of the matrices

X and Y to N̂ × N̂ , these operators remain pre-BPS, and in fact form the entire

pre-BPS sector.

The first of these results tells us the minimum work necessary to create BPS operators.

Take an operator MΛ,MΛ,p,ν(N) with l(p) ≤ N , and orthogonalise it against M>
N to

give a new operator M̄Λ,MΛ,p,ν(N). These form a basis for the quarter-BPS sector. If

N ≥ n, then M>
N is empty, and no orthogonalisation is necessary.

However, for N̂ < N , operators M̄Λ,MΛ,p,ν(N) with l(p) ≤ N̂ are not necessarily

orthogonal to M>

N̂
, and therefore upon lowering N to N̂ < N , these are no longer

pre-BPS. In other words, this is not an SEP-compatible basis, and more work is needed

to find one. From the second and third points above, we have a sequence of pre-BPS

spaces

M̄≤1 (N) ⊂ · · · ⊂ M̄≤N−1(N) ⊂ M̄≤N (N) (7.4.4)
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such that for any N̂ ≤ N , the corresponding subspace M̄≤
N̂

is the entire pre-BPS sector

when we lower N to N̂ .

It is now clear how we construct an SEP-compatible basis. Each operatorMΛ,MΛ,p,ν(N)

must be orthogonalised in the Sn inner product against all operators MΛ,MΛ,q,η(N) with

l(q) > l(p). Then for any N̂ , the orthogonalised operators with l(p) ≤ N̂ form a basis

for M̄≤
N̂

. Note that operators in different Λ sectors are already orthogonal from the

hermiticity properties of U(2), so we do not need to consider these. In the subsequent

discussion we will describe in more detail the steps involved in the construction of SEP-

compatible orthogonal BPS operators starting from MΛ,MΛ,p,ν(N). We will henceforth

drop the label N and simply write MΛ,MΛ,p,ν , with the fact that we are describing the

construction for matrices of size N being understood. The parameter N̂ < N will come

up in discussion of SEP compatibility of the construction.

In section 7.1.1, we explained that if N < n, then MΛ,MΛ,p,ν picked an operator

that differed from a pre-BPS operator by addition of a commutator trace. Intuitively,

the orthogonalisation is removing the commutator trace part to leave only the pre-BPS

operator.

Before implementing the orthogonalisation, recall from section 7.1 that for N ≥ n,

applying GN to any basis of symmetrised traces gives BPS operators, without any

complicated orthogonalisation procedure. From the above, we can give a weaker bound

on N within a specific Λ sector.

Let p∗Λ be the longest (largest in the ordering (7.4.6)) partition withMΛ,p∗Λ
> 0. In

section 7.4.8 we prove that for Λ = [Λ1,Λ2], we have

l(p∗Λ) = n−
⌈

Λ2

2

⌉
(7.4.5)

Then if N ≥ l(p∗Λ), then M>
N has no operators transforming on the Λ representation

of U(2) and the operators MΛ,MΛ,p,ν do not need to be orthogonalised before applying

GN to get BPS operators.

Returning to the construction, to carry out the procedure we will use Gram-Schmidt

orthogonalisation, which requires choosing an ordering on partitions. To ensure the

correct properties when we lower N to some N̂ ≤ N , we must begin with the longest

partition, and proceed to the shortest. For those with the same length, any ordering

would suffice to create an SEP-compatible basis. A natural choice is to compare the

length of the second column and start with the longer. If this is also the same length,

the comparisons proceed along the columns until one is longer. If the partitions are

the same and the operators occupy a multiplicity space, we do not specify an ordering.

Any will suffice.

More formally, this ordering on partitions is the conjugate of the standard lexico-

graphic ordering of partitions, which compares partitions based on the length of the
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first row, followed by the second row, etc. Given pc = [λ1, λ2, . . . ], q
c = [µ1, µ2, . . . ],

then

p > q ⇐⇒ there is a k ≥ 1 such that

λi = µi i < k

λk > µk
(7.4.6)

The operators obtained by performing the orthogonalisation are denoted by Q̄Λ,MΛ,p,µ.

In section 7.4.8 we prove that MΛ,p∗Λ
= 1, so we drop the multiplicity. For this

partition we have

Q̄Λ,MΛ,p
∗
Λ

= MΛ,MΛ,p
∗
Λ

(7.4.7)

If we are performing the algorithm with N < l (p∗Λ), then the associated operator

MΛ,MΛ,p
∗
Λ

will reduce to a commutator trace or vanish. In the former case, there is no

difference to the algorithm, while in the latter, we instead start the orthogonalisation

with the largest p such that MΛ,p > 0 and the associated operator does not vanish.

This partition will not necessarily have multiplicity 1.

For the remaining p, ν the orthogonalised operators are defined inductively

Q̄Λ,MΛ,p,ν = MΛ,MΛ,p,ν −
∑

(q,η)>(p,ν)

〈
MΛ,MΛ,p,ν , Q̄Λ,MΛ,q,η

〉
Sn〈

Q̄Λ,MΛ,q,η, Q̄Λ,MΛ,q,η

〉
Sn

Q̄Λ,MΛ,q,η (7.4.8)

where by (q, η) > (p, ν) we mean either q > p in the ordering (7.4.6) or q = p and

η > ν.

Similarly to the first step, it may occur that Q̄Λ,MΛ,p,ν = 0 for some operators with

l(p) > N . Such operators are excluded from the rest of the orthogonalisation algorithm.

It is implicit that the sum in (7.4.8) does not run over these values of q, η.

In order to compare the different Q̄Λ,MΛ,p,ν , we normalise to have Sn norm 1

QΛ,MΛ,p,ν =
Q̄Λ,MΛ,p,ν√〈

Q̄Λ,MΛ,p,ν |Q̄Λ,MΛ,p,ν

〉
Sn

(7.4.9)

The new operators QΛ,MΛ,pν are an SEP-compatible basis for pre-BPS operators. They

are orthonormal under the Sn inner product, and form a stepping stone on the way to

producing (7.4.1).

From the arguments above, we know that when expanding QΛ,MΛ,p,ν in terms of

the free field BPS operators (3.6.20), only those operators with l(R) ≤ l(p) contribute.

7.4.2 An example: field content (2, 2)

We now give an explicit example of this construction for the field content (2, 2) sector

at N ≥ n = 4. While doing so, we will observe various features that generalise to
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MΛ 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2
1 1 2

2

1 1 2

2

1 1

2 2

1 1

2 2

1 1

2 2

R

Normalisation
Coefficient

√
6

24

√
6

24

√
6

12

√
6

24

√
6

24

1

4

1

4

√
3

12

√
6

12

√
3

12

(TrX)2(TrY )2 1 3 1 3 1 0 0 0 0 0

TrX2(TrY )2 1 1 0 -1 -1 1 -1 1 -1 -1

TrXY TrXTrY 4 4 0 -4 -4 0 0 -2 2 2

(TrX)2TrY 2 1 1 0 -1 -1 -1 1 1 -1 -1

TrX2Y TrY 4 0 -2 0 4 2 2 0 0 0

TrXY 2TrX 4 0 -2 0 4 -2 -2 0 0 0

TrX2TrY 2 1 -1 1 -1 1 0 0 2 0 2

(TrXY )2 2 -2 2 -2 2 0 0 -2 0 -2

TrX2Y 2 4 -4 0 4 -4 0 0 2 2 -2

Tr(XY )2 2 -2 0 2 -2 0 0 -2 -2 2

Table 7.2: The covariant basis for field content (2, 2) in terms of multi-traces. Each
element is identified by its MΛ and R labels. We give the overall normalisation and the
coefficient of each multi-trace within the operator.

higher orders. These are discussed in later subsections.

We begin with the operators MΛ,MΛ,p,ν given in (7.3.14-7.3.22). The ordering (7.4.6)

for partitions of n = 4 is

[1, 1, 1, 1] > [2, 1, 1] > [2, 2] > [3, 1, 1] > [4] (7.4.10)

Throughout the rest of this section we will continue using field content (2, 2) operators

as an example. In order to do this will need to express operators in terms of the free

field covariant basis defined in (3.6.20). The full set of covariant operators is given in

terms of multi-traces in table 7.2.

Λ = [4] and [3, 1] sectors

Orthogonalising in the Λ = [4] sector, and normalising with respect to the Sn inner

product, we obtain

Q 1 1 2 2 , [1,1,1,1] =
1

4
√

6

[
−4TrX2Y 2 − 2Tr (XY )2 + 4TrX2Y TrY + 4TrXTrXY 2

+ 2 (TrXY )2 + TrX2TrY 2 − TrX2 (TrY )2

−4TrXTrXY TrY − (TrX)2 TrY 2 + (TrX)2 (TrY )2
]

(7.4.11)
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Q 1 1 2 2 , [2,1,1] =
1

4
√

6

[
4TrX2Y 2 + 2Tr (XY )2 − 2 (TrXY )2 − TrX2TrY 2

− TrX2 (TrY )2 − 4TrXTrXY TrY − (TrX)2 TrY 2

+3 (TrX)2 (TrY )2
]

(7.4.12)

Q 1 1 2 2 , [2,2] =
1

2
√

6

[
2 (TrXY )2 + TrX2TrY 2 − 2TrX2Y TrY − 2TrXTrXY 2

+ (TrX)2 (TrY )2
]

(7.4.13)

Q 1 1 2 2 , [3,1] =
1

4
√

6

[
−4TrX2Y 2 − 2Tr (XY )2 − 2 (TrXY )2 − TrX2TrY 2

+ TrX2 (TrY )2 + 4TrXTrXY TrY + (TrX)2 TrY 2

+3 (TrX)2 (TrY )2
]

(7.4.14)

Q 1 1 2 2 , [4] =
1

4
√

6

[
4TrX2Y 2 + 2Tr (XY )2 + 4TrX2Y TrY + 4TrXTrXY 2

+ 2 (TrXY )2 + TrX2TrY 2 + (TrX)2 (TrY )2

+TrX2 (TrY )2 + 4TrXTrXY TrY + (TrX)2 TrY 2
]
(7.4.15)

where we have suppressed the trivial multiplicity indices, and omitted Λ as this is

determined by the shape of the semi-standard tableau MΛ.

For Λ = [3, 1], the orthogonalisation process produces

Q 1 1 2
2

, [2,1,1]
=

1

4

[
−2TrX2Y TrY + 2TrXTrXY 2 + TrX2 (TrY )2 − (TrX)2 TrY 2

]
(7.4.16)

Q 1 1 2
2

, [3,1]
=

1

4

[
2TrX2Y TrY − 2TrXTrXY 2 + TrX2 (TrY )2 − (TrX)2 TrY 2

]
(7.4.17)

For both these sectors, the operators obtained are identical to the free field BPS opera-

tors, given for field content (2, 2) in table 7.2, where the weak coupling label p matches

the zero coupling label R. At n = 4, this is largely pre-determined by SEP-compatibility

of the two bases.

Since the Λ = [4] and [3, 1] sectors remain unchanged as we turn on interactions,

the free field BPS operators are also the weak coupling BPS operators. As they are also

eigen-operators of FN , the space of free field BPS operators is the same as the space

of pre-BPS operators. Moreover, in these sectors there are no commutator traces, and

therefore SEP-compatibility for the pre-BPS operators is the same as that for BPS

operators, an operator with l(p) > N vanishes identically.

Therefore for Λ = [4] and [3, 1], QΛ,MΛ,p,ν and OΛ,MΛ,R,τ are both SEP-compatible
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bases for the same space. This means the spaces spanned by partitions of a given length

are the same. These spaces are all one-dimensional with the exception of Λ = [4],

p = [2, 2] and p = [3, 1]. Therefore the matching of all but these two is trivial. A priori,

the matching between p and R for p = [3, 1] and [2, 2] is surprising.

More generally, we find the same behaviour for all n ≤ 7, which are within reach of

numerical calculations. The p label in QΛ,MΛ,p,ν matches the R label in OΛ,MΛ,R,τ for

Λ = [n] and [n− 1, 1]. Since neither basis specifies exactly how the multiplicities ν and

τ are chosen, these will not necessarily match, but they do span the same space. We

go into this in more detail in section 7.4.9. For Λ = [n], the matching follows from the

fact the Kostka numbers converting the monomial basis to the Schur basis (2.7.12) are

upper diagonal in partition indices. For Λ = [n− 1, 1] we leave the matching at general

n as a conjecture.

Λ = [2, 2] sector

The orthogonalised basis of pre-BPS operators for Λ = [2, 2] is

Q 1 1
2 2

, [2,1,1]
=

1

6

(
−2t[2,2] + t[2,1,1]

)
(7.4.18)

Q 1 1
2 2

, [2,2]
=

1

3
√

2

(
t[2,2] + t[2,1,1]

)
(7.4.19)

where the trace combinations are

t[2,1,1] = TrX2 (TrY )2 − 2TrXTrXY TrY + (TrX)2 TrY 2 (7.4.20)

t[2,2] = TrX2TrY 2 − (TrXY )2 (7.4.21)

These trace combinations are the Λ = [2, 2], MΛ = 1 1
2 2

parts of the symmetrised trace

covariant basis defined in (7.3.36).

In order to check the SEP-compatibility of (7.4.18) and (7.4.19), we express them

as a linear combination of the zero coupling basis given in table 7.2. We have

Q 1 1
2 2

, [2,1,1]
= − 1

2
√

3

(
O

1 1
2 2

,
+
√

2O
1 1
2 2

,
+ 3O

1 1
2 2

,

)
(7.4.22)

Q 1 1
2 2

, [2,2]
=

1√
3

(√
2O

1 1
2 2

,
−O

1 1
2 2

,

)
(7.4.23)

The only commutator trace at field content (2, 2) is

TrX[X,Y ]Y = TrX2Y 2 − Tr(XY )2

=

√
3

2

(
O

1 1
2 2

,
+
√

2O
1 1
2 2

,
−O

1 1
2 2

,

)
(7.4.24)
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It is simple to check that for N ≥ 3〈
Q 1 1

2 2
, [2,1,1]

∣∣∣∣TrX[X,Y ]Y

〉
Sn

=

〈
Q 1 1

2 2
, [2,2]

∣∣∣∣TrX[X,Y ]Y

〉
Sn

= 0 (7.4.25)

At N = 2, comparing (7.4.22) with (7.4.24) and recalling that O
1 1
2 2

,

vanishes, we

have

Q 1 1
2 2

, [2,1,1]
= −1

3
TrX[X,Y ]Y (7.4.26)

Therefore (7.4.22) is no longer pre-BPS. The other operator (7.4.23) is still orthogonal

to the commutator.

At N = 1, both (7.4.22) and (7.4.23) vanish identically. Combined with the be-

haviour at N = 2, this demonstrates that these two operators form an SEP-compatible

basis for pre-BPS operators in the Λ = [2, 2] sector.

At N = 2, the finite N relations mean that (7.4.22) can be written as both a sym-

metrised trace and a commutator trace. This is discussed in more generality in section

7.5, where we develop the finite N vector space geometry responsible for transforming

between the two types of traces.

7.4.3 Normalisation conventions for BPS operators

The final step to obtain an SEP-compatible basis for weakly coupled BPS operators

is to apply GN to QΛ,MΛ,p,ν , where l(p) ≤ N . However, the operators GNQΛ,MΛ,p,ν

contain denominators of the form (N − i) for i ≤ l(p) which make it difficult to see how

they should behave when we lower N to N̂ = i.

In this section we prove that by normalising GNQΛ,MΛ,p,ν under the Sn inner prod-

uct, we remove these denominators and obtain an SEP-compatible basis of BPS oper-

ators. We start by continuing the example of Λ = [2, 2] from the previous subsection

to show some of the behaviour that occurs. Working at N ≥ 3, we have

GN Q 1 1
2 2

, [2,1,1]
= − 1

2
√

3N(N − 1)(N + 1)

(
1

N + 2
O

1 1
2 2

,
+

√
2

N
O

1 1
2 2

,

+
3

N − 2
O

1 1
2 2

,

)
(7.4.27)

GN Q 1 1
2 2

, [2,2]
=

1√
3N(N − 1)(N + 1)

( √
2

N + 2
O

1 1
2 2

,
− 1

N
O

1 1
2 2

,

)
(7.4.28)

Now consider lower N to N̂ = 2 and imposing the finite N̂ cut-off. It is unclear how we

should treat (7.4.27), since the operator O
1 1
2 2

,

vanishes, yet we also have a division
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by zero. Let us resolve the ambiguity by declaring that this term should indeed vanish.

Then at N̂ = 2 we have

GN Q 1 1
2 2

, [2,1,1]
= − 1

12
√

3

(
1

4
O

1 1
2 2

,
+

1√
2
O

1 1
2 2

,

)
(7.4.29)

This is a perfectly well defined operator, yet GNQΛ,MΛ,p,ν was meant to be an SEP-

compatible basis. For BPS operators, this means (7.4.27) should vanish after reducing

N to N̂ = 2.

The resolution of this problem is to normalise GNQΛ,MΛ,p,ν in the Sn inner product.

Define

QBPSΛ,MΛ,p,ν
=

GN QΛ,MΛ,p,ν√
〈GN QΛ,MΛ,p,ν |GN QΛ,MΛ,p,ν〉Sn

(7.4.30)

For Λ = [2, 2] we have

QBPS1 1
2 2

, [2,1,1]
= − 1

2
√
P1(N)

(
N(N − 2)O

1 1
2 2

,
+
√

2(N + 2)(N − 2)O
1 1
2 2

,

+3N(N + 2)O
1 1
2 2

,

)
(7.4.31)

QBPS1 1
2 2

, [2,2]
=

1√
P2(N)

(√
2NO

1 1
2 2

,
− (N + 2)O

1 1
2 2

,

)
(7.4.32)

where the normalisation polynomials are

P1(N) = 3N4 + 8N3 + 6N2 + 8 (7.4.33)

P2(N) = 3N2 + 4N + 4 (7.4.34)

There is now no ambiguity in the definitions of the operators after lowering N to

N̂ = 1, 2, and they vanish identically for N̂ < l(p), thereby forming an SEP-compatible

basis for BPS operators.

We now generalise to arbitrary Λ. Take some operator QΛ,MΛ,p,ν with l(p) ≤ N and

expand it in terms of free field operators

QΛ,MΛ,p,ν =
∑
R,τ

l(R)≤l(p)

qR,τp,ν OΛ,MΛ,R,τ (7.4.35)

for some coefficients qR,τp,ν . The limit l(R) ≤ l(p) on the sum was discussed below (7.4.9).

Define the set

Yp,ν =
{
R : qR,τp,ν 6= 0 for some τ

}
(7.4.36)

Intuitively, Yp,ν is the set of Young diagrams R that contribute to QΛ,Mλ,p,ν . Define
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Rmaxp,ν to be the minimal Young diagram that contains every R in Yp,ν and Rminp,ν to be

the maximal Young diagram that is contained within every R in Yp,ν . Define

fmaxp,ν (N) = fRmaxp,ν
(N) fminp,ν (N) = fRminp,ν

(N) (7.4.37)

where fR(N) is a polynomial in N depending on the shape of R. It is defined in (2.3.20)

as a product of linear factors. Intuitively, fmaxp,ν (N) is the lowest common multiple of

the different fR for R ∈ Yp,ν , while fminp,ν (N) is the highest common factor.

As an example, consider the previous example with Λ = [2, 2] and p = [2, 1, 1]. We

have

Y[2,1,1] =

{
, ,

}
(7.4.38)

and

Rmax[2,1,1] = fmax[2,1,1](N) = (N + 2)(N + 1)N2(N − 1)(N − 2) (7.4.39)

Rmin[2,1,1] = fmin[2,1,1](N) = (N + 1)N(N − 1) (7.4.40)

Using fmaxp,ν (N), we can factor out the denominators in GNQΛ,MΛ,p,ν . We have

GNQΛ,MΛ,p,ν =
∑
R,τ

l(R)≤l(p)

qR,τp,ν

fR(N)
OΛ,MΛ,R,τ =

1

fmaxp,ν (N)

∑
R,τ

l(R)≤l(p)

qR,τp,ν

fmaxp,ν (N)

fR(N)
OΛ,MΛ,R,τ

(7.4.41)

where the coefficients
fmaxp,ν (N)

fR(N) are simple polynomials in N made up of products of

linear factors. Therefore the Sn norm of GNQΛ,MΛ,p,ν is

|GN QΛ,MΛ,p,ν |
2
Sn

= 〈GN QΛ,MΛ,p,ν |GN QΛ,MΛ,p,ν〉Sn =
Pp,ν(N)[
fmaxp,ν (N)

]2 (7.4.42)

where the numerator polynomial is

Pp,ν(N) =
∑
R,τ

l(R)≤l(p)

(
qR,τp,ν

fmaxp,ν (N)

fR(N)

)2

(7.4.43)

This polynomial is a sum of squares, and therefore can only vanish if all terms are zero.

Since
fmaxp,ν (N)

fR(N) is a product of simple linear factors in N , this in turn can only occur if

there is linear factor common to every term. From the definition of fmaxp,ν as the lowest

common multiple of the fR that appear in the sum, this does not happen. Therefore

Pp,ν(N) is positive for any N . In particular, it remains positive when we evaluate it on
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N̂ ≤ N . We have

QBPSΛ,MΛ,p,ν
=

1√
Pp,ν(N)

∑
R,τ

l(R)≤l(p)

qR,τp,ν

fmaxp,ν (N)

fR(N)
OΛ,MΛ,R,τ (7.4.44)

We now prove this vanishes when we lower N to some N̂ < l(p). The properties

of Pp,ν(N) mean there are no divisions by zero to concern us, and we focus on the

coefficients
fmaxp,ν (N)

fR(N) .

By construction, QΛ,MΛ,p,ν reduces to a commutator trace when we lower N to

N̂ < l(p). Therefore it must contain at least one OΛ,MΛ,R,τ with l(R) = l(p), otherwise

it would remain Sn orthogonal to commutator traces if we lowered N to N̂ = l(p)− 1.

Therefore

fmaxp,ν (N) ⊃
l(p)−1∏
i=0

(N − i) (7.4.45)

where ⊃ means fmaxp,ν contains these as factors. By definition

fR(N) ⊃
l(R)−1∏
i=0

(N − i) (7.4.46)

it follows that if R ∈ Yp,ν , the coefficient in front of OΛ,MΛ,R,τ contains

fmaxp,ν (N)

fR(N)
⊃

l(p)−1∏
i=l(R)

(N − i) (7.4.47)

This ensures that if l(p) > N̂ , all terms in the expansion (7.4.44) vanish when we lower

N to N̂ . If l(R) > N̂ , OΛ,MΛ,R,τ vanishes by definition, while if l(R) ≤ N̂ , the factors

in (7.4.47) set it to zero.

Therefore QBPSΛ,MΛ,p,ν
vanishes identically when we lower N to N̂ < l(p), and hence

this is an SEP-compatible basis for weakly coupled BPS operators. This justifies the

statement made in section 7.1 that applying GN to an SEP-compatible basis of pre-BPS

operators gives an SEP-compatible basis of BPS operators.

An alternative viewpoint is to look at the physical F-weighted inner product. We

have ∣∣QBPSΛ,MΛ,p,ν

∣∣2
F = 〈QΛ,MΛ,p,ν |QΛ,MΛ,p,ν〉F =

fmaxp,ν (N)P
(F )
p,ν (N)

Pp,ν(N)
(7.4.48)

where the new polynomial in the numerator is

P (F )
p,ν (N) =

∑
R,τ

l(R)≤l(p)

(
qR,τp,ν

)2 fmaxp,ν (N)

fR(N)
(7.4.49)
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The overall factor of fmaxp,ν (N) in (7.4.48) ensures that it vanishes when we lower N to

some N̂ < l(p). As a consistency check, we also prove that it is non-vanishing when

N̂ ≥ l(p).
This relies on noticing that the linear factors in

fmaxp,ν (N)

fR(N) are all of the form (N−i) for

−n ≤ i ≤ l(p)− 1. Therefore
fmaxp,ν (N̂)

fR(N̂)
> 0 when N̂ ≥ l(p). It follows that P

(F )
p,ν (N̂) > 0,

and the result follows.

In the planar (N →∞) limit, applying GN reduces to division by Nn, and therefore

after Sn-normalising we have

QBPSΛ,MΛ,p,ν

∣∣
N→∞ = QΛ,MΛ,p,ν (7.4.50)

Since QΛ,MΛ,p,ν is a symmetrised trace at large N , this means commutator traces are

sub-leading in the large N multi-trace expansion of QBPSΛ,MΛ,p,ν
.

Having constructed an SEP-compatible basis of BPS operators, the natural next

question to ask is whether we can find a formula for their correlators. This uses the

physical F-weighted inner product. From the hermiticity of U(2), the QBPSΛ,MΛ,p,ν
are

F-orthogonal in the Λ,MΛ labels, but in general are not in p, ν. Therefore studying

correlators involves calculating a matrix of inner products. In the next section we F-

orthogonalise the QBPSΛ,MΛ,p,ν
in order to produce an F-orthogonal SEP-compatible basis

in which it is easier to study properties of correlators.

In this section we have normalised operators using the Sn inner product. This is

in some sense un-natural, as the QBPSΛ,MΛ,p,ν
are not orthogonal in this inner product.

There is another, alternative normalisation we could consider. In (7.4.44) we have a

complicated normalisation factor of (Pp,ν(N))−1/2, which if removed, would mean the

coefficients of the free field operators (and multi-traces) would be expressible purely as

polynomials in N . This is a natural normalisation to consider, and is given simply by

fmaxp,ν GN QΛ,MΛ,p,ν (7.4.51)

However, this is more difficult than the Sn normalisation, since it involves knowing

which free field operators appear in the expansion of QΛ,MΛ,p,ν , and the free field

operators are computationally expensive to construct. In contrast, the Sn normalisation

can be deduced purely from an expression in terms of multi-traces, which is obtainable

explicitly from the construction of QΛ,MΛ,p,ν .

In section 7.4.9 we prove that for Λ = [n], the QΛ,MΛ,p,ν exactly reproduce the

free field basis OΛ,MΛ,R,τ up to a choice of multiplicity basis, and conjecture that the

same happens for Λ = [n − 1, 1]. If this is true, then for these Λ, applying G and Sn

normalising leaves the operators unchanged and we have

QBPSΛ,MΛ,p,ν
= QΛ,MΛ,p,ν = OΛ,MΛ,R=p,τ=ν (7.4.52)
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7.4.4 F-orthogonalisation

To define an orthogonal SEP-compatible basis, we Gram-Schmidt orthogonalise the

QBPSΛ,MΛ,p,ν
operators using the physical F-weighted inner product and the same ordering

defined in (7.4.6). We denote the orthogonalised operators by S̄BPSΛ,MΛ,p,ν
, and after

normalising them to have Sn norm 1, SBPSΛ,MΛ,p,ν
.

Let p∗Λ;N be the largest partition with MΛ,p∗Λ;N
> 0 and l(p∗Λ;N ) ≤ N . Then in

analogy to (7.4.7), (7.4.8) and (7.4.9), we have

S̄BPSΛ,MΛ,p
∗
Λ;N

= QBPSΛ,MΛ,p
∗
Λ;N

(7.4.53)

S̄BPSΛ,MΛ,p,ν
= QBPSΛ,MΛ,p,ν

−
∑

(q,η)>(p,ν)
l(q)≤N

〈
QBPSΛ,MΛ,p,ν

, S̄BPSΛ,MΛ,q,η

〉
F〈

S̄BPSΛ,MΛ,q,η
, S̄BPSΛ,MΛ,q,η

〉
F

S̄BPSΛ,MΛ,q,η
(7.4.54)

SBPSΛ,MΛ,p,ν
=

S̄BPSΛ,MΛ,p,ν√〈
S̄BPSΛ,MΛ,p,ν

|S̄BPSΛ,MΛ,p,ν

〉
Sn

(7.4.55)

where l(p) ≤ N .

Note the difference in the starting point of the orthogonalisation compared to

(7.4.7). When Sn orthogonalising the pre-BPS operators, we began with p∗Λ = p∗Λ;∞
even if l(p∗Λ) > N , whereas this time we apply the finite N cut-off to the partitions

being orthogonalised.

From the construction it follows that QBPSΛ,MΛ,q,η
only contributes to SBPSΛ,MΛ,p,ν

if q ≥ p.
Upon lowering N to N̂ , since the QBPS operators with l(q) > N̂ vanish identically, the

SBPS will also vanish for l(p) > N̂ , and therefore this is an SEP-compatible basis.

Note this relies on QBPSΛ,MΛ,q,η
not appearing with a coefficient of 1

N−i for i ≤ l(q), as

this would upset the SEP-compatibility in a way similar to that described in (7.4.29).

As in the previous section, the Sn normalisation ensures this does not occur.

In the planar (N → ∞) limit, the physical F-weighted inner product reduces

to Nn times the Sn inner product, therefore F-orthogonalising is equivalent to Sn-

orthogonalising. From (7.4.50), the QBPSΛ,MΛ,p,ν
operators reduce to the pre-BPS opera-

tors QΛ,MΛ,p,ν in the planar limit, which are already Sn orthonormal. Therefore

SBPSΛ,MΛ,p,ν

∣∣
N→∞ = QΛ,MΛ,p,ν (7.4.56)

Below (7.4.9) we explained that only those free field operators with l(R) ≤ l(p) con-

tribute to QΛ,MΛ,p,ν . After orthogonalisation, the SBPSΛ,MΛ,p,ν
can admit operators with

l(R) > l(p), but (7.4.56) proves that these are sub-leading at large N .

Furthermore, just as discussed for QBPSΛ,MΛ,p,ν
below (7.4.50), commutator traces are

sub-leading in the large N multi-trace expansion of SBPSΛ,MΛ,p,ν
.
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The Λ = [2, 2] example

We begin with the operators (7.4.31) and (7.4.32). After F-orthogonalising and nor-

malising with respect to the Sn inner product, we obtain

SBPS1 1
2 2

, [2,1,1]
= − 1

2
√
P1(N)

(
N(N − 2)O

1 1
2 2

,
+
√

2(N − 2)(N + 2)O
1 1
2 2

,

+3N(N + 2)O
1 1
2 2

,

)
(7.4.57)

SBPS1 1
2 2

, [2,2]
=

1√
2P2(N)

(
(2N − 1)O

1 1
2 2

,
−
√

2(N + 1)O
1 1
2 2

,

+O
1 1
2 2

,

)
(7.4.58)

where the normalisation polynomials P1 and P2 are given by

P1(N) = 3N4 + 8N3 + 6N2 + 8 (7.4.59)

P2(N) = 3N2 + 2 (7.4.60)

Written in terms of traces, these operators are

SBPS1 1
2 2

, [2,1,1]
=

1

2
√

3P1(N)

[ (
N2 + 2N − 2

)
t[2,1,1] − 2N (N + 1) t[2,2]

+ 4 (N + 1) TrX[X,Y ]Y

]
(7.4.61)

SBPS1 1
2 2

, [2,2]
=

1√
6P2(N)

[
N
(
t[2,1,1] + t[2,2]

)
− 2TrX[X,Y ]Y

]
(7.4.62)

7.4.5 A shorter algorithm

In the previous sections we have given a method to derive an orthogonal SEP-compatible

basis SBPSΛ,MΛ,p,ν
. This method goes through two orthogonalisation procedures, applying

GN inbetween. The first step used the Sn inner product and involved all the partitions,

the second used the F-weighted inner product and only included those partitions with

l(p) ≤ N . This means the partitions with l(p) ≤ N are orthogonalised among each

other twice. We now prove that one may simplify the first orthogonalisation procedure

to only orthogonalise against those p with l(p) > N and still obtain the same final out-

put. This simplifies the computational requirements, and is also conceptually simpler,

for reasons that will be outlined below.

To prove this streamlined procedure produces the same BPS operators, we first

recall some useful facts.
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General properties of Gram-Schmidt orthogonalisation

Consider two bases {vi} and {ei} of a vector space V , where the second is orthonormal.

Then orthogonalising vi results in the basis ei (up to normalisation constants) if and

only if the matrix connecting the two is lower diagonal.

{vi}
GS−→ {ei} ⇐⇒ ei =

∑
j≥i

Ajivj (7.4.63)

Note that the orthogonalisation process here is the opposite way round to the standard

Gram-Schmidt orthogonalisation one would find in a textbook. Ordinarily, one starts

with minimal i and proceeds to larger i, and therefore obtains an upper diagonal A

matrix. In (7.4.63), we start with maximal i and decrease, since this is the approach

taken in (7.4.8).

Now introduce another basis {ui} for V , not necessarily orthogonal. This is related

to {vi} by a a matrix Bj
i

ui =
∑
i

Bj
i vj (7.4.64)

Then it follows from (7.4.63) that if Bj
i is lower diagonal, {ui} and {vi} orthogonalise

to the same orthonormal basis {ei} (up to normalisation constants).

Back to SEP-compatible bases

As explained below (7.4.3), the Sn orthogonalisation ofM≤N againstM>
N gives us pre-

BPS operators. The continued Sn orthogonalisation among partitions with l(p) ≤ N

gives us SEP-compatibility, but is not required for the operators to be pre-BPS.

To split these two steps us, define the pre-BPS basis M̄Λ,MΛ,p,ν by

M̄Λ,MΛ,p
∗
Λ

= MΛ,MΛ,p
∗
Λ

(7.4.65)

M̄Λ,MΛ,p,ν = MΛ,MΛ,p,ν −
∑

(q,η)>(p,ν)
l(q)>N

〈
MΛ,MΛ,p,ν , M̄Λ,MΛ,q,η

〉
Sn〈

M̄Λ,MΛ,q,η, M̄Λ,MΛ,q,η

〉
Sn

M̄Λ,MΛ,q,η (7.4.66)

where for p with l(p) > N , we have the same caveats as mentioned around (7.4.8)

regarding vanishing of operators. The M̄Λ,MΛ,p,ν operators were briefly mentioned above

(7.4.4). The corresponding BPS operators, normalised in the Sn inner product, are

M̄BPS
Λ,MΛ,p,ν

=
GNM̄Λ,MΛ,p,ν∣∣GNM̄Λ,MΛ,p,ν

∣∣
Sn

(7.4.67)

From their construction, orthogonalising M̄Λ,MΛ,p,ν all the way down the partitions

using the Sn inner product would result in the Sn orthogonal basis QΛ,MΛ,p,ν for pre-
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BPS operators. From (7.4.63), these two bases are related by a lower diagonal matrix.

Applying GN and Sn normalising both bases, the equivalent BPS operators are also

related by a (rescaled) lower diagonal matrix. Then from the discussion below (7.4.64),

it follows that orthogonalising the two bases in the physical F-weighted inner product

will result in the same final basis SBPSΛ,MΛ,p,ν
.

Therefore one may obtain the SBPSΛ,MΛ,p,ν
basis in a simpler manner by F-orthogonalising

the M̄Λ,MΛ,p,ν basis, much as we did in (7.4.53-7.4.55)

S̄BPSΛ,MΛ,p
∗
Λ;N

= M̄BPS
Λ,MΛ,p

∗
Λ;N

(7.4.68)

S̄BPSΛ,MΛ,p,ν
= M̄BPS

Λ,MΛ,p,ν
−

∑
(q,η)>(p,ν)
l(q)≤N

〈
M̄BPS

Λ,MΛ,p,ν
, S̄BPSΛ,MΛ,q,η

〉
F〈

S̄BPSΛ,MΛ,q,η
, S̄BPSΛ,MΛ,q,η

〉
F

S̄BPSΛ,MΛ,q,η
(7.4.69)

SBPSΛ,MΛ,p,ν
=

S̄BPSΛ,MΛ,p,ν√〈
S̄BPSΛ,MΛ,p,ν

|S̄BPSΛ,MΛ,p,ν

〉
Sn

(7.4.70)

where l(p) ≤ N .

This approach to producing the SBPSΛ,MΛ,p,ν
operators still involves two orthogonalisa-

tion steps, but the first is now computationally less demanding, and can be completely

skipped if N ≥ l (p∗Λ). Moreover, there is a clearer conceptual separation between the

two steps. The first one obtains pre-BPS operators, while the second one finds an

SEP-compatible basis.

This process skips the QΛ,MΛ,p,ν operators, but they still have physical relevance

as the planar limit of SBPSΛ,MΛ,p,ν
, and were mathematically useful in proving the SEP-

compatibility of these operators.

7.4.6 Choice of SEP-compatible basis

In the section 7.4.4 we derived an orthogonal SEP-compatible basis of operators for

the Λ = [2, 2] sector. This sector was also investigated in appendix C of [51], and

a different orthogonal SEP-compatible basis was found. One can check that the two

bases span the same two dimensional space for any N ≥ 3, and when N = 2 we find

exact agreement of operators.

The SEP-compatibility determines the behaviour of such a basis for N = 1, 2, but

for higher N there is a large degree of freedom. Define the F-normalised operators

ŜBPSΛ,MΛ,p,ν
for a generic Λ by

ŜBPSΛ,MΛ,p,ν
=

SBPSΛ,MΛ,p,ν〈
SBPSΛ,MΛ,p,ν

|SBPSΛ,MΛ,p,ν

〉
F

(7.4.71)
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Let c(N) and s(N) be two functions of N satisfying

c(2) = 1 s(2) = 0 c(N)2 + s(N)2 = 1 (7.4.72)

We can use c and s to rotate the Λ = [2, 2] F-normalised basis operators to a new

configuration

O1 = c(N)ŜBPS1 1
2 2

, [2,1,1]
+ s(N)Ŝ 1 1

2 2
, [2,2]

(7.4.73)

O2 = −s(N)ŜBPS1 1
2 2

, [2,1,1]
+ c(N)Ŝ 1 1

2 2
, [2,2]

(7.4.74)

To avoid problems with vanishing denominators at N = 2, we normalise O1,O2 to

have norm 1 in the Sn inner product. These then define an alternative orthogonal,

SEP-compatible basis for weak coupling quarter-BPS operators in the Λ = [2, 2] sector.

As s(N) is determined by c(N), there is effectively a function’s worth of freedom

in defining an orthogonal SEP-compatible basis. Clearly the vast majority of these

will have definitions with far more complicated coefficients than those in (7.4.57) and

(7.4.58) (or equivalently (7.4.61) and (7.4.62)). An interesting question is whether we

can uniquely characterise a basis by having the ‘nicest’ coefficients. For example, the

coefficients in the basis of [51] are of the form

N + 1±
√

2N2 + 1 (7.4.75)

These involve a sum of polynomial and surd terms, whereas the basis (7.4.57) and

(7.4.58) has coefficients that are polynomial in N up to an overall normalisation. One

possible criterion would be to demand a basis with polynomial coefficients (up to overall

normalisation) whose polynomials have minimal degree. If unique, these operators

would in some sense be the ‘simplest’ orthogonal, SEP-compatible basis. It is reasonable

to conjecture that SBPSΛ,MΛ,p,ν
form this basis.

For more general Λ, take an N -dependent orthogonal rotation matrix R(Λ;N) of

size MΛ ×MΛ, where

MΛ =
∑
p`n

l(p)≤N

MΛ,p (7.4.76)

When evaluated at N̂ ≤ N , the matrix should split into diagonal blocks

R(Λ; N̂) =

(
R≤(Λ; N̂) 0

0 R>(Λ; N̂)

)
(7.4.77)

where R>(Λ; N̂) rotates those partitions with length l(p) > N̂ among themselves and

R≤(Λ; N̂) rotates those partitions with length l(p) ≤ N̂ among themselves.
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Then consider the Sn normalised versions of the operators∑
q,η

l(q)≤N

R(Λ;N)p,νq,η Ŝ
BPS
Λ,MΛ,p,ν

(7.4.78)

These form an alternative orthogonal, SEP-compatible basis for the weakly coupled

quarter-BPS sector.

7.4.7 Physical norms of BPS operators

For the free field operators (3.6.20), the physical norm fR is a polynomial in N that is

closely related to the corresponding Young diagram R. It has mathematical significance

as the numerator of the Weyl dimension formula for U(N) representations. We now

investigate the physical norms of the weak coupling BPS operators SBPSΛ,MΛ,p,ν
, beginning

with an example at Λ = [2, 2]. These operators are given in (7.4.57) and (7.4.58), and

have physical F-weighted norms∣∣∣∣∣SBPS1 1
2 2

, [2,1,1]

∣∣∣∣∣
2

=

(
3N2 + 4N − 2

)
(N + 2)(N + 1)N2(N − 1)(N − 2)

P1
(7.4.79)∣∣∣∣∣SBPS1 1

2 2
, [2,2]

∣∣∣∣∣
2

=

(
3N2 + 4N − 2

)
(N + 1)N2(N − 1)

P2
(7.4.80)

This has two key features that will generalise. Firstly, the liner factors in the norms

reflect the SEP-compatibility, enforcing that the first operator vanish for when we lower

N to N̂ = 1, 2 and the second operator vanish when we lower N to N̂ = 1. However,

both norms have more linear factors than just those required by SEP-compatibility. For

these two p, the numerators contain fp as a factor. This does not generalise to all p;

in (G.2.175) and (G.2.179) we see that the numerators in the norms of p = [2, 2, 2] and

[3, 3] operators are one linear factor short of containing fp. It is unclear whether these

are exceptions, or whether at large n, very few operators contain fp in the numerator

of the norm. It would be interesting to understand the linear factors that appear in

the numerator and whether these have a physical interpretation.

Secondly, the numerators share a factor of (3N2 + 2N − 2). In appendices G.1, G.2

and G.3 we see that consecutive partitions (in the ordering (7.4.6)) share a complicated

polynomial factor in the numerators. We believe this generalises to larger n, though

it may be an artefact of the orthogonalisation process. This is discussed further in

appendix G.2.4.

While the numerators of BPS norms have interesting properties, we have not found

any structure in the denominators. They arise by dividing through by the square root

of the Sn norm, and from our numerical calculations do not seem to factorise into
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smaller units.

Norms of operators with multiplicity

The norms (7.4.79) and (7.4.80) can be considered as characteristic functions of Λ along

with the partitions [2, 1, 1] and [2, 2] respectively, just as the norms of the free field basis

are characteristic polynomials of the Young diagrams.

For the free field covariant basis (3.6.20), the physical norms depended only on R

and not the U(2) Young diagram Λ or the multiplicity τ . For the weak coupling basis,

the norms can now depend on Λ, p and ν. The dependence on Λ and p is completely

determined by the construction, while the dependence on ν is dictated by the choice

of multiplicity space basis. We now outline a way of extracting functions of N that do

not depend on this choice, and are therefore associated to the pair p,Λ.

In (7.4.71), a rescaled BPS basis ŜBPSΛ,MΛ,p,ν
was defined, orthonormal in the physical

F-weighted inner product. A different choice of multiplicity basis would result in an

orthogonal rotation of these operators, and any trace over the multiplicity index is

therefore independent of the this choice.

In particular, consider the matrix of Sn inner products. For a trivial multiplicity

space, this would be a 1× 1 matrix containing the reciprocal of the norm |SBPSΛ,MΛ,p,ν
|2.

The appropriate generalisation to non-trivial multiplicity should therefore be to take the

reciprocal of the trace, and we should also divide by the dimension of the multiplicity

space. So the invariant function is

fΛ,p =

 1

MΛ,p

MΛ,p∑
ν=1

〈
ŜBPSΛ,MΛ,p,ν

|ŜBPSΛ,MΛ,p,ν

〉−1

(7.4.81)

Note that the the hermiticity properties of U(2) imply that we can choose any semi-

standard tableau MΛ and it will not affect the calculation.

We can also use the square/cube/... of the Sn inner product matrix to extract

further basis-invariant functions of N . Let A be the Sn inner product matrix. Then

we have

f
(k)
Λ,p =

(
1

MΛ,p
TrAk

)− 1
k

(7.4.82)

Where we have taken the kth root in order to have functions of the same degree in

N . This stack of powers only goes up to k ≤MΛ,p before the invariants are no longer

independent.

In appendix G.2, we see two examples of non-trivial multiplicity spaces in the

Λ = [4, 2] sector, both of dimension two. In section G.2.3 we show the calculation for

p = [2, 2, 1, 1] in some detail, while we are more schematic for p = [3, 2, 1].
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In both examples, the numerator of f
(2)
Λ,p is the same as f

(1)
Λ,p, though the denominator

is not. As discussed below (7.4.80), this is further evidence that we should only look

at the numerators of the BPS norms, giving a single characteristic function for a given

Λ, p.

7.4.8 Longest p for a given Λ and explicit quarter-BPS operators

Due to the computational nature of the orthogonalisation process to derive SEP-

compatible BPS operators, it is difficult to give explicit formulae for many of the

SBPSΛ,MΛ,p,ν
operators. The exception is for p∗Λ, the longest partition with MΛ,p > 0.

Shortly, we will prove that this has MΛ,p∗Λ
= 1, so we drop the multiplicity index.

Provided N ≥ l (p∗Λ), the operators with partition p∗Λ do not get orthogonalised, so we

have the formula

SBPSΛ,MΛ,p
∗
Λ

=
GNMΛ,MΛ,p

∗
Λ∣∣∣GNMΛ,MΛ,p
∗
Λ

∣∣∣
Sn

(7.4.83)

where

MΛ,MΛ,p
∗
Λ

=
∑

p`(n1,n2) : p(p)=p∗Λ

Bp
Λ,MΛ,p

∗
Λ
Mp (7.4.84)

=
∑

p`(n1,n2) : p(p)=p∗Λ
q`(n1,n2)

Bp
Λ,MΛ,p

∗
Λ
C̃q
pTq (7.4.85)

and we have used (7.3.13) to express MΛ,MΛ,p
∗
Λ

in terms of Mp, (7.2.23) to write Mp in

terms of Tq, and Tq is the symmetrised trace operator (7.1.11).

Explicit formulae for other SBPSΛ,MΛ,p,ν
operators in each Λ sector are much more

difficult to write down as they involve first orthogonalising down the partitions. Of

course one may find non-orthogonal BPS operators by applying GN to the covariant

monomials MΛ,MΛ,p,ν (provided N ≥ l (p∗Λ)).

We can use the results of sections 7.3.5 and 7.3.6 to find p∗Λ explicitly. As discussed

at the end of section 7.3.6, we consider a partition p = [1µ1 ] + p̄ with a single dominant

column of length µ1 attached to a smaller partition p̄ ` n̄ = n − µ1. By rectangle

rotations, this has the same multiplicities as a single dominant row partition with

first row of length λ1 = µ1 − l(p̄) above a smaller partition p̂ = [1l(p̄)] + p̄, where

p̂ ` n̂ = l(p̄) + n̄ and we are using the notation of section 7.3.6. We give an example of

these relations between single dominant column and single dominant row partitions in

(7.3.96).

Applying the general formula (7.3.94) for a partition with a single dominant row,
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we see that Λ = [Λ1,Λ2] only has non-trivial multiplicity with p if

Λ2 ≤ n− µ1 + l(p̄) (7.4.86)

Rearranging to constrain µ1 in terms of Λ and p̄

µ1 ≤ Λ1 + l(p̄) (7.4.87)

Not only does (7.3.94) give this constraint on µ1, it also tells us that the multiplicity is 1

if the inequality is saturated. If it is not quite saturated, and instead µ1 = Λ1 + l(p̄)−1,

then the multiplicity is the number of corners in p minus 1. Since p has a dominant

first column, this is just the number of corners in p̄.

Therefore the maximum possible µ1 is obtained when l(p̄) is at its largest. This

occurs when p̄ = [1n̄] and l(p̄) = n̄ = n− µ1. Plugging this in, we have

µ1 ≤ n−
Λ2

2
(7.4.88)

Therefore the maximal µ1 is n−
⌈

Λ2
2

⌉
, with associated p̄ =

[
1

⌈
Λ2
2

⌉]
. If Λ2 is even then

(7.4.87) is saturated and the multiplicity is 1. If Λ2 is odd, then the multiplicity is the

number of corners in p̄, which is also 1. These multiplicities agree with the explicit

calculation for two column partitions in (7.3.82).

Stated fully, for Λ = [Λ1,Λ2] ` n, the longest p with non-trivial multiplicity is

p∗Λ =

[
n−

⌈
Λ2

2

⌉
,

⌈
Λ2

2

⌉]c
=

[
2

⌈
Λ2
2

⌉
, 1
n−2

⌈
Λ2
2

⌉]
(7.4.89)

and this multiplicity is 1.

7.4.9 Orthogonalisation at Λ = [n] and [n− 1, 1]

In section 7.4.2, we observed that Gram-Schmidt orthogonalising the MΛ,MΛ,p,ν with

Λ = [4] or [3, 1] in the Sn inner product led to the free field operators OΛ,MΛ,R,τ . We

now prove that this behaviour is general for Λ = [n], and motivate a conjecture that

this also happens for Λ = [n− 1, 1].

For this subsection, when we use Λ, we will be referring specifically to Λ = [n] or

[n− 1, 1], and stated results will apply only to those Λ.

Recall that for these Λ, a free field BPS operator is also a weak coupling pre-BPS

operators. Therefore we have expansions of the form

OΛ,MΛ,R,τ =
∑
p,ν

bp,νR,τMΛ,MΛ,p,ν MΛ,MΛ,p,ν =
∑
R,τ

(
b−1
)R,τ
p,ν
OΛ,MΛ,R,τ (7.4.90)
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Next, recall from (3.6.28) that the free field operators are orthogonal in the Sn inner

product. Therefore from the property (7.4.63) of Gram-Schmidt orthogonalisation, the

MΛ,MΛ,p,ν will orthogonalise to OΛ,MΛ,R,τ if and only if bp,νR,τ is lower diagonal. That is,

if the coefficients satisfy

bp,νR,τ = 0 if (p, ν) < (R, τ) (7.4.91)

where the comparison between multiplicities makes sense since the size of the mul-

tiplicity space for a given p = R is the same for the two bases. This is proved in

(7.3.66).

More generally, since neither basis specifies a choice of multiplicity space basis, it

is sufficient to prove that

bp,νR,τ = 0 if p < R (7.4.92)

then after choosing the multiplicity space bases appropriately, (7.4.91) and the result

will follow.

Λ = [n]

In the Λ = [n] sector at field content (n, 0), the covariant monomials MΛ,MΛ,p,ν reduce to

the monomial symmetric functions Mp defined in (2.7.6), while the free field operators

OΛ,MΛ,R,τ reduce to the Schur operators sR defined in terms of monomials in (2.7.12).

From these definitions, the two bases are related by the (rescaled) Kostka numbers

sR =
∑
p`n

KRp∏
i pi!

Mp (7.4.93)

The Kostka numbers are the number of semi-standard Young tableaux of shape R and

evaluation p, where these terms are defined in section 3.6.2. To prove (7.4.92) in this

case we need

KRp = 0 for R > p (7.4.94)

Consider R > p with column lengths Rc = [λ1, λ2, . . . ] and pc = [ρ1, ρ2, . . . ]. By

definition there is some l for which λi = ρi for all i < l and λl > ρl. Now take a

semi-standard Young tableaux of shape R and evaluation p. The entries in the first

column must strictly increase, so the entry at the bottom of the first column is ≥ λ1.

Since the evaluation is p, the available numbers to use are 1, 2, . . . , ρ1 = λ1, so we must

fill this column with exactly the numbers 1 to λ1. Similarly the second column must

be filled with the numbers 1 to λ2 and so on until we reach the lth column. At this

point, the entry at the bottom of the lth column must be ≥ λl, while the maximum

available number to use is ρl < λl. So the Young tableaux cannot have evaluation p,
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and therefore KRp = 0.

This proves (7.4.92) for Λ = [n] and the highest weight state MΛ. Applying the

U(2) lowering operator J−, the same will happen for any MΛ within the Λ = [n] sector,

and this gives the result.

Λ = [n− 1, 1]

For Λ = [n− 1, 1], there are two principal reasons we might expect QΛ,MΛ,p,ν to agree

with OΛ,MΛ,R,τ . Firstly, we know both bases are SEP-compatible. Since the space of

operators that vanish when N → N −1 is well-defined, it follows that for a fixed length

k = l(p) = l(R), the two bases must have the same span

Span {SΛ,MΛ,p,ν : l(p) = k} = Span {OΛ,MΛ,R,τ : l(R) = k} (7.4.95)

Secondly, from (7.4.91) the multiplicity for a given p matches the multiplicity for R = p.

Mathematically

Dim
(

Span {SΛ,MΛ,p,ν : 1 ≤ ν ≤MΛ,p}
)

= Dim
(

Span {OΛ,MΛ,R,τ : 1 ≤ τ ≤ C(R,R,Λ)}
)

(7.4.96)

A rigorous proof that the QΛ,MΛ,p,ν and OΛ,MΛ,R,τ operators match is more difficult.

Numerical calculations indicate it holds true up to at least n = 7, and we leave the

general case as a conjecture.

7.4.10 Alternative algorithm

There is an alternative approach to capturing the finite N behaviour of the pre-BPS

sector starting from the free field operators. Following a similar process to that given

in sections 7.4.1-7.4.5, one may use this to derive an orthogonal SEP-compatible basis

of BPS operators. This alternative algorithm is outlined in figure 7.3. At first glance,

there is no reason to expect agreement between this and the SBPSΛ,MΛ,p,ν
basis defined in

(7.4.68). However our numerical calculations show that they do agree up to n = 6, and

we conjecture that this is a general result.

Start by considering the free field basis OΛ,MΛ,R,τ . This has a symmetrised trace

component and a commutator trace component. As discussed around (7.3.38), there is

a U(2)-covariant basis for commutator traces that we will denote by cΛ,MΛ,p,ξ, where

p ` n is a partition that describes the trace structure of the commutator trace and ξ is

a multiplicity index. For an example of these operators see (G.2.26-G.2.30), where we

give the highest weight states in the Λ = [4, 2] covariant commutator trace basis.
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Then OΛ,MΛ,R,τ can be written

OΛ,MΛ,R,τ =
∑
p,ν

bp,νR,τMΛ,MΛ,p,ν +
∑
p,ξ

dp,ξR,τ cΛ,MΛ,p,ξ (7.4.97)

The coefficients bp,νR,τ are a generalisation of those seen in (7.4.90) to generic Λ.

The expansion coefficients in (7.4.97) are only defined uniquely at N ≥ n. For

N < n, finite N relations make the choice non-unique. We will choose to use the large

N coefficient, even when working at N < n. These coefficients are valid for all N and

are independent of N .

After removing the commutator trace component, we are left with

OsymmΛ,MΛ,R,τ
= OΛ,MΛ,R,τ −

∑
p,ξ

dp,ξR,τ cΛ,MΛ,p,ξ =
∑
p,ν

bp,νR,τMΛ,MΛ,p,ν (7.4.98)

which is a redundant spanning set for symmetrised traces. These operators were con-

sidered in [51], where they were referred to as OSΛ,MΛ,R,τ
.

Since OsymmΛ,MΛ,R,τ
are symmetrised traces, they form pre-BPS operators for N ≥ n.

We also know from the construction that if N < l(R), the operator OsymmΛ,MΛ,R,τ
reduces

to a commutator trace. However, if l(R) ≤ N < n, it is not necessarily true that Osymm

is orthogonal to all commutator traces. This is the same situation as the monomial

basis, discussed in section 7.1.1.

We may therefore use the same processes described in sections 7.4.1-7.4.5 in order

to find an orthogonal SEP-compatible basis for BPS operators. In this section, we sill

use the route given in sections 7.4.1-7.4.4 rather than the shorter one from section 7.4.5.

In particular, we produce a basis OorthΛ,MΛ,R,ρ
by following the Sn-orthogonalisation

procedure (7.4.7-7.4.9). We then apply GN , F-orthogonalise the resulting operators

and Sn-normalise. The final basis is then denoted by OBPSΛ,MΛ,R,ρ
. This algorithm is

outlined in figure 7.3.

As the operators OsymmΛ,MΛ,R,τ
are linearly dependent, some of the them will vanish

during the orthogonalisation process. Unlike the orthogonalisation of monomials, this

can occur for both l(R) > N and l(R) ≤ N . At such a point, remove that operator and

continue with the orthogonalisation. This means the multiplicities for each pair Λ, R

with l(R) ≤ N could reduce, and in some cases will reduce to zero. Denote the reduced

multiplicity for a pair byMorth
Λ,R . To indicate this reduction, we use a multiplicity index

ρ for the orthogonalised operators rather than τ .

The OorthΛ,MΛ,R,ρ
with l(R) ≤ N form a Sn-orthogonal SEP-compatible basis for pre-

BPS operators. The Λ,MΛ labels match the equivalents in QΛ,MΛ,p,ν , and by similar

reasoning to (7.4.95), the length of R must match the length of p. However, a priori,

there is no reason to suspect that the R label should match the p label, or even that

the multiplicities should be the same for any given partition.
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Free field operators
OΛ,MΛ,R,τ

Symmetrised operators
OsymmΛ,MΛ,R,τ

Sn-orthogonal pre-BPS operators
OorthΛ,MΛ,R,ρ

Orthogonal BPS operators
OBPSΛ,MΛ,R,ρ

Remove commutator trace components.

Gram-Schmidt orthogonalise using the Sn
inner product. Multiplicity space is reduced.

Apply G, F-orthognalise and Sn-normalise.

Figure 7.3: Outline of the alternative algorithm of this section. Our numerical cal-
culations suggest that OBPSΛ,MΛ,R,ρ

agrees (up to a choice of multiplicity basis) with the

operators SBPSΛ,MΛ,p,ν
derived from the algorithm in figure 7.1.

From our numerical calculations up to n = 6, we find that for each pair Λ, R

the multiplicities match, and the span of the operators with those labels is the same.

Mathematically,

Morth
Λ,R =MΛ,p=R (7.4.99)

Span
{
OorthΛ,MΛ,R,ρ

: 1 ≤ ρ ≤Morth
Λ,R

}
= Span {QΛ,MΛ,p=R,ν : 1 ≤ ν ≤MΛ,p} (7.4.100)

We conjecture that this is a general result for all Λ, R.

From this, it clearly follows that the BPS bases OBPSΛ,MΛ,R,ρ
and SBPSΛ,MΛ,p,ν

also match.

We can consider (7.4.99) and (7.4.100) as a generalisation to all Λ of the orthogo-

nalisation results discussed in section 7.4.9 for Λ = [n] and [n− 1, 1]. In that case, we

showed that to prove the results, it was sufficient for the coefficients in (7.4.90) to be

lower diagonal in partition indices. We now prove a proposition that generalises this

lower diagonality to arbitrary Λ.

The proposition involves the coefficients bp,νR,τ in (7.4.98). Consider the sub-matrix

of bp,νR,τ with p,R ≥ q for some partition q and denote this by (bq)
p,ν
R,τ . Then bq is an
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mq;1 ×mq;2 matrix where

mq;1 =
∑
p≥q
MΛ,p mq;2 =

∑
R≥q

C(R,R,Λ) (7.4.101)

Denote the rank of bq by rq. This satisfies rq ≤ mq;1.

Proposition

Suppose the coefficients bp,νR,τ are lower diagonal in the partition indices, so that

OsymmΛ,MΛ,R,τ
=
∑
p,ν
p≥R

bp,νR,τMΛ,MΛ,p,ν (7.4.102)

In addition, suppose that bq has maximal rank rq = mq;1 for each q. Then (7.4.99) and

(7.4.100) hold.

Proof

Define

VR = Span{OsymmΛ,MΛ,S,τ
: S ≥ R, 1 ≤ τ ≤ C(S, S,Λ)} (7.4.103)

ṼR = Span{MΛ,MΛ,p,ν : p ≥ R, 1 ≤ ν ≤MΛ,p} (7.4.104)

It follows from (7.4.102) and the maximal rank condition for bR that VR = ṼR.

Denote the partition immediately higher than R by R + 1. By construction, for R

with l(R) ≤ N , the additional monomials included in ṼR by lowering R + 1 to R are

linearly independent, and therefore the dimension increases by MΛ,p=R.

For VR, we have C(R,R,Λ) new operators included by lowering R+1 to R, but the

dimension only increases by Morth
Λ,R . Then since VR = ṼR, we have

Morth
Λ,R =MΛ,p=R (7.4.105)

Therefore for R with l(R) ≤ N we may choose the multiplicity space basis such that

OsymmΛ,MΛ,R,τ
is linearly independent of VR+1 if 1 ≤ τ ≤MΛ,p=R, and is linearly dependent

on VR+1 if τ >MΛ,p=R. Under the orthogonalisation procedure, those operators with

τ > MΛ,p=R will vanish. We can therefore equivalently start the procedure with a

reduced set of operators OsymmΛ,MΛ,R,ρ
where we only consider 1 ≤ ρ ≤ MΛ,p=R. The

coefficients relating these with MΛ,MΛ,p,ν are still lower diagonal in partition indices.

Now split the orthogonalisation into two steps, first orthogonalising against the p

or R with l(p), l(R) > N using the Sn inner product. For the monomials, this results
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in the M̄Λ,MΛ, p, ν operators given in (7.4.66). Let the equivalent operators for the

Osymm orthogonalisation be ŌsymmΛ,MΛ,R,ρ
. These are both basis for the set of pre-BPS

operators, and are still related by coefficients that are lower diagonal in partition indices.

Therefore, as discussed below (7.4.64), they must orthogonalise to the same basis, in

particular

OorthΛ,MΛ,R,ρ
= QΛ,MΛ,p=R,ν=ρ (7.4.106)

�

We have proved that (7.4.102), along with the maximal rank condition, is sufficient

for (7.4.99) and (7.4.100). By a similar argument, it is also a necessary condition,

though we will not prove this here.

The maximal rank condition rq = mq;1 is equivalent to saying that we can choose

bases for the free field and covariant monomial multiplicity spaces such that

bp,νR=p,τ = 0 if τ > ν (7.4.107)

bp,νR=p,τ 6= 0 if τ = ν (7.4.108)

where 1 ≤ ν ≤ MΛ,p and 1 ≤ τ ≤ C(p, p,Λ). Intuitively, this says that b is lower

diagonal in the multiplicity block with non-zero elements on the diagonal.

The coefficients bp,νR,τ are in some sense a covariant generalisation of the Kostka

numbers, which have a nice combinatoric interpretation. It would be interesting to

investigate whether there is a choice of normalisation for OsymmΛ,MΛ,p,τ
and MΛ,MΛ,p,ν such

that these coefficients are integers, and whether they have any combinatoric interpre-

tation.

7.5 Vector space Geometry in C(Sn): BPS states from

Projectors for the intersection of finite N and sym-

metrisation constraints in symmetric group algebras

The construction algorithm for quarter BPS states in section 7.4 involves a U(2) global

symmetry which provides labels for the states constructed. Alongside the U(2) state

labels, there is a U(N) Young diagram Y (p) which emerges from the combinatorics of

multi-symmetric functions and their relation to the space of gauge invariant 2-matrix

operators modulo commutators [X,Y ]. We have observed in Section 7.2.5 that the

combinatorics of multi-symmetric functions admits a generalization to the multi-matrix

case where we have M different matrices X1, X2, · · · , XM . In this section we take

a different viewpoint on the M -matrix system, using permutations to describe these

operators as explained in chapter 2.
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This is used to investigate the vector space geometry in C(Sn) that lies behind the

constructions of BPS bases in the previous sections, involving the interplay between a

projector PH for the U(M) flavour symmetry, a projector for the symmetrisation of

traces P and an operator FN whose kernel implements finite N constraints. Restricting

to the image of FN , there is a well-defined inverse GN . These operators are M -matrix

analogues of FN and GN discussed in section 7.1. It was proved in [51] that BPS states

are in

Im(GNPN ) (7.5.1)

where PN is an orthogonal (with respect to the Sn inner product) projector acting on

C(Sn) with

ImPN ≡ ImP ∩ ImFN (7.5.2)

The isomorphism between multi-symmetric functions and the ring of gauge invariants

modulo commutators and the associated combinatorics of set partitions explained in

section 7.2 allows us to give a general explicit construction of PN . This general dis-

cussion also serves to explain why the construction algorithm in section 7.4 is able to

handle the finite N constraints on BPS operators systematically. The flavour projec-

tion PH , for any chosen flavour group H, commutes with P and FN and can be done

at the end.

7.5.1 Finite N relations and flavour projection in C(Sn)

In section 2.1 we explained the vector space isomorphism between permutations in

C(Sn) and multi-traces of n matrices of size N ×N for N ≥ n. Explicitly

σ ↔ Oσ = Tr(σZ) (7.5.3)

Further, in section 2.5 we described how to deal with N < n by removing the Fourier

basis elements βRij with l(R) > N . In this section we use a slightly different notation.

Define FN and GN on C(Sn) by

FNσ = ΩNσ GNσ = Ω−1
N σ (7.5.4)

These are the n-matrix analogues of (7.1.2) and (7.1.5). Then the image and kernel of

FN exactly splits C(Sn) into those permutations that survive the finite N cut-off and

those that don’t

ImFN = Span{βRIJ : l(R) ≤ N} (7.5.5)
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KerFN = Span{βRIJ : l(R) > N} (7.5.6)

So (7.5.3) gives a vector space isomorphism between ImFN (or the quotient space

C(Sn)/KerFN ) and multi-traces of n matrices of size N × N , where N is now unre-

stricted.

There is a natural inner product on C(Sn). On permutations σ, τ ∈ Sn it is defined

by

gn(σ, τ) = δ
(
στ−1

)
(7.5.7)

If N ≥ n, this corresponds to the Sn inner product (3.6.26) when mapped to operators

using (7.5.3). For N < n we introduce a different inner product on C(Sn) given by

gn,N (σ, τ) = δN (στ−1) (7.5.8)

This corresponds to the Sn inner product for any N , including N < n.

Note that if N < n, gn,N is a degenerate inner product on C(Sn). It vanishes on

KerFN , and is identical to gn on ImFN . In particular, for an element α ∈ ImFN , we

have

gn,N (α, τ) = gn(α, τ) (7.5.9)

for any τ ∈ Sn.

It will be useful late to note that the Fourier basis elements are orthogonal in the

gn inner product (from standard character orthogonality relations), and therefore

(ImFN )⊥ = KerFN (7.5.10)

where (.)⊥ denotes the orthogonal complement in the gn inner product.

In (2.1.9) we introduced the sub-algebra AH of C(Sn) that describes the degree

(n1, n2, . . . , nM ) subspace of an M -matrix system. Define the flavour projector PH
onto AH by

PH(σ) =
1

|H|
∑
τ∈H

τστ−1 (7.5.11)

To check this is indeed a projector, we prove that it has the two properties

(PH)2 = PH (PH)† = PH (7.5.12)

where the Hermitian conjugate is with respect to the gn inner product. These are both

simple consequences of the definition. We have

(PH)2 (α) = PH(PH(α))
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=
1

|H|2
∑
σ,τ∈H

στατ−1σ−1

=
1

|H|2
∑
σ,τ∈H

σασ−1

=
1

|H|
∑
µ∈H

σασ−1

= PH(α) (7.5.13)

and

g(α,PH(β)) =
1

|H|
∑
σ∈H

δ(ασβ−1σ−1)

=
1

|H|
∑
σ∈H

δ(σ−1ασβ−1)

=
1

|H|
∑
σ∈H

δ(σασ−1β−1)

= g(PH(α), β) (7.5.14)

Finally, we check that AH is the image of PH . Any α ∈ AH is invariant under con-

jugation by τ ∈ H, and therefore PH(α) = α. Conversely, for any α ∈ C(Sn), we

have

τPH(α)τ−1 = τ
∑
σ∈H

σασ−1τ−1 =
∑
σ∈H

σασ−1 = PH(α) (7.5.15)

and therefore PH(α) ∈ AH .

The map (7.5.3) gives an isomorphism betweenAH (or the quotient space C(Sn)/KerPH)

and the space of M -matrix multi-traces of degree (n1, . . . , nM ).

7.5.2 Symmetrised traces from C(Sn)

A symmetrised trace of Z1, Z2, . . . , Zn is defined in a completely analogous manner to

the 2-matrix version in (7.1.10), allowing ai ∈ {1, 2, . . . , n} instead of {1, 2}. Degree

(1, . . . , 1) symmetrised traces are labelled by set partitions π ∈ Π(n). These naturally

correspond to n-vector partitions of weight (1, . . . , 1).

Take b ⊆ {1, 2, . . . , n}. Then there is an associated symmetrised single trace

Tb = Str

(∏
i∈b

Zi

)
(7.5.16)

where the symmetrisation implicit in Str means the ordering of the product is irrelevant.
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For a set partition π ∈ Π(n) we have

Tπ =
∏
b∈π

Tb (7.5.17)

where b runs over the blocks of π.

The equivalent permutation picture comes from the set of permutations Perms(π),

defined in (7.2.56). We have

Tπ =
1

|Perms(π)|
∑

σ∈Perms(π)

σ (7.5.18)

where we use the same notation Tπ for both the sum over permutations and the associ-

ated symmetrised trace operator. For the remainder of the section we only work with

the permutation sum, so this ambiguity will not be an issue.

More generally, one can define a symmetrisation projector P which projects a per-

mutation onto the space isomorphic to symmetrised traces. This is

P(σ) =
1

|G(π(σ))|
∑

τ∈G(π(σ))

τστ−1 (7.5.19)

where the set partition π(σ) is defined naturally from the cycle structure of σ and

is discussed above (7.2.56). The subgroup G(π) for a given set partition is defined

in (7.2.54) and permutes each block of π within itself but does not mix the different

blocks. As mentioned below (7.2.56), the set Perms(π(σ)) is just the conjugacy class

of σ under G(π(σ)), and therefore

P(σ) = Tπ(σ) (7.5.20)

As with the flavour projection, we now prove

P2 = P P† = P (7.5.21)

These follow immediately from the definition. We have

P(P(σ)) =
1

|G(π(σ))|2
∑

τ∈G(π(σ))

∑
µ∈G(π(τστ−1))

µτστ−1µ−1

=
1

|G(π(σ))|2
∑

τ∈G(π(σ))

∑
µ∈G(π(τστ−1))

ττ−1µτστ−1µ−1ττ−1

=
1

|G(π(σ))|2
∑

τ,µ̃∈G(π(σ))

τ µ̃σµ̃−1τ−1
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=
1

|G(π(σ))|2
∑

τ∈G(π(σ))

|G(π(σ))|τατ−1

= P(α) (7.5.22)

where in the third line, we have defined µ̃ = τ−1µτ . The conjugation by τ takes

µ ∈ G(π(τστ−1)) to µ̃ ∈ G(π(σ)). To prove P is Hermitian, we note that

g(σ,P(τ)) =
1

|G(π(τ))|
∑

µ∈G(π(τ))

δ(σµτ−1µ−1) (7.5.23)

is only non-zero if σ, τ belong to the same Perms(π). In particular, they have π(σ) =

π(τ). Therefore

g(σ,P(τ)) =
1

|G(π(σ))|
∑

µ∈G(π(σ))

δ(µ−1σµτ−1)

=
1

|G(π(σ))|
∑

µ∈G(π(σ))

δ(µσµ−1τ−1)

= g(P(σ), τ) (7.5.24)

Therefore the map (7.5.3) gives an isomorphism between the symmetrised traces of n

matrices with degree (1, . . . , 1) and ImP (or the quotient C(Sn)/KerP). This is true

when N ≥ n. To deal with N < n we have to include the finite N relations as well,

which is discussed later.

As P is satisfies (7.5.21), it is expressible in the standard projector form

P =
∑
i

|i〉〈i| (7.5.25)

for orthonormal basis states |i〉 for Im(P). These states |i〉 = αi belong to C(Sn), so to

avoid doubling of notation, we will write this as

P =
∑
i

αi ⊗ αi (7.5.26)

which acts on σ ∈ Sn via

P(σ) =
∑
i

g(αi, σ)αi (7.5.27)

It is clear from (7.5.20) that Tπ spans ImP. For π 6= π′, Perms(π) is disjoint from

Perms(π′), and therefore

g (Tπ, Tπ′) =
1

|Perms(π)||Perms(π′)|
∑

σ∈Perms(π)
τ∈Perms(π′)

δ(στ−1)
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=
1

|Perms(π)|
δπ,π′ (7.5.28)

So an orthonormal basis for ImP is given by

απ =
√
|Perms(π)|Tπ (7.5.29)

and the corresponding expression for P is

P =
∑

π∈Π(n)

|Perms(π)| Tπ ⊗ Tπ (7.5.30)

In section 7.2.3 we defined another Tπ as a map from 2-vector partitions to multi-

symmetric functions. Composing these with the map (7.1.13) between multi-symmetric

functions and symmetrised trace operators, we can identify Tπ ∈ C(Sn) with these using

the flavour projector PH with H = Sn1 × Sn2 .

Let p ` (n1, n2) be a vector partition, and π a set partition such that π([(1, 0)n1 , (0, 1)n2 ]) =

p, where the action of a set partition on a vector partition was given in (7.2.39). Then

Tp = Tr [PH (Tπ)X] (7.5.31)

where Tp is the 2-matrix symmetrised trace operator given in (7.1.11).

Intuitively, the flavour projection and symmetrisation projectors should commute,

since symmetrising a trace and renaming matrices from Zi to Xj are commuting oper-

ations. Indeed

PPH(σ) =
1

|G(π(τστ−1))|
1

|H|
∑
τ∈H

µ∈G(π(τστ−1))

µτστ−1µ−1

=
1

|G(π(σ))||H|
∑
τ∈H

µ∈G(π(τστ−1))

τ
(
τ−1µτ

)
σ(τ−1µτ)−1τ−1

=
1

|G(π(σ))||H|
∑
τ∈H

µ̃∈G(π(σ))

τ µ̃σµ̃−1τ−1

= PHP(σ) (7.5.32)

P was first considered in [51], though a slightly different group G(π) was used in the

definition. This involves wreath products and is given in section 7.3.7 for an integer

partition. The difference in the defining group does not affect the action of the projector.
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7.5.3 Multi-symmetric function isomorphism for n matrices

In section 7.1.1 we described the isomorphism of [97,98] between U(N) gauge invariant

of 2 complex matrices X1 and X2, modulo the ideal generated by commutators, and

the ring of multi-symmetric functions in 2 families of variables. This was then used to

construct a basis for 2-matrix symmetrised traces that respected the finite N behaviour.

We now generalise this to the n-matrix case, and use the previous section to identify

the space of multi-symmetric functions with sub-algebras of C(Sn). This will in turn

allow a construction of the projector PN that describes the interaction of the finite N

cut-off with the symmetrisation projector P.

Consider the M matrix variables X1, X2, · · · , XM . For each a ∈ {1, · · · ,M}, we

have N2 variables

(Xa)ij (7.5.33)

where i, j ∈ {1, · · · , N}. Consider the ring of polynomials in these MN2 variables. In

this ring, there is an ideal generated by the elements of the commutators

[Xa, Xb]ik =
∑
j

(Xa)ij(Xb)jk − (Xb)ij(Xa)jk (7.5.34)

where a 6= b ∈ {1, 2, · · · ,M}. We can form a quotient ring from this ideal. The ring

of polynomial functions in the M matrix variables admits an action by U ∈ U(N) (or

GL(N,C)):

Xa → UXaU−1 (7.5.35)

The ideal generated by the commutators is invariant under the action of U(N), so there

is a quotient ring of U(N) invariant polynomials. This is the ring of gauge invariants

modulo commutator traces. This quotient ring of gauge invariants consists of multi-

traces where any two traces differing by commutator traces define the same element of

the ring. This is denoted by AGP in Theorem 3 of [97].

There is a polynomial ringD generated by xai for a ∈ {1, · · · ,M} and i ∈ {1, · · · , N}.
These polynomials have an SN action given by

xai → xaσ(i) (7.5.36)

The SN invariant polynomials form multi-symmetric functions in M families of vari-

ables, and the ring of these functions is denoted DSN . Theorem 3 of [97] states that

these two rings DSN and AGP are isomorphic.

To summarise, we have an isomorphism between gauge invariant polynomial func-
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tions of M matrices, modulo commutator traces, and permutation invariant polynomial

functions of the M diagonal matrices. The map from the ring of U(N) gauge invari-

ant polynomial functions of matrices, modulo the commutator trace, to the space of

SN invariant polynomials is obtained by evaluating the gauge invariant functions on

diagonal matrices. This map, denoted by ι, is proved to be an isomorphism in [97,98].

In the following, we will use a special case of this isomorphism where we have M = n

matrices and we consider gauge invariants containing exactly one of each matrix.

The space of matrix invariants appearing in this special case is important for the

construction of BPS states. As discussed in section 7.1, the construction of quarter-

BPS states is based on finding the orthogonal complement to the operators which

are expressible as commutator traces at finite N . This orthogonalisation admits a

generalization to the present case of M = n matrices and gauge invariants containing

one matrix of each type. Using the permutation description of n-matrix traces given

in the previous section, it can be expressed as a problem in C(Sn) or constructing the

orthogonal complement of KerP + KerFN .

To see this, recall that permutations in KerP correspond to commutator traces

via (7.5.3), while those in KerFN correspond to the zero operator. Therefore any

permutation in KerP + KerFN is a commutator trace. It follows that

Lemma 1

(
C[X1, X2, · · · , Xn] / 〈{[Xa, Xb] : 1 ≤ a < b ≤ n}〉

)U(N)
∣∣∣∣∣
(1,1,··· ,1)

= C(Sn)/
(

KerP + KerFN
)

(7.5.37)

Composing this with the isomorphism of [97,98] gives an identification between multi-

symmetric functions and the quotient space of permutations.

The ring of multi-symmetric functions in n families of variables is spanned by multi-

traces of n commuting matrices or monomials functions, denoted by Tπ and Mπ respec-

tively. As discussed in section 7.5.2, these are labelled by set partitions π ∈ Π(n) when

the degree of each family of variables is 1, since this is equivalent to a n-vector partition

of (1, . . . , 1). The size N of each family of variables limit the number of subsets in the

π to be less than N . This is denoted by |π| ≤ N and follows immediately from the

definition of the Mπ, given for 2 families of variables in (7.2.20).

We use the same notation Tπ and Mπ for the multi-symmetric functions and the

equivalent permutations. For Tπ, this is given in (7.5.18). The Mπ and Tπ are related

by

Mπ =
∑
π′

C̃π
′

π Tπ′ Tπ =
∑
π′

Cπ
′

π Mπ′ (7.5.38)
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where the C and C̃ matrices are described in section 7.2.5.

We now investigate the decomposition of C(Sn) in terms of the images and kernels

of P and FN .

Lemma 2

Consider two subspaces S1, S2 of a vector space, equipped with an inner product. Let

S⊥1 , S
⊥
2 be the orthogonal complements to S1, S2 respectively. Let S1 + S2 be the set

of vectors of the form v1 + v2, where v1 ∈ S1, v2 ∈ S2. It is a standard result that

(S1 + S2)⊥ = S⊥1 ∩ S⊥2 (7.5.39)

which is stated as “The orthogonal complement of a sum of vector spaces is the inter-

section of orthogonal complements”.

Proof

Suppose w ∈ S⊥1 ∩ S⊥2 , then

v1 · w = v2 · w = 0 (7.5.40)

for all v1 ∈ S1, v2 ∈ S2. It follows that w · (v1 +v2) = w ·v1 +w ·v2 = 0. So we conclude

that w ∈ (S1 + S2)⊥.

Conversely, suppose w /∈ S⊥1 ∩ S⊥2 , then w /∈ S⊥i for i = 1 or 2. This means there is

some v ∈ Si, such that w · v 6= 0. But v ∈ S1 + S2, so w /∈ (S1 + S2)⊥. �

Taking S1 = ImP and S2 = ImFN , we have an orthogonal decomposition for C(Sn)

with respect to gn

Lemma 2

C(Sn) = (ImP ∩ ImFN )⊕gn (KerP + KerFN ) (7.5.41)

Using the fact that the monomial multi-symmetric functions form a basis, we have

ImP =M = Span{Mπ : π ∈ Π(n)} (7.5.42)

We will also define

M≤N = Span{Mπ : π ∈ Π(n), |π| ≤ N}

M>
N = Span{Mπ : π ∈ Π(n), |π| > N} (7.5.43)

For n < N , we have to consider both operators FN and P. They are both hermitian
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operators wrt the gn inner product, but they do not commute. The space KerP +

KerFN , spanned by sums of vectors in KerP and KerFN is in general bigger than

KerP. There is non-trivial intersection

ImP ∩ (KerP + KerFN ) (7.5.44)

The non-triviality of this intersection is reflected in the fact that some symmetrised

traces can also be written as as a symmetrised trace at finite N . An example of this is

given in (7.4.26).

Since P is a Hermitian projector, we have the orthogonal decomposition

C(Sn) = ImP ⊕gn KerP (7.5.45)

It follows that we have an orthogonal decomposition of KerP + KerFN

Lemma 3

KerP + KerFN =
(
(KerP + KerFN ) ∩ ImP

)
⊕gn KerP (7.5.46)

Lemma 4

(KerP + KerFN ) ∩ ImP =M>
N = Span{Mπ, |π| > N}

Proof

M>
N is exactly the subspace of M which is not in the image of the isomorphism ι.

Therefore

M>
N ⊂ KerP + KerFN ⊂ C(Sn) (7.5.47)

Additionally M>
N ⊂ ImP = (KerP)⊥. Then using Lemma 4, the result follows. �

Using Lemmas 2, 3 and 4 we have the result

Theorem

C(Sn) = (ImP ∩ ImFN )⊕gnM>
N ⊕gn KerP (7.5.48)
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Using the definition of PN in (7.5.2) we can also write this as

C(Sn) = ImPN ⊕gnM>
N ⊕gn KerP (7.5.49)

This gives a procedure, based on the combinatorics of multi-symmetric functions, for

constructing the projector PN . This projector is built by constructing the projector for

the susbspace ofM orthogonal, with respect to the inner product gn on C(Sn), toM>
N .

SinceM≤N+M>
N = ImP, this can be built by taking the vectors inM≤N and subtracting

vectors inM>
N to ensure the orthogonality. The construction of ImP ∩ ImFN uses the

following elements:

� Vectors Mπ in C(Sn) labelled by set partitions, spanning ImP.

� Finite N cut-off implemented using the set partition labels: the condition |π| ≤ N
which defines M≤N .

� Orthogonalization of M≤N to M>
N with respect to the inner product gn.

This procedure is used in section 7.4 to construct quarter-BPS bases.

The result of this procedure is a vector subspace of ImFN , and therefore the or-

thogonalisation can equivalently be done using the inner product g
n,N̂

for any N̂ ≥ N ,

as on these permutations the gn and g
n,N̂

inner products are the same.

We now give a construction of the projector PN that captures this process. The

formula for this is given in (7.5.62).

7.5.4 Finite N symmetrisation operator on C(Sn)

We now construct the projector PN onto ImP ∩ ImFN and prove it has the projector

properties

(PN )2 = PN (PN )† = PN (7.5.50)

and commutes with the flavour projector

PNPH = PHPN (7.5.51)

Before producing PN , we give an alternative formula for P, the large N symmetrisation

projector. Using (7.5.30) and substituting using (7.5.38), we have

P =
∑

π,π′,π′′∈Π(n)

|Perms(π)|Cπ′π Cπ
′′

π Mπ′ ⊗Mπ′′ =
∑

π,π′∈Π(n)

(
CDCT

)π
π′
Mπ ⊗Mπ′

(7.5.52)

where D is the diagonal matrix

Dπ
π′ = |Perms(π)|δπ,π′ (7.5.53)
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To understand the appearance of CDCT , note that this is the inverse metric on the

subspace Im(P) of C(Sn).

We know g is a positive definite inner product on the entirety of C(Sn). It is

therefore also a positive definite inner product on the subspace ImP. Hence there is

an inverse metric on this subspace, which we call G. Using (7.5.38) we have

g(Mπ,Mπ′) =
∑

π1,π2∈Π(n)

C̃π1
π C̃π2

π′ g(Tπ1 , Tπ2)

=
∑

π1∈Π(n)

C̃π1
π C̃π1

π′

|Perms(π1)|

=
(
C̃TD−1C̃

)π
π′

(7.5.54)

Since C and C̃ are inverses of each other, this implies

G(Mπ,Mπ′) = (CDCT )ππ′ (7.5.55)

We can therefore write

P =
∑

π,π′∈Π(n)

(CDCT )ππ′ Mπ ⊗Mπ′ =
∑

π,π′∈Π(n)

G(Mπ,Mπ′)Mπ ⊗Mπ′ (7.5.56)

This form for a projector is a generalisation of (7.5.25) to a basis of the image that is

not orthonormal. We now find a basis for ImPN , and can use the form above to write

down PN .

At finite N , we want to project onto the orthogonal complement of M>
N within

ImP. The Mπ with |π| ≤ N do not suffice for this as they are not orthogonal to Mπ

with |π| > N ; we need to orthogonalise them first.

As already noted, g is an inner product on any subspace of C(Sn). This time the

relevant subspace is M>
N . This means that the matrix of inner products g(Mπ,Mπ′)

for |π|, |π′| > N is invertible and has an inverse metric that we call G>. Note that

G> is distinct to G, which is the inverse inner product on ImP =M. Practically, the

difference is∑
π′∈Π(n)

g(Mπ,Mπ′)G(Mπ′ ,Mπ′′) = δππ′′ π, π′′ unrestricted (7.5.57)

∑
π′∈Π(n)
|π′|>N

g(Mπ,Mπ′)G
>(Mπ′ ,Mπ′′) = δππ′′ |π|, |π′′| > N (7.5.58)

We can use G> to construct a basis for M≤N , labelled by those set partitions with
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|π| ≤ N .

M̄π = Mπ −
∑

π1,π2∈Π(n)
|π1|,|π2|>N

G>(Mπ1 ,Mπ2)g(Mπ,Mπ1)Mπ2 (7.5.59)

The simplest way of looking at this is to notice that the second term is using a projector

of the form (7.5.56) applied to Mπ. This is the projector

P> =
∑

π1,π2∈Π(n)
|π1|,|π2|>N

G>(Mπ1 ,Mπ2)(Mπ1 ⊗Mπ2) (7.5.60)

that orthogonally projects onto M>
N . The construction of M̄π just applies 1 − P> to

Mπ to produce something orthogonal to M>
N while remaining in ImP. We can now

use the M̄π to define the finite N symmetrisation projector. Again, we need to produce

a new inverse metric G≤ on the space spanned by M̄π. This satisfies∑
π′∈Π(n)
|π′|≤N

g(M̄π, M̄π′)G
≤(M̄π′ , M̄π′′) = δππ′′ |π|, |π′′| ≤ N (7.5.61)

Using this, we construct the finite N symmetrisation projector

PN =
∑

π,π′∈Π(n)
|π|,|π′|≤N

G≤(M̄π, M̄π′)(M̄π ⊗ M̄π′) (7.5.62)

We now prove the properties (7.5.50) and (7.5.51) for PN .

PN is a projector

To prove this, we act with the square of the projector

PNPN (α) = PN
∑

π1,π2∈Π(n)
|π1|,|π2|≤N

G≤(M̄π1 , M̄π2)M̄π1 g(M̄π2 , α)

=
∑

π1,π2,π3,π4∈Π(n)
|π1|,|π2|,|π3|,|π4|≤N

G≤(M̄π3 , M̄π4)G≤(M̄π1 , M̄π2)g(M̄π4 , M̄π1)g(M̄π2 , α)M̄π3

=
∑

π1,π2,π3∈Π(n)
|π1|,|π2|,|π3|≤N

δ(π1, π3)G≤(M̄π1 , M̄π2)g(M̄π2 , α)M̄π3

=
∑

π1,π2∈Π(n)
|π1|,|π2|≤N

G≤(M̄π1 , M̄π2)M̄π1g(M̄π2 , α)

= PN (α) (7.5.63)
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where we have used (7.5.61) to get from the second to third line.

PN is hermitian

This follows from the symmetry between π and π′ in (7.5.62)

g(α,PN (β)) =
∑

π1,π2∈Π(n)
|π1|,|π2|≤N

G≤(M̄π1 , M̄π2)g(M̄π2 , β)g(α, M̄π1)

= g(PN (α), β) (7.5.64)

PN commutes with PH

This relies on some smaller results. We start with

σ−1Tπσ = Tσ(π) (7.5.65)

where we define σ(π) as the set partition obtained by substituting i → σ(i) in the set

partition π. It is useful to recall the fact that σ−1µσ is the permutation obtained by

the substitution i→ σ(i) in the cycle decomposition of µ, and therefore

Perms(σ(π)) = σ−1Perms(π)σ =
{
σ−1µσ : µ ∈ Perms(π)

}
(7.5.66)

It follows that

σ−1Tπσ =
1

|Perms(π)|
∑

µ∈Perms(π)

σ−1µσ

=
1

|Perms(σ(π))|
∑

µ̃∈Perms(σ(π))

µ̃

= Tσ(π) (7.5.67)

We also observe that

Cπ1
π2

= C
σ(π1)
σ(π2) C̃π1

π2
= C̃

σ(π1)
σ(π2) (7.5.68)

This is because the incidence relations of the poset of set partitions are unchanged

when we go from set partitions of {1, 2, · · · , n} to set partitions of {σ(1), · · · , σ(n)}.
It follows from (7.5.65) and (7.5.68) that

σ−1Mπσ =
∑

π′∈Π(n)

C̃π
′

π σ
−1Tπ′σ

=
∑

π′∈Π(n)

C̃
σ(π′)
σ(π) Tσ(π′)
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=
∑

π′∈Π(n)

C̃π
′

σ(π)Tπ′

= Mσ(π) (7.5.69)

where in going from the 2nd to 3rd line we have reparameterised the sum by π′ → σ(π′),

which clearly just permutes the set partitions in Π(n) among each other.

It is immediate from (7.5.7) that

g(σασ−1, σβσ−1) = g(α, β) (7.5.70)

Applying this to α = Mπ, β = Mπ′ and using (7.5.69), we have

g(Mσ(π),Mσ(π′)) = g(Mπ,Mπ′) (7.5.71)

We would like to show that G also has this property. To see this, note that G is defined

by the property (7.5.57), so we need to show that the matrix G(Mσ(π),Mσ(π′)) satisfies

the same relation.∑
π′∈Π(n)

g(Mπ,Mπ′)G(Mσ(π′),Mσ(π′′)) =
∑

π′∈Π(n)

g(Mπ,Mσ−1(π′))G(Mπ′ ,Mσ(π′′))

=
∑

π′∈Π(n)

g(Mσ(π),Mπ′)G(Mπ′ ,Mσ(π′′))

= δσ(π)σ(π′′)

= δππ′′ (7.5.72)

Therefore

G(Mσ(π),Mσ(π′)) = G(Mπ,Mπ′) (7.5.73)

Next note that |π| = |σ(π)|, so when changing variables from π to σ(π), the restrictions

|π| > N or |π| ≤ N are maintained. This means we can repeat the steps in (7.5.72)

but using G> or G≤ instead. Hence

G>(Mσ(π),Mσ(π′)) = G>(Mπ,Mπ′) G≤(Mσ(π),Mσ(π′)) = G≤(Mπ,Mπ′)

(7.5.74)

where π, π′ satisfy the appropriate constraints on their length for the two operations.

Using the definition (7.5.59), as well as (7.5.69), (7.5.70) and (7.5.74)

σ−1M̄πσ = σ−1Mπσ −
∑

π1,π2∈Π(n)
|π1|,|π2|>N

G>(Mπ1 ,Mπ2)g(Mπ,Mπ1)σ−1Mπ2σ
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= Mσ(π) −
∑

π1,π2∈Π(n)
|π1|,|π2|>N

G>(Mπ1 ,Mπ2)g(Mπ,Mπ1)Mσ(π2)

= Mσ(π) −
∑

π1,π2∈Π(n)
|π1|,|π2|>N

G>(Mπ1 ,Mσ−1(π2))g(Mπ,Mπ1)Mπ2

= Mσ(π) −
∑

π1,π2∈Π(n)
|π1|,|π2|>N

G>(Mσ(π1),Mπ2)g(Mπ,Mπ1)Mπ2

= Mσ(π) −
∑

π1,π2∈Π(n)
|π1|,|π2|>N

G>(Mπ1 ,Mπ2)g(Mπ,Mσ−1(π1))Mπ2

= Mσ(π) −
∑

π1,π2∈Π(n)
|π1|,|π2|>N

G>(Mπ1 ,Mπ2)g(Mσ(π),Mπ1)Mπ2

= M̄σ(π) (7.5.75)

We can now prove that PN and PH commute

PNPH(α) =
1

|H|
∑
σ∈H

∑
π1,π2∈Π(n)
|π1|,|π2|≤N

G≤(M̄π2 , M̄π1)M̄π2g(M̄π1 , σασ
−1)

=
1

|H|
∑
σ∈H

∑
π1,π2∈Π(n)
|π1|,|π2|≤N

G≤(M̄π2 , M̄π1)M̄π2g(σ−1M̄π1σ, α)

=
1

|H|
∑
σ∈H

∑
π1,π2∈Π(n)
|π1|,|π2|≤N

G≤(M̄π2 , M̄π1)M̄π2g(M̄σ(π1), α)

=
1

|H|
∑
σ∈H

∑
π1,π2∈Π(n)
|π1|,|π2|≤N

G≤(M̄π2 , M̄σ−1(π1))M̄π2g(M̄π1 , α)

=
1

|H|
∑
σ∈H

∑
π1,π2∈Π(n)
|π1|,|π2|≤N

G≤(M̄σ(π2), M̄π1)M̄π2g(M̄π1 , α) (7.5.76)

=
1

|H|
∑
σ∈H

∑
π1,π2∈Π(n)
|π1|,|π2|≤N

G≤(M̄π2 , M̄π1)M̄σ−1(π2)g(M̄π1 , α)

=
1

|H|
∑
σ∈H

∑
π1,π2∈Π(n)
|π1|,|π2|≤N

G≤(M̄π2 , M̄π1)σM̄π2σ
−1g(M̄π1 , α)

= PHPN (α) (7.5.77)

We can interpret this in words as follows. Recall that permutations σ generate gauge

invariant operators via (7.5.3). Imagine we start with the n-flavour gauge invariant
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operator generated by σ, and then symmetrise the traces, and map that to symmetrised

permutations. This means applying P then setting

Z1, Z2, . . . , Zn1 → X

Zn1+1, Zn1+2, . . . , Zn → Y
(7.5.78)

On the other hand, we could specialise the n-flavour gauge invariants to 2-flavour

gauge invariants before projecting to symmetrised traces. Intuitively, thinking about

traces, we don’t see any reason for a difference between the two orders of arriving at

symmetrised traces of two matrices. So we expect the two projectors to commute.

Indeed they do as shown above.

7.6 Hidden 2D topology: Permutation TFT2 for the count-

ing and correlators at weak coupling

The connection between delta functions on symmetric group algebras and two-dimensional

topological field theories (TFT2) is explained in [51]. We will give the delta function

formulae and explain the TFT2 defects.

Lemma 1

In the problem of gauge invariants of n matrices, each occuring once, the counting of

symmetrised traces at large N is given by∑
α∈Sn

δ
(
P(α−1)P(α)

)
(7.6.1)

Proof

The symmetrised traces form the image of the hermitian projector P. So the dimension

of the space of symmetrised traces is calculated as

Dim (ImP) =
∑
α∈Sn

g(α,P(α))

=
∑
α∈Sn

g(α,P(P(α)))

=
∑
α∈Sn

g(P(α),P(α))

=
∑
α∈Sn

δ(P(α−1)P(α)) (7.6.2)

�

Proposition 2
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The counting of quarter-BPS operators in the large N limit in the free theory is given

by ∑
α∈Sn

δ
(
PH(α)α−1

)
(7.6.3)

where PH is the flavour projector onto two flavours with H = Sn1 × Sn2 as described

in (7.5.11).

Proof

We know that permutations can be used to construct 2-matrix gauge invariants and

there is an equivalence up to conjugation by H = Sn1 × Sn2 . Using Burnside’s Lemma

to count the free field operators, we have

1

|H|
∑
γ∈H

∑
α∈Sn

δ(γαγ−1α−1) =
∑
α∈Sn

δ
(
PH(α)α−1

)
(7.6.4)

This is the free field counting of 2-matrix operators [51]. �

Proposition 3

The counting of 2-matrix symmetrised operators in the (n1, n2) sector is∑
α∈Sn

δ(PHP(α)P(α−1)) (7.6.5)

Proof

Both P,PH are hermitian with respect to the standard inner product on CSn and

they commute, so they can be simultaneously diagonalised. The dimension of the

intersection of their images is equal to the trace of their product∑
α∈Sn

g(α,PPH(α)) =
∑
α∈Sn

g(α,P2PH(α))

=
∑
α∈Sn

g(P(α),PPH(α))

=
∑
α∈Sn

δ(P(α−1)PPH(α))

=
∑
α∈Sn

δ(PHP(α)P(α−1)) (7.6.6)

�

Proposition 4
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The counting formula for the finite N quarter-BPS operators is∑
α∈Sn

δ(PHPN (α)PN (α−1)) (7.6.7)

Proof

Given that we have proved the projector, hermiticity, and commutativity properties of

PN and PH , we can calculate the dimension of the image of PNPH by repeating the

steps we had for P and PH

Dim
(

Im(PNPH)
)

=
∑
α∈Sn

g(α,PNPH(α))

=
∑
α∈Sn

g(α,P2
NPH(α))

=
∑
α∈Sn

g(PN (α),PNPH(α))

=
∑
α∈Sn

δ(PN (α−1)PNPH(α))

=
∑
α∈Sn

δ(PHPN (α)PN (α−1)) (7.6.8)

�

Proposition 5

The finite N two-point function for BPS states can be written as

〈
Tr
(
GNPNα1X

⊗n1Y ⊗n2
)
, Tr

(
GNPNα2X

⊗n1Y ⊗n2
)〉

= δ
(
PHPN (α1)PN (α−1

2 )Ω−1
N

)
(7.6.9)

This follows as in [51]. Ω−1
N PN (α) span the BPS states as α runs over C(Sn). The free

field inner product is gFF (α, β) = g(α,ΩNβ). The step forward in this thesis is that

we have an explicit construction of PN using set partitions.

Now we will draw the TFT2 pictures corresponding to these delta function formulae.

Figure 7.4 gives us the counting of weak coupling BPS operators. Figure 7.5 gives the

TFT2 formulation for the 2-point function of quarter BPS operators at weak coupling.

The one new ingredient in these TFT2 constructions is the PN -defect which can be

associated to a circle. The defect is defined by declaring that it modifies the permutation

α associated to that circle in the TFT2 to PN (α).
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PN

H

PN (α)

PN (α−1)

γ−1 γ

Figure 7.4: TFT2 partition function for finite N weak coupling BPS counting

PN (α−1
2 )

H

PN (α1)

PN (α−1
2 )

γ−1 γ

PN (α1)

Ω−1
N

Ω−1
N

Figure 7.5: TFT2 partition function for finite N BPS 2-point function
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Chapter 8

Conclusions

In this thesis we have explored aspects of the half and quarter-BPS sectors of N = 4

super Yang-Mills theory with gauge groups U(N), SO(N) and Sp(N). These results,

interpreted through the AdS/CFT correspondence, have implications for our under-

standing of non-perturbative effects in string theory.

8.1 Word combinatorics

Motivated by the matching of generating functions between the planar quarter-BPS

sector in the U(N) gauge theory and an integrally graded word monoid, in chapter 3

we found a bijection between aperiodic single traces and Lyndon words, the factorisation

units of the monoid. This bijection led to a decomposition in both the vector space

structure of the quarter-BPS sector and the corresponding generating function.

In chapter 4 we derived the same structure for the SO(N) and Sp(N) gauge theories,

where the Lyndon words of the U(N) theory are replaced by orthogonal Lyndon words

that satisfy a minimal periodicity condition, and gave two independent derivations of

the planar generating function.

The generating function (3.0.1) has been generalised to arbitrary U(N) quivers

[68, 69]. The structure of the function, with its infinite product of a root function,

was found to be very general, and the root function had an interpretation in terms of

counting words made from loops in the quiver. A natural question to ask is whether

there is an analogue of Lyndon words in this setting. In a different direction, it would be

interesting to investigate the extension of the SO(N)/Sp(N) counting function (4.3.21)

to a general SO(N)/Sp(N) quiver.
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8.2 Permutation structures in gauge theory

Since the derivation of a Young diagram basis for the half-BPS sector [22], permutations

have proved a powerful tool in studying U(N) gauge theory and matrix models. See

[62] for a summary of the various interesting applications that have been found. In

particular, Schur-Weyl duality has been a crucial element in describing finite N effects.

In chapter 5 we develop a permutation description of equivalent power for SO(N) and

Sp(N) gauge groups. This mathematical formalism can be used to study phenomenon

in the dual unoriented string theory as well as general SO(N)/Sp(N) matrix models.

Some subjects of particular interest that should be approachable with these techniques

are

� Investigating the spectrum of the one-loop dilatation operator in the quarter-BPS

sector of the SO(N)/Sp(N) theory, in a manner similar to that of chapter 7.

� Counting and correlators in general SO(N)/Sp(N) quiver theories.

More generally, the appearance of permutation structures in theories with different

gauge groups offers an interesting interpretation of permutations as a background in-

dependent structure in string theory. The U(N), SO(N) and Sp(N) inner products on

permutations can be viewed as different (background-dependent) pairings on permu-

tations which are background independent characterisations of gauge invariants. An

interesting exercise is to revisit previous applications of permutations to stringy physics

and disentangle the aspects of permutations and associated representation theory which

contain information about specific backgrounds, and those that are common to different

backgrounds, or relate different backgrounds.

8.3 Orientifold quotient

In chapter 6 we developed a detailed gauge theory description of the orientifold map

that takes type IIB string theory on AdS5×S5, dual to a U(N) gauge group, to strings

on AdS5 × RP5, dual to SO(N) or Sp(N) gauge group. This quotient was expressed

in terms of coefficients αTR for which we gave two distinct formulae, both related to

Littlewood-Richardson coefficients.

The first expression was in terms of domino tableaux that have a strong physical

interpretation as pairing up quanta of angular momenta in a precise way given by the

combinatorics of Young diagrams. The second was as a product of two SO(N)/Sp(N)

Schur operators, involving the mathematical concept of a 2-quotient of a partition. This

led to insight into the U(N) theory, and in particular a Z2 action that is a candidate

for field theory dual of the orientifold action that takes x → −x for x ∈ S5 while also

reversing worldsheet orientation.
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Both interpretations of the coefficients have implications for the study of giant

gravitons in the theories dual to U(N), SO(N) and Sp(N) SYM. It will be intriguing

to see string theory derivations of this structure from D-brane physics.

8.4 Quarter-BPS sector of U(N) theory at weak coupling

In chapter 7 we gave a construction of quarter BPS operators inN = 4 super Yang-Mills

with U(N) gauge group, built from two matrices X,Y and annihilated by the 1-loop

dilatation operator of the SU(2) sector. The construction depends on parameters n,N

which are arbitrary, with n being the number of X,Y matrices in the operator. The

construction produces an orthogonal basis of operators obeying an SEP-compatibility

condition. The labels for the basis operators include a U(2) Young diagram Λ and a

U(N) Young diagram p, alongside multiplicity labels. The SEP-compatibility means

that finite N effects are captured simply by restricting the length of p to be less than N .

We have detailed formulae for the dimensions of the multiplicity spaces as a function

of Λ, p.

The understanding of holographic map between the quarter-BPS sector between

N = 4 SYM and AdS5 × S5 is far less well-developed than the half-BPS sector. The

Young diagrams labels for half-BPS states have provided valuable tools for precision

mapping of states between SYM and the dual space-time. In the quarter BPS sec-

tor, there is a rich combinatoric structure involving Λ, p and the plethysm problem

underlying the multiplicities MΛ,p, which control the structure of states. If will be

fascinating to uncover the role of these structures in the dual space-time. Concretely,

reproducing the refined multiplicity formulae for specified Λ, p from the the weakly

coupled gravitational dual, is an interesting problem.

Another interesting extension would be to investigate the quarter-BPS sector at

weak coupling in SO(N)/Sp(N) theories. Since the half-BPS sector can be expressed

in terms of symmetric functions in the squares of the eigenvalues, one might expect

that multi-symmetric functions could be used to capture the finite N behaviour of the

weakly coupled quarter-BPS operators. Beyond this, one could then use the orientifold

quotient to explore the relation between the U(N) and SO(N)/Sp(N) quarter-BPS

sectors at weak coupling.
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Appendix A

The Young basis and

Jucys-Murphy elements

A.1 Young basis for Sn

For a Young diagram R ` n, a Young tableau of shape R is produced by placing a

positive integer into each box of R. The tableau is called semi-standard if the numbers

increase weakly along the rows and strictly down the columns. It is called standard if

in addition the n integers are the numbers 1 to n. As an example, the possible standard

Young tableaux of shape R = [3, 2] are

1 2 3

4 5

1 2 4

3 5

1 2 5

3 4

1 3 4

2 5

1 3 5

2 4
(A.1.1)

We can construct the irreducible representation R ` n of Sn by setting the basis vectors

to be the standard Young tableaux of shape R. The permutations (i, i + 1) generate

Sn, so we only need to define the action for these.

Consider a standard Young tableau r of shape R. Let si(r) be the tableau formed by

swapping the numbers i and i+1 in r. This tableau could be standard or non-standard.

Let bi be the box labelled by i in r. Then the distance ρi,i+1(r) between the boxes

bi and bi+1 is simply the difference in their contents, as defined in (2.3.19).

ρi,i+1(r) = cbi+1
− cbi (A.1.2)

Intuitively, this measures how many boxes it takes to travel from i to i+ 1 in r, where

the distance increases by 1 for each step upwards or to the right, and decreases by 1

for each step downwards or to the left.

We can now write the representatives of the permutation (i, i + 1) on the Young
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basis

DR [(i, i+ 1)] |r〉 =


1

ρi,i+1(r) |r〉 −
√

1− 1
ρ2
i,i+1
|si(r)〉 si(r) a standard Young tableau

1
ρi,i+1(r) |r〉 otherwise

(A.1.3)

The simplest consequence of this is if a contiguous block of number i, i + 1, . . . , i + j

are in ascending order in a single row, then that Young tableau is symmetric under all

permutations of i, i + 1, . . . , i + j. Conversely, if they lie in order in a column, that

Young tableau is anti-symmetric under all such permutations.

For example the first Young tableau in (A.1.1) is symmetric under permutations of

{1, 2, 3} and {4, 5}, while the last one is anti-symmetric under permutations of {1, 2}
and {3, 4}.

The Young basis has another crucial property. The position of the number n in a

tableau r tells us which representation of Sn−1 the vector |r〉 lives in, when Sn−1 is

embedded into Sn by acting on {1, 2, . . . n − 1}. By removing n from r, we obtain a

tableau r̂ of shape R̂ ` n− 1. Then |r〉 lives in the R̂ representation of Sn−1, and is the

|r̂〉 vector in this representation. So for example, the first, second and fourth tableaux

in (A.1.1) live in the R̂ = [3, 1] representation of S4, and form the Young basis for this

representation.

By iterating this process, the positions of the numbers in r determine the represen-

tation |r〉 lives in for each of S1 ⊆ S2 ⊆ · · · ⊆ Sn. For example the fourth tableaux in

(A.1.1) belongs to the following representations of each

S1 : S2 : S3 : S4 : S5 : (A.1.4)

Conversely, given the sequence of representations that a vector lives in determines the

corresponding Young tableau.

For a more thorough discussion of the Young basis of a representation of Sn see

[116]. A different construction involving the Jucys-Murphy elements defined in the

next section is used in [117].

An important subtlety to note is that the representation (A.1.3) uses the opposite

convention for permutation multiplication as this thesis, given below (2.1.1). The

effect on the representation theory is to transpose all representation matrices. We will

primarily be concerned with commuting products of linear combinations of swaps (i, j).

The fact the products commute means the order of multiplication is irrelevant, and since

swaps are self-inverse, the representation matrix of any linear combination is symmetric.

Therefore this difference in convention does not affect any of our calculations.

The Young basis played an important role in understanding the behaviour of per-
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turbations around several giant gravitons that are well separated spatially [31, 35, 52].

From a Young diagram perspective, this corresponds to thinking about several rows,

each of O(N) length, where the difference in lengths is also O(N). This situation is

called the ‘distant corners’ approximation, and in this limit the representation (A.1.3)

simplifies substantially.

A.2 Jucys-Murphy elements

The Jucys-Murphy elements are special elements of C(Sn), defined by

Jk =

k−1∑
i=1

(i, k) (A.2.1)

for k = 1, . . . , n. The Young basis vectors of R defined in A.1 are eigenvectors for the

Jucys-Murphy elements, with eigenvalues given by the contents of the Young tableau.

On a given standard Young tableau r of shape R, the eigenvalue of Jk is the contents

of the box labelled by k in r.

For example if we have R = [3, 2, 1] the contents of the cells are

0 1 2

−1 0

−2

so the eigenvalues of the Jucys-Murphy elements on 4 of the 16 different standard Young

tableaux are

1 2 3

4 5

6

1 3 5

2 6

4

1 2 6

3 4

5

1 4 6

2 5

3

J2 1 -1 1 -1

J3 2 1 -1 -2

J4 -1 -2 0 1

J5 0 2 -2 0

J6 -2 0 2 2

The Jucys-Murphy elements span a maximal commuting sub-algebra of C(Sn), and

therefore one can choose a basis of any irreducible representation to be simultaneous

eigenvectors of all the Jk. The Young basis is exactly this choice [117]. For a more

thorough treatment of the Jucys-Murphy elements and their properties, see [118,119].

Any symmetric polynomial of the Jk lies in the centre of Sn. In particular, it is a
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standard result, see for example [118], that Ω as defined in (2.3.17) can also be written

Ω =
n∏
i=1

(N + Ji) (A.2.2)

The expression (2.3.20) for the representative of Ω in a representation R of Sn follows

immediately from (A.2.2). Consider the action of Ω on a standard Young tableau r of

shape R. Each of the Ji will pick up the contents of the box containing i. Since i runs

over all entries in a tableau, this covers all boxes in R and the eigenvalue is just the

product of N + cb for b ∈ R, independent of the tableau r.

The importance of Ω for this work stems from its involvement in U(N) correlators,

seen in (2.6.2), (2.6.7) and (2.6.12). There are two other elements of C(Sn), defined

in terms of Jucys-Murphy elements, that are relevant for correlators of SO(N)/Sp(N)

mesonic operators and SO(N) baryonic operators respectively. The first of these, Ω̃,

had been used before in [56,57,59,60] to calculate correlators in the Schur and restricted

Schur bases for SO(N) and Sp(N), but its importance for the O( 1
N ) expansion of the

multi-trace basis had not been understood. The second, Ωε, has not previously been

studied.

For each of Ω̃ and Ωε, we give a definition in terms of Jucys-Murphy elements,

analogous to (A.2.2), the key result linking it to SO(N)/Sp(N) mesonic or baryonic

correlators, analogous to (2.3.17), and the action on the appropriate invariant vectors

from section 5.1.3.

A.2.1 Ω̃

Consider Sn[S2], defined in section 5.1.2, as a subgroup of S2n. Then one can choose

the set B of right coset representatives of Sn[S2] such that

∑
β∈B

Cδ (β)β = Ω̃ :=
n∏
i=1

(N + J2i−1) (A.2.3)

where

Cδ(β) = C
(δ)
I βIJC

(δ) J (A.2.4)

and C
(δ)
I is n-fold tensor product of δij , defined formally in (5.2.1). Since J2i−1 commute

with each other, we do not need to give an ordering for the product. (A.2.3) was the

key result that enabled the evaluation of the mesonic correlator in [56, 59], and it is

proved inductively in [118].

Consider the sum over all elements of Sn[S2], and multiply by (A.2.3) on the right.

Since the β in (A.2.3) are representatives of the right cosets of Sn[S2] and Cδ is invariant
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under multiplication by elements of Sn[S2], the left-hand side is a sum over all of S2n

∑
τ∈S2n

Cδ (τ) τ =

 ∑
σ∈Sn[S2]

σ

 Ω̃ = 2nn!P[S]Ω̃ (A.2.5)

where P[S] is the projector onto the symmetric representation of Sn[S2] defined in

(5.1.3).

This result is analogous to (2.3.17) for Ω, with N c(σ) replaced by Cδ(σ). We can

make this analogy closer by expressing Cδ(σ) as a power of N .

Recall from section 5.3 that we can choose representatives of the double cosets (these

are not the right cosets of (A.2.3)) of Sn[S2] to be a permutation σp ∈ Sn of cycle type

p ` n embedded into S2n as σ
(odd)
p by acting on the odd number {1, 3, . . . , 2n − 1}.

Then we have

Cδ
(
σ(odd)
p

)
= C

(δ)
I

(
σ(odd)
p

)I
J
C(δ) J

= δi1j1δi2j2 . . . δinjn

(
σ(odd)
p

)i1j1i2j2...injn
k1l1k2l2...knln

δk1l1δk2l2 . . . δknln

= δi1j1 . . . δinjn(σp)
i1i2...in
k1k2...kn

δj1l1 δ
j2
l2
. . . δjnln δ

k1l1δk2l2 . . . δknln

= (σp)
i1i2...in
i1i2...in

= N c(σp) = N l(p) (A.2.6)

where c(σp) is the number of cycles in σp, and we have used the standard result (2.1.7)

for the trace of a permutation on a tensor space. This calculation is very similar to

(5.3.16), though here X is taken to be the identity matrix. An intuitive understanding

of how σ(odd) turns an SO(N) type contraction pattern into a U(N) type contraction

of σ ∈ Sn is given in figure 5.5.

Since σp is a representative of the double coset, a generic π in the p double coset

can be written π = τ1σpτ2 for τ1, τ2 ∈ Sn[S2]. Since Cδ(σ) is invariant under Sn[S2]

multiplication on the left or right

Cδ(π) = N l(p) (A.2.7)

Defining pτ to be the partition labelling the double coset of τ ∈ S2n, we can rewrite

(A.2.5) as ∑
τ∈S2n

N l(pτ )τ =

 ∑
σ∈Sn[S2]

σ

 Ω̃ = 2nn!P[S]Ω̃ (A.2.8)

We can now compare directly with the U(N) version (2.3.17). In both cases, there is a

partition pτ associated to a permutation τ . Then Ω and Ω̃ are related to the sum over

τ (in the relevant permutation group) of N l(pτ )τ .

Above (A.2.2) we noted that any symmetric polynomial in the Jucys-Murphy ele-
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ments is in the centre of Sn. For odd Jucys-Murphy elements J2i−1 there is a similar

result [120]. Any symmetric polynomial in the odd Jucys-Murphy elements, when

multiplied on the left or right by
(∑

σ∈Sn[S2] σ
)

, can be written as a sum over dou-

ble cosets. As described in section 5.3, this means it belongs to the Hecke algebra

Sn[S2]\S2n/Sn[S2].

There is a symplectic equivalent to Cδ(σ), given by

CΩ(σ) = C
(Ω)
I σIJC

(Ω) J (A.2.9)

where C
(Ω)
I is a n-fold tensor product of Ωij , defined formally in (5.2.3).

Take σp ∈ Sn with the corresponding σ
(odd)
p ∈ S2n a representative of the p double

coset. Then

CΩ
(
σ(odd)
p

)
= C

(Ω)
I

(
σ(odd)
p

)I
J
C(Ω) J

= Ωi1j1Ωi2j2 . . .Ωinjn(σp)
i1j1i2j2...injn
k1l1k2l2...knln

Ωk1l1Ωk2l2 . . .Ωknln

= Ωi1j1Ωi2j2 . . .Ωinjn(σp)
i1i2...in
k1k2...kn

δj1l1 δ
j2
l2
. . . δjnln Ωk1l1Ωk2l2 . . .Ωknln

= (σp)
i1i2...in
k1k2...kn

(ΩΩT )k1
i1

(ΩΩT )k2
i2
. . . (ΩΩT )knin

= (σp)
i1i2...in
i1i2...in

= N c(σp) = N l(p) (A.2.10)

where we have used ΩΩT = 1.

In S2n the cycle type of σp is p+ [1n], and therefore the sign of σp is (−1)n+l(p). We

deduce

CΩ(σp) = (−1)n(−1)σp(−N)l(p) (A.2.11)

Since CΩ(σ) is anti-invariant under multiplication by Sn[S2] on either side, for a generic

π = τ1σpτ2 in the p double coset we have

CΩ(π) = (−1)n(−1)π(−N)l(p) (A.2.12)

Comparing with (A.2.7), we see that CΩ and Cδ are related by anti-symmetrisation of

permutations and N → −N , up to a factor of (−1)n. This is an example of a very

general relation between the mesonic sector of the SO(N) theory and the Sp(N) theory,

explained in (4.0.3) and (5.0.2).

More practically, this relation allows us to derive a symplectic result equivalent to

(A.2.8). Define the anti-symmetrisation of a permutation τ to be

Anti-Sym(τ) = (−1)ττ (A.2.13)
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and extend linearly to the whole of C(Sn). Then CΩ(τ) and Cδ(τ) are related by

CΩ(τ) = (−1)n Anti-Sym(τ)|N→−N (A.2.14)

Recall from the definition (A.2.1) that Jucys-Murphy elements are composed purely of

transpositions, and hence they will pick up a minus sign under anti-symmetrisation.

Therefore

∑
τ∈S2n

CΩ(τ)τ = (−1)nAnti-Sym

 ∑
τ∈S2n

Cδ(τ)τ


N→−N

= (−1)nAnti-Sym

 ∑
σ∈Sn[S2]

σ

 Ω̃


N→−N

= (−1)n

 ∑
σ∈Sn[S2]

(−1)σσ

 n∏
i=1

(N − J2i−1)


N→−N

= (−1)n

 ∑
σ∈Sn[S2]

(−1)σσ

 n∏
i=1

(−N − J2i−1)

=

 ∑
σ∈Sn[S2]

(−1)σσ

 Ω̃ = 2nn!P[A]Ω̃ (A.2.15)

where P[A] is the projector onto the anti-symmetric representation of Sn[S2], defined in

(5.1.3).

Action of Ω̃

Consider the state |R, [S]〉 (defined in (5.1.4)) in a representation R ` 2n with even

row lengths. This state can be written as a sum over standard Young tableaux r

|R, [S]〉 =
∑
r of

shape R

ar|r〉 (A.2.16)

It is proved in [118] that the r in this sum (those with non-zero ar) must have a certain

form. The numbers 2i− 1 and 2i must appear in a pair, with the even number directly

to the right of the odd. For example, given R = [4, 2, 2], the r that contribute in the

sum (A.2.16) are

r1 =

1 2 3 4

5 6

7 8

r2 =

1 2 5 6

3 4

7 8

r3 =

1 2 7 8

3 4

5 6

(A.2.17)
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As a result, the odd numbers in r must lie in the odd-numbered columns of R. When

we act with Ω̃ on these r, the J2i−1 pick up the contents of all the boxes in the odd-

numbered columns. Therefore

DR
(

Ω̃
)
|R, [S]〉 =

∏
b ∈ odd

columns of R

(N + cb) |R, [S]〉 = f δR|R, [S]〉 (A.2.18)

where this defines f δR.

Similarly, for R ` 2n with even column lengths, |R, [A]〉 (defined in (5.1.4)) is an

eigenvector for Ω̃

DR
(

Ω̃
)
|R, [A]〉 =

∏
b ∈ odd

rows of R

(N + cb) |R, [A]〉 = fΩ
R |R, [A]〉 (A.2.19)

where this defines fΩ
R .

If l(R) > N , then the Young diagram contains a box b in the (N + 1)th row and

the first column. The contents of b is cb = −N , and therefore the factor associated to

b is N + cb = 0. This box is in an odd column, and therefore f δR = 0 for l(R) > N . For

the Sp(N) theory, N must be even, and hence this box is also in an odd row, meaning

fΩ
R = 0 for l(R) > N . So Ω̃ enforces the finite N cut-off in R on the invariant vectors

|R, [S]〉 and |R, [A]〉.

A.2.2 Ωε

The last element we consider is relevant for correlators of baryonic operators, and

therefore the group of interest is now SN × Sq[S2] where q = n− N
2 (recall N must be

even for baryonic operators to exist) and we embed SN in S2n by acting on {1, 2, . . . , N}
while Sq[S2] acts on the pairs {N + 2i− 1, N + 2i} for 1 ≤ i ≤ q. We define

Ωε = N !

q∏
i=1

N +
N∑
j=1

(j,N + 2i− 1) +
N∑
j=1

(j,N + 2i) +
2i−2∑
j=1

(N + j,N + 2i− 1)


(A.2.20)

where the product is ordered [i = q][i = q − 1] . . . [i = 1]. This can be written in terms

of Jucys-Murphy elements.

Ωε = N !

q∏
i=1

[
N + JN+2i−1 + JN+2i − J̄2i

]
(A.2.21)
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where J̄i is the Jucys-Murphy element for the subgroup S2q, embedded into S2n by

acting on {N + 1, N + 2, . . . , N + 2q = n}.

J̄k =

k−1∑
i=1

(N + i,N + k) (A.2.22)

In analogy to (A.2.3), we prove the proposition

Proposition

The set B of right coset representatives of SN × Sq[S2] inside S2n can be chosen such

that ∑
β∈B

Cε(β)β = Ωε (A.2.23)

where Cε(β) is defined in (5.5.24). For σ ∈ SN × Sq[S2], let σ1 be the SN component.

It then immediately follows from (A.2.23) that

∑
τ∈S2n

Cε(τ)τ =

 ∑
σ∈SN×Sq [S2]

(−1)σ1σ

Ωε (A.2.24)

where we have multiplied on the left by N !2qq!P[1N ]⊗[S] as defined in (5.1.24) and

used the definition of B and the invariance of Cε(β) to change the sums over B and

SN × Sq[S2] into a sum over S2n.

Proof

We begin by characterising the right cosets of SN × Sq[S2]. Define the set of pairs

w0 =
{
{N + 1, N + 2}, {N + 3, N + 4}, . . . , {N + 2q − 1, N + 2q}

}
(A.2.25)

Then σ ∈ S2n acts on w0 (and other possible pairings) by

σ(w0) =
{
{σ(N +1), σ(N +2)}, {σ(N +3), σ(N +4)}, . . . , {σ(N +2q−1), σ(N +2q)}

}
(A.2.26)

It follows from the definition of Sq[S2] that

σ ∈ SN × Sq[S2] ⇐⇒ σ(w0) = w0 (A.2.27)

283



APPENDIX A. THE YOUNG BASIS AND JUCYS-MURPHY ELEMENTS

ε

ε

...

ε

ε

...

ε

ε

...

ε

ε

...

β = 1 β = (N,N + 1) β = (N,N + 2) β = (N,N + 2)

(N − 1, N + 1)

Figure A.1: Diagrammatic calculation of Cε(β) for β = 1, (N,N + 1), (N,N + 2) and
(N−1, N+1)(N,N+2) respectively. Two εs fully contracted contribute εi1...iN ε

i1...iN =
N ! while a loop gives δijδ

ij = N . Since ε is anti-symmetric and δ is symmetric, a
contraction between the two gives 0.

Therefore the left cosets of SN×Sq[S2] are labelled by a choice of q pairs in {1, 2, . . . , 2n}.
For a given pairing

w =
{
{i1,1, i1,2}, {i2,1, i2,2}, . . . , {iq,1, iq,2}

}
(A.2.28)

any β ∈ S2n in the corresponding right coset satisfies

β(w0) = w (A.2.29)

Let Wq denote the set of possible pairings, and βw the coset representative for w ∈Wq.

We prove (A.2.23) by induction on q at fixed N . First we consider the base case

with q = 1. The possible w ∈W1, along with the associated βw and Cε(βw) are

w {{N + 1, N + 2}} {{k,N + 1}} {{k,N + 2}} {{l1, l2}}
βw 1 (k,N + 2) (k,N + 1) (l1, N + 1)(l2, N + 2)

Cε(βw) N !N N ! N ! 0

where 1 ≤ k, l1, l2 ≤ N and l1, l2 are distinct. It is simple to check that these βw satisfy

the conditions in (A.2.29) and therefore serve as coset representatives. The calculations

for Cε(βw) are shown diagrammatically in figure A.1. For simplicity the figure shows

k = N in the pairings p = {{k,N + 1}}, {{k,N + 2}} and l1 = N − 1, l2 = N in the

pairing p = {{l1, l2}}, but the results hold for all k, l1, l2.

Summing the contributions from each of the w ∈W1, we have

∑
w∈W1

Cε(βw)βw = N !

N +
N∑
j=1

(j,N + 1) +
N∑
j=1

(j,N + 2)

 (A.2.30)

as claimed in (A.2.23). We could also consider the case q = 0, where the product on

the right of (A.2.23) is empty, and we take the representative of the only coset to be

the identity, so the result is trivial.

Assume the claim is true for q − 1. In particular this means that there is a map
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from Wq−1 → SN+2q−2, namely w̄ → βw̄, such that for each w̄, βw̄ satisfies (A.2.29),

and the βw̄ combine so as to satisfy (A.2.23) for q − 1.

Consider the case at q. The pairings w ∈ Wq fall into 5 categories depending on

how N + 2q − 1 and N + 2q pair (or don’t pair) up with the first N + 2q − 2 numbers.

1. {N + 2q − 1, N + 2q} is a pair

2. {k1, N + 2q− 1} and {k2, N + 2q} are pairs, for some k1, k2 < N + 2q− 1, k1 6= k2

3. N + 2q is unpaired and {k,N + 2q − 1} is a pair, for some k < N + 2q − 1

4. N + 2q − 1 is unpaired and {k,N + 2q} is a pair, for some k < N + 2q − 1

5. N + 2q − 1 and N + 2q are both unpaired

We split up the sum over Wq into five sums, one for each type of pairing.

Type 1

Let Wq;1 be the set of pairings that are of type 1. Given w ∈ Wq;1, first note that w

reduces uniquely to a w̄ ∈ Wq−1 given by w̄ = w\{N + 2q − 1, N + 2q}. Using this w̄,

we choose the coset representative of w to be

βw = βw̄ (A.2.31)

By which we mean that βw acts as βw̄ on {1, 2, . . . , N + 2q − 2} and as the identity on

{N + 2q − 1, N + 2q}. It is simple to check that this satisfies the conditions (A.2.29).

To calculate Cε(βw), add an extra label q onto the contractor C
(ε)
I to record how

many indices it has. So C
(ε;q)
i1...iN+2q

= C
(ε;q−1)
i1...iN+2q−2

δiN+2q−1iN+2q . This allows us to relate

Cε(βw) and Cε(βw̄). The calculation is shown diagrammatically at the top left of figure

A.2. We find

Cε(βw) = NCε(βw̄) (A.2.32)

Given a w̄ ∈ Wq−1, there is a unique w ∈ Wq;1 which reduces to w̄, namely w =

w̄ ∪ {N + 2q − 1, N + 2q}. Therefore∑
w∈Wq;1

Cε(βw)βw = N
∑

w̄∈Wq−1

Cε(βw̄)βw̄ (A.2.33)

Type 2

We follow the same route as for type 1. Let Wq;2 be the set of pairings that are of

type 2. Given w ∈ Wq,2, we define w̄ ∈ Wq−1 by w̄ = (w ∪ {k1, k2}) \{{k1, N + 2q −
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1}, {k2, N + 2q}}. We then choose the coset representative of w to be

βw =
(
β−1
w̄ (k2), N + 2q − 1

)
βw̄ = βw̄ (k2, N + 2q − 1) (A.2.34)

Again, one can check that this satisfies the conditions (A.2.29).

The calculation for Cε(βw) is shown diagrammatically in figure A.2 in the middle

of the top row. For simplicity, the calculation shown has k2 = N + 2q − 2, but it is

clear that for any k2 we arrive at the relation

Cε(βw) = Cε(βw̄) (A.2.35)

Consider an arbitrary w̄ ∈Wq−1. We can explicitly write this out as

w̄ =
{
{l1,1, l1,2}, {l2,1, l2,2}, . . . , {lq−1,1, lq−1,2}

}
(A.2.36)

There are 2(q − 1) different w ∈ Wq;2 which reduce to w̄ , two for each pair of w̄. For

1 ≤ ι ≤ q − 1, these are

wi,1 =
(
w̄ ∪

{
{li,2, N + 2q − 1}, {li,1, N + 2q}

})
\
{
{li,1, li,2}

}
wi,2 =

(
w̄ ∪

{
{li,1, N + 2q − 1}, {li,2, N + 2q}

})
\
{
{li,1, li,2}

} (A.2.37)

We split the sum over Wq;2 into a sum over Wq−1, i = 1, 2, . . . , q − 1 and j = 1, 2. For

wi,1, we have k2 = li,1 and for wi,2 we have k2 = li,2, so using (A.2.34) for the coset

representatives

∑
w∈Wq;2

Cε(βw)βw =

q−1∑
i=1

2∑
j=1

(
β−1
w̄ (li,j), N + 2q − 1

) ∑
w̄∈Wq−1

Cε(βw̄)βw̄ (A.2.38)

From (A.2.29) we know that
{
β−1
w̄ ({li,j})

}
= {N + 1, N + 2, . . . , N + 2q− 2}, so we can

simplify this to

∑
w∈Wq;2

Cε(βw)βw =

2q−2∑
j=1

(N + j,N + 2q − 1)
∑

w̄∈Wq−1

Cε(βw̄)βw̄ (A.2.39)

Types 3 and 4

Let Wq;3 be the set of pairings that are of type 3. Given w ∈Wq;3, we define w̄ ∈Wq−1

by w̄ = w\{k,N + 2q − 1}. We then choose the coset representative of w to be

βw =
(
β−1
w̄ (k), N + 2q

)
βw̄ = βw̄ (k,N + 2q) (A.2.40)
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C(ε;q−1)

...

ε

ε

C(ε;q−1)

...

βw̄

C(ε;q−1)

...

C(ε;q−1)

...

βw̄

C(ε;q−1)

...

C(ε;q−1)

...

βw̄

...

...
...

Type 1 Type 2 Type 3

Type 5

Figure A.2: Diagrammatic calculation of Cε(β) for various β ∈ SN+2q corresponding
to type 1, 2, 3 and 5 pairings of {N + 2q− 1, N + 2q} with {1, 2, . . . N + 2q− 2}. The top
row shows β = βw̄, βw̄(N + 2q − 2, N + 2q − 1) and βw̄(N + 2q − 2, N + 2q) respectively,
where βw̄ ∈ SN+2q−2. The bottom row shows a β with β(N − 1) = N + 2q − 1 and
β(N) = N + 2q. These two values of β are enough to ensure Cε(β) = 0, so the remaining
parts of β are not included in the diagram.
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The calculation for Cε(βw) is shown diagrammatically at the top right of figure A.2,

and demonstrates that

Cε(βw) = Cε(βw̄) (A.2.41)

For simplicity, the calculation shown has k = N +2q−2, but clearly k can be arbitrary

and we still arrive at the same result.

Take w̄ ∈ Wq−1. This contains q − 1 pairs from the set {1, 2, . . . N + 2q − 2}, so

there are N numbers that are omitted. Let these be {l1, . . . , lN}. The different w

which reduce to w̄ are then given by w̄ ∪ {li, N + 2q − 1} for i = 1, 2, . . . , N with the

corresponding representative given by (A.2.40) with k = li. Splitting the sum over

w ∈Wq;3 into a sum over w̄ ∈Wq−1 and i = 1, 2, . . . , N , we have

∑
w∈Wq;3

Cε(βw)βw =

N∑
i=1

(βw̄(li), N + 2q)
∑

w̄∈Wq−1

Cε(βw̄)βw̄ (A.2.42)

From (A.2.29) we know that
{
β−1
w̄ ({li})

}
= {1, 2, . . . , N}, therefore this simplifies to

∑
w∈Wq;3

Cε(βw)βw =
N∑
j=1

(j,N + 2q)
∑

w̄∈Wq−1

Cε(βw̄)βw̄ (A.2.43)

We can repeat the above process with N + 2q− 1 and N + 2q swapped to give the sum

over type 4 pairings

∑
w∈Wq;4

Cε(βw)βw =
N∑
j=1

(j,N + 2q − 1)
∑

w̄∈Wq−1

Cε(βw̄)βw̄ (A.2.44)

Type 5

Let Wq;5 be the set of pairings that are of type 5. Given w ∈ Wq,5, we can choose the

coset representative βw such that

βw(N − 1) = N + 2q − 1 βw(N) = N + 2q (A.2.45)

We do not need to specify the remaining values of β−1
w as this is enough to show that

Cε(βw) vanishes. The calculation is shown diagrammatically on the bottom row of

figure A.2. This means ∑
w∈Wq;5

Cε(βw)βw = 0 (A.2.46)
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Adding together (A.2.33), (A.2.39), (A.2.43), (A.2.44) and (A.2.46), we get

∑
w∈Wq

Cε(βw)βw =

N +
N∑
j=1

(j,N + 2q − 1) +
N∑
j=1

(j,N + 2q)

+

2q−2∑
j=1

(N + j,N + 2q − 1)

 ∑
w̄∈Wq−1

Cε(βw̄)βw̄ (A.2.47)

The factor on the left is just the i = q factor in (A.2.23), so plugging in the inductive

assumption proves the proposition.

�

Action of Ωε

Consider the vector
∣∣[1N]〉 ⊗ |R̄, [S]〉, defined in (5.1.23), inside the representation R

of S2n. The restrictions on R and R̄ and how the two diagrams are related is given at

the end of section D.2.1.

There are two ways of expressing
∣∣[1N]〉 ⊗ |R̄, [S]〉 as a sum over Young tableaux.

Firstly, since it is a vector in the R representation of S2n, we can write it as a sum over

standard Young tableaux r of shape R

∣∣[1N]〉⊗ |R̄, [S]〉 =
∑
r of

shape R

ar |r〉 (A.2.48)

and secondly, since it is in the [1N ]⊗ R̄ representation of SN × S2q, we can write is as

a sum over tensor products of two Young tableaux of shapes [1N ] and R̄ respectively.

There is only one standard Young tableau of shape [1N ], so we will suppress this tensor

factor and just write |r̄〉, where r̄ is the tableau of shape R̄

∣∣[1N]〉⊗ |R̄, [S]〉 =
∑
r̄ of

shape R̄

br |r̄〉 (A.2.49)

We now investigate how these two expansions of
∣∣[1N]〉⊗ |R̄, [S]〉 relate to each other.

Start by considering the tableaux in the second expansion (A.2.49). As explained

below (A.2.16), these are restricted so that the numbers 2i− 1 and 2i appear in pairs,

with the even number immediately to the right of the odd. As explained above (A.1.4),

the positions of the numbers in a Young tableau describe the behaviour under embedded

subgroups, and therefore the positions of each pair {2i− 1, 2i} in the distinct tableaux

describe how r̄ fits into representations of S2(q−1), S2(q−2) etc. In this case, if we remove

the numbers 2q− 1 and 2q from a tableau r̄, the fact the two are paired mean the new
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reduced tableau also has a shape with even row lengths, and therefore admits a Sq−1[S2]

invariant vector. Further, the reduced tableau will contribute to this invariant vector.

As discussed below (A.1.4), the decomposition of a vector in terms of its represen-

tations in embedded subgroups is equivalent to giving its tableau. For r̄ contributing

(A.2.49), this decomposition does not need to include the diagrams with an odd number

of boxes, as those are determined as intermediate stages between the ones with an even

number of boxes. For a given tableau r̄, we denote the equivalent even decomposition

by

r̄ = R̄q → R̄q−1 → · · · → R̄2 → R̄1 → R̄0 (A.2.50)

where R̄q = R̄, R̄1 = and R̄0 is the empty Young diagram. For example, the three

tableaux in (A.2.17) that contribute to the invariant vector for R̄ = [4, 2, 2] have even

decompositions

r̄1 = → → → → R̄0

r̄2 = → → → → R̄0

r̄3 = → → → → R̄0

(A.2.51)

Under this new labelling, (A.2.49) reads as

∣∣[1N]〉⊗ |R̄, [S]〉 =
∑

R̄q→···→R̄1

b
(
R̄q → · · · → R̄1

)
|R̄q → · · · → R̄1〉 (A.2.52)

This gives us control of the Si[S2] behaviour of
∣∣[1N]〉⊗ |R̄, [S]〉 for each 1 ≤ i ≤ q.

Now consider how each term of (A.2.52) behaves under S2n permutations, and

in particular the decomposition as we reduce to S2(n−1), S2(n−2) and so on. Using the

correspondence between R and R̄ (this time with N+2q−2 and q−2 boxes respectively)

established at the end of section D.2.1, the diagram R̄q−1 determines a Rq−1, the

diagram R̄q−2 determines a Rq−2, etc. The full even decomposition R̄q → · · · → R̄0

of R̄ gives a corresponding even decomposition Rq → · · · → R0 where Rq = R and
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R0 = [1N ]. Taking N = 4 and R = [4, 3, 2, 1, 1, 1], the R̄ even decompositions (A.2.51)

have R equivalents

r̄1 : → → → →

r̄2 : → → → →

r̄3 : → → → →

(A.2.53)

To describe the R decomposition explicitly from the R̄ version, use the notation of

section D.2.1. We have R = [1N+k] + S̄, where S̄ has k odd rows, such that if we add a

single box to each of these rows we get R̄. Let the set of odd rows be v = {v1, v, . . . , vk},
and denote the relation between S̄ and R̄ as R̄ = S̄ +v [1k].

We can obtain R̄q−1 from R̄ = R̄q by removing two boxes from a single row u. Then

if u ∈ v, the corresponding S̄q−1 is obtained from S̄q = S̄ by removing a single box

from row u of S̄q, and the corresponding Rq−1 is

Rq−1 = [1N+k−1] + S̄q−1 (A.2.54)

i.e. we have also removed a box from the first column of R. So k → kq−1 = k − 1 and

v → vq−1 = v/{u}.

291



APPENDIX A. THE YOUNG BASIS AND JUCYS-MURPHY ELEMENTS

If u /∈ v, S̄q−1 is obtained from S̄q by removing two boxes from row u, and Rq−1 is

Rq−1 = [1N+k] + S̄q−1 (A.2.55)

so the first column is unchanged, as are kq−1 = k and vq−1 = v. Iterating this process

describes the R even decomposition associated to R̄q → · · · → R̄0.

This even decomposition of R gives some, but not all, of the information necessary

to construct (A.2.48). When Ri → Ri−1 has the form (A.2.54), there are two associated

Young tableaux. One has N + 2i − 1 at the bottom of the 1st column and N + 2i in

the uth row, while they can also be the other way round. For the action of Ωε, these

two tableaux are equivalent since they have the same eigenvalue under JN+2i−1 +JN+2i

from the product (A.2.21). Even decompositions of form (A.2.55) completely fix the

position of N+2i−1 and N+2i, so there are no more ambiguities in the Young tableaux

corresponding to a particular even decomposition of R and R̄. We can therefore write

|r̄〉 = |R̄q → · · · → R̄1〉 =
∑
r

cr |r〉 (A.2.56)

where r runs over the standard Young tableaux of shape R whose even decompositions

agree with the decomposition Rq → · · · → R0 corresponding to R̄q → · · · → R̄0. This

allows an identification between the two sums (A.2.48) and (A.2.49).

As an example of the tableaux r that contribute to a sum of the form (A.2.56),

consider the three decompositions in (A.2.53). Each has four Young tableaux r that
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contribute

r̄1 :

1 3 4

5 6

7

2

8

1 3 4

5 6

8

2

7

2 3 4

5 6

7

1

8

2 3 4

5 6

8

1

7

r̄2 :

1 2 5

3 4

7

6

8

1 2 5

3 4

8

6

7

1 2 6

3 4

7

5

8

1 2 6

3 4

8

5

7

r̄3 :

1 2 7

3 4

5

6

8

1 2 8

3 4

5

6

7

1 2 7

3 4

6

5

8

1 2 8

3 4

6

5

7

(A.2.57)

where to fit the numbers in the tableaux we have used i to represent N + i.

Using the identification (A.2.56), each term in the product (A.2.21) for Ωε has a

definite eigenvalue on the separate r̄ in (A.2.49). Consider just the factor N+JN+2i−1+

JN+2i − J̄2i. Write c(j, r̄) for the contents of the box labelled by j in r̄. Then J̄2i has

eigenvalue c(2i, r̄) on r̄. If the ith stage of the reduction corresponding to r̄ has the form

(A.2.54), then JN+2i−1 + JN+2i has eigenvalue (−N − ki + 1) + (c(2i− 1, r̄) + 1), while

if it has form (A.2.54), then JN+2i−1 + JN+2i has eigenvalue c(2i− 1, r̄) + c(2i, r̄) + 2.

Noting that c(2i− 1, r̄) + 1 = c(2i, r̄), the total eigenvalue is

DR(N + JN+2i−1 + JN+2i − J̄2i) |r̄〉 =

(N + c(2i− 1, r̄) + 2) |r̄〉 Ri → Ri−1 has

form (A.2.55)

(A.2.58)

So the factors in (A.2.21) commute on |r̄〉 and hence it is an eigenvector of Ωε, where

the eigenvalue is the product of (A.2.58) over i = 1, 2, . . . , q (then multiplied by N !).

Suppose R has l(R) > N . Then k ≥ 1, and for every decomposition Rq → · · · → R0,
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there will be some i where 1 = ki → ki−1 = 0. At this point, the eigenvalue (A.2.58)

will be 0. Therefore the eigenvalue of Ωε on every r̄ will be 0. Re-summing to form∣∣[1N]〉 ⊗ |R̄, [S]〉, Ωε will annihilate the invariant vector. Therefore Ωε enforces the

finite N cut-off in R.

For l(R) = N , we have R = [1N ]+R̄, and therefore every stage of the decomposition

Rq → · · · → R0 is of the form (A.2.55). Taking the product to get the eigenvalue of Ωε

DR (Ωε) |r̄〉 = N !

q∏
i=1

(N + c(2i− 1, r̄) + 2) |r̄〉

= N !
∏
b∈odd

columns of R̄

(N + cb + 2) |r̄〉 (A.2.59)

Since this eigenvalue is independent of r̄, we can sum over r̄ to form
∣∣[1N]〉⊗ |R̄, [S]〉

DR (Ωε)
∣∣[1N]〉⊗ |R̄, [S]〉 = N !

∏
b∈odd

columns of R̄

(N + cb + 2)
∣∣[1N]〉⊗ |R̄, [S]〉 (A.2.60)

Interpret this eigenvalue in terms of the boxes of R rather than R̄. Firstly, we only

consider R̄ with even length rows. Therefore we have∏
b∈odd

columns of R̄

(N + cb + 2) =
∏

b∈even
columns of R̄

(N + cb + 1) (A.2.61)

In R, R̄ has been moved one place to the right, so the contents of each cell increases

by 1. In this context, the even columns of R̄ become the odd columns of R, excluding

the first column. Since the first column of R has length N , the product of (N + cb) on

this column is N !, so we have

N !
∏
b∈odd

columns of R̄

(N + cb + 2) =
∏
b∈odd

columns of R

(N + cb) (A.2.62)

Substituting into (A.2.60), we have

DR (Ωε)
∣∣[1N]〉⊗ |R̄, [S]〉 =

∏
b∈odd

columns of R

(N + cb)
∣∣[1N]〉⊗ |R̄, [S]〉 = f εR

∣∣[1N]〉⊗ |R̄, [S]〉

(A.2.63)

where this defines f εR. Note that from this definition, f εR = 0 if l(R) > N , so (A.2.63)

holds true for all R, not just those with l(R) = N .
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Appendix B

Möbius inversion formula for

positive integers

Proposition: The Möbius Inversion Formula

Let {an} and {bn} be two sequences indexed by the positive integers. If an can be

expressed as

an =
∑
d|n

bd =
∑
d|n

bn
d

(B.0.1)

where d runs over all divisors of n, denoted by d|n, then

bn =
∑
d|n

µ
(n
d

)
ad =

∑
d|n

µ(d)an
d

(B.0.2)

where µ is the Möbius function defined by

µ(d) =


1 d = 1

(−1)n d a product of n distinct prime factors

0 d has a repeated prime in its prime factorisation

(B.0.3)

The proof of this proposition relies on

Lemma ∑
d|n

µ(d) =

1 n = 1

0 n > 1
(B.0.4)

Proof of Lemma

This is obvious for n = 1, so we will only prove the case n > 1. Writing n in terms of

its prime factors, we have

n = pr11 p
r2
2 . . . prkk
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where ri ≥ 1 for each i. The divisors of n which contribute to the sum (B.0.4) are those

which are square free. Explicitly, they can be written

d = ps11 p
s2
2 . . . pskk

where si ∈ {0, 1} for each i.

We define S to be the set of distinct prime factors of n: S = {p1, p2, . . . pk}. Then

subsets of S correspond exactly to the divisors d defined above

d = ps11 p
s2
2 . . . pskk ←→ {pi : si = 1} ⊆ S (B.0.5)

From the definition (B.0.3), we see that

µ(d) = (−1)|subset of S corresponding to d|

So ∑
d|n

µ(d) = # of subsets of S with even size−# of subsets of S with odd size

But we have a bijective map between even subsets and odd subsets given by

A −→

A ∪ {p1} p1 6∈ A

A/{p1} p1 ∈ A

and therefore ∑
d|n

µ(d) = 0

�

Proof of Proposition

The first step in the proof is to note that the an determine the bn uniquely via the

relation (B.0.1). Indeed, we have b1 = a1, b2 = a2 − a1, b3 = a3 − a1. To prove it in

general, we use strong induction with these three as the base cases. Assuming bn is

determined by the sequences of as for all n ≤ k, we can rearrange (B.0.1) to get

bk+1 = ak+1 −
∑

d|(k+1)
d6=k+1

bd

Then since the sum over d only includes d ≤ k, we know inductively that bd is deter-

mined by the as, and hence bk+1 is also determined by the as.
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We now notice that the bn, as defined in (B.0.2), satisfy (B.0.1):

∑
d|n

bd =
∑
d|n

∑
e|d

µ

(
d

e

)
ae

=
∑
e|n

ae
∑
f |n
e

µ(f)

= an

In going from the 1st to the 2nd line we have reordered the sums and reparameterised

by f = d
e , and in going from the 2nd to the 3rd we have used the lemma (B.0.4).

Since the bn have a unique solution, (B.0.2) must therefore be the correct formula

for the bn, as claimed. �

Note that in this proposition, there was nothing special about addition, the result

and proof follow exactly the same way if we replace the addition by multiplication.

Explicitly, given

bn =
∏
d|n

ad =
∏
d|n

an
d

we can invert uniquely to get

an =
∏
d|n

b
µ(nd )
d =

∏
d|n

b
µ(d)
n
d

(B.0.6)

In chapters 3, we come across relations of the form

an1,n2 =
∑

d|n1,n2

bn1
d
,
n2
d

(B.0.7)

we now prove a generalisation of the Möbius inversion formula for two variables that

will apply to the above. This generalisation is

Lemma

The bn1,n2 are determined uniquely by (B.0.7), with

bn1,n2 =
∑

d|n1,n2

µ(d)an1
d
,
n2
d

(B.0.8)

Proof

To prove this, consider fixing n̄1, n̄2 to be coprime. We then define

āk = akn̄1,kn̄2 b̄k = bkn̄1,kn̄2 (B.0.9)
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In terms of these sequences (B.0.7) reads

āk =
∑

d|kn̄1,kn̄2

b k
d
n̄1,

k
d
n̄2

(B.0.10)

=
∑
d|k

b̄ k
d

(B.0.11)

where we have used the fact that n̄1, n̄2 are coprime to conclude that d|kn̄1, kn̄2 is

equivalent to d|k. Then by the standard Möbius inversion formula, we have

b̄k =
∑
d|k

µ(d)ā k
d

(B.0.12)

or in terms of as and bs

bkn̄1,kn̄2 =
∑

d|kn̄1,kn̄2

µ(d)a kn̄1
d
,
kn̄2
d

(B.0.13)

This is true for all k, and coprime n̄1, n̄2. So to prove (B.0.8) for an arbitrary n1, n2

we pick k = gcd(n1, n2), n̄1 = n1
k , n̄2 = n2

k .

�

The Möbius inversion formula can be used to prove some useful identities. We start

with the well known identity ∑
d|n

φ(d) = n (B.0.14)

where φ(n) is the Euler totient function that counts the number of numbers less than

n that are coprime to n. Applying the Möbius inversion formula gives

φ(n)

n
=
∑
d|n

µ(d)

d
(B.0.15)

and applying it again gives

µ(n) =
∑
d|n

dµ(d)φ
(n
d

)
=
∑
d|n

n

d
µ
(n
d

)
φ(d) (B.0.16)

The Möbius inversion formula can be suitably generalised to any poset. In chapter 7

we use the Möbius inversion formula for the poset of set partitions.
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List of sequences and generating

functions

We introduce a lot of different single and multi-trace counting sequences in chapters 3

and 4. For simplicity we present all of them in one place. For each sequence we give

the definition of the (n1, n2)th term, the first few terms, the generating function and

(for the single trace sequences) the plethystic exponential of the generating function.

We also give the vector spaces which have these functions as Hilbert series.

Many of the results here can be found together with their derivations in sections

3.2 and only considered at infinite N , while the multi-trace sequences are defined for

finite N , but we have only found their generating functions at infinite N .

After listing the sequences, we give the relations between them and their generating

functions.

C.1 Single trace sequences

All of the following definitions are valid provided we have one of n1, n2 6= 0. For all

single-trace sequences, we implicitly set the n1 = n2 = 0 term to 0.

C.1.1 An1,n2

The An1,n2 count single traces of generic matrices (U(N) single traces). They are

defined by

An1,n2 =
1

n

∑
d|n1,n2

φ(d)

( n
d
n1
d

)
(C.1.1)

Their generating function is

fU(N)(x, y) = −
∞∑
d=1

φ(d)

d
log(1− xd − yd) (C.1.2)
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which is the Hilbert series for the vector space TST . The plethystic exponential is

FU(N)(x, y) =
∏
n1,n2

1

(1− xn1yn2)An1,n2
=
∞∏
k=1

1

1− xk − yk
(C.1.3)

which is the Hilbert series for the vector space T = Sym (TST ).

The values of An1,n2 for n1, n2 ≤ 10 are shown below. These numbers form sequence

A047996 in the OEIS [82].

0 1 2 3 4 5 6 7 8 9 10

0 0 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 2 2 3 3 4 4 5 5 6

3 1 1 2 4 5 7 10 12 15 19 22

4 1 1 3 5 10 14 22 30 43 55 73

5 1 1 3 7 14 26 42 66 99 143 201

6 1 1 4 10 22 42 80 132 217 335 504

7 1 1 4 12 30 66 132 246 429 715 1144

8 1 1 5 15 43 99 217 429 810 1430 2438

9 1 1 5 19 55 143 335 715 1430 2704 4862

10 1 1 6 22 73 201 504 1144 2438 4862 9252

C.1.2 an1,n2

The an1,n2 count aperiodic single traces of generic matrices (U(N) aperiodic single

traces), or equivalently Lyndon words. They are defined by

an1,n2 =
1

n

∑
d|n1,n2

µ(d)

(n
d
n
d

)
(C.1.4)

Their generating function is

f̄U(N)(x, y) = −
∞∑
d=1

µ(d)

d
log(1− xd − yd) (C.1.5)

which is the Hilbert series for the vector space T
(1)
ST . The plethystic exponential is

F̄U(N)(x, y) =
∏
n1,n2

1

(1− xn1yn2)an1,n2
=

1

1− x− y
(C.1.6)

which is the Hilbert series for the vector space T (1) = Sym
(
T

(1)
ST

)
.

The values of an1,n2 for n1, n2 ≤ 10 are shown below. Omitting the first row
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and column, these numbers form sequence A245558 in the OEIS [82]. The properties

of An1,n2 and an1,n2 , the relationship between them, and a generalisation to other

sequences were investigated in [73].

0 1 2 3 4 5 6 7 8 9 10

0 0 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1

2 0 1 1 2 2 3 3 4 4 5 5

3 0 1 2 3 5 7 9 12 15 18 22

4 0 1 2 5 8 14 20 30 40 55 70

5 0 1 3 7 14 25 42 66 99 143 200

6 0 1 3 9 20 42 75 132 212 333 497

7 0 1 4 12 30 66 132 245 429 715 1144

8 0 1 4 15 40 99 212 429 800 1430 2424

9 0 1 5 18 55 143 333 715 1430 2700 4862

10 0 1 5 22 70 200 497 1144 2424 4862 9225

C.1.3 Ainvn1,n2

The Ainvn1,n2
count matrix words (up to cyclic rotations) which don’t change when re-

versed (up to cyclic rotations). They are defined by

Ainvn1,n2
=

(
bn1

2 c+ bn2
2 c

bn1
2 c

)
(C.1.7)

Their generating function is

finv(x, y) =
x2 + xy + y2 + x+ y

1− x2 − y2
(C.1.8)

which is the Hilbert series for the vector space TST ;inv. The plethystic exponential is

Finv(x, y) =
∏
n1,n2

1

(1− xn1yn2)A
inv
n1,n2

=
∞∏
k=1

exp

[
x2k + xkyk + y2k + xk + yk

k(1− x2k − y2k)

]
(C.1.9)

which is the Hilbert series for the vector space Tinv = Sym (TST ;inv)

The values of Ainvn1,n2
for n1, n2 ≤ 10 are shown below. These numbers form sequence

A119963 in the OEIS [82].
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0 1 2 3 4 5 6 7 8 9 10

0 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 2 2 3 3 4 4 5 5 6

3 1 1 2 2 3 3 4 4 5 5 6

4 1 1 3 3 6 6 10 10 15 15 21

5 1 1 3 3 6 6 10 10 15 15 21

6 1 1 4 4 10 10 20 20 35 35 56

7 1 1 4 4 10 10 20 20 35 35 56

8 1 1 5 5 15 15 35 35 70 70 126

9 1 1 5 5 15 15 35 35 70 70 126

10 1 1 6 6 21 21 56 56 126 126 252

C.1.4 ainvn1,n2

The ainvn1,n2
count aperiodic matrix words (up to cyclic rotations) which don’t change

(up to cyclic rotations) when reversed. They are defined by

ainvn1,n2
=

∑
d|n1,n2

µ(d)

(
bn1

2d c+ bn2
2d c

bn1
2d c

)
(C.1.10)

Their generating function is

f̄inv(x, y) =
∞∑
d=1

µ(d)
x2d + xdyd + y2d + xd + yd

1− x2d − y2d
(C.1.11)

which is the Hilbert series for the vector space T
(1)
ST ;inv. The plethystic exponential is

F̄inv(x, y) =
∏
n1,n2

1

(1− xn1yn2)a
inv
n1,n2

=
∞∏
k=1

exp

x2k + xkyk + y2k + xk + yk

k(1− x2k − y2k)

∑
d|k

dµ(d)


(C.1.12)

which is the Hilbert series for the vector space T
(1)
inv = Sym

(
T

(1)
ST ;inv

)
The values of ainvn1,n2

for n1, n2 ≤ 10 are shown below. The diagonal entries ainvm,m

form sequence A045680 in the OEIS [82].
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0 1 2 3 4 5 6 7 8 9 10

0 0 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1

2 0 1 1 2 2 3 3 4 4 5 5

3 0 1 2 1 3 3 3 4 5 4 6

4 0 1 2 3 4 6 8 10 12 15 18

5 0 1 3 3 6 5 10 10 15 15 20

6 0 1 3 3 8 10 17 20 32 33 53

7 0 1 4 4 10 10 20 19 35 35 56

8 0 1 4 5 12 15 32 35 64 70 120

9 0 1 5 4 15 15 33 35 70 68 126

10 0 1 5 6 18 20 53 56 120 126 245

C.1.5 Bn1,n2

The Bn1,n2 count single traces of anti-symmetric matrices (SO(N) single traces). They

are defined by

Bn1,n2 =
1

2n+ 2m

∑
d|n1,n2

φ(d)

( n
d
n1
d

)
+

(−1)n

2

(
bn1

2 c+ bn2
2 c

bn1
2 c

)
(C.1.13)

Their generating function is

fSO(N)(x, y) =
1

2

[
−
∞∑
d=1

φ(d)

d
log(1− xd − yd) +

x2 + xy + y2 − x− y
1− x2 − y2

]
(C.1.14)

which is the Hilbert series for the vector space T̃ST . The plethystic exponential is

FSO(N)(x, y) =
∏
n1,n2

1

(1− xn1yn2)Bn1,n2

=
∞∏
k=1

1√
1− xk − yk

exp

[
x2k + xkyk + y2k − xk − yk

2k(1− x2k − y2k)

]
(C.1.15)

which is the Hilbert series for the vector space T̃ = Sym
(
T̃ST

)
.

The values of Bn1,n2 for n1, n2 ≤ 10 are shown below. For n = n1 + n2 even, these

numbers match sequence A052307 in the OEIS [82].
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0 1 2 3 4 5 6 7 8 9 10

0 0 0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0 1 0

2 1 0 2 0 3 0 4 0 5 0 6

3 0 1 0 3 1 5 3 8 5 12 8

4 1 0 3 1 8 4 16 10 29 20 47

5 0 1 0 5 4 16 16 38 42 79 90

6 1 0 4 3 16 16 50 56 126 150 280

7 0 1 0 8 10 38 56 133 197 375 544

8 1 0 5 5 29 42 126 197 440 680 1282

9 0 1 0 12 20 79 150 375 680 1387 2368

10 1 0 6 8 47 90 280 544 1282 2368 4752

C.1.6 bn1,n2

The bn1,n2 count minimally periodic single traces of anti-symmetric matrices, or equiv-

alently orthogonal Lyndon words. They are defined by

bn1,n2 =
1

2

∑
d|n1,n2

µ(d)

[
1

n

(n
d
n
d

)
+ (−1)

n
d

(
b n2dc+ bm2dc
b n2dc

)]
(C.1.16)

Their generating function is

f̄SO(N)(x, y) =
1

2

∞∑
d=1

µ(d)

[
−1

d
log(1− xd − yd) +

x2d + xdyd + y2d − xd − yd

1− x2d − y2d

]
(C.1.17)

which is the Hilbert series for the vector space T̃
(min)
ST . The plethystic exponential is

F̄SO(N)(x, y) =
∏
n1,n2

1

(1− xn1yn2)bn1,n2

=
1√

1− x− y

∞∏
k=1

exp

 1

2k

x2k + xkyk + y2k − xk − yk

1− x2k − y2k

∑
d|k

dµ(d)


(C.1.18)

which is the Hilbert series for the vector space T̃ (min) = Sym
(
T̃

(min)
ST

)
.

The values of bn1,n2 for n1, n2 ≤ 10 are shown below. The diagonal entries binvm,m

form sequence A045628 in the OEIS [82].
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0 1 2 3 4 5 6 7 8 9 10

0 0 0 1 0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0 1 0 1 0

2 1 0 1 0 3 0 3 0 5 0 5

3 0 1 0 2 1 5 3 8 5 11 8

4 0 0 3 1 6 4 16 10 26 20 47

5 0 1 0 5 4 15 16 38 42 79 90

6 0 0 3 3 16 16 46 56 125 150 275

7 0 1 0 8 10 38 56 132 197 375 544

8 0 0 5 5 26 42 125 197 432 680 1278

9 0 1 0 11 20 79 150 375 680 1384 2368

10 0 0 5 8 47 90 275 544 1278 2368 4735

C.1.7 b
(odd)
n1,n2

The b
(odd)
n1,n2 count single traces of anti-symmetric matrices with a specified odd number

of periods. Note that n1, n2 refer to the number of Xs and Y s contained in the aperiodic

root of the trace, rather than in the whole trace. They are defined by

b(odd)
n1,n2

=
1

2

∑
d|n1,n2

µ(d)

[
1

n

( n
d
n1
d

)
+ (−1)n

(
bn1

2d c+ bn2
2d c

bn1
2d c

)]
(C.1.19)

Their generating function is

f̄
(odd)
SO(N)(x, y) =

1

2

∞∑
d=1

µ(d)

[
−1

d
log(1− xd − yd) +

x2d + xdyd + y2d + (−x)d + (−y)d

1− x2d − y2d

]
(C.1.20)

which is the Hilbert series for the vector space T̃
(odd)
ST . The plethystic exponential is

F̄
(odd)
SO(N)(x, y) =

∏
n1,n2

1

(1− xn1yn2)b
(odd)
n1,n2

(C.1.21)

=
1√

1− x− y

∞∏
k=1

exp

∑
d|k

dµ(d)

2k

x2k + xkyk + y2k + (−1)d(xk + yk)

1− x2k − y2k


(C.1.22)

which is the Hilbert series for the vector space T̃ (odd) = Sym
(
T̃

(odd)
ST

)
.

The values of b
(odd)
n1,n2 for n1, n2 ≤ 10 are shown below
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0 1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0 1 0 1 0

2 0 0 1 0 2 0 3 0 4 0 5

3 0 1 0 2 1 5 3 8 5 11 8

4 0 0 2 1 6 4 14 10 26 20 44

5 0 1 0 5 4 15 16 38 42 79 90

6 0 0 3 3 14 16 46 56 122 150 275

7 0 1 0 8 10 38 56 132 197 375 544

8 0 0 4 5 26 42 122 197 432 680 1272

9 0 1 0 11 20 79 150 375 680 1384 2368

10 0 0 5 8 44 90 275 544 1272 2368 4735

C.1.8 b
(even)
n1,n2

The b
(even)
n1,n2 count single traces of anti-symmetric matrices with a specified even number

of periods. Note that n1, n2 refer to the number of Xs and Y s contained in the aperiodic

root of the trace, rather than in the whole trace. They are defined by

b(even)
n1,n2

=
1

2

∑
d|n1,n2

µ(d)

[
1

n

( n
d
n1
d

)
+

(
bn1

2d c+ bn2
2d c

bn1
2d c

)]
(C.1.23)

Their generating function is

f̄
(even)
SO(N)(x, y) =

1

2

∞∑
d=1

µ(d)

[
−1

d
log(1− xd − yd) +

x2d + xdyd + y2d + xd + yd

1− x2d − y2d

]
(C.1.24)

which is the Hilbert series for the vector space T̃
(even)
ST . The plethystic exponential is

F̄
(even)
SO(N)(x, y) =

∏
n1,n2

1

(1− xn1yn2)b
(even)
n1,n2

=
1√

1− x− y

∞∏
k=1

exp

 1

2k

x2k + xkyk + y2n + xk + yk

1− x2k − y2k

∑
d|k

dµ(d)


(C.1.25)

which is the Hilbert series for the vector space T̃ (even) = Sym
(
T̃

(even)
ST

)
.

The values of b
(even)
n1,n2 for n1, n2 ≤ 10 are shown below
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0 1 2 3 4 5 6 7 8 9 10

0 0 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1

2 0 1 1 2 2 3 3 4 4 5 5

3 0 1 2 2 4 5 6 8 10 11 14

4 0 1 2 4 6 10 14 20 26 35 44

5 0 1 3 5 10 15 26 38 57 79 110

6 0 1 3 6 14 26 46 76 122 183 275

7 0 1 4 8 20 38 76 132 232 375 600

8 0 1 4 10 26 57 122 232 432 750 1272

9 0 1 5 11 35 79 183 375 750 1384 2494

10 0 1 5 14 44 110 275 600 1272 2494 4735

C.2 Multi-trace sequences

N
U(N)
n1,n2

The N
U(N)
n1,n2 count the multi-traces of generic N ×N matrices, where N can be finite or

infinite. They are defined by

NU(N)
n1,n2

=
∑
R`n
R1`n1
R2`n2
l(R)≤N

g2
R;R1,R2

(C.2.1)

At infinite N , An1,n2 and N
U(N)
n1,n2 are related by the plethystic exponential, so the

generating function is given by (C.1.3), which is the Hilbert series for T .

The values of N
U(∞)
n1,n2 for n1, n2 ≤ 10 are shown below. These numbers form sequence

A322210 in the OEIS [82].
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0 1 2 3 4 5 6 7 8 9 10

0 1 1 2 3 5 7 11 15 22 30 42

1 1 2 4 7 12 19 30 45 67 97 139

2 2 4 10 18 34 56 94 146 228 340 506

3 3 7 18 38 74 133 233 385 623 977 1501

4 5 12 34 74 158 297 550 951 1614 2627 4202

5 7 19 56 133 297 602 1166 2133 3775 6437 10692

6 11 30 94 233 550 1166 2382 4551 8424 14953 25835

7 15 45 146 385 951 2133 4551 9142 17639 32680 58659

8 22 67 228 623 1614 3775 8424 17639 35492 68356 127443

9 30 97 340 977 2627 6437 14953 32680 68356 136936 264747

10 42 139 506 1501 4202 10692 25835 58659 127443 264747 530404

C.2.1 N
SO(N);δ
n1,n2

The N
SO(N);δ
n1,n2 count the multi-traces of anti-symmetric N ×N matrices, where N can

be finite or infinite. They are defined by

NSO(N);δ
n1,n2

=
∑

R`2n with even row lengths
R1`2n1 with even column lengths
R2`2n2 with even column lengths

l(R)≤N

gR;R1,R2 (C.2.2)

At infinite N , Bn1,n2 and N
SO(N);δ
n1,n2 are related by the plethystic exponential, so the

generating function is given by (C.1.15), which is the Hilbert series for T̃ .

The values of N
SO(∞);δ
n1,n2 for n1, n2 ≤ 10 are shown below. These numbers form

sequence A045680 in the OEIS [82].
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0 1 2 3 4 5 6 7 8 9 10

0 1 0 1 0 2 0 3 0 5 0 7

1 0 1 0 2 0 4 0 7 0 12 0

2 1 0 4 0 9 0 19 0 35 0 62

3 0 2 0 9 1 23 4 52 10 105 22

4 2 0 9 1 33 6 85 21 198 56 410

5 0 4 0 23 6 86 33 243 114 600 313

6 3 0 19 4 85 33 297 152 845 512 2137

7 0 7 0 52 21 243 152 879 664 2646 2227

8 5 0 35 10 198 114 845 664 3003 2742 9168

9 0 12 0 105 56 600 512 2646 2742 9702 11033

10 7 0 62 22 410 313 2137 2227 9168 11033 33704

C.3 Relations between different sequences

The an1,n2 are the Möbius transform of the An1,n2 .

An1,n2 =
∑

d|n1,n2

an
d
,m
d

an1,n2 =
∑

d|n1,n2

µ(d)An
d
,m
d

(C.3.1)

fU(N)(x, y) =

∞∑
k=1

f̄U(N)(x
k, yk) f̄U(N)(x, y) =

∞∑
k=1

µ(k)fU(N)(x
k, yk) (C.3.2)

FU(N)(x, y) =

∞∏
k=1

F̄U(N)(x
k, yk) F̄U(N)(x, y) =

∞∏
k=1

FU(N)(x
k, yk)µ(k) (C.3.3)

The ainvn1,n2
are the Möbius transform of the Ainvn1,n2

.

Ainvn1,n2
=

∑
d|n1,n2

ainvn
d
,m
d

ainvn1,n2
=

∑
d|n1,n2

µ(d)Ainvn
d
,m
d

(C.3.4)

finv(x, y) =
∞∑
k=1

f̄inv(x
k, yk) f̄inv(x, y) =

∞∑
k=1

µ(k)finv(x
k, yk) (C.3.5)

Finv(x, y) =
∞∏
k=1

F̄inv(x
k, yk) F̄inv(x, y) =

∞∏
k=1

Finv(x
k, yk)µ(k) (C.3.6)

The Bn1,n2 can be expressed in terms of the An1,n2 and the Ainvn1,n2
.

Bn1,n2 =
1

2

[
An1,n2 + (−1)nAinvn1,n2

]
(C.3.7)

fSO(N)(x, y) =
1

2

[
fU(N)(x, y) + finv(−x,−y)

]
(C.3.8)
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The bn1,n2 are the Möbius transform of the Bn1,n2 .

Bn1,n2 =
∑

d|n1,n2

bn
d
,m
d

bn1,n2 =
∑

d|n1,n2

µ(d)Bn
d
,m
d

(C.3.9)

fSO(N)(x, y) =
∞∑
k=1

f̄SO(N)(x
k, yk) f̄SO(N)(x, y) =

∞∑
k=1

µ(k)fSO(N)(x
k, yk) (C.3.10)

FSO(N)(x, y) =
∞∏
k=1

F̄SO(N)(x
k, yk) F̄SO(N)(x, y) =

∞∏
k=1

FSO(N)(x
k, yk)µ(k) (C.3.11)

The b
(odd)
n1,n2 and b

(even)
n1,n2 can be expressed in terms of the an1,n2 and the ainvn1,n2

.

b(odd)
n1,n2

=
1

2

[
an1,n2

+ (−1)nainvn1,n2

]
b(even)
n1,n2

=
1

2

[
an1,n2

+ ainvn1,n2

]
(C.3.12)

f̄
(odd)
SO(N)(x, y) =

1

2

[
f̄U(N)(x, y) + f̄inv(−x,−y)

]
f̄

(even)
SO(N)(x, y) =

1

2

[
f̄U(N)(x, y) + f̄inv(x, y)

]
(C.3.13)
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Appendix D

Littlewood-Richardson

coefficients

Given a representation R ` n of Sn, we can act on R with the subgroup Sn1 × Sn2 ,

where n1 +n2 = n, and therefore it is a representation of this subgroup. The irreducible

representations of Sn1 × Sn2 are of the form R1 ⊗R2 for R1 ` n1, R2 ` n2, so we have

a decomposition

V Sn
R =

⊕
R1`n1
R2`n2

V
Sn1
R1
⊗ V Sn2

R2
⊗ V mult

R;R1,R2
(D.0.1)

where V mult
R;R1,R2

is the multiplicity space for this decomposition. The Littlewood-Richardson

(abbreviated to LR) coefficient is defined to be

gR;R1,R2 = DimV mult
R;R1,R2

(D.0.2)

Since the subgroup Sn2×Sn1 is conjugate to Sn1×Sn2 within Sn, it follows that gR;R1,R2

is symmetric in R1 and R2.

Take permutations σ ∈ Sn1 and τ ∈ Sn2 , and define σ ◦ τ to the permutation in Sn

that acts as σ on {1, 2, . . . , n1} and τ on {n1 + 1, . . . , n}. Then from the decomposition

(D.0.1), we have

χR(σ ◦ τ) =
∑
R1`n1
R2`n2

gR;R1,R2χR1(σ)χR2(τ) (D.0.3)

Using the orthogonality relation (2.3.5)

gR;R1,R2 =
1

n1!n2!

∑
σ∈Sn1
τ∈Sn2

χR1(σ)χR2(τ)χR(σ ◦ τ) (D.0.4)

LR coefficients have nice behaviour under conjugation of Young diagrams. From the

311



APPENDIX D. LITTLEWOOD-RICHARDSON COEFFICIENTS

relation (2.3.10) between representations with conjugate Young diagrams, we can trans-

pose each of the Young diagram labels in (D.0.1) by taking a tensor product with the

sign representation of Sn. This gives

V Sn
Rc =

⊕
R1`n1
R2`n2

V
Sn1
Rc1
⊗ V Sn2

Rc2
⊗ V mult

R;R1,R2
(D.0.5)

and therefore

gR;R1,R2 = gRc;Rc1,Rc2 (D.0.6)

D.1 Schur function multiplication

Consider the tensor product V ⊗n, for the V the fundamental representation of U(N).

This is acted on by permutations in Sn by permuting the tensor factors, so as in (D.0.1),

we can break the space down into representations of Sn1 × Sn2 . There are two ways to

approach this. Firstly, we use Schur-Weyl duality (2.4.3) and then apply (D.0.1)

V ⊗n =
⊕
R1`n1
R2`n2

V
Sn1
R1
⊗ V Sn2

R2
⊗

(⊕
R`n

V
U(N)
R ⊗ V mult

R;R1,R2

)
(D.1.1)

Secondly, we can split V ⊗n = V ⊗n1 ⊗ V ⊗n2 and use Schur-Weyl duality on each of the

two factors

V ⊗n =
⊕
R1`n1
R2`n2

V
Sn1
R1
⊗ V Sn2

R2
⊗
(
V
U(N)
R1

⊗ V U(N)
R2

)
(D.1.2)

Comparing the two expansions, we see

V
U(N)
R1

⊗ V U(N)
R2

=
⊕
R`n

V
U(N)
R ⊗ V mult

R;R1,R2
(D.1.3)

So the LR coefficients are Clebsch-Gordon coefficients for U(N) representations. It

follows from the identification (2.7.15) of the U(N) characters as Schur symmetric

functions that

sR1sR2 =
∑
R`n

gR;R1,R2sR (D.1.4)

D.2 Littlewood-Richardson rule and tableaux

The Littlewood-Richardson rule is a combinatoric description of the LR coefficient

gR;R1,R2 . Given R ` n and R1 ` n1 such that R1 fits within R, we define the skew

Young diagram R/R1 to be the diagram obtained by removing R1 from R. The boxes
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remaining in R/R1 do not need to be connected. We give some examples

R = R1 = R/R1 = (D.2.1)

R = R1 = R/R1 = (D.2.2)

R = R1 = R/R1 = (D.2.3)

A skew tableau r of shape R/R1 is the skew diagram R/R1 with positive integers placed

in each box. The skew tableau is called semi-standard if the numbers increase weakly

along the rows and strictly down the columns. The evaluation of r is the sequence

w(r) = [k1, k2, . . . ] where ki is the number of is inside r. We are concerned with the

case where the ki weakly decrease, meaning w(r) is a partition of n2. We give some

examples of semi-standard skew tableaux of shapes (D.2.1-D.2.3) with their respective

evaluations. We leave empty boxes in the tableaux to show where R1 has been removed

r =

1

2 3

4 5

6

w(r) = [16] (D.2.4)

r =

1

1 1 1 1

w(r) = [5] (D.2.5)
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r =

1 1

2

2

3

4

w(r) = [2, 2, 1, 1] (D.2.6)

The row reading of a tableau is the word obtained by concatenating the reversed rows.

The row reading of a tableau is a lattice word if every prefix of the word contains at

least as many is as (i + 1)s for every i > 0. A Littlewood-Richardson tableau is a

semi-standard skew tableau where the row reading is a lattice word.

In the example (D.2.4), the row reading of r is 132546. If we take the prefix 13,

then 2 does not appear at all, while 3 appears once. Therefore this is not a lattice

word, and hence r is not a LR tableau. For (D.2.5) and (D.2.6), the row readings are

11111 and 112234, which are both lattice words, and thus the two r are LR tableaux.

The LR rule [121,122] states that the coefficient gR;R1,R2 is given by the number of

LR tableaux r of shape R/R1 with evaluation w(r) = R2.

We give two examples of calculations of particular coefficients, before moving on

to the calculation of coefficients for a general class of diagrams. Firstly, consider R =

[5, 3, 2, 1, 1], and R1 = R2 = [3, 2, 1]. Then gR;R1,R2 = 4, with tableaux

r1 =

1 1

1

2

2

3

r2 =

1 1

2

1

2

3

r3 =

1 1

2

2

1

3

r4 =

1 1

2

3

1

2

(D.2.7)

Our second example is relevant for the SO(N) restricted Schur basis (5.6.70). The

triple R = [6, 4, 4, 2, 2, 2, 2], R1 = [4, 4, 2, 2, 1, 1] and R2 = [3, 3, 1, 1] are the lowest order
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example of a non-trivial multiplicity in this basis with gR;R1,R2 = 2. The tableaux are

r1 =

1 1

1 2

2

3

2 4

r2 =

1 1

2 2

1

3

2 4

(D.2.8)

D.2.1 Baryonic tableaux

The baryonic state spaces and auxiliary algebras in chapter 4 are anti-invariant under

SN , meaning they lie in the single column [1N ] representation, and invariant under

Sq[S2], meaning they live in a representation R̄ ` 2q of S2q, where R̄ has even row

lengths. We are interested in which R ` n = N + 2q can admit such representations of

SN × Sq[S2].

As an example, take R1 = [14] (i.e. N = 4) and R2 = [4, 4, 2]. Then the possible R

with non-zero gR;R1,R2 are R = [5, 5, 3, 1], [5, 5, 2, 12], [5, 4, 3, 12], [5, 4, 2, 13], [4, 4, 3, 13]

and [4, 4, 2, 14]. The corresponding tableaux are

r1 =

1 1 1 1

2 2 2 2

3 3
r2 =

1 1 1 1

2 2 2 2

3

3

r3 =

1 1 1 1

2 2 2

3 3

2

r4 =

1 1 1 1

2 2 2

3

2

3

r5 =

1 1 1

2 2 2

3 3

1

2

r6 =

1 1 1

2 2 2

3

1

2

3

(D.2.9)

Let r̂ be r with the first column removed. Then in each of the above tableaux, we see

that the jth row of r̂i consists only of js. We now prove this fact for all LR tableaux r

of shape R/[1N ] by inducting down the rows.
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By the lattice word property of the row reading of r, the first row of r̂ must end

with a 1. By the semi-standard property, this means the entire row must be composed

of 1s. This establishes the base case of the induction.

Assume that the first j − 1 rows consist purely of the row number. Then since the

entries increase strictly down the columns, the jth row must consist only of numbers

≥ j. By the lattice word property of the row reading of r, the row must end with a j,

then since the row is weakly increasing, the jth row of r̂ must consist entirely of js.

Now consider the first column of r. Since the numbers strictly increase down the

columns, it must contain at most 1 of each number. Therefore the numbers in this

column pick out a subset of the rows of R̄, and the shape of r̂ is given by R̄ with a single

box removed from each of the selected rows. This subset is not without restriction, since

R̄ with the boxes removed must still remain a Young diagram. In (D.2.9), the subsets

used are respectively

φ, {3}, {2}, {2, 3}, {1, 2}, {1, 2, 3} (D.2.10)

where φ is the empty subset. The subsets {1} and {1, 3} are not included as removing

these boxes from R̄ would not result in a valid Young diagram.

For each choice of subset, we obtain a different R, and therefore the coefficient is

gR;[1N ],R̄ = 1.

Since R̄ has even row lengths, those with boxes removed have odd row lengths. This

means for a given R we can easily identify if a SN ×Sq[S2] invariant is possible, and to

which R̄ it belongs.

Consider R ` 2n with a first column of length ≥ N . It can be written as a single

column [1N+k] combined with a Young diagram S̄ of length l(S̄) ≤ N + k. Formally,

R = [1N+k] + S̄, where + is the addition operator for components of partitions defined

in (2.2.7).

From S̄, we can uniquely define an associated R̄ by adding a single box to the end

of each odd length row. Then R admits the representation [1N ]⊗ R̄ of SN ×S2q if (and

only if) the number of odd length rows in S̄ is k. If l(R̄) > N , there is the additional

condition that N + k ≥ l(R̄). This characterises the allowable R in the baryonic state

spaces and auxiliary algebras, and proves that the R̄ associated to a valid R is unique

and has LR coefficient 1.

The relation is even simpler when we restrict R to have at most N rows. In this

case we have k = 0, S̄ = R̄ and R = [1N ] + R̄.

D.3 Basis for Littlewood-Richardson multiplicity space

Consider the action of the algebra An1,n2 , defined in section 2.1, on the decomposition

(D.0.1). By construction, An1,n2 commutes with Sn1 × Sn2 , and therefore by Schur’s
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lemma it must act proportional to the identity on the space V
Sn1
R1
⊗V Sn2

R2
. Hence An1,n2

acts only on the multiplicity space V mult
R;R1,R2

in each term of the decomposition (D.0.1).

Define a sub-algebra ARR1,R2
of An1,n2 by projecting onto the R representation of

Sn and the R1 ⊗R2 representation of Sn1 × Sn2 . Explicitly,

ARR1,R2
= PRPR1⊗R2An1,n2 = Span {βR,R1,R2,µ,ν : 1 ≤ µ, ν ≤ gR;R1,R2} (D.3.1)

where the projector PR1⊗R2 is the tensor product of the projectors defined in (2.3.13)

and the βR,R1,R2,µ,ν are defined in (3.6.3).

The projection onto R1 ⊗ R2 means ARR1,R2
acts only on the R1 ⊗ R2 term of

(D.0.1) and annihilates all others. Therefore ARR1,R2
acts purely on the multiplicity

space V mult
R;R1,R2

.

One can then use the behaviour of vectors in V mult
R;R1,R2

under ARR1,R2
to choose an

orthogonal basis. Simply choose a maximal commuting set of operators, and use the

eigenbasis.

For a more complete description of how one chooses these operators, or the maximal

commuting sub-algebra they span, see [63].
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Alternative derivation of free

field large N generating function

for SO(N) and Sp(N)

We now derive the generating function (4.3.21) for the quarter-BPS sector of the free

field theory with SO(N) or Sp(N) gauge group directly from the expressions (5.6.74)

and (5.6.75) respectively for the number of operators with n1 Xs and n2 Y s in the two

theories. This derivation works at infinite N , ignoring the finite N constraint l(R) ≤ N .

In this regime, the combinatorics of the SO(N) and Sp(N) theories are identical, so

we do not distinguish between them in this appendix.

The first step is to find an alternative formula for (5.6.74) that lends itself more

easily to explicit calculation of the generating function. This is done using results from

the theory of symmetric functions, and gives an expression involving the coefficients of

the cycle index polynomial of Sn[S2].

Using this alternative formula we can express the generating function as a product

of integrals, each of which can be explicitly evaluated.

E.1 An alternative counting formula

Start with the expression (5.6.74) at large N and re-express gR;R1,R2 in terms of char-

acters using (D.0.4)

N δ
n1,n2

=
∑

R`2n with even row lengths
R1`2n1 with even column lengths
R2`2n2 with even column lengths

1

(2n1)!(2n2)!

∑
σ∈S2n1
τ∈S2n2

χR1(σ)χR2(τ)χR(σ ◦ τ)

(E.1.1)
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where σ ◦ τ means the permutation in S2n that acts as σ on the first 2n1 objects and

τ on the last 2n2. Since the characters only depend on the cycle type of σ and τ , we

can rewrite this as

N δ
n1,n2

=
∑

R`2n with even row lengths
R1`2n1 with even column lengths
R2`2n2 with even column lengths

∑
p`2n1
q`2n2

χR1(p)χR2(q)χR(p ∪ q)
zpzq

(E.1.2)

where p ∪ q was defined in (2.2.9), and zp and zq arise because the number of permu-

tations in S2n with cycle type p is given by (2n)!
zp

. This is explained in section 2.3.1.

We now evaluate ∑
R`2n with even

row/column lengths

χR(q) (E.1.3)

From (2.7.10) we can rewrite this as

zq
∑

R with even
row/column lengths

Coeff (Tq; sR) = zq Coeff

Tq; ∑
R with even

row/column lengths

sR

 (E.1.4)

where Tq is the power-sum symmetric function defined in (2.7.8) and sR is the Schur

symmetric function defined in (2.7.10). Coeff (Tq; sR) is the coefficient of Tq when sR

is written as a sum over power-sum symmetric functions.

The sum in (E.1.4), can range over all partitions with even row lengths, rather than

just those with |R| = 2n, since the coefficient of Tq is 0 in any sR with |R| 6= 2n.

In MacDonald’s book [64, Chapter I.5] he shows that

s(t1, t2, . . .) =
∑

R with even
row lengths

sR =
∏
i

1

1− t2i

∏
i<j

1

1− titj
(E.1.5)

To find the coefficient of Tq inside s we first look at log s

log s = −
∑
i

log(1− t2i )−
∑
i<j

log(1− titj) (E.1.6)

=

∞∑
r=1

1

2r

∑
i,j

tri t
r
j +

∑
i

t2ri

 (E.1.7)

=
∞∑
r=1

1

2r

(
T 2
r + T2r

)
(E.1.8)

=
∞∑
r=1

1

r
ZS2(Tr, T2r) (E.1.9)
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where ZS2 is the cycle index polynomial of the group S2 as defined in (4.3.7) and Tr is

a component of a power-sum symmetric function as defined in (2.7.7). Therefore

s = exp

[ ∞∑
r=1

1

r
ZS2(Tr, T2r)

]
(E.1.10)

We recall two useful facts. Firstly, the generating function for the cycle index polyno-

mials of Sn is [65, Chapter 5.13]

∞∑
n=0

xnZSn(t1, t2, . . .) = exp

[ ∞∑
m=1

1

m
xmtm

]
(E.1.11)

Secondly, the cycle index polynomial of a wreath product group is [123, Chapter 15.5]

ZG[H](t1, t2, . . .) = ZG(r1, r2, . . .) (E.1.12)

where

ri = ZH(ti, t2i, t3i, . . .) (E.1.13)

Combining (E.1.11) and (E.1.12) tells us that the generating function for the cycle

index polynomials of Sn[S2] is

∞∑
n=0

xnZSn[S2](t1, t2, . . .) =
∞∑
n=0

xn
∑
q`2n

ZSn[S2]
q

∏
i

tqii = exp

[ ∞∑
r=1

1

r
xrZS2(tr, t2r)

]
(E.1.14)

Comparing (E.1.14) with (E.1.10), we have

s =

∞∑
n=0

ZSn[S2](T1, T2, . . .) =

∞∑
n=0

∑
q`2n

ZSn[S2]
q Tq (E.1.15)

Therefore the sum over even length rows in (E.1.3) is∑
R`2n with even

row lengths

χR(q) = zq Coeff (Tq; s) = zqZ
Sn[S2]
q (E.1.16)

A Young diagram has even row lengths if and only if its conjugate has even column

lengths, so to evaluate the column version of (E.1.3), we just conjugate the summation

variable R. Since Rc =sgn⊗R, the characters are related by

χRc(q) = (−1)qχR(q) (E.1.17)
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Therefore ∑
R`2n with even
column lengths

χR(q) = (−1)qZSn[S2]
q zq (E.1.18)

Plugging (E.1.16) and (E.1.18) into (E.1.2) gives

N δ
n1,n2

=
∑
p`2n1
q`2n2

(−1)p∪qzp∪qZ
Sn1 [S2]
p Z

Sn2 [S2]
q Z

Sn[S2]
p∪q (E.1.19)

E.2 The generating function

The generating function for N δ
n1,n2

is

FSO(N)(x, y) =
∑
n1,n2

xn1yn2N δ
n1,n2

=
∑
n1,n2

xn1yn2
∑
p`2n1
q`2n2

(−1)p∪qZ
Sn1 [S2]
p Z

Sn2 [S2]
q Z

Sn[S2]
p∪q zp∪q

(E.2.1)

Our approach is to build candidate generating functions by introducing the terms on

the right hand side one by one. We begin by using (E.1.14) twice

exp

[ ∞∑
k=1

1

2k
(xk + yk)(t2k + t2k)

]
=
∑
n1,n2

xn1yn2
∑
p`2n
q`2m

ZSn[S2]
p ZSn[S2]

q

∏
i

tpi+qii (E.2.2)

The third cycle index in (E.1.19) comes with a factor of (−1)p∪q. To introduce this into

(E.1.14), we just replace tk with −tk for n even. Multiplying through by this modified

version with a new set of variables sk and no overall level (no equivalent to x, y) gives

exp

[ ∞∑
k=1

1

2k
(s2
k − s2k) +

∞∑
k=1

1

2k
(xk + yk)(t2k + t2k)

]
=

∑
n1,n2,m

xn1yn2
∑
p`2n1
q`2n2
r`2m

(−1)rZ
Sn1 [S2]
p Z

Sn2 [S2]
q ZSm[S2]

r

∏
i

tpi+qii srii

(E.2.3)

We introduce a factor of zp∪q and enforce r = p ∪ q in two steps, corresponding to the

two parts of

zp∪q =
∏
i

ipi+qi(pi + qi)! (E.2.4)

To obtain the powers of i, we replace tk and sk with
√
k sk and

√
k tk.

exp

[ ∞∑
k=1

(
1

2
s2
k −

1√
2k
s2k

)]
exp

[ ∞∑
k=1

(xk + yk)

(
1

2
t2k +

1√
2k
t2k

)]
(E.2.5)
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=
∑

n1,n2,m

xn1yn2
∑
p`2n1
q`2n2
r`2m

(−1)p(−1)qZ
Sn1 [S2]
p Z

Sn2 [S2]
q ZSm[S2]

r

∏
i

i
1
2

(pi+qi+ri)tpi+qii srii

(E.2.6)

To replace
∏
i t
pi+qi
i srii with δri,pi+qi(pi + qi)!, we use the integral∫

C

dzdz̄

2π
e−zz̄zpz̄r = δp,rp! (E.2.7)

Replacing tk with zk, sk with z̄k, multiplying by e−
∑
k zk z̄k , and integrating over a copy

of C for each k gives us

FSO(N)(x, y) =
∑
n1,n2

xn1yn2
∑
p`2n
q`2m

(−1)p∪qZSn[S2]
p ZSm[S2]

q Z
Sn+m[S2]
p∪q zp∪q

=

∫ ( ∞∏
k=1

dzkdz̄k
2π

)
exp

[ ∞∑
k=1

(
1

2
z̄2
k −

1√
2k
z̄2k

)]

exp

[ ∞∑
k=1

(xk + yk)

(
1

2
z2
k +

1√
2k
z2k

)]
exp

[
−
∞∑
k=1

zkz̄k

]

=
∏
k odd

∫
dzdz̄

2π
exp

[
1

2
(z̄2 − 2zz̄ + (xk + yk)z2)

]
∏
k even

∫
dzdz̄

2π
exp

[
1

2

(
z̄2 − 2zz̄ + (xk + yk)z2 − 2√

k

(
z̄ −

(
x
k
2 + y

k
2

)
z
))]

(E.2.8)

To compute these two integrals, we split z into its real and imaginary parts. Using

z = u+ iv, z̄ = u− iv, and for simplicity writing λ = xk + yk, µ = x
k
2 + y

k
2 , we have

z̄2 − 2zz̄ + λz2 = −(1− λ)(u+ iv)2 − 4v2 (E.2.9)

z̄2 − 2zz̄ + λz2 − 2√
k

(z̄ − µz) = −(1− λ)

(
u+ iv +

1− µ√
k(1− λ)

)2

− 4

(
v − i

2
√
k

)2

+
λ− 2µ+ µ2

k(1− λ)
(E.2.10)

Changing variables from (z, z̄) to (u, v) (and remembering that dzdz̄ = 2dudv), both

odd and even integrals can be evaluated using the standard Gaussian integral∫ ∞
−∞

du e−a(u+b)2
=

√
π

a
(E.2.11)
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where a, b are complex numbers with Re(a) > 0. The integrals are∫
dzdz̄

2π
exp

[
1

2
(z̄2 − 2zz̄ + λz2)

]
=

1√
1− λ

(E.2.12)

and∫
dzdz̄

2π
exp

[
1

2

(
z̄2 − 2zz̄ + λz2 −

√
2

k
(z̄ − µz)

)]
=

1√
1− λ

exp

[
λ− 2µ+ µ2

2k(1− λ)

]
(E.2.13)

Plugging these into (E.2.8) gives

FSO(N)(x, y) =

( ∏
k odd

1√
1− xk − yk

)
( ∏
k even

1√
1− xk − yk

exp

[
xk + x

k
2 y

k
2 + yk − x

k
2 − y

k
2

k(1− xk − yk)

])
(E.2.14)

=

∞∏
k=1

1√
1− xk − yk

exp

[
x2k + xkyk + y2k − xk − yk

2k(1− x2k − y2k)

]
(E.2.15)

which matches the result (4.3.21).
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Appendix F

Construction and correlators of

SO(N) covariant basis

F.1 Generic representations of Sn[S2]

Recall from section 5.1.2 that Sn[S2] is defined abstractly as a semi-direct product of

Sn with (S2)n. For n1 + n2 = n, we can split Sn into Sn1 × Sn2 and perform the

corresponding split into (S2)n1 × (S2)n2 , so that the Smi component acts by permuting

the factors of (S2)mi . Define the subgroup Gn1,n2 of Sn[S2] to be the semi-direct product

of these two splits

Gn1,n2 = (Sn1 × Sn2) n [(S2)n1 × (S2)n2 ] = [Sn1 n (S2)n1 ]× [Sn2 n (S2)n2 ] (F.1.1)

We can then consider representations of Gn1,n2 . In particular, let R1 ` n1 and R2 ` n2

be representations of Sn1 and Sn2 respectively. Denoting the the trivial representation

of (S2)n1 by trivn1 and the anti-symmetric representation of (S2)n2 by signn2 , we define

the representation (R1, R2) of Gn1,n2 to be R1 on the Sn1 factor, trivn1 on the (S2)n1

factor, R2 on the Sn2 factor and signn2 on the (S2)n2 factor.

V
Gn1,n2

(R1,R2) = V
Sn1
R1
⊗ V (S2)n1

trivn1
⊗ V Sn2

R2
⊗ V (S2)n2

signn2
(F.1.2)

We can use the (R1, R2) representation of Gn1,n2 to induce a representation of the full

group Sn[S2]. It is proved in [124] that this induced representation is irreducible. To

understand the (R1, R2) representation of the full group Sn[S2] requires an understand-

ing of the cosets of Gn1,n2 within Sn[S2], however for our purposes, it will be enough

to understand the behaviour of just Gn1,n2 on the irreducible representations of Sn[S2],

for which (F.1.2) is a complete description.

From this description, the representation [S] (defined in section 5.1.2) of Sn[S2] is

([n], φ), where φ is the empty partition of 0, and the representation [A] is (φ, [n]).
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Using this understanding, when we embed Sn[S2] into S2n, we can express an irre-

ducible representation of Sn[S2] by only looking at the subgroup Gn1,n2 . Explicitly, we

have the decomposition

V S2n
R =

⊕
R1`n1 , R2`n2
n1+n2=n

V
Sn[S2]

(R1,R2) ⊗ V
mult
R;(R1,R2)

=
⊕

R1`n1 , R2`n2
n1+n2=n

V
Gn1,n2

(R1,R2) ⊗ V
mult
R;(R1,R2)

=
⊕

R1`n1 , R2`n2
n1+n2=n

[
V
Sn1
R1
⊗ V (S2)n1

trivn1
⊗ V Sn2

R2
⊗ V (S2)n2

signn2

]
⊗ V mult

R;(R1,R2) (F.1.3)

where V mult
R;(R1,R2) is a multiplicity space.

In the decomposition (F.1.3), when we act with Sn1 on the left hand side, we

embed Sn1 into S2n by acting on the set of n1 pairs {1, 2}, {3, 4}, . . . , {2n1 − 1, 2n1},
and similarly Sn2 is embedded by acting on the pairs {2n1+1, 2n1+2}, . . . , {2n−1, 2n}.

Under conjugation of R the sign of all representatives is switched. The represen-

tations of Sn1 and Sn2 are unchanged, since all permutations in these embeddings

are even. However, (S2)n1 now has the representation signn1 and (S2)n2 has trivn2 .

Therefore

V mult
Rc;(R1,R2) = V mult

R;(R2,R1) (F.1.4)

F.2 Operator construction

In (5.7.1) we defined a generic U(2) covariant operator, labelled by σ ∈ S2n and a ∈
V ⊗n2 , where V2 is the fundamental representation of U(2).

Oδa,σ = C
(δ)
I σIJ (Xa)J (F.2.1)

This definition has several invariant properties. Firstly, it follows from the structure of

C
(δ)
I , defined in (5.2.1), that

Oδa,τσ = Oδa,σ (F.2.2)

for any τ ∈ Sn[S2]. Secondly, the anti-symmetry of X and Y imply that

Oδa,στ = (−1)τOδa,σ (F.2.3)

for any τ ∈ (S2)n.

Finally, consider τ ∈ Sn embedded into S2n. The definition of Sn[S2] consists

of a semi-direct product between Sn and (S2)n (see section 5.1.2). When Sn[S2]

is embedded into S2n, this Sn subgroup from the definition permutes the n pairs
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{1, 2}, {3, 4}, . . . , {2n − 1, 2n} by taking odd numbers to odd numbers and evens to

evens. In chapter 6 this embedding is referred to as S
(diag)
n . Denote this embedding of

τ ∈ Sn into S2n by τ (diag). Then using a non-standard labelling for the 2n indices of

τ (diag), we have(
τ (diag)

)I
J

=
(
τ (diag)

)i1,1i1,2i2,1i2,2...in,1in,2
j1,1j1,2j2,1j2,2...jn,1jn,2

= δ
i1,1
jτ(1),1

δ
i1,2
jτ(1),2

. . . δ
in,1
jτ(n),1

δ
in,2
jτ(n),2

(F.2.4)

It follows that the action of τ (diag) on Xa is(
τ (diag)

)I
J

(Xa)J =
(
τ (diag)

)i1,1i1,2i2,1i2,2...in,1in,2
j1,1j1,2j2,1j2,2...jn,1jn,2

(Xa1)j1,1j1,2 . . . (Xan)jn,1jn,2

= (Xa1)
iτ−1(1),1iτ−1(1),2 . . . (Xan)

iτ−1(n),1iτ−1(n),2

=
(
Xaτ(1)

⊗Xaτ(2)
⊗ · · · ⊗Xaτ(n)

)J
=
(
Xτ(a)

)J
(F.2.5)

where τ ∈ Sn acts on a ∈ V ⊗n2 by permutation of factors. Then

Oδ
a,στ (diag) = C

(δ)
I σIJ

(
τ (diag)

)J
K

(Xa)K

= C
(δ)
I σIJ

(
Xτ(a)

)J
= Oδτ(a),σ (F.2.6)

We can view (F.2.1) as a map into the space of SO(N) operators from

V ⊗n2 ⊗ C(S2n) (F.2.7)

where there is a finite N cut-off on C(S2n) as described in section 2.5. It follows

from (F.2.2), eqF.2.3 and (F.2.6) that this is a redundant description of the space of

operators. The redundancies on (F.2.7) are

(a, σ)→ (a, τσ) τ ∈ Sn[S2] (F.2.8)

(a, σ)→ (a, (−1)τστ) τ ∈ (S2)n (F.2.9)

(a, σ)→ (τ(a), σ(τ (diag))−1) τ ∈ Sn (F.2.10)

To remove these redundancies, we re-express (F.2.7) using Schur-Weyl duality, defined

in (2.4.3), and the decomposition of C(S2n) into representations of Sn, given in (2.5.2).

Taking account of the finite N constraints on C(S2n), we have

V ⊗n2 ⊗ C(S2n) =
⊕

Λ`n , l(Λ)≤2
R`2n , l(R)≤N

V
U(2)

Λ ⊗ V Sn
Λ ⊗ V S2n;left

R ⊗ V S2n;right
R (F.2.11)
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In terms of the Oδ operators, this corresponds to setting

OδΛ,MΛ,mΛ,R,I,J
=
∑
a,σ

CaΛ,MΛ,mΛ
DR
IJ(σ)Oa,σ (F.2.12)

where CaΛ,MΛ,mΛ
is the Clebsch-Gordon coefficient for the Schur-Weyl decomposition

and I, J are basis indices for R.

On the new labelling space (F.2.11), the redundancies (F.2.8-F.2.10) are

(MΛ, vΛ, v
l
R, v

r
R)→ (MΛ, vΛ, D

R(τ)vlR, v
r
R) τ ∈ Sn[S2] (F.2.13)

(MΛ, vΛ, v
l
R, v

r
R)→ (MΛ, vΛ, v

l
R, (−1)τDR(τ)vrR) τ ∈ (S2)n (F.2.14)

(MΛ, vΛ, v
l
R, v

r
R)→ (MΛ, D

Λ(τ)vΛ, v
l
R, D

R(τ (diag))vrR) τ ∈ Sn (F.2.15)

where vlR and vrR are vectors in V S2n;left
R and V S2n;right

R respectively, vΛ is a vector in

V Sn
Λ and MΛ is a vector in V

U(N)
Λ .

Studying (F.2.13), we see that to remove the redundancy we need to choose an

Sn[S2]-invariant vector in V S2n
R;left. Such a (non-zero) vector only exists if R has even

row lengths, and in that case there is a unique choice for the vector, |R, [S]〉 (explained

in 5.1.2). This means the index I in (F.2.12) should be contracted with the components

|R, [S]〉I .
To understand (F.2.14) and (F.2.15), we decompose V S2n;right

R into representations

of Sn[S2] as given in (F.1.3). To ensure anti-symmetry under the whole of (S2)n,

as given by (F.2.14), we only need to consider n1 = 0, n2 = n . In terms of the

operators (F.2.12), this means introducing branching coefficients B
S2n→Sn[S2] ;J
R →(φ,Λ),µ;l from

the R representation of S2n to the (φ,R2) representations of Sn[S2], where l is a basis

index for R2 and µ is a multiplicity index for the decomposition.

Dropping the one-dimensional vectors space, we have reduced (F.2.11) to⊕
Λ`n , l(Λ)≤2
R`2n , l(R)≤N

R with even row lengths
R2`n

V
U(2)

Λ ⊗ V Sn
Λ ⊗ V Sn

R2
⊗ V mult

R;(φ,R2) (F.2.16)

where the only remaining redundancy (F.2.15) acts as

(MΛ, vΛ, vR2 , µ)→ (MΛ, D
Λ(τ)vΛ, D

R2(τ)vR2 , µ) τ ∈ Sn (F.2.17)

This implies we are looking for an Sn-invariant vector in V Sn
Λ ⊗ V Sn

R2
. By standard

representation theory of Sn, this exists if and only if Λ = R2, and then with multiplicity

1. Therefore after removing all the redundancies from the description, we are left with
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the labelling set ⊕
Λ`n , l(Λ)≤2
R`2n , l(R)≤N

R with even row lengths

V
U(2)

Λ ⊗ V mult
R;(φ,Λ) (F.2.18)

and in terms of operators

OδΛ,MΛ,R,µ
=

1

2nn!

√
dR

dΛ(2n)!

∑
a,σ,J,k

CaΛ,MΛ,k

[
〈R, [S]|DR(σ)

]
J
B
S2n→Sn[S2] ;J
R →(φ,Λ),µ;kO

δ
a,σ

(F.2.19)

where the sum over k comes from projecting to the Sn invariant vector inside V Sn
Λ ⊗V

Sn
Λ .

The normalisation is chosen to give nice correlators in the next section.

F.3 Correlators

To calculate the two-point functions for (F.2.19), we start with two generic U(2) co-

variant operators from (F.2.1). This correlator is given in (5.7.5) and reproduced below〈
Oδb,τ |Oδa,σ

〉
=

∑
γ,π∈Sn[S2]

δa,γ̄(b)(−1)γδ
(

Ω̃πσγ−1τ−1
)

(F.3.1)

where for γ ∈ Sn[S2], γ̄ ∈ Sn is defined as the Sn component of γ from the semi-direct

product Sn[S2] = Sn n (S2)n. We also define γ̂ to be the (S2)n component.

The correlator of two operators is anti-linear in the first argument and linear in the

second argument. All coefficients in (F.2.19) are real except for CaΛ,MΛ,k
, which picks

up a complex conjugate as we remove it from the correlator.

We will need several properties of the coefficients in (F.2.19). Firstly, since CaΛ,MΛ,k

are the coefficients for the decomposition (2.4.3), it follows by applying σ ∈ Sn to both

sides that

CaΛ,MΛ,k
= DΛ

kl(σ)C
σ(a)
Λ,MΛ,l

(F.3.2)

The coefficients CaΛ,MΛ,k
are a unitary change of basis for V ⊗n2 , and therefore∑
a

CaΛ,MΛ,k

(
CaΓ,MΓ,l

)∗
= δΛΓδMΛMΓ

δkl (F.3.3)

Finally, the branching coefficients B
S2n→Sn[S2] ;J
R →(φ,Λ),µ;k take a basis index J in the R represen-

tation of S2n to a basis index k in the µth copy of the (φ,Λ) representation of Sn[S2],

and therefore for γ ∈ Sn[S2]∑
IJ

B
S2n→Sn[S2] ;I
R →(φ,Λ),µ;k B

S2n→Sn[S2] ;J
R →(φ,Λ),ν;l D

R
IJ(γ) = δµν(−1)γ̂DΛ

kl (γ̄) (F.3.4)
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where γ̄ is the Sn component of γ and γ̂ is the (S2)n component.

There is one more property of the branching coefficients that will be useful not for

the calculation of correlators but for the comparison between symplectic and mesonic

covariant operators. It follows from the identification (F.1.4) of conjugate multiplicity

spaces that

B
S2n→Sn[S2] ;I
Rc →(φ,Λ),µ;k = B

S2n→Sn[S2] ;I
R →(Λ,φ),µ;k (F.3.5)

Using (F.3.2-F.3.4), we build up to the calculation of correlators for (F.2.19). Start

with〈 ∑
τ∈S2n

DS
KL(τ)Ob,τ |

∑
σ∈S2n

DR
IJ(σ)Oa,σ

〉
=

∑
σ,τ∈S2n

γ,π∈Sn[S2]

δa,γ̄(b)(−1)γDR
IJ(σ)DS

KL(τ)δ
(

Ω̃πσγ−1τ−1
)

=
∑

σ,τ∈S2n

γ,π∈Sn[S2]

δa,γ̄(b)(−1)γDR
IJ(Ω̃πσγ)DS

KL(τ)δ
(
στ−1

)
=

∑
σ∈S2n

γ,π∈Sn[S2]

δa,γ̄(b)(−1)γDR
IJ(Ω̃πσγ)DS

KL(σ)

= δRS
(2n)!

dR

∑
γ,π∈Sn[S2]

δa,γ̄(b)(−1)γDR
IK(Ω̃π)DR

LJ(γ)

(F.3.6)

where we have, respectively for each line, changed summation variables, summed over

τ using the δ function, and summed over σ using the orthogonality of matrix elements

(2.3.4).

Introducing the vector |R, [S]〉〈 ∑
τ∈S2n

[
〈S, [S]|DS(τ)

]
J
Ob,τ |

∑
σ∈S2n

[
〈R, [S]|DR(σ)

]
I
Oa,σ

〉

= δRS
(2n)!

dR

∑
γ,π∈Sn[S2]

δa,γ̄(b)(−1)γ 〈R, [S]|DR(Ω̃π) |R, [S]〉DR
JI(γ)

= δRS
(2n)!2nn!f δR

dR

∑
γ∈Sn[S2]

δa,γ̄(b)(−1)γDR
JI(γ) (F.3.7)

where we have used the action of Ω̃ (A.2.18) and the invariance of |R, [S]〉 under Sn[S2].

Introducing the coefficients CaΛ,MΛ,k〈 ∑
τ∈S2n

b

CbΓ,MΓ,l

[
〈S, [S]|DS(τ)

]
J
Ob,τ |

∑
σ∈S2n
a

CaΛ,MΛ,k

[
〈R, [S]|DR(σ)

]
I
Oa,σ

〉
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= δRS
(2n)!2nn!f δR

dR

∑
γ∈Sn[S2]

a,b

δa,γ̄(b)(−1)γDR
JI(γ)CaΛ,MΛ,k

(
CbΓ,MΓ,l

)∗

= δRS
(2n)!2nn!f δR

dR

∑
γ∈Sn[S2]

a

(−1)γDR
JL(γ)CaΛ,MΛ,k

(
C
γ̄−1(a)
Γ,MΓ,l

)∗

= δRS
(2n)!2nn!f δR

dR

∑
γ∈Sn[S2]
a,m

(−1)γDR
JI(γ)CaΛ,MΛ,kD

Λ
lm(γ̄)

(
CaΓ,MΓ,m

)∗
= δRSδΛΓδMΛMΓ

(2n)!2nn!f δR
dR

∑
γ∈Sn[S2]

(−1)γDR
JI(γ)DΛ

lk(γ̄) (F.3.8)

where we summed over b using the δ function, then used (F.3.2) and (F.3.3) to remove

the Schur-Weyl coefficients.

Finally introducing the branching coefficients

〈
OδΓ,MΓ,S,ν |O

δ
Λ,MΛ,R,µ

〉
= δRSδΛΓδMΛMΓ

fδR
dΛ2nn!

∑
γ∈Sn[S2]

I,J

(−1)γB
S2n→Sn[S2] ;I

R →(φ,Λ),µ;k B
S2n→Sn[S2] ;J

R →(φ,Λ),ν;l D
R
JI(γ)DΛ

lk(γ̄)

= δRSδΛΓδMΛMΓδµν
fδR

dΛ2nn!

∑
γ̂∈(S2)n

(−1)γ̂(−1)γ̂
∑
γ̄∈Sn

DΛ
lk(γ̄)DΛ

lk(γ̄)

= δRSδΛΓδMΛMΓδµν
fδR

(dΛ)2
δkkδll

= δRSδΛΓδMΛMΓδµνf
δ
R (F.3.9)

where we have used (F.3.4), split the sum over Sn[S2] into two over Sn and (S2)n

respectively, noticed (−1)γ = (−1)γ̂ , applied the orthogonality of matrix coefficients

(2.3.4) and then used δkk = dΛ for k a basis index of the Λ representation of Sn.

F.4 Basis of multiplicity space

In a similar manner to section D.3, we can give a basis for the multiplicity space

V mult
R;(R1,R2) defined by (F.1.3), giving a systematic way of choosing the multiplicity label

µ in (F.2.19).

Let Bn be the sub-algebra of C(S2n) that commutes with Sn[S2], or equivalently, the

sub-algebra that is invariant under conjugation by Sn[S2]. Then since Bn commutes

with Sn[S2], by Schur’s lemma it must act purely on the multiplicity spaces in the

decomposition (F.1.3).

We can define a more refined version of Bn by projecting to the (R1, R2) represen-
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tation of Gn1,n2
. Define the projector

P(R1,R2) =
dR1

dR2

2nn1!n2!

∑
σ1∈Sn1 , σ2∈Sn2

τ1∈(S2)n1 , τ2∈(S2)n2

χR1
(σ1)χR2

(σ2)(−1)τ2σ1τ1σ2τ2 (F.4.1)

where Sn1
, Sn2

are embedded into S2n as described in section F.1. Then the more

refined algebra is

B(R1,R2) = P(R1,R2)Bn (F.4.2)

Then B(R1,R2) acts only on the space V mult
R;(R1,R2) in the decomposition (F.1.3). A basis

for V mult
R;(R1,R2) can then be chosen by taking the eigenbasis of a maximal commuting

sub-algebra of B(R1,R2).
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Appendix G

Examples of quarter BPS

operators in specific Λ sectors

In this appendix we give explicit examples of quarter-BPS operators constructed using

the algorithm presented in chapter 7.

G.1 Λ = [3, 2] sector

In this section we give the operators in the Λ = [3, 2] sector with MΛ the highest weight

state, corresponding to field content (3, 2). Other states in the U(2) representation can

be reached by applying the lowering operator J−.

Throughout this section we will work with Λ = [3, 2] and MΛ = 1 1 1
2 2

, so we will

suppress these indices in operator labels.

For each BPS operator, we will first present it as a sum over the free field basis

(3.6.20) and then as a sum over symmetrised traces and commutator traces, for which

we use the covariant bases discussed in section 7.3.2. The covariant symmetrised trace

basis is

t[3,2] = TrX3TrY 2 − 2TrX2Y TrXY + TrX2TrXY 2 (G.1.1)

t[3,1,1] = TrX3 (TrY )2 − 2TrXTrX2Y TrY + (TrX)2 TrXY 2 (G.1.2)

t[2,2,1] = TrXTrX2TrY 2 − TrX (TrXY )2 (G.1.3)

t[2,1,1,1] = TrXTrX2 (TrY )2 − 2 (TrX)2 TrXY TrY + (TrX)3 TrY 2 (G.1.4)

and the covariant commutator trace basis is

c[5] = TrX3Y 2 − TrX2Y XY = TrX2[X,Y ]Y (G.1.5)

c[4,1] = TrXTrX2Y 2 − TrXTr (XY )2 = TrXTrX[X,Y ]Y (G.1.6)
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For these two bases, the partition label describes the cycle structure of the multi-traces.

The free field operators can be written in terms of symmetrised and commutator

traces

O =
1

6
√

10

(
3t[3,2] + t[3,1,1] + 4t[2,2,1] + t[2,1,1,1] + 6c[5] + 4c[4,1]

)
(G.1.7)

O =
1

6
√

2

(
t[3,1,1] + t[2,2,1] + t[2,1,1,1] − 3c[5] − 2c[4,1]

)
(G.1.8)

O
, odd

=
1

2
√

30

(
2t[3,2] − t[2,1,1,1] − 4c[4,1]

)
(G.1.9)

O
, even

=
1

2
√

5

(
t[3,1,1] − t[2,2,1] + c[5]

)
(G.1.10)

O =
1

6
√

2

(
t[3,1,1] + t[2,2,1] − t[2,1,1,1] − 3c[5] + 2c[4,1]

)
(G.1.11)

O =
1

6
√

10

(
−3t[3,2] + t[3,1,1] + 4t[2,2,1] − t[2,1,1,1] + 6c[5] − 4c[4,1]

)
(G.1.12)

The odd/even labels for the R = [3, 1, 1] multiplicity come from the odd/even permu-

tations used to produce the respective traces. All other zero coupling operators are

defined uniquely by Λ and R.

G.1.1 BPS operators

Following the algorithm, the BPS operators in the Λ = [3, 2] sector are

SBPS[2,1,1,1] =
1

2
√

15P1

(
(N − 2)(N − 3)

[
2NO −

√
5(N + 3)O

]
+N(N + 3)(N − 3)

[
4
√

3O
, odd

+ 3
√

2O
, even

]
−5(N + 3)(N + 2)

[√
5(N − 3)O + 4NO

])
(G.1.13)

=
1

2
√

6P1

[(
N3 + 5N2 + 2N − 18

)
t[2,1,1,1] − 4

(
N2 + 3N − 3

)
(N + 1)t[2,2,1]

−
(
N2 + 3N − 6

)
(N + 2)t[3,1,1] + 3N(N + 2)(N + 1)t[3,2]

+ 4(2N + 9)(N + 1)c[4,1] − 18(N + 2)(N + 1)c[5]

]
(G.1.14)

SBPS[2,2,1] =
1

2
√

3P2

(
−
√

5(N − 1)(N − 2)
[
2NO −

√
5(N + 3)O

]
−N(N + 3)(N − 1)

√
5
[
4
√

5O
, odd

+ 3
√

2O
, even

]
−
(
15N3 + 48N2 + 19N + 6

)
O + 2

√
5N(3N + 8)O

)
(G.1.15)

=
1

2
√

6P2

[(
5N3 + 12N2 − 12N + 6

)
t[2,1,1,1] + 2(3N − 2)(N − 1)t[2,2,1]
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−
(
5N3 + 12N2 − 2N − 4

)
t[3,1,1] −N

(
5N2 + 8N − 2

)
t[3,2]

− 4(8N + 3)c[4,1] + 6
(
5N2 + 8N − 2

)
c[5]

]
(G.1.16)

SBPS[3,1,1] =
1√

15P3

(
−(2N − 1)(N − 2)

[
2NO −

√
5(N + 3)O

]
−
√

3
(
3N3 + 9N2 − 5N − 2

)
O

, odd

+ 3
√

2
(
3N3 + 6N2 − 4N + 2

)
O

, even

−(N + 2)(N + 1)

[√
5O − 2O

])
(G.1.17)

=
1

2
√

6P3

[(
N3 + 3N2 − 5N + 2

)
t[2,1,1,1] − 4N2(N + 1)t[2,2,1]

+ 2
(
2N3 + 4N2 − 5N + 2

)
t[3,1,1] − 2N2(N + 1)t[3,2]

+ 8(N + 1)(N − 1)c[4,1] + 12N(N + 1)c[5]

]
(G.1.18)

SBPS[3,2] =
1

2
√

15P4

(
2
(
5N2 − 5N + 2

)
O +

√
5
(
4N2 + 5N − 2

)
O

+ 4
√

3(N − 1)O
, odd
− 3
√

2NO
, even

+(N + 2)

[√
5O − 2O

])
(G.1.19)

=

√
6

12
√
P4

[
N2(t[2,1,1,1] + 2t[2,2,1] + t[3,1,1] + t[3,2])− 4(N − 1)c[4,1] − 6Nc[5]

]
(G.1.20)

where the normalisation polynomials are

P1 = 10N6 + 74N5 + 199N4 + 252N3 + 351N2 + 648N + 702 (G.1.21)

P2 = 50N6 + 220N5 + 192N4 − 78N3 + 541N2 − 156N + 78 (G.1.22)

P3 = 15N6 + 50N5 + 17N4 − 66N3 + 115N2 − 60N + 20 (G.1.23)

P4 = 3N4 + 5N2 − 4N + 2 (G.1.24)

In [49], these operators were studied, though in the SU(N) gauge theory rather than

the U(N) theory. This means all traces whose cycle structure p ` n contained one or

more 1s do not contribute. In the Λ = [3, 2] sector, they found the single operator

O = Nt[3,2] − 6c[5] (G.1.25)
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One can check that in each of the expansions above, t[3,2] and c[5] only appear in this

ratio. We have found that by expanding the gauge group to U(N) and allowing traces

of a single matrix, there are three additional quarter-BPS operators.

G.1.2 Norms of BPS operators

The physical F-weighted norms of the BPS operators are∣∣∣SBPS[2,1,1,1]

∣∣∣2 =
(N + 3)(N + 2)(N + 1)N2(N − 1)(N − 2)(N − 3)Q1

P1
(G.1.26)∣∣∣SBPS[2,2,1]

∣∣∣2 =
(N + 1)N2(N − 1)(N − 2)Q1Q2

P2
(G.1.27)∣∣∣SBPS[3,1,1]

∣∣∣2 =
(N + 2)(N + 1)N(N − 1)(N − 2)Q2Q3

P3
(G.1.28)∣∣∣SBPS[3,2]

∣∣∣2 =
(N + 2)(N + 1)N3(N − 1)Q3

P4
(G.1.29)

Where the polynomials in the numerators are

Q1 = 10N3 + 37N2 + 11N − 36 (G.1.30)

Q2 = 5N3 + 11N2 − 7N + 2 (G.1.31)

Q3 = 3N3 + 5N2 − 5N + 2 (G.1.32)

We discuss the combination of linear factors and Q polynomials in the numerators in

section G.2.4.

G.2 Λ = [4, 2] sector

We give the BPS basis for the Λ = [4, 2] sector with MΛ the highest weight state

corresponding to field content (4, 2).

Throughout this section we will work with Λ = [4, 2] and MΛ = 1 1 1 1
2 2

, so we will

suppress these in operator labels.

G.2.1 Free field covariant basis from traces

When writing our operators as sums over the free field covariant basis (3.6.20), we

have made a choice about how to span the free field multiplicity space for R =

[4, 2], [4, 1, 1], [3, 2, 1], [3, 1, 1, 1], [2, 2, 1, 1]. These choices are:

O ,1 =

√
10

120

(
− t[4,2] − t[4,1,1] + 6t[3,3] + 6t[3,2,1],1 + 6t[3,2,1],2 − 3t[2,2,2] − 3t[2,2,1,1],1

+ 6c[6],2 + 6c[5,1] − 4c[4,2] + 2c[4,1,1]

)
(G.2.1)

O ,2 =

√
10

240

(
− 2t[4,1,1] − 6t[3,2,1],1 − 6t[3,1,1,1] − 3t[2,2,1,1],1 + 9t[2,2,1,1],2 − 3t[2,1,1,1,1]
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+ 24c[6],1 + 12c[5,1] + 12c[4,2] + 4c[4,1,1]

)
(G.2.2)

O
,1

=

√
3

108

(
− t[4,2] + 3 t[4,1,1] + 6 t[3,3] + 6 t[3,2,1],2 + 6 t[3,1,1,1] − 3 t[2,2,2] + 3 t[2,2,1,1],1

+ 6 t[2,2,1,1],2 + 12 c[6],1 + 6 c[6],2 + 6 c[5,1] + 2 c[4,2]

)
(G.2.3)

O
,2

=

√
15

1080

(
− 10 t[4,2] − 48 t[3,3] − 18 t[3,2,1],1 − 12 t[3,2,1],2 + 6 t[3,1,1,1] − 12 t[2,2,2]

+ 3 t[2,2,1,1],1 − 21 t[2,2,1,1],2 + 9 t[2,1,1,1,1]

− 24 c[6],1 − 48 c[6],2 + 60 c[5,1] + 20 c[4,2] + 60 c[4,1,1]

)
(G.2.4)

O
,1

=

√
10

90

(
− t[4,2] + 6 t[3,3] − 3 t[3,1,1,1] + 3 t[2,2,1,1],1 − 3 t[2,2,1,1],2 − 3 c[5,1] + 2 c[4,2]

)
(G.2.5)

O
,2

=

√
5

15

(
t[3,2,1],2 + t[2,2,2] − c[6],1 + c[6],2 + c[4,1,1]

)
(G.2.6)

O
,3

=

√
5

90

(
− t[4,1,1] − 6 t[3,2,1],1 − 3 t[3,2,1],2 + 3 t[2,1,1,1,1] + 12 c[6],1 + 12 c[6],2 − 4 c[4,1,1]

)
(G.2.7)

O
,1

=

√
3

108

(
− t[4,2] − 3 t[4,1,1] + 6 t[3,3] − 6 t[3,2,1],2 + 6 t[3,1,1,1] + 3 t[2,2,2] + 3 t[2,2,1,1],1

+ 6 t[2,2,1,1],2 − 12 c[6],1 − 6 c[6],2 + 6 c[5,1] + 2 c[4,2]

)
(G.2.8)

O
,2

=

√
15

1080

(
− 10 t[4,2] − 48 t[3,3] + 18 t[3,2,1],1 + 12 t[3,2,1],2 + 6 t[3,1,1,1] + 12 t[2,2,2]

+ 3 t[2,2,1,1],1 − 21 t[2,2,1,1],2 − 9 t[2,1,1,1,1]

+ 24 c[6],1 + 48 c[6],2 + 60 c[5,1] + 20 c[4,2] − 60 c[4,1,1]

)
(G.2.9)

O
,1

=

√
10

120

(
− t[4,2] + t[4,1,1] + 6 t[3,3] − 6 t[3,2,1],1 − 6 t[3,2,1],2 + 3 t[2,2,2] − 3 t[2,2,1,1],1

− 6 c[6],2 + 6 c[5,1] − 4 c[4,2] − 2 c[4,1,1]

)
(G.2.10)

O
,2

=

√
10

240

(
2 t[4,1,1] + 6 t[3,2,1],1 − 6 t[3,1,1,1] − 3 t[2,2,1,1],1 + 9 t[2,2,1,1],2 + 3 t[2,1,1,1,1]

− 24 c[6],1 + 12 c[5,1] + 12 c[4,2] − 4 c[4,1,1]

)
(G.2.11)

The zero coupling operators with R = [5, 1], [3, 3], [2, 2, 2], [2, 14] are defined uniquely

(up to a minus sign) by Λ and R. We use

O = −
√

10

720

(
8t[4,2] + 2t[4,1,1] + 24t[3,3] + 30t[3,2,1],1 + 6t[3,1,1,1] + 12t[2,2,2] + 3t[2,2,1,1],1 − 21t[2,2,1,1],2

+3t[2,1,1,1,1] + 72c[6],1 + 24c[6],2 + 60c[5,1] + 20c[4,2] + 20c[4,1,1]

)
(G.2.12)

O =

√
10

360

(
t[4,2] + t[4,1,1] − 6t[3,3] − 12t[3,2,1],1 − 18t[3,2,1],2 − 6t[3,1,1,1] − 3t[2,2,2] + 6t[2,2,1,1],1 + 3t[2,2,1,1],2

−3t[2,1,1,1,1] + 30c[6],2 + 30c[5,1] − 20c[4,2] + 10c[4,1,1]

)
(G.2.13)

O =

√
10

360

(
t[4,2] − t[4,1,1] − 6t[3,3] + 12t[3,2,1],1 + 18t[3,2,1],2 − 6t[3,1,1,1] + 3t[2,2,2] + 6t[2,2,1,1],1 + 3t[2,2,1,1],2

+3t[2,1,1,1,1] − 30c[6],2 + 30c[5,1] − 20c[4,2] − 10c[4,1,1]

)
(G.2.14)

O =

√
10

720

(
−8t[4,2] + 2t[4,1,1] − 24t[3,3] + 30t[3,2,1],1 − 6t[3,1,1,1] + 12t[2,2,2] − 3t[2,2,1,1],1 + 21t[2,2,1,1],2

+3t[2,1,1,1,1] + 72c[6],1 + 24c[6],2 − 60c[5,1] − 20c[4,2] + 20c[4,1,1]

)
(G.2.15)
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where the symmetrised trace combinations we use are defined by

t[4,2] = 3TrX4TrY 2 − 6TrX3Y TrXY + 2TrX2TrX2Y 2 + TrX2Tr (XY )2 (G.2.16)

t[4,1,1] = 3TrX4 (TrY )2 − 6TrXTrX3Y TrY + 2 (TrX)2 TrX2Y 2 + (TrX)2 Tr (XY )2 (G.2.17)

t[3,3] = TrX3TrXY 2 −
(
TrX2Y

)2
(G.2.18)

t[3,2,1],1 = TrXTrX3TrY 2 − 2TrXTrX2Y TrXY + TrXTrX2TrXY 2 (G.2.19)

t[3,2,1],2 = TrX3TrXY TrY − TrXTrX3TrY 2 − TrX2TrX2Y TrY + TrXTrX2Y TrXY (G.2.20)

t[3,1,1,1] = TrXTrX3 (TrY )2 − 2 (TrX)2 TrX2Y TrY + (TrX)3 TrXY 2 (G.2.21)

t[2,2,2] =
(
TrX2

)2
TrY 2 − TrX2 (TrXY )2 (G.2.22)

t[2,2,1,1],1 =
(
TrX2TrY

)2 − 2TrXTrX2TrXY TrY + (TrXTrXY )2 (G.2.23)

t[2,2,1,1],2 = (TrXTrXY )2 − (TrX)2 TrX2TrY 2 (G.2.24)

t[2,1,1,1,1] = (TrX)2 TrX2 (TrY )2 − 2 (TrX)3 TrXY TrY + (TrX)4 TrY 2 (G.2.25)

along with the commutators

c[6],1 = TrX4Y 2 − TrX3Y XY = TrX3[X,Y ]Y (G.2.26)

c[6],2 = TrX3Y XY − Tr
(
X2Y

)2
= TrX2[X,Y ]Y 2 (G.2.27)

c[5,1] = TrXTrX3Y 2 − TrXTrX2Y XY = TrXTrX2[X,Y ]Y (G.2.28)

c[4,2] = TrX2TrX2Y 2 − TrX2Tr (XY )2 = TrX2TrX[X,Y ]Y (G.2.29)

c[4,1,1] = (TrX)2 TrX2Y 2 − (TrX)2 Tr (XY )2 = (TrX)2 TrX[X,Y ]Y (G.2.30)

These are respectively the covariant symmetrised trace and commutator trace bases

for the Λ = [4, 2] sector with MΛ the highest weight state, as discussed in section 7.3.2.

G.2.2 Quarter-BPS basis

We now give the end result of the construction algorithm for quarter-BPS operators in

the Λ = [4, 2] sector. The operators in this section are very lengthy to write out, so

in the interests of brevity we only express them as a sum of free field operators. An

expression in terms of trace can be found by substituting (G.2.1-G.2.15).

For p = [3, 2, 1] and [2, 2, 1, 1] there are two BPS operators. For these, we have

chosen the multiplicity space basis using the alternative orthogonalisation algorithm of

section 7.4.10, beginning with the choice of free field multiplicities in (G.2.5-G.2.7) and

(G.2.10-G.2.11) respectively.

We present the operators starting from the longest partition p = [2, 1, 1, 1, 1] and

progressing to the shortest, p = [4, 2].

SBPS[2,1,1,1,1] =
1

6
√

3P0

(
(N − 1)(N − 3)(N − 4)

[
3
√

3(N − 2)
{
NO − (N + 4)O ,2

}
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−
√

2N(N + 4)
{

2
√

5O
,1
− 11O

,2

}
− 2
√

3 (N + 4)(N + 3)
{
O

,1
+ 4
√

2O
,3

}]
+
√

2N(N + 4)(N + 3)(N − 1)(N − 4)

[
10
√

5O
,1

+ 29O
,2

]
+ (N + 4)(N + 3)(N + 2)

[
10
√

3(N − 3)(N − 4)O

+3
√

3 (N − 1)(N − 4)

{
2O

,1
+ 13O

,2

}
+ 65

√
3N(N − 1)O

])
(G.2.31)

where the normalisation polynomial is

P0 = 195N10 + 2298N9 + 9767N8 + 17008N7 + 21041N6 + 74974N5 + 135005N4 − 144704N3

− 399936N2 − 62976N + 707328 (G.2.32)

For p = [2, 2, 1, 1] there is a two-dimensional multiplicity space. The first operator is

SBPS[2,2,1,1],1 =
1

6
√

30P1

(
−20
√

3N(N + 1)(N − 2)(N − 3)P1,1O

+
√

3(N − 3)P1,2

[
3(N + 1)(N − 2)O ,1 + 5(N + 3)(N − 2)O − 12

√
2(N + 3)(N + 1)O

,2

]
+ 2
√

3(N + 1)(N − 3)P1,3

[
3(N − 2)O ,2 + 8

√
2(N + 3)O

,3

]
+
√

10N(N + 1)P1,4

[
(N − 3)O

,1
− 5(N + 3)O

,1

]
− 2
√

2(N + 1)

[
5N(N − 3)P1,5O ,2

+
√

6(N + 3)(N − 3)P1,6O ,1
+ 5N(N + 3)P1,7O

,2

]
+ 5
√

3(N + 3)(N + 2)(N + 1)P1,8

[
5(N − 3)O + 3(N − 1)O

,1

]
+10
√

3(N + 3)(N + 2)(N + 1)

[
3P1,9O

,2
− 26NP1,10O

])
(G.2.33)

where the normalisation and coefficient polynomials are

P1 = 1254825N16 + 25236900N15 + 212913135N14 + 949347864N13 + 2265287922N12 + 2296326096N11

− 483268806N10 − 64991400N9 + 7717590681N8 + 4250132076N7 − 14563157385N6

− 5596987632N5 + 20300164460N4 + 5660498272N3 − 5514459136N2 + 14594125824N

+ 12396386304 (G.2.34)

P1,1 = 78N4 + 180N3 − 411N2 − 510N + 788 (G.2.35)

P1,2 = 195N5 + 1149N4 + 687N3 − 3927N2 − 1552N + 4448 (G.2.36)

P1,3 = 195N5 + 1257N4 + 801N3 − 5871N2 − 3656N + 9024 (G.2.37)

P1,4 = 975N5 + 6177N4 + 3891N3 − 27411N2 − 16176N + 40544 (G.2.38)

P1,5 = 507N5 + 3225N4 + 2037N3 − 14487N2 − 8664N + 21632 (G.2.39)

P1,6 = 195N5 + 1041N4 + 573N3 − 1983N2 + 552N − 128 (G.2.40)

P1,7 = 1443N5 + 9129N4 + 5745N3 − 40335N2 − 23688N + 59456 (G.2.41)

P1,8 = 117N4 + 720N3 + 1041N2 + 240N + 992 (G.2.42)
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P1,9 = 429N5 + 2247N4 + 1215N3 − 3585N2 + 2056N − 2112 (G.2.43)

P1,10 = 54N3 + 273N2 + 120N − 572 (G.2.44)

The second operator is

SBPS[2,2,1,1],2 =
1

3
√

6P2

(√
3(N − 2)(N − 3)NP2,1O

−
√

3(N − 3)P2,2

[
3(N + 1)(N − 2)O ,1 + 5(N + 3)(N − 2)O − 12

√
2(N + 3)(N + 1)O

,2

]
+
√

3(N − 3)P2,3

[
3(N − 2)O ,2 + 8

√
2(N + 3)O

,3

]
+
√

10NP2,4

[
(N − 3)O

,1
− 5(N + 3)O

,1

]
−
√

2(N − 3)NP2,5O ,2

+ 2
√

3(N + 3)(N − 3)P2,6O ,1
+
√

2N(N + 3)P2,7O
,2

−5
√

3(N + 3)(N + 2)(N − 3)P2,8O + 3
√

3P2,9O
,1
− 6
√

3P2,10O
,2
− 2
√

3NP2,11O
)

(G.2.45)

where the normalisation and coefficient polynomials are

P2 = 64575225N16 + 1221543180N15 + 9292923450N14 + 34312809600N13 + 49747071546N12

− 49520811024N11 − 212528733480N10 + 81502221096N9 + 872883407025N8 + 609873915684N7

− 949480261506N6 − 778095650280N5 + 986491220724N4 + 591265527264N3 − 532623199736N2

− 150593123520N + 181872634752 (G.2.46)

P2,1 = 135N5 + 423N4 + 999N3 + 1653N2 + 1716N + 74 (G.2.47)

P2,2 = 351N5 + 1485N4 − 783N3 − 3669N2 + 5448N − 1832 (G.2.48)

P2,3 = 189N6 + 903N5 − 429N4 − 4851N3 − 1590N2 + 98N − 1320 (G.2.49)

P2,4 = 27N6 − 30N5 − 1560N4 − 5250N3 − 4959N2 − 3420N − 808 (G.2.50)

P2,5 = 675N6 + 2589N5 − 7527N4 − 35553N3 − 24606N2 − 13386N − 7192 (G.2.51)

P2,6 = 1593N6 + 8247N5 + 2379N4 − 22659N3 + 5526N2 + 14562N − 8648 (G.2.52)

P2,7 = 135N6 + 3189N5 + 23673N4 + 69447N3 + 74574N2 + 55014N + 8968 (G.2.53)

P2,8 = 2835N5 + 17493N4 + 21549N3 − 19317N2 − 10044N + 15464 (G.2.54)

P2,9 = 10035N8 + 100587N7 + 320580N6 + 201774N5 − 613761N4 − 529313N3 + 665098N2 + 243952N

− 359952 (G.2.55)

P2,10 = 1131N7 + 10440N6 + 29667N5 + 13182N4 − 54074N3 − 45886N2 + 22026N + 24264 (G.2.56)

P2,11 = 2280N6 + 24384N5 + 95505N4 + 166002N3 + 120739N2 + 22034N − 11694 (G.2.57)

For p = [3, 1, 1, 1] the operator is

SBPS[3,1,1,1] =
1

18
√

2P3

(
−3N(N − 2)(N − 3)P3,1O
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+ 6(N − 3)P3,2

[
3(N + 1)(N − 2)O ,1 + 5 (N + 3)(N − 2)O − 12

√
2(N + 3)(N + 1)O

,2

]
+ 3(N − 3)P3,3

[
3 (N − 2)O ,2 + 8

√
2(N + 3)O

,3

]
+ (N − 3)

[
2
√

30NP3,4O ,1
−
√

6NP3,5O ,2
− 6 (N + 3)P3,6O ,1

]
+ 2
√

30P3,7O
,1
−
√

6P3,8O
,2

−3(N + 2)

[
10 (N + 3)(N − 3)P3,9O − 6P3,10O

,1
− 3P3,11O

,2
+ P3,12O

])
(G.2.58)

where the normalisation and coefficient polynomials are

P3 = 93476025N16 + 1612393695N15 + 11013446394N14 + 34526289987N13 + 29660697936N12

− 98498965581N11 − 203072674968N10 + 154945270125N9 + 449766055695N8

− 624364696710N7 − 1246035300318N6 + 1119952316004N5 + 1953728842580N4

− 1114329042600N3 − 1086753482680N2 + 1691309503680N + 1297828640736 (G.2.59)

P3,1 = 7155N5 + 22752N4 − 21231N3 − 76512N2 + 21066N + 63020 (G.2.60)

P3,2 = 270N5 + 1728N4 + 1287N3 − 6762N2 − 4278N + 9380 (G.2.61)

P3,3 = 2025N6 + 14460N5 + 19239N4 − 46512N3 − 80274N2 + 42292N + 71520 (G.2.62)

P3,4 = 2295N6 + 16458N5 + 22254N4 − 51987N3 − 91314N2 + 47394N + 80900 (G.2.63)

P3,5 = 24435N6 + 175044N5 + 235749N4 − 555432N3 − 971334N2 + 506028N + 861760 (G.2.64)

P3,6 = 135N6 + 1524N5 + 4881N4 + 2712N3 − 8046N2 − 1476N + 3520 (G.2.65)

P3,7 = 18630N8 + 168027N7 + 436488N6 − 22071N5 − 1221552N4 − 330750N3 + 1226756N2

− 644796N − 1298232 (G.2.66)

P3,8 = 37260N8 + 400629N7 + 1309611N6 + 387381N5 − 4795443N4 − 5190456N3 + 4201270N2

+ 6554016N + 1298232 (G.2.67)

P3,9 = 135N5 + 609N4 − 1257N3 − 9444N2 − 12438N − 5860 (G.2.68)

P3,10 = 525N6 + 3840N5 + 6681N4 − 8262N3 − 49724N2 − 91728N − 41832 (G.2.69)

P3,11 = 6825N6 + 61005N5 + 175743N4 + 113439N3 − 265222N2 − 407694N − 160596 (G.2.70)

P3,12 = 22575N6 + 198375N5 + 553953N4 + 307269N3 − 994562N2 − 1589994N − 649116 (G.2.71)

For p = [2, 2, 2] the operator is

SBPS[2,2,2] =
1

36
√
P4

(
30
√

2N(N − 2)P4,1O

− 15
√

2P4,2

[
3(N + 1)(N − 2)O ,1 + 5(N + 3)(N − 2)O − 12

√
2(N + 3)(N + 1)O

,2

]
+ 30

√
2P4,3

[
3(N − 2)O ,2 + 8

√
2(N + 3)O

,3

]
+ 10

√
15NP4,4O ,1

− 20
√

3NP4,5O ,2

+ 60
√

2(N + 3)P4,6O ,1
+ 10

√
3N

[√
5P4,7O

,1
+ 2P4,8O

,2

]
+ 3
√

2P4,9O
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+45
√

2P4,10O
,1
− 90

√
2P4,11O

,2
− 30

√
2NP4,12O

)
(G.2.72)

where the normalisation and coefficient polynomials are

P4 = 149226300N14 + 2094533640N13 + 10660893948N12 + 20470965300N11 − 2209082715N10

− 23656646682N9 + 108969897216N8 + 185022077310N7 − 186235972937N6

− 216166001512N5 + 413959581308N4 + 246958572128N3 − 287690109584N2

− 143358681600N + 276161485248 (G.2.73)

P4,1 = 135N5 − 18N4 − 15N3 − 1022N2 − 76N − 816 (G.2.74)

P4,2 = 864N5 + 2430N4 − 5973N3 − 6119N2 + 17876N − 12228 (G.2.75)

P4,3 = 243N6 + 924N5 − 1152N4 − 3670N3 + 5307N2 + 2256N − 2988 (G.2.76)

P4,4 = 108N6 + 402N5 − 1065N4 − 2588N3 + 9471N2 + 3376N + 276 (G.2.77)

P4,5 = 945N6 + 3576N5 − 5586N4 − 16186N3 + 34863N2 + 13520N − 8412 (G.2.78)

P4,6 = 1971N6 + 7512N5 − 8238N4 − 27854N3 + 28821N2 + 13552N − 27444 (G.2.79)

P4,7 = 906N5 + 7485N4 + 18394N3 + 9099N2 − 14000N − 13164 (G.2.80)

P4,8 = 285N5 + 5955N4 + 34507N3 + 63369N2 + 19738N + 7536 (G.2.81)

P4,9 = 48060N7 + 429834N6 + 1227525N5 + 919710N4 − 762363N3 − 208286N2 + 1345500N + 946584

(G.2.82)

P4,10 = 3702N6 + 29949N5 + 68544N4 + 7491N3 − 79610N2 + 45780N + 78984 (G.2.83)

P4,11 = 699N6 + 5163N5 + 8795N4 − 9599N3 − 20952N2 + 21736N + 26328 (G.2.84)

P4,12 = 1605N5 + 14460N4 + 42159N3 + 36288N2 − 16754N − 19428 (G.2.85)

For p = [3, 2, 1] there is a two-dimensional multiplicity space. The first operator is

SBPS[3,2,1],1 =
1

45
√
P5

(
30
√

10(N − 2)NP5,1O − 6
√

10(N − 2)P5,2

[
3(N + 1)O ,1 + 5(N + 3)O

]
− 18

√
10(N − 2)P5,3O ,2 − 20

√
3N
[
P5,4O ,1

−
√

5P5,5O ,2

]
− 12

√
10P5,6O ,1

− 6
√

5P5,7O ,2
+ 3
√

5P5,8O ,3
− 20

√
3N

[
P5,9O

,1
−
√

5P5,10O
,2

]
−6
√

10(N + 2)P5,11

[
5O + 3O

,1

]
− 6
√

10(N + 2)

[
3P5,12O

,2
− 5NP5,13O

])
(G.2.86)

where the normalisation and coefficient polynomials are

P5 = 1329483780N14 + 13761404280N13 + 47552297508N12 + 41944792356N11 − 43156801080N10

+ 23239162764N9 − 47497601127N8 − 299164340106N7 + 683116078397N6

+ 45647911732N5 − 883683643044N4 + 341394177280N3 + 617090703216N2

− 378227252672N + 179121262144 (G.2.87)
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P5,1 = 3708N5 + 2172N4 − 19509N3 + 17427N2 + 9416N − 13724 (G.2.88)

P5,2 = 1656N5 + 5619N4 − 10194N3 − 12393N2 + 36194N − 24704 (G.2.89)

P5,3 = 5076N6 + 23490N5 − 14985N4 − 85957N3 + 116006N2 + 32240N − 75024 (G.2.90)

P5,4 = 11808N6 + 54255N5 − 34545N4 − 194501N3 + 255813N2 + 75970N − 174752 (G.2.91)

P5,5 = 12492N6 + 57498N5 − 36627N4 − 207175N3 + 274254N2 + 80120N − 184816 (G.2.92)

P5,6 = 6462N7 + 45960N6 + 66285N5 − 117979N4 − 124298N3 + 345680N2 + 16132N − 99960 (G.2.93)

P5,7 = 16326N7 + 99666N6 + 144600N5 − 54717N4 − 52871N3 + 89526N2 + 116N + 579336 (G.2.94)

P5,8 = 165978N7 + 1065798N6 + 1496280N5 − 1235731N4 − 1949513N3 + 8498N2 + 679228N + 177528

(G.2.95)

P5,9 = 14061N5 + 85773N4 + 110389N3 − 97565N2 − 111014N + 4008 (G.2.96)

P5,10 = 15126N5 + 66642N4 − 35467N3 − 293389N2 + 81536N + 220812 (G.2.97)

P5,11 = 1137N5 + 5721N4 − 3097N3 − 35915N2 − 21618N − 12024 (G.2.98)

P5,12 = 6462N5 + 40026N4 + 56743N3 − 30825N2 − 44698N + 8016 (G.2.99)

P5,13 = 4332N4 + 26304N3 + 32807N2 − 32861N − 35466 (G.2.100)

The second operator is

SBPS[3,2,1],2 =
1

18
√
P6

(
−3 (N − 2)NP6,1O − 3(N − 2)P6,2

[
3 (N + 1)O ,1 + 5 (N + 3)O

]
+ 9(N − 2)P6,3O ,2 +

√
6N
[√

5P6,4O ,1
− P6,5O ,2

]
− 6P6,6O ,1

+ 12
√

2P6,7O ,2
− 3P6,8

[
8
√

2(N − 1)O
,3
− 3(N + 2)O

,2

]
+
√

30NP6,9O
,1

−
√

6NP6,10O
,2

+ 3(N + 2)P6,11

[
5O + 3O

,1

]
− 3N(N + 2)P6,12O

)
(G.2.101)

where the normalisation and coefficient polynomials are

P6 = 433202580N14 + 4164719976N13 + 11536183026N12 − 111051000N11 − 29053464768N10

+ 10364014080N9 + 31360792437N8 − 51088773768N7 + 37140544622N6 − 29831349568N5

+ 55411748788N4 − 79360524160N3 + 66216685440N2 − 31168716800N + 6758052160

(G.2.102)

P6,1 = 864N5 + 7734N4 − 29931N3 + 34329N2 − 2260N − 8780 (G.2.103)

P6,2 = 5724N5 + 7509N4 − 30912N3 + 37572N2 − 28648N + 10144 (G.2.104)

P6,3 = 4104N6 + 12552N5 − 15267N4 − 24025N3 + 50968N2 − 18276N − 4944 (G.2.105)

P6,4 = 2484N6 + 11871N5 − 7131N4 − 54710N3 + 93012N2 − 18048N − 20032 (G.2.106)

P6,5 = 22248N6 + 85140N5 − 74325N4 − 290915N3 + 524952N2 − 127020N − 94960 (G.2.107)
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P6,6 = 54810N7 + 273690N6 + 107331N5 − 533633N4 + 371678N3 − 35050N2 − 241112N + 130440

(G.2.108)

P6,7 = 7830N7 + 45693N6 + 36684N5 − 104202N4 − 1453N3 + 78398N2 − 91900N + 46392 (G.2.109)

P6,8 = 516N5 + 5496N4 + 12187N3 − 4448N2 − 12124N + 4416 (G.2.110)

P6,9 = 3717N5 + 23415N4 + 29524N3 − 26804N2 − 15272N + 2208 (G.2.111)

P6,10 = 16416N5 + 68640N4 − 93347N3 − 401726N2 + 197500N + 132600 (G.2.112)

P6,11 = 2685N5 + 12423N4 + 5150N3 − 17908N2 + 8976N − 6624 (G.2.113)

P6,12 = 6918N4 + 41334N3 + 46861N2 − 49160N − 18420 (G.2.114)

For p = [4, 1, 1] the operator is

SBPS[4,1,1] =
1

6
√
P7

(
(N − 2)NP7,1O − (N − 2)P7,2

[
3 (N + 1)O ,1 + 5 (N + 3)O

]
− 3(N − 2)P7,3O ,2 +

√
30P7,4O ,1

+
√

6P7,5O ,2
− 12(N + 3)

[
P7,6O ,1

+
√

2P7,7O ,2

]
+ (N + 3)

[
2P7,8

{
8
√

2(N − 1)O
,3
− 3(N + 2)O

,2

}
−
√

30NP7,9O
,1

+ 2
√

6P7,10O
,2

]
−(N + 3)(N + 2)P7,11

[
5O + 3O

,1

]
+ 2 (N + 3)(N + 2)P7,12O

)
(G.2.115)

where the normalisation and coefficient polynomials are

P7 = 1691280N14 + 14469840N13 + 34933194N12 − 15345720N11 − 97734483N10 + 108829584N9

+ 94236018N8 − 365252412N7 + 332214736N6 + 23494544N5 − 188670784N4 + 59358800N3

+ 76067360N2 − 55528000N + 47136640 (G.2.116)

P7,1 = 2052N5 + 2592N4 − 7293N3 + 4232N2 + 1320N − 2240 (G.2.117)

P7,2 = 108N5 + 477N4 − 348N3 − 770N2 + 1254N − 772 (G.2.118)

P7,3 = 612N6 + 3210N5 + 939N4 − 7568N3 + 5760N2 + 692N − 2472 (G.2.119)

P7,4 = 1296N7 + 6029N6 + 1473N5 − 11350N4 + 9484N3 − 4114N2 − 3428N + 3440 (G.2.120)

P7,5 = 648N7 + 4186N6 + 1473N5 − 12472N4 + 8280N3 + 6672N2 − 4760N − 3440 (G.2.121)

P7,6 = 13N5 − 7N4 + 84N3 − 129N2 + 222N − 40 (G.2.122)

P7,7 = 15N5 + 86N4 − 194N3 + 278N2 − 178N + 284 (G.2.123)

P7,8 = 69N4 + 222N3 + 112N2 − 193N − 62 (G.2.124)

P7,9 = 97N4 + 316N3 + 62N2 − 306N − 164 (G.2.125)

P7,10 = 263N5 + 410N4 − 1216N3 − 953N2 + 1060N + 860 (G.2.126)

P7,11 = 15N4 + 60N3 − 262N2 − 146N − 244 (G.2.127)

P7,12 = 222N4 + 726N3 + 74N2 − 725N − 430 (G.2.128)
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For p = [3, 3] the operator is

SBPS[3,3] =
1

18
√

2P8

(
−60NP8,1O + 9P8,2O ,1 − 18P8,3O ,2 −

√
30NP8,4O ,1

− 10
√

6NP8,5O ,2
− 3P8,6O + 12P8,7O ,1

− 12
√

2P8,8O ,2

− 6P8,9

[
8
√

2(N − 1)O
,3
− 3(N + 2)O

,2

]
+
√

6N

[√
5P8,10O

,1
− 10P8,11O

,2

]
−3(N + 2)P8,12

[
5O + 3O

,1

]
− 60N(N + 2)P8,13O

)
(G.2.129)

where the normalisation and coefficient polynomials are

P8 = 64152N12 + 209952N11 − 137241N10 − 640440N9 + 908640N8 − 322236N7 − 116124N6

− 675864N5 + 2362028N4 − 3013280N3 + 2221520N2 − 926400N + 177280 (G.2.130)

P8,1 = 27N5 − 54N4 + 39N3 + 7N2 − 36N + 20 (G.2.131)

P8,2 = 540N6 + 765N5 − 2364N4 + 2098N3 − 686N2 − 592N + 488 (G.2.132)

P8,3 = 90N6 + 75N5 − 198N4 + 156N3 − 202N2 + 216N − 104 (G.2.133)

P8,4 = 255N4 − 78N3 − 310N2 + 218N − 28 (G.2.134)

P8,5 = 69N4 − 156N3 + 52N2 + 178N − 164 (G.2.135)

P8,6 = 1188N6 + 3519N5 − 2868N4 − 5066N3 + 9654N2 − 8560N + 3000 (G.2.136)

P8,7 = 87N5 + 81N4 − 302N3 + 396N2 − 214N + 60 (G.2.137)

P8,8 = 99N5 − 12N4 − 486N3 + 706N2 − 640N + 168 (G.2.138)

P8,9 = 21N4 + 48N3 − 36N2 − 2N − 12 (G.2.139)

P8,10 = 51N4 + 138N3 − 86N2 − 142N − 12 (G.2.140)

P8,11 = 33N4 + 48N3 − 164N2 + 2N + 156 (G.2.141)

P8,12 = 33N4 + 54N3 − 58N2 + 134N − 36 (G.2.142)

P8,13 = 3N3 + 9N2 − 5N − 14 (G.2.143)

For p = [4, 2] the operator is

SBPS[4,2] =
1

6
√

3P9

(
−
√

2P9,1O − 6
√

2P9,2O ,1 − 3
√

2P9,3O ,2 − 4
√

15NP9,4O ,1

− 2
√

3P9,5O ,2
+ (N + 3)

[
−10
√

2(N − 1)P9,6O + 6
√

2P9,7

{
NO

,1
+ 2
√

2O
,2

}
−
√

2P9,8

{
8
√

2(N − 1)O
,3
− 3(N + 2)O

,2

}
+ 4
√

15(N + 1)(N − 1)NO
,1

−2
√

3P9,9O
, 2
−
√

2(N + 2)

{
10O + 6O

, 1
+ P9,10O

}])
(G.2.144)
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where the normalisation and coefficient polynomials are

P9 = 297N10 + 378N8 − 1260N7 + 390N6 + 1080N5 − 1256N4 + 640N3 + 760N2 − 1920N + 1440

(G.2.145)

P9,1 = 81N5 − 129N4 + 51N3 + 76N2 − 130N + 60 (G.2.146)

P9,2 = 9N5 + 3N4 − 3N3 − 13N2 + 13N − 6 (G.2.147)

P9,3 =
(
9N3 + 13N2 − 13N + 6

)(
3N2 − 2

)
(G.2.148)

P9,4 = 5N3 − 2N2 − 5N + 3 (G.2.149)

P9,5 = 29N4 − 65N3 + 24N2 + 70N − 60 (G.2.150)

P9,6 = 3N2 − 3N + 2 (G.2.151)

P9,7 = N2 − 2N + 2 (G.2.152)

P9,8 = 3N2 − 2 (G.2.153)

P9,9 = 11N3 − 18N2 − 10N + 20 (G.2.154)

P9,10 = 9N2 − 10 (G.2.155)

G.2.3 Norms of operators with multiplicity

As explained in section 7.4.7, for Λ, p withMΛ,p ≥ 1, the BPS norms of the operators

are dependent on the choice of basis for the multiplicity space. In that section, we

described a process to extract norm-like functions ofN that characterise the multiplicity

space and are independent of the choice of basis.

In the Λ = [4, 2] sector, there are two partitions p = [2, 2, 1, 1] and [3, 2, 1] with

MΛ,p = 2. For the first of these, we go through the process described in section 7.4.7

in some detail, while for the second we only give the results.

We begin by renormalising the BPS operators to have norm 1 in the physical inner

product as given in (7.4.71). For p = [2, 2, 1, 1], this replaces P1 and P2 in the

expansions (G.2.33) and (G.2.45) with

P̂1 = 3(N + 3)(N + 2)(N + 1)2N2(N − 1)(N − 2)(N − 3)QmultQ1 (G.2.156)

P̂2 = 3(N + 1)N2(N − 1)(N − 2)(N − 3)QmultQ2 (G.2.157)

where Q1 and Q2 are defined in (G.2.181) and (G.2.182) and

Qmult = 2145N8 + 21570N7 + 69156N6 + 44856N5 − 130747N4 − 117106N3 + 138802N2

+ 53280N − 75456 (G.2.158)
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after normalising, the Sn inner product matrix can be calculated, and is given by

A[2,2,1,1] =


〈
ŜBPS

[2,2,1,1],1
|ŜBPS

[2,2,1,1],1

〉
Sn

〈
ŜBPS

[2,2,1,1],1
|ŜBPS

[2,2,1,1],2

〉
Sn〈

ŜBPS
[2,2,1,1],2

|ŜBPS
[2,2,1,1],1

〉
Sn

〈
ŜBPS

[2,2,1,1],2
|ŜBPS

[2,2,1,1],2

〉
Sn

 =

 A1,1

P̂1

A1,2√
P̂1P̂2

A1,2√
P̂1P̂2

A2,2

P̂2

 (G.2.159)

where

A1,1 = 1254825N16 + 25236900N15 + 212913135N14 + 949347864N13 + 2265287922N12 + 2296326096N11

− 483268806N10 − 64991400N9 + 7717590681N8 + 4250132076N7 − 14563157385N6

− 5596987632N5 + 20300164460N4 + 5660498272N3 − 5514459136N2 + 14594125824N

+ 12396386304 (G.2.160)

A1,2 = 2
√

5
(
394875N15 + 7400484N14 + 57527991N13 + 231664914N12 + 476892396N11 + 249273666N10

− 1301445666N9 − 4474130634N8 − 7919982621N7 − 8401406142N6 − 6257132757N5

− 4801800696N4 − 1575438250N3 − 1395294808N2 − 4205573568N − 1295069184
)

(G.2.161)

A2,2 = 64575225N16 + 1221543180N15 + 9292923450N14 + 34312809600N13 + 49747071546N12

− 49520811024N11 − 212528733480N10 + 81502221096N9 + 872883407025N8 + 609873915684N7

− 949480261506N6 − 778095650280N5 + 986491220724N4 + 591265527264N3 − 532623199736N2

− 150593123520N + 181872634752 (G.2.162)

We now take the trace of A[2,2,1,1], divide byMΛ,p, and take the reciprocal. This gives

the first p = [2, 2, 1, 1] invariant

2

TrA[2,2,1,1]

=
2(N + 3)(N + 2)(N + 1)2N2(N − 1)(N − 2)(N − 3)Q1Q2

D1
(G.2.163)

where the denominator is

D1 = 3913650N16 + 78795855N15 + 656781957N14 + 2811679470N13 + 5818416030N12 + 1501757316N11

− 15672370512N10 − 14255947158N9 + 42286367112N8 + 71992040249N7 − 32371301901N6

− 121059621624N5 − 22843286488N4 + 77152295508N3 + 42542435352N2 + 5036467584N

+ 2255817600 (G.2.164)

We can also consider the trace of A2
[2,2,1,1]. This leads to the second invariant

√
2

TrA2
[2,2,1,1]

=

√
2(N + 3)(N + 2)(N + 1)2N2(N − 1)(N − 2)(N − 3)Q1Q2√

D2
(G.2.165)

where the denominator is

D2 = 7658328161250N32 + 308379397920750N31 + 5678040590961075N30 + 62861883407800200N29
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+ 461553133569402069N28 + 2323880655128992368N27 + 7893896923770889320N26

+ 16200841926037924512N25 + 9738474984510581700N24 − 43140893567922372492N23

− 100830809456338189482N22 + 66300678032545590264N21 + 576422366985618028290N20

+ 587496624365125252152N19 − 1266939757691694906384N18 − 3370314414344723267400N17

− 14422779155617085790N16 + 8873284172309294711934N15 + 9228283693975324117807N14

− 8309143471774592802944N13 − 21871661389590847910159N12 − 3725069874701998817592N11

+ 25451491117140266214976N10 + 18757146605106723110568N9 − 15395309506022451870416N8

− 22339442519546818907728N7 + 3985689055612424950064N6 + 16657691069689910952704N5

+ 3604888800092578331072N4 − 4775351642112978422784N3 − 82696688563225374720N2

+ 2740871464097166655488N + 1006239182315089379328 (G.2.166)

For p = [3, 2, 1], the same process produces

2

TrA[3,2,1]

=
2(N + 2)(N + 1)N2(N − 1)(N − 2)Q4Q5

E1
(G.2.167)√

2

TrA2
[3,2,1]

=

√
2(N + 2)(N + 1)N2(N − 1)(N − 2)Q4Q5√

E2
(G.2.168)

where the denominators are

E1 = 41812200N14 + 448198920N13 + 1563219648N12 + 1093147920N11 − 3204936072N10

− 1375066305N9 + 4730520504N8 − 3314823954N7 + 4335640504N6 − 6084970N5

− 10209076192N4 + 9690911824N3 − 2443216896N2 + 3777810528N − 538272768 (G.2.169)

E2 = 874130034420000N28 + 18740182882824000N27 + 166345754746996800N26

+ 753788224097235360N25 + 1608498415010610504N24 + 181361766700128024N23

− 5390210561323512672N22 − 4416942361725000252N21 + 13381736971853528568N20

+ 14451638301852715944N19 − 26479800963850159935N18 − 31944440045187411534N17

+ 47031196210114852566N16 + 73597499966176725312N15 − 112834178522277863808N14

− 122423268066628273308N13 + 309535922049432602720N12 + 10889533588200882344N11

− 425645164341054775804N10 + 196537079346722192144N9 + 367648860348492413280N8

− 423712842979380230656N7 + 67969647225996116864N6 + 101859033408413821440N5

− 27177241919312392192N4 − 38998356711672686592N3 + 48696174595572179968N2

− 18571148044644937728N + 3609255644969508864 (G.2.170)
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G.2.4 Norms of BPS operators

The physical norms of the BPS operators can be understood as characteristic functions

of the pair Λ, p and should be reproducible from stringy physics on the other side of

the AdS/CFT duality.

We give the norms for each of the BPS operators in the Λ = [4, 2] sector. For p =

[2, 2, 1, 1] and [3, 2, 1], we reproduce the invariants derived in the previous subsection

in order to compare with other operators.

∣∣∣SBPS[2,1,1,1,1]

∣∣∣2 =
(N + 4)(N + 3)(N + 2)(N + 1)N2(N − 1)2(N − 2)(N − 3)(N − 4)Q1

P0
(G.2.171)

2

TrA[2,2,1,1]

=
2(N + 3)(N + 2)(N + 1)2N2(N − 1)(N − 2)(N − 3)Q1Q2

D1
(G.2.172)√

2

TrA2
[2,2,1,1]

=

√
2(N + 3)(N + 2)(N + 1)2N2(N − 1)(N − 2)(N − 3)Q1Q2√

D2
(G.2.173)

∣∣∣SBPS[3,1,1,1]

∣∣∣2 =
(N + 2)(N + 1)N(N − 1)(N − 2)(N − 3)Q2Q3

2P3
(G.2.174)∣∣∣SBPS[2,2,2]

∣∣∣2 =
(N + 1)N2(N − 1)(N − 2)Q3Q4

P4
(G.2.175)

2

TrA[3,2,1]

=
2(N + 2)(N + 1)N2(N − 1)(N − 2)Q4Q5

E1
(G.2.176)√

2

TrA2
[3,2,1]

=

√
2(N + 2)(N + 1)N2(N − 1)(N − 2)Q4Q5√

E2
(G.2.177)

∣∣∣SBPS[4,1,1]

∣∣∣2 =
(N + 3)(N + 2)(N + 1)N(N − 1)(N − 2)Q5Q6

P7
(G.2.178)∣∣∣SBPS[3,3]

∣∣∣2 =
(N + 2)(N + 1)N2(N − 1)Q6Q7

P8
(G.2.179)∣∣∣SBPS[4,2]

∣∣∣2 =
(N + 3)(N + 2)(N + 1)N4(N − 1)

(
3N2 − 2

)
Q7

P9
(G.2.180)

where the polynomials in the denominator have been defined in previous subsections

and the polynomials in the numerator are

Q1 = 195N5 + 1149N4 + 687N3 − 3927N2 − 1552N + 4448 (G.2.181)

Q2 = 10035N8 + 94914N7 + 264876N6 + 17268N5 − 819309N4 − 487830N3 + 780722N2

+ 189568N − 432744 (G.2.182)

Q3 = 18630N8 + 160677N7 + 371643N6 − 204495N5 − 1326729N4 − 15804N3 + 1726178N2

− 442368N − 1298232 (G.2.183)

Q4 = 8010N7 + 56214N6 + 79800N5 − 132315N4 − 158273N3 + 296994N2 + 33500N − 171336 (G.2.184)

Q5 = 2610N7 + 12546N6 + 3213N5 − 25152N4 + 20228N3 − 5238N2 − 8000N + 5160 (G.2.185)

Q6 = 648N7 + 2772N6 + 51N5 − 5484N4 + 5438N3 − 2026N2 − 2000N + 1720 (G.2.186)

Q7 = 99N6 + 162N5 − 324N4 + 102N3 + 152N2 − 260N + 120 (G.2.187)

Comparing these norms with those in sections G.1.2 and 7.4.7, we see a general pattern
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in the numerators. They typically contain a product of linear factors along with (in gen-

eral) two complicated Q polynomials. These Q polynomials appear in two consecutive

norms.

In (G.2.158) we saw that the Q polynomials appear in consecutive norms even in

the non-physical multiplicity space. This suggests they are an artefact of the orthogo-

nalisation process.

The linear factors are more interesting. Their presence is partially implied by SEP-

compatibility, but there are generally more factors than would be sufficient for this

purpose. The function fp, defined in (2.3.20), that gives the free field norms, is a

product of linear factors, and we can compare this with those found in the numerators

of weak coupling BPS norms. In all but two (p = [2, 2, 2] and [3, 3]) of the examples

we have calculated, the numerators contain fp, while some partitions have considerably

more factors. It would be interesting to enumerate the linear factors that appear in the

numerator for general Λ, p.

G.3 Λ = [3, 3] sector

The final example we give here is the BPS basis for the Λ = [3, 3] sector at field content

(3, 3).

Throughout this section we will work with Λ = [3, 3] and MΛ = 1 1 1
2 2 2

, so we will

suppress this index in operator labels.

For each BPS operator, we will first present it as a sum over the free field basis

(3.6.20) and then as a sum over symmetrised traces and commutator traces, for which

we use the covariant bases discussed in section 7.3.2. The covariant symmetrised trace

basis is

t[3,2,1] = TrX3TrY TrY 2 − 2TrX2Y TrXY TrY − TrXTrX2Y TrY 2

+ TrX2TrXY 2TrY + 2TrXTrXY TrXY 2 − TrXTrX2TrY 3 (G.3.1)

t[3,1,1,1] = TrX3 (TrY )3 − 3TrXTrX2Y (TrY )2 + 3 (TrX)2 TrXY 2TrY

+ (TrX)3 TrY 3 (G.3.2)

and the covariant commutator trace basis is

c[6] = TrX2Y XY 2 − TrX2Y 2XY = TrX2Y [X, Y ]Y (G.3.3)

c[5,1] = TrX3Y 2TrY − TrX2Y XY TrY − TrXTrX2Y 3 + TrXTrXYXY 2

= TrX2[X, Y ]Y TrY − TrXTrX[X, Y ]Y 2 (G.3.4)

For these two bases, the partition label describes the cycle structure of the multi-traces.

The free field operators can be written in terms of symmetrised and commutator
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traces

O =

√
3

36

(
3t[3,2,1] + t[3,1,1,1] + 6c[5,1]

)
(G.3.5)

O
, even

=

√
3

18

(
t[3,1,1,1] − 3c[5,1]

)
(G.3.6)

O
, odd

= − 1√
2
c[6] (G.3.7)

O =

√
3

36

(
−3t[3,2,1] + t[3,1,1,1] + 6c[5,1]

)
(G.3.8)

The odd/even labels for the R = [3, 2, 1] multiplicity come from the odd/even per-

mutations used to produce the respective traces. All other zero coupling operators are

defined uniquely by Λ and R.

The BPS operators are

SBPS[3,1,1,1] =
1√
3P1

(
−N(N − 3)O + (N + 3)(N − 3)O

, even
+ 2(N + 3)NO

)
(G.3.9)

=
1

12
√
P1

(
−3N(N + 1)t[3,2,1] + (N2 + 3N − 6)t[3,1,1,1] + 18(N + 1)c[5,1]

)
(G.3.10)

SBPS[3,2,1] =
1√
P2

(
(N − 1)O + (N + 1)O

, even
−O

)
(G.3.11)

=
1

4
√

3P2

(
Nt[3,2,1] +Nt[3,1,1,1] − 6c[5,1]

)
(G.3.12)

where the normalisation polynomials are

P1 = 2N4 + 6N3 + 9N2 + 27 P2 = 2N2 + 3 (G.3.13)

The norms of the BPS operators are

∣∣SBPS[3,1,1,1]

∣∣2 =
(N + 3)(N + 2)(N + 1)N2(N − 1)(N − 2)(N − 3)Q

P1

(G.3.14)∣∣SBPS[3,2,1]

∣∣2 =
(N + 2)(N + 1)N2(N − 1)(N − 2)Q

P2

(G.3.15)

where

Q = 2N2 + 3N − 3 (G.3.16)
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