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Abstract

Bias approximation has played an important rôle in statistical inference, and

numerous bias calculation techniques have been proposed under different contexts.

We provide a unified approach to approximating the bias of the maximum likelihood

estimator and the l2 penalized likelihood estimator for both linear and nonlinear

models, where the design variables are allowed to be random and the sample size

can be a stopping time. The proposed method is based on the Woodroofe-Stein

identity and is justified by very weak approximations. The accuracy of the derived

bias formulas is assessed by simulation for several examples. The bias of the ridge

estimator in high-dimensional settings is also discussed.

Key words: Bias calculation; l2 penalized likelihood; Maximum likelihood estimation;

Stopping time; Very weak approximation; Woodroofe-Stein identity.

1 Introduction

The study of bias has a long history and is essential for establishing statistical properties

of an estimator. It is known that maximum likelihood estimators are biased when the

sample size is small or moderate. To the best of our knowledge, Bartlett (1953) was the

first to give an expression for the bias to order n−1 of the maximum likelihood estimator

in the one-parameter case. The bias in multiparameter cases of independent observations
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was given in Cox and Snell (1968). In subsequent work, Schaefer (1983) considered the

bias correction for logistic regression, Cordeiro and McCullagh (1991) obtained the bias

correction in generalized linear models, and Firth (1993) proposed a bias reduction method

by modifying the score function; see also Anderson and Richardson (1979), Shenton and

Bowman (1977), McLachlan (1980), among others.

Most of the above work assumes that the observations are independent. Many have

extended the results to dependent cases. Cordeiro and Klein (1994) showed that the in-

dependence is not required for the results in Cox and Snell (1968), and derived the bias

formula for autoregressive moving average (ARMA) models. Bao and Ullah (2007) provide

a general framework to obtain the properties of a large class of estimators in linear and

nonlinear time series models and they are valid for both normal and nonnormal samples of

observations, and where the regressors are stochastic. The derivations rely on the assump-

tions in Rilstone, Srivastava, and Ullah (1996), along with the consistency of the estimators;

see also Rilstone and Ullah (2005). As an application of their results, Bao and Ullah (2007)

develop the approximate bias and mean square error for some time series models, such as

the first-order AR and MA models, and the absolute autoregressive model. Yang (2015)

proposes a hybrid approach that combines the stochastic expansion of Bao and Ullah (2007)

and the bootstrap, and applies the approach to the spatial autoregressive model. A general

result is derived by Bao (2018) for the approximate bias of the quasi maximum likelihood

estimators in ARMA models when exogenous regressors may be included.

Maximum likelihood estimators can also be severely biased in adaptively designed mod-

els, where the design variables may depend on the previous responses. Adaptive designs

have been heavily used in applications such as clinical trials. Whitehead (1986) and Todd,

Whitehead, and Facey (1996) derived bias-adjusted estimators following sequential tests.

In related work, Coad and Woodroofe (1998) derived the bias approximation for adaptive

linear models by differentiating the fundamental identity of sequential analysis; similar

techniques have been applied to a one-parameter exponential family by Woodroofe (1990)

and Coad (1994).

Another widely recognized biased estimator is the penalized likelihood estimator, such
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as the ridge estimator (Hoerl and Kennard, 1970). These estimators allow some bias for a

reduction in variance. They are also called regularized estimators and widely used in the

machine learning area. Interest in estimating the bias of penalized likelihood estimators

has recently arisen in statistical inference. For example, for high-dimensional linear models

with fixed design matrices, Shao and Deng (2012) studied the estimation of the ridge esti-

mator and Bühlmann (2013) proposed a bias correction term for the ridge estimator when

constructing p-values; Zhao and Shojaie (2016) extended the ridge test in Bühlmann (2013)

to a scenario with random design matrices; Javanmard and Montanari (2014) proposed a

computational procedure to construct a de-biased estimator and form confidence intervals

for lasso regression, among others.

An important feature that distinguishes the aforementioned Coad and Woodroofe (1998)

from other bias approximation techniques is its use of very weak approximations. The idea

of such approximations originated from Stein (1985) and Woodroofe (1989) in the study

of coverage probabilities for confidence sets. Specifically, the widely used adaptive designs

in the clinical trial area often involve some form of stopping time, but the asymptotic

expansions for the distributions of randomly stopped sums can be quite complicated; see,

for example, Woodroofe (1986). Therefore, in situations where it is difficult to determine

C for which Pθ(θ ∈ C) = α, they considered Pξ(θ ∈ C) = α and argued that if the latter

holds for a large class of priors ξ, then the former may hold provided that the coverage

probability depends on θ smoothly. Here, Pθ denotes the probability distribution given

parameter θ ∈ Ω, the parameter space, and Pξ(θ ∈ C) =
∫

Ω
Pθ(θ ∈ C)ξ(θ)dθ. Let Eθ and

Eξ denote the expectations with respect to Pθ and Pξ. Coad and Woodroofe (1998) adopted

the concept of very weak justification for bias approximations by considering Eξ(θ̂n − θ)

in place of Eθ(θ̂n − θ), where θ̂n is an estimator of θ. However, the approach based on

the fundamental identity of sequential analysis is not easily applicable to nonlinear models.

The formal formulation of very weak approximations is in Section 2.2.

This paper aims to provide a unified approach to approximating the bias of the max-

imum likelihood estimator and the l2 penalized likelihood estimator for both linear and

nonlinear models, with either fixed or random design variables and the sample size is a
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stopping time. The approximations here are very weak ones, as in Coad and Woodroofe

(1998), but our evaluation of Eξ(θ̂n − θ) is based on the Woodroofe-Stein identity and a

Taylor series expansion. The bias formulas that we derive are quite general.

The organization of the paper is as follows. In Section 2, the Woodroofe-Stein identity

and very weak approximations are reviewed. The general bias formulas are presented in

Section 3. The specialization to a variety of models is in Section 4, including a normal model

with a stopping time, the AR(1) model with t distributed errors, the dilution model, the l2

penalized logistic model and ridge regression. In Section 5, the bias of the ridge estimator

in the large p small n setting is discussed. Numerical studies are provided in Section 6.

Advantages of the approach are highlighted in Section 7, together with an indication of

some further possible applications and discussion of how it may be extended to obtain the

covariance matrix of the estimators. Proofs of the main results are given in the Appendix.

2 Review

2.1 Woodroofe-Stein identity

The Woodroofe-Stein identity is closely related to the famous Stein’s lemma (Stein, 1981).

Stein’s lemma is concerned with the expectation with respect to a normal distribution,

which is well known for its applications to the James-Stein estimator (James and Stein,

1961). By considering the expectation with respect to a probability density of the form

in (1) below, Woodroofe (1989) developed a variant of Stein’s identity and applied it to

set corrected confidence sets following sequential experiments. Weng and Lin (2011) called

this identity the Woodroofe-Stein identity and used it to obtain a Bayesian online ranking

algorithm, which is comparable to the state-of-the-art algorithm TrueSkillTM developed by

Microsoft Research. As the identity involves complex notation, here we only sketch results

necessary for bias calculation. For a complete account of the identity, we refer readers to

Woodroofe and Coad (1997, Proposition 2).

In what follows, the density and distribution function of a p-variate standard normal

variate are denoted by φp(z) and Φp(z), respectively. We omit the subscript for the case
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p = 1. Throughout, let ∇h(·) denote the gradient of a function h with respect to its

argument, and ∇2h(·) denote the Hessian matrix of h. Suppose that Z is a p-dimensional

random vector whose density takes the form

p(z) = Cφp(z)f(z), (1)

where C is the normalizing constant and f is continuously differentiable. Then an appli-

cation of the Woodroofe-Stein identity gives

E(Z) = E

{
∇f(Z)

f(Z)

}
, (2)

E(ZZT ) = Ip + E

{
∇2f(Z)

f(Z)

}
, (3)

provided that the components of ∇f(z) are continuously differentiable and that the expec-

tations on both sides exist. Here, Ip denotes the p×p identity matrix. Note that, although

(1) involves the normal density, the above results are not restricted to the normal distribu-

tion. This is because any density p(z) can be written as p(z) = φp(z) · {p(z)/φp(z)}, and

the above results hold if p(z)/φp(z) is continuously differentiable.

The above result has a close connection with Bayesian inference. Suppose that yk ∼

pθ(·;xk) for k = 1, 2, . . ., where xk ∈ Rq is a vector of adaptive design variables and θ is a

parameter with θ ∈ Ω, an open subset of Rp. Assume that the log-likelihood function `n(θ)

is twice continuously differentiable with respect to θ. Let θ̂n be the maximum likelihood

estimator satisfying ∇`n(θ̂n) = 0. Assume further that the Hessian matrix −∇2`n(θ̂n) is

positive definite. Now define a p× p matrix Bn and an approximate pivot Zn as

BT
nBn = −∇2`n(θ̂n), (4)

Zn = Bn(θ − θ̂n). (5)

Consider a Bayesian model in which θ has a prior density ξ. So the posterior density of

Zn given the data (x1, y1), . . . , (xn, yn) is

pn
ξ (zn) ∝ φp(zn)f(zn), (6)

where f(zn) = ξ(θ(zn)) exp{rn(θ(zn))} and

rn(θ) = `n(θ)− `n(θ̂n) +
1

2
‖zn‖2. (7)
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Thus, the posterior density is of the form in (1). Expectation in this model is denoted by

Eξ and conditional expectation given (x1, y1), . . . , (xn, yn) is denoted by En
ξ . Hence, (2)

becomes an expression for the posterior mean:

En
ξ (Zn) = En

ξ

{
∇f(Zn)

f(Zn)

}
. (8)

Note that, to apply the Woodroofe-Stein identity, there are different ways to define Zn.

For example, Coad and Woodroofe (1996) considered the signed root transformation.

2.2 Very weak approximation

Let op(1) denote convergence in Pθ-probability and o(1) denote convergence to zero of a

sequence of real numbers. Let Zn be as in (5) and h be a real-valued function defined on

Rp. Suppose that w(θ) satisfies∫
Ω

[Eθ{h(Zn)} − w(θ)] ξ(θ)dθ = o(n−1) (9)

for a class of prior densities ξ. Woodroofe (1989) calls approximations of the form (9) “very

weak” and writes

Eθ{h(Zn)} = w(θ) + o(n−1), very weakly, or Eθ{h(Zn)} ' w(θ).

The term “very weak” comes from the fact that, if (9) holds for a class of priors, then it

can be regarded as a form of weak convergence. For bias approximation, the very weak

justification seeks to find b(θ) for which

Eξ(θ̂n − θ) =

∫
Ω

Eθ(θ̂n − θ)ξ(θ)dθ =

∫
Ω

b(θ)ξ(θ)dθ + o(n−1)

for a wide class of priors. The above line is written as Eθ(θ̂n−θ) ' b(θ). The condition that

we impose on ξ is that it is continuously differentiable with a compact support. By letting

ξ be highly concentrated around θ, and assuming that both b(θ) and the bias depend on θ

smoothly, it may be possible to deduce that Eθ(θ̂n − θ) = b(θ) + o(n−1) for fixed θ under

some regularity conditions. From this, we see that our bias formula does not depend on a

specific prior.

6



Indeed, the standard approximation that gives Eθ(θ̂n) is a stronger result than the

“very weak” approximation here. Although the very weak approximation may yield the

standard one provided that both the bias and b(θ) depend on θ smoothly, in situations

where the bias or b(θ) is not smooth, the very weak approximation would not work. For

example, for the AR(1) model yk = θyk−1 + ek, it is known that the bias is not smooth at

θ = 1; therefore, the very weak approximation would fail.

3 Bias calculation

3.1 Preliminaries

To evaluate Eξ(θ̂n − θ), the idea of our approach is to use Zn in (5) and write

Eξ(θ − θ̂n) = Eξ(B
−1
n Zn) = Eξ{B−1

n En
ξ (Zn)}, (10)

and then express the posterior mean En
ξ (Zn) by means of the Woodroofe-Stein identity.

Specifically, by (6)-(8), the posterior mean can be written as

En
ξ (Zn) = (BT

n )−1En
ξ

{
∇ξ(θ)
ξ(θ)

+∇rn(θ)

}
, (11)

where the gradient of rn(θ) can be derived from (4), (5) and (7) as

∇rn(θ) = ∇`n(θ)−∇2`n(θ̂n)(θ − θ̂n). (12)

To proceed further, some notation is needed. Let `
(3)
n,i1i2i3

(θ) denote the third partial

derivative of `n(θ) with respect to θi1 , θi2 , θi3 , and `
(3)
n,k··(θ) denote the p × p matrix whose

(i, j) element is `
(3)
n,kij(θ). Define p× p matrices

Wn,k = (BT
n )−1`

(3)
n,k··(θ̂n)B−1

n , k = 1, ..., p. (13)

Next, let

Mn = n
(
BT

nBn

)−1
, (14)

which is n times minus the inverse of the Hessian matrix. When the design variable x is

random, define

M(θ) = lim
n
Mn in Pθ-probability, (15)
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Vk(θ) = lim
n

tr(Wn,k) for k = 1, ..., p and V (θ) = (V1(θ), · · · , Vp(θ))
T . (16)

When x is fixed, let

M̄n(θ) = Eθ[n{−∇2`n(θ)}−1], (17)

and, for k = 1, ..., p,

V̄n,k(θ) = Eθ(tr[{−∇2`n(θ)}−1`
(3)
n,k..(θ)]) and V̄n(θ) = (V̄n,1(θ), · · · , V̄n,p(θ))

T . (18)

Note that M(θ) and V (θ) are functions of only θ, but M̄n(θ) and V̄n(θ) also involve the

design variables x1, ...,xn. Further, for linear models, `
(3)
n,k.. is zero, and hence V (θ) and

V̄n(θ) vanish.

3.2 Bias for maximum likelihood estimation

We will present the bias formulas for θ̂n for random and fixed x. To begin, multiplying

both sides of (10) by n, together with (11) and the definition of Mn in (14), we obtain

nEξ(θ − θ̂n) = Eξ

[
MnE

n
ξ

{
∇ξ(θ)
ξ(θ)

+∇rn(θ)

}]
. (19)

The following lemma is needed. The proof is straightforward and omitted.

Lemma 1 Let y be a p-dimensional random vector with mean µ and covariance matrix

Σ. Let A be a p× p matrix. Then E(yTAy) = tr(AΣ) + µTAµ.

From (12) and the fact that ∇`n(θ̂n) = 0, the kth component of ∇rn(θ) can be written as

∂rn(θ)

∂θk

=
∂`n(θ)

∂θk

− ∂`n(θ̂n)

∂θk

−
p∑

i=1

∂2`n(θ̂n)

∂θk∂θi

(θi − θ̂ni).

Then a Taylor series expansion gives

∂rn(θ)

∂θk

=
1

2
(θ − θ̂n)T `

(3)
n,k··(θ̂n)(θ − θ̂n) + Rem =

1

2
ZT

nWn,kZn + op(1), (20)

where Zn and Wn,k are as in (5) and (13), and |Rem| ≤ C‖θ− θ̂n‖3
∣∣∂4`n(η)/∂θi∂θj∂θk∂θl

∣∣
for some η lying on the line segment joining θ and θ̂n; therefore, |Rem| = op(1), provided

that
√
n‖θ − θ̂n‖ = Op(1) and ∂4`n(θ)/∂θi∂θj∂θk∂θl = Op(n). Corollary 1 below follows

from Lemma 1 and (20).
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Corollary 1 En
ξ

(
ZT

nWn,kZn

)
= tr(Wn,k) + op(1).

Theorem 1 Let M , V , M̄n and V̄n be as in (15)-(18). Let

M#
ij =

∂Mij(θ)

∂θj

and M̄#
n,ij =

∂M̄n,ij(θ)

∂θj

, i, j = 1, ..., p, (21)

and 1 be the unit p-vector. Suppose that ξ is continuously differentiable with a compact

support in Ω. Then, for the case of random design variables, we have

nEξ(θ̂n − θ) =

∫
Ω

{
M#(θ)1− 1

2
M(θ)V (θ)

}
ξ(θ)dθ + o(1), (22)

which is written as

Eθ(θ̂n − θ) '
1

n

{
M#(θ)1− 1

2
M(θ)V (θ)

}
; (23)

and for the case of fixed design variables, we have

nEξ(θ̂n − θ) =

∫
Ω

{
M̄#

n (θ)1− 1

2
M̄n(θ)V̄n(θ)

}
ξ(θ)dθ + o(1),

which is written as

Eθ(θ̂n − θ) '
1

n

{
M̄#

n (θ)1− 1

2
M̄n(θ)V̄n(θ)

}
. (24)

The proof is in the Appendix. Cox and Snell (1968) obtained the bias for the maximum

likelihood estimator for independent observations with fixed design variables. We will show

that, for the fixed design scenario, our (24) agrees with their bias to order n−1. To begin,

we introduce some of their notation. Let the yk be independent observations, but not

necessarily identically distributed. Define

Irs =
n∑

k=1

Eθ

{
−∂

2 log pθ(yk)

∂θr∂θs

}
, (25)

Krst =
n∑

k=1

Eθ

{
∂3 log pθ(yk)

∂θr∂θs∂θt

}
,

Jr,st =
n∑

k=1

Eθ

{
∂ log pθ(yk)

∂θr

∂2 log pθ(yk)

∂θs∂θt

}
.
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Note that I, J,K refer to totals over the sample and are of order n. Cox and Snell (1968)

gave the bias as

Eθ(θ̂n,s − θs) =
1

2

∑
r,t,u

IrsI tu(Krtu + 2Jt,ru) + o(n−1), (26)

where the superscripts denote matrix inversion, that is, Irs is the (r, s) element of I−1.

From (24), the bias for individual θs is

Eθ(θ̂n,s − θs) '
1

n

{∑
t

M̄#
n,st(θ)−

1

2

∑
r

M̄n,sr(θ)V̄n,r(θ)

}
. (27)

Theorem 2 The leading terms in (26) and (27) agree to order n−1.

The proof is in the Appendix. Since the bias formula for fixed design variables (24) resem-

bles that for the random case (23), in Section 3.3 we will only present results for the case

of random design variables.

3.3 Bias for l2 penalized likelihood estimation

The technique described above can be applied to l2 penalized likelihood estimators. To fix

ideas, consider a regression model

yk ∼ pθ(·;xk), (28)

where pθ is a known probability distribution, the yk are independent responses, the xk are

the p-dimensional random covariates, θ = (β, τ)T ∈ Rp+1 is the unknown parameter with

β ∈ Rp associated with the covariates and τ a nuisance parameter. Here, we assume that

p is fixed and p << n. Define the penalized log-likelihood and its maximizer as

`λn(θ) = `n(θ)− λ

2τ

p∑
j=1

β2
j and θ̂

λ

n = (β̂
λ

n, τ̂
λ
n )T = argmaxθ`

λ
n(θ). (29)

For example, if yk in (28) has a normal distribution with mean xT
kβ and variance τ , then

β̂
λ

n is the ridge estimator; and, if yk ∼ Bernoulli(xT
kβ), then, by setting τ = 1 in (29), we

have the l2 penalized likelihood estimator for logistic regression.
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Now consider a Bayesian model with prior

ξ(θ) = π(θ) exp

(
− λ

2τ

p∑
j=1

β2
j

)
, (30)

where λ > 0 and π is continuously differentiable and vanishes off of a compact support.

Then the posterior density of θ is

pn
ξ (θ) ∝ ξ(θ)e`n(θ) ∝ π(θ)e`λ

n(θ).

Next, define Bλ
n and Zλ

n in a similar way to (4) and (5), but with `n and θ̂n replaced

by `λn and θ̂
λ

n, that is,

(Bλ
n)TBλ

n = −∇2`λn(θ̂
λ

n) and Zλ
n = Bλ

n(θ − θ̂
λ

n).

Here, Bλ
n is (p + 1) × (p + 1) and Zλ

n is a (p + 1)-dimensional vector. Similarly, define an

analogue of rn in (7) as rλ
n(θ) = `λn(θ)− `λn(θ̂

λ

n)− ‖zλ
n‖2/2. Define also an analogue of Mn

as Mλ
n and an analogue of Wn,k as W λ

n,k, that is,

Mλ
n = n{−∇2`λn(θ̂

λ

n)}−1 and W λ
n,k = {(Bλ

n)T}−1`
λ(3)
n,k··(θ̂

λ

n)(Bλ
n)−1. (31)

From (29), it can be seen that `λn and `n differ only by a penalty term not depending on n.

So we have

lim
n
Mλ

n = lim
n
Mn = M(θ) and lim

n
tr(W λ

n,k) = lim
n

tr(Wn,k) = Vk(θ), (32)

where M(θ) and Vk(θ) are defined in (15) and (16). Then write the posterior density of

Zλ
n as

pn
ξ (zλ

n) ∝ φp+1(z
λ
n)f(zλ

n),

where f(zλ
n) = π(θ)erλ

n(θ). Therefore,

∇fn(Zλ
n)

fn(Zλ
n)

= {(Bλ
n)T}−1

{
∇π(θ)

π(θ)
+∇rλ

n(θ)

}
and we have the following analogue of (19):

nEξ(θ − θ̂
λ

n) = Eξ

[
Mλ

nE
n
ξ

{
∇π(θ)

π(θ)
+∇rλ

n(θ)

}]
. (33)
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Theorem 3 Suppose that π is continuously differentiable with a compact support. Then

nEξ(θ̂
λ

n − θ) =

∫
Ω

{
M#(θ)1− 1

2
M(θ)V (θ)−M(θ)ηλ(θ)

}
ξ(θ)dθ + o(1), (34)

where ηλ is a (p+ 1)-dimensional vector whose jth component is

ηλ,j(θ) =

 λβj/τ if j = 1, ..., p,

−λ
∑p

k=1 β
2
k/(2τ

2) if j = p+ 1.
(35)

The proof is in the Appendix. Observe from (34) that the bias induced from the use of the

l2 penalty appears only in ηλ, and that, if λ = 0, then ηλ,j = 0 for all j and (34) reduces to

(22).

3.4 Bias for experiments with stopping times

The proposed method can be easily applied to models in which the sample size is a stopping

time. It is known that the use of stopping times does not affect the form of the likelihood

function; see, for example, Berger and Wolpert (1984). So the maximum likelihood esti-

mator can be obtained as if the experiment is a fixed sample one. However, its sampling

distribution may be affected in a complicated way.

Theorem 4 Suppose that the sample size is a stopping time depending on a, and denote

it as t = ta. Further suppose that a/t → ρ(θ) in Pθ-probability. Then the bias of the

maximum likelihood estimator θ̂t is

Eξ(θ̂t − θ) =
1

a

∫
Ω

[
{ρ(θ)M(θ)}] 1− 1

2
ρ(θ)M(θ)V (θ)

]
ξ(θ)dθ + o

(
1

a

)
. (36)

The proof is in the Appendix. Note that, if the stopping times are not present, then t = n.

Further, by taking a = n, we have ρ(θ) = 1 and (36) reduces to (22).
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3.5 Usefulness of bias formulas

Theorems 1, 3 and 4 provide formulas for the bias to order n−1 for the maximum likelihood

estimator for both fixed and random design variables, the l2 penalized likelihood estimator

and the maximum likelihood estimator when the sample size is a stopping time. The basic

formula (23) involves the matrices M and V , where V vanishes for linear models. One

way to interpret this formula is that there are two contributions to the bias, one from the

nonlinearity of the estimator and one from the design. A natural question is whether we

can design the experiment so that the latter is minimized.

In the next section, a variety of examples are analysed in order to demonstrate the

scope of application of the proposed methodology. Of course, to apply the formulas, it

is necessary to calculate the matrices M and V . Although analytical expressions may be

possible only in specific cases, an alternative approach is to approximate the matrices by

simulation. This is the approach taken in Section 5 in the context of ridge regression with

p > n.

4 Examples

4.1 Normal model

Suppose that y1, ..., yn are independent normal random variables with unknown mean µ

and unknown variance τ . Let θ = (µ, τ)T . Then the log-likelihood of θ is `n(θ) =

−(n/2) log(2πτ) −
∑n

k=1(yk − µ)2/(2τ). Straightforward calculation shows that M(θ) =

diag(τ, 2τ 2), a 2× 2 diagonal matrix, and V (θ) = (0, 5/τ)T . So the approximate biases of

µ̂n and τ̂n are

nEθ


 µ̂n − µ

τ̂n − τ

 'M#(θ)1− 1

2
M(θ)V (θ) =

 0

−τ

 ,

which is the exact result for normal models.

Next, suppose that τ = 1 and consider the stopping time

t = ta = inf{n ≥ 1 :
∣∣∣ n∑

k=1

yk

∣∣∣ ≥ a}, (37)
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where a > 0. Therefore, we have θ = µ, M(θ) = limtMt = limt t{−`
′′
t (θ̂t)}−1 = 1 and

a/t → ρ(θ) = |θ| in Pθ-probability. Then simple calculation shows that the approximate

bias of θ̂t is

Eθ(θ̂t − θ) ' 1

a
sign(θ) ≡ b(θ). (38)

4.2 Autoregressive model

Consider the first-order autoregressive model

yk = θyk−1 + ek,

where |θ| < 1. We will derive the bias of the maximum likelihood estimator θ̂n when ek is

assumed to follow t(ν), Student’s t distribution with degrees of freedom ν. The first four

moments of ek are E(ek) = E(e3k) = 0, E(e2k) = ν/(ν − 2) and E(e4k) = 3(ν − 2)/(ν − 4),

provided that ν > 4. The log-likelihood function of θ and its first and second derivatives

are

`n(θ) = C − v + 1

2

n∑
k=1

log

{
1 +

(yk − θyk−1)
2

v

}
,

`
′

n(θ) =
v + 1

v

n∑
k=1

{
yk−1(yk − θyk−1)

1 + (yk−θyk−1)2

v

}
,

`
′′

n(θ) =
v + 1

v

n∑
k=1

y2
k−1

 −1

1 + (yk−θyk−1)2

v

+
2
v
(yk − θyk−1)

2{
1 + (yk−θyk−1)2

v

}2

 ,
where C is a constant. Straightforward calculation shows that

M(θ) = lim
n
n
{
−`′′n(θ̂n)

}−1

= (1− θ2)w(ν),

where

w(ν) =
(ν − 2)(ν + 3)

ν(ν + 1)
. (39)

It is not difficult to see that w(ν) → 1 as ν →∞. Some of the values of w(ν) are given in

Table 1. Since the third derivative of `n involves y3
k, whose expected value is zero, its effect

14



Table 1: Values of w(ν).

ν 5 6 7 8 9 10 20 30

w(ν) 0.800 0.857 0.893 0.917 0.933 0.945 0.986 0.994

on the bias is negligible. So the approximate bias of θ̂n is

Eθ(θ̂n − θ) ' 1

n
M ](θ) =

1

n
M ′(θ) = −2θ

n
w(ν) ≡ b(θ). (40)

Note that b(θ) approaches −2θ/n as ν → ∞, which is the bias under the assumption of

normality.

4.3 Dilution model

This model has been discussed by Abdelbasit and Plackett (1983), and Coad (2014). Let

x > 0 be the dilution level, y = 0, 1 be the response to the dilution, and θ > 0 be the

density. The probability model has the form

pθ(y;x) = (e−θx)y(1− e−θx)1−y.

So the log-likelihood function is

`n(θ) = −θ
n∑

k=1

xkyk +
n∑

k=1

(1− yk) log(1− e−θxk).

The (k + 1)st design point is xk+1 = 1.59/θ̂k. Straightforward calculation gives

M(θ) =
θ2(e1.59 − 1)

1.592
and V (θ) =

1.59

θ

(
e1.59 + 1

e1.59 − 1

)
.

Therefore, the approximate bias of θ̂n is

Eθ(θ̂n − θ) ' 1

n

{
2θ(e1.59 − 1)

1.592
− 1

2

θ(e1.59 + 1)

1.59

}
≡ b(θ). (41)

4.4 Generalized linear models

Consider a generalized linear model in which the kth response has probability distribution

pθ(yk;xk) = exp[{ykηk − a(ηk) + b(yk)}/ϕ],

15



where xk ∈ Rp is a vector of adaptive design variables, θ ∈ Rp is the unknown parameter,

ηk = η(xT
k θ) and ϕ is known. So the log-likelihood function of θ is

`n(θ) =
1

ϕ

n∑
k=1

{ykηk − a(ηk) + b(yk)} , (42)

and Theorems 1 and 3 can be applied.

As an illustrative example, we consider a two-point design for the logistic model studied

in Abdelbasit and Plackett (1983). Let y be a binary response variable with

p(y = 1|x) = eβ(x−µ)/{1 + eβ(x−µ)}. (43)

Abdelbasit and Plackett (1983) obtained a two-point D-optimal design when the sample

size is n/2 for each design point. They showed that the two-point designs symmetric

about µ are such that x∗1 and x∗2 correspond to probabilities of response p∗ = 0.824 and

q∗ = 1 − p∗. Further, given the current estimates β̂k and µ̂k, their sequential procedure

suggests taking the next two design points as xk+1 = µ̂k − (1/β̂k) log(p∗/q∗) and xk+2 =

µ̂k + (1/β̂k) log(p∗/q∗).

Let θ = (µ, β)T . The log-likelihood function of θ for model (43) is

`n(θ) =
n∑

k=1

[yk(xk − µ)β − log{1 + eβ(xk−µ)}],

which is of the form (42) with ηk = (xk − µ)β and a(ηk) = log(1 + eηk). Straightforward

calculation shows that

M(θ) = diag

(
1

p∗q∗β2
,

β2

p∗q∗{log(p∗/q∗)}2

)
,

a 2 × 2 diagonal matrix, and V (θ) = (0, 2/β)T . Hence, M ]
11(θ) = M ]

12(θ) = M ]
21(θ) = 0,

M ]
22(θ) = 2β/[p∗q∗{log(p∗/q∗)}2]. Then, by (23), we have

nEθ(µ̂n − µ) ' 0,

nEθ(β̂n − β) ' β

p∗q∗{log(p∗/q∗)}2
.

It is also possible to consider the l2 penalized likelihood estimators µ̂λ
n and β̂λ

n. By

Theorem 3, the additional term in the bias is

M(θ)ηλ(θ) =

 1
p∗q∗β2 0

0 β2

p∗q∗{log(p∗/q∗)}2

 λµ

λβ

 =

 λµ
p∗q∗β2

λβ3

p∗q∗{log(p∗/q∗)}2

 .
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Therefore, the approximate biases for µ̂λ
n and β̂λ

n are

Eθ(µ̂
λ
n − µ) ' − λµ

np∗q∗β2
≡ b1(θ),

Eθ(β̂
λ
n − β) ' β(1− λβ2)

np∗q∗{log(p∗/q∗)}2
≡ b2(θ).

(44)

4.5 Ridge regression

Suppose that model (28) has the form

yk = xT
kβ + ek, (45)

where ek is normally distributed with mean 0 and unknown variance τ , and the xk are

p-dimensional random covariates with mean 0 and known covariance matrix Σ. Let y =

(y1, ..., yn)T and Xn be the design matrix whose kth row is xT
k , k = 1, ..., n. Then, by (29),

we have

β̂
λ

n = (XT
nXn + λIp)

−1XT
n y and τ̂λ

n =
1

n

{
n∑

k=1

(yk − xT
k β̂

λ

n)2 + λ

p∑
j=1

(β̂λ
n,j)

2

}
. (46)

Note that β̂
λ

n is the ridge estimator. The following result is a simple consequence of Theorem

3.

Corollary 2 The approximate biases of β̂
λ

n and τ̂λ
n are

Eθ(β̂
λ

n − β) ' −λ
n

Σ−1β,

Eθ(τ̂
λ
n − τ) ' 1

n

(
λ

p∑
j=1

β2
j − pτ

)
.

(47)

The proof is sketched below. First, from (29), (31) and (32), we obtain

Mλ
n =

 nτ̂λ
n (XT

nXn + λIp)
−1 0

0T 2τ̂ 2
n

 and lim
n
Mλ

n =

 τΣ−1 0

0T 2τ 2

 , (48)

where 0 is a p× 1 zero vector. Next, from (31) and (32), we have Vi(θ) = 0 for i = 1, ..., p

and

Vp+1(θ) = tr
(
lim

n
W λ

n,p+1

)
= tr

 1
τ
Ip 0

0T 4
τ

 =
p+ 4

τ
. (49)

Then plugging these into (34) gives the desired results.
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5 Ridge regression with p > n

For the linear regression model (45), the bias in (47) is justified for large n and small p.

Specifically, the expressions in (32), (48) and (49) are in the limit of n. In this section,

we will modify the procedures in Section 3 to approximate the bias of the ridge estimator

β̂
λ

n in (46) when p > n. To begin, we observe that the expectation of β̂
λ

n in (46) does not

depend on τ . So here we take τ as known and write θ = β. Then Mλ
n in (31) becomes

Mλ
n = nτ(XT

nXn + λIp)
−1, (50)

and, as rλ
n in (33) vanishes in the context of normal linear models, (33) simplifies to

nEξ(β − β̂
λ

n) = Eξ

[
Mλ

nE
n
ξ

{
∇π(β)

π(β)

}]
. (51)

Proposition 1 Define M̄n = nEβ

(
XT

nXn + λIp
)−1

, which does not depend on β. Then

nEξ(β − β̂
λ

n) =

∫
Ω

λM̄nβξ(β)dβ,

that is,

Eβ(β̂
λ

n − β) ' −λ
n
M̄nβ ≡ b(β). (52)

The proof is in the Appendix. The matrix M̄n in (52) can be approximated through

simulation, provided that the distribution of the covariate xk is known.

6 Simulations

This section reports the accuracy of the bias formulas and the mean squared errors of the

bias corrected estimator θ̌n defined by θ̌n = θ̂n − b(θ̂n). Whitehead (1986) suggested a

bias-adjusted estimator θ̃n obtained by solving

θ̂n = θ̃n + b(θ̃n). (53)
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The estimator θ̃n is sometimes called the indirect inference estimator; see, for instance,

Phillips (2012). We will also report the performance of θ̃n when it is easily obtainable.

We found that θ̃n may have a smaller variance than θ̂n in some cases. In what follows, let

b̂ = b(θ̂n).

6.1 Normal model with stopping times

Consider a normal model with the stopping time t = ta defined in (37). In the simulations,

we take a = 50. So the bias formula (38) gives

b(θ) =
1

a
sign(θ) = (0.02) · sign(θ).

Table 2 presents the bias of θ̂t for various θ values based on 10,000 replicates. The column

b stands for the bias b(θ). The next two columns report the averaged θ̂t and θ̌t, and the

associated variances are in parentheses. The results show that θ̌t has a smaller bias and

about the same variance.

6.2 Autoregressive model

We consider the first-order autoregressive model in Section 4.2. From (53) and the bias

formula (40), we obtain the bias-adjusted estimator

θ̃n =
θ̂n

1− 2w(ν)
n

,

where w(ν) is in (39). Table 3 presents the bias of θ̂n for various θ values when n = 50,

with ν = 5 and 10, based on 10,000 replicates. The column b stands for the bias b(θ).

The next three columns show the averaged θ̂n, θ̌n and θ̃n, with the associated variances in

parentheses. The results show that both bias-corrected estimators, θ̌n and θ̃n, have smaller

biases but slightly larger variances. As the squared bias is much smaller than the variance,

both corrected estimators have larger mean squared errors.
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Table 2: Normal model with stopping times.

θ b θ̂t θ̌t

1 0.02 1.019 (0.020) 0.999 (0.020)

4 0.02 4.016 (0.076) 3.996 (0.076)

-1 -0.02 -1.019 (0.020) -0.999 (0.020)

-4 -0.02 -4.021 (0.077) -4.001 (0.077)

Table 3: AR(1) model with ek ∼ t(ν). Left: ν = 5; Right: ν = 10.

θ b θ̂n θ̌n θ̃n θ b θ̂n θ̌n θ̃n

0.5 -0.016 0.473 0.488 0.489 0.5 -0.019 0.471 0.489 0.489

(0.014) (0.014) (0.014) (0.015) (0.016) (0.016)

-0.5 0.016 -0.473 -0.488 -0.489 -0.5 0.019 -0.469 -0.487 -0.487

(0.013) (0.014) (0.014) (0.014) (0.015) (0.015)

0.8 -0.026 0.761 0.786 0.787 0.8 -0.030 0.755 0.784 0.785

(0.008) (0.009) (0.009) (0.009) (0.010) (0.010)

-0.8 0.026 -0.761 -0.786 -0.786 -0.8 0.030 -0.756 -0.785 -0.786

(0.008) (0.009) (0.009) (0.009) (0.010) (0.010)

6.3 Dilution model

We study the bias of θ̂n for various θ values. We take the first two design points as 1

to obtain an initial estimate of θ. The subsequent points are taken sequentially by the

procedure described in Section 4.3. From (41), b(θ) = aθ/n, where a is about 1.23. So, by

(53), the bias-adjusted estimator θ̃n satisfies θ̂n = θ̃n(1 + a/n); therefore, θ̃n has a smaller

variance, as var(θ̃n) = var(θ̂n)(1+a/n)−2 < var(θ̂n). Table 4 presents the results for various

θ values, with n = 25 and 50, based on 10,000 replicates. The true θ values are in the first

column. The second column b stands for the bias b(θ) given in (41). The next three columns

report the averaged θ̂n, θ̌n and θ̃n, and the associated variances are in parentheses.

The results show that θ̂n tends to have an upward bias, and both θ̌n and θ̃n substantially

reduce the bias and variance of θ̂n. We remark that the large variances for (n, θ) = (25, 3)

are due to two extremely large θ̂n values that exceed 135.
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Table 4: Dilution example. Left: n = 25; Right: n = 50.

θ b θ̂n θ̌n θ̃n θ b θ̂n θ̌n θ̃n

1 0.049 1.053 1.001 1.003 1 0.025 1.028 1.003 1.003

(0.081) (0.073) (0.074) (0.036) (0.034) (0.034)

2.5 0.123 2.657 2.526 2.533 2.5 0.062 2.576 2.513 2.514

(1.760) (1.590) (1.598) (0.226) (0.215) (0.215)

3 0.148 3.220 3.062 3.069 3 0.074 3.082 3.006 3.008

(5.568) (5.033) (5.058) (0.321) (0.305) (0.305)

6.4 Generalized linear models

We consider the logistic model with a two-point sequential design discussed in Section 4.4.

Preliminary simulation shows that the sequential sampling may cause computational prob-

lems with maximum likelihood methods. The computational issues of these methods for

logistic models and some modifications have been studied in the literature; see, for exam-

ple, Clogg, Rubin, Schenker, Schultz, and Weidman (1991). Since we have derived bias

approximations for l2 penalized likelihood estimators, here we modify the likelihood by

adding the l2 penalized term. To further ensure the convergence of the estimators, we take

five initial design points at each of x∗1 and x∗2. Then, the remaining design points are taken

sequentially according to the procedure described in Section 4.4.

We take λ = 1, n = 50 and 80, and various choices of (µ, β). For each (µ, β) in Table

5, the columns b1 and b2 stand for b1(θ) and b2(θ) in (44), which shows that µ̂λ
n tends to

have a downward bias, and, for λ = 1, β̂λ
n tends to have an upward bias when |β| < 1 and a

downward bias when |β| > 1. The remaining columns report the averaged θ̂
λ

n = (µ̂λ
n, β̂

λ
n)T

and θ̌
λ

n = (µ̌λ
n, β̌

λ
n)T based on 10,000 replicates, with the associated variances in parentheses.

The simulation results show that θ̌n has reduced the bias, but often tends to have a larger

variance; the resulting mean squared error is also larger.

A biased-adjusted estimator θ̃
λ

n = (µ̃λ
n, β̃

λ
n)T can be calculated using (44). Although this

reduces the bias in some cases, b1(θ̃
λ

n) is not guaranteed to be closer to b1(θ) than b1(θ̂
λ

n).

Table 5 shows that a worthwhile reduction in the biases of µ̂λ
n and β̂λ

n can be obtained by

simply subtracting b̂1 and b̂2, respectively.
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Table 5: Two-point design. Upper: n = 50; Lower: n = 80.

µ β b1 b2 µ̂λ
n β̂λ

n µ̌λ
n β̌λ

n

1 0.5 -0.552 0.022 0.645 0.546 0.99 0.526

(0.235) (0.023) (0.565) (0.024)

2 0.8 -0.431 0.017 1.592 0.827 1.966 0.819

(0.168) (0.047) (0.242) (0.057)

3 1.2 -0.287 -0.031 2.409 1.049 2.853 1.079

(0.335) (0.131) (0.239) (0.174)

1 0.5 -0.345 0.014 0.75 0.533 1 0.52

(0.189) (0.013) (0.338) (0.013)

2 0.8 -0.269 0.01 1.745 0.829 1.988 0.823

(0.114) (0.030) (0.142) (0.033)

3 1.2 -0.18 -0.019 2.609 1.108 2.87 1.129

(0.316) (0.107) (0.168) (0.127)

6.5 Ridge regression

We consider the ridge regression model (45) with two random covariates (x1, x2)
T ∼

N2(0, 0, σ
2
1, σ

2
2, ρ), where ρ represents the correlation coefficient between x1 and x2, and

σ1, σ2 and ρ are assumed to be known. Then, by (47), the approximate biases of β̂λ
n,i and

τ̂λ
n are

Eθ(β̂
λ
n,1 − β1) '

λ

n(1− ρ2)

(
ρβ2

σ1σ2

− β1

σ2
1

)
≡ b1(θ),

Eθ(β̂
λ
n,2 − β2) '

λ

n(1− ρ2)

(
ρβ1

σ1σ2

− β2

σ2
2

)
≡ b2(θ),

(54)

Eθ(τ̂
λ
n − τ) ' 1

n

(
λ

2∑
k=1

β2
k − 2τ

)
≡ b3(θ). (55)

In particular, if ρ = 0, then the bias of τ̂λ
n remains the same, but (54) becomes

Eθ(β̂
λ
n,i − βi) ' − λβi

nσ2
i

, i = 1, 2.

In the simulations, we take λ = 2, τ = 1, (σ1, σ2) = (1, 2), n = 15 and 25, with various

β values. Tables 6 and 7 report results for ρ = 0 and 0.5, respectively, based on 10,000

22



Table 6: Ridge regression. ρ = 0. Upper: n = 15; Lower: n = 25.

β1 β2 τ b1 b2 b3 β̂λ
n1 β̂λ

n2 τ̂λ
n β̌λ

n1 β̌λ
n2 τ̌λ

n

2 3 1 -0.267 -0.100 1.600 1.722 2.884 2.491 1.988 2.984 0.875

(0.072) (0.022) (0.143) (0.093) (0.023) (0.155)

-1 2 1 0.133 -0.067 0.533 -0.864 1.920 1.501 -0.997 1.986 0.953

(0.062) (0.020) (0.124) (0.082) (0.021) (0.154)

3 5 1 -0.400 -0.167 4.400 2.582 4.802 5.111 2.982 4.969 0.699

(0.090) (0.028) (0.196) (0.110) (0.029) (0.170)

2 3 1 -0.160 -0.060 0.960 1.837 2.936 1.926 1.997 2.996 0.961

(0.040) (0.011) (0.080) (0.047) (0.012) (0.087)

-1 2 1 0.080 -0.040 0.320 -0.919 1.955 1.309 -0.999 1.995 0.984

(0.038) (0.011) (0.075) (0.045) (0.012) (0.086)

3 5 1 -0.240 -0.100 2.640 2.750 4.891 3.538 2.990 4.991 0.892

(0.045) (0.012) (0.090) (0.052) (0.013) (0.089)

Table 7: Ridge regression. ρ = 0.5. Upper: n = 15; Lower: n = 25.

β1 β2 τ b1 b2 b3 β̂λ
n1 β̂λ

n2 τ̂λ
n β̌λ

n1 β̌λ
n2 τ̌λ

n

2 3 1 -0.222 -0.044 1.600 1.777 2.938 2.523 1.999 2.982 0.903

(0.076) (0.024) (0.133) (0.112) (0.029) (0.151)

-1 2 1 0.267 -0.133 0.533 -0.738 1.858 1.479 -1.004 1.992 0.928

(0.079) (0.025) (0.130) (0.116) (0.030) (0.154)

3 5 1 -0.311 -0.089 4.400 2.682 4.880 5.208 2.992 4.969 0.795

(0.093) (0.029) (0.174) (0.130) (0.033) (0.160)

2 3 1 -0.133 -0.027 0.960 1.862 2.967 1.939 1.995 2.994 0.975

(0.048) (0.014) (0.078) (0.060) (0.015) (0.088)

-1 2 1 0.160 -0.080 0.320 -0.843 1.918 1.299 -1.003 1.998 0.972

(0.050) (0.014) (0.080) (0.063) (0.015) (0.089)

3 5 1 -0.187 -0.053 2.640 2.810 4.934 3.572 2.997 4.987 0.928

(0.052) (0.015) (0.085) (0.065) (0.016) (0.088)
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replicates. The first three columns are the true θ values and the next three columns, bi,

i = 1, 2, 3, stand for bi(θ) in (54) and (55). The remaining columns report the averaged

values of the maximum likelihood estimate θ̂
λ

n = (β̂λ
n1, β̂

λ
n1, τ̂

λ
n )T and the bias-corrected

estimate θ̌
λ

n = (β̌λ
n1, β̌

λ
n1, τ̌

λ
n )T , with the associated variances in parentheses. Here, the bias-

corrected estimate is defined as θ̌λ
ni = θ̂λ

ni−bi(θ̂
0

n) with θ̂
0

n = (β̂
0

n, nτ̂
0
n/(n−2))T , the unbiased

estimator of θ. Note that, from (46), (β̂
0

n, τ̂
0
n)T is the maximum likelihood estimator. The

results show that the bias approximations are pretty accurate, but the corrected estimators

tend to have larger variances and mean squared errors.

The R code for the simulation study is available at http://www3.nccu.edu.tw/∼chweng/

publication.htm.

7 Discussion

For the AR(1) model with t distributed errors, the estimator can be expressed as the

solution to an estimating equation. So it is possible to obtain an approximate bias using

the formula of Bao and Ullah (2007). Explicitly, using their (4), the bias for this model

can be written as

Eθ(θ̂n − θ) = n−2{M(θ)}2E{`′n(θ)`
′′

n(θ)}+ o(n−1) (56)

in our notation. As direct calculation of E{`′n(θ)`
′′
n(θ)} may be complicated for dependent

observations, in the following, we will use similar techniques to those in the proof of The-

orem 2 in the Appendix to show the equivalence of (56) to our (40). First, employing the

third Bartlett identity (Bartlett, 1953) gives

E{`′n(θ)`
′′

n(θ)} =
d

dθ
E{`′′n(θ)} − E{`′′′n (θ)},

where E{`′′′n (θ)} = 0 in this case. Together with the fact that E{n−1`
′′
n(θ)} = M−1(θ)+o(1),

(56) becomes

Eθ(θ̂n − θ) = n−1{M(θ)}2{M−1(θ)}′ + o(n−1) = n−1M ′(θ) + o(n−1),

where the second equality follows by direct computation or by the one-dimensional version

of Lemma 2 in the Appendix. The above arguments show that our formula is simplified
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dramatically. One nice feature of the bias approximations is that they can be expressed in

terms of just two matrices M and V .

The bias of the l2 penalized likelihood estimator was obtained in Section 3.3. It is of

interest to see whether the techniques in Rilstone, Srivastava, and Ullah (1996) can be

applied to this case. Their paper studied a class of estimators β̂n ∈ Rp that can be written

as the solution to a set of moment equations of the form

Ψn(β̂n) =
1

n

n∑
k=1

qk(β̂n) = 0, (57)

where qk(β) = q(Zk;β) is a known p× 1 vector-valued function of the observable data Zk

and a parameter vector β ∈ Rp with a true β0 defined such that E{q(Zk;β)} = 0 only at

β0 for all k. Now consider ridge regression in Section 4.5 with a known variance τ = 1. It

is easily seen that the estimator β̂
λ

n satisfies
∑n

k=1 qk(β̂
λ

n) = 0 with

qk(β) = ∇`nk(β)− 2λ

n
β,

where `nk is the log-likelihood based on the kth observation (xk, yk). However, the condition

E{q(Zk;β)} = 0 does not hold in this case. So the results in Rilstone, Srivastava, and

Ullah (1996) need some modifications to obtain the bias for penalized estimators. It is also

possible to modify the approach of Cox and Snell (1968) to obtain the bias in the penalized

case.

It may be possible to apply the approach in Section 3.3 to lasso regression, since its

penalty term
∑p

j=1 |βj| satisfies the requirements of the Woodroofe-Stein identity. Although

the bias approximation is likely to be complicated in this case, we hope to report the details

in a separate paper.

In Section 4.5, it was assumed that the covariance matrix of the xk is known. This may

be relaxed by assuming that the covariates follow a probability distribution with unknown

parameter ψ = (ψ1, . . . , ψr)
T . By letting θ = (β1, . . . , βp, τ, ψ1, . . . , ψr)

T , it can be shown

that the bias calculations for ψ̂
λ

n and (β̂
λ

n, τ̂
λ
n )T may be handled separately. The details are

omitted.

Although the focus of this paper has been bias approximations, it is possible to use the

proposed approach to approximate the covariance matrix of the estimators up to order n−2.
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The derivation is based on an expression for the second moment as in (3). Currently, we are

able to obtain the approximate covariance matrix for normal linear models. However, the

details of the approximation have not been included here, because some technical difficulties

associated with other models have not yet been fully resolved.

In this paper, analytical approximations to the bias have been provided. Such an

approach gives some information on both the form and the direction of the bias. This

information can be very helpful when constructing bias-adjusted estimators, as shown in

Section 6. An alternative approach would be to use the bootstrap to estimate the bias.

Such estimates are usually harder to compute in practice.

Appendix: Proofs

Proof of Theorem 1 We prove only (23). The proof of (24) is similar and we omit it.

By (19), it suffices to show that

Eξ

{
MnE

n
ξ

(
∇ξ
ξ

)}
= −

∫
Ω

M#(θ)1ξ(θ)dθ + o(1) (58)

and

Eξ

[
MnE

n
ξ {∇rn(θ)}

]
=

1

2

∫
Ω

M(θ)V (θ)ξ(θ)dθ + o(1). (59)

For (58), write

Eξ

[
MnE

n
ξ

{
∇ξ(θ)
ξ(θ)

}]
= Eξ

{
Mn

∇ξ(θ)
ξ(θ)

}
=

∫
Ω

Eθ(Mn)∇ξ(θ)dθ

=

∫
Ω

M(θ)∇ξ(θ)dθ +

∫
Ω

{Eθ(Mn)−M(θ)}∇ξ(θ)dθ, (60)

where ∫
Ω

M(θ)∇ξ(θ)dθ = −
∫

Ω

M#(θ)1ξ(θ)dθ

follows by integration by parts. Suppose that Eθ(Mn) is finite and continuous in θ. To-

gether with the assumption that ξ is continuously differentiable with a compact support in

Ω, we have that ∇ξ is bounded on Ω and that the second term on the right-hand side of

(60) converges to zero.
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For (59), by (20) and Corollary 1, we have

Eξ

[
MnE

n
ξ {∇rn(θ)}

]
=

1

2
Eξ

Mn


tr(Wn,1)

...

tr(Wn,p)


+ o(1),

where tr(Wn,k) → Vk(θ) as in (16). Suppose that Eθ{tr(Wn,k)} is finite and continuous in

θ. Then the above line converges to Eξ {M(θ)V (θ)} /2. 2

To prove Theorem 2, we need the following formula for the derivative of the inverse of

a matrix; see, for example, Dhrymes (1978).

Lemma 2 Let A be a p × p matrix whose elements are functions of the scalar parameter

x. Then
∂A−1

∂x
= −A−1∂A

∂x
A−1.

Proof of Theorem 2 First, from the third Bartlett identity (Bartlett, 1953), we have

Jt,ru = −Ktru −
∂Iru

∂θt

,

and hence (26) can be written as

Eθ(θ̂n,s − θs) = −1

2

∑
r,t,u

IrsI tu

(
Krtu + 2

∂Iru

∂θt

)
+ o

(
1

n

)
= −

∑
r,t,u

IrsI tu∂Iru

∂θt

− 1

2

∑
r,t,u

IrsI tuKrtu + o

(
1

n

)
.

So it suffices to show that

1

n

{∑
t

M̄#
n,st(θ)−

1

2

∑
r

M̄n,sr(θ)V̄n,r(θ)

}

=−
∑
r,t,u

IrsI tu∂Iru

∂θt

− 1

2

∑
r,t,u

IrsI tuKrtu + o

(
1

n

)
.

Now, from the definitions of M̄n(θ) and I in (17) and (25), we have M̄n(θ) = nI−1(θ)+

o(1), under some regularity conditions. Then, by Lemma 2 and the definition of M̄#
n in

(21), we have

M̄#
n,st =

∂M̄n,st

∂θt

=
∂(nI−1)st

∂θt

+ o(1) = −n
∑
r,u

IsrIut∂Iru

∂θt

+ o(1).
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Therefore,
1

n

∑
t

M̄#
n,st = −

∑
t,r,u

IsrIut∂Iru

∂θt

+ o

(
1

n

)
.

Finally, from the definition of V̄n,r(θ) in (18), we have

V̄n,r(θ) = tr
(
Eθ[{−∇2`n(θ)}−1]Eθ{`(3)n,r..(θ)}

)
+ o(1) =

∑
t,u

I tuKrtu + o(1).

So
1

n

∑
r

M̄n,srV̄n,r =
∑
r,t,u

IsrI tuKrtu + o

(
1

n

)
.

This completes the proof. 2

Proof of Theorem 3 From (33), write

nEξ(θ − θ̂
λ

n) = Eξ

[
Mλ

nE
n
ξ

{
∇π(θ)

π(θ)
+∇rλ

n(θ)

}]
= I1 + I2,

say. By (30) and similar techniques above, we obtain

I1 =Eξ

[
Mλ

nE
n
ξ

{
∇π(θ)

π(θ)

}]
→
∫

Ω

e−
λ
2τ

Pp
k=1 β2

kM(θ)∇π(θ)dθ.

The ith component for the term on the right-hand side of the above line is∫
Ω

p+1∑
j=1

(
mij

∂π

∂θj

e−
λ
2τ

Pp
k=1 β2

k

)
dθ =

∫
Ω

ξ(θ)

p+1∑
j=1

{
ηλ,j(θ)mij(θ)−m#

ij(θ)
}
dθ,

where ηλ is as in (35). The treatment of I2 is the same as (59), except that `n is now

replaced by `λn. 2

Proof of Theorem 4 The proof is similar to that for Theorem 1. First, replacing n

in (19) with t gives

Eξ(θ − θ̂t) = Eξ

[
1

t
MtE

t
ξ

{
∇ξ(θ)
ξ(θ)

+∇rt(θ)

}]
=

1

a
Eξ

[
a

t
MtE

t
ξ

{
∇ξ(θ)
ξ(θ)

+∇rt(θ)

}]
.

Then the first term on the right-hand side of the above line can be written as

1

a
Eξ

[
a

t
MtE

t
ξ

{
∇ξ(θ)
ξ(θ)

}]
=

1

a

∫
Ω

Eθ

(a
t
Mt

)
∇ξ(θ)dθ

=
1

a

∫
Ω

ρ(θ)M(θ)∇ξ(θ)dθ +
1

a

∫
Ω

{
Eθ

(a
t
Mt

)
− ρ(θ)M(θ)

}
∇ξ(θ)dθ

=− 1

a

∫
Ω

{ρ(θ)M(θ)}] 1ξ(θ)dθ + o

(
1

a

)
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and the second term is

1

a
Eξ

[a
t
MtE

t
ξ {∇rt(θ)}

]
=

1

2a

∫
Ω

ρ(θ)M(θ)V (θ)ξ(θ)dθ + o

(
1

a

)
.

Hence, the desired result follows. 2

Proof of Proposition 1 First recall that Mλ
n = nτ(XT

nXn + λIp)
−1 in (50). With the

definition of M̄n, we now rewrite the right-hand side of (51) as

Eξ

[
Mλ

nE
n
ξ

{
∇π(β)

π(β)

}]
= Eξ

[
τM̄n

{
∇π(β)

π(β)

}]
=

∫
Ω

{
−(τM̄n)#(β)1 + τM̄nηλ(β)

}
ξ(β)dβ, (61)

where the last line follows by integration by parts, with ηλ(β) = λβ/τ , a p × 1 vector.

Since τM̄n does not involve β, we have (τM̄n)#
ij = 0 for all i and j. By (61), (51) becomes

nEξ(β − β̂
λ

n) =

∫
Ω

λM̄nβξ(β)dβ,

and Proposition 1 follows. 2
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