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Abstract—The Automatic Speaker Verification Spoofing and
Countermeasures Challenges motivate research in protecting
speech biometric systems against a variety of different access
attacks. The 2017 edition focused on replay spoofing attacks,
and involved participants building and training systems on a
provided dataset (ASVspoof 2017). More than 60 research papers
have so far been published with this dataset, but none have
sought to answer why countermeasures appear successful in
detecting spoofing attacks. This article shows how artefacts
inherent to the dataset may be contributing to the apparent
success of published systems. We first inspect the ASVspoof
2017 dataset and summarize various artefacts present in the
dataset. Second, we demonstrate how countermeasure models can
exploit these artefacts to appear successful in this dataset. Third,
for reliable and robust performance estimates on this dataset
we propose discarding nonspeech segments and silence before
and after the speech utterance during training and inference.
We create speech start and endpoint annotations in the dataset
and demonstrate how using them helps countermeasure models
become less vulnerable from being manipulated using artefacts
found in the dataset. Finally, we provide several new benchmark
results for both frame-level and utterance-level models that can
serve as new baselines on this dataset.

Index Terms—Spoofing detection, dataset bias, automatic
speaker verification, model trustworthiness, voice biometrics.

I. INTRODUCTION

AUTOMATIC speaker verification (ASV) [1] aims at
verifying the claimed identity of a person using their

voice characteristics. It is among the most convenient means of
biometric authentication, but its robustness and security in the
face of spoofing attacks (or presentation attacks) is of growing
concern [2]. Among various spoofing attack points identified
in the ISO/IEC 30107-1 standard [3], the first two attack
points: physical access (PA) and logical access (LA) attacks
are of specific interest to researchers as these attacks enable an
adversary to inject spoofed biometric data. PA attacks involve
spoofed speech to pass through an ASV system’s microphone.
Impersonation [4] and replay [5] are examples of such attacks.
In contrast, LA attacks bypass the microphone by injecting
computer generated speech or real stolen speech directly into
an ASV system. Text-to-Speech [6] and Voice Conversion
[7] techniques are often used to produce artificial speech
to perform LA attacks. High-stakes ASV applications [8],
therefore, require an anti-spoofing system (countermeasures)
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to ensure fail-safe mechanisms. Most countermeasure systems
are defined as a binary classifier comprising a feature extractor
and a backend that aims at discriminating bonafide (human)
speech from spoofing attacks.

In this paper, we study replay attacks using the ASVspoof1

2017 dataset. The dataset has two different versions. Version
1.0 was used in the 2017 evaluations [10]. Post-evaluations, in
[12] we demonstrated that initial zero-valued silence frames
appearing in bonafide audio signals serve as a cue that Gaus-
sian Mixture Model (GMM) based countermeasures exploit to
form decisions. Subsequently, an updated version 2.0 dataset
[13] was released by the ASVspoof organisers fixing these
problems. Furthermore, our recent work [14] on version 2.0
of the same dataset suggests that it contains some recording
artefacts that impact performance estimates. In [14] we analyse
a state-of-the-art Convolutional Neural Network (CNN) based
countermeasure model and find that it makes many decisions
based heavily on the first few milliseconds. Further analysis
of a few confidently classified test audio signals shows dual
tone multi-frequency (DTMF) sounds or speech signals oc-
curring in the first few milliseconds for spoofed audio, but
nonspeech or silence in case of the bonafide audio signals.
We hypothesize that the training and development subsets of
the same dataset might contain such DTMF sounds and other
confounders/artefacts that might influence model decisions.
Understanding their statistics enables building trustworthy
countermeasures using this dataset.

Spoofing countermeasures are mostly developed either in
a frame-level [15] or a fixed-duration utterance-level [16]
setting. As nonspeech samples may carry discriminative infor-
mation such as differences in acoustic conditions, designing
countermeasures using the entire audio signal is often a
sensible design choice [9]–[11], [16]. Since the release of
the ASVspoof 2017 dataset, a number of frontend features
[15], [17]–[19] and backend models [16], [20]–[22] have
been proposed and studied. Constant Q cepstral coefficients
(CQCCs) [15] that were initially proposed for synthetic and
voice-converted spoofing detection have now been studied
for replay detection and show encouraging results. Teager
energy operator (TEO) based spoof detection features were
studied in [17]. Speech demodulation features using the TEO
and the Hilbert transform have been studied in [23]. Au-
thors in [18] proposed features for spoofing detection by

1ASVspoof is an ASV community-driven effort promoting anti-spoofing
research through open spoofing challenges releasing standard evaluation
protocols, metrics and datasets. See [9], [10] and [11] for an overview of
the ASVspoof challenges held in 2015, 2017 and 2019 respectively.
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exploiting the long-term temporal envelopes of the subband
signal. Spectral centroid based frequency modulation features
were proposed in [19]. Some of the well-known deep models
from computer vision including ResNet [24] and light CNN
[25] were adapted for replay spoofing detection in [20],
[21] and [16], respectively demonstrating good performance
on the ASVspoof 2017 dataset. Furthermore, attention-based
models for replay detection have also been studied in [26]
and [22]. Some of the new techniques that have emerged
following the recent ASVspoof 2019 evaluations include use
of SincNet [27] architecture which was originally developed
for speaker recognition. Authors in [28] have used SincNet for
spoofing detection demonstrating good performance. Similarly,
x-vectors [29] which were originally proposed for speaker
recognition, have been studied for spoofing detection in [30].

However, most of these works focus on improving recog-
nition performance without trying to understand what anti-
spoofing systems are learning to make predictions. Systems
showing better performance do not necessarily mean they are
trustworthy [31], [32]. To that end, following the guidelines
from [33], this paper considers technical robustness, fairness
and accountability as key criteria for any machine learning
(ML) model to be called trustworthy. These criteria suggest
that the results produced by a trustworthy model should be
independent of variables/factors (in the training data) not
relevant to the actual problem.

ML models make decisions from relationships discovered
in training data [34]. As demonstrated in [35]–[37], models
can learn irrelevant cues, artefacts or confounders during
training. Unless explicitly accounted for during training and
inference such artefacts often contribute in achieving good
results overestimating the actual performance on a testing set
[35]–[43]. In [35], a benchmark music informatics dataset is
shown to have several faults that significantly bias performance
metrics. In [38], the authors demonstrate how top performing
music labeling systems were exploiting characteristics from
the music signal that could not even be heard. In [37],
authors found the encoding of patient identity in a dataset
correlates highly with cancer likelihood. The accuracy of a
gait recognition system was found to drop when confounding
factors were removed during training [39]. Authors in [40]
describe how bias introduced as a result of dataset selection
influenced the performance of an Alzheimer’s disease clas-
sification system. In computer vision applications, [36] have
analyzed the effect of biases in model performance across
several datasets. In [43], the authors focus on building robust
system for acoustic individual identification while reducing the
effects of confounding factors in a dataset. Data leakage can
often lead to overestimation of model performance, producing
too-good-to-be-true results [41]. One relevant work in this
context in ASV anti-spoofing is that of [26] who reported
0% EER on both the development and evaluation sets of the
ASVspoof 2017 v1.0 dataset — the dataset on which the issue
of silence providing cues [12] for class prediction was well
acknowledged by the community [13].

The trustworthiness of models trained on data containing
artefacts is therefore called into question; some can behave
much like a “horse” [32], [44], i.e. a model that uses irrelevant

Fig. 1. Block diagram: intervention pipeline towards understanding the
influence of artefacts on the predictions of countermeasure models.

cues to make decisions [38], [45]. As highlighted in [37],
such confounders can occur as a result of data collection,
compilation and partition. Such biases can have a severe
impact on the trustworthiness of ML applications, which can
be catastrophic for domains such as ASV anti-spoofing. There-
fore, it is essential to perform an in-depth dataset analysis [46],
[47], detect presence of artefacts or confounders [43], ensuring
models do not exploit irrelevant factors during training, and
therefore yield reliable performance estimates.

This paper extends our prior work [14] from multiple
perspectives and makes the following contributions:

• We analyze the ASVspoof 2017 v2.0 dataset, discover
different artefacts and summarize them in Section II. We
investigate how these artefacts influence model decisions
on five different countermeasures (Section III) using
interventions2 (Section IV).

• We demonstrate how such artefacts can be used to attack
countermeasures trained on this dataset, and emphasize
why accountability of such artefacts while training coun-
termeasures is important on this dataset (Section V).

• We propose a design framework (Fig. 4) for trustworthy
countermeasures on this dataset that incorporates speech
endpoint detection during training and testing. Using this
we propose a robust frame-based countermeasure and
demonstrate its effectiveness against test signal manip-
ulation (Section VI).

• We provide new benchmark results for frame-based and
utterance-based countermeasures trained on constant Q-
cepstral coefficient (CQCC) benchmark features, i-vectors
and spectrograms. (Section VI).

• We develop manual endpoint speech annotations, and
make them (along with artefact file lists) publicly avail-
able in [48]. Our source code is available online3. We
provide a supplementary document in [49] for additional
details of our work.

II. ARTEFACTS IN THE ASVSPOOF 2017 V2.0 DATASET

We perform a qualitative analysis4 on all audio recordings
in the training set (1507 bonafide and 1507 spoof) and
the development set (760 bonafide and 950 spoof) of the
ASVspoof 2017 v2.0 dataset. As for the evaluation set, due
to the large number of spoof recordings (12008), we perform
this analysis only on the 1298 bonafide recordings in this
study. Furthermore, learning and optimizing model parameters
requires use of the training and development sets, and thus we
focus more towards understanding audio recordings in these

2Following [38], we define Intervention as a process that updates audio
signal either by adding or removing raw samples. Fig. 1 illustrates this idea.

3https://github.com/BhusanChettri/TASLP-study-on-dataset-artefact
4We use Audacity (https://www.audacityteam.org/) for visualizing and

listening audio waveforms.
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two sets. For additional details on the dataset, please see [13].
Below we list our key observations that we consider unnatural
or unexpected for a dataset. This could be due to faults made
during data collection, compilation and post-processing. As
we demonstrate in Section IV, some of them have a profound
impact on model decisions raising concerns on the validity of
results reported in the literature [16], [26], [50], [51].

Pattern difference. We define this as the presence of non-
speech (noise, music or silence) in the first 300 milliseconds of
bonafide recordings but missing in the spoof class recordings.
About 60.45%, 73.55% and 69.1% of the bonafide audio files
in the training, development and evaluation sets respectively
have nonspeech. On the contrary, 68.74% and 41.05% of the
spoof files in the training and development sets respectively
have speech occurring within the first 300 ms.
Burst click sound (BCS). We define this as an abrupt click
sound (low or loud) found in the start of audio recordings.
About 36.36%, 23.55% and 41.06% of bonafide audio files in
the training, development and evaluation sets were found to
contain BCS in the start. On the contrary, 2.45% spoof files
in the training set have BCS. No spoof class audio files in the
development set have such BCS, and we do not have ground
truth annotations for spoofed signals in the evaluation set.
Dual-tone multi-frequency signaling (DTMF) sound. About
45.58% (687 out of 1507) of spoof audio files in the training
set and 16.63% (158 out of 950) in the development set were
found to contain a DTMF sound (low or loud) within the first
200-250 ms. The DTMF sound often overlaps with the actual
spoken speech. We find 33.77% (232 out of 687) spoof files
and 6.96% (11 out of 158) in the training and development sets
contain such overlapping sounds. On the contrary, the bonafide
class audio files do not have such DTMF sounds.
Silence. We find some bonafide audio recordings with more
than 10 ms zero valued silence in their start. There are 19.11%
(288 out of 1507) such bonafide files in the training set, 1.97%
(15 out of 760) in the development set and 10.09% (131 of
1298) in the evaluation set. Furthermore, in the training set
we find 23.61% (68 out of 288) files have more than 70 ms
silence and 12.85% (37 out of 288) with more than 100 ms
silence in the start. In contrast no spoof class files are found
to have such zero valued silence.
Corrupted audio files. We find four audio recordings in the
dataset that do not contain any speech at all.
Sentence S02 - “Ok Google”. It is one of the phrases used in
the ASVspoof 2017 dataset with an average duration between
0.7 - 0.8 seconds. We find 165, 136 and 1282 audio examples
of S02 in the training, development and evaluation sets with
more than 1.5 seconds duration. This suggests that more
than half of the contents of each recording contain noise or
nonspeech.

III. SPOOFING COUNTERMEASURES

This section describes various countermeasures (features
and classifiers) considered in this study to evaluate the influ-
ence of artefacts (Section II) on model decision. A description
of evaluation metrics and initial model performance is also
provided.

A. Features and classifiers

We study five different types of classifiers: GMMs trained
on CQCCs [15]; Cosine Distance and Support Vector Ma-
chines (SVMs) trained on CQCC-based i-vectors [52]; and
two CNNs trained on time-frequency representations (spec-
trograms). The main motivations for choosing them are: (1)
CQCCs coupled with GMMs (or deep neural networks) have
been studied extensively on the ASVspoof 2017 dataset [12],
[13], [53], [54]; (2) CQCC-based i-vectors with Cosine back-
end classifiers have been used as a baseline system [13]; (3)
spectrogram features with a CNN backend have shown the
best performance during the ASVspoof 2017 challenge [16].

Furthermore, we aim to demonstrate that the artefacts
outlined in Section II can affect any machine learning (ML)
model and that the issues discussed do not revolve around a
specific ML model.

GMM: We train one GMM each for the bonafide and spoof
classes using 512 mixture components with random initialisa-
tion. We use 60 dimensional CQCC features extracted using
the setup from [13] to train the GMMs. During testing, for each
test utterance X (with T feature vectors) a score is obtained
using the log-likelihood ratio:

Λ(X) =
1

T

T∑
t=1

logP (xt|θb)−
1

T

T∑
t=1

logP (xt|θs) (1)

where xt is the tth frame, P denotes the likelihood
function, θb and θs represents the bonafide and spoof GMMs
respectively.

Cosine: We compute 100-dimensional i-vectors using the same
60 dimensional CQCC features used in GMMs for the entire
dataset. We compute the mean i-vector corresponding to the
bonafide and spoof classes in the training set and use them as
the representative models. During testing, a similarity score is
computed between a test i-vector and the model i-vector using
the cosine distance metric:

cos(θ) =
X ·Y
||X||||Y||

(2)

where X represents the test i-vector and Y the model i-vector.
The final score is then obtained by taking the difference
between the bonafide and spoof model scores. We follow the
same i-vector setup from [13].

SVM: We train a binary SVM classifier with a linear kernel
using mean-variance normalised i-vector features, with
mean-variance values computed on the training set. Here, we
use the same 100 dimensional CQCC-based i-vectors used in
the Cosine model. We use the Scikit-learn [55] library with
default parameters for training and testing the SVM model.

CNN: We train two different CNNs: CNN1 and CNN2. Both
CNNs operate on a fixed input representation. While CNN1

works on 4 seconds spectrogram input, CNN2 operates on 3
seconds duration. CNN1 uses the architecture adapted from the
best performing model [16] of the ASVspoof 2017 challenge.
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CNN2 is our proposed architecture with fewer model param-
eters comprising only 4 hidden layers in contrast to CNN1

which is deep consisting of 9 convolutional layers. The main
motivation of using CNN2 is twofold. First, we wanted to see
how a simple CNN model (less deep) compares with the state-
of-the-art adapted CNN of [16]. Second, how different input
feature configurations impact model performance. In CNN1

the input spectrogram is computed using a 1728 point FFT and
a 108 ms frame window with 10 ms hop size, while in CNN2

we used a standard 512 point FFT and 32 ms frame window.
We provide further details on CNN architecture, training and
scoring in our supplementary document [49].

B. Figures of merit

We use the equal error rate (EER), the evaluation metric
used in the ASVspoof 2017 challenge, to report the coun-
termeasure performance. The EER defines an operating point
where the false acceptance rate (FAR) and false rejection rate
(FRR) of the system are equal. We further report FAR and FRR
for the bonafide class to derive more insights in understanding
the impact of the artefacts on this dataset:

FAR =
FP

FP + TN
(3)

FRR =
FN

TP + FN
(4)

where TP, TN, FP, and FN denote true positive, true negative,
false positive and false negative counts respectively. Through-
out the paper, we use the bonafide class as positive and the
spoof class as negative in computing the above metrics.

C. Initial model performance

We train all our countermeasure models using the training
set and validate them on the development set. Table I sum-
marizes the results. Countermeasures Cosine and GMM show
consistent performance as reported in [13]. Although CNN2

and CNN1 show similar performance on the development set,
CNN2 performs poorly on the evaluation set. A possible reason
could be due to the simple 4 hidden layer architecture used by
CNN2 in comparison to the 10 hidden layer representation in
CNN1. However, CNN2 outperforms both Cosine, GMM and
SVM on both the development and evaluation sets.

TABLE I
INITIAL MODEL PERFORMANCE ON THE DEVELOPMENT AND EVALUATION

SETS. Θ = EER DECISION THRESHOLD.

Model Set Θ TP FN FP TN EER%

CNN1
Dev 0.6663 701 59 74 876 7.7
Eval 0.7467 1159 139 1286 10722 10.7

CNN2
Dev 0.6 704 56 70 880 7.37
Eval 0.842 1124 174 1609 10399 13.4

Cosine Dev 0.125 679 81 101 849 10.6
Eval 0.181 1105 193 1779 10228 14.8

SVM Dev 0.3972 678 82 103 847 10.8
Eval 0.506 1094 204 1883 10125 15.6

GMM Dev 0.3334 690 70 87 863 9.2
Eval 0.7120 1119 179 1656 10352 13.7

In the next two sections IV and V, we show how the
decisions of these models can be compromised using the

artefacts described in Section II. Furthermore, it should be
noted that we use the same Θ shown in Table I (for all the
models) to perform the intervention experiments described in
sections IV and V. One motivation for this is to demonstrate a
situation where a countermeasure trained on a biased dataset
is being used to protect an ASV system leaving loopholes for
being manipulated using dataset cues. Ensuring the training
dataset to be free from such artefacts and biases is crucial
towards designing a reliable spoofing detection system.

IV. EXPLORING THE IMPACT OF DATASET ARTEFACTS

In this section we thoroughly study the impact of artefacts
(Section II) on countermeasure performance. More precisely
we focus on understanding the influence of pattern difference,
BCS and DTMF sounds on model prediction through inter-
vention experiments illustrated in Fig. 1. We call this setup
as inference-time intervention because we use our pretrained
models from Section III. Here the intervention module updates
the test signal by exploiting information about the dataset
artefacts which we pass as side information. Features are then
computed on the updated test signal and scoring is performed
using a pretrained model. The optional unify-duration module
truncates or replicates audio samples to create a fixed-duration
input representation. This is applicable only for the CNNs.

TABLE II
BCS INTERVENTION RESULTS. TFI: TEST FILES INTERVENED, WHICH
CORRESPONDS TO TP CASES (TABLE I) IDENTIFIED TO CONTAIN BCS

ARTEFACT. PROP: PROPORTION OF FILES THAT CHANGED CLASS LABEL.

Model Set # TFI FN Prop (%)

CNN1
Dev 177 +34 19.21
Eval 513 +118 23.0

CNN2
Dev 175 +12 6.85
Eval 508 +60 11.81

Cosine Dev 159 +8 5.03
Eval 486 +32 6.58

SVM Dev 159 +6 3.77
Eval 491 +32 6.51

GMM Dev 173 +13 7.51
Eval 508 +56 11.02

A. Impact of “BCS” on model prediction

The training set contains a large proportion (36.36%) of
bonafide examples with BCS artefacts in comparison to only
2.45% of spoof examples. BCS, if present in an audio record-
ing, usually occurs within a 100 ms time window and is
found either at the start or at the end. Although few (10.81%)
bonafide class audio files in the training set have BCS at the
end, our preliminary interventions showed they have no impact
on model predictions. However, we find a substantial influence
for BCS found at the start of the audio recordings. We do not
perform this intervention on the spoof class as the BCS serves
as a cue for the bonafide class. Therefore we hypothesize and
demonstrate that BCS serves as one kind of bonafide signature
on this dataset. And if this signature is not removed, machine
learning countermeasures can easily exploit it. To this end, we
take all the TPs for the bonafide class that contain a BCS at
the start and run this intervention on them.
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Fig. 2. Spectrogram (top) and raw audio (bottom) of “Ok google”. Left represents a bonafide example and right its replayed version. The green rectangular
box highlights the original audio and the red box shows signal replication to create a fixed duration (4 seconds) input representation. Two use cases are
reflected: pattern difference and BCS. It shows how artefacts spread while creating an input representation with fixed duration.

Here our intervention module (Fig. 1) takes a BCS an-
notation file containing a list of files having a BCS as side
information. It then discards the first 100 ms audio samples
from the test utterance before extracting features and obtaining
a classification score. Table II summarizes the results. As
expected, dropping BCS samples causes models to misclassify
bonafide test signals raising false negatives. Interestingly, we
find CNN1 to be more sensitive in contrast to CNN2 and other
models. A possible explanation is since CNN1 uses a 4 second
representation in contrast to the 3 seconds one for CNN2.
The above mentioned representation of CNN1 contains more
replicated copies of shorter audio segments, which propagates
artefacts (see Fig. 2).

B. Impact of “DTMF” on model prediction

During replay data collection a number of bonafide utter-
ances were first concatenated using a DTMF sound to mark the
utterance boundary and replay attacks were simulated on them.
The individual replayed utterance was then retrieved based
on this marker [56]. As outlined in Section II, some spoof
audio files in the training and development set have DTMF
sounds (low or loud) which are not present in the bonafide
files. DTMF, if present in an audio recording, usually occurs
within a 250 ms time window at the start.

Do DTMF sounds provide cues for the spoof class? Do
these dataset artefacts bias our ML models? We perform
interventions to understand this. As highlighted earlier in
Section II, the ground truth of DTMF artefacts for the spoof
class in the evaluation set is unavailable, and hence the present
study does not include this intervention on them. To this end,
we take all the TNs for the spoof class in the development set
that contain a DTMF artefact and run this intervention. We
pass the file identifier containing a DTMF as side information
to the intervention module (Fig. 1) which removes the first
250 ms audio samples from them before extracting features
and obtaining a classification score.

TABLE III
DTMF INTERVENTION RESULTS FOR THE DEVELOPMENT SET SPOOF

FILES IDENTIFIED TO CONTAIN A DTMF. PROP HAS THE SAME MEANING
AS IN TABLE II. TFI: TEST FILES INTERVENED.

Model # TFI FP Prop (%)
CNN1 136 +3 2.2
CNN2 144 +3 2.08
Cosine 145 0 0.0
SVM 145 0 0.0
GMM 141 +1 0.71

Table III summarizes the intervention results. We see a
negligible proportion of intervened files affected from this
intervention, which suggests that DTMF sounds do not provide
a substantial bias on model decisions. Another interpretation
is the fact that the spoof signals acquire other channel charac-
teristics during the replay simulation. Therefore, their impact
may be negligible when audio signals are replayed in noisy
acoustic conditions.

C. Impact of “pattern difference” on model prediction

The previous two experiments involved removing BCS and
DTMF artefacts from the test files identified to contain such
artefacts. In this experiment we remove audio samples before
and after the actual speech utterance during testing ensuring
that both bonafide and spoofed audio recordings now have
similar audio patterns. This also means that BCS or DTMF (if
present) gets removed in this intervention experiment. Thus,
BCS and DTMF experiments can be thought of as a special
case of pattern difference interventions but performed on a
small set of test files identified to contain such artefacts.

Here, the intervention module uses speech endpoints as side
information and discards audio samples before and after the
actual speech utterance. We use our manual speech endpoint
annotations that we prepared during dataset inspection. Refer
to [49] for additional details on the annotations. Following our
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prior findings in [14] we hypothesize that the pattern difference
favours the bonafide class. To confirm this, we take all the
TPs for the bonafide class and all the FPs for the spoof class
(from Table I) and run this intervention on them. As we did
not perform qualitative analysis on spoof files in the evaluation
set (Section II), the speech endpoint annotations for them are
not available. Therefore, we do not run this intervention on
evaluation set spoof files in the present study.

TABLE IV
PATTERN DIFFERENCE INTERVENTION RESULTS. TO BE COMPARED WITH

TABLE I. ‘+’, ‘-’ DENOTES AN ABSOLUTE INCREASE/DECREASE. GROUND
TRUTH ANNOTATIONS FOR SPOOF FILES IN THE EVALUATION SET ARE

UNAVAILABLE (INDICATED BY −).

Intervention on Bonafide class Spoof class
Model Set FN FRR % FP FAR %

CNN1
Dev +334 +43.95 -49 -5.16
Eval +519 +39.98 − −

CNN2
Dev +73 +9.61 -35 -3.68
Eval +289 +22.27 − −

Cosine Dev +155 +20.39 -53 -5.58
Eval +352 +27.12 − −

SVM Dev +174 +22.89 -52 -5.47
Eval +349 +26.89 − −

GMM Dev +170 +22.37 -41 -4.32
Eval +429 +33.13 − −

Table IV summarizes the results of this intervention. As
expected, a large number of bonafide test examples on both
the development and evaluation sets are now misclassified by
all our ML models as shown from the increased FN and FRR%
metrics. On the spoof class (development set) we find a drop
in the FP and FAR% metrics for all ML models. These results
confirm our hypothesis about this pattern difference on this
dataset. It indeed favours the bonafide class. This makes sense
since a large proportion of bonafide audio files in the training
set have silence/nonspeech in the first 300 ms while the spoof
class contains speech.

V. ATTACKING COUNTERMEASURE MODELS

In the previous section we demonstrated that BCS artefacts
favour the bonafide class as evident from the increase in FRR%
when we removed them from the bonafide test files. We now
show how easy it is to attack countermeasure models by using
dataset artefacts as a class cue. More precisely, we perform a
similar intervention as in Section IV with one difference. The
intervention module now adds bonafide class cues to the test
files. We study fooling countermeasures using three different
bonafide class signatures: BCS, synthetic sound (mimicking
BCS artefact), and zero-valued silence. We perform these
interventions on all the misclassified bonafide files (FNs) and
correctly detected spoof files (TNs) from Table I.

A. Using BCS as a cue for the bonafide class

Here the intervention module (Fig. 1) takes as side-
information a “BCS” signature and appends it to the start of
test audio recordings before passing on to the other modules
for feature extraction and scoring. As a BCS signature we
use the first 100 ms samples of the most confidently classified
bonafide audio “T 1001039.wav” containing a BCS artefact in

the training set. It should be noted that we did a similar line
of study in [14] and [12] but this study is different in terms
of the signature we used for interventions. Furthermore our
current study can be viewed as an extension of our prior work
[14]. In [12] we used 60 ms zero-valued silence as a signature
to fool GMM-based countermeasures on version 1.0 of this
dataset. In [14], we find that CNNs give strong emphasis on
the first 400 ms for class discrimination. And, we used the
initial 400 ms samples as a signature to fool the prediction of
the CNN countermeasure.

TABLE V
MANIPULATING MODEL DECISIONS USING BCS. TO BE COMPARED WITH

TABLE I. ‘+’, ‘-’ DENOTES AN ABSOLUTE INCREASE/DECREASE.

Intervention on Misclassified Correctly detected
bonafide files spoof files

Model Set FN FRR % FP FAR %

CNN1
Dev -46 -6.05 +446 +46.95
Eval -129 -9.94 +4909 +40.88

CNN2
Dev -56 -7.37 +479 +50.42
Eval -153 -11.79 +4937 +41.11

Cosine Dev -37 -4.87 +130 +13.68
Eval -54 -4.16 +1857 +15.46

SVM Dev -33 -4.34 +106 +11.16
Eval -53 -4.08 +1952 +16.26

GMM Dev -51 -6.71 +325 +34.21
Eval -142 -10.94 +5732 +47.73

Table V shows the intervention results in terms of absolute
increase/decrease in the error metrics. The consistency in the
drop of FN and FRR% and the increase in FP and FAR%
across all ML models confirm our hypothesis about BCS. It
indeed serves as a strong cue that a model attends to form
bonafide class decisions. The GMM and CNNs in particular
show a high impact of this intervention on the evaluation
set. For example 124 misclassified bonafide files are now
correctly classified by CNN1 (out of 139) and 142 by the
GMM (out of 179). Furthermore FAR raises by more than 40%
for the GMM and CNNs demonstrating that a large amount
of correctly detected spoof files are now able to bypass them.
Even though i-vectors are computed on CQCC features, the
impact on Cosine and SVM models that operate on i-vectors is
much smaller than GMMs. A possible reason for this is that
i-vectors involve feature aggregation across all time frames
during super-vector computation which may have reduced the
influence of BCS on the final i-vector feature.

For further insights we provide visualizations of the original
scores and scores obtained after the BCS intervention in our
supplementary document [49].

B. Using synthetic cues for the bonafide class

What if an attacker does not have access to the BCS signa-
ture? Can they still fool countermeasure models trained on this
dataset using a synthesized burst sound? To demonstrate this,
we now repeat the same BCS interventions but use 100 ms
white noise as a signature to fool ML models. We experiment
with synthetic noise at different signal to noise ratios (SNR)
and demonstrate that white noise with enough power can fool
ML decisions serving as a cue for the bonafide class. To
ensure that the power of the original and manipulated speech
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TABLE VI
MANIPULATING MODEL DECISIONS USING WHITE NOISE. TO BE

COMPARED WITH TABLE I.

Intervention on Misclassified Correctly detected
bonafide trials spoof trials

Model SNR Set FN FRR FP FAR

CNN1

0 Dev -26 -3.42 +394 +41.47
Eval -114 -8.78 +4583 +38.17

6 Dev -38 -5.0 +176 +18.53
Eval -94 -7.24 +1138 +9.48

CNN2

0 Dev -43 -5.66 +662 +69.68
Eval -136 -10.48 +6748 +56.2

6 Dev -40 -5.26 +164 +17.26
Eval -73 -5.62 +2113 +17.6

Cosine
0 Dev -63 -8.29 +161 +16.95

Eval -78 -6.01 +1425 +11.87

6 Dev -13 -1.71 +14 +1.47
Eval -13 -1.0 +240 +2.01

SVM
0 Dev -61 -8.03 +139 +14.63

Eval -74 -5.70 +1333 +11.10

6 Dev -11 -1.45 +20 +2.11
Eval -19 -1.46 +267 +2.22

GMM
0 Dev -17 -2.24 +46 +4.84

Eval -20 -1.54 +660 +5.50

6 Dev -27 -3.55 +49 +5.16
Eval -23 -1.77 +368 +3.06

0.0 0.2 0.4 0.6 0.8 1.0
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Fig. 3. Score distributions of spoof files in the evaluation set that were
originally detected correctly by CNN2 and are now misclassified after adding
100 ms silence at random time locations.

signal is equivalent after adding noise, we first normalise the
noise samples. Let Xi be a test audio signal and ni represent
the noise samples drawn from a standard normal distribution.
Therefore the signal to noise ratio (SNR) can be written as:

SNR = log10

[
Var(Xi)

Var(α× ni)

]
(5)

where α is the scalar we want to compute for a given Xi and
an SNR and Var(.) represents variance. Thus:

α =
√

Var(Xi)× 10−SNR. (6)

Using α in Eq. 6, the intervention module (Fig. 1) nor-
malises the random noise before appending it to a test signal.
The updated signal is then propagated for feature extraction
and scoring. We investigate the impact of synthetic noise at dif-
ferent SNR levels and at the start and random time locations. In

general, we find similar trends in the results for the evaluation
set with interventions at different time locations. The impact
reduces as we increase the SNR from 0 to 6, and CNNs are
more sensitive in contrast to other countermeasure models.
Furthermore, for CNNs we find the impact to be higher for
interventions at the starting time location in contrast to adding
synthetic noise at random time locations. For example, on the
evaluation set, with SNR 0, CNN1 reports an FAR of 48.94%
when we added synthetic noise at the start and an FAR of
38.17% for random time locations. An explanation to this
accounts for the signal replication procedure used in CNN1

to match the utterance duration to 4 seconds. As illustrated
in Fig. 2, adding artefacts (synthetic noise in this case) at
the beginning would have more replication (for cases when
original utterance duration is shorter than 4 seconds) of the
artefact in contrast to adding it at random time locations,
which explains the reason for the higher impact at starting
time locations.

Therefore, in this paper we only include results for in-
terventions at random time locations and provide results for
the start time location in our supplementary document [49].
Table VI shows the intervention results. In general, on both
the development and evaluation sets we find the impact to
become less effective as we increase the SNR. A possible
interpretation could be that a 100 ms noise at 6 dB has smaller
power/amplitude and does not exhibit a strong burst-sound
property in contrast to a 0 dB noise. While this interpretation
holds true for most of our ML models, we observe a slightly
different behaviour for the GMM. An interpretation to this
is that GMMs trained on version 2.0 of the dataset are still
sensitive to silence (see [49] for details) and 100 ms noise
samples drawn at 6 dB SNR have low energy in contrast
to noise samples at 0 dB SNR. Although we see a similar
trend (as in Table V) in FRR% and FAR%, we find much
smaller impact for the GMM using noise in comparison to
BCS (compare Table V and VI). A possible reason could be
that we normalise the noise with respect to the original signal
power (Eq. 6) which is not performed with BCS. We simply
copy the BCS (raw samples containing BCS) and append it to
the test signal during the intervention (Fig. 1).

C. Using silence as a cue for the bonafide class

As highlighted in Section II, some bonafide audio files in
this dataset still contain zero-valued silence which is miss-
ing from spoofed files. Therefore, we run the intervention
(Fig. 1) using silence as a bonafide class cue to fool our
five countermeasures trained on this dataset. As we did a
similar experiment on version 1.0 of this dataset in [12],
we provide all the experimental details and results in our
supplementary document [49]. However, we provide an insight
on the impact of this attack through score visualization for
one of our countermeasure in Fig. 3. We observe that all the
true negative examples are now misclassified as bonafide class
confirming the hypothesis that silence indeed serve as potential
cue on this dataset. Our supplementary document provides
detailed explanation.



IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 8

Fig. 4. Proposed countermeasure design for reliable performance estimates.

CNN_1
CNN_2

Cosine SVM GMM
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

EE
R 

%

Manual annotations
Automatic annotations

Fig. 5. Performance (EER%) on the evaluation set using models trained with
manual and automatic speech endpoint annotations.

VI. OVERCOMING THE IMPACT OF DATASET ARTEFACTS

We now describe our proposed methodology to address the
issues highlighted in our study so far. To this end, we propose
the use of speech endpoint detection during training and
inference to build reliable and trustworthy countermeasures on
this dataset. Fig. 4 illustrates our proposed idea. The first three
blocks are shared during training and testing. The endpoint
detection module removes raw samples before and after the
actual speech utterance5. This ensures that both bonafide and
spoof utterances now have similar audio patterns and are free
from recording artefacts we highlighted in Section II. The
cleaned speech signal is then passed on to the subsequent
modules for feature extraction, model training and inference.
As before (Section IV) the role of the ‘unify duration’ module
remains the same. Furthermore, we now discard the use of
corrupted audio files (Section II) during training and testing.

In the following, we first describe the approach used for
speech endpoint detection. We then explain our proposed
frame-level deep countermeasure model for robust perfor-
mance. Then we evaluate the performance of our new models
trained with endpoint detection providing new benchmark
results. Finally, we demonstrate that our newly trained models
are more robust against being manipulated using cues (BCS
artefacts) found in this dataset in contrast to the initial models
trained without speech endpoint detection.

A. Speech endpoint detection

We use two approaches for speech endpoint detection:
manual and automatic. The manual approach uses speech

5Our proposed speech endpoint detection approach (manual and automatic)
do not remove nonspeech/silence within the utterance.

endpoint annotations that we collected during the dataset
inspection. Automatic speech endpoint detection is based on
rVAD [57], a robust voice activity detection algorithm. Please
refer to [49] for details on the two approaches. We use manual
speech endpoint annotations for training and validating models
and, use automatic endpoint detection during testing (as we
do not have manual annotations). Automatic methods may
yield some incorrect endpoint annotations. Therefore, it is
important to first compare the accuracy of automatic and
manual speech endpoint annotations. For this, we train (and
validate) all our countermeasure models using both manual and
automatic annotations and, use automatic annotations during
testing. We present the results of this experiment in Fig. 5. As
can be seen, for all our countermeasure models we observe
a comparable EER% (on the evaluation set) between mod-
els trained using automatic and manual endpoint annotation.
These results suggests that our proposed hypothesis of using
manual annotations during training (and validation) but using
automatic annotations during testing would not affect much
on model prediction.

B. Frame-level deep countermeasure model

In this study we have found that neural network based
countermeasures (CNNs) not only show superior performance
over other countermeasures, but are equally more sensitive to
artefacts in this dataset. One reason for this accounts to the
fixed-duration input representation used by them. Duplicating
audio contents to match the desired duration also involves
spreading artefacts in the audio signal (see Fig. 2). As a result
they become more sensitive to artefacts (see Tables IV, V),
and hence they are less trustworthy. Motivated from this, we
propose a frame-level deep countermeasure model (DNN) that
is trained on the original audio contents (i.e non-replicated or
truncated), which is more reliable than CNNs. The use of
context-frames — augmenting past and future time frames
to the current time frame — is often adopted in training
frame-level DNNs [58]. However, for direct comparison with
GMMs we do not use any context-frames in this work. This
DNN treats the input as a bag-of-frames much like the way
GMMs are trained. Its architecture comprises a series of fully
connected layers and operates on a single input frame to
predict whether the frame corresponds to a bonafide or spoofed
class. We provide more details related to architecture, training
and scoring of this DNN in our supplementary document [49].

For comparison and completeness of the study, we first
train and evaluate this DNN on the original dataset (without
endpoint detection). Our DNN reports an EER of 28.95%
on the evaluation set which is worse than CNN1 (10.7%)
and CNN2 (13.4%) trained using fixed-input representations.
Although CNNs trained with context information yield better
detection performance over the frame-based DNN, we later
demonstrate (Section VI-D) that DNNs are more robust and
trustworthy than CNNs.

C. Model performance using endpoint detection

We re-train all our countermeasures described in Section III
applying manual endpoint annotations during training and
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TABLE VII
NEW BENCHMARK RESULTS (EER %) USING MODELS TRAINED WITH

SPEECH ENDPOINT DETECTION. 1: NO ENDPOINT DETECTION. 2: USING
AUTOMATIC ENDPOINT DETECTION.

Model Set Test condition 1 Test condition 2

CNN1
Dev 7.76 9.0
Eval 17.2 14.58

CNN2
Dev 8.6 9.49
Eval 15.16 14.77

Cosine Dev 14.76 15.91
Eval 20.49 18.89

SVM Dev 14.80 15.76
Eval 21.34 19.26

GMM Dev 16.41 16.21
Eval 18.6 18.29

DNN Dev 13.03 12.92
Eval 17.55 15.94

validation. We evaluate the performance of our new models
on the development and evaluation set without using endpoint
detection (test condition 1) and applying automatic endpoint
detection (test condition 2). Table VII summarizes the results.

As expected our new models now show worse performance
in comparison to initial models (Table I) trained without
endpoint detection. However it should be noted that our main
focus here is not on improving EERs. We aim towards building
trustworthy countermeasures providing reliable performance
estimates, and making them secure from being manipulated us-
ing artefacts/cues in the dataset. Overall, deep models (CNNs
and DNN) show better performance on both the development
and evaluation sets compared to other countermeasures under
both test conditions. This demonstrates their superiority in
learning discriminative features. We find that all our models
show better generalization on the evaluation set using speech
endpoint detection (condition 2). On the development set, we
see a similar behaviour for GMM and DNN countermeasures
but CNNs, Cosine and SVM countermeasures show slightly
better performance without using endpoint detection (condi-
tion 1). Furthermore, the small performance difference of these
models between test conditions 1 and 2 suggest that they are
now less sensitive to artefacts in the dataset.

D. Model robustness experiment

We now demonstrate the robustness of our newly trained
countermeasures against being manipulated using BCS arte-
facts through an intervention experiment illustrated in Fig. 1.
We perform this intervention on all the test recordings in the
development and evaluation sets using the same 100 ms BCS
signature from Section V with one major difference. Here the
intervention module performs two tasks. First, it applies an
automatic speech endpoint detector to remove raw samples
before and after the speech utterance. Second, it appends the
BCS signature at the start of the cleaned speech signal. The
updated signal is then passed to the subsequent modules for
feature extraction and scoring. We score them using both our
newly trained models and initial models. Finally, we compare
and contrast their performance in terms of EER. Table VIII
summarizes the results. Numbers shown to the left of the arrow
are the results of our initial models (from Table I) and new
models (Condition 2 of Table VII) before the intervention,

and numbers to the right denote results after the intervention
experiment.

TABLE VIII
MODEL ROBUSTNESS RESULTS. NUMBERS TO THE LEFT AND THE RIGHT

OF THE ARROW INDICATE EER% BEFORE AND AFTER THE INTERVENTION
ON TEST SIGNALS USING BCS SIGNATURE, RESPECTIVELY.

Set New model Initial model

CNN1
Dev 9.0→ 10.08 7.7→ 34.5
Eval 14.58→ 18.01 10.7→ 36.19

CNN2
Dev 9.49→ 7.85 7.37→ 8.25
Eval 14.77→ 20.96 13.4→ 22.6

Cosine Dev 15.91→ 15.24 10.6→ 15.11
Eval 18.89→ 19.11 14.8→ 18.13

SVM Dev 15.76→ 15.43 10.8→ 15.84
Eval 19.26→ 19.33 15.6→ 18.84

GMM Dev 16.21→ 15.50 9.2→ 16.85
Eval 18.29→ 19.65 13.7→ 22.48

DNN Dev 12.92→ 12.40 11.57→ 13.33
Eval 15.94→ 17.91 28.95→ 31.46

From the increased EERs of our initial model, it is evident
that the effect of this intervention on countermeasure models
trained on the original training data containing BCS is much
higher in comparison to the new models. We observe that
our proposed frame-level DNN shows the best results under
this intervention, demonstrating its robustness on this dataset.
Furthermore, under the initial training conditions (without
endpoint detection) the error rate of this DNN changes by
about 2.5% (on the evaluation set), and is the smallest absolute
change among all other initial models including CNNs. Over-
all, our proposed approach of training countermeasures using
endpoint detection demonstrates robust performance over the
initial models. This holds true for all our models studied in
this paper.

VII. DISCUSSION AND CONCLUSIONS

Machine learning models make decisions by learning un-
derlying patterns in the training data. As discussed in Section
I artefacts present in a dataset can affect a wide range of ML
tasks, and the impact caused by such artefacts in ASV anti-
spoofing can be costly. It is therefore important to ensure that
artefacts in a dataset are taken into account to build reliable
ML models. To that end, this paper focus on security for
voice biometric using a benchmark ASVspoof 2017 dataset
which is a popular dataset for replay spoofing attack detection
used in more than 60 published research papers. Through
qualitative analysis we identified artefacts on this dataset,
and further investigated and confirmed their influence on
models decision through intervention experiments (Section
IV). Among different artefacts, BCS provides strong cues for
the bonafide class. We also find that silence serves as a cue for
the bonafide class (Section V-C). Our intervention experiments
using DTMF sounds show that it has no influence on model
decisions.

“Ok Google” (S02) is the shortest duration (0.7 to 0.8
seconds) phrase among the ten phrases (summarized in [49])
used in the ASVspoof 2017 dataset. However, a large number
of S02 examples was found to have duration more than
1.5 seconds (see Section II). Therefore, we hypothesize and
confirm that S02 recordings are highly affected against the
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attack we demonstrated in Section V. We provide details in
our supplementary document [49].

We emphasize two main reasons why accountability of
artefacts is important while building anti-spoofing systems on
this dataset. First, models trained without preprocessing these
artefacts (for example BCS) may lead to overestimating the
actual performance (Section IV). In other words, a proposed
feature and a classifier might yield good replay detection
performance on this dataset but might perform poorly in real-
world replay detection applications. Second, they leave loop-
holes for being attacked by a simple copy-paste mechanism
as we demonstrated in Section V.

To that end, we propose a method to mitigate the impact
of artefacts on this dataset, and build reliable and trustworthy
models. For this, a speech endpoint detection module (Fig.
4) that discards every audio sample before and after the
actual speech utterance is proposed. This ensures that both
classes of audio now have a similar pattern, forcing learning
algorithms to now focus exploiting factors of interest —
for example channel characteristics, in solving the spoof-
ing detection problem, thus producing reliable performance
estimates. We further demonstrated the effectiveness of our
proposed method in mitigating the effect of dataset artefacts
making countermeasures more trustworthy (Section VI-D). We
emphasize that one of our goals in this paper is to provide
awareness to the users of this dataset about potential issues and
their impact on countermeasure performance. We acknowledge
that ASVspoof 2017 dataset is one of the best of its kind as it
contains a wide range of spoofed examples collected under real
replay attack conditions. To make best use of this dataset while
promoting reliability and trustworthiness, we recommend use
of speech endpoint detection. Furthermore, it should also be
noted that proposing novel machine learning models that are
inherently robust to dataset artefacts is out of the scope of this
paper.

To conclude, replay spoofing attack detection is indeed a
difficult task to solve. Artefacts in the training data can be
easily exploited as we have demonstrated in this work and
in [42] on ASVspoof 2019 PA, the latest benchmark replay
dataset. Countermeasures trained with such dataset artefacts
might yield good performance as indicated by some metric (eg.
EER), however their trustworthiness is called into question as
they behave much like a “horse” in machine learning [32],
[45], overestimating the actual performance. It is therefore
important to ensure that both bonafide and spoof class training
data have similar audio patterns and differ only in terms of
channel characteristics. This encourages the development of
reliable and trustworthy spoofing countermeasure models as
they are now forced to exploit only the relevant factors of
interest during training.

One potential drawback of our proposed methodology is
that it would not work for cases when artefacts appear within-
utterance. Although in the ASVspoof 2017 dataset we did
not find BCS and DTMF artefacts within utterance during
our qualitative analysis, we found few utterances contain-
ing silence (and near-silence) within the utterance. Since an
ASV system usually has a VAD component that discards all
nonspeech samples, therefore, from a practical application

perspective it would be interesting to study countermeasure
design by applying a VAD on the whole utterance. We aim to
extend this idea as part of our future work using the benchmark
ASVspoof 2017 and ASVspoof 2019 datasets. Studies on
fooling ML models using adversarial machine learning is an
active research topic [59]–[61]. Investigating the robustness
of anti-spoofing systems against adversarial attacks would be
another research avenue we look forward to. Furthermore we
also aim to investigate the interpretability of such models when
there are no dataset biases to uncover what attributes these
models are learning to make decisions.
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