
First Genome Wide Association Study of Latent Autoimmune Diabetes in 

Adults Reveals Novel Insights Linking Immune and Metabolic Diabetes 

 

Diana L. Cousminer1,2*, Emma Ahlqvist3*, Rajashree Mishra1,4*, Mette K. Andersen5*, Alessandra 

Chesi1, Mohammad I. Hawa6, Asa Davis7, Kenyaita M. Hodge1, Jonathan P. Bradfield8, Kaixin Zhou9, 

Vanessa C. Guy1^, Mette Wod10, Lars Fritsche11,12, Henrik Vestergaard5, James Snyder8, Kurt Højlund10, 

Allan Linneberg5, Annemari Käräjämäki13, Ivan Brandslund10, Cecilia E. Kim8, Daniel Witte10,14, Elin 

Pettersen Sørgjerd11,12, David J. Brillon15, Oluf Pedersen5, Henning Beck-Nielsen10, Niels Grarup5, 

Richard E. Pratley16, Michael R. Rickels17, Adrian Vella18, Fernando Ovalle19, Ronald I. Harris20, Stephen 

Varvel21, Valdemar E.R. Grill11, Bone Mineral Density in Childhood Study$, Hakon Hakonarson8,22, 

Phillippe Froguel23,24, John T. Lonsdale25, Didac Mauricio26, Nanette C. Schloot27‡, Kamlesh Khunti28, 

Carla J. Greenbaum7, Bjørn Olav Åsvold11,12, Knud B. Yderstræde10, Ewan R. Pearson9, Stanley 

Schwartz29, Benjamin F. Voight2,17,30,31, Torben Hansen5, Tuomi Tiinamaija32, Bernhard O. Boehm33,34, 

Leif Groop3*, R. David Leslie6* and Struan F.A. Grant1,2,8,17,22* 

 

*equal contribution 
 

1Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; 2Department of Genetics, 

Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; 3Unit of Molecular Metabolism, Department 
of Clinical Sciences in Malmö, Lund University, SE-20502 Malmö, Sweden; 4Graduate Group in Genomics and Computational 

Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; 5The Novo Nordisk 

Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, 

University of Copenhagen, Universitetsparken 1, 2100, Copenhagen, Denmark; 6Department of Immunobiology, Barts and the 

London School of Medicine and Dentistry, Queen Mary University of London, London, UK; 7Benaroya Research Institute, 
Seattle, WA 98101; 8Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; 9Division of 

Cardiovascular & Diabetes Medicine, Medical Research Institute, University of Dundee, Dundee, UK; 10Odense University 

Hospital, Odense, Denmark; 11Department of Endocrinology, St Olav University Hospital, Trondheim, Norway; 12K.G. Jebsen 

Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and 

Technology, Trondheim, Norway; 13Vaasa Health Care Center and Department of Primary Health Care, Vaasa Central Hospital, 
Vaasa, Finland; 14Department of Public Health, Aarhus University, Aarhus, Denmark; 15Cornell Medical College, NY, 

USA;16Adventist Health System/Sunbelt, Inc. d/b/a Florida Hospital, Orlano FL;17Institute of Diabetes, Obesity and Metabolism, 

Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; 18Mayo Clinic, Rochester Minnesota; 
19University of Alabama, Birmingham AL; 20Geisinger Health System, Danville PA; 21Health Diagnostic Lab Inc., Richmond, 

VA; 22Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; 23Centre 
National de la Recherche Scientifique (CNRS) 8199, Université Lille Nord de France, Pasteur Institute, Lille, France; 
24Department of Genomics of Common Disease, Imperial College London, London, UK; 25National Disease Research 

Interchange, Philadelphia, PA 19103; 26Hospital Universitari Germans Trias i Pujol, Spain; 27German Diabetes Center, 

Düsseldorf, German; 28The University of Leicester, Leicester, UK; 29Main Line Health System, Wynnewood, PA, USA; 
30Department of Systems, Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of 
Pennsylvania, Philadelphia, PA, USA; 31Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, 

University of Pennsylvania, Philadelphia, PA, USA; 32Folkhälsan Research Centre; Research Programs Unit, Diabetes and 

Obesity; University of Helsinki; Helsinki, Finland; 33Department of Internal Medicine I, Ulm University Medical Centre, Ulm, 

Germany; 34LKC School of Medicine, Nanyang Technological University, Singapore and Imperial College, London, UK 

 
‡ Currently employed by Lilly Germany 

^ Currently employed by Science 37 

$ See Supplemental Note for details 

* Equal contribution  



INTRODUCTORY PARAGRAPH 

 

Latent autoimmune diabetes in adults (LADA) shares clinical features with both type 1 diabetes 

(T1D), including the presence of autoimmune autoantibodies, and type 2 diabetes (T2D), with 

adult age of onset, features of metabolic syndrome and initial insulin independence1,2. Despite 

being at least as prevalent as T1D4, the genetic basis of LADA remains largely 

uncharacterized1,4, except for limited candidate gene analyses suggesting a degree of shared 

genetic susceptibility with both T1D and T2D4–14. We therefore performed the first genome-wide 

association study of LADA. Together with HLA and gene set enrichment analyses, our data 

indicate that the leading signals are shared with T1D, but a T2D genetic component is also 

present. We report a novel signal at PFKFB3, encoding a known regulator of glycolysis in 

energy stressed cells, potentially bridging autoimmunity and metabolism. Furthermore, we 

observed mutually exclusive genetic co-heritability between LADA and immune traits 

(associated with T1D) as well as LADA and metabolic/anthropometric traits (associated with 

T2D), suggesting that the T2D genetic component operates as a modifier of the LADA 

phenotype. 

  



MAIN TEXT 

 

Although commonly referred to as ‘type 1.5 diabetes,’ the etiological relationship between 

LADA and both T1D and T2D is not fully elucidated. In many populations, LADA is at least as 

prevalent as T1D3, but is frequently misdiagnosed as T2D1,4,15,16 given its presentation without 

need for insulin. As such, LADA subjects could be present in cohort studies for T2D that do not 

screen out autoantibody-positive cases, potentially resulting in the identification of associations 

for T2D that are etiologically related to autoimmunity. This challenge is increasingly acute as 

increasingly larger data sets are assembled to identify additional, common genetic risk factors of 

smaller effect sizes. Indeed, reflecting this concern, recent genome-wide association study 

(GWAS) analyses of T2D have reported associations at T1D-associated regions such as HLA-

DQA1 in European ancestry populations17 and HLA-B and INS-IGF2 in African ancestry 

populations18. While the most recent T2D GWAS17 claims their signals do not likely represent 

patients with autoimmune diabetes, they queried only a single T1D SNP for the HLA, although 

we note that their lead SNP at HLA-DQA1 (rs9271775) in fact tags the established T1D-

associated haplotype HLA-DRB1*15- HLA-DQB1*0602 via proxy SNP rs3135388 (r2= 0.653). 

As such, understanding the genetic etiology of LADA will not only aid the much needed 

characterization of this relatively common form of diabetes, but will also facilitate our 

understanding of both T1D and T2D. 

To date, relatively limited candidate gene studies have been carried out for LADA, but have  

supported a role for both T1D and T2D risk loci2,4–13,19; however, no systematic genome-wide 

appraisal of LADA has been performed. To address this, we conducted the first GWAS of 

LADA cases (n = 2,713) versus population-based controls (n = 5,439) of European ancestry in a 



discovery meta-analysis setting (Supplementary Table 1). Four signals achieved genome-wide 

significance (P < 5x10-8), all at established T1D risk loci (HLA, PTPN22, INS, and SH2B3; 

Table 1), despite the adequate power of our study design to detect the strongest T2D-like effects 

(Supplementary Table 2). Pathway analysis with DEPICT20 for signals at P < 10-5 supported a 

strong immune role in the pathogenesis of LADA (Supplementary Tables 3-4), with GSEA 

implicating ‘abnormal cytotoxic T cell physiology’ (nominal P = 6.39 x 10-7) as well as the 

‘mTOR subnetwork’ (P = 6.03 x 10-5) and ‘cell cycle’ (P = 1.67 x 10-5) as also seen in a previous 

epigenome-wide association study of T1D,17 and immune system tissue types, including ‘natural 

killer cells’ and ‘T lymphocytes’ (nominal P = 0.0079 and 0.0082, respectively). This is 

consistent with previous reports of these cell types playing a role in the pathogenesis of T1D21–23 

and LADA24–26. 

Using LADA cases and population samples from an additional two study centers, we 

attempted replication of 13 signals with suggestive association (P < 5x10-5) (Supplementary 

Table 5). We observed a novel signal at 10p15.1 between the two established T1D loci at IL2RA 

and PRKCQ, which achieved borderline genome-wide significance (rs1983890-C, OR (95% CI) 

= 1.22 (1.14-1.32), P = 5.06 x 10-8) (Fig. 1A-B). As our LADA signal was in moderate to low 

LD with established T1D-associated alleles (Supplementary Table 6), we conditioned on the 

T1D SNPs and observed that rs1983890 remained strongly associated with LADA (OR (95% CI) 

= 1.15 (1.12-1.18), P = 1.7 x 10-7) (Fig. 1C). DEPICT gene prioritization analysis20 identified the 

gene encoding ‘6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 3’ (PFKFB3), the nearest 

gene to the LADA signal, as the most likely candidate (Supplementary Table 7). Previous 

studies strongly support this gene as a plausible biological candidate, as PFKFB3 plays a key 

regulatory role in insulin-activated glycolysis in energy stressed cells27,28. Furthermore, previous 



studies have linked PFKFB3 to both autoimmune diseases (e.g., rheumatoid arthritis, Crohn’s 

disease, and celiac disease29–32), as well as T2D biology via insulin resistence33–37.  

Several additional variants with suggestive association to LADA overlapped previously 

documented T1D associations, including rs11755527 (BACH2) and rs941576 (DLK1). Taking a 

candidate approach, we extracted 68 established T1D-associated loci from the LADA vs. 

population controls meta-analysis, and found that 18 of these 68 loci yielded association with 

LADA after multiple-test correction (P < 3.6 x 10-4, Supplementary Table 8). Taking a similar 

candidate approach with 70 established T2D loci, none surpassed the significance threshold; 

however, at the nominal significance level (P < 0.05), 12 T1D and 14 T2D variants were 

associated with LADA, all having the same direction of effect as on T1D and T2D, respectively, 

except for the T2D locus CILP2 (rs10401969-T, OR = 0.80 (0.72-0.91), P = 4.9 x 10-4).  

In terms of T2D-associated loci, our results differ from previous candidate studies. For 

instance, our previously reported HNF1A7 locus was not observed in this setting.  Furthermore, 

while previous studies showed an association for the leading T2D risk locus at TCF7L2 with 

LADA,6,12 potentially providing a link between T2D and autoimmune diabetes,  our data does 

not support this finding (Supplementary Table 9)  (LADA vs. population controls, rs7903146-

T: OR (95% CI) = 1.006 (0.924-1.095), P = 0.896) despite the adequate power of our study 

design to detect the leading T2D-like signals (Supplementary Table 2). To understand the 

evidence supporting the previous association, we looked at the allele frequencies of the lead 

variant in each contributing cohort. This revealed that the difference in risk allele frequency 

between cases and controls was cohort-specific, and may be explained by cohort differences in 

LADA inclusion criteria (see Supplementary Table 1 and Supplementary Note) or by 

differences in allele frequencies between ActionLADA cases and our controls. Another 



possibility is that inclusion or exclusion of T2D patients from control cohorts would affect the 

frequency of the risk allele; however, sensitivity analysis with control sets that either excluded or 

included diabetic patients in Swedish and Danish samples showed the persistence of an 

association (Supplementary Table 10), although not at the genome-wide significance level. 

Next, we compared LADA with T2D at the genome-wide level. Similar to the results of 

LADA vs. population controls, LADA (n = 2,858) vs. T2D (n = 10,444) yielded genome-wide 

significance for the same four T1D risk loci, as well as for the T1D risk BACH2 locus 

(rs6908626)38 (Table 1). As such, comparing LADA cases with both the general population and 

with T2D cases has implied that LADA is genetically more similar to T1D, comparable to the 

findings of previous reports7,39. We went on to perform a GWAS of LADA (n = 2,533) vs. T1D 

(n = 971) to assess whether any differences could be detected. Our results showed that only the 

HLA region was significantly different, representing a relative depletion of the lead signal 

among LADA cases when compared to T1D cases (rs9273368-A, OR (95% CI) = 0.340 (0.289-

0.399), P = 8.69 x 10-40; Table 1). To further investigate differences in the HLA region between 

LADA and T1D cases, we imputed this region using SNP2HLA40 in 2,159 ActionLADA + 

CHOP + Swedish LADA cases and 1,990 T1D cases (WTCCC41) and compared the frequencies 

of the leading T1D-associated HLA haplotypes (Supplementary Table 11). After removing 

haplotypes with less than 1% frequency, fifteen known T1D-associated HLA haplotypes were 

tested for association in LADA compared to T1D. Eleven T1D haplotypes were significantly 

different in frequency between LADA and T1D cases after correction for multiple testing (P < 

0.003), with all but four being protective against T1D42. The four T1D susceptibility haplotypes, 

HLA-DRB1*0301-DQA1*0501-DQB1*0201, HLA-DRB1*0401-DQA1*0301-DQB1*0302, 

HLA-DRB1*0404-DQA1*0301-DQB1*0302, and HLA-DRB1*0405-DQA1*0301-



DQB1*030242, had significantly less impact in LADA. This could be partly explained by the 

established age gradient in HLA frequencies seen in T1D patients43; however, the HLA risk 

genotype frequency has been shown to differ also between LADA patients and T1D patients with 

age at onset >35 yrs13,44. Future studies of the differences in HLA risk haplotypes between T1D 

and LADA are therefore warranted. 

Taken collectively, GWAS and HLA haplotype analysis based on established associations, 

along with GSEA analyses, supports the hypothesis that the strongest genetic risk loci for LADA 

are shared with T1D, but that established T2D alleles also appear to play a role, albeit to a lesser 

degree. To further evaluate this hypothesis beyond established sites by leveraging data from the 

entire genome, we estimated genetic correlation among LADA, T1D, T2D, and related traits 

using LD score regression (LDSC) (leveraging the LDSC v.1.0.0 python package45 or the LD-

hub website46,47, http://ldsc.broadinstitute.org). First, we observed that T1D is, as expected, 

genetically correlated with autoimmune traits such as rheumatoid arthritis (rg (SE) = 0.452 

(0.162), P = 0.005) and systemic lupus erythematosus (rg (SE) = 0.364 (0.134), P = 0.007) (Fig. 

2; Supplementary Table 12). Additionally, T2D is strongly correlated with metabolic, 

glycemic, and anthropometric traits such as waist circumference (rg (SE) = 0.401 (0.04), P = 

3.73 x 10-23) and fasting insulin (rg (SE) = 0.483 (0.095), P = 3.90 x 10-7). However, strikingly, 

T1D and T2D were negatively genetically correlated (rg (SE) = -0.273 (0.092), P = 0.003), 

consistent with previous reports of opposite effects at established sites (e.g., CTRB1, at which the 

T1D risk allele (rs7202877-T) is protective for T2D and vice versa48), although a genome-wide 

negative correlation has not been previously described to our knowledge. It remains unclear 

whether this negative correlation is due to underlying biology or the mutual exclusion of T1D 

patients from T2D studies and vice-versa. Notably, LADA was positively genetically correlated 

http://ldsc.broadinstitute.org/


with both T1D (rg (SE) = 0.379 (0.182), P = 0.037) and autoimmune traits, as well as T2D (rg 

(SE) = 0.309 (0.105), P = 0.003) and metabolic/anthropometric traits. Thus, our LADA sample 

shares genetic etiology with both a T1D-like autoimmune component and a T2D-like 

metabolic/anthropometric component that are mutually exclusive. GADA assays have a 

specificity of 95–98%, so by implication, some GADA-positive cases can be incorrectly 

classified as T2D cases; these should represent only a very small minority of cases and as such 

will not largely bias our results. Conversely, the small percentage of T2D cases misclassified as 

LADA patients could affect the estimate of genetic correlation between LADA and T2D to a 

small degree; however, this impact must be negligible given that we do not observe a positive 

correlation between T1D and T2D. Nevertheless, our findings lead to the hypothesis that the 

polygenic component that contributes susceptibility to T2D acts as a modifier to T1D risk, either 

as a ‘second hit’ in individuals who have moderate underlying autoimmune susceptibility that is 

insufficient to trigger childhood T1D but greater than that of the general population, or as a 

component that delays diabetes onset by protecting against autoimmune beta cell destruction 

earlier in life. 

In conclusion, in this first GWAS of LADA, we show that although the leading genome-wide 

significant signals point towards LADA as being a late-onset form of T1D, there is both a 

reduced potency of key T1D-associated HLA haplotypes and the presence of a T2D-like genetic 

component. Further in-depth studies are necessary to address how LADA develops, as well as a 

need for functional studies to investigate how the glycolytic regulator PFKFB3 is situated at the 

intersection of autoimmune and metabolic diabetes. Furthermore, our LADA dataset should act 

as a resource to help mitigate the unaccounted presence of autoimmune diabetic patients in T2D 

GWAS going forward. 



ONLINE METHODS 

 

Study subjects  

LADA cases were included from cohorts of European ancestry (Supplementary Table 1), 

including ‘ActionLada-Plus,’ All New Diabetics In Scania (ANDIS), the Botnia Study, 

Copenhagen LADA (including samples from Danish Centre for strategic Research in Type 2 

Diabetes (DD2), Vejle Biobank, Odense University Hospital (OUH), Copenhagen Insulin and 

Metformin Therapy trial (CIMT), Inter99, and Steno Diabetes Center (SDC)), Diabetes Registry 

Vasa (DIREVA), GoDARTS, Nord-Trøndelag Health Study (HUNT), and Scania Diabetes 

Registry (SDR). Controls were either population-based (including samples from the Bone 

Mineral Density in Childhood Study (BMDCS), Copenhagen controls (with samples from the 

1936 Birth Cohort and ADDITION-PRO), GoDARTS, HUNT, and the Malmö Diet and Cancer 

study) or contained T1D or T2D cases (including samples from GoDARTs, DIREVA, HUNT, 

and SDR). 

Inclusion and exclusion criteria for LADA, T1D, T2D, and population controls varied by cohort 

(see Supplementary Table 1 and Supplementary Note for details). In general, LADA was 

defined by an age at diagnosis older than 20, 30 or 35 years, with some cohorts restricting the 

upper age limit to 70 years; the presence of diabetes-associated autoimmune autoantibodies, in 

particular GADA-positivity; and the lack of insulin requirement for 6 months or 1 year after 

diagnosis. In some cases, C-peptide level was also used as a filter.  

 

Genotyping and imputation 



Each respective cohort performed genome-wide genotyping on the Illumina CoreExome chip, 

the Illumina OmniExpressExome chip, or the Affymetrix 6 chip. Cases and controls from each 

study center were matched on the same genotyping chip to reduce batch effects. Standard post-

genotyping quality control was performed, including sample exclusions for ambiguous gender, 

call rate < 95%, and any duplicate or related individuals (pi_hat ≥ 0.2), and SNP exclusions for 

monomorphic SNPs, SNPs with MAF < 0.05, and SNPs with missingness rate > 0.05. The 

Haplotype Reference Consortium (HRC) imputation service (URL) was utilized to perform 

imputation for autosomal SNPs.  

 

Genome-wide association and meta-analysis: LADACTRL, LADAT1D, and LADAT2D 

SNPtest 49 was used by each respective cohort to perform case-control GWAS of LADA (n = 

2,713) vs. population controls (n = 5,439),  LADA (n = 2,533) vs. T1D cases (n = 971), and 

LADA (n = 2,858) vs. T2D cases (n = 10,444), including sex and the first principal components 

as covariates (see Supplementary Table 1 for cohort-specific covariates).  

After GWAS, filtering was performed centrally to include only SNPs with a MAF > 0.05, INFO 

quality score > 0.4, and a Hardy-Weinberg equilibrium P > 1x10-7. Meta-analysis was then 

performed for LADA vs. population controls, LADA vs. T1D, and LADA vs. T2D with 

GWAMA50 with two rounds of genomic control (Supplementary Table 13). 

Signals in the secondary tier (P = 1 x 10-6 – 5 x 10-8) for the LADA vs. population controls 

analysis were followed up in the GODARTS and HUNT cohorts (LADA, n = 345; controls, n = 

1,664) and meta-analyzed with the discovery set (total LADA, n = 3,058; controls, n = 7,103) to 

assess whether any novel signals would reach genome-wide significance.  

 



Conditional analysis 

Approximate conditional analysis for known T1D-associated loci was carried out for the 

LADACTRL summary statistics results for the 10p15.1 locus using Genome-wide Complex 

Trait Analysis (GCTA)51,52. For this locus, LADACTRL + HUNT summary statistics were 

conditioned on the following T1D-associated SNPs: rs6183966053, rs1079579153, rs709053054, 

rs1225130755, rs4129512153, and rs1125874755. For 12q24.3, two of the T1D-associated SNPs 

(rs318450455 and rs65317853 were in high LD (r2 > 0.9) with our lead SNP, and the MHC, 

PTPN22, and INS loci were not conditioned as the top signals were identified as T1D-associated 

SNPs. 

 

LD Score Regression 

To test for genetic correlations genome-wide between LADA, T1D, T2D, and health-related 

outcomes, we used LD score (LDSC) regression either through the LDSC v.1.0.0 python 

package45 or the LD-hub website46,47 (http://ldsc.broadinstitute.org/#). Health-related outcomes 

that were genetically correlated with LADA at P < 0.05 were queried for their correlations to 

T1D54 and T2D48. Details on the GWAS that contributed summary statistics for these 

comparisons can be found on the LDSC website. 

 

Pathway analysis 

DEPICT pathway analysis20 was used to perform gene set enrichment, tissue enrichment, and 

gene prioritization analyses. 

 

HLA imputation/analysis 

http://ldsc.broadinstitute.org/


The HLA imputation software SNP2HLA40 was used to impute chromosome 6 in ActionLADA-

Plus (n = 1,365), Swedish LADA cases (n = 794), BMDCS (n = 1,056) and WTCCC T1D cases 

(n = 1,990). HLA alleles with 4-digit resolution were imputed. The R package ‘BIGDAWG’ 

(https://cran.r-project.org/web/packages/BIGDAWG)56 was used to test for allele frequency 

differences for established T1D-associated HLA haplotypes between LADA versus T1D, as well 

as LADA versus BMDCS. Haplotypes with frequencies less than 1% across LADA, T1D, and 

BMDCS were removed from the analysis given that rare haplotypes can result in unstable 

variance estimates and unreliable test statistics.  

 

LD between T2D HLA-DQB1 lead SNP and T1D-associated haplotypes 

rs9271775 was used to check for evidence of linkage disequilibrium between the top signal near 

HLA-DQA1 reported to be associated with  T2D in a recent reported analysis17 and T1D-

associated HLA haplotypes (Table 2). Tag SNPs for HLA alleles were obtained from de Bakker 

et al.57. LADA (n = 1,210) and BMDCS (n = 1,056) chromosome 6 data (imputed as described 

above by SNP2HLA40) was leveraged to calculate pairwise LD between rs9271775 and tag SNPs 

using PLINK58. Information for eight tag SNPs of T1D-associated haplotypes (Table 2) were 

available for testing. 
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Figure 1. LocusZoom plots for the PFKFB3 locus. (A) In LADA vs. population controls with 

the addition of replication samples, rs1983890 reached borderline genome-wide significance. (B) 

This signal lies in between two T1D-associated loci at 10p15.1 (Bradfield 2011). (C) When we 

conditioned on the two known T1D loci, the signal in LADA remained. LocusZoom plots were 

constructed to show the association data of SNPs 400kb upstream and downstream of the lead 

LADA-associated signal at rs1983890.   



 

  



Figure 2. LD score regression (LDSC) analysis. We tested for genome-wide genetic 

correlations between LADA, T1D, T2D, and health-related outcomes. The MHC region was 

excluded prior to these analyses. Outcomes that were genetically correlated with LADA at P < 

0.05 were queried for their correlations to T1D54 and T2D48. Red represents a negative 

correlation, while blue represents a positive correlation. *, P = 0.01-0.05; **, P < 0.01; ***, P < 

0.001. 

 

  



Table 1. Genome-wide significant signals associated with LADA. 

 

SNP Chr Position 

(b37) 

Ref/other 

alle le  

Effect allele frq 

(cases/ctrls) 

O R 95% CI P Gene 

LADA (n =2,713) vs. population controls (n =5,439) 

rs9273368 6 32626475 A/G 0.499/0.279 3.116 2.859-3.396 2.23x10
-146

 HLA-DQB1 

rs2476601 1 114377568 A/G 0.158/0.102 1.711 1.534 -1.908 5.71x10
-22

 PTPN22 

rs689 11 2182224 T/A 0.272/0.197 1.480 1.361-1.610 1.01x10
-19

 INS 

rs7310615 12 111865049 C/G 0.487/0.459 1.302 1.209 -1.401 2.93x10
-12

 SH2B3 

LADA (n = 2,533) vs. T1D cases (n = 971) 

rs9273368 6 32626475 A/G 0.415/0.649 0.340 0.289-0.399 8.69x10
-40

 HLA-DQB1 

LADA (n = 2,858) vs. T2D cases (n = 10,444) 

rs9273364 6 32626302 G/T  0.426/0.296 2.447 2.231-2.684 3.46x10
-80

 HLA-DQB1 

rs689 11 2182224 T/A 0.783/0.715 1.475 1.355-1.606 2.72x10
-19

 INS 

rs2476601 1 114377568 A/G 0.142/0.103 1.590 1.420-1.779 7.41x10
-16

 PTPN22 

rs6908626 6 91005743 T/G 0.201/0.164 1.35 1.218-1.491 7.3x10
-9

 BACH2 

rs3184504 12 111884608 C/T  0.544/0.520 1.242 1.155-1.339 8.33x10
-9
 SH2B3 

We performed three genome-wide association approaches, first for LADA versus population 
controls (top panel), then for LADA versus type 1 diabetes (T1D, middle panel) and LADA 

versus type 2 diabetes (T2D, lower panel). Odds ratios (ORs) are given for the LADA risk allele 
except for rs92773368 in LADA vs. T1D, to illustrate that the T1D risk allele was depleted in 
LADA. 


