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Abstract 

The Ca1−3xBi2xФxMoO4 system (0.025  x  0.30, where Ф represents cation vacancies) was 

synthesized and studied. The 0.025 ≤ x ≤ 0.15 compositions show a tetragonal defect scheelite 

structure. Powder X-ray and neutron diffraction patterns for compositions with 0.15 < x ≤ 0.225 

exhibit a tetragonal supercell with asup ≈ √5a, csup ≈ c where a and c are the tetragonal scheelite cell 

parameters. Transmission electron microscopy shows that Ca0.4Bi0.4MoO4, crystals consist of three 

crystallographic domains: (1) defect scheelite; (2) tetragonal superlattice and (3) incommensurately 

modulated. Photocatalytic properties were studied using Rhodamine B water solutions under UV 

light. Catalytic activity increases with increasing Bi content. The conductivity of 0.15 < x ≤ 0.225 

compositions is 10
-7

 to 10
-8 

S∙cm
-1

 in the range 500 to 650 °C, while compositions in the range 

0.025 ≤ x ≤ 0.15 show conductivity values from 10
-3

 to 10
-8 

S∙cm
-1

 from 500 to 800 °C. 

 

 

KEYWORDS: A. oxides, C. X-ray diffraction, C. neutron diffraction, C. transmission 

electron microscopy (TEM), D. catalytic properties 

 

  



1. Introduction 

Scheelite-related oxides have a general formula ABO4 and are based on a primitive cubic 

oxide ion array with 8-coordinate A
n+ 

cations in a bisdisphenoid type of dodecahedral geometry and 

tetrahedral (BO4)
n-

 anions [1]. The flexibility of substitutions on both A and B sites generates a 

wide range of compositions, structural types and properties, leading to a variety of applications 

including scintillation detectors, lasers [2,3], ionic conductors [4], phosphors [5], photocatalysts [6], 

and microwave dielectrics [7].  

In the case of substitution of divalent A
2+

 cations by trivalent M
3+

 cations, three basic charge 

compensation mechanisms are possible in ABO4 scheelites:  

 

(i) Formation of oxide ion interstitials (A1-xMxBO4+x/2)  

 

   
 
   
      

  
 

 
  
          (1) 

 

(ii) Co-substitution on A or B sites by subvalent cations (A1-2xM1xM2xBO4 or A1-xM1xB1-

xM2xO4) 

 

    
 
         
              

      
       (2a) 

or 

   
     

  
         
              

      
      (2b) 

 

(iii) Formation of cation vacancies (A1-3xMxФxBO4) 
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          (3) 

 



 

Mechanism (1) is reported for La doped PbWO4 [8]  and PbMoO4 [9],  as well as  Sm doped 

CaMoO4 [10], mechanism (2a) for Li, Sm co-doped CaWO4 [11] and mechanism (2b) for Y, Sb co-

doped PbWO4 [12], with mechanism (3) in rare-earth substituted Ca(Mo/W)O4, Sr(Mo/W)O4 and 

Cd(Mo/W)O4 [13-15]. Cation vacancies (Ф) and their ordering can have important consequences, 

not only on structure, but also on the physical and chemical properties. The structure of 

A1−3xM2xФxMoO4 (where A and M are divalent and trivalent metal atoms, respectively) phases is 

often described by tetragonal symmetry (sp.gr. I41/a), but weak additional reflections present in 

powder diffraction patterns are often disregarded or attributed to a second phase leaving the real 

nature of the additional peaks unexplored.  

Sleight et al. [16] first reported the Ca1−3xBi2xФxMoO4 solid solution with the tetragonal 

scheelite structure (sp. gr. I41/a) observed in the range 0.00 ≤ x ≤ 0.15. More recently,  Guo et al. 

[17] synthesized compositions in this solid solution in the range 0.005  x  0.20, using a 

conventional ceramic method, and examined microstructures and microwave dielectric properties. It 

was shown that samples with low Bi content (x  0.015) exhibited improved values of the 

microwave quality factor (Qf). The X-ray powder diffraction pattern of the x = 0.20 composition 

exhibited additional reflections, which were attributed to an unidentified secondary phase. 

Vibrational spectroscopy results revealed large distortions of MoO4 and BiO8 polyhedra [18], with a 

strong correlation between substitutions in the cation (A
n+

) sublattice and microwave dielectric 

properties of the Ca1−3xBi2xФxMoO4 series [18].  

While most studies to date on Ca1−3xBi2xФxMoO4 system have focused on their microwave 

dielectric properties, it is known that Bi-containing molybdates and tungstates possess a narrow 

band gap and exhibit high UV and VIS photocatalytic activity, mostly because of the activity of the 

Bi 6s
2
 valence band [19-23 ]. In addition, due to the relatively high energy of the band gap of 

CaMoO4 [24-25], photocatalytic activity has been reported under UV irradiation of calcium 

molybdate crystals obtained by various methods. For example, data are given in [24] that CaMoO4 



nanocrystals exhibit photocatalytic activity for the decomposition of the dye rhodamine B (RhB) 

under neutral conditions. RhB dye is significantly degraded by 80% under UV illumination within 4 

hours. CaMoO4 nanocrystals catalyze the degradation of methylene blue [26], of tetracycline, are 

suitable for water splitting [27]. In addition, the conductivity properties of Ca1−3xBi2xФxMoO4 

remain undescribed, but could significantly influence the dielectric properties. In the present work 

the photocatalytic and conductive properties of Ca1−3xBi2xФxMoO4 compositions are investigated 

and details of their structure revealed using transmission electron microscopy and neutron 

diffraction.  

 

2. Experimental 

2.1 Reagents and synthesis 

Compositions of general formula Ca1−3xBi2xФxMoO4 (0.025  x  0.275) were synthesised 

by a conventional solid state method from CaCO3 (99.0%, Reakhim), Bi2O3 (99.9%, Merck) and 

MoO3 (99.5%, Reakhim). Stoichiometric amounts of dried precursors were ground in an agate 

mortar using ethanol as a dispersant. The dried mixtures were pelletized and heated at 500, 600, 

650, 680 and 700 C for 8 h at each step with regrinding and repelletizing every, over a total heating 

time ~ 40 h. 

 

2.2 Diffraction 

X-ray powder diffraction data were obtained using a Bruker Advance D8 diffractometer 

with a VANTEC1 detector (Ni filtered Cu-K radiation, / geometry). Data were collected in the 

2 range of 6-130, with steps of 0.02103 and an effective scan time of 200 s per step.  

Neutron powder diffraction data were obtained on the POLARIS diffractometer at the ISIS 

Facility, Rutherford-Appleton Laboratory, UK for the x = 0.05, and x = 0.20 compositions. 

Measurements were performed with the powdered sample contained directly in a cylindrical thin 

walled vanadium can (ca. 11 mm diameter). Data collected on back-scattering and 90 detector 



banks were used in subsequent Rietveld analysis. Data sets corresponding to total proton beam 

currents 1080 A h were acquired in each case.  

Crystal structure refinement was carried out by Rietveld analysis with Diffrac
Plus

 TOPAS 

Bruker [28] using X-ray powder data, while for several compositions (x = 0.05, x = 0.10 and x = 

0.20) a combination of equally weighted X-ray and back scattered neutron data sets were refined in 

the GSAS software suite [29]. The initial starting model for compositions in the range 0.025 ≤ x ≤ 

0.15 was based on the structure of the defective scheelite-related complex oxide Sr0.88Bi0.08MoO4 

[16], while that for x > 0.15 compositions was an ordered model derived from the basic scheelite 

structure of CaWO4 [30]. While a single A-site exists in the basic scheelite structure, in the ordered 

supercell model there are two A-sites and bismuth was initially assumed to be randomly distributed 

across these two cation sites. However, site occupancy refinement confirmed a preferential 

distribution of bismuth for Bi-rich compositions and this distribution was fixed in the final 

refinement.  

Transmission electron microscopy (TEM) was performed using a double Cs corrected 

JEOL JEM-ARM200F scanning transmission electron microscope, equipped with a cold-

field emission gun. For the TEM study the samples were crushed in ethanol. A drop of this 

dispersion was put onto a copper grid covered with a holey carbon film. 

 

2.3 Morphology investigations 

Density of the homogeneous powders (ρexp) was determined with 2 ml-pycnometers with 

distillated water as working liquid. For porosity measurements the ceramic samples were sintered 

700 C for 12 h, weighted at air, covered with a thin layer of waterproof lacquer to make all voids 

«unaccessible» from the surface and weighted at air and water. Density ρceram was determined from 

the hydrostatic weighing of these ceramic samples as follows: 

ρceram=mceram/[(mceram+lacq-m’ceram+lacq)/ρw-(mceram+lacq- mceram)/ρlacq]  (4) 

 



where mceram and mceram+lacq are masses of ceramic sample and ceramic sample covered with 

lacquer, m’ceram+lacq is mass of ceramic sample covered with lacquer in water, ρlacq and ρw are 

density of lacquer and water respectively. Total porosity of ceramic samples (n) was calculated as 

follows: 

 

n = 100%(1-ρceram/ρexp)       (5) 

The morphology of the obtained powders was studied using a JEOL JSM 6390LA scanning 

electron microscope with a JED 2300 energy dispersive X-ray (EDX) detector.  

 

2.4 Photocatalytic behaviour 

The photocatalytic properties of Ca1−3xBi2xФxMoO4 compositions were investigated for the 

process of degradation of Rhodamine B (RhB) in water solution under UV irradiation. The UV 

experiments were conducted in a photochemical reactor made from a water jacketed quartz tube. A 

medium-pressure mercury vapor lamp HPL-N (Philips) of 125 W was used as an illuminating 

source. The lamp radiated predominantly at 365 nm corresponding to an energy of 3.4 eV. The 

ballast and capacitor were grouped with the lamp to avoid fluctuation of the input supply. The 

irradiance was measured at regular intervals using a UV-radiometer, which yielded average values 

of 0.022, 0.047 and 19 W m
-2

 for UV-A, UV-B and UV-C ranges, respectively. The source 

assembly was placed coaxially inside the water jacketed tube (ca. 200 cm
3
 volume) and filled with 

dye solution. Water was circulated through the jacket to cool the system during the reaction. The 

solution temperature during the experiment was ~41±1 ˚С. The high level of oxygen in water was 

provided by aeration with corundum air diffuser. Constant interfusion of the solution was provided 

by a magnetic stirrer (~400 rpm). The RhB solution concentration was 25 ppm with a catalyst 

loading of 1 kg m
-3

. Samples were taken at regular intervals (30, 60, 120, 180, 300, 600, 900, 1200, 

1800 s) for subsequent analysis using а Unico 2800 spectrophotometer (552 nm). The 

photocatalytic degradation rate, D, of RhB was calculated as follows [31]: 



 

D = (A0 - At)/Ao × 100%           (6) 

 

where A0 and At are the initial absorbance (after 30 minutes in the dark) and the absorbance 

at irradiation time t (s), respectively. For each complex oxide photocatalytic experiment was 

provided at least for three times and average D values were calculated. For comparison, the activity 

of Degussa P25 TiO2 catalyst (25 m
2
 g

-1
) under the same conditions was measured. Blank 

experiments were also carried out for RhB oxidation with and without the catalyst by visible light 

(24 h) and RhB oxidation with the catalyst in the dark (24 h). No significant RhB oxidation was 

detected under these conditions were detected.  

The TOC analysis was performed in solutions after photocatytic decomposition of RhB by 

Walkley-Black method. Organic carbon was oxidized by 0.01 N K2Cr2O7 solution. The reaction is 

assisted by the heat during 40 minutes in the presence of H2SO4. The excess of dichromate is 

titrated with ferrous sulphate with sodium diphenylamine as indicator [32]. 

The zero point charge pH (pHZPC) of the Bi-doped CaMoO4 was measured for x=0.20 

composition using the pH drift method [33]. For the pHZPC determination 20 mL of 5×10
-2

mol/L 

NaCl were added to several 50 mL cylindrical high-density polystyrene flasks. A range of initial pH 

(pHi) values of the NaCl solutions were adjusted from 2 to 9 by adding 0.1 mol/L of HCl and 

NaOH. The total volume of the solution in each flask was brought to exactly 30 mL by further 

addition of 5×10
-2

mol/L NaCl solution. The pHi values of the solutions were measured and 50 mg 

of x=0.20 compositions were added to each flask, which was securely capped immediately. The 

suspensions were shaken in a shaker at 298 K and allowed to equilibrate for two days. The 

suspensions were filtered and the final pH (pHf) values of the produced filtrate were recorded. The 

value of pHZPC was the point where the curve of (pHf–pHi) versus pHi crosses the line equal to zero. 

The pH values was measured by I-160МI pH-meter. 

2.5. Active species trapping experiments 



To investigate the main active species in the RhB degradation process, radical scavengers 

were used. Ammonium oxalate, (NH4)2C2O4 (AO, 0.002 mol L
-1

), t-butyl alcohol, (CH3)3COH 

(TBA, 0.01 mol L
-1

) and ascorbic acid, C6H8O6 (AA, 0.05 mol L
-1

) were added to RhB solution 

working as hole (h
+
), hydroxyl radical (

 
OH), and superoxide radical (O2

−
) radical scavengers, 

respectively [34]. 

 

3.Results and Discussion 

3.1 Synthesis, structure 

Fig. 1 shows X-ray diffraction patterns for selected compositions in the series 

Ca1−3xBi2xФxMoO4. No second phase for 0.025 ≤ x ≤ 0.225 compositions is observed. In the 

compositional range 0.025 ≤ x < 0.15 and all reflections can be indexed using a tetragonal scheelite 

model in space group I41/a. Patterns in the range 0.15  x  0.225 show additional peaks (very weak 

for the x = 0.15 composition) at low angles (10-25° 2), which were previously attributed to a 

secondary phase of unknown composition [17,18]. However, as shown below, these additional 

peaks are actually associated with superlattice ordering of the tetragonal scheelite structure. At high 

bismuth concentrations (x > 0.225), peaks attributable to Bi2Mo3O12 are observed, indicating the 

solid solution limit lies below this composition. 

The compositional dependence of unit cell parameters for the Ca1−3xBi2xФxMoO4 system is 

shown in Fig. 2. A general increase in unit cell parameters is seen over the compositional range 

studied, attributable to the substitution of Ca
2+

 by larger Bi
3+

 cations with ionic radii of 1.12 and 

1.17 Å, respectively [35], in agreement with previous work  [17,18]. Two approximately linear 

ranges are seen, with a step between them at around x = 0.15, corresponding to the defect scheelite 

(x < 0.15) and superlattice (x  0.15) phases evident in the diffraction data (Fig. 1). Density 

measurements were in good agreement with the theoretical values derived from the X-ray data 

(Table 1) and confirmed the formation of cation vacancies (Eq. 3). 



Detail of the neutron diffraction patterns of the x = 0.05, 0.10 and 0.20 compositions are 

shown in Fig. 3a. The diffraction patterns of the x = 0.05 and 0.10 compositions are very similar, 

while that for x = 0.20 is visibly different.  Most noticeable is the merging of the (211) and (114) at 

around 2.3 Å. Enlargement of the pattern for the x = 0.20 (Fig. 3b) composition reveals weak peaks 

that cannot be indexed on the tetragonal scheelite cell. These superlattice peaks, also evident in the 

X-ray diffraction data for compositions in the range 0.15 < x ≤ 0.225, can successfully be indexed 

using a tetragonal supercell of dimensions asup= √5asub, csup= csub (where sup and sub denote the 

supercell and subcell, respectively) in the same I41/a space group. A model structure based on 

ordering of the tetragonal scheelite structure was developed and refined.  

Crystal and refinement parameters for the x = 0.05, x = 0.10 and x = 0.20 compositions are 

given in the supplementary information as Table A1, with the corresponding fitted diffraction 

profiles shown in Fig. A1.  The refined structural parameters are given in Table 2 with significant 

contact distances given in Table 3. 

The structural details for the x = 0.05 and x = 0.20 compositions are shown in Fig. 4. For the 

x = 0.20 composition, bismuth was initially assumed to be randomly distributed across the two A 

sites, 4b and 16f.  Free refinement of the occupancies showed the 4b site to be exclusively occupied 

by bismuth, with the 16f site occupied by both Ca
2+

 and Bi
3+

.  The general ordering of bismuth 

atoms and cationic vacancies is shown in Fig. 4b.  

In agreement with previous work [17,18], the x = 0.05 and 0.10 compositions exhibit 

slightly distorted coordination environments for the A-site cations with four short bonds (2.456 and 

2.467 Å, respectively) and four slightly longer bonds (2.477 and 2.482 Å, respectively), caused by 

the presence of the 6s
2
 Bi

3+
 cations, as well as cationic vacancies. The Bi2 atom in the structure of 

the x = 0.20 composition shows a similar coordination environment, but with greater distortion, 

with the difference between the four short (2.405 Å) and four long (2.474 Å) bonds around 0.07 Å, 

reflecting the full occupancy of this site by Bi, with its stereochemically active 6s
2
 lone pair of 

electrons. The Ca/Bi1 site in the x = 0.20 composition, which is occupied by Ca, Bi and vacancies, 



has 5 shorter bonds ranging from 2.363 to 2.464 Å and 3 longer bonds ranging from 2.615 to 2.703 

Å (Fig. 4e and f)). Interestingly for the x = 0.20 composition, the average M-O distance for Ca/Bi1-

O of 2.523 Å is significantly larger than that for the Bi2 site (2.440 Å), reflecting the greater 

disorder on the Ca/Bi1 site.  The molybdate tetrahedra (Fig.4c and d) show little distortion in both 

the defect scheelite and supercell structures (Table 3), with average Mo-O distances increasing with 

increasing x-value. 

During Rietveld refinement of Ca0.4Bi0.4Ф0.2MoO4 structure, the presence of anisotropic 

peak broadening was noted for several sets of peaks in both X-ray and neutron powder diffraction 

data. In order to study the origin of this peak broadening a transmission electron microscopy study 

was performed. Analysis of selected-area electron diffraction (SAED) patterns of 

Ca0.4Bi0.4Ф0.2MoO4 revealed the presence of three types of domains with different superstructure 

ordering (Fig. 5). Fig 5a shows a typical diffraction pattern obtained from domains with defect 

scheelite  structure (with unit cell parameters а ≈ 4.9 Å, с ≈ 10.8 Å). Intergrowth of these domains 

with a second type of domain exhibiting the same superstructure ordering that was found from the 

powder diffraction data (with unit cell parameters а ≈ 11.1 Å, с ≈ 10.8 Å) is seen in Fig 5b. Fig 5c 

displays a similar SAED pattern, but in addition to superstructure reflections additional peaks are 

observed that can be described by an incommensurate modulation vector q = -0.52*asup + 0.87*bsup. 

The formation of a third type of domain, with an incommensurately modulated structure, might be 

associated with incommensurate ordering of cations/vacancies in the Ca/Bi1 sites. 

 

3.2 Morphology 

Scanning electron microscopy (SEM) images of fracture surfaces of Ca1−3xBi2xФxMoO4 

samples are consistent with the formation of homogenous ceramics (Fig. 6). EDX analysis shows a 

homogenous distribution of metals (Ca, Bi, Mo) over the samples (Fig. A2). Densitometry analysis 

demonstrates relatively high porosity (Table 1) of the ceramic samples which decreases with 

increasing bismuth concentration. It should be noted that the observed porosity values (15-28%) 



were found for samples sintered at temperatures of at least 100 degrees less than the melting point. 

Previous work [13,15] has shown the possibility of producing high-density ceramic coatings of 

Ca1−3xBi2xФxMoO4 using melts.  

 

3.3 Photocatalytic activity of Ca1−3xBi2xФxMoO4 

The photocatalytic activity of several scheelite-related compounds and bismuth oxide based 

materials under UV and visible irradiation is reported in the literature [36-39]. In the present work 

the photocatalytic activity of the Ca1−3xBi2xФxMoO4 system was investigated for oxidation of 

Rhodamine B, a basic triphenylmethane dye often used as a model organic pollutant. The blank 

experiments show almost zero decrease of RhB concentration under visible light irradiation. Under 

UV irradiation (UV-A, UV-B and UV-C ranges) partial photolysis of RhB was observed. After 

1800 s of irradiation, the absorption signal of RhB at 552 nm decreased by 1.4 times but the 

broadening of ~552 nm peak was evident. As a result the using of Eq.6 for D calculation wasn’t 

correct. When we changed the lamp body material from quartz to glass then UV-C range of light 

blocked and no photolysis of RhB was observed (Fig A3). Therefore partial RhB degradation was 

caused only by active particles produced in water under UV-C light. However the concentration of 

such particles is so small that complete oxidation of RhB didn’t occur. On the contrary in the case 

of photocatalytical oxidation no peak broadening was observed and no addition peaks at adsorption 

spectra were detected. This indicates a much higher concentration of active particles during 

photocatalytical process than during photolysis, so the degradation of RhB under of UV-C radiation 

on the photocatalytic process can be ignored. The final concentration of RhB after the same 

exposure time in the presence of Degussa P-25 is ∼2.9 ppm, corresponding to a photocatalytic 

degradation rate of 89%. The degradation rate of RhB in the presence of CaMoO4 under the same 

conditions is only 60%.  

The Ca1−3xBi2xФxMoO4 compositions also show photocatalytic activity under UV 

irradiation, consistent with previous work, where the diffuse reflection spectrum and Kubelka–



Munk function of Ca1−3xBi2xФxMoO4 compositions showed optical gaps of 2.88-3.38 eV [40], 

indicating that the electron transition from valence to conduction bands can take place by absorbing 

UV light. Fig A3 shows the degradation of RhB in the presence of Ca0.4Bi0.4Ф0.2MoO4 (x = 0.2) 

under UV irradiation detected by recording the decrease of the absorption at ca.  λ = 552 nm. It is 

seen that the optical absorption intensity at 552 nm does not change with increasing irradiation time 

and no new absorption bands are observed. This indicates that no stable reaction intermediates are 

formed during the degradation process. Compared with CaMoO4, the photocatalytic activities of the 

Ca1−3xBi2xФxMoO4 series are significantly enhanced (Fig 7). The degradation rates after 1800 s in 

the presence of x = 0.175-0.225 compositions were 71-73%. For the x = 0.25 composition, 

photocatalytic activity falls, probably due to the presence of the Bi2Mo3O12 secondary phase 

observed in the XRD results. 

Photocatalytic activity is seen to increase with increasing Bi content in the 

Ca1−3xBi2xФxMoO4 series, with the best photocatalytic performance achieved in the case of the x = 

0.1875-0.225 compositions. Fig. 8 confirms the kinetic behavior of all compositions can be fitted 

according to a pesudo‐first‐order kinetic model, with the concentration of RhB changing according 

to the rate law: 

 

C = C0∙exp(-kt)         (7) 

 

where C is the concentration of RhB at time t, C0 is the initial concentration of RhB and k is 

the reaction rate constant. The results show that reaction rates increase with Bi concentration by a 

factor of ~1.2. 

pH effect is shown in Fig. 9a. The activity of x=0.2 composition slightly changed from pH 

4.0 to 5.5 but decreased obviously at pH higher than 6.0. Solution pH can affect the surface charge 

of catalyst and influence 
 
OH radicals generation (see below). The pHZPC of x=0.2 composition is 

~5.2, meaning that surface is positively charged at pH < 5.2 but negatively charged at a pH > 5.2. 



Meanwhile, RhB pKa is 3.7 [41 and RhB remains a neutral molecule form at pH>3.7. Changes in 

the initial pH have weak influence on the contact of the pollutant and the catalyst in the range of 

4<pH<5.0 but lower pH can increase the 
 
OH radicals generation and slightly improve the oxidation 

process (Fig. 9a). With the increase of initial solution pH (pH> 5.2) the repulsion force may 

dominant and it can decrease the mass transfer of RhB to the photocatalyst and suppress the 

oxidation. Such decrease of RhB oxidation with an solution pH increase is described for many 

oxide photocatalysts [42,43].  

The degradation of the organic pollutant (RhB) proceeds via a series of parallel and 

consecutive reactions. Light energy equal to or higher than the band gap is absorbed by complex 

oxides and photogenerated electrons, e
−
,  and holes, h

+
, can recombine or react with adsorbed 

species (like O2, H2O, OH
−
, H

+
) and form O2

−
 and 

 
OH radicals. As a result, h

+
, O2

−
 and 

 
OH 

radicals are proposed as the active oxidative species in these systems. They can decompose RhB 

into degraded products or small molecules like CO2 and H2O. The possible reactions were initially 

proposed as follows [44]: 

 

Ca1−3xBi2xФxMoO4 + hν (E > Eg) → Ca1−3xBi2xФxMoO4 + h
+
 + e

−
 (generation of h

+
 + e

−
)  (8) 

Ca1−3xBi2xФxMoO4 +  h
+
 + e

−
  → Ca1−3xBi2xФxMoO4  + Q (recombination h

+
 + e

−
)  (9) 

O2 + e
−
 → O2

− 
 (generation of O2

− 
)         (10) 

O2
−
 + 2 H2O + e

−
→ 2 

 
OH + 2 OH

−
 (generation of 

 
OH from O2

−
)     (11) 

h
+
 + H2O → 

 
OH + H

+
 (generation of 

 
OH from h

+
)      (12) 

h
+ 

+ RhB + OH
−
  →... → H2O + CO2 (oxidation of RhB by h

+
)     (13) 

O2
− 

+ RhB + H
+
→...→ H2O + CO2 (oxidation of RhB by O2

−
)     (14) 

(
 
OH + RhB +→... → H2O + CO2 (oxidation of RhB by 

 
OH)     (15) 

 

In order to determine the most active species during the photodegradation process of RhB, 

photocatalytic reactions were performed in the presence of different radical scavengers, including 



ammonium oxalate, TBA and ascorbic acid as h
+
, 

 
OH and O2

− 
scavengers, respectively. The 

photodegradation of RhB in the presence of the x = 0.20 composition and the mentioned scavengers 

is summarized in Fig 9. As shown in Fig 9b, the presence of TBA leads to a decrease in degradation 

rate, D, of around 40% after 1800 s through 
 
OH trapping. RhB degradation is also dramatically 

suppressed using the O2
−
 scavenger, ascorbic acid, with D ≈ 6% after 1800 s. In contrast, the 

oxidation process, is little affected in the presence of the hole scavenger, ammonium oxalate, 

suggesting direct oxidation of RhB by h
+
 has a minimal contribution to the general oxidation 

process. From this it can be inferred that 
 
OH and O2

−
 are the main active species during the 

photodegradation process. The increase in photocatalytic activity under acidic conditions shown in 

Fig. 9a, indicates that the 
 
OH radicals are predominantly generated from O2

−
 species by Eq. 11, as 

previously reported for another sheelite-related compound, PbMoO4 [45]. Based on these 

observations, a mechanism of photocatalytic degradation can be proposed and is summarized in the 

following reactions: 

 

Ca1−3xBi2xФxMoO4 + hν (E > Eg) → Ca1−3xBi2xФxMoO4  + h
+
 + e

−
     (16) 

Ca1−3xBi2xФxMoO4  +  h
+
 + e

−
  → Ca1−3xBi2xФxMoO4  + Q (recombination h

+
 + e

−
)  (17) 

O2 + e
−
 → O2

− 
            (18) 

O2
−
 +2 H2O + e

−
 → 2 

 
OH + 2 OH

−
          (19) 

O2
− 

+ RhB + H
+ 

→...→ H2O + CO2          (20) 

 
OH + RhB + →... → H2O + CO2          (21) 

 

It should be noted that in the absence of electron acceptors (O2) or hole acceptors (H2O), 

electron–hole recombination is possible and, as a result, the hydrophilicity and adsorption of O2 on 

the surface of powders as well as the adsorption of the organic dye is an important aspect of the 

photocatalytic degradation of RhB [46]. The presence of the Bi 6s
2 

electrons can increase the 

hydrophilicity of the surface of the photocatalyst, while the presence of cationic vacancies and a 



domain structure can provide a highly defective surface structure, leading to increased adsorption 

and hence greater photocatalytic activity.  

Analysis of the reaction intermediates wasn’t performed in the present paper. But 

pesudo‐first‐order kinetic model (also observed for TiO2 photocatlyst [47,48]) and weak absorbance 

bands in the UV part of spectra (typical for dicarboxylic acids stated as intermediates in [48]) give a 

reason to state that RhB oxidation with Bi-doped CaMO4 photocatalyst results the same 

intermediates. In particular oxidation process probably involves the stages of N-de-etylation, 

chomophore cleavage, opening ring and mineralization [47,48]. The TOC analysis showed that in 

the first steps of oxidation the concentration of intermediates are significant but after 10 minutes the 

difference between RhB and TOC concentration curves decreases (Fig 9c). In the end of oxidation 

process the difference between RhB and TOC concentration curves is minimal what indicates a low 

concentration of intermediates in solution. 

Stable reuse of the photocatalyst is important for practical applications. Bi-doped CaMO4 

(x=0.2 composition) was collected after the photocatalytic process, washed by deionized water, 

dryed and reused in the same conditions for four times. The multicycles of RhB degradation is 

shown in Fig. 9d. After the four cycles x=0.2 composition maintained its good photocatalytic 

activity with a 9% decrease in removal efficiency. 

In order to analyze the safety of using of materials with high Bi and Mo content such as 

those in the current study, possible dissolution of Bi and Mo was examined. 0.2 g of the x = 0.20 

composition was dispersed in 200 mL of water for 24 h. After this time, the solution was separated 

from the solid and evaporated down to 25 mL. The bismuth and molybdenum contents were 

analyzed by atomic absorption spectroscopy. Concentrations of Bi and Mo in solution of less than 

0.05 mg L
−1

, were detected, as for standard levels in natural water. It is therefore reasonable to 

propose the Ca1−3xBi2xФxMoO4 system as photocatalysts for water purification. 

 

3.4 Electroconductive properties of Ca1−3xBi2xФxMoO4 



CaMoO4 has been reported to be a slow mixed oxygen-ion conductor [49, 50]. The electrical 

conductivity of the Ca1−3xBi2xФxMoO4 series was investigated by a.c. impedance spectroscopy. 

Impedance spectra were similar for all compositions, showing semicircles with a zero high 

frequency intercept on the real axis. A typical impedance spectrum and model equivalent circuit are 

shown in Fig.10. The equivalent circuit consists of a parallel combination of a resistor (R) and a 

capacitor (C), as in the study of (Ca/Sr/Ba)MoO4 [50]. The capacitance value was found to be  ~10
-

11
 F, corresponding to the total resistance of the electrolyte [51]. The separation of the total 

resistance into bulk and grain boundary components was not possible.  

Arrhenius plots of total conductivity and the compositional variation of conductivity at 873 

K for the Ca1−3xBi2xФxMoO4 series are presented in Fig. 11. The Arrhenius plots are generally 

linear, with slight deviation from linearity caused by kinetic restraints at low temperatures. The 

conductivity of CaMoO4 is in good agreement with that found by Petrov and Kofstad [49] and Maji 

et al. [50]. All compositions show increased conductivity in comparison to CaMoO4. Ionic transport 

in the Ca1−3xBi2xФxMoO4 system assumes the presence of interstitial oxygen positions, although 

these have not been identified by diffraction methods [52]. The activation energy for x <  0.15 

compositions changes little in this compositional range (1.4-1.6 eV), indicating that the charge 

carriers and conduction mechanism in Ca1−3xBi2xФxMoO4 is the same as in the parent compound 

CaMoO4 [50].  The conductivity of in Ca1−3xBi2xФxMoO4 at 873 K increases with increasing Bi 

content up to x = 0.15, but then shows a sharp decrease between x = 0.15 and 0.175.  

It should be noted that since compositions with high dopant concentration (x  0.15) show a 

decrease in melting point temperature, the maximum measurement temperature for these 

compositions was only 923 K (Fig. 11b). For these high x-value compositions, the activation energy 

values are lower (0.9-1.1 eV) compared to those for the lower x-value compositions, suggesting a 

change in the charge carriers and/or a change in conduction mechanism. The decrease in 

conductivity and activation energy above ca. x = 0.15 correlates with the appearance of superlattice 

reflections seen in the diffraction data. The lowering of conductivity in the ordered structure is 



attributed to the trapping of charge carriers and is a common feature of order-disorder type 

transitions. The decrease in activation energy in the superlattice ordered compositions might be 

caused by a lowering of the migration energy due by cationic ordering, with the O
2-

 ion migration 

pathways close to Bi
3+

 cations likely to be more energetically favourable due to the high 

polarizability of the Bi 6s
2
 lone pair of electrons.  

 

4. Conclusions 

A cation vacancy solid solution is formed in the system Ca1−3xBi2xФxMoO4 in the 

compositional range 0.0 ≤ x ≤ 0.225. Phases in the range 0.025 ≤ x ≤ 0.15 show a tetragonal 

scheelite structure, isostructural with CaMoO4, while in the range 0.15 < x < 0.225 a tetragonal 

superstructure is seen with asup= √5asub, csup= csub. The microstructure of the Bi rich compositions is 

complex and made up of an intergrowth of three different types of domains: domains with the 

defect scheelite structure, domains with tetragonal superstructure and domains with additional 

incommensurately modulated ordering. 

The photocatalytic activity of Ca1−3xBi2xФxMoO4 compositions is significantly greater than 

that of the parent compound CaMoO4 and increases with increasing Bi content. This is attributed 

not only to the presence of Bi in the phases, but also to cationic vacancies and the domain structure. 

 
OH and O2

−
 are found to be the main active species during the photodegradation process. 

Conductivity increases with increasing x-value up to x = 0.15. A maximum value of 1.14·10
-

5
S cm

-1
 at was achieved at 973 K for the x = 0.15 composition. Higher x-value compositions all 

show lower conductivities attributed to charge carrier trapping in the ordered superlattice. 

 

Acknowledgments 

The study was done with a support of RSF, projects № 20-73-10048. The travel grant for 

neutron diffraction work was given by Act 211 Government of the Russian Federation, contract № 

02.A03.21.0006. The authors are grateful to the Science and Technology Facilities Council STFC 



for neutron beam time at the ISIS facility, Rutherford Appleton Laboratory, award No. RB1910306. 

Dr Ron Smith at ISIS is thanked for his help in neutron data collection. 

 

References 

[1] A.F. Wells Structural Inorganic Chemistry 5
th

 Ed.,Oxford Science Publications, 1984 

[2] V. B. Mikhailik, H. Kraus, G. Miller, M. S. Mykhaylyk, D. Wahl, Luminescence of CaWO4, 

CaMoO4, and ZnWO4 scintillating crystals under different excitations, J. Appl. Phys. 97 (2005) 

083523. http://dx.doi.org/10.1063/1.1872198 

[3] N. Faure, C. Borel, M. Couchaud, G. Basset, R. Templier, C. Wyon, Optical properties and laser 

performance of neodymium doped scheelites CaWO4 and NaGd(WO4)2, Appl. Phys. B: Lasers 

Opt., 63 (1996) 593–598.  

https://doi.org/10.1007/BF01830998 

[4] N. Sharma, K. M. Shaju, G. V. S. Rao, B. V. R. Chowdari, Z.L. Dong, T. J. White, Carbon-

coated nanophase CaMoO4 as anode material for Li ion batteries, Chem. Mater. 16 (2004) 504–512. 

http://dx.doi.org/10.1021/cm0348287 

[5] L. S. Cavalcante, V. M. Longo, J. C. Sczancoski, M. A. P. Almeida, A. A. Batista, J. A. Varela, 

M. O. Orlandi, E. Longo, M. S. Liu, Electronic structure, growth mechanism and 

photoluminescence of CaWO4 crystals, Cryst. Eng. Comm. 14 (2012) 853–868.  

http://dx.doi.org/10.1039/C1CE05977G 

[6] W. F. Yao, J. H. Ye, Photophysical and photocatalytic properties of Ca1-xBixVxMo1-xO4 solid 

solutions, J. Phys. Chem. B 110 (2006) 11188–11195. 

 http://dx.doi.org/10.1021/jp0608729 

[7] G. K. Choi, J. R. Kim, S. H. Yoon, K. S. Hong, Microwave dielectric properties of scheelite (A 

= Ca, Sr, Ba) and wolframite (A = Mg, Zn, Mn) AMoO4 compounds, J. Eur. Ceram. Soc. 27 (2007) 

3063–3067.  

https://doi.org/10.1016/j.jeurceramsoc.2006.11.037 



[8] T. Esaka, T. Mina-ai., H. Iwahara, Oxide ion conduction in the solid solution based on the 

scheelite-type oxide PbWO4, Solid State Ion. 57 (1992) 319–325. https://doi.org/10.1016/0167-

2738(92)90165-L 

[9] G. G. Zhang, Q. F. Fang, X. P. Wang, Z. G. Yi, Dielectric relaxation study of Pb1-xLaxMoO4+δ (x 

= 0–0.3) oxide-ion conductors, J. Phys.: Condens. Matter. 15 (2003) 4135–4142. 

https://doi.org/10.1088/0953-8984/15/24/307 

[10] J. Cheng, C. Liu, W. Cao, M. Qi, G. Shao, Synthesis and electrical properties of scheelite Ca1-

xSmxMoO4+d solid electrolyte ceramics, Mater. Res. Bull. 46 (2011) 185–189. 

 https://doi.org/10.1016/j.materresbull.2010.11.019 

[11] X. Yang, Y. Wang, N. Wang, S. Wang, G. Gao, Effects of co-doped Li
+
 ions on luminescence 

of CaWO4:Sm
3+

 nanoparticles, J. Mater. Sci.: Mater. Electronics 25 (2014) 3996–4000 

https://doi.org/10.1007/s10854-014-2119-4 

[12] J. Xie,, P. Yang, H. Yuan, J. Liao, B. Shen, Z. Yin, D. Cao, M. Gu, Influence of Sb and  Y co-

doping on properties of PbWO4 crystal, J. Cryst. Growth 275 (2005) 474–480 

https://doi.org/10.1016/j.jcrysgro.2004.12.028 

[13] M. M. Haque, D.-K. Kim, Luminescent properties of Eu
3+

activated MLa2(MoO4)4 based 

(M=Ba, Sr and Ca) novel red-emitting phosphors, Mater. Lett. 63 (2009) 793−796. 

 http://dx.doi.org/10.1016/j.matlet.2009.01.018 

[14] P. Jiang, W. Gao, R. Cong, T. Yang, Structural investigation of the A-site vacancy in scheelites 

and the luminescence behavior of two continuous solid solutions A1-1.5xEux 0.5xWO4 and A0.64–

0.5yEu0.24Liy 0.12–0.5yWO4 (A = Ca, Sr;  = vacancy), Dalton Trans. 44 (2015) 6175−6183. 

 http://dx.doi.org/10.1039/c5dt00022j 

[15] E. Tomaszewicz, S. M. Kaczmarek, H. Fuks, New cadmium and rare-earth metal molybdates 

with scheelite type structure, Mater. Chem. Phys. 122 (2010) 595−601. 

 https://doi.org/10.1016/j.matchemphys.2010.03.052 



[16] J. A. W. Sleight, K. Aykan, New nonstoichiometric molybdate, tungstate, and vanadate 

catalysts with the scheelite-type structure, J .Solid State Chem. 13 (1975) 231−236. 

https://doi.org/10.1016/0022-4596(75)90124-3 

[17] J. Guo, C. A. Randall, G. Zhang, D. Zhou, Y. Chen, H. Wang, Synthesis, structure, and 

characterization of new low-firing microwave dielectric ceramics: Ca1−3xBi2xФxMoO4, J. Mater. 

Chem. C 2 (2014) 7364−7372.  

http://dx.doi.org/10.1039/c4tc00698d 

 [18] J. Guo, C. A. Randall, D. Zhou, G. Zhang, C. Zhang, B. Jin, H. Wang, Correlation between 

vibrational modes and dielectric properties in Ca1−3xBi2xФxMoO4 ceramics, J. Europ. Ceram. Soc. 

35 (2015) 4459–4464.  

https://doi.org/10.1016/j.jeurceramsoc.2015.08.020 

[19] B. Muktha, G. Madras, T. N.Guru Row, A novel scheelite-like structure of BaBi2Mo4O16: 

Photocatalysis and investigation of the solid solution, BaBi2Mo4−xWxO16 (0.25 ≤ x ≤ 1), J. 

Photoch. Photobio. A. 15 (2007) 177-185 

https://doi.org/10.1016/j.jphotochem.2006.10.016 

[20] W. Yao, J. Ye, Photophysical and photocatalytic properties of Ca1-xBixVxMo1-xO4 solid 

solutions, J. Phys. Chem. B. 110 (2006) 11188-11195 

https://doi.org/10.1021/jp0608729 

[21] B. Muktha, T. N.Guru Row, Effect of substitution in the scheelite-like series, AxBa1-

xBi2Mo4O16 (A = Ca, Sr, Pb), Mater. Res. Bull. 42 (2007) 2150-2155 

https://doi.org/10.1016/j.materresbull.2007.01.012 

[22] R. He, S. Cao, P. Zhou, J. Yu, Recent advances in visible light Bi-based photocatalyst, Chin. J. 

Catal. 35 (2014) 989-1007 

https://doi.org/10.1016/S1872-2067(14)60075-9 

[23] J. Yu, J. Xiong, B. Cheng, Y. Yu, J. Wang. Hydrothermal preparation and visible-light 

photocatalytic activity of Bi2WO6 powders, J. Solid State Chemistry 178 (2005) 1968–1972 



https://doi.org/10.1016/j.jssc.2005.04.003 

[24] H. Chanchal, S. Tuhin, V. A. Aswin, M. Venkataramanan. Bilayer stabilized Ln
3+

-doped 

CaMoO4 nanocrystals with high luminescence quantum efficiency and photocatalytic properties, 

Dalton Trans. 43 (2014) 6623–6630 

https://doi.org/10.1039/c3dt53450b 

[25] A. P. Marques, V. M. Longo, D.M.A. de Melo, P. S. Pizani, E. R. Leite, J. A. Varela, E. 

Longo. Shape controlled synthesis of CaMoO4 thin films and their photoluminescence property, J. 

Solid State Chemistry 181 (2008) 1249– 1257 

https://doi.org/10.1016/j.jssc.2008.01.051 

[26] M. Kusuma, G.T. Chandrappa. Effect of calcination temperature on characteristic properties 

ofCaMoO4 nanoparticles, J. Sci. – Adv.Mater. Dev. 4 (2019) 150-157  

https://doi.org/10.1016/j.jsamd.2019.02.003 

[27] A. M. Huerta-Flores, I. Juárez-Ramírez, L. M. Torres-Martínez, J. E. Carrera-Crespo, T. 

Gómez-Bustamante, O. Sarabia-Ramos. Synthesis of AMoO4 (A = Ca, Sr, Ba) photocatalysts and 

their potential application for hydrogen evolution and the degradation of tetracycline in water, J. 

Photoch. Photobio. A 356 (2018) 29–37 

https://doi.org/10.1016/j.jphotochem.2017.12.029 

[28] Diffrac
Plus

: Topas Bruker AXS GmbH, Ostliche. Rheinbruckenstraße 50, D-76187, Karlsruhe, 

Germany. 2009 

[29] Larson AC, Von Dreele RB (2004) General Structure Analysis System (GSAS). Los Alamos 

National Laboratory Report LAUR-86-748 

[30] M. I. Kay, B. C. Frazer, I. Almodovar, Neutron diffraction refinement of CaWO4. J. Chem. 

Phys. 40 (1964) 504-506.  

https://doi.org/10.1063/1.1725144 



[31] M. Kang, J. Liang, F. Wang, X. Chen, Y. Lu, J. Zhang, Structural design of 

hexagonal/monoclinic WO3 phase junction for photocatalytic degradation, Mater. Res. Bull. 121 

(2020) 110614 

https://doi.org/10.1016/j.materresbull.2019.110614 

[32] Z. Aregahegn Optimization of the analytical method for the determination of organic matter, J. 

Soil Sci. Environ. 11, 1 (2020) 1-5 

https://doi.org/10.5897/JSSEM2019.0784 

[33] M. El Haddad, R.Mamouni, N. Saffaj, S. Lazar, Removal of a cationic dye – Basic Red 12 – 

from aqueous solution by adsorption onto animal bone meal, J. Assoc. Arab Univ. Basic Appl. Sci. 

12 (2012), 48–54 

http://dx.doi.org/10.1016/j.jaubas.2012.04.003 

[34] M.A.I. Molla, I. Tateishi, M. Furukawa, H. Katsumata, T. Suzuki, S. Kaneco, Evaluation of 

reaction mechanism for photocatalytic degradation of dye with self-sensitized TiO2 under visible 

light irradiation, Open J. Inorg. Non-Metallic Mater., 07 (2017) 1-7. 

https://doi.org/10.4236/ojinm.2017.71001 

[35] R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in 

halides and chalcogenides, Acta Cryst. A 32 (1976) 751–767.  

http://doi.org/10.1107/S0567739476001551 

[36] B.Muktha, G. Madras, T. N. Guru Row, A novel scheelite-like structure of BaBi2Mo4O16: 

Photocatalysis and investigation of the solid solution, BaBi2Mo4−xWxO16 (0.25 ≤ x ≤ 1),  

J. Photochem. Photobiol. A: Chem., 187 (2007) 177-185. 

https://doi.org/10.1016/j.jphotochem.2006.10.016 

[37] S. Martha, P. C. Sahoo, K. M. Parida, An overview on visible light responsive metal oxide 

based photocatalysts for hydrogen energy production, RSC Adv., 5 (2015) 61535 —61553. 

https://doi.org/10.1039/C5RA11682A 



[38] H. Kou, J. Gao, Z. S. Li, Z. G. Zou, Research on photocatalytic degradation properties of organics 

with different new photocatalysts, Current Organic Chem., 14 (2010), 728 –744 

https://doi.org/10.2174/138527210790963430 

[39] W. Yao, J.Ye, Photophysical and photocatalytic properties of Ca1-xBixVxMo1-xO4 solid 

solutions, J. Phys. Chem. B 2006, 110 (2006) 11188–11195. 

https://doi.org/10.1021/jp0608729 

[40] R. A. Parulin, I. V. Timoshenko, Yu A Kuznetsova, A. F. Zatsepin, E. S. Buyanova, Z A 

Mikhaylovskaya, Optical properties and energy band parameters of luminescent CaMoO4:Bi 

ceramics, J. Phys.:Conf. Ser. 1124 (2018) 051005. 

https://doi.org/10.1088/1742-6596/1124/5/051005 

[41] A.A. Inyinbor, F.A. Adekola and G.A. Olatunji, Adsorption of rhodamine B dye from aqueous 

solution on irvingia gabonensis biomass: kinetics and thermodynamics studies, S. Afr. J. Chem. 68 

(2015), 115–125. 

[42] K.Rokesh, A. Nithya, K. Jeganathan, K. Jothivenkatachalam, A Facile solid state synthesis of 

cone-like ZnO microstructure an efficient solar-light driven photocatalyst for rhodamine B 

degradation, Mater. Today, 3 (2016), 4163–4172 

https://doi.org/10.1016/j.matpr.2016.11.091   

[43] H.-J. Cui, H.-Z. Huang, B. Yuan, M.-L.Fu, Decolorization of RhB dye by manganese oxides: 

effect of crystal type and solution pH, Geochem.Trans., 16 (2015) 10 

https://doi.org/10.1186/s12932-015-0024-2 

[44] A. Zaleska-Medynska, Metal Oxide-Based Photocatalysis, 1
st 

ed., Elsevier, 2018 

https://doi.org/10.1016/C2016-0-01872-7 

[45] D.B.Hernández-Uresti, A.Martínez-de la Cruz, J.A.Aguilar-Garib, Photocatalytic activity of 

PbMoO4 molybdate synthesized by microwave method, Catal. Today 212 (2013) 70–74 

http://dx.doi.org/10.1016/j.cattod.2012.12.015 



[46] M.Hashim, C.Hu, X.Wang, X.Li, D.Guo, Synthesis and photocatalytic property of lead 

molybdate dendrites with exposed (001) facet, Appl. Surf. Sci. 258 (2012) 5858–5862 

http://dx.doi.org/10.1016/j.apsusc.2012.02.116 

[47] A. Akbar Isari, A. Payan, , M.Fattahi, , S. Jorfi, B. Kakavandi, Photocatalytic degradation of 

Rhodamine B and Real Textile Wastewater using Fe-Doped TiO2 anchored on Reduced Graphene 

Oxide (Fe-TiO2/rGO): Characterization and feasibility, mechanism and pathway studies. Appl. 

Surf. Sci. 462 (2018) 549–564 

http://dx.doi.org/10.1016/j.apsusc.2018.08.133 

[48] Z. He, S. Yang, Y. Ju, C. Sun, Microwave photocatalytic degradation of rhodamine B using 

TiO2 supported on activated carbon: Mechanism implication. J. Environ. Sci., 21(2009) 268–272.  

http://dx.doi.org/10.1016/s1001-0742(08)62262-7 

[49] A. Petrov, P. Kofstad, Electrical conductivity of CaMoO4, J. Solid State Chem. 30 (1979) 83–

88. 

https://doi.org/10.1016/0022-4596(79)90133-6 

[50] B. K. Maji, H. Jena , R. Asuvathraman, K. V. Govindan Kutty, Electrical conductivity and 

thermal expansion behavior of MMoO4 (M = Ca, Sr and Ba),  J. Alloys Comp. 640 (2015) 475–479 

http://dx.doi.org/10.1016/j.jallcom.2015.04.054 

[51] J.T.S.Irvine., D.C.Sinclair, A.R. West, Electroceramics: characterization by impedance 

spectroscopy, Adv. Mat. 2 (1990) 132-138.  

http://dx.doi.org/10.1002/adma.19900020304 

[52] T. Esaka, Ionic conduction in substituted scheelite-type oxides, Solid State Ion. 136–137 

(2000) 1-9 

https://doi.org/10.1016/S0167-2738(00)00377-5  



Figure capture list 

Fig. 1. X-ray powder diffraction pattern of the Ca1−3xBi2xФxMoO4 series. Stars indicate 

superstructural reflections, diamonds mark Bi2Mo3O12 phase reflections. Enlagements of patterns in 

the 2theta range 10-30 are shown in the inset 

Fig. 2. Variation of the unit cell parameters for Ca1−3xBi2xФxMoO4 with x (for 0.15<x≤0.225 

nominal parameters V’=V/5 and a’=a/√5 were used) 

Fig. 3. Detail of the neutron diffraction patterns of the x = 0.05, 0.10 and 0.20 compositions 

(a) and enlargement of the pattern for the x = 0.20 (b)\ 

Fig. 4 Structure details of Ca1−3xBi2xФxMoO4. {(a, (c), (f)} x = 0.05 and {(b), (d), (f)} 

figures are for x = 0.2. {(a), (b)} figures are projections on (xoy) plane, {(c),(d)} and {(e), (f)} 

figures show coordination of Mo and Bi respectively 

Fig. 5. (a-e) Selected area electron diffraction patterns of Ca0.4Bi0.4Ф0.2MoO4 recorded along 

different zone axes. Indexing in white denotes the basic scheelite structure, red indices denote the 

superstructure obtained from X-ray powder diffraction, and the incommensurately modulated 

pattern is indexed in blue. (f) Relation between basic-sheelite sublattice and superstructure lattice 

obtained from X-ray powder diffraction 

Fig. 6 SEM images of fracture surfaces of a ceramic pellet of x=0.2 composition: (а) - 

secondary electrons imaging ; (b) - backscattering electrons imaging, scale 1:2000 

Fig. 7 Time (a) and composition (b) dependences of conversion degree for 

Ca1−3xBi2xФxMoO4; (c) absorption spectra of RhB in different irradiation time in the presence of 

x=0.2 composition 

Fig.8 Kinetic curves of RhB oxidation under UV light with Ca1−3xBi2xФxMoO4 catalysts, 

reaction rate constants k (s
-1

) are shown 

Fig 9. Variation of degradation rates of RhB degradation by x=0.2 composition (a) in the 

resence of radical scavengers (b) at different pH; (c) relative concentration of TOC and RhB  in 

solutions during oxidation (photocatalyst is x=0.2 composition) (d) relative concentration of RhB 

during recycling photocatalyst (x=0.2 composition) 

Fig. 10. Typical impedance spectrum for Ca1−3xBi2xФxMoO4 (x=0.075 composition, T=923 

K, symbols), model circuits and model spectrum (line)) 

Fig. 11. Arrhenius plots of total conductivity of Ca1−3xBi2xФxMoO4 (a,b); the plots of 

conductivity vs dopant concentration for Ca1−3xBi2xФxMoO4 series(c) 

 



Table 1. Results of densitometry for Ca1−3xBi2xФxMoO4  series. ρX-ray is the theoretical density 

based on the crystal structure, ρexp is experimental density measured by pycnometry on powders, 

ρceram is the experimental density from the hydrostatic weighing of ceramic samples. Porosity = 

100%(ρX-ray-ρceram)/ρX-ray 

x ρX-ray, g/cm
3 

ρexp ±0.02, g/cm
3
 ρceram Porosity % 

0.025 4.40 4.36 3.17 28 

0.050 4.55 4.56 3.56 22 

0.075 4.69 4.68 3.79 19 

0.100 4.83 4.81 3.94 19 

0.125 4.97 4.92 3.97 20 

0.150 5.10 5.09 4.20 18 

0.175 5.21 5.19 4.47 14 

0.1875 5.28 5.23 4.62 12 

0.200 5.34 5.36 4.71 13 

0.2125 5.41 5.40 4.75 12 
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Table 2. Final refined structural parameters for Ca1−3xBi2xФxMoO4 at 20 C. Estimated 

standard deviations are given in parentheses.  

 (a) x = 0.05       

Atom Site x y z Occ. Uiso (Å
2
) 

Ca/Bi 4b 0.0 0.25 0.625 0.85/0.10 0.00893(8) 

Mo 4a 0.0 0.25 0.125 1.0 0.00679(6) 

O 16f 0.14838(4) 0.00723(5) 0.20913(2) 1.0 0.01147(5) 

(b) x = 0.10       

Atom Site x y z Occ. Uiso (Å
 2

) 

Ca/Bi 4b 0.0 0.25 0.625 0.70/0.20 0.01048(9) 

Mo 4a 0.0 0.25 0.125 1.0 0.00794(7) 

O 16f 0.14857(4) 0.00788(5) 0.20886(2) 1.0 0.01391(6) 

(c) x = 0.20       

Atom Site x y z Occ. Uiso (Å
 2

) 

Ca1/Bi1 16f 0.4037(5) -0.0495(5) 0.3644(3) 0.50/0.25 0.0110(3) 

Bi2 4b 0.0 0.25 0.625 1.0 0.0110(3) 

Mo1 4a 0.5 0.25 0.375 1.0 0.0105(3) 

Mo2 16f 0.3007(3) 0.1544(3) 0.6186(2) 1.0 0.0105(3) 

O1 16f 0.1729(4) 0.1590(4) 0.7035(3) 1.0 0.0171(2) 

O2 16f 0.2862(4) 0.0258(4) 0.5492(3) 1.0 0.0171(2) 

O3 16f 0.1036(4) 0.1817(4) 0.4614(3) 1.0 0.0171(2) 

O4 16f 0.3204(3) 0.2659(3) 0.5262(2) 1.0 0.0171(2) 

O5 16f 0.4890(3) 0.1204(3) 0.4531(3) 1.0 0.0171(2) 
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Table 3. Significant contact distances (Å) for Ca1−3xBi2xФxMoO4 at 20 C. Estimated 

standard deviations are given in parentheses.  

 

(a) x = 0.05 

Ca/Bi-O 2.4561(2)  4 Ca/Bi-O 2.4766(2)  4 Mo-O 1.7740(2)  4 

(b) x = 0.10 

Ca/Bi-O 2.4671(3)  4 Ca/Bi-O 2.4816(2)  4 Mo-O 1.7749(3)  4 

(c) x = 0.20 

Ca/Bi1-O1 2.449(6) Ca/Bi1-O2 2.460(7) Ca/Bi1-O2 2.712(6) 

Ca/Bi1-O3 2.415(7) Ca/Bi1-O4 2.363(6) Ca/Bi1-O4 2.703(7) 

Ca/Bi1-O5 2.464(6) Ca/Bi1-O5 2.615(5) Bi2-O1 2.474(4)  4 

Bi2-O3 2.405(3)  4 Mo1-O5 1.781(3)  4 Mo2-O1 1.803(5) 

Mo2-O2 1.724(5) Mo2-O3 1.886(5) Mo2-O4 1.714(5) 
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Highlights 

Ca1−3xBi2xФxMoO4 (0.025 ≤ x ≤ 0.15) shows a defect scheelite structure 

Ca1−3xBi2xФxMoO4 (0.15 < x ≤ 0.225) exhibits a supercell with asup ≈ √5a, csup ≈ c 

Three types of domains in Ca0.4Bi0.4MoO4 microcrystals were found by TEM 

The photocatalytic activity of Ca1−3xBi2xФxMoO4 for RhB oxidation increases with x 
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