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Abstract

In this paper we investigate the importance of the extent of

memory in sequential self attention for sound recognition. We

propose to use a memory controlled sequential self attention

mechanism on top of a convolutional recurrent neural network

(CRNN) model for polyphonic sound event detection (SED).

Experiments on the URBAN-SED dataset demonstrate the im-

pact of the extent of memory on sound recognition performance

with the self attention induced SED model. We extend the pro-

posed idea with a multi-head self attention mechanism where

each attention head processes the audio embedding with ex-

plicit attention width values. The proposed use of memory con-

trolled sequential self attention offers a way to induce relations

among frames of sound event tokens. We show that our memory

controlled self attention model achieves an event based F -score

of 33.92% on the URBAN-SED dataset, outperforming the F -

score of 20.10% reported by the model without self attention.

Index Terms: Memory controlled self attention, sound recog-

nition, multi-head attention.

1. Introduction

Sound event detection (SED) [1] is the task of automatic tran-

scription of sound event tags with onset and offset positions

from audio sequences. The essential architectural block of a

deep neural network based SED model is the convolutional re-

current neural network (CRNN) [2]. The convolutional lay-

ers extract frame level features that are invariant to local spec-

tral and temporal variations. The frame level features are se-

quentially processed by the recurrent layers to model relations

among frames within the input sound sequence. However stan-

dard recurrent neural networks (RNNs) have two drawbacks.

Firstly, in RNNs the recursive state update is performed in a first

order Markov manner, which lacks an adaptive memory con-

trol mechanism. To explain this, long term memory is required

when there exist relations among sound events at distant posi-

tions in long sequences. On the other hand, to process shorter

sequences and in the case when relations among sound events

are not certain, long term memory is not needed. The frame

level audio features given to the recurrent layers are highly cor-

related over time, consequently the recursive state updates with-

out adaptive memory control may result in an improper sum-

marisation of the sound event sequence. Another undesired

property of RNNs is the lack of a mechanism for modeling rela-

tions between audio frames in a sound event sequence. In sound

recognition this omission, added with the fact that sound event

sequences lack inherent structure, is a big limitation in sound

event sequence modeling.
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Attention mechanisms address these RNN limitations and

have become an intrinsic part of neural network models in var-

ious tasks such as neural machine translation (NMT) [3, 4, 5],

machine reading [6], image captioning [7], image synthesis [8],

and speech recognition [9, 10]. Self attention [5, 6] is an at-

tention mechanism that models the relations within a single

sequence to compute a better summarisation of the sequence.

When recurrence relations are persistent throughout a sequence

(regardless of the dimension of the feature embedding i.e., the

feature embeddings are either in the form of event-level tokens

or frame-level tokens), then any choice of attention width in-

duces relations within the sound event sequence. However, re-

currence relations are uncertain in sound event sequences, so we

assume that long-term memory is not needed in sound event se-

quence modeling. Therefore we propose memory controlled self

attention to learn better latent representations of sound event se-

quences.

Sequential attention mechanisms [3] jointly translate and

align words using global or soft attention. This is when all the

encoder hidden states with different attention weights are used

to predict the decoder output at each timestep. Luong et al. [4]

proposed local attention that selectively focuses on a small con-

text window of the encoder to predict decoder outputs. In the

context of self attention, local attention and our memory con-

trolled attention are the same. Sequential self attention [6] has

successfully been applied to machine reading, using a memory

network with non-Markov recursive state updates. The atten-

tion function is more generally described as mapping a query

and set of key-value pairs to an output [5]. The set of keys and

values define the extent of the memory used for attention. To the

best of our knowledge, none of these works have analysed the

extent of memory on attention performance for the respective

tasks. We assume that the extent of memory (attention width)

is not influential in the context of speech and text data because

of the persistent relations between word tokens in these data

sequences added with the auto-regressive modeling power of

these models.

Attention mechanisms have been used for sound recog-

nition; for example in temporal attention for audio tagging

[11, 12], attention and localization are used to quantify sound

events at each audio frame. Kong et al. [13, 14] proposed an

attention model for multiple instance learning (MIL) applied to

audio classification. In SED, Wang et al. [15] applied self atten-

tion mechanisms based on transformer attention [5]. Again, the

authors have not investigated the impact of the extent of mem-

ory (key-value selection) on attention performance. Interest-

ingly, their work shows that overall detection does not improve

with the self attention mechanism. But also, their self attention

implementation improved the detection performance for some

long duration sound events. This indicates a need for memory

controlled self attention in sound recognition.

In this paper, we evaluate the potential of memory con-

trolled sequential self attention for sound event detection; we



also propose a methodology to quantify a range of attention

width values to summarise each audio frame embedding using

multi head self attention. To the best of our knowledge, there

has not been work exploring the use of sequential self attention

mechanisms for SED. The rest of this paper provides a descrip-

tion of memory controlled self attention, our multi head atten-

tion proposal, followed by the experimental details, results and

discussion.

2. Motivation

By comparing various aspects of sequence modeling of audio

signals with sequence modeling in natural language processing

(NLP), in this section we aim to show that memory controlled

self attention is an appropriate choice for sound event sequence

modeling.

• Similar to speech and music signals, sound event se-

quences belong to the class of structured sequence data;

however recurrence relations are uncertain in sound

event sequences. This means, it is not prudent to as-

sert relations between consecutive sound events in these

sequences. However, there exist temporal relations be-

tween audio frames within sound events.

• In speech and text data the relations between phonemes

in a word and the relations between consecutive words

in a sentence are assured (i.e., recurrence relations are

persistent in text data regardless of the dimension of the

feature embedding). Hence self attention with any mem-

ory width is unambiguous for general NLP applications.

The language structure and the semantic relations in text

data support this behaviour.

• In speech and text processing, self attention is generally

applied on word level embeddings [16, 6, 3, 5]. Con-

trarily in sound recognition, self attention is applied to

frame level embeddings. We claim that the lack of higher

level event-based embeddings is the most important con-

straint in sound event sequence modeling. The frame

level features in sound event sequences are highly cor-

related over time. Thus SED models without adaptive

memory controlled self attention may overfit to pseudo

relations based on frame level similarity patterns. This

reduces the effectiveness of self attention mechanisms

and lessens the recognition performance and generaliz-

ability of sound recognition models.

3. Memory Controlled Self Attention

We implement memory controlled sequential self attention on

top of a CRNN model for the task of sound event detection.

The architectural details of the CRNN model are described in

Section 4.1. The convolutional block maps an audio input

sequence of representations X = (x1, x2, · · · , xT ) to a se-

quence of feature embeddings Z = (z1, z2, · · · , zT ), where

T is the total number of audio frames. Given Z, at each time

step the recurrent layer generates hidden state representations

H = (h1, h2, · · · , hT ). In this work, we apply the proposed

memory controlled self attention layer on H to derive improved

hidden state representations H̃ = (h̃1, h̃2, · · · , h̃T ) prior to

classification.

A self attention function on an input sequence is described

as mapping each query vector of the sequence with a set of key-

value vectors to obtain an output vector that summarises the

query vector with respect to the key-value set. The output vector

is the weighted sum of the value vectors, where the weight as-

signed to each value vector is computed by a similarity function

of the query vector with the corresponding key vector. Using

the general form of the self attention function without memory

control, each bottleneck feature vector h̃t is computed as:

h̃t =

T
∑

i=1

αt
ihi; t ∈ {1, . . . , T} (1)

where αt
i is the attention weight value computed using a simi-

larity function as:

αt
i = softmax(sti)

sti = score(ht, hi); i, t ∈ {1, . . . , T}
(2)

score(ht, hi) =



















va
⊺tanh(Wa[ht; hi]) additive/concat [3]

h
⊺

t Wahi general [4]

h
⊺

t hi dot [4]

h
⊺

t hi/ | ht || hi | scaled dot [5]

(3)

where va, Wa are the weight terms of the score functions and ⊺

denotes transposition.

To explain (1), the general form of self attention computes

the similarity of each frame level embedding with respect to

every other feature embedding in the input sequence. The simi-

larity scores between frame level embeddings of distinct sound

event tokens might be high, which results in a wrong summari-

sation of the input sequence. Also, as sound event tokens in

audio sequences typically lack syntactic and semantic relations,

long term memory is not required. However relations exist

among frame level embeddings within sound event tokens, thus

to effectively model these relations we propose memory con-

trolled self attention by constraining the self attention function

in (1) to a compact neighbourhood relative to each frame level

embedding with L being the attention width.

h̃t =

t+(L/2)
∑

i=(t−(L/2))

αt
ihi; t ∈ {1, . . . , T} (4)

In terms of query, key, and value representations we have Q

= ht, and KL = VL = (ht−(L/2), · · · , ht, · · · , ht+(L/2)). The

key-value set determines the extent of self attention. Using this

we update the general form of memory controlled self attention

equivalent to that of (4) as:

Attention(Q,KL,VL) = softmax(QKL
⊺)VL (5)

We evaluate the impact of memory controlled self atten-

tion on sound recognition performance using the different score

functions listed in (3). In preliminary experiments, we achieved

the best results using the additive score function. Therefore, the

results and observations included in this paper are based on the

additive score function.

A limitation of the memory controlled self attention func-

tion in (4) is that it uses a fixed attention width value to sum-

marise each frame level embedding independent of the duration

of sound events. However it is better to use a small attention

width value to the frames that belong to sound events that have

short duration and a large attention width value to the frames

associated with long duration sound events. Ideally the best

memory controlled self attention design would automatically

choose appropriate attention width values to summarise each

frame level embedding in the input sequence. We therefore pro-

pose multi head memory controlled self attention to address this

limitation.
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Figure 1: Block diagram of Multi Head Memory Controlled Self

Attention.

3.1. Multi-Head Self Attention

As an alternative to using a fixed attention width value, we pro-

pose to apply the same attention function on each query with

different key-value sets. A key-value set with the correspond-

ing attention width value leads to a memory controlled self at-

tention head. The implementation of the multi head memory

controlled self attention function is depicted in Fig. 1. The

weight of each head is normalised using its corresponding atten-

tion width value. The normalised weighted sum of the attention

head output values wrap up the final frame level embeddings as:

MultiHead(Q) = Concat(head1, . . . , headp)Wah

headj = Attention(Q,KLj ,VLj); j ∈ {1, . . . , p}

Wah = (w1/L1, · · · , wp/Lp)

(6)

where p is the number of attention heads, Concat denotes the

concatenation of individual attention head vectors, Wah is the

normalised weight vector with wj , Lj respectively denoting the

weight and attention width values for the j th head.

Comparison to transformer multi head attention [5]: Whilst

our multi head self attention implementation in (6) is similar to

the Transformer multi head attention in (7), there are a few criti-

cal differences. To the best of our knowledge, there has not been

any other work exploring multi head architectures for self atten-

tion. Firstly, each of our self attention head has a corresponding

key-value set that determines the extent of self attention for that

head. Hence, our multi head attention approach implements

a soft optimization rule to rank individual attention heads for

the best summarisation of the frame level embeddings. Trans-

former multi head attention linearly projects the same key-value

set with different learned weights at each attention head:

MultiHead(Q,K,V) = Concat(head1, · · · , headp)WO

headj = Attention(QWQj ,KWKj ,VWVj);

j ∈ {1, . . . , p}

Attention(Q,K,V) = softmax(QK
⊺/

√

dk)V

(7)

where WO, WQj , WKj , WVj are the weight matrices and dk is

the dimension of the key vector. Secondly, our multi head im-

plementation has only a single attention layer with score func-

tion weights (va and Wa in (3)) and attention head weight (Wah

in (6)). Transformer attention [5], on the other hand, has sep-

arate attention head layers with associated weight matrices as

shown in (7). Lastly, we compute attention weights using the
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Figure 2: Architecture of SED model.

additive score function of (3), whereas in [5] the scaled dot

product score function is used. In our multi head approach, for

La > Lb, Attention(Q,KLa,VLa) is a superset function of

Attention(Q,KLb,VLb). This may result in biased attention

head weight assignment. To counteract this effect, the attention

weight of each head is scaled with the corresponding attention

width value.

In this work we empirically choose p = 11 attention heads

in the multi head self attention layer. The first attention head

employs an attention width of L = 2 to observe the impact of

immediate past and immediate future frame level embeddings to

summarise the present frame. In the subsequent attention heads

we serially increment the attention width value by five frames.

4. Experimental Details

We first analyse SED performance with a standard self atten-

tion function as in (1). Then we analyse the impact of memory

controlled self attention (4) with different attention width values

on SED performance. Lastly, we evaluate SED using the multi

head memory controlled self attention function in (6).

4.1. Model architecture and Training

We use a similar version of the CRNN model architecture pre-

sented in [2] to build our SED model; Fig. 2 details the models

architecture. We use a 40 log mel-bands Mel-spectrogram as

input representation, extracted using a short-term Fourier trans-

form (STFT) with an FFT window of 2048, a hop length of

882, and a sample rate of 44.1 kHz. The CRNN block has three

stacked convolutional layers followed by a single gated recur-

rent unit (GRU) layer. We use a memory controlled self atten-

tion layer on the CRNN block feature embeddings. The SED

model has a single time distributed dense layer which is the

output layer of the network. The output of the model is a poste-

riogram matrix with dimensions T ×C, where T is the number

of frames and C is the total number of sound event classes in

the dataset. The model predictions are thresholded at 0.5 to ob-

tain binary two-dimensional representations which are used to

compute evaluation metrics based on the ground truth labels.

Each convolutional layer activation is batch normalised and

regularised with dropout (probability = 0.3). The convolutional

layer weights have been initialized using random normal distri-

butions with zero mean and 0.05 standard deviation. We train

the network for 200 epochs using a binary cross-entropy loss

function and the Adam optimizer with a learning rate of 0.001
and a decay of 10−6.



4.2. Dataset and Evaluation metrics

We train our model on the URBAN-SED [17] dataset consist-

ing of 10, 000 soundscapes with sound event annotations gen-

erated using Scaper [17], an open-source library for soundscape

synthesis. All recordings are ten seconds long, 16-bit mono

and sampled at 44.1kHz. The annotations are strong, meaning

for every sound event the annotations include the onset, offset,

and label of the sound event. Each soundscape contains be-

tween one to nine sound events from the list {air conditioner,

car horn, children playing, dog bark, drilling, engine idling,

gun shot, jackhammer, siren and street music} and has a back-

ground of Brownian noise. We use the URBAN-SED pre-sorted

train, validation, and test sets. Of 10, 000 soundscapes, 6000
are used for training, and 2000 each for validation and test.

We use the F -score and Error Rate (ER), with F -score as

the primary metric. The evaluation metrics are computed in

both segment-wise and event-wise manners using the sed eval

tool [18]. Segment-based metrics show how well the system

correctly detects the temporal regions where a sound event is

active; with an event-based metric, the metric shows how well

the system detects event instances with correct onset and offset.

The evaluation scores are micro-averaged values, computed by

aggregating intermediate statistics over all test data; each in-

stance has equal influence on the final metric value. We use

a segment length of one second to compute segment metrics.

The event-based metrics are calculated with respect to event in-

stances by evaluating only onsets with a time collar of 250ms.

5. Results and Discussion

Table 1 presents the SED results. Here, Baseline is the SED

model without self attention. SelfAttn is the SED model with

self attention and without memory control. SelfAttn L is the

SED model with memory controlled self attention using atten-

tion width L. MultiHead is the SED model with memory

controlled multi head self attention.

We see that self attention without memory control has an

event-based F -score of 9.78% that is significantly lower than

the baseline (20.10%) and that the best model (33.92%) uses

memory controlled self attention with L = 50. The model with

L = 100 has an F -score of 13.66%, which is lower than other

memory controlled self attention models. This clearly justifies

the need for proper selection of the extent of memory in order to

efficiently implement self attention for SED. The inferior per-

formance of the SelfAttn model compared to the Baseline
model and the models with memory control is expected and is

due to the reasons explained in Section 2. Also, we cannot ex-

pect a monotonic model behavior based on the attention width

value. The optimum choice of attention width for each audio

sample depends on the type of sound events and event durations.

The event-based F -score for the MultiHead model is 21.89%
compared with the best model value of 33.92%. We suggest

that the soft optimization rule based on the weighted sum of

individual attention head representations is the main reason for

the under-performance of the MultiHead model.

In Fig. 3, we analyse the class-wise event based F -score.

We expected best recognition performance for short sound

events like car horn, dog bark, and gun shot with rela-

tively narrow attention width models (10 < L < 50) and

for long duration sound events like drilling, engine idling,

air conditioner, and children playing using attention mod-

els with larger attention width values (50<L< 200). However

for all the sound event classes except car horn, the memory

Table 1: Sound event detection results.

F1 (%) Error rate

Model Segment Event Segment Event

Baseline 47.45 20.10 0.74 2.21
SelfAttn 29.45 9.78 0.89 1.51

SelfAttn 2 50.57 24.44 0.69 1.98
SelfAttn 10 54.36 28.62 0.64 1.68
SelfAttn 50 55.90 33.92 0.59 1.12

SelfAttn 100 33.71 13.66 0.79 1.21
MultiHead 49.28 21.89 0.69 1.77
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SelfAttn_100
MultiHead
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Figure 3: Class-wise event based F-score results.

controlled self attention model with an attention width of 50

frames yields the best recognition performance. As expected,

car horn being a short event is best recognised with a narrow

attention width model (L = 10). The duration of sound events

in the URBAN-SED [17] dataset is in the range 0.5–4 seconds.

For the effective memory controlled self attention implemen-

tation the attention width should not be larger than the dura-

tion of short sound events in the dataset. We suggest this is the

reason why the attention model with L = 50 yields the best re-

sults. Also, we assume the same reason along with the soft opti-

mization approach for the less effectiveness of the MultiHead
model. Even though the overall F -score of the MultiHead
model is close to the Baseline model, the recognition for long

duration events (e.g. air conditioner, engine idling) is better

with the MultiHead model. Attention visualizations can be

found online1.

6. Conclusion

In this work, we investigated the importance of the extent of

memory on self attention, applied to the task of sound event

detection. Memory controlled self attention is an effective ap-

proach to model the relations between frame-level tokens within

sound events which improves temporally precise sound recog-

nition. An explicit mapping of the extent of attention to the

recurrence relations in audio sequences is a future goal. Our

multi-head attention methodology for optimally selecting the

extent of attention is not very successful in this work; we are

inclined to extend our memory controlled MultiHead model

for urban sound tagging using the SONYC [19] dataset that has

a wide range of coarse-grained and fine-grained event tags and

also for sound recognition using AudioSet [20]. We also see the

idea of using memory controlled self attention to define higher

level event-based feature embeddings in sound event sequences.

1https://github.com/arjunp17/MemoryControlled-MultiheadSelfAtt
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