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ABSTRACT

Optical Music Recognition (OMR) is concerned with
transcribing sheet music into a machine-readable format.
The transcribed copy should allow musicians to compose,
play and edit music by taking a picture of a music sheet.
Complete transcription of sheet music would also enable
more efficient archival. OMR facilitates examining sheet
music statistically or searching for patterns of notations,
thus helping use cases in digital musicology too. Recently,
there has been a shift in OMR from using conventional
computer vision techniques towards a deep learning ap-
proach. In this paper, we review relevant works in OMR,
including fundamental methods and significant outcomes,
and highlight different stages of the OMR pipeline. These
stages often lack standard input and output representation
and standardised evaluation. Therefore, comparing dif-
ferent approaches and evaluating the impact of different
processing methods can become rather complex. This pa-
per provides recommendations for future work, addressing
some of the highlighted issues and represents a position in
furthering this important field of research.

1. INTRODUCTION

Music is often described as structured notes in time. Mu-
sical notations are systems that visually communicate this
definition of music. The earliest known scores date back
to 1250-1200 BC in Babylonia [1]. Since then, many no-
tation systems have emerged in different eras and different
locations. Common Western Music Notation (CWMN) has
become one of the most frequently used systems. This no-
tation has evolved from the mensural music notation used
before the seventeenth century. Current work in Optical
Music Recognition focuses on the CWMN; nonetheless,
studies are also carried out for old notations, including
mensural, as shown in Table 1.

Classifying music based on its difficulty is highly sub-
jective. Nevertheless, Byrd and Simonsen [30] in their at-
tempt to have a standardised test-bed for OMR, name four
categories based on the complexity of the score [30] (see
Figure 1):

1. Monophonic: music in one staff with one note at a
time;
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2. Polyphonic: multiple voices in one staff;

3. Homophonic: multiple notes can occur at the same
time to build up a chord, but only as a single voice;

4. Pianoform: music in multiple staffs and multiple
voices with significant structural interactions.

OMR has been researched for the last five decades;
nonetheless, a unified definition of the problem is yet to
emerge. However, Calvo-Zaragoza [31] offers the follow-
ing definition of OMR.

Definition 1.1 “Optical Music Recognition is a field of re-
search that investigates how to computationally read music
notation in documents.”

The importance of OMR is evident both in the abundance
of sheet music in archives and libraries, much of this is yet
to be digitised, and in the common practice of musicians.
Paper remains the first medium authors use to write music.
By taking a picture of a score, OMR would enable us to
later modify, play, add missing voices and share music us-
ing ubiquitous digital technologies. It also enables search
capabilities, which are especially crucial for long pieces or
large catalogues in music information retrieval and digital
musicology. Other advantages of OMR include conver-
sions to different sheet music formats (e. g. Braille music
notation) and the ability to archive musical heritage [32].

Fundamentally, OMR’s goal is to interpret musical sym-
bols from images of sheet music. The output would be
a transcribed version of the sheet, which is also machine-
readable, i.e., musical symbols can be interpreted and ma-
nipulated computationally. The usual output formats are
MusicXML and MIDI. These formats will include musical
attributes and information such as pitches, duration, dy-
namics and notes.

OMR has previously been referred to as Optical Charac-
ter Recognition (OCR) for music. However, music scores
carry information in a more complex structure, with or-
dered sequence of musical symbols together with their spa-
tial relationships. In contrast, OCR deals with sequences
of characters and words that are one-dimensional.

Recently, the success deep learning has had in improving
text and speech recognition has triggered a paradigm shift
in OMR as well. One of the most comprehensive reviews
on OMR was written in 2012 by Rebelo et al. [33]. How-
ever, at that time, the field had not yet seen the emergence
of deep learning approaches. This position paper aims to
update on these approaches.
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References CWMN Old Typeset Handwritten
Fujinaga [2], Coüasnon et al. [3], Ng and Boyle [4], Chen et al.
[5], Vidal [6], Bui et al. [7], Huang et al. [8]
Ng et al. [9], Bainbridge and Bell [10], Gocke [11], Rebelo et al.
[12], Fornés et al.[13], Pinto et al. [14], Hajič and Pecina [15],
Roy et al. [16], Pacha et al. [17], Tuggener et al. [18], Baró et al.
[19, 20]
Calvo-Zaragoza and Rizo [21], Wen et al. [22], Pacha and Eiden-
berger [23, 24], Calvo-Zaragoza et al. [25]
Calvo-Zaragoza et al. [26, 27], Huang et al. [28], Tardón et al.
[29]

Table 1: Studies conducted in CWMN (Common Western Music Notation), and old notations (used before the CWMN,
mostly mensural notations

Figure 1: A visual representation of the four categories of music notations [30, 31]

State of the art works in OMR perform well with digitally
written monophonic music, but there is plenty of room for
improvement when it comes to reading handwritten music
and complex pianoform scores [21, 22, 23]. The difficulty
thus increases with the complexity of the music notation.

2. OMR PIPELINE

The standard OMR pipeline given by Rebelo et al. [33] is
depicted in Figure 2:

1. Image preprocessing;

2. Music symbol recognition;

3. Musical information reconstruction;

4. Construction of a musical notation model.

In the first stage, images of sheet music are subject to tech-
niques such as noise removal, binarisation, de-skewing and
blurring in order to make the rest of the OMR processes
more robust. Subsequently, reference lengths, such as staff
lines thickness and distances between them are calculated.
Typically, the next stage is musical symbol recognition.
This stage consists of staff line processing and musical
symbol processing and ends with classification. Primitives

of musical symbols will be used in the third stage in or-
der to reconstruct semantic meaning. Finally, all retrieved
information should be embedded in an appropriate output
file. A summary of these stages and the particular image
processing and machine learning techniques employed in
each stage are summarised in Table 2.

3. IMAGE PREPROCESSING

Image preprocessing is a fundamental step in many com-
puter vision tasks. The primary outcome of this stage
is an adjusted image that is easier to manipulate. Most
common image manipulations include enhancement, de-
skewing, blurring, noise removal and binarisation [2, 4, 35,
13, 29, 14, 26, 28, 22]. Image enhancement can include fil-
ters and adjusting the contrast or brightness for optimal ob-
ject detection. De-skewing eliminates skewness and helps
in obtaining a more appropriate view in the object detec-
tion stage. Most of the digital images during the acquisi-
tion, transmission or processing are subject to noise. Both
colour and brightness contain signals that carry random
noise. Depending on the features of the image, different
types of filters are used to remove some of the noise. Dur-
ing the process of binarisation, images are analysed to de-
cide what is noise and what constitutes useful information



Figure 2: Conventional OMR pipeline

Stage Related Work
Image preprocess-
ing

Fujinga [2, 34], Ng and Boyle [4], Fornés et al [35, 13], Tardón et al. [29], Pinto et al. [14],
Calvo-Zaragoza et al. [26], Huang et al. [28], Wen et al. [22], Ridler et al. [36], Gocke [11],
Ballard [37], Bainbridge and Bell [38], Cardoso et al. [39], Dalitz et al. [40]

Symbol Recogni-
tion

Mahoney [41], Prerau [42], Tardón et al. [29], Pacha [43], Rebelo et al. [12], Ng and Boyle
[4], Choudhury et al. [44], Bainbridge and Bell [10], Fornés et al. [35, 13], Huang et al. [28]
Fujinaga [2], Wen et al. [22], Pacha et al. [17, 24], Chen et al. [5], Gocke [11], Miyao and
Nakano [45]

Musical Informa-
tion Reconstruc-
tion

Prerau [42], Pacha et al. [46, 47], Roy et al. [16], Bainbridge and Bell [10], Coüasnon et al. [3],
Ng and Boyle [4], Baró et al. [48, 19] Calvo-Zaragoza et al. [21, 25, 27]

Musical Notation
Model

Droettboom et al. [49], Chen et al. [5], Choudhury et al. [44], Ng et al. [9], Tardón [29],
Bainbridge and Bell [10], Huang et al. [28]

Table 2: Summary of the studies carried in each of the OMR pipeline stages

for the task. Techniques to choose a binarisation threshold
include global and adaptive methods. A global threshold
is typically determined for the whole image, while for the
adaptive threshold, local information in the image should
be considered. Ng et al. [4] adapt the global thresh-
old proposed by Ridler and Calvard [36]. While adaptive
threshold is used in several more recent OMR studies too
[13, 35, 11].

Gocke’s [11] pipeline starts with a Gaussian filter, thence-
forth a histogram on each colour channel is built. Then,
the image is rotated to find the best angle that maximises
horizontal projections. The image is then segmented into
smaller 30x30 pixels, and a local threshold is found for
each tile. Following threshold selection, all elements
smaller than 4 pixels in diameter are removed, making the
image clearer. The image is finally ready for staff-removal
and symbol recognition. Local thresholding in this case
yielded better results than the global one.

Similarly, in Fornés et al. [13] binarisation is followed
by de-skewing using the Hough Transform [37]. A coarse
approximation of the staff lines is obtained using median
filters with horizontal masks to reconstruct the staff lines
later. However, in this process, some residual colour in-
formation is retained, especially where the lines intersect
with musical symbols, hence, some noise is still left. This
approach is not robust to damaged paper.

Pinto et al. [14] propose a content-aware binarisation
method for music scores. The model captures content-
related information during the process from a greyscale

image. It also extracts the staff line thickness and the ver-
tical line distance in staff to guide binarisation. This al-
gorithm tries to find a threshold that maximises the ex-
tracted content information from images. However, the
performance hugely depends on the document character-
istics, limiting performance across different documents.

Calvo-Zaragoza and Gallego [50, 51] propose using se-
lectional auto-encoders [52] to learn an end-to-end trans-
formation for binarisation. The network activation nodes
indicate the likelihood of whether pixels are foreground
or background pixels. Ensuing training, documents are
parsed through the model and binarised using an appro-
priate global threshold. This approach performs better
than the conventional binarisation methods in some docu-
ment types. Nonetheless, errors happen around foreground
strokes and are emphasised along edges of the input win-
dows, due to the lack of context in the neighbourhood.

4. MUSIC SYMBOL RECOGNITION

The next stage typically constitutes dealing with musical
symbol recognition. Here, the three main steps are staff
processing, isolating musical symbols and finally, classifi-
cation. Usually, staff lines are first detected and then re-
moved from the images. The model then isolates the re-
maining notations as primitive elements. These are later
used to extract features and feed those features to train the
classifier.



4.1 Staff processing

Staff lines are a set of five horizontal lines from one side
of the music score to the other. Each line and gap repre-
sent a different pitch. For better object detection, the ques-
tion of staff line removal has been of prime importance.
Researchers take two different approaches; one is only de-
tecting and isolating them, while the other approach goes
one step further in removing them.

While in printed sheet music, staff lines are straight,
parallel and horizontal, in handwritten scores, these lines
might be tilted, curved and may not be parallel at all. These
lines might also look curved or skewed depending on the
image skew angle [12] or the degradation of the paper. The
model needs to separate staff lines from actual music ob-
jects. Since the lines overlap with musical objects, simply
cutting and removing them degrades the notes and make
them harder to recognise, further limiting performance.

Consequently, an increasing number of studies take the
approach of removing the staff lines in a more intelligent
fashion [4, 44, 53, 10, 35, 13, 29, 28, 22]. In this sec-
tion, we outline typical staff line processing approaches.
Blostein and Baird [53] suggests using horizontal projec-
tions of the black pixels and finding their maxima. The
drawback is that the method only considers horizontal
straight lines. In order to deal with non-horizontal, the
process is followed with image rotations and choosing an
angle with a higher maxima.

Rebelo et al. (2007) [12] consider staff lines to be the
shortest path between two horizontal page margins if those
paths have black pixels throughout the entire path. The
height between every two lines is first estimated and later
used as a reference length for the following operations.
Upon choosing an estimation, using the Dijkstra algorithm
[54], the shortest path between the leftmost pixel and the
rightmost pixel is found. Their method is robust to lines
with some curvature and discontinuity since it follows con-
tinuous paths connecting line ends from both sides. How-
ever, this algorithm may sometimes retain paths that do not
follow the staff line. This happens when there is a higher
density of beamed notes, and the estimated path follows
the beams or when the staff lines are very curved.

Cardoso et al. [39] propose stable paths, considering the
sheet music image as a graph. The staff lines in the graph
are the less costly paths between the left and right mar-
gins. Subsequently, the model should differentiate between
score pixels and staff line pixels. This model is robust to
discontinuities, skewness, curvature in staff lines and one-
pixel thin staff lines. Both the shortest path and stable paths
give a similar false detection rate in test set of 32 ideal
score images. This set is subject to different deformations,
resulting in 2,688 total images. However, the stable path
approach is five times faster. This technique is often used
in the preprocessing stage [27].

Another study [7] uses stable paths approach to extract
staff line skeletons. Then, the line adjacency graph (LAG)
[55] is used to cluster pixel runs generated from run-length
encoding (RLE) of the image [56]. The last step involves
removing clusters lying on the staff line. This step has
two passes; the first step estimates the height line for each

staff by averaging the section height being cut with the staff
lines. The second pass filters out the noise left from the
last pass. This method takes a similar approach with [57]
grouping staff line pixels into segments.

Other studies follow the approach of keeping the staff
lines during the next stages [9, 11, 58, 26, 16, 59]. They
argue that the staff line removal task is very complex and
often ends up being inaccurate and passes errors to the fol-
lowing stages. These studies usually detect and isolate staff
lines ahead of object processing. Recent object detection
studies show that removing staff lines does not add much
improvement to this stage [17].

A more recent work [43] investigates how incremental
learning can assist staff line detection using convolutional
neural networks (CNNs) and human annotation. To be-
gin with, a CNN model is fed a small amount of data with
available annotations for training. Using this training, the
model makes predictions on a larger dataset, and a human
annotator rejects or accepts the predictions. The accepted
predictions are added to the training dataset to repeat the
process. This method enables the creation of a more ex-
tensive dataset. After four iterations, the dataset contains
70% annotated scores of the original set. One drawback of
incremental learning is that if the annotator accepts sam-
ples with imperfect annotations, the error accumulates in
each iteration, introducing inaccuracy, while it also needs a
human annotator. This yields similar results with [39, 57],
however, different evaluation metrics are used.

Despite the substantial research effort put into staff line
removal, it is still far from being accurate in handwritten
sheet music. Handwritten scores exhibit a wide variety in
line length and distance, thickness, curvatures of staff lines
and also the quality of the image.

4.2 Music symbol processing

The next step after removing the staff lines is to isolate
the musical symbols. Staff line removal will strongly af-
fect this step as it can cause fragmentation in the parts
where staff lines and musical objects are tangent to each
other. One widely used approach is hierarchical decompo-
sition [33], where staff lines split a music sheet and then
extract noteheads, rests stems and other notation elements
[44, 49, 11, 45, 4]. Some approaches consider, for in-
stance, a half-note instead of its primitives for the classi-
fication step. Mahoney [41] uses descriptors to choose the
matching candidate between a set of candidates of symbol
types. Carter [60] uses the line-adjacency graph (LAG) of
an image for both removing the staff lines and providing a
structural analysis of symbols. This technique helps in ob-
taining more consistent image sectioning, but it is limited
to a small range of symbols as well as a potentially severe
break-up of symbols.

Some studies skip segmentation and staff line removal
[58, 59, 16] and use Hidden Markov Models (HMM).
HMMs work on low-level features that are robust to poor
quality images and can detect early topographic prints and
handwritten pieces. Calvo-Zaragoza [59] split sheet music
pages into staves following preprocessing. All staves are
normalised and later represented as a sequence of feature



Figure 3: Typical OMR pipeline using deep neural networks

vectors. This approach is very similar to [58], however,
this study goes one step further and supports the HMM
with a statistical N-gram model and achieve a 30% error
rate. This performance could be further improved if lyrics
are removed, light equalisation is performed and data vari-
ations are statistically modelled.

4.3 Music symbol classification

After the segmentation of musical primitives, the subse-
quent process is classification. Objects are classified based
on their shapes and similarities. However, since these ob-
jects are very often densely packed and overlapping their
shapes can become very complex. Therefore, this step
is very sensitive to all possible variations in music no-
tations. Fujinaga [2] uses projection profiles for classi-
fication, Gocke [11] uses template matching to classify
the objects. Other methods used are support vector ma-
chines (SVMs), k-nearest neighbour (kNN), neural net-
works (NN) and hidden Markov models (HMM). A com-
parative study of the four methods [61], finds SVM per-
forms better than HMMs.

Considering the success of deep neural networks (DNN)
in many machine learning tasks, recent studies take this
approach in music object recognition and classification.
A typical pipeline is shown in Figure 3. These networks
have many layers with activation functions employed be-
fore information propagates to the next layer. The deeper
the model, the more complicated it gets and is able to de-
tect hidden nonlinear relationships between the data, in this
case, music objects. The problem with using DNNs in
OMR is that they require a significant amount of labelled
data for supervised training.

Object detection in images is a very active research field.
Regional CNNs (R-CNNs), Faster R-CNN [62], U-nets
[63], deep watershed detectors [18] and Single-shot detec-
tors [64, 65] are among some of the approaches proposed
recently. Pacha et al. [17] use Faster R-CNN networks
with pre-trained models fine-tuned with data from MUS-
CIMA++ (see Sect. 7 for a summary of OMR datasets).
They achieve a mean average precision of up to 80 %.
However, such performance is achieved with cropping the
image into individual staff lines.

Tuggener et al. [18] use deep watershed detectors in the
whole image. It is faster than Faster R-CNN approach in
image snippets, and it allows some shift in the data distri-
bution. Nonetheless, it does not perform well on underrep-
resented classes.

Going further into the pipeline, we should be able to cap-
ture and reconstruct the right positions, relationships be-
tween notes, and relevant musical semantic information

such as duration, onsets, pitch.

5. NOTATION RECONSTRUCTION

After classifying and recognising musical objects, the next
block should extract musical semantics and structure. As
mentioned earlier, OMR is two-dimensional, meaning that
recognising the note sequence as well as their spatial re-
lationships are essential. Hence, a model should iden-
tify the information about the spatial relationship between
the recognised objects. Ng et al. [9] believe that domain
knowledge is key to improving OMR tasks and especially
music object recognition, similarly to a trained copyist or
engraver, to decipher poorly written scores, building on the
authors’ previous research on printed scores [4]. A multi-
stage process is adopted, in which the first search is for
essential features helping the interpretation of the score,
verified by their mutual coherence, followed by a more in-
telligent search for more ambiguous features. Key and time
signatures are detected after low-level processing and clas-
sification, using these global high-level features to test the
earlier results.

Ng and Boyle [4] base their study on three assumptions:
i) foreknowing the time signature, ii) key signature, and
iii) that the set of the primitive feature set under exami-
nation is limited to ten. The first and second assumptions
are overcome by geometrically predicting a limited sym-
bol set such as numbers, flats and sharps. The input image
goes through binarisation using a threshold, image rotation
for de-skew, then the staff lines are detected and erased.
Now the image has blocks of pixels, music object primi-
tives and groups of primitives. Further segmentation based
on some rules is needed for a group of primitives. After
the segmentation process, a classifier uses only the width
and the height of the bounding box for recognition based
on a sampled training set. The recognised primitives are
grouped to reconstruct their semantic meaning. The re-
construction consists of overlaying an ellipse and counting
the number of foreground pixels, finding the pitch, search
the neighbourhood for other features that might belong to
the object and identifying the possible accidents using a
nearest neighbourhood (NN) classifier. Music knowledge
related to bars, time, and key signatures is applied at this
stage. During segmentation, the process relies on straight
edges of the objects, therefore is not robust to handwritten
scores. The method fails if the symbols are skewed, for
instance, when a stem is not perpendicular to a stave line.

Similar to the method mentioned above, another ap-
proach is formalising musical knowledge and/or encoding
knowledge into grammar rules that explain, for instance,
how primitives are to be processed or how graphical shapes



are to be segmented [10, 3].
Prerau[42] proposes two levels of grammar. One being

notational grammar while the other is a higher-level gram-
mar for music. The first allows the recognition of sym-
bol relationships, the second deals with larger music units.
Many other techniques use musical rules to create gram-
mar rules for OMR. Such rules can be exemplified as [33]:

• An accidental is placed before a notehead and at the
same height;

• A dot is placed after or above a notehead in a vari-
able distance;

• Between any pair of symbols: they cannot overlap.

The issue with music rules and heuristics is that these
rules are very often violated, especially in handwritten mu-
sic. Furthermore, it is challenging to create rules for many
different variations and notations with a high level of com-
plexity. As a result, this approach would not perform well
with both typeset and handwritten complex notations, and
it is difficult to scale to a broad range of notation and en-
graving styles.

Pacha et al. [46] propose using graphs to move towards
a universal music representation. Considering that in mu-
sic notations, the relationship between primitives contains
the semantic meaning of each primitive; they suggest that
OMR should employ a notation assembly stage to repre-
sent this relationship. Instead of using grammar and rules
mentioned earlier, they use a machine learning approach
to assemble a set of detected primitives. The assembly is
similar to a graph containing syntactic relationships among
primitives capturing the symbol configuration. The robust-
ness of the model regarding variations in bounding boxes
leaves room for improvement and so does the notation as-
sembly stage, due to the lack of broader hypotheses on the
detected objects.

Baró et al. [48] consider monophonic scores as sequences
and use Long Short-Term Memory (LSTM) Recurrent
Neural Networks (RNNs) for reading such sequences to re-
trieve pitch and duration. For evaluation they use Symbol
Error Rate (SER) defined as the minimum number of edit
operation to convert an array to another. This approach
shows to work well with simple scores such as mono-
phonic scores, but fundamental remodelling is needed for
more complex scores [48].

This stage is concerned with reconstructing relationships
from the detected musical objects. A challenge in this
stage is to model a musical output representation that en-
codes sheet music both a similar rendering of the original
image and the semantics (e.g. onsets, duration, pitch).

6. MUSIC NOTATION ENCODING

The output from the previous steps is used to construct a
semantic model or data model. This model should rep-
resent a re-encoding of the score in the input. The output
model should be expressible in a machine-readable format.
Usual OMR output formats include MIDI, MusicXML,
MEI, NIFF, Finale, and in some software, the music is even

rendered into WAVE files. Musical Instrument Digital In-
terface (MIDI) [66] is an interchange medium between the
computer and digital instruments. At the basic level, MIDI
includes the temporal position when a note starts, stops,
how loud the note is, the pitch of the note, instrument and
channel. The main drawback of MIDI is that it cannot rep-
resent the relationships between musical symbols, or pro-
duce a re-encoded structured file, limiting the output to re-
playability only.

Notable formats that allow a structured encoding and
storing notations include MusicXML [67, 68] and MEI
[69, 70]. Both allow further editing in a music notation
software. MusicXML is more focused on encoding no-
tation layout. It is designed for archiving and for shar-
ing sheet music between applications. There is ongoing
research in the W3C Music Notation Community Group
on improving MusicXML format to handle more specific
tasks and applications.

The Music Encoding Initiative (MEI) [69] claims to be
comprehensive, declarative, explicit and hierarchical. MEI
has not been widely used as the final output of OMR sys-
tems yet. However, based on the characteristics mentioned
above, MEI is able to capture and retain musical seman-
tics better, e.g. relationships between voices, which may
benefit music engraving.

There is also work converting OMR output into Semantic
Web formats. Jones et. al. [71] propose the use of Linked
Data to annotate and improve discovery of music scores
using the Resource Description Framework (RDF). The
captured information is limited to the number of voices,
movements and melodies. Further extensions are needed to
store more sophisticated music semantics that support har-
mony or melody analysis. Nevertheless, the use of Linked
Data compatible formats may benefit OMR applications in
multiple ways. Linking scores to other music related data
on the Web [72] or even features of the audio of a per-
formance [73] could support interactive applications such
as score following or large catalogue navigation [74]. The
ontologies governing these formats may be used to encode
musical or engraving rules to complement probabilistic in-
ference in machine learning models.

To decide which of the encodings to use, we have to think
of what an application may require. Using the knowledge
obtained in the previous steps and from different studies
would assist this stage in its standardisation. Currently
there is little research in OMR dealing with encoding, how-
ever, many works in other fields focus on encoding formats
that better represent music and its structure.

7. DATASETS

Depending on the OMR task to be performed and the
nature of the application, different datasets may be suit-
able. Existing datasets contain handwritten or copyright-
free printed music sheets in mensural or CWMN notations.
Calvo-Zaragoza et al. [75] introduced a new dataset called
HOMUS (Handwritten Online Musical Symbols). This
contains 15200 samples of 32 types of musical symbols
from 100 different musicians. Universal Music Symbol
Collection is a dataset of 90000 tiny handwritten and type-



set music symbols from 79 classes that can be used to train
classifiers.

As for staff line removal, a commonly used dataset is
CVC-MUSCIMA [76]. It contains 1000 music sheets writ-
ten by 50 different musicians. Each musician was asked
to transcribe the same given 20 pages of music using the
same pen and same style of sheet music paper. These pages
include monophonic and polyphonic music, consisting of
scores for solo instruments and music scores for choir and
orchestra.

A derived version of CVC-MUSCIMA dataset is MUS-
CIMA++ [15]. This dataset is more suitable for musical
symbol detection. It has 91255 symbols with both notation
primitives and higher-level notation objects, key signatures
or time signatures. Notes are captured using the annotated
relationships of the primitives, having this way both low
and high-level symbols. DeepScores is a collection that
contains 300k annotated images of written music mainly
for object classification, detection, and segmentation [77].
This dataset has large images containing tiny objects.

There are also datasets for an end-to-end recognition such
as the Printed Images of Music Staves (PrIMuS) [21], or
the extended version of this with distorted images to simu-
late imperfections Camera-PrIMuS [25]. These datasets
have 87678 real-music scripts in five different formats:
PNG, MIDI, MEI, semantic and agnostic encoding which
is a sequence that contains the graphical symbols and their
positions without any musical meaning.

Given that the performance of the deep learning meth-
ods usually depends on the amount of the data the model
is fed, for future work, we propose creating a universal
dataset that facilitates the intermediate stages but also an
end-to-end system. We want to start by generating mu-
sic files using a music notation software such as Dorico
[78] or Rosegarden [79]. This work will be harmonized
with the before-mentioned MUSCIMA++ and DeepScores
datasets.

8. OPEN ISSUES AND CONCLUSIONS

Low-quality images of sheet music, complex scores, hand-
written music and alternate notations are still challeng-
ing for OMR, while most of the work focuses on mono-
phonic scores. CWMN notation is highly complex, having
dense scores, overlapping symbols, structural complexity,
semantic rules that are sometimes violated. For a deep
learning approach, in particular, class imbalance is one of
the most significant issues; some note types are persistent
while some others are rare. An further open issue is the
lack of a large labelled dataset with a broad variety of im-
age quality and balanced classes [80].

We can observe a shift in OMR from using conventional
image processing and object detection to using neural net-
works, as shown in Figure 3. Recently published papers
take novel approaches and use deep learning methods in
all stages of the OMR pipeline. These stages are not nec-
essarily in the order presented above or exhibit all the steps
described.

Despite the introduction of deep learning, the field leaves
space for improvement in all stages of the pipeline. New

opportunities include creating more diverse and better bal-
anced datasets, improving the detection of music objects
and staff lines, the reconstruction of semantic meaning,
and, perhaps most importantly, standardising the evalua-
tion metrics and the output of the pipeline. A possible final
goal is end-to-end learning that would not need intermedi-
ate steps. Neural networks are already applied to problems
like text and speech recognition and machine translation in
this manner. However, these systems are still not adapted
to a two-dimensional output sequence such as music [31].

This paper summarised seminal and influential studies
conducted in the field of OMR. We discussed different
methods and approaches in prominent stages of the OMR
pipeline. Our review aims to identify important older
works and current state-of-the-art approaches, which can
be used as a reference by researchers to begin further work
in OMR. It also represents a position in several aspects of
the field, including the need for incorporating more prior
knowledge, theory and musical information in the process-
ing pipeline, the need for finding new methods to incor-
porate these priors into statistical learning models such as
deep neural networks and a need for more standardisation
in OMR evaluation.
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and A. Oliver, “Optical music recognition for scores
written in white mensural notation,” EURASIP Journal
on Image and Video Processing, vol. 2009, no. 1, p.
843401, 2009.

[30] D. Byrd and J. G. Simonsen, “Towards a standard
testbed for optical music recognition: Definitions, met-
rics, and page images,” Journal of New Music Re-
search, vol. 44, no. 3, pp. 169–195, 2015.



[31] J. Calvo-Zaragoza, J. Hajič jr., and A. Pacha, “Un-
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