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Supplementary materials for Tamura et al. 

(one supplemental movie, four supplemental tables, six supplemental figures, one 

supplemental methods section) 

Movie S1: HGSC cells exhibit elevated microtubule assembly rates. Shown is an EB3-

GFP microtubule tip tracking movie from a COV318 HGSC cell treated with monastrol and 

filmed every 2 s (see Materials and methods for details).  

Table S2: All mutations identified from whole genome sequencing of seven HGSC cell lines 

(including TP53, BRCA1 and BRCA2). 

Table S3: RNAseq data of all transcriptional changes in HGSC cell lines, relative to FNE1 

or FNE2, changes unique to each cell line, and CIN phenotype-specific changes (for Figure 

S5c). 

Table S4: Lists of significant gene transcription changes for specific CIN phenotypes, plus 

GO-pathways associated with specific CIN phenotypes (for Figure S6a,b). 

Table S1: Details of HGSC cell lines used in this study.  
Cell Line Source Tissue Notes 

FNE11 University 

of Miami 

Fallopian tube 

epithelium 

45n, -15, -X, t9:15, iso9p 

FNE21 University 

of Miami 

Fallopian tube 

epithelium 

 

COV3182 F. Balkwill Ovary 

(peritoneal 

ascites) 

 

G333 F. Balkwill  Omental metastases of a patient with HGSC after 

chemotherapy 

G164 F. Balkwill  

  

Kuramochi4 JCRB 

(Purchased) 

Ovary 

(ascites) 

Ovarian cancer, undifferentiated carcinoma 

OVKATE5 JCRB 

(Purchased) 

Ovary Established from a patient with ovarian carcinoma, stage 

IIIc, CAP(3) EP(6) treatment done previously  

OVSAHO5 F. Balkwill  

 

SNU1196 KCLB 

(Purchased) 

Abdominal 

metastatic 

focus 

Established from a patient with ovarian carcinoma, stage 

IIIc, FAMT(15) CFF(6) treatment done previously  
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Figure S1: 
 

 
Figure S1 (relating to Figure 1): HGSC cell lines demonstrate a range of ploidies and exhibit 

genomic changes in key ovarian cancer marker genes. A). Frequency of breakpoints occurring in 

tumour genomes across a range of different cancer types. The number of breakpoints per 10 Mb 

genome segment is shown, as calculated from the segmentation copy number data of the TCGA 

datasets. B) Matrix of errors plots derived from the loopsquaremodel function of ACE to indicate 

ploidy and cellularity probabilities. Intensity of red zones represent most likely ploidy and cellularity 
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(% sample that is tumour cells), the latter of which should be close to 1 for cell lines (see Materials 

and methods for details). Most models found best fits with high cellularity, but notably cell line 

COV318 most likely has a ploidy between 3N and 4N based on our available data for the model. C) 

Table showing the best ploidy values obtained from ACE analysis, compared to mean and median 

chromosome counts from metaphase chromosome spreads. D) Flow cytometry analysis of three 

HGSC cell lines, compared to diploid cell lines. Each ‘test’ cell line sample was spiked with diploid 

RPE1-H2B-RFP cells to provide an internal control. CRC cell lines HCT116 (near diploid) and 

SW1116 (near triploid) were also analysed as positive controls for diploidy and triploidy respectively. 

E) Analysis of M-FISH images of 24 Kuramochi metaphase spreads (see Figure 1d). Percentage of 

cells showing each indicated translocation. F) Percentage of all chromosomes analysed from 

metaphase spreads which demonstrated a structural defect (i.e. dicentric or acentric) (893-1511 

chromosomes analysed across two experiments for each cell line). G) Heatmap indicates changes in 

DNA copy number and RNA expression (compared to FNE1) for BRCA1 and BRCA2.  H) Analysis 

for p53 expression by Western blot (with vinculin as loading control) with heatmaps for DNA copy 

number and RNA expression (compared to FNE1). I) Similarly, an analysis of Cyclin E expression 

(with GAPDH as loading control).  J) Graph showing DNA copy number alterations of key genes on 

log2 scale, derived from calculating gene reads coverage as a function of mean genome read depth 

(see Methods for details). Green dotted lines indicate range of “normal” copy number relative to 

ploidy (between +0.3 and -0.3).  
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Figure S2: 

 
Figure S2 (relating to Figure 2): The mitotic checkpoint is functional and sister chromatid 

cohesion is normal in HGSC. A,B) Prometaphase cells from Ovsaho were probed with antibodies 

against CREST (red, marks centromeres) and either Mad2 (in A) or BubR1 (in B), components of the 

spindle assembly checkpoint that accumulate on unattached kinetochores and delay anaphase onset. 

Unaligned centric chromosomes demonstrated robust loading of Mad2 and BubR1. C,D) 

Measurements (white line) of inter-sister chromatid centromere distances (n>200 per cell line) from 

metaphase spread (scale bar indicates 5 µm). Statistical test is one-way ANOVA with Dunnett’s 

correction for multiple testing (significant difference to FNE1 control shown, **** =p<0.0001). 
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Figure S3: 

 
 
Figure S3 (relating to Figure 2): Supernumerary centrioles, multipolar divisions and Aurora 

Kinase A overexpression in HGSC. A) Prometaphase cells probed with antibodies against centrin 

(green) to mark centrioles and tubulin (red) to mark microtubules. B) Percentage of prometaphase 

cells with abnormal (>4) centrioles. Statistical test is one-way ANOVA with Dunnet’s correction for 

multiple testing. Differences between HGSC cancer cell lines compared to FNE1 are shown.  C) 

Examples of prometaphase cells with abnormal mitotic spindles. D) Percentage of cells with abnormal 

mitotic spindles. E) Quantification of multipolar and bipolar cell divisions from live cell imaging. 

Summary of two experiments, n=28-101 cells.  F) Chromosome segregation error rates in anaphase 

cells with normal (4) and abnormal (>4) centrioles (n = total anaphases from two independent 

experiments). Significance from Fishers exact tests for all errors versus no errors between 4 and >4 

centriole populations is shown. G) Quantification of centriole number in mitotic cells in indicated cell 

lines. H) Graph showing DNA copy number alterations of Aurora Kinase A (AURKA) derived from 
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whole genome sequencing, calculating gene reads coverage as a function of mean genome read depth 

(see Methods for details). Dotted line at 0.3 indicates level of relative normal ploidy, beyond this is 

considered gene amplification. I) Western blot of untreated cell lines (or FNE1 treated with monastrol: 

+MON), with membrane probed for antibodies against Aurora A, or b-tubulin (loading control). 

Heatmaps of AURKA gene DNA copy number (relative to median cell line ploidy) and of AURKA 

RNA overexpression (relative to FNE1 expression). N.D indicates not determined. J) Proliferation 

rates of cell lines treated with nucleosides or low dose (1 nM) paclitaxel.   
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Figure S4: 

 
Figure S4 (relating to Figure 3): Reduction of segregation errors upon nucleoside 

supplementation. Segregation error rates for untreated cells vs cells treated with nucleosides, used 

to generate Figure 3F. T tests between pairs (treated vs untreated) are indicated.   
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Figure S5: 

 
 

Figure S5: Genetic and transcriptomic analyses reveals potential causative CIN genes.  

A) List of mutations in CIN pathways identified in cell lines after screening out common SNPs. B) 

Mutational burden in HGSC cell lines. C) List of CIN-related genes which are upregulated or 

downregulated in HGSC (statistically significant changes in RNA expression in HGSC cell line when 

compared to both FNE1 and to FNE2 controls). Genes (or similar genes in same pathway) found in 

more than one cell line are listed in bold. Blue font indicates downregulation, red indicates 

upregulation. D) CIN-related genes with significantly altered expression (compared to both FNE1 and 

FNE2) in panels of cell lines sharing the phenotypes indicated. Listed are: For PARP inhibitor 

(PARPi) Resistance, five genes in the replication stress response pathway. For Paclitaxel Resistance, 

nine genes in positive regulation of microtubule polymerisation. For Attenuated Replication Stress 

response, five genes in DNA replication. For Nucleoside Rescue, thirty-seven genes in nucleotide 

metabolism. For Congression Defects, a significantly enriched pathway (FDR=3.39E-03) of eleven 

genes in Actin Reorganisation pathway was identified. 
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Figure S6: 

  
Figure S6: Analysis of transcriptional changes and pathway enrichment. A) Representative 

heatmap showing gene expression changes in two HGSC cell lines (Ovkate, G33) that demonstrated 

resistance to PARPi, vs five HGSC cell lines (COV318, G164, Kuramochi, Ovsaho, Snu119) that 

do not. Full list of genes for this and four other CIN phenotypes found in Supplementary Table S4. 

B) Plots of ontology pathways that are enriched for upregulated or downregulated genes for cell 
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lines that share particular CIN phenotypes, each with a listing of the top ten pathways with a Z-score 

>4. Full lists in Supplementary Table S4.  
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Supplementary Methods 

Whole Genome Sequencing: 

For data preprocessing, FastQC was used to perform quality control (QC) of the raw 

sequencing files7. Each file was then aligned to the Hg38 genome build using HISAT28. 

Resulting .sam files were compressed and converted to .bam files using samtools 1.79. Picard 

version 2.6.0-SNAPSHOT was used to sort the .bam files and to mark duplicate reads 

(http://broadinstitute.github.io/picard/). Duplicate reads were removed and .bam files were 

indexed using samtools and picard respectively. QualiMap Bamqc v.2.2.1. was used to 

conduct QC of the processed .bam file10. 

 

Downsampling and absolute copy number estimation and visualization: To generate 

absolute copy numbers using unmatched tumour data, we first align raw .fastq files to the 

Hg37 Human Genome Reference using HISAT2 and pre-processed as above. Samtools was 

used to obtain 0.1X downsampled .bams. Using these downsampled .bam files as input, we 

performed absolute copy number estimation using the R package ACE34. The 

loopsquaremodel function of ACE and resulting matrixplots were used to generate ploidy 

and cellularity models with the lowest error rates. The most likely biologically relevant 

model was then manually picked based on the following criteria: 1) Cellularity estimates 

should be ~1.0 due to the nature of our cell line samples and 2) Ploidy estimates should be 

concordant with chromosome numbers counted from metaphase spreads.  The ggplot2 

package in R was used to plot the segmented copy number profiles.  

 

Somatic mutation and copy number variation (CNV) analysis 

In absence of matched normal samples, GATK version 4.1.4.1. was applied on processed 

.bam files to perform somatic SNV and CNV calling, according to the GATK best practices 

workflow11. First, a panel of normals (PoN) was assembled using twelve 30X PCR-free high 

coverage samples from the 1000 Genomes Project12. Mutations were then called using 

Mutect2 and the assembled PoN, after which raw variant calls were further processed, 

filtered and annotated. For CNV calling, read coverage counts were collected across pre-

processed intervals (bin length 1000bp), and denoised against a CNV PoN.  Next, allelic 

counts for both the reference and samples were collected, and copy number data were 

segmented. Finally, amplification, copy-neutral and deletion events were called. Low and 

high copy-neutral segment ratio bounds were defined as 0.7 and 1.3 respectively. Gene 
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specific copy number log-ratios were obtained by matching the gene coordinates with the 

segmented copy number data.  

 

Cancer genome breakpoint analysis: TCGA segmentation copy number data was 

downloaded from cBioportal13,14 and the number of breakpoints were calculated using an R-

script adapted from available code as written by Macintyre et al15. 

 

RNAseq Analysis: Raw reads were mapped to the human genome (hg38, Genome 

Reference Consortium GRCh38) using HISAT216. Number of reads aligned to the exonic 

region of each gene were counted using HTSeq17 based on the Ensembl annotation. Only 

genes that achieved at least one read count per million reads (cpm) in at least twenty-five 

percent of the samples were kept and a log2cpm expression matrix was subsequently 

generated. Differential expression analysis of each of the cell lines versus the control cell 

lines FNE1 and FNE2 was performed using the ‘limma’ R package18. Gene-set enrichment 

analysis (GSEA) of these genes was performed using the GSEA software19 for Gene 

Ontology Biological Processes. To identify genes differentially expressed between multiple 

cell-line classes (multi-class comparisons) we used the function sam from R package 

siggenes. Enrichment analysis on these genes was performed by hypergeometric test for 

Gene Ontology Biological Processes using the dEnrichr function of the R package dnet. 

Heatmaps illustrating the expression pattern of the genes were generated using R package 

ComplexHeatmap. Row clustering was performed on euclidean distance  and “complete” 

clustering method. Dotplots of significantly enriched pathways (BH-adjusted p < 0.05) were 

generated using R package ggplot2. RNA-Seq data have been deposited in Gene Expression 

Omnibus (GEO) under the accession number GSE155310. For pathway identification of 

genes enriched relative to FNE1/2, pathways were identified using PantherDB.org. 
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