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Abstract

We adapt Luk’s analysis of the characteristic initial value problem in General Relativ-
ity to the asymptotic characteristic problem for the conformal Einstein field equations to
demonstrate the local existence of solutions in a neighbourhood of the set on which the data
are given. In particular, we obtain existence of solutions along a narrow rectangle along null
infinity which, in turn, corresponds to an infinite domain in the asymptotic region of the
physical spacetime. This result generalises work by Kánnár on the local existence of solu-
tions to the characteristic initial value problem by means of Rendall’s reduction strategy. In
analysing the conformal Einstein equations we make use of the Newman-Penrose formalism
and a gauge due to J. Stewart.

1 Introduction

This article is the second of a series in which we study the characteristic initial value problem
(CIVP) in General Relativity in a range of settings. In [1] (henceforth Paper I) it has been shown
that Luk’s strategy —see [2], to obtain an improved local existence result for the characteristic
problem for the vacuum Einstein field equations can be adapted to a different gauge based on the
Newman-Penrose (NP) formalism, the Stewart gauge, see [3, 4]. In the present article we consider
the asymptotic characteristic initial value problem, a CIVP for Friedrich’s conformal Einstein field
equations (a regular conformal representation of the vacuum Einstein field equations) in which
one of the null initial hypersurfaces is a portion of past null infinity, and show that Luk’s strategy
can also be adapted to this setting. Accordingly, we obtain a domain of existence of the solution
to the conformal Einstein field equations on a narrow rectangle having a portion of null infinity
as one of its long sides —see Figure 1. In doing so we improve Kánnár’s local existence result
for the asymptotic CIVP in which existence of a solution is only guaranteed in a neighbourhood
of the intersection of the initial null hypersurfaces —see [5] and also [6], Chapter 18. Expressed
in terms of a solution to the Einstein field equations the improved rectangular existence domain
corresponds, in fact, to an infinite domain. Kánnár’s result is, in turn, an extension to the setting
of smooth (i.e. C∞) functions of Friedrich’s seminal analysis of the CIVP for the Einstein and
conformal Einstein field equations in the analytic setting —see [7, 8, 9].
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‡E-mail address:p.zhao@qmul.ac.uk

1



(a) (b)

I −I −N ′? N ′?

Z? Z?

Figure 1: Comparison of the existence domains for the characteristic problem: (a) existence
domain using Rendall’s strategy based on the reduction to a standard Cauchy problem; (b)
existence domain using Luk’s strategy —in principle, the long side of the rectangles extends for
as much as one has control on the initial data.

A different strategy to the proof of the main theorem in the present article has been given
in [10]. This alternative proof makes use of the fact that the conformal Einstein field equations
imply a set of quasilinear wave equations for which a general theory of improved existence of
solutions to the characteristic problem had been developed. Thus, the approach used in the
present equation provides a different, complementary insight into the structural properties of the
conformal Einstein field equations.

An alternative asymptotic CIVP for the conformal Einstein field equations can be formulated
by prescribing initial data on a cone representing past null infinity including its vertex —which
corresponds to past timelike infinity. The setup of this CIVP was given in [11, 12]. Statements
about the existence of solutions to this problem have been obtained in [13, 14], see also [15].
These results also provide improved existence results —that is, the existence of solutions is not
restricted to the tip of the cone of past null infinity but extends to a neighbourhood of the cone
away from the vertex as long as there is control of the initial data. An important open problem in
this respect is to obtain a solution which includes spatial infinity. The analysis in [13, 14] builds
on the theory of the CIVP for characteristic cones developed in [16, 17]. This theory makes use of
systems of second order hyperbolic equations and is, in principle, different from Luk’s approach.

The results in this article hold on portions of of null infinity which are away from the points
i0 and i+ representing, respectively, spatial and future timelike infinity. At these points both the
conformal structure and the gauge used in the present analysis become singular. The extension of
the analysis to include these points requires the construction of estimates which do not degerate
at these caustics. In the case of spatial infinity, a tatalising possibility is the combination of
the methods of the present article with the estimates for linear fields within the framework of
the cylinder at spatial infinity developed in [18]. This analysis requires a detailed analysis of
asymptotic expansions near spatial infinity.

New insights

The NP formalism has played an influential role in mathematical relativity. Nevertheless, its use
in the formulation of existence results has been limited. The main motivations behind the analysis
in this article is to understand the structural properties of the conformal Einstein field equations.
In this spirit, we avoid the use of general theory as in [10] and give a detailed discussion of the
various arguments to convince the reader that they indeed follow through. In order to keep the
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length of the article at bay, we focus primarily on those aspects of the analysis which are novel or
not present in the discussion of Paper I. In this article we use the phrase improved existence result
to mean an improvement on Kánnaár’s existence result in a neighbourhood of the intersection of
past null infinity and an incoming null cone. This improved result is, in a sense, optimal in that
it provides existence in a neighbourhood of the initial hypersurfaces as long as one has control
on the initial data see Figure 1. Our main result is presented in Theorem 7 in Section 2. While
the results of the present article have been stated, for conciseness with past null infinity and an
incoming null cone as initial hypersurfaces, analogous results can be readily obtained, mutatis
mutandi, for a setting where the data is prescribed on future null infinity and an outgoing light
cone. In this case the development of the data is located in the past of the union of the initial
null hypersurfaces.

Overview and main results

In Section 2 we start by providing a brief review of the main technical tool of this work: the
conformal Einsten field equations and its relation to the vacuum Einstein field equations. In
Section 3 we give a discussion of the geometric formulation of the asymptotic CIVP and the
gauge choice behind this formulation —i.e. Stewart’s gauge. Section 4 is concerned with the
basic local existence theory of the asymptotic CIVP. In particular, we discuss the choices of freely
specifiable initial data, the hyperbolic reduction procedure, the computation of formal derivatives
and the propagation of the constraints and the gauge. The basic existence theorem is given in
Theorem 1. Section 5 provides the basic setting for the formulation of the improved existence
result. Section 6 discusses the construction of the estimates required to establish the improved
existence result. Finally, Section 7 provides the precise statement of the main result of our
analysis.

The article contains one appendix listing in explicit form the NP formulation of the conformal
Einstein field equations used in the analysis.

Notation and conventions

We take {a, b, c, . . . } to denote abstract tensor indices whereas {µ,ν ,λ , . . . } will be used as space-
time coordinate indices with the values 0, . . . , 3. Our conventions for the curvature tensors are
fixed by the relation

(∇a∇b −∇b∇a)vc = Rcdabv
d. (1)

We make systematic use of the NP formalism as described, for example, in [19, 20]. In particular,
the signature of Lorentzian metrics is (+−−−). Many of our derivations, although straightfor-
ward, are fairly lengthy, so we have included in Appendix A a complete summary of the equations
of the NP-formalism, highlighting the simplifications that occur with our particular gauge.

2 The vacuum conformal Einstein field equations

The purpose of this section is to provide a succinct summary of Friedrich’s conformal Einstein
field equations —see e.g. [8, 21]. The reader interested in full details, derivation and discussion is
referred to [6], Chapter 8. In this article we restrict our attention to the 4-dimensional vacuum
case with vanishing Cosmological constant.

In what follows let (M̃, g̃ab) denote a vacuum spacetime. Friedrich’s conformal Einstein field
equations are a regular conformal representation of the Einstein field equations. That is, they
are equations for a conformally rescaled metric gab = Ξ2g̃ab, a conformal factor Ξ and concommi-
tants which are formally regular up to the conformal boundary, i.e. the points for which Ξ = 0,
and which imply, for Ξ 6= 0, a solution to the Einstein field equations. In the following, denote
by (M, gab) the conformal extension of (M̃, g̃ab) generated by the conformal factor Ξ. Following
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the usual terminology we refer to (M̃, g̃ab) and (M, gab), respectively, as the physical and un-
physical spacetimes. The sets of points of the conformal boundary giving rise to a hypersurface
—i.e. the points for which dΞ 6= 0— are called null infinity, I . In this article we assume, for
simplicity, that I = ∂M. Spacetimes admitting this type of smooth conformal extension are
known as asymptotically simple —see [22, 19, 6] for the classic precise definition. Null infinity
can be shown to correspond to the endpoints of null geodesics and, thus, it consists of two discon-
nected components, past and future null infinity, I − and I +. In this article, for concreteness
we restrict our discussion to a neighbourhood of I −.

In what follows let ∇a denote the Levi-Civita connection of the metric gab and let Rab, C
a
bcd

be its Ricci and Weyl tensors, respectively. In order to introduce the conformal Einstein field
equations we further define the fields

Lab ≡
1

2
Rab −

1

12
Rgab,

dabcd ≡ Ξ−1Cabcd,

s ≡ 1

4
∇a∇aΞ +

1

24
RΞ,

the Schouten tensor, the rescaled Weyl tensor and the Friedrich scalar respectively. In terms of
the latter the vacuum conformal Einstein field equations with vanishing Cosmological constant
are given by

∇a∇bΞ = −ΞLab + sgab, (2a)

∇as = −Lac∇cΞ, (2b)

∇cLdb −∇dLcb = ∇aΞdabcd, (2c)

∇adabcd = 0, (2d)

6Ξs− 3∇cΞ∇cΞ = 0, (2e)

Rcdab = Ccdab + 2
(
δc[aLb]d − gd[aLb]

c
)
. (2f)

More details can be found in [6]. In Appendix A.2 we give the spinorial counterpart of these
equations and their components equations in Newman-Penrose (NP) frame. This spinorial for-
mulation of the equations will be used systematically in the rest of the article. It is just recalled
that the spinoral version of the equations follows directly by suitably contracting the tensorial
equations with the soldering forms —see e.g. [6] for more details.

The relation between the conformal Einstein field equations (2a)-(2f) and the Einstein field
equations is expressed in the following result:

Proposition 1 (solutions of the conformal vacuum Einstein field equations as solu-
tions to the vacuum Einstein field equations). Let

(gab, Ξ, s, Lab, d
a
bcd)

denote a solution to equations (2a)-(2d) and (2f) such that Ξ 6= 0 on an open set U ⊂M. If, in
addition, equation (2e) is satisfied at a point p ∈ U , then the metric g̃ab = Ξ−2gab is a solution
to the vacuum Einstein field equations on U .

The proof can be found in Chapter 8 of [6].

3 The geometry of the problem

In this section, we will discuss the geometric and the gauge choices in the asymptotic CIVP on
past null infinity.
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Figure 2: Setup for Stewart’s gauge. The construction makes use of a double null foliation of
the future domain of dependence of the initial hypersurface I − ∪ N ′?. The coordinates and
NP null tetrad are adapted to this geometric setting. The analysis in this article is focused on
the arbitrarily thin grey rectangular domain along the hypersurface I −. The argument can
be adapted, in a suitable manner, to a similar rectangle along N ′?. See the main text for the
definitions of the various regions and objects.

3.1 Basic setting

Our basic geometric setting consists of an unphysical manifoldM with a boundary and an edge.
The boundary consists of two null hypersurfaces: I −, past null infinity on which Ξ = 0; and N ′?,
an incoming null hypersurface with non-vacuum intersection S? ≡ I − ∩ N ′?. We will assume
that S? ≈ S2. In a neighbourhood U of S?, one can introduce coordinates x = (xµ) with x0 = v
and x1 = u such that, at least in a neighbourhood of S? one can write

I − = {p ∈ U | u(p) = 0}, N ′? = {p ∈ U | v(p) = 0}.

Given suitable data on (I −∪N ′?)∩U one is interested in making statements about the existence
and uniqueness of solutions to the conformal Einstein field equations on some open set

V ⊂ {p ∈ U | u(p) ≥ 0, v(p) ≥ 0} (3)

which we identify with a subset of the future domain of dependence, D+(I − ∪N ′?), of I − ∪N ′?.

3.2 Stewart’s gauge

The basic geometric setting described in the previous section is supplemented by a gauge choice
first introduced by Stewart [19].

3.2.1 Coordinates

It is convenient to regard the 2-dimensional surface S? as a submanifold of a spacelike hypersurface
S. The subsequent discussion will be restricted to the future of the hypersurface. As S? ≈ S2,
one has that S? divides the spacelike hypersurface into two regions, the interior of S? and the
exterior of S?. Now, consider a foliation of the spacelike hypersurface by 2-dimensional surfaces
with the topology of S2 which includes S?. At each of the 2-dimensional surfaces we assume
there pass two null hypersurfaces. Further, we assume that one of these hypersurfaces has the
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property that the projection of the tangent vectors of their generators at S point outwards. We
call these null hypersurfaces outgoing light cones. Moreover, it is also assumed that one of these
hypersurfaces has the property that the projection of the tangent vectors of their generators at S?
point inwards. We call these null hypersurfaces ingoing light cones.

Thus, at least locally, one obtains a 1-parameter family of outgoing null hypersurfaces Nu and
a 1-parameter family of ingoing null hypersurfacesN ′v. One can then define scalar fields u and v by
the requirements, respectively, that u is constant on each of the Nu and v is constant on each N ′v.
In particular, we assume that N0 = I − and N ′0 = N ′?. Following standard usage, we call u
a retarded time and v an advanced time. The scalar fields u and v will be used as coordinates in
a neighbourhood of S?. To complete the coordinate system, consider arbitrary coordinates (xA)
on S?, with the index A taking the values 2, 3. These coordinates are then propagated into I − by
requiring them to be constant along the generators of I −. Once coordinates have been defined
on I −, one can propagate them into V by requiring them to be constant along the generators of
each N ′v. In this manner one obtains a coordinate system (xµ) = (v, u, xA) in V.

We use the notation Nu(v1, v2) to denote the part of the hypersurface Nu with v1 ≤ v ≤ v2.
Likewise N ′v(u1, u2) has a similar definition. We denote the sphere intersected by Nu and N ′v
by Su,v. We define the region ⋃

0≤v′≤v,0≤u′≤u

Su′,v′

as Du,v. We also define the time function t ≡ u+ v, and the truncated causal diamond,

D t̃
u,v ≡ Du,v ∩ {t ≤ t̃}.

Remark 1. It is observed that while the null coordinte u has a compact range, this is, in principle,
not the case for v.

3.2.2 The NP frame

A null Newman-Penrose (NP) tetrad is constructed by choosing vector fields la and na tangent
to the generators of Nu and N ′v respectively. Following the standard conventions we make use
of the normalisation gabl

anb = 1 which is preserved under boost transformations. This freedom
can be used to set na = ∇av. This requirement still leaves some freedom left as one can choose a
relabelling of the form v 7→ V (v). Next, we choose the vector fields ma and m̄a so that they are
tangent to the surfaces Su,v ≡ Nu ∩N ′v and satisfy the conditions gabm

am̄b = −1, gabm
amb = 0.

This leaves the freedom to perform a spin transformation at each point.
Now, observing that, by construction, on the generators of each null hypersurface N ′v only the

coordinate u varies, one has that

nµ∂µ = Q∂u,

where Q is a real function of the position. Further, since the vector la is tangent to the generators
of each Nu and lana = la∇av = 1, one has that

lµ∂µ = ∂v + CA∂A,

where, again, the components CA are real functions of the position. By construction, the co-
ordinates (xA) do not vary along the generators of I −, that is, one has that la∇axA = 0.
Accordingly, one has

CA = 0 on I −.

Finally, since ma and m̄a span the tangent space of each surface Su,v one has that

mµ∂µ = PA∂A,
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where the coefficients PA are complex functions.
Summarising, we make the following assumption:

Assumption 1. On V one can find a Newman-Penrose frame {la, na, ma, m̄a} of the form:

l = ∂v + CA∂A, (4a)

n = Q∂u, (4b)

m = PA∂A. (4c)

Remark 2. In view of the normalisation condition gabm
am̄b = −1, there are only 3 indepen-

dent real functions in the coefficients PA. Thus, Q, CA together with PA give six scalar fields
describing the metric. The components (gµν) of the contravariant form of the metric gab are of
the form

(gµν) =

 0 Q 0
Q 0 QCA

0 QCA σAB

 ,

where

σAB ≡ −(PAP̄B + P̄APB)

is the (contravariant) induced metric on Su,v.

On N ′? one has that n = Q∂u. As the coordinates (xA) are constant along the generators
of I − and N ′?, it follows that on N ′? the coefficient Q is only a function of u. Thus, without loss
of generality one can reparameterise u so as to set Q = 1 on N ′?.

3.2.3 Spin connection coefficients

Direct inspection of the NP commutators (12a)-(12d) applied to the coordinates (v, u, x2, x3)
taking into account together with the remaining gauge freedom in the vector frame of Assump-
tion 10 leads to the following:

Lemma 1. The NP frame of Assumption 10 can be chosen such that

κ = ν = γ = 0, (5a)

ρ = ρ̄, µ = µ̄, (5b)

π = α+ β̄, (5c)

on V and, furthermore, with

ε− ε̄ = 0 on V ∩I −.

Proof. The proof of this result is analogous to that of Lemma 1 in Paper I.

3.2.4 Equations for the frame coefficients

Taking into account the conditions of the spin connection coefficients given by (5a)-(5c), the
remaining commutators yield the equations

∆CA = −(τ̄ + π)PA − (τ + π̄)P̄A, (6a)

∆PA = −µPA − λ̄P̄A, (6b)

DPA − δCA = (ρ̄+ ε− ε̄)PA + σP̄A, (6c)
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DQ = −(ε+ ε̄)Q, (6d)

δ̄PA − δP̄A = (α− β̄)PA − (ᾱ− β)P̄A, (6e)

δQ = (τ − π̄)Q. (6f)

Equations (6a)-(6b) allow the evolution of the frame coefficients CA and PA off of the null
hypersurface N ′?. Equations (6c)-(6d) allow the coefficients Q and PA to be evolved along the
null generators of I −. Finally, (6e)-(6f) provide constraints for Q and PA on the spheres Su,v.

3.2.5 The conformal gauge conditions

The conformal Einstein field equations have an in-built conformal freedom which can be exploited
to simplify the geometric setting of the problem. This freedom allows us, in particular, to select in
an indirect manner the conformal factor via a conformal gauge source function. As it is customary
in the NP formalism let Λ denote the Ricci scalar divided by 24. One has the following:

Lemma 2 (conformal gauge conditions). Let (M̃, g̃) denote an asymptotically simple space-
time satisfying Ric[g̃] = 0 and let (M, g,Ξ) with g = Ξ2g̃ be a conformal extension for which the
condition Ξ = 0 describes past null infinity I −. Given the previous NP frame (4a)-(4c), the con-
formal factor Ξ can be chosen so that given a null hypersurface N ′? intersecting I − on S? ≈ S2

one has

Λ = − 1

24
R(x), in a neighourhood V of S? on J+(S?)

where R(x) is an arbitrary function of the coordinates. Moreover, one has the additional gauge
conditions

Σ2 = 1, µ = ρ = 0 on S?,
Φ22 = 0 on N ′?,
Φ00 = 0 on I −.

Proof. The proof of the above result is analogous to that of Lemma 18.2 in [6].

4 The formulation of the CIVP

In this section we analyse general aspects of the asymptotic CIVP for the conformal vacuum
Einstein field equations with data on the null hypersurface I − and N ′?. A key feature of the
setting is the existence of a hierarchical structure in the reduced conformal equations which allows
to identify the basic reduced initial data set from which the full initial data on I − ∪N ′? for the
conformal Einstein field equations can be computed.

4.1 Specifiable free data

The following result identifies a possible choice of freely specifiable initial data for the asymptotic
CIVP:

Lemma 3 (freely specifiable data for the characteristic problem). Assume that the gauge
condition given by Lemma 1 and Lemma 2 is satisfied in a neighbourhood V of S?. Initial data
for the conformal Einstein field equations on I − ∪ N ′? can be computed from the reduced data
set r? consisting of:

φ0, ε+ ε̄ on I −,

φ4 on N ′?,
λ, φ2 + φ̄2, Φ20, φ3, PA, on S?.
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Remark 3. An alternative, less symmetric, reduced initial data set is given by:

λ, ε+ ε̄ on I −,

φ4 on N ′?,
φ3, φ2 + φ̄2, PA, on S?.

Proof. The proof of this result follows from a lengthy but straightforward computation on the
same lines of Lemma 2 in Paper I. See also Section 18.2 in [6] and [5].

Remark 4. From the smoothness of the freely specifiable component φ4 on the incoming null
hypersurface N ′? and, in particular at the intersection with I − it follows that that the resulting
spacetime will satisfy the peeling behaviour near past null infinity —see e.g. [6], Chapter 10.
A reformulation of our characteristic problem to future null infinity, for which now φ0 is freely
specifiable data along an outgoing null hypersurface, gives rise mutatis mutandi to solutions with
peeling at I +.

4.2 Basic local existence

To apply the theory of CIVP, as discussed say in Section 12.5 of [6], one has to extract a suitable
symmetric hyperbolic evolution system out of the conformal field equations and the structure
equations. The gauge introduced in Section 3.2 allows us to perform this reduction.

4.2.1 The reduced conformal field equations

In what follows, we group the four directional derivatives of the conformal factor and s as

Σt ≡ (Σ1, Σ2, Σ3, Σ4, s),

the components of the frame as

et ≡ (CA, PA, Q),

the spin connection coefficients not fixed by the gauge as

Γt ≡ (ε, π, β, µ, α, λ, τ, σ, ρ),

the independent components of the rescaled Weyl spinor as

φt ≡ (φ0, φ1, φ2, φ3, φ4),

and finally those of tracefree Ricci spinor as

Φt ≡ (Φ00, Φ01, Φ11, Φ02,Φ12, Φ22),

where t denotes the operation of taking the transpose of a column vector.
A suitable symmetric hyperbolic system for the four directional derivatives of the conformal

factor, the frame components and the spin coefficients can be obtained from equations (15d)-(15f),
(15f)*, (17b), (6a), (6b), (6d) and (13a)-(13d), (13f), (13g), (13k), (13m), (13o), respectively.
These can be written in the schematic form,

D0Σ = B0(Σ,Γ, s)Σ,

D1e = B1(Γ, e)e,

D2Γ = B2(Γ,φ,Φ)Γ,
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where D0, D1 and D2 are given by

D0 ≡ diag(∆, ∆, ∆, ∆, ∆),

D1 ≡ diag(∆, ∆, D),

D2 ≡ diag(∆, ∆, ∆, ∆, ∆, ∆, D, D, D),

and B0, B1, B2 are smooth matrix-valued functions of their arguments, whose explicit form will
not be required.

The components of the third conformal field equation (2c), equations (19a)-(19m) can be
reorganised as

D3Φ = B3Φ

where

D3 =


∆ −δ̄ 0 0 0 0
−δ D + 2∆ −δ −δ̄ 0 0
0 −δ̄ D + ∆ 0 −δ̄ 0
0 −δ 0 D + ∆ −δ 0
0 0 −δ −δ̄ 2D + ∆ −δ
0 0 0 0 −δ̄ D


with B3 = B3(Φ, φ, Γ, Σi). Writing

D3 = Aµ
3∂µ

one has that

Av
3 = diag(0, 1, 1, 1, 2, 1),

Au
3 = diag(Q, 2Q, Q, Q, Q, 0).

and

AA3 =


0 −P̄A 0 0 0 0
−PA CA −PA −P̄A 0 0

0 −P̄A CA 0 −P̄A 0
0 −PA 0 CA −PA 0
0 0 −PA −P̄A 2CA −PA
0 0 0 0 −P̄A CA

 .

To be specific, the equations above are obtained through the combinations (19a)+(19k), (19j)+2(19b)+(19l),
(19d)*+(19h)*, (19c)+(19i), (19e)+2(19g)+(19l) and (19f)+(19m), respectively. It can be readily
verified that the matrices Aµ

3 are Hermitian. Moreover,

Aµ
3 (lµ + nµ) = diag(1, 3, 2, 2, 3, 1)

is likewise clearly positive definite.
The components of the fourth conformal equation (2d), (21a)-(21h), can be grouped as

D4φ = B4φ

where

D4 =


∆ −δ 0 0 0
−δ̄ D + ∆ −δ 0 0
0 −δ̄ D + ∆ −δ 0
0 0 −δ̄ D + ∆ −δ
0 0 0 −δ̄ D

 ,
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and B4 = B4(φ, Γ). Again, writing

D4 = Aµ
4∂µ,

one has that

Av
4 = diag(0, 1, 1, 1, 1),

Au
4 = diag(Q, Q, Q, Q, 0),

and

AA4 =


0 −PA 0 0 0
−P̄A CA −PA 0 0

0 −P̄A CA −PA 0
0 0 −P̄A CA −PA
0 0 0 −P̄A CA

 .

Specifically, the above matricial expressions are obtained from the combinations (21a), (21b)+(21e),
(21c)+(21f), (21d)+(21g) and (21h). Again, the matrices Aµ

4 can be seen to be Hermitian and,
moreover, one has that

Aµ
4 (lµ + nµ) = diag(1, 2, 2, 2, 1)

is clearly positive definite.
We can summarise the above discussion as:

Lemma 4. The evolution system

D0Σ = B0Σ (8a)

D1e = B1e, (8b)

D2Γ = B2Γ, (8c)

D3Φ = B3Φ, (8d)

D4φ = B4φ, (8e)

is symmetric hyperbolic with respect to the direction given by

τa = la + na.

4.2.2 Computation of the formal derivatives on N ′? ∪ I − and propagation of the
constraints

As discussed in Section 12.5 of [6], the existence and uniqueness of solutions to a CIVP can be
obtained via an auxiliary Cauchy problem on the spacelike hypersurface

S ≡ {p ∈ R× R× S2 | v(p) + u(p) = 0}.

The formulation of this problem depends crucially on Whitney’s extension theorem, which requires
being able to evaluate all derivatives (interior and transverse) of initial data on N ′? ∪ I −. One
has the following:

Lemma 5 (computation of formal derivatives). Any arbitrary formal derivatives of the
unknown functions {Σ, e, Γ, Φ, φ} on N ′? ∪ I − can be computed from the prescribed initial
data r? for the reduced conformal field equations on N ′? ∪I −.

Proof. The statement follows from a careful inspection of the conformal field equations in the
present gauge, see Section 18.2 in [6] and [5] for more details.
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Moreover, using arguments similar to those discussed in [6], Section 12.5, one can establish
the following result concerning the relation between the reduced equations and the full conformal
vacuum Einstein field equations:

Proposition 2 (propagation of the constraints). A solution of the reduced conformal field
equations (8a)-(8e) on a neighbourhood V of S? on J+(S?) that coincides with initial data on N ′?∪
I − satisfying the conformal equations gives rise to a solution of the conformal Einstein field
equations (2a)-(2f) on V.

In addition, one has that:

Corollary 1 (preservation of the conformal gauge). Let u denote a solution to the char-
acteristic problem for the conformal field equations on a neighbourhood V of S? on J+(S?) which
satisfies the gauge conditions given in Lemmas 1 and 2. Then the metric g constructed from the
components of the solution u satisfies the conformal vacuum Einstein field equations in a gauge
for which R[g] = R(x).

4.2.3 Summary

Combining the analysis above and applying the theory of the CIVP for the symmetric hyperbolic
systems of Section 12.5 of [6], one obtains the following existence result:

Theorem 1 (existence and uniqueness to the standard asymptotic characteristic prob-
lem). Given a smooth reduced initial data set r? for the conformal Einstein field equations
on N ′? ∪ I −, there exists a unique smooth solution of the conformal field equations in a neigh-
bourhood V of S? on J+(S?) which implies the prescribed initial data on N ′? ∪ I −. Moreover,
this solution to the conformal Einstein field equations implies, in turn, a solution to the vacuum
Einstein field equations in a neighbourhood of past null infinity.

Remark 5. Although the region V is, in the unphysical picture, finite, from the physical point
of view, it corresponds to an infinite domain of the asymptotic region near past null infinity.

5 Improved existence result

In this section we provide the basic setting for the improved local existence result for the asymp-
totic CIVP for the conformal Einstein field equations using Luk’s method. Our analysis builds
on the general formalism developed in Paper I. Accordingly, in order to avoid tedious repetition
we focus our attention on the novel aspects and specific challenges raised by the conformal field
equations. Thus, results and definitions already appearing in Paper I are stated without proofs
and where appropriate we quote results directly.

The main difference between the present analysis and that of Paper I is that when dealing
with the conformal Einstein field equations one has more unknown equations to take care of.
Specifically, we now have the conformal factor, its derivatives and the components of the tracefree
Ricci tensor.

5.1 Integration identities and definitions of norms

In this section we recall some of the basic definitions introduced in Paper I.

Integration. In what follows let φ denote a scalar field. We define the integration on Su,v as∫
Su,v

φ ≡
∫
Su,v

φdσ,

12



where dσ ≡
√
|detσ|dx2dx3 denotes the volume element of the induced metric σ on Su,v. On

the truncated causal diamonds D t
u,v, we define integration using the volume form of the spacetime

metric as follows: ∫
D t

u,v

φ ≡
∫ u

0

∫ ṽ

0

∫
Su,v

φ
√
|det g|dx2dx3dvdu,

=

∫ u

0

∫ ṽ

0

∫
Su,v

Q−1φ
√
|detσ|dx2dx3dvdu,

with ṽ = min(v, t − u). Integration in the full causal diamond is denoted in the obvious way
with omission of the label t. As there are no canonical volume forms on Nu and N ′v, we define
integration on these null hypersurfaces by∫

Nu(0,v)

φ ≡
∫ v

0

∫
Su,v

φ
√
|detσ|dx2dx3dv′,∫

N ′v(0,u)

φ ≡
∫ u

0

∫
Su,v

φ
√
|detσ|dx2dx3du′.

We also define ∫
N t

u

φ ≡
∫
Nu(It)

φ,

∫
N ′ tv

φ ≡
∫
N ′v [0,ε]t

φ

where It ≡ [0,min(v•, t − u)] for v• ∈ R+ denotes the truncated long integration interval,
and [0, ε]t ≡ [0,min(ε, t− v)] the truncated short integration interval.

Norms. For 1 ≤ p <∞, we define the following Lp-type norms:

||φ||Lp(Su,v) ≡

(∫
Su,v

|φ|p
)1/p

, ||φ||Lp(N t
u ) ≡

(∫
N t

u

|φ|p
)1/p

, ||φ||Lp(N ′ tv ) ≡

(∫
N ′ tv

|φ|p
)1/p

.

The corresponding L∞ norm is defined by

||φ||L∞(Su,v) ≡ sup
Su,v

|φ|.

5.2 Estimates for the components of the frames and the conformal
factor

A first step in the analysis in Paper I was the construction of basic estimates for the components
of the frame in terms of the initial conditions. A similar step is required for the conformal Einstein
field equations. The main difference in this case is that one also needs to obtain some basic control
on the conformal factors and its derivatives. These estimates are constructed presently.

5.2.1 Definitions

Following Paper I, in the following it will be convenient to define the following norm measuring
the size of the initial value of the components of the frame:

∆e? ≡ sup
I−,N ′?

(
|Q|, |Q−1|, |CA|, |PA|

)
.

Moreover, we define a scalar

χ ≡ ∆ logQ,
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which is at the same level of connection coefficients as it is the derivative of a component of
frame. This scalar provides a component of the connection which does not arise in the original
NP formalism, but is needed to obtain a complete set of ∆-equations for the frame. From the
definition of χ and the NP Ricci identities we readily obtain

Dχ = 2Φ11 + Ψ2 + Ψ̄2 + 2ατ + 2β̄τ + 2ᾱτ̄ + 2βτ̄ + 2τ τ̄ − (ε+ ε̄)χ. (9)

Now, as a consequence of the gauge choice Q = 1 on N ′?, the initial data for χ on N ′? is 0. For
convenience we also define

$ ≡ β − ᾱ

corresponding to the only independent component of the connection on the spheres Su,v.

5.2.2 The estimates

Following the main strategy in Paper I, we construct estimates for the components of the frame
and the conformal factor through the analysis of ∆-equations under the following bootstrap
assumption:

Assumption 2 (assumption to control the coefficients of the frame and the conformal
factor). Assume that we have a solution to the vacuum conformal Einstein field equations in
Stewart’s gauge satisfying

||{χ, µ, λ, α, β, τ,Σ2}||L∞(Su,v) ≤ ∆Γ

on a truncated causal diamond D t
u,v• , where ∆Γ is some (possibly large) constant.

The construction of the estimates proceeds along the following steps:

Step 1. We integrate χ = ∆ logQ = ∂uQ in the short direction so as to obtain

|Q−Q?| = |
∫ ε

0

χdu| ≤
∫ ε

0

|χ|du ≤
∫ ε

0

∆Γdu = ∆Γε

for any v. Then we have

||Q−Q?||L∞(Su,v) ≤ ∆Γε.

So there is a constant C depending on the initial data such that

Q−1, Q ≤ C(∆e?).

Step 2.: To estimate the conformal factor Ξ, we integrate Ξ along the short direction

|Ξ| = |
∫ ε

0

Q−1Σ2du| ≤ C(∆Γ)ε.

Accordingly, we have the following lemma:

Lemma 6 (control of conformal factor). Under Assumption 10, if ε > 0 is sufficiently small,
there exists a constant C depending on the size of the initial data such that

||Ξ||L∞(Su,v) ≤ C(∆Γ)ε

on D t
u,v• .

Step 3. Integrating PA in the short direction using equation (6b) one readily obtains the
following lemma:
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Lemma 7 (control on the components of the frame, I ). Under Assumption 10, if ε > 0
is sufficiently small, there exists a constant C depending on the size of the initial data such that

||{PA, (PA)−1}||L∞(Su,v) ≤ C(∆e?),

on D t
u,v• . Moreover, since

σAB = −PAP̄B − PBP̄A,

we also obtain that

|σAB|, |σAB| ≤ C(∆e?),

c(∆e?) ≤ detσ ≤ C(∆e?).

Thus, for any vector va on Su,v, we have that the norms∫
Su,v

(σABv
AvB)p/2, and

∫
Su,v

((v1)2 + (v2)2)p/2,

are equivalent. Finally, one also has

sup
u,v
|Area(Su,v)−Area(S0,v)| ≤ C∆Γε.

Step 4. Integrating CA in the short direction using equation (6a) yields the lemma

Lemma 8 (control on the components of the frame, II ). Choosing ε suitably, since CA? = 0
on I − one has that

||CA||L∞(Su,v) ≤ C∆Γε

on D t
u,v• .

5.3 Some further tools from Paper I

In this section we introduce some frequently used inequalities in the main estimates for the
transport equations on hypersurfaces of constant u or v. A detailed proof of these results can be
found in Paper I.

5.3.1 General estimates for transport equations

A key tool in our analysis are formulae that allow us to follow the evolution of integrals along
null hypersurfaces.

Lemma 9 (computing derivatives of integrals over Su,v). Given a scalar φ one has that

d

dv

∫
Su,v

φ =

∫
Su,v

(Dφ− 2ρφ) ,

d

du

∫
Su,v

φ =

∫
Su,v

Q−1 (∆φ+ 2µφ) ,

along the outgoing and incoming null geodesics that rule N ′v and Nu.

Lemma 10 (integral over causal diamonds of derivatives of a scalar). Let φ be a scalar
field. One has ∫

Du,v

Dφ =

∫
N ′v
Q−1φ−

∫
N ′0
Q−1φ+

∫
Du,v

(2ρ+ ε+ ε̄)φ,∫
Du,v

∆φ =

∫
Nu

φ−
∫
N0

φ−
∫
Du,v

2µφ.
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5.3.2 Grönwall-type inequalities

The following estimates will be used repeatedly in our main analysis. Again, for proofs and
further discussion, the reader is referred to Paper I.

Proposition 3 (control of the Lp-norm with transport equations). We work under As-
sumption 10. Let ξ denote a tensor field on Su,v of arbitrary type and assume on D t

u,v• that

sup
u,v
||{ρ, µ}||L∞(Su,v) ≤ O.

Then there exists ε? = ε?(∆e? ,O) such that for all ε ≤ ε? and for every 1 ≤ p <∞, we have the
estimates

||ξ||Lp(Su,v) ≤ C(O, I)

(
||ξ||Lp(Su,0) +

∫ v

0

||Dξ||Lp(Su,v′ )
dv′
)
,

||ξ||Lp(Su,v) ≤ 2

(
||ξ||Lp(S0,v) + C(∆e? ,O)

∫ u

0

||∆ξ||Lp(Su′,v)du
′
)

where I denotes the long direction interval.

Proposition 4 (supremum norm of solutions to transport equations). Work under As-
sumption 10. There exists ε? such that for all ε ≤ ε?, we have

||ξ||L∞(Su,v) ≤ ||ξ||L∞(Su,0) +

∫ v

0

||Dξ||L∞(Su,v′ )
dv′;

||ξ||L∞(Su,v) ≤ ||ξ||L∞(S0,v) + C(∆e?)

∫ u

0

||∆ξ||L∞(Su′,v)du
′.

Proposition 5 (L4 norm of solutions to transport equations). Work under Assumption 10
and assume on D t

u,v• that

sup
u,v
||{ρ, µ}||L∞(Su,v) ≤ O.

There exists ε? such that for all ε ≤ ε?, we have the estimates

||ξ||L4(Su,v) ≤ C(∆e? ,O)

(
||ξ||L4(Su,0) + ||Dξ||1/2L2(Nu(0,v))

(
||ξ||2L2(Nu(0,v)) + ||/∇ξ||2L2(Nu(0,v))

)1/4
)
,

||ξ||L4(Su,v) ≤ 2

(
||ξ||L4(S0,v) + C(∆e?)||∆ξ||1/2L2(N ′v(0,u))

(
||ξ||2L2(N ′v(0,u)) + ||/∇ξ||2L2(N ′v(0,u))

)1/4
)
.

5.3.3 Sobolev inequalities

In this subsection we present some useful estimates of the Lp-norms of a scalar in terms of
its L2-norms and those of its derivatives. These inequalities are all derived from the isoperimetric
Sobolev inequality of Su,v.

Proposition 6 (Sobolev-type inequality, I ). Work under Assumption 10. Let φ be a scalar
field on Su,v which is square-integrable with square-integrable first covariant derivatives. Then
for each 2 < p <∞, φ ∈ Lp(Su,v), there exists ε? = ε?(∆e? ,∆Γ) such that as long as ε ≤ ε?, we
have

||φ||Lp(Su,v) ≤ Gp(σ)
(
||φ||L2(Su,v) + ||/∇φ||L2(Su,v)

)
where Gp(σ) is a constant which also depends on the isoperimetric constant I(Su,v) and p, but
is controlled by some C(∆e?), /∇ is the induced connection on Su,v associated with the metric σ.

16



Moreover, we have the following:

Proposition 7 (Sobolev-type inequality, II ). Work under Assumption 10. There exists ε? =
ε?(∆e? ,∆Γ) such that as long as ε ≤ ε?, we have

||φ||L∞(Su,v) ≤ Gp(σ)
(
||φ||Lp(Su,v) + ||/∇φ||Lp(Su,v)

)
,

with 2 < p <∞ and Gp(σ) ≤ C(∆e?) as above.

Corollary 2 (Sobolev-type inequality, III ). Work under Assumption 10. There exists ε? =
ε?(∆e? ,∆Γ) such that as long as ε ≤ ε?, we have

||φ||L4(Su,v) ≤ G(σ)
(
||φ||L2(Su,v) + ||/∇φ||L2(Su,v)

)
,

||φ||L∞(Su,v) ≤ G(σ)
(
||φ||L2(Su,v) + ||/∇φ||L2(Su,v) + ||/∇2φ||L2(Su,v)

)
,

again with G(σ) ≤ C(∆e?).

Remark 6. The isoperimetric constant can be shown to be controlled by the area of the sur-
face Su,v.

6 Main estimates

In this section we discuss the construction of the main estimates to obtain the improved existence
results for the asymptotic CIVP for the conformal Einstein field equations. The strategy of the
arguments resemble that in Einstein field equations. As many of the ideas and techniques are
similar to those in Paper I, as elsewhere, in this section we focus our attention on the particular
aspects arising from the use of the conformal Einstein equations.

6.1 Norms

The argument in this and subsequent sections relies on the use of a number of tailor-made norms.
We define the following:

(i) Norm for the initial value of the connection coefficients, given by

∆Γ?
≡ sup
Su,v⊂I−,N ′?

sup
Γ∈{µ,λ,ρ,σ,α,β,τ,ε}

max{1, ||Γ||L∞(Su,v),

1∑
i=0

||/∇iΓ||L4(Su,v),

2∑
i=0

||/∇iΓ||L2(Su,v)}.

(ii) Norm for the initial value of the derivative of conformal factor Σa, given by

∆Σ?
≡ sup
Su,v⊂I−

max{1, ||Σ2||L∞(Su,v),

1∑
i=0

||/∇iΣ2||L4(Su,v),

2∑
i=0

||/∇iΣ2||L2(Su,v)}.

(iii) Norm for the initial value of the Ricci curvature components, given by

∆Φ?
≡ sup
Su,v⊂I−,N ′?

sup
Φ∈{Φ00,Φ01,Φ02,Φ11,Φ12}

max{1,
1∑
i=0

||/∇iΦ||L4(Su,v),

2∑
i=0

||/∇iΦ||L2(Su,v)}

+

3∑
i=0

sup
Φ∈{Φ00,Φ01,Φ02,Φ11,Φ12}

||/∇iΦ||L2(I−) + sup
Φ∈{Φ01,Φ02,Φ11,Φ12,Φ22}

||/∇iΦ||L2(N ′?).
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(iv) Norm for the initial value of the rescaled Weyl curvature components, given by

∆φ?
≡ sup
Su,v⊂I−,N ′?

sup
φ∈{φ0,φ1,φ2,φ3,φ4}

max{1,
1∑
i=0

||/∇iφ||L4(Su,v),

2∑
i=0

||/∇iφ||L2(Su,v)}

+

3∑
i=0

sup
φ∈{φ0,φ1,φ2,φ3}

||/∇iφ||L2(I−) + sup
φ∈{φ1,φ2,φ3,φ4}

||/∇iφ||L2(N ′?).

(v) Norm for the components of the Ricci curvature components at later null hypersurfaces,
given by

∆Φ ≡
3∑
i=0

sup
Φ∈{Φ00,Φ01,Φ02,Φ11,Φ12}

||/∇iΦ||L2(N t
u) + sup

Φ∈{Φ01,Φ02,Φ11,Φ12,Φ22}
||/∇iΦ||L2(N ′vt),

where the suprema in u and v are taken over Dtu,v• .

(vi) Supremum-type norm over the L2-norm of the components of the Ricci curvature at spheres
of constant u, v, given by

∆Φ(S) ≡
2∑
i=0

sup
u,v
||/∇i{Φ00,Φ01,Φ02,Φ11,Φ12}||L2(Su,v),

where the supremum is taken over Dtu,v• .

(vii) Norm for the components of the Weyl tensor at later null hypersurfaces, given by

∆φ ≡
3∑
i=0

sup
φ∈{φ0,φ1,φ2,φ3}

||/∇iφ||L2(N t
u) + sup

φ∈{φ1,φ2,φ3,φ4}
||/∇iφ||L2(N ′vt),

where the suprema in u and v are taken over Dtu,v• .

(viii) Supremum-type norm over the L2-norm of the components of the rescaled Weyl curvature
at spheres of constant u, v, given by,

∆φ(S) ≡
2∑
i=0

sup
u,v
||/∇i{φ0, φ1, φ2, φ3}||L2(Su,v),

with the supremum taken over Dtu,v• and in which u will be taken sufficiently small to apply
our estimates.

6.2 Estimates for the connection coefficients and the derivative of con-
formal factor

In this subsection, we prove estimates for connection coefficients and derivatives of the conformal
factor. We assume first that the norms of curvature are bounded and prove that the short
range ε can be chosen such that connection coefficients and the derivative of conformal factor
can be controlled by initial data and ∆Φ(S). This can be achieved by considering the transport
equations. For the connection coefficients τ and χ, we only have their long direction D equations.
However, the fact that there is no quadratic term in τ or χ themselves allows us to regard
these as linear equations for τ and χ. Then the Grönwall-type inequalities will show us that
these two connection coefficients are bounded. Accordingly, except for τ and χ, we can analyse
the ∆-equations for the connection coefficients and the derivatives of conformal. The small range
of ε does not let them drift too far from their initial data on I −. Consequently, we find that
although Σ1, Σ3 and Σ4 are all small, the component Σ1 has a different power of ε than Σ3

and Σ4 in our estimates.
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Proposition 8 (control on the supremum norm of the connection coefficients and
the derivatives of the conformal factor). Assume that we have a solution of the vacuum
conformal Einstein field equations in Stewart’s gauge in a region D t

u,v• with

sup
u,v
||{µ, λ, α, β, ε, ρ, σ, τ, χ,Σ1,Σ2,Σ3,Σ4}||L∞(Su,v) ≤ ∆Γ,Σ ,

for some positive ∆Γ,Σ. Assume also that

∆Φ(S) <∞, ∆Φ <∞, ∆φ(S) <∞, ∆φ <∞, sup
u,v
||/∇iτ ||L2(Su,v) <∞, i = 2, 3,

on the same domain. Then there exists

ε? = ε?(I,∆e? ,∆Γ? , sup
u,v
||/∇2τ ||L2(Su,v), sup

u,v
||/∇3τ ||L2(Su,v),∆Σ?

,∆φ,∆Φ),

such that when ε ≤ ε?, we have

sup
u,v
||{µ, λ, ρ, σ, α, β, ε}||L∞(Su,v) ≤ 3∆Γ?

,

sup
u,v
||{τ, χ}||L∞(Su,v) ≤ C(I,∆e? ,∆Γ?

,∆Φ(S)),

sup
u,v
||Σ2||L∞(Su,v) ≤ 3∆Σ? ,

sup
u,v
||{Σ1,Σ3,Σ4}||L∞(Su,v) ≤ C(I,∆e? ,∆Γ?

,∆Σ?
,∆Φ(S))ε,

sup
u,v
||s||L∞(Su,v) ≤ C(∆e? ,∆Σ?

,∆Φ)ε1/2,

on D t
u,v• .

Proof.

Basic bootstrap assumption. Place the following bootstrap assumptions:

sup
u,v
||{µ, λ, ρ, σ, α, β, ε}||L∞(Su,v) ≤ 4∆Γ?

,

sup
u,v
||{Σ1,Σ2,Σ3,Σ4}||L∞(Su,v) ≤ 4∆Σ? .

Estimate for τ . First we prove that ||τ ||L∞(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Φ(S)). We make use of the
D-direction equation of τ , (13b),

Dτ = (ε− ε̄+ ρ)τ + στ̄ + π̄ρ+ πσ + Ξφ1 + Φ01. (10)

The above equation crucially contains no τ2 terms. Making use of the Sobolev inequality in the
Proposition 7, we obtain that

||φi||L∞(Su,v) ≤ ∆φ(S) <∞, i = 0, 1, 2, 3,

||ΦH ||L∞(Su,v) ≤ ∆Φ(S) <∞,

where ΦH = {Φ00,Φ01,Φ02,Φ11,Φ12}. Then the inequalities in Proposition 4 show that

||τ ||L∞(Su,v) ≤ ||τ ||L∞(Su,0) +

∫ v

0

||Dτ ||L∞(Su,v′ )
dv′

≤ ∆Γ?
+ C(∆Γ?

,∆e? ,∆Φ(S))v• + C(I,∆Σ?
,∆e? ,∆φ(S))ε

+ C(∆Γ?
)

∫ v

0

||τ ||L∞(Su,v′ )
dv′.
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Now, choosing ε sufficiently small, it follows from Grönwall’s inequality that

||τ ||L∞(Su,v) ≤ C(I,∆e? ,∆Γ?
,∆Φ(S)).

Estimate for χ. In order to estimate χ, we use the D-direction equation (9) for χ. A similar
analysis as before yields

||χ||L∞(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Φ(S)).

Estimates for µ, λ, α, β and ε. To estimate the coefficients µ and λ, we consider equations (13g)
and (13o):

∆µ = −µ2 − λλ̄− Φ22,

∆λ = −2µλ− Ξφ4.

Making use of the inequalities in Proposition 4 for the short direction, we obtain that

||µ||L∞(Su,v) ≤ ||µ||L∞(S0,v) + C(∆e?)

∫ ε

0

||∆µ||L∞(Su′,v)du
′

≤ ∆Γ?
+ C(∆e? ,∆Γ?

)ε+ C(∆e?)

∫ u

0

||Φ22||L∞(Su′,v)du
′.

From the Sobolev and Hölder inequalities, we further find that∫ u

0

||Φ22||L∞(Su′,v)du
′ ≤ C(∆e?)

∫ u

0

2∑
i=0

||/∇iΦ22||L2(Su′,v)du
′ =

2∑
i=0

C(∆e?)

∫ u

0

(∫
S
|/∇iΦ22|2

)1/2

du′

≤

(
2∑
i=0

C(∆e?)

∫ u

0

∫
S
|/∇iΦ22|2du′

)1/2(∫ u

0

1du′
)1/2

≤ C(∆e?)ε1/2||/∇iΦ22||L2(N ′v(0,u)).

Hence we obtain that

||µ||L∞(Su,v) ≤ ∆Γ?
+ C(∆e? ,∆Γ?

)ε+ Cε1/2∆Φ.

For the connection coefficient λ, a similar computation yields

||λ||L∞(Su,v) ≤ ∆Γ? + C(∆e? ,∆Γ?)ε+ C(∆e?)

∫ u

0

||Ξφ4||L∞(Su′,v)du
′,

≤ ∆Γ?
+ C(∆e? ,∆Γ?

)ε+ Cε3/2∆φ.

With the same method, we can estimate α, β and ε by using their short direction structure
equations (13k), (13d) and (13a):

∆α = −µα− λβ − λτ − Ξφ3,

∆β = −λ̄α− µβ − τµ− Φ12,

∆ε = −απ̄ − βπ − ατ − βτ̄ − πτ − Ξφ2 − Φ11.

The details are omitted.

Estimates for ρ and σ. In this case, the relevant ∆-transport equations are the structure
equations (13i) and (13r):

∆ρ = δ̄τ − µρ− λσ − ατ + β̄τ − τ τ̄ − Ξφ2,
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∆σ = δτ − λ̄ρ− µσ + ᾱτ − βτ − τ2 − Φ02.

In order to estimate δτ and δ̄τ , we make use of the Sobolev inequalities in Corollary 2 and partial
integration on Su,v to obtain

||/∇τ ||L∞(Su,v) ≤ C(∆e?)

3∑
i=1

||/∇iτ ||L2(Su,v) ≤ C(∆e?)
(
||τ ||L2(Su,v) + ||/∇2τ ||L2(Su,v) + ||/∇3τ ||L2(Su,v)

)
.

Then the Hölder inequality

||τ ||L2(Su,v) ≤ ||τ ||L∞(Su,v)Area(S)1/2

and the assumptions

sup
u,v
||/∇2τ ||L2(Su,v), sup

u,v
||/∇3τ ||L2(Su,v) <∞

show us that ||/∇τ ||L∞(Su,v) is bounded. So we can estimate the ||/∇τ ||L∞(Su,v) term in the short
direction using equations (13i) and (13r) for σ and ρ, respectively.

Estimate for s. Before estimating the derivatives of the conformal factor, we first analyse the
Friedrich scalar s. Making use of the conformal Einstein field equations (17b),

∆s = −Σ1Φ22 − Σ2Φ11 + Σ3Φ21 + Σ4Φ12

and the initial value s|I− = 0, we readily have that

||s||L∞(Su,v) ≤ C(∆e?)

∫ u

0

||Σ2Φ11 − Σ4Φ12 − Σ3Φ21 + Σ1Φ22||L∞(Su′,v)du
′,

≤ C(∆e? ,∆Σ?
,∆Φ(S))ε+ C(∆e? ,∆Σ?

,∆Φ)ε1/2.

Estimate for Σ2. Making use of the conformal Einstein field equation (15e)

∆Σ2 = −ΞΦ22,

we have that

||Σ2||L∞(Su,v) ≤ ∆Σ? + C(∆e?)

∫ u

0

||ΞΦ22||L∞(Su′,v)du
′ ≤ ∆Σ? + C(∆e? ,∆Σ? ,∆Φ)ε3/2.

Thus, we can choose ε? sufficiently small such that ||Σ2||L∞(Su,v) remains close to its initial value.

Estimate for Σ1. Next, equation (15d)

∆Σ1 = −Σ4τ − Σ3τ̄ + s− ΞΦ11

and the initial value Σ1|I− = 0, gives that

||Σ1||L∞(Su,v) ≤ C(∆e?)

∫ u

0

|| − Σ4τ − Σ3τ̄ + s− ΞΦ11||L∞(Su′,v)du
′

≤ C(I,∆e? ,∆Γ?
,∆Σ?

,∆Φ(S))ε+ C(∆e? ,∆Σ?
,∆Φ)ε3/2 + C(I,∆e? ,∆Γ?

,∆Σ?
,∆Φ(S))ε2.

Estimates for Σ3 and Σ4. Equation (15f)

∆Σ3 = −Σ2τ − ΞΦ12
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readily gives that

||Σ3||L∞(Su,v) ≤ C(∆e?)

∫ u

0

||Σ2τ + ΞΦ12||L∞(Su′,v)du
′,

≤ C(I,∆e? ,∆Γ?
,∆Σ?

,∆Φ(S))ε+ C(∆e? ,∆Σ?
,∆Φ(S))ε2.

The method is the same for Σ4.

Concluding the argument. From the estimates for the NP connection coefficients and ΣAA′

constructed above it follows that one can choose

ε? = ε?(I,∆e? ,∆Γ? , sup
u,v
||/∇2τ ||L2(Su,v), sup

u,v
||/∇3τ ||L2(Su,v),∆Σ?

,∆φ,∆Φ,∆φ,∆Φ(S)),

sufficiently small so that

sup
u,v
||{µ, λ, α, β, ε, ρ, σ}||L∞(Su,v) ≤ 3∆Γ?

,

sup
u,v
||Σ2||L∞(Su,v) ≤ 3∆Σ?

,

sup
u,v
||{Σ1,Σ3,Σ4}||L∞(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ(S))ε.

Accordingly, we have improved our initial bootstrap assumption.

Now we use the similar method to analyse the L4 estimate of the connection coefficients and
the derivative of conformal factor.

Proposition 9 (control on the L4-norm of the connection coefficients and the deriva-
tives of the conformal factor). With the same assumptions in Proposition 8, and additionally
assuming that

sup
u,v
||/∇{µ, λ, α, β, ε, ρ, σ,Σ1,Σ2,Σ3,Σ4}||L4(Su,v) ≤ ∆Γ,Σ,

in the truncated diamond D t
u,v• , we find that there exists

ε? = ε?(I,∆e? ,∆Γ? , sup
u,v
||/∇2τ ||L2(Su,v), sup

u,v
||/∇3τ ||L2(Su,v),∆Σ? ,∆φ,∆Φ,∆φ(S),∆Φ(S)),

such that when ε ≤ ε?, we have

sup
u,v
||/∇{τ, χ}||L4(Su,v) ≤ C(I,∆e? ,∆Γ?

,∆Φ(S)),

sup
u,v
||/∇{µ, λ, ρ, σ, α, β, ε}||L4(Su,v) ≤ 3∆Γ? ,

sup
u,v
||/∇Σ2||L4(Su,v) ≤ 3∆Σ?

,

sup
u,v
||/∇{Σ1,Σ3,Σ4}||L4(Su,v) ≤ C(I,∆e? ,∆Γ?

,∆Σ?
,∆Φ(S))ε.

on D t
u,v• .

Proof.

Basic bootstrap assumption. We make bootstrap assumptions

sup
u,v
||/∇(µ, λ, ρ, σ, α, β, ε)||L4(Su,v) ≤ 4∆Γ?

sup
u,v
||/∇{Σ1,Σ2,Σ3,Σ4}||L4(Su,v) ≤ 4∆Σ?

.
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Estimates for /∇τ . First, we estimate the L4(Su,v) norm of /∇τ . Apply the δ-derivative to
the D-direction equation of τ and the commutator of directional covariant derivatives we obtain

Dδτ = (ρ+ ρ̄+ 2ε− 2ε̄)δτ + σδ̄τ + σδτ̄ + δ(ε− ε̄+ ρ)τ + τ̄ δσ + ρδπ̄

+ π̄δρ+ σδπ + πδσ + Γ3 + Σ3φ1 + Ξδφ1 + Ξφ1Γ + δΦ01 + Φ01Γ.

In order to estimate the terms in ||Γ/∇Γ||L4(Su,v), we use the Hölder inequality and split it as

||Γ/∇Γ||L4(Su,v) ≤ ||Γ||L∞(Su,v)||/∇Γ||L4(Su,v).

Now, Proposition 8 shows that terms of the form ||Γ||L∞(Su,v) are, in fact, bounded. Making use
of the Sobolev inequality in Proposition 6 and the long direction inequality in Proposition 5, we
find that

||δτ ||L4(Su,v) + ||δ̄τ ||L4(Su,v) ≤ C
(
||δτ ||L4(Su,0) + ||δ̄τ ||L4(Su,0) +

∫ v

0

||Dδτ ||L4(Su,v′ )
+ ||Dδ̄τ ||L4(Su,v′ )

dv′
)

≤ C(I,∆e? ,∆Γ?
,∆Φ(S)) + C(I,∆e? ,∆Γ?

,∆Σ?
,∆Φ(S),∆φ(S))ε

+ C(∆Γ?)

∫ v

0

(
||δτ ||L4(Su,v′ )

+ ||δ̄τ ||L4(Su,v′ )

)
dv′.

Thus Grönwall’s inequality gives

||δτ ||L4(Su,v) + ||δ̄τ ||L4(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Φ(S)) + C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ(S),∆φ(S))ε.

Accordingly, for a small range ε, we obtain that

||/∇τ ||L4(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Φ(S)).

Estimates for /∇χ. A direct computation shows that

Dδχ = (ρ̄− 2ε̄)δχ+ σδ̄χ+ ΓδΓ− χδ(ε+ ε̄) + Σ3(φ2 + φ̄2) + Ξδ(φ2 + φ̄2) + δΦ11,

where Γ represents a combination of the connection coefficients whose particular form is not
required. A similar equation can be obtained for Dδ̄χ. Using the same method as for the
coefficient τ , we obtain that ||/∇χ||L4(Su,v) ≤ C(I,∆e? ,∆Γ?

,∆Φ(S)).

Estimates for /∇{µ, λ, ρ, σ, α, β, ε}. Applying the operator ∆ to equations (13g) and (13o) we
find that

∆δµ = (τ − ᾱ− β)(µ2 + λλ̄)− 3µδµ− λ̄δ̄µ− λδλ̄− λ̄δλ− δΦ22,

∆δλ = (τ − ᾱ− β)(2µλ+ Ξφ4)− 3µδλ− λ̄δ̄λ− 2λδµ− Σ3φ4 − Ξδφ4.

Now, a direct computation applying Proposition 3 shows that we can find an ε? such that when ε ≤
ε?, we have

||/∇{µ, λ}||L4(Su,v) ≤ 3∆Γ?
.

We can estimate δα, δβ and δε by using the same method. Since we are using the assump-
tion supu,v ||/∇3τ ||L2(Su,v) < ∞ in the truncated causal diamond, the Sobolev inequalities of
Corollary 2 show that ||/∇2τ ||L4(Su,v) is finite. Proceeding in a similar way we can estimate δσ
and δρ by applying δ to equations (13i) and (13r).

Estimate for /∇Σ2. Applying δ to the short direction equation (15e) for Σ2 and using the
commutators we find that

∆δΣ2 = −ΞδΦ22 − Σ3Φ22 + ΞΦ22(τ − π̄) + ΞΦ21λ̄+ ΞΦ12µ,
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+ Σ2(πλ̄+ π̄µ)− Σ3(λλ̄+ µ2)− 2Σ4λ̄µ̄.

Similar arguments to the ones used for the connection coefficients show that

||/∇Σ2||L4(Su,v) ≤ 2∆Σ? + C(I,∆e? ,∆Γ? ,∆Σ?)ε+ C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ(S))ε2 + o(ε2).

Accordingly, the ε? can be chosen sufficiently small to ensure that ||/∇Σ2||L4(Su,v) is no more
than 3∆Σ? .

Estimate for /∇Σ1. Making use of the equation for ∆δΣ1:

∆δΣ1 = −Σ1Φ12 − Σ2Φ01 + Σ4Φ02 + s(π̄ − τ) + ΞΦ11(τ − π̄) + Σ4τ(τ − π̄)

+ Σ3τ̄(τ − π̄)− µδΣ1 − τ̄ δΣ3 − τδΣ4 − ΞδΦ11 − Σ4δτ − Σ3δτ̄ − λ̄δ̄Σ1,

it follows from the bootstrap assumption, that

||/∇Σ1||L4(Su,v) ≤ C(I,∆e? ,∆Γ?
,∆Σ?

,∆Φ(S))ε+ o(ε).

Estimate for /∇Σ3,4. A direct computation yields the equation

∆δΣ3 = −Σ3Φ12 + ΞΦ12(τ − π̄) + Σ2τ(τ − π̄)− τδΣ2 − Σ2δτ − µδΣ3 − ΞδΦ12 − λ̄δ̄Σ3.

accordingly, one can readily find that

||/∇Σ3||L4(Su,v) ≤ C(I,∆e? ,∆Γ?
,∆Σ?

,∆Φ(S))ε+ o(ε).

A similar result holds for ||/∇Σ4||L4(S). It follows from the previous discussion that when ε is
suitably small, we can improve the bootstrap assumption.

Concluding the argument. From the analysis above, it follows we can choose

ε? = ε?(I,∆e? ,∆Γ?
, sup
u,v
||/∇2τ ||L2(Su,v), sup

u,v
||/∇3τ ||L2(Su,v),∆Σ?

,∆φ,∆Φ,∆φ(S),∆Φ(S)),

sufficiently small so that

sup
u,v
||/∇{µ, λ, ρ, σ, α, β, ε}||L4(Su,v) ≤ 3∆Γ?

,

sup
u,v
||/∇Σ2||L4(Su,v) ≤ 3∆Σ?

,

sup
u,v
||/∇{Σ1,Σ3,Σ4}||L4(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ(S))ε.

The above estimates improve the bootstrap assumption.

The discussion of this section is concluded with L2-estimates for the connection coefficients
and the derivative of conformal factor.

Proposition 10 (control on the L2-norm of the connection coefficients and the deriva-
tives of the conformal factor). Assume that we have a solution of the vacuum conformal
Einstein field equations in Stewart’s gauge in a region D t

u,v• with

sup
u,v
||{µ, λ, α, β, ε, ρ, σ, τ, χ,Σ1,Σ2,Σ3,Σ4}||L∞(Su,v) ≤ ∆Γ,Σ ,

sup
u,v
||/∇{µ, λ, α, β, ε, ρ, σ,Σ1,Σ2,Σ3,Σ4}||L4(Su,v) ≤ ∆Γ,Σ,

sup
u,v
||/∇2{µ, λ, α, β, ε, ρ, σ, τ,Σ1,Σ2,Σ3,Σ4}||L2(Su,v) ≤ ∆Γ,Σ,
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for some positive ∆Γ,Σ. Assume also

sup
u,v
||/∇3τ ||L2(Su,v) <∞, ∆Φ(S) <∞, ∆Φ <∞, ∆φ(S) <∞, ∆φ <∞

on the same domain. We have that there exists

ε? = ε?(I,∆e? ,∆Γ?
,∆Σ?

sup
u,v
||/∇3τ ||L2(Su,v),∆φ,∆Φ,∆φ(S),∆Φ(S)),

such that when ε ≤ ε?, we have that

sup
u,v
||/∇2{τ, χ}||L2(Su,v) ≤ C(I,∆e? ,∆Γ?

,∆Φ(S)),

sup
u,v
||/∇2{µ, λ, α, β, ε, ρ, σ}||L2(Su,v) ≤ 3∆Γ?

,

sup
u,v
||/∇2Σ2||L4(Su,v) ≤ 3∆Σ?

,

sup
u,v
||/∇2{Σ1,Σ3,Σ4}||L4(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ(S))ε.

Proof.

Basic bootstrap assumption. We make following bootstrap assumptions:

sup
u,v
||/∇2{µ, λ, ρ, σ, α, β, ε}||L2(Su,v) ≤ 4∆Γ?

,

sup
u,v
||/∇2{Σ1,Σ2,Σ3,Σ4}||L2(Su,v) ≤ 4∆Σ?

.

Estimates for ||/∇2τ ||L2(Su,v) and ||/∇2χ||L2(Su,v). Applying the operator δ to the equation
for Dδτ and using the commutators, one obtains following the D-direction equation of δ2τ :

Dδ2τ = Γδ2τ + Γδ2τ̄ + Γδ̄δτ + Γδδ̄τ + Γ4
1 + Γ1δ

2Γ1

+ δΓ1δΓ1 + Γ2
1δΓ1 + δ2Φ01 + Γ1δΦ01 + Φ01δΓ1 + Φ01Γ2

1

+ δΣ3φ1 + 2Σ3δφ1 + Ξδφ1 + Ξφ1Γ2 + ΞΓ1δφ1 + Ξφ1δΓ1 + Ξδ2φ1 + Σ3φ1Γ1,

where Γ contains a combination of the coefficients ρ, σ, ε, Γ1 contains a combination of τ, α, β, σ, ε, ρ.
A similar computation renders equations for Dδ̄τ , Dδδ̄τ . Terms of the form δΓ1δΓ1 can be han-
dled using the Hölder inequality

||δΓ1δΓ1||L2(Su,v) ≤ ||δΓ1||L4(Su,v)||δΓ1||L4(Su,v),

where Proposition 9 shows that the bound is finite. The analysis for the term δΣ3φ1 is the same.
More precisely, one has that

||δΣ3φ1||L2(Su,v) ≤ ||δΣ3||L4(Su,v)||φ1||L4(Su,v)

≤ C(∆e?)||δΣ3||L4(Su,v)

(
||φ1||L2(Su,v) + ||/∇φ1||L2(Su,v)

)
.

Similar arguments can be employed in the rest of the terms for the equation for Dδ2τ so that
with the long direction inequality in Proposition 3 we obtain

||δ2τ ||L2(Su,v) ≤ C(I,∆Γ?)

(
||δ2τ ||L2(Su,0) +

∫ v

0

||Dδ2τ ||L2(Su,v′ )
dv′
)
,

≤ C(I,∆e? ,∆Γ?
,∆Φ(S)) + C(I,∆e? ,∆Γ?

,∆Σ?
,∆Φ(S),∆φ(S))ε

+ C(I,∆e? ,∆Γ?)

∫ v

0

||/∇2τ ||L2(Su,v′ )
dv′.
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Similar estimates can be obtained for δ̄2τ , δδ̄τ and δ̄δτ . To estimate ||δτ ||L2(Su,v) we can make
use of the fact that the area of Su,v is bounded so that

||δτ ||L2(Su,v) ≤ C(∆e? ,∆Γ?
)||δτ ||L4(Su,v),

hence, Proposition 9 shows us that this is also finite. From inequality (32) of Paper I we get

||/∇2τ ||L2(Su,v) ≤ C(I,∆e? ,∆Γ?
,∆Φ(S)) + C(I,∆e? ,∆Γ?

,∆Γ?
,∆Φ(S),∆φ(S))ε

+ C(I,∆e? ,∆Γ?
)

∫ v

0

||/∇2τ ||L2(Su,v′ )
dv′,

so that using Grönwall’s inequality we conclude that

||/∇2τ ||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Φ(S)) + C(I,∆e? ,∆Γ? ,∆φ(S))ε.

Hence, one finds that ||/∇2τ ||L2(Su,v) is bounded by a constant C(I,∆e? ,∆Γ? ,∆Φ(S)). Using the
same analysis, we can conclude that ||/∇2χ||L2(Su,v) is bounded.

Estimates for the remaining spin connection coefficients. Estimates for the remaining
connection coefficients can be obtained by the same methods as in Proposition 9 namely, first
we compute equations for ∆δ2Γ and ∆δ̄δΓ, and make use of the short direction inequality in
Proposition 3 to find that

||/∇2{µ, λ, α, β, ε, σ, ρ}||L2(Su,v) ≤ 3∆Γ?

for sufficiently small ε.

Estimates for /∇2Σ2. A direct calculation shows that

∆δ2Σ2 = Γδ2Σ2 + δΓδΣ2 + Γ2δΣ2 + Ξδ2Φ22 + ΞΦ22δΓ

+ Φ22δΣ3 + Σ3δΦ22 + ΞΓδΦ22 + Σ3Φ22Γ + ΞΦ22Γ2.

The other short direction equation for the remaining second order spherical derivatives of Σ2 have
the same structure. From these equations we obtain that

||/∇2Σ2||L2(Su,v) ≤ 2∆Σ?
+ C(I,∆e? ,∆Γ?

,∆Σ?
,∆Φ(S))ε+ o(ε).

The term o(ε) arises from the presence of δiΞ, i = 0, 1, 2.

Estimates for /∇2Σ1 and /∇2Σ3,4. Again, a direct computation yields the equation

∆δ2Σ1 = Γδ2Σ1 + Γδ2Σ′ + ΣΓδΓ + δΣδΓ + Σδ2Γ + ΣΓ3 + Γ2δΣ + ΓΣΦ,

+ Γ2ΞΦ + sΓ2 + sδΓ + ΦδΣ + ΣδΦ + ΞΓδΦ + ΞΦδΓ + Ξδ2Φ,

where Γ contains τ , Σ contains Σ2, and Σ′ does not contain Σ1, while Φ does not contain Φ22.
Making use of the same arguments as for Σ2, we obtain that

||/∇2Σ1||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ(S))ε+ o(ε).

Similar arguments give

||/∇2Σ3||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ(S))ε+ o(ε).

Concluding the argument. From the analysis in the previous paragraphs it follows that we
can choose

ε? = ε?(I,∆e? ,∆Γ?
, sup
u,v
||/∇3τ ||L2(Su,v),∆Σ?

,∆φ,∆Φ,∆φ(S),∆Φ(S)),
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sufficiently small so that

sup
u,v
||/∇2{µ, λ, ρ, σ, α, β, ε}||L2(Su,v) ≤ 3∆Γ? ,

sup
u,v
||/∇2Σ2||L2(Su,v) ≤ 3∆Σ?

,

sup
u,v
||/∇2{Σ1,Σ3,Σ4}||L2(Su,v) ≤ C(I,∆e? ,∆Γ?

,∆Σ?
,∆Φ(S))ε.

The above estimates improve the bootstrap assumptions.

6.3 First estimates for the curvature

Building on the Lp-estimates for the connection coefficients and the derivative of the conformal
factor obtained in the previous section, we now show that the norms ∆Φ(S) and ∆φ(S) are
bounded by the initial data. This is achieved in the next two propositions.

Proposition 11 (basic control of the Ricci curvature). Assume that we are given a solution
to the vacuum CEFEs in Stewart’s gauge satisfying the assumptions of Proposition 10. Then there
exists

ε? = ε?(I,∆e? ,∆Γ?
,∆Σ?

,∆Φ?
,∆Φ,∆φ, sup

u,v
||/∇3τ ||L2(Su,v))

such that for ε ≤ ε?, we have

∆Φ(S) < 3∆Φ?
.

on D t
u,v• .

Proof.
Bootstrap assumption. We make the following bootstrap assumption:

sup
u,v
||/∇i{Φ00,Φ01,Φ02,Φ11,Φ12}||L2(Su,v) ≤ 4∆Φ?

, i = 0, ..., 2.

L2-norm of the components {Φ00,Φ01,Φ02,Φ11,Φ12}. We focus on the L2(S) norm of
{Φ00,Φ01,Φ02,Φ11,Φ12}. We will use the short direction equations (19a)-(19e) to estimate these
components. We take Φ11 as an example. The relevant equation is in this case given by

∆Φ11 = δΦ21 + 2βΦ21 − λ̄Φ20 − 2µΦ11 + ρ̄Φ22 − τΦ21 − τ̄Φ21 + Σ2φ̄2 − Σ4φ̄3. (11)

It follows then that

||Φ11||L2(Su,v) ≤ 2

(
||Φ11||L2(S0,v) + C(∆e? ,∆Γ?)

∫ u

0

||∆Φ11||L2(Su′,v)du
′
)
,

≤ 2∆Φ?
+ C(∆e? ,∆Γ?

)

∫ u

0

(
||δΦ21||L2(Su′,v) + ||ρ̄Φ22||L2(Su′,v) + ||Σ2φ̄2||L2(Su′,v),

+ ||2βΦ21 + λ̄Φ20 + 2µΦ11 + τΦ21 + τ̄Φ21||L2(Su′,v) + ||Σ4φ̄3||L2(Su′,v)

)
du′.

Using the Hölder inequality, the first three terms can be transformed to a norm on the light cone.
More precisely, one has

∫ u

0

||δΦ21||L2(Su′,v)du
′ =

∫ u

0

(∫
Su′,v

|δΦ21|2
)1/2

du′ ≤

(∫ u

0

∫
Su′,v

|δΦ21|2
)1/2(∫ u

0

1

)1/2
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≤ ε1/2||δΦ21||L2(N ′v(0,u)) ≤ ∆Φε
1/2.

Similarly, one has that∫ u

0

||ρ̄Φ22||L2(Su′,v)du
′ ≤ C(∆Γ? ,∆Φ)ε1/2,

∫ u

0

||Σ2φ̄2||L2(Su′,v)du
′ ≤ C(∆Σ? ,∆φ)ε1/2.

The (large) fourth term can be estimated as follows:∫ u

0

||ΓΦ||L2(Su′,v)du
′ ≤

∫ u

0

||Γ||L∞(Su′,v)||Φ||L2(Su′,v)du
′ ≤ C(I,∆e? ,∆Γ?

,∆Φ?
)ε.

For the last term we have that∫ u

0

||Σ4φ̄3||L2(Su′,v)du
′ ≤

∫ u

0

||Σ4||L∞(Su′,v)||φ̄3||L2(Su′,v)du
′

≤ Cε||φ3||L2(N ′v(0,u))ε
1/2 ≤ C(I,∆e? ,∆Γ?

,∆Σ?
,∆φ)ε3/2.

Hence, we find that

||Φ11||L2(Su,v) ≤ 2∆Φ?
+ C(∆e? ,∆Σ?

,∆Γ?
,∆Φ,∆φ)ε1/2 + C(I,∆e? ,∆Γ?

,∆Φ?
)ε

+ C(I,∆e? ,∆Γ?
,∆Σ?

,∆φ)ε3/2.

Accordingly, ε? can be chosen sufficiently small so that ||Φ11||L2(Su,v) is less than 3∆Φ?
, and

similarly for the remaining terms. Consequently, we have improved the bootstrap assumption
and finished Step 1, that is, we have

sup
u,v
||(Φ00,Φ01,Φ02,Φ11,Φ12)||L2(Su,v) ≤ 3∆Φ? .

Estimates for ||/∇{Φ00,Φ01,Φ02,Φ11,Φ12}||L2(Su,v). We now focus on the L2(Su,v)-norm of
the first derivative of the Ricci curvature. We take /∇Φ11 as an example. Using the results of
Proposition 3 we readily have

||/∇Φ11||L2(Su,v) ≤ 2

||/∇Φ11||L2(S0,v) + C(∆e? ,∆Γ?
)

∫ u

0

(∫
Su′,v

∆ 〈/∇Φ11, /∇Φ11〉σ

)1/2

du′

 ,

≤ 2∆Φ? + C(∆e? ,∆Γ?)

∫ u

0

(∫
Su′,v

|/∇Φ11|(|∆δΦ11|+ |∆δ̄Φ11|)

)1/2

du′,

while the short direction equation for δΦ11 is given by

∆δΦ11 = δ2Φ21 + Σ2φ̄2(π̄ − τ) + φ̄2δΣ2 + Σ2δφ̄2 + Σ4φ̄3(τ − π̄)− φ̄3δΣ4 + Σ4δφ̄3

+ Φ22ρ̄(π̄ − τ) + ρ̄δΦ22 + Φ22δρ̄+ ΦΓ2 + ΓδΦ + ΦδΓ.

Here the letter Φ is used to denote {Φ20,Φ21,Φ11}. The first term on the right hand side of the
previous equation, δ2Φ21, can be controlled by

∫ u

0

(∫
Su′,v

|/∇Φ11||/∇2Φ21|

)1/2

du′ ≤
∫ u

0

(∫
Su′,v

|/∇Φ11|2
)1/4(∫

Su′,v
|/∇2Φ21|2

)1/4

du′

≤ sup
u,v
||/∇Φ11||1/2L2(Su,v)||/∇

2Φ21||1/2L2(N ′v(0,u))ε
3/4

≤ C(∆Φ?
,∆Φ)ε3/4.
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In the case of the terms

Σ2φ̄2(π̄ − τ) + φ̄2δΣ2 + Σ2δφ̄2 + Φ22ρ̄(π̄ − τ) + ρ̄δΦ22 + Φ22δρ̄,

the use of the estimates of the curvature of the light cone (rather than on the sphere) gives a
contribution with the same power of ε. Furthermore, the terms

Σ4φ̄3(τ − π̄), and Σ4δφ̄3

contribute with a power ε5/4 since ||Σ4||L∞(Su,v) is controlled by ε in Proposition 8. For the

term φ̄3δΣ4 we have that

∫ u

0

(∫
Su′,v

|/∇Φ11||φ̄3/∇Σ4|

)1/2

du′ ≤ sup
u,v
||/∇Φ11||1/2L2(Su,v)||/∇Σ4||1/2L2(Su,v)

∫ u

0

||φ3||1/2L∞(Su′,v)du
′

≤ C(∆e?) sup
u,v
||/∇Φ11||1/2L2(Su,v)||/∇Σ4||1/2L4(Su,v)

2∑
i=0

||/∇iφ3||1/2L2(N ′v(0,u))ε
3/4

≤ C(I,∆e? ,∆Γ?
,∆Σ?

,∆Φ?
,∆φ)ε5/4.

Here we have used the Sobolev inequality and Proposition 8. Next, the term ΦΓ2 gives us

∫ u

0

(∫
Su′,v

|/∇Φ11||ΦΓ2|

)1/2

du′ ≤
2∑
i=0

C(∆e?) sup
u,v
||Γ||L∞(Su,v)||/∇Φ11||1/2L2(Su,v)||/∇

iΦ||1/2L2(Su,v)ε
3/4

≤ C(I,∆e? ,∆Γ?
,∆Φ?

)ε3/4.

Terms ΓδΦ and ΦδΓ give a similar contribution. Putting everything together we find that

||/∇Φ11||L2(Su,v) ≤ 2∆Φ?
+ C(I,∆e? ,∆Γ?

,∆Φ?
)ε3/4 + C(I,∆e? ,∆Γ?

,∆Σ?
,∆Φ?

,∆φ)ε5/4,

so that it is possible to choose a suitably small ε? to improve the bootstrap assumption.

Estimates for ||/∇2{Φ00,Φ01,Φ02,Φ11,Φ12}||L2(Su,v). We present the analysis of /∇2Φ11 as an
example. The relevant short direction equation is

∆δ2Φ11 = δ3Φ21 + Φδ2Γ + Γδ2Φ + δΦδΓ + ΦΓδΓ + Γ2δΦ

+ ΦΓ3 + Σδφ+ φδ2Σ + δΣδφ+ ΣΓδφ+ φΓδΣ + ΣφΓ2.

Then, making use of the short direction Grönwall-type estimate one obtains

||/∇2Φ11||L2(Su,v) ≤ 2

||/∇2Φ11||L2(S0,v) + C(∆e? ,∆Γ?
)

∫ u

0

(∫
Su′,v

∆
〈
/∇2Φ11, /∇2Φ11

〉
σ

)1/2

du′


≤ 2∆Φ? + C(∆e? ,∆Γ?)

∫ u

0

(∫
Su′,v

|/∇2Φ11|(|∆T1|+ |∆T2|)

)1/2

du′,

where

T1 ≡ δ̄δ̄Φ11 + (β̄ − α)δ̄Φ11, T2 ≡ δ̄δΦ11 + (α− β̄)δΦ11.

Since Φ contains only the components {Φ11,Φ20,Φ21,Φ22}, we can analyse terms which contain Φ
in a similar way. Namely, we make use of the Hölder inequality to separate the product terms,
and then we make use of the Sobolev embedding theorem. When we encounter the terms /∇iΦ22

and /∇3Φ21, we can make use of the estimate on the light cone. Finally, a quick inspection of the
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remaining terms reveals that only those related to Σ2 contribute to the integration. For example,
the term Σ2δφ gives

∫ u

0

(∫
Su′,v

|/∇2Φ11||Σ2δφ|

)1/2

du′ ≤
∫ u

0

||/∇2Φ11||1/2L2(Su′,v)||Σ2||1/2L∞(Su′,v)||/∇φ||
1/2
L2(Su′,v)du

′

≤ sup
u,v
||/∇2Φ11||1/2L2(Su,v)||Σ2||1/2L∞(Su,v)||/∇φ||

1/2
L2(N ′v(0,u))ε

3/4

≤ C(∆Σ?
,∆Φ?

,∆φ)ε3/4.

Similarly, the Hölder and the Sobolev inequalities allow us to analyse other terms which are also
controlled by ε. Putting everything together one finds that

sup
u,v
||/∇2{Φ00,Φ01,Φ02,Φ11,Φ12}||L2(Su,v) ≤ 3∆Φ? .

Concluding the argument. From the estimates obtained in the previous paragraphs one
concludes that

sup
u,v
||/∇i{Φ00,Φ01,Φ02,Φ11,Φ12}||L2(Su,v) ≤ 3∆Φ?

, i = 0, . . . , 2.

Hence, we have improved the starting bootstrap assumption.

Using a similar method, we can obtain the following result:

Proposition 12. Assume that we are given a solution to the vacuum CEFEs in Stewart’s gauge
satisfying the same assumptions of Proposition 10. Then there exists

ε? = ε?(I,∆e? ,∆Γ?
,∆Σ?

,∆Φ?
,∆Φ,∆φ, sup

u,v
||/∇3τ ||L2(Su,v))

such that for ε ≤ ε?, we have

∆φ(S) < 3∆φ?
.

In order to estimate the curvature, we need L2(Su,v)-estimates of the connection coefficients
and the derivatives of the conformal factor up to third order. These estimates can be obtained,
except for ρ and σ, by a method similar to the one used in the previous proof. For these
coefficients, instead of considering their n-direction equations, we make use of their long direction
equations and the Codazzi equation to obtain the required estimates.

Proposition 13 (further control on the L2-norm of the connection coefficients). As-
sume again that we have a solution of the vacuum CEFEs in Stewart’s gauge in a region D t

u,v•
with

sup
u,v
||{µ, λ, α, β, ε, ρ, σ, τ, χ,Σ1,Σ2,Σ3,Σ4}||L∞(Su,v) ≤ ∞,

sup
u,v
||/∇{µ, λ, α, β, ε, ρ, σ,Σ1,Σ2,Σ3,Σ4}||L4(Su,v) ≤ ∞,

sup
u,v
||/∇2{µ, λ, α, β, ε, ρ, σ, τ,Σ1,Σ2,Σ3,Σ4}||L2(Su,v) ≤ ∞,

∆Φ(S) <∞, ∆Φ <∞, ∆φ(S) <∞, ∆φ <∞

for some positive ∆Γ,Σ and furthermore that

sup
u,v
||/∇3{µ, λ, α, β, ε, τ,Σ1,Σ2,Σ3,Σ4}||L2(Su,v) <∞
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on D t
u,v• . Then there exists ε? = ε?(I,∆e? ,∆Γ?

,∆Σ?
,∆Φ?

,∆Φ,∆φ) such that for ε ≤ ε?, we have

sup
u,v
||/∇3{µ, λ, α, β, ε}||L2(Su,v) ≤ 3∆Γ?

,

sup
u,v
||/∇3{ρ, σ}||L2(Su,v) ≤ C(I,∆e? ,∆Γ?

,∆Φ?
,∆Φ),

sup
u,v
||/∇3{τ, χ}||L2(Su,v) ≤ C(I,∆e? ,∆Γ?

,∆Φ?
,∆Φ),

sup
u,v
||/∇3Σ2||L2(Su,v) ≤ 3∆Σ?

,

sup
u,v
||/∇3{Σ1,Σ3,Σ4}||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ?)ε.

Proof.
Bootstrap assumption. We make the following bootstrap assumption to start the proof:

sup
u,v
||/∇3{µ, λ, α, β, ε}||L2(Su,v) ≤ 4∆Γ?

,

sup
u,v
||/∇3τ ||L2(Su,v) ≤ ∆τ ,

sup
u,v
||/∇3{Σ1,Σ2,Σ3,Σ4}||L2(Su,v) ≤ 4∆Σ? ,

where ∆τ is a constant whose value will be fixed later.

Estimates for ρ and σ. We first estimate ρ and σ using the long direction equations (13m)
and (13f) as we want to avoid the higher derivatives on sphere in the short direction equations.
From the full expression of ||/∇3ρ||L2(Su,v) (see Appendix C in Paper I), we will analyse four typical
terms namely, δ3ρ, ξδ2ρ, δξδρ and ξ2δρ. For the term δ3ρ, we have

Dδ3ρ = Γ5 + Γ3δΓ + Γ(δΓ)2 + Γ2δ2Γ + δΓδ2Γ + ρδ3(ε+ ε̄)

+ (4ε− 2ε̄+ 5ρ)δ3ρ+ σδ3σ̄ + σ̄δ3σ + σδ2δ̄ρ+ δ3Φ00.

The term δΓδ2Γ can be estimated as

||δΓδ2Γ||L2(Su,v) ≤ ||/∇Γ||L4(Su,v)||/∇2Γ||L4(Su,v)

≤ C(∆e?)||/∇Γ||L4(Su,v)

(
||/∇2Γ||L2(Su,v) + ||/∇3Γ||L2(Su,v)

)
,

where Γ contains ε, ρ and σ. Then, making use of the norm of Φ00 on the long light cone, we find
that∫ v

0

||δ3Φ00||L2(Su,v′ )
dv′ ≤

(∫ v

0

∫
Su,v′

|δ3Φ00|2dv′

)1/2(∫ v

0

1dv′
)1/2

≤ C(I)||/∇3Φ00||L2(Nu(0,v)).

Hence, the long direction of inequality in Proposition 3 yields

||δ3ρ||L2(Su,v) ≤ C(I,∆e? ,∆Γ?
,∆Φ?

,∆Φ) + C(I,∆Γ?
)

∫ v

0

(
||/∇3ρ||L2(Su,v′ )

+ ||/∇3σ||L2(Su,v′ )

)
dv′.

For the term $δ2ρ, we readily find that

||$δ2ρ||L2(Su,v) ≤ ||$||L∞(Su,v)||/∇2ρ||L2(Su,v) ≤ C(∆Γ?).

Similar estimates can be found for δ$δρ and $2δρ. Hence, we conclude that

||/∇3ρ||L2(Su,v) ≤ C(I,∆e? ,∆Γ?
,∆Φ?

,∆Φ) + C(I,∆Γ?
)

∫ v

0

(
||/∇3ρ||L2(Su,v′ )

+ ||/∇3σ||L2(Su,v′ )

)
dv′.
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From here, using Grönwall’s inequality one finds that

||/∇3ρ||L2(Su,v) ≤ C(I,∆e? ,∆Γ?
,∆Φ?

,∆Φ) + C(I,∆Γ?
)

∫ v

0

||/∇3σ||L2(Su,v′ )
dv′.

In order to estimate ||/∇3σ||L2(Su,v), we need to control the third order derivatives of σ for exam-
ple ||δ3σ||L2(Su,v). Using integration by parts and the structure equation (Codazzi equation) (13q)
one finds that

||δ3σ||L2(Su,v) ≤ ||δ3ρ||L2(Su,v) + C(I,∆e? ,∆Γ? ,∆Φ?) + ||/∇2Φ01||L2(Su,v)

+ C(I,∆e? ,∆Γ?
,∆Σ?

,∆Φ?
)

3∑
i=0

||/∇iφ0||L2(Su,v)ε,

so that, in fact, one has

||/∇3ρ||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Φ? ,∆Φ) + C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ? ,∆φ)ε

+ C(I,∆Γ?)

∫ v

0

||/∇3ρ||L2(Su,v′ )
dv′.

Now, using Grönwall’s inequality one concludes that

||/∇3ρ||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Φ? ,∆Φ) + C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ? ,∆φ)ε,

so that ||/∇3ρ||L2(S)u,v
is bounded. Moreover, one has that

||/∇3σ||L2(Su,v) ≤ C(I,∆e? ,∆Γ?
,∆Φ?

,∆Φ) + C(I,∆e? ,∆Γ?
,∆Σ?

,∆Φ?
,∆φ)ε.

Estimates for τ and χ. The ∆-equation for /∇3τ can be obtained from the structure equa-
tion (13b) and the commutator relationship. More precisely, one has that

Dδ3τ = δ3(Ξφ1) + δ3Φ01 + Γδ3Γ1 + Γδ3τ + Γδ2Ψ1

+ δΓδ2Γ + Γ2δ2Γ + Γ3δΓ + Γ(δΓ)2,

where Γ1 contains ε, α, β, ρ and σ. Then, using the bootstrap assumption and the definition
of ∆Ψ, we obtain

||/∇3τ ||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Φ? ,∆Φ) + C(I,∆e? ,∆Σ? ,∆Γ? ,∆Φ? ,∆φ)ε

+ C(I,∆Γ?
)

∫ v

0

||/∇3τ ||L2(Su,v′ )
dv′,

so that using Grönwall’s inequality we conclude that

||/∇3τ ||L2(Su,v) ≤ C(I,∆e? ,∆Γ?
,∆Φ?

,∆Φ) + C(∆e? ,∆Σ?
,∆Γ?

,∆Φ?
,∆φ)ε.

We can then choose the constant ∆τ larger than the right side above so as to improve the
bootstrap assumption. The estimate of χ is similar:

||/∇3χ||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Φ? ,∆Φ) + C(∆e? ,∆Σ? ,∆Γ? ,∆Φ? ,∆φ)ε.

Estimates for the the remaining spin connection coefficients. To obtain the estimates
for

||/∇3{µ, λ, α, β, ε}||L2(Su,v),
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we make use of their short direction equations. Since the proof are similar, we only show the
details of ε as a representative example. In this case the relevant equation is

∆δ3ε = −δ3(Ξφ2 + Φ12) + Γδ3Γ1 + Γδ3ε+ δΓδ2Γ + Γ2δ2Γ + Γ3δΓ + Γ(δΓ)2 + Γ5,

where Γ1 does not contain ε. We can then make use of the short inequality in Proposition 3 and
obtain that

||/∇3ε||L2(Su,v) ≤ 2∆Γ?
+ C(I,∆e? ,∆Γ?

,∆Φ?
,∆Φ)ε3/4 + o(ε3/4).

Choosing the integral range sufficiently small we conclude that

||/∇3ε||L2(Su,v) ≤ 3∆Γ?
.

The estimates of ||/∇3{µ, λ, α, β}||L2(Su,v) are similar. Hence, we have improved the bootstrap
assumption for the connection coefficients.

Estimates for /∇3Σ2. The short direction equation for δ3Σ2 can be analysed by the same method.
Starting from

∆δ3Σ2 = Γ3δΣ2 + ΓδΣ2δΓ + Γ2δ2Σ2 + δΓδ2Σ2 + δΣ2δ
2Γ + Γδ3Σ2

+
∑

i1+...+i4=3

δi1Ξδi2Γi3δi4Φ22,

where Γ contains τ and it is observed that the terms in the summation will contribute higher
order of ε in the integration. Then applying Proposition 11 we find that

||/∇3Σ2||L2(Su,v) ≤ 2∆Σ?
+ C(I,∆e? ,∆Γ?

,∆Σ?
,∆Φ?

)ε+ o(ε),

where the term o(ε) arises from the summation.

Estimates for /∇3Σ1. In this case one has that the ∆-equation for ∆δ3Σ1 is of the form

∆δ3Σ1 = Σ2ΦΓ2 + ΦΓ/∇Σ2 + /∇Σ2/∇Φ + Σ2Φ/∇Γ + Φ/∇2Σ2

+ sΓ3 + sΓδΓ + sδ2Γ +
∑

i1+...+i4=3

δi1Ξδi2Γi3δi4Φ,

here the first line on the right hand side contains the leading order contribution, and Φ does not
contain Φ22. From this equation one readily obtains that

||/∇3Σ1||L2(Su,v) ≤ C(I,∆e? ,∆Γ?
,∆Σ?

,∆Φ?
)ε+ o(ε).

Estimates for /∇3Σ3,4. In this case the term contributing to the leading order of the estimate
of ||/∇3Σ3||L2(Su,v) is

∆δ3Σ3 = Σ2Γ4 + Γ/∇Σ2 + Σ2Γ2/∇Γ + Σ2(/∇Γ)2 + Γ2/∇2Σ2 + Σ2Γ/∇2Γ + Σ2/∇3Γ + Γ/∇3Σ2

+
∑

i1+...+i4=3

δi1Ξδi2Γi3δi4Φ,

again here the first line of the right hand side offers the leading contribution, and gives

||/∇3Σ3||L2(Su,v) ≤ C(I,∆e? ,∆Γ?
,∆Σ?

,∆Φ?
)ε+ o(ε).

Concluding the argument. From the analysis above, it follows that we can choose

ε? = ε?(I,∆e? ,∆Γ? ,∆Σ? ,∆φ? ,∆Φ? ,∆φ,∆Φ),
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sufficiently small so that

sup
u,v
||/∇3{µ, λ, α, β, ε}||L2(Su,v) ≤ 3∆Γ?

,

sup
u,v
||/∇3{ρ, σ}||L2(Su,v) ≤ C(I,∆e? ,∆Γ?

,∆Φ?
,∆Φ),

sup
u,v
||/∇3{τ, χ}||L2(Su,v) ≤ C(I,∆e? ,∆Γ?

,∆Φ?
,∆Φ),

sup
u,v
||/∇3Σ2||L2(Su,v) ≤ 3∆Σ?

,

sup
u,v
||/∇3{Σ1,Σ3,Σ4}||L2(Su,v) ≤ C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ?)ε,

on D t
u,v• .

6.4 The energy estimates for the curvature

In this subsection, we show how to obtain the main energy estimates for the components of the
Ricci and rescaled Weyl curvature.

6.4.1 Analysis of the rescaled Weyl tensor

We begin by introducing some integral identities which follow from using integration by parts in
the conformal equations satisfied by the components of the rescaled Weyl tensor, equations (21a)-
(21h). The proof of these results follows the same arguments used for the components of the Weyl
tensor in Paper I as the (vacuum) Bianchi identities have an identical structure to that of the
equations for the rescaled Weyl tensor and are thus omitted.

Proposition 14 (control of the angular derivatives of the components of the rescaled
Weyl tensor). Suppose that we are given a solution to the CEFEs in Stewart’s gauge and
that Du,v is contained in the existence area. The following L2 estimates for the components of
the rescaled Weyl curvature hold. First,∑

i=0,1,2

∫
Nu(0,v)

|φi|2 +
∑

j=1,2,3

∫
N ′v(0,u)

Q−1|φj |2

≤
∑

i=0,1,2

∫
N0(0,v)

|φi|2 +
∑

j=1,2,3

∫
N ′0(0,u)

Q−1|φj |2 +

∫
Du,v

φHφΓ,

then∑
i=0,1,2

∫
Nu(0,v)

|/∇φi|2 +
∑

j=1,2,3

∫
N ′v(0,u)

Q−1|/∇φj |2 ≤
∑

i=0,1,2

∫
N0(0,v)

|/∇φi|2 +
∑

j=1,2,3

∫
N ′0(0,u)

Q−1|/∇φj |2

+

∫
Du,v

|/∇φH |(φΓ2 + Γ|/∇φ|+ φ|/∇Γ|),

next∑
i=0,1,2

∫
Nu(0,v)

|/∇2φi|2 +
∑

j=1,2,3

∫
N ′v(0,u)

Q−1|/∇2φj |2 ≤
∑

i=0,1,2

∫
N0(0,v)

|/∇2φi|2 +
∑

j=1,2,3

∫
N ′0(0,u)

Q−1|/∇2φj |2

+

∫
Du,v

|/∇2φH |(Γ|/∇2φ|+ φ|/∇2Γ|+ |/∇φ||/∇Γ|+ Γ2|/∇φ|+ φΓ|/∇Γ|+ Γ3φ),

and finally∑
i=0,1,2

∫
Nu(0,v)

|/∇3φi|2 +
∑

j=1,2,3

∫
N ′v(0,u)

Q−1|/∇3φj |2 ≤
∑

i=0,1,2

∫
N0(0,v)

|/∇3φi|2 +
∑

j=1,2,3

∫
N ′0(0,u)

Q−1|/∇3φj |2
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+

∫
Du,v

|/∇3φH |
(
Γ|/∇3φ|+ φ|/∇3Γ|+ |/∇Γ||/∇2φ|+ |/∇φ||/∇2Γ|+ Γ2|/∇2φ|+ Γφ|/∇2Γ|

+ Γ|/∇Γ||/∇φ|+ φ|/∇Γ|2 + Γ3|/∇φ|+ φΓ2|/∇Γ|+ Γ4φ
)
,

where Γ stands for arbitrary connection coefficients from the collection {µ, λ, α, β, ε, ρ, σ, τ}.
To summarise, the previous results can be given a more general formulation:

Proposition 15. Suppose that we are given a solution to the CEFEs in Stewart’s gauge and
that Du,v is contained in the existence area. Then we have that∑

i=0,1,2

∫
Nu(0,v)

|/∇mφi|2 +
∑

j=1,2,3

∫
N ′v(0,u)

Q−1|/∇mφj |2 ≤
∑

i=0,1,2

∫
N0(0,v)

|/∇mφi|2

+
∑

j=1,2,3

∫
N ′0(0,u)

Q−1|/∇mφj |2 +

∫
Du,v

|/∇mφH |
∑

i1+i2+i3+i4=m

|/∇i1Γi2 ||/∇i3Γ||/∇i4φ|,

where φ contains φk, k = 0, ..., 4, φH contains φk, k = 0, ..., 3.

In addition, we have the following proposition:

Proposition 16 (control of the angular derivatives of the “bad” components of the
rescaled Weyl tensor). Suppose that we are given a solution to the CEFEs in Stewart’s gauge
and that Du,v is contained in the existence area. Then we have that∫

Nu(0,v)

|/∇mφ3|2 +

∫
N ′v(0,u)

Q−1|/∇mφ4|2 ≤
∫
N0(0,v)

|/∇mφ3|2 +

∫
N ′0(0,u)

Q−1|/∇mφ4|2

+

∫
Du,v

|/∇mφ4|
∑

i1+i2+i3+i4=m

|/∇i1Γi2 ||/∇i3(ρ+ ε)||/∇i4φ4|

+

∫
Du,v

|/∇mφ3|
∑

i1+i2+i3+i4=m

|/∇i1Γi2 ||/∇i3Γ||/∇i4φ|

+

∫
Du,v

|/∇mφ4|
∑

i1+i2+i3+i4=m

|/∇i1Γi2 ||/∇i3Γ||/∇i4φ′H |,

where φ contains φ3 and φ4, φ′H contains φ2 and φ3.

6.4.2 Analysis of the Ricci curvature

In order to estimate the L2-norms of the components of the Ricci tensor we need inequalities
analogous to the ones used for the rescaled Weyl tensor. In order to obtain these, we first
need to regroup the conformal equations for the Ricci tensor shown in Appendix A.2.3. More
precisely, we pair the components Φ01 and Φ11 by analysing equations (19b) and (19h); pair the
components Φ02 and Φ12 by analysing (19c) and (19g)+(19l); pair the components Φ11 and Φ12 by
analysing (19d) and (19g); pair the components Φ01 and Φ02 by analysing (19b)+(19l) and (19h).
Making use of this strategy one obtains the following:

Proposition 17. Suppose that we are given a solution to the CEFEs in Stewart’s gauge and
that Du,v is contained in the existence area. Then we have that∑

Φi∈ΦL

∫
Nu(0,v)

|Φi|2 +
∑

Φj∈ΦS

∫
N ′v(0,u)

Q−1|Φj |2 ≤
∑

Φi∈ΦL

∫
N0(0,v)

|Φi|2 +
∑

Φj∈ΦS

∫
N ′0(0,u)

Q−1|Φj |2

+

∫
Du,v

ΦHΓΦ +

∫
Du,v

ΦHΣφ,

where ΦL =≡ {Φ00,Φ01,Φ02,Φ11}, ΦS ≡ {Φ01,Φ02,Φ11,Φ12}, Φ ≡ {Φ00,Φ01,Φ02,Φ11,Φ12,Φ22}
and ΦH ≡ {Φ00,Φ01,Φ02,Φ11,Φ12}.
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Proof. For simplicity, we demonstrate the argument with the conformal equations (19a) and (19j)
written in the form

∆Φ00 = δΦ10 + ΓΦ + Σφ,

DΦ01 = δΦ00 + ΓΦ + Σφ.

Integrating by parts we have that∫
Nu(0,v)

|Φ00|2 +

∫
N ′v(0,u)

Q−1|Φ01|2 ≤
∫
N0(0,v)

|Φ00|2 +

∫
N ′0(0,u)

Q−1|Φ01|2

+

∫
Du,v

(Φ00,Φ01)ΓΦ +

∫
Du,v

(Φ00,Φ01)Σφ.

A similar argument applies to the pairs Φ01 and Φ11, Φ02 and Φ12, Φ11 and Φ12, Φ01 and Φ02.
Putting everything together we obtain the required result.

Now, applying the angular derivatives to the conformal equations we obtain the following
statement:

Proposition 18. Suppose that we are given a solution to the CEFEs in Stewart’s gauge and
that Du,v is contained in the existence area. Then we have first that∑
Φi∈ΦL

∫
Nu(0,v)

|/∇Φi|2 +
∑

Φj∈ΦS

∫
N ′v(0,u)

Q−1|/∇Φj |2 ≤
∑

Φi∈ΦL

∫
N0(0,v)

|/∇Φi|2 +
∑

Φj∈ΦS

∫
N ′0(0,u)

Q−1|/∇Φj |2

+

∫
Du,v

|/∇ΦH |
(
ΦΓ2 + Γ|/∇Φ|+ Φ|/∇Γ|

)
+

∫
Du,v

|/∇ΦH |
(
ΣφΓ + φ|/∇Σ|+ Σ|/∇φ|

)
,

and also,∑
Φi∈ΦL

∫
Nu(0,v)

|/∇2Φi|2 +
∑

Φj∈ΦS

∫
N ′v(0,u)

Q−1|/∇2Φj |2 ≤
∑

Φi∈ΦL

∫
N0(0,v)

|/∇2Φi|2 +
∑

Φj∈ΦS

∫
N ′0(0,u)

Q−1|/∇2Φj |2

+

∫
Du,v

|/∇2ΦH |
(
Γ|/∇2Φ|+ Φ|/∇2Γ|+ |/∇Φ||/∇Γ|+ Γ2|/∇Φ|+ ΦΓ|/∇Γ|+ Γ3Φ

)
+

∫
Du,v

|/∇2ΦH |
(
ΣφΓ2 + Γφ|/∇Σ|+ ΓΣ|/∇φ|+ Σφ|/∇Γ|+ |/∇φ||/∇Σ|+ φ|/∇2Σ|+ Σ|/∇2φ|

)
,

and finally,∑
Φi∈ΦL

∫
Nu(0,v)

|/∇3Φi|2 +
∑

Φj∈ΦS

∫
N ′v(0,u)

Q−1|/∇3Φj |2 ≤
∑

Φi∈ΦL

∫
N0(0,v)

|/∇3Φi|2 +
∑

Φj∈ΦS

∫
N ′0(0,u)

Q−1|/∇3Φj |2

+

∫
Du,v

|/∇3ΦH |
(
Γ|/∇3Φ|+ Φ|/∇3Γ|+ |/∇Γ||/∇2Φ|+ |/∇Φ||/∇2Γ|+ Γ2|/∇2Φ|+ ΓΦ|/∇2Γ|

+ Γ|/∇Γ||/∇Φ|+ Φ|/∇Γ|2 + Γ3|/∇Φ|+ ΦΓ2|/∇Γ|+ Γ4Φ
)

+

∫
Du,v

|/∇3ΦH |
(
Σ|/∇3φ|+ φ|/∇3Σ|+ |/∇2φ||/∇Σ|+ |/∇2Σ||/∇φ|+ ΣΓ|/∇2φ|+ Σφ|/∇2Γ|

+ φΓ|/∇2Σ|+ Γ|/∇Σ||/∇φ|+ Σ|/∇φ||/∇Γ|+ φ|/∇Σ||/∇Γ|
+ φΓ2|/∇Σ|+ ΣΓ|/∇φ|+ ΣφΓ|/∇Γ|+ ΣφΓ3

)
.

As before, we can summarise the previous estimates in the following more concise statement:
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Proposition 19 (control of the higher angular derivatives of the components of the
Ricci tensor). Suppose that we are given a solution to the CEFEs in Stewart’s gauge and
that Du,v is contained in the existence area. Then we have that∑

Φi∈ΦL

∫
Nu(0,v)

|/∇mΦi|2 +
∑

Φj∈ΦS

∫
N ′v(0,u)

Q−1|/∇mΦj |2

≤
∑

Φi∈ΦL

∫
N0(0,v)

|/∇mΦi|2 +
∑

Φj∈ΦS

∫
N ′0(0,u)

Q−1|/∇mΦj |2

+

∫
Du,v

|/∇mΦH |
∑

i1+i2+i3+i4=m

(|/∇i1Γi2 ||/∇i3Γ||/∇i4Φ|+ |/∇i1Γi2 ||/∇i3Σ||/∇i4φ|),

where m = 0, 1, 2, 3.

Using equations (19e) and (19f) we can obtain a similar control over the components Φ12

and Φ22. More precisely, one has that:

Proposition 20 (control of the higher angular derivatives of the “bad” components
of the Ricci tensor). Suppose that we are given a solution to the CEFEs in Stewart’s gauge
and that Du,v is contained in the existence area. Then we have that∫

Nu(0,v)

|/∇mΦ12|2 +

∫
N ′v(0,u)

Q−1|/∇mΦ22|2 ≤
∫
N0(0,v)

|/∇mΦ12|2 +

∫
N ′0(0,u)

Q−1|/∇mΦ22|2

+

∫
Du,v

|/∇mΦ22|
∑

i1+i2+i3+i4=m

|/∇i1Γ′i2 ||/∇i3Γ′||/∇i4Φ22|

+

∫
Du,v

|/∇mΦ12|
∑

i1+i2+i3+i4=m

|/∇i1Γi2 ||/∇i3Γ||/∇i4Φ|

+

∫
Du,v

|/∇mΦ22|
∑

i1+i2+i3+i4=m

|/∇i1Γi2 ||/∇i3Γ||/∇i4Φ′H |

+

∫
Du,v

(
|/∇mΦ12||/∇i1Γi2 ||/∇i3Σ||/∇i4φ|+ |/∇mΦ22||/∇i1Γi2 ||/∇i3Σ||/∇i4φ′H |

)
,

where Γ′ does not contain τ and χ, Φ does not contain Φ00,Φ
′
H does not contains Φ22 and Φ00,

φ contains φ3 and φ4, φ′H contains φ2 and φ3.

Making use of the previous estimates for the Ricci tensor, we can show their boundedness in
the truncated diamonds:

Proposition 21 (control of the components of the Ricci tensor in terms of the initial
data). Suppose we are given a solution to the vacuum CEFE’s in Stewart’s gauge arising from
data for the CIVP satisfying

∆e? , ∆Γ?
, ∆Σ?

, ∆Φ?
∆φ?

<∞,

with the solution itself satisfying

sup
u,v
||{µ, λ, α, β, ε, ρ, σ, τ, χ,Σi}||L∞(Su,v) <∞ , sup

u,v
||/∇{µ, λ, α, β, ε, ρ, σ,Σi}||L4(Su,v) <∞ ,

sup
u,v
||/∇2{µ, λ, α, β, ε, ρ, σ, τ,Σi}||L2(Su,v) <∞ , sup

u,v
||/∇3{µ, λ, α, β, ε, τ,Σi}||L2(Su,v) <∞ ,

∆Φ(S) <∞ , ∆Φ <∞ , ∆φ(S) <∞ , ∆φ <∞,

on some truncated causal diamond D t
u,v• . Then there exists ε? = ε?(I,∆e? ,∆Γ?

,∆Σ?
,∆Φ?

,∆φ)
such that for ε? ≤ ε we have

∆Φ < C(I,∆e? ,∆Γ?
,∆Φ?

).
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Proof. We need to control the integration in Du,v in Propositions 19 and 20. Firstly, we focus on
Proposition 19. We need control∫

Du,v

|/∇mΦH |
∑

i1+i2+i3+i4=m

(|/∇i1Γi2 ||/∇i3Γ||/∇i4Φ|+ |/∇i1Γi2 ||/∇i3Σ||/∇i4φ|),

where ΦH = {Φ00,Φ01,Φ02,Φ11,Φ12}. We can separate |/∇mΦH | and the summation using the
Hölder inequality. In turn, the term |/∇mΦH | can be controlled as follows:

||/∇mΦH ||L2(Du,v) =

(∫ u

0

∫ v

0

∫
S

|/∇mΦH |2
)1/2

≤ C∆Φε
1/2.

We observe that as Φ contains Φ22, we can only control it on N ′v. Accordingly, we have that

||/∇mΦ||L2(Du,v) ≤ C∆Φ.

Next, we need to analyse the L2-norm of the summation. Observing that the first term of the
summation has a structure similar to that of the Weyl tensor Ψ in vacuum Einstein case, we
readily obtain that this term is controlled by

C(I,∆e? ,∆Γ?
,∆Φ?

,∆Φ)ε1/2.

The second term in the summation can be shown to be less than

C∆Φε
1/2

∑
i1+i2+i3+i4=m

||/∇i1Γi2/∇i3Σ/∇i4φ||L2(Du,v).

Every time we encounter the components φ0 to φ3 and their derivatives, we can control them
through the L2-norm on the long light cone Nu. Moreover, by analogy to Φ22, we control φ4 and
its derivatives on the short light cone N ′v. Hence following the same procedure we can obtain
that this norm is less than

C(I,∆e? ,∆Γ?
,∆Σ?

,∆Φ?
,∆φ,∆Φ)ε3/2.

In the next step, we consider the terms on the right hand side of the estimate in Proposition 20.
The terms ∫

Du,v

|/∇mΦ12|
∑

i1+i2+i3+i4=m

|/∇i1Γi2 ||/∇i3Γ||/∇i4Φ|

can be controlled in the same manner as it was done in Proposition 19 and are bounded by

C(I,∆e? ,∆Γ? ,∆Φ? ,∆Φ)ε1/2.

Next, the terms ∫
Du,v

|/∇mΦ22|
∑

i1+i2+i3+i4=m

|/∇i1Γi2 ||/∇i3Γ||/∇i4Φ′H |

can also be controlled because it does not contains the term (Φ22)2. Moreover, the terms∑
i1+i2+i3+i4=m

∫
Du,v

|/∇mΦ12||/∇i1Γi2 ||/∇i3Σ||/∇i4φ|

can be controlled by

C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ? ,∆φ,∆Φ)ε3/2.
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In the case of the term∫
Du,v

|/∇mΦ22|
∑

i1+i2+i3+i4=m

|/∇i1Γ′i2 ||/∇i3Γ′||/∇i4Φ22|,

we readily found that it is bounded by

C(I,∆e? ,∆Γ? ,∆Φ?)

∫ v

0

||/∇mΦ22||L2(N ′v(0,u))

m∑
i=0

||/∇iΦ22||L2(N ′v(0,u))

≤ C(I,∆e? ,∆Γ? ,∆Φ?)

∫ v

0

m∑
i=0

||/∇iΦ22||2L2(N ′v(0,u)).

Similarly, we also have that∑
i1+i2+i3+i4=m

∫
Du,v

|/∇mΦ22/∇i1Γi2/∇i3Σ/∇i4φ′H | ≤ ε3/2C(I,∆e? ,∆Γ?
,∆Σ?

,∆Φ?
,∆φ)

∫ v

0

||/∇mΦ22||2L2(N ′v(0,u)).

Putting together the above estimates in the inequality of Proposition 20 we have that

3∑
i=0

||/∇iΦ22||2L2(N ′v) ≤ C∆Φ?
+ C(I,∆e? ,∆Γ?

,∆Σ?
,∆Φ)ε1/2 + C(I,∆e? ,∆Γ?

,∆Σ?
,∆Φ?

,∆φ,∆Φ)ε3/2

+ (C(I,∆e? ,∆Γ?
,∆Φ?

) + C(I,∆e? ,∆Γ?
,∆Σ?

,∆Φ?
,∆φ)ε3/2)

∫ v

0

m∑
i=0

||/∇iΦ22||2L2(N ′v(0,u)).

Thus, applying the Grönwall’s inequality, we obtain that

∆Φ ≤ C(I,∆e? ,∆Γ?
,∆Φ?

) + C(I,∆e? ,∆Γ?
,∆Σ?

,∆Φ?
,∆Φ)ε1/2 + o(ε1/2).

Finally, taking ε small enough we prove the proposition.

The final ingredient in our analysis is the following proposition whose proof is analogous to
that of Proposition 17 in Paper I:

Proposition 22 (control of the components of the Rescaled Weyl tensor in terms
of the initial data). With the same assumptions in proposition 21 on some truncated causal
diamond D t

u,v• . Then there exists ε? = ε?(I,∆e? ,∆Γ?
,∆Σ?

,∆Φ?
,∆φ?

) such that for ε? ≤ ε we
have

∆φ ≤ C(I,∆e? ,∆Γ?
,∆Φ?

,∆φ?
).

7 Concluding the argument

The estimates obtained in the previous sections can be used in a last slice argument to obtain
our main result. The proof is completely analogous to that given in Section 7 in Paper I and is
thus omitted.

Theorem 2. Given smooth initial data on I − ∪ N ′? for 0 ≤ v ≤ I as constructed in Lemma 3,
there exists ε such that an unique smooth solution to the vacuum conformal Einstein field equations
exists in the region where 0 ≤ v ≤ I and 0 ≤ u ≤ ε under the coordinate system and ε can be
chosen to depend only on ∆e? , ∆Γ?

, ∆Σ?
, ∆Φ?

and ∆φ?
. Moreover, in this region

sup
u,v

sup
Γ∈{χ,µ,λ,ρ,σ,α,β,τ,ε}

max{
1∑
0

||/∇iΓ||L∞(Su,v),

2∑
i=0

||/∇iΓ||L4(Su,v),

3∑
i=0

||/∇iΓ||L2(Su,v)}

39



+ sup
u,v

max{
1∑
i=0

||/∇iΣ2||L∞(Su,v),

2∑
i=0

||/∇iΣ2||L4(Su,v),

3∑
i=0

||/∇iΣ2||L2(Su,v)}

+ ∆Φ + ∆φ ≤ C(I,∆e? ,∆Γ? ,∆Σ? ,∆Φ? ,∆φ?)

and

sup
u,v

max{
1∑
i=0

||/∇iΣ1,3,4||L∞(Su,v),

2∑
i=0

||/∇iΣ1,3,4||L4(Su,v),

3∑
i=0

||/∇iΣ1,3,4||L2(Su,v)}

≤ C(I,∆e? ,∆Γ?
,∆Σ?

,∆Φ?
)ε.
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A The conformal field equations in the NP formalism

This appendix serves as a quick reference to our equations. Throughout, we make use of the NP
formalism in the conventions used in the book [19] which, in turn, follows the conventions of [20].

A.1 The NP field equations

Given the NP frame {la, na, ma, m̄a}, we denote by D ≡ la∇a, ∆ ≡ na∇a, δ ≡ ma∇a,
δ̄ ≡ m̄a∇a the associated directional derivatives. The commutators are then given by

(∆D −D∆)ψ =
(
(γ + γ̄)D + (ε+ ε̄)∆− (τ̄ + π)δ − (τ + π̄)δ̄

)
ψ, (12a)

(δD −Dδ)ψ =
(
(ᾱ+ β − π̄)D + κ∆− (ρ̄+ ε− ε̄)δ − σδ̄

)
ψ, (12b)

(δ∆−∆δ)ψ =
(
− ν̄D + (τ − ᾱ− β)∆ + (µ− γ + γ̄)δ + λ̄δ̄

)
ψ, (12c)

(δ̄δ − δδ̄)ψ =
(
(µ̄− µ)D + (ρ̄− ρ)∆ + (α− β̄)δ − (ᾱ− β)δ̄

)
ψ., (12d)

where ψ is any scalar field. Here and in the following we highlight the terms which vanish in our
gauge.

We use the same notation as in Reference [6] to denote the components of Weyl spinor ΨABCD

and trace-free Ricci spinor ΦAA′BB′ , namely {Ψ0, Ψ1, Ψ2, Ψ3, Ψ4} and {Φ00, Φ01, Φ02, Φ11, Φ12,
Φ22, Λ}. In particular, we have that

Φ00 ≡
1

2
R{ab}l

alb, Φ01 ≡
1

2
R{ab}l

amb, Φ02
1

2
R{ab}m

amb,

Φ11 ≡
1

4
R{ab}(l

anb +mam̄b), Φ12 ≡
1

2
R{ab}n

amb,

Φ22 ≡
1

2
R{ab}n

anb, Λ ≡ − 1

24
R,

where R{ab} ≡ Rab − 1
4Rgab.

The structure equations, in turn, have the form

∆ε−Dγ = Λ− Φ11 −Ψ2 + ε(2γ + γ̄) + γε̄+ κν − βπ − απ̄ − ατ − πτ − βτ̄ , (13a)

∆κ−Dτ = −Φ01 −Ψ1 + 3γκ+ γ̄κ− π̄ρ− πσ − ετ + ε̄τ − ρτ − στ̄ , (13b)

∆π −Dν = −Φ21 −Ψ3 + 3εν + ε̄ν − γπ + γ̄π − µπ − λπ̄ − λτ − µτ̄ , (13c)
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δγ −∆β = Φ12 − ᾱγ − 2βγ + βγ̄ + αλ̄+ βµ− εν̄ − νσ + γτ + µτ, (13d)

δε−Dβ = −Ψ1 + ᾱε+ βε̄+ γκ+ κµ− επ̄ − βρ̄− ασ − πσ, (13e)

δκ−Dσ = −Ψ0 + ᾱκ+ 3βκ− κπ̄ − 3εσ + ε̄σ − ρσ − ρ̄σ + κτ, (13f)

δν −∆µ = Φ22 + λλ̄+ γµ+ γ̄µ+ µ2 − ᾱν − 3βν − ν̄π + ντ, (13g)

δπ −Dµ = −2Λ−Ψ2 + εµ+ ε̄µ+ κν + ᾱπ − βπ − ππ̄ − µρ̄− λσ, (13h)

δτ −∆σ = Φ02 − κν̄ + λ̄ρ− 3γσ + γ̄σ + µσ − ᾱτ + βτ + τ2, (13i)

δ̄β − δα = −Λ− Φ11 + Ψ2 − αᾱ+ 2αβ − ββ̄ − εµ+ εµ̄− γρ− µρ+ γρ̄+ λσ, (13j)

δ̄γ −∆α = Ψ3 − β̄γ − αγ̄ + βλ+ αµ̄− εν − νρ+ λτ + γτ̄ , (13k)

δ̄ε−Dα = −Φ10 + 2αε+ β̄ε− αε̄+ γκ̄+ κλ− επ − αρ− πρ− βσ̄, (13l)

δ̄κ−Dρ = −Φ00 + 3ακ+ β̄κ− κπ − ερ− ε̄ρ− ρ2 − σσ̄ + κ̄τ, (13m)

δ̄µ− δλ = −Φ21 + Ψ3 − ᾱλ+ 3βλ− αµ− β̄µ− µπ + µ̄π − νρ+ νρ̄, (13n)

δ̄ν −∆λ = Ψ4 + 3γλ− γ̄λ+ λµ+ λµ̄− 3αν − β̄ν − νπ + ντ̄ , (13o)

δ̄π −Dλ = −Φ20 + 3ελ− ε̄λ+ κ̄ν − απ + β̄π − π2 − λρ− µσ̄, (13p)

δ̄σ − δρ = −Φ01 + Ψ1 − κµ+ κµ̄− ᾱρ− βρ+ 3ασ − β̄σ − ρτ − ρ̄τ, (13q)

δ̄τ −∆ρ = 2Λ + Ψ2 − κν − γρ− γ̄ρ+ µ̄ρ+ λσ + ατ − β̄τ + τ τ̄ . (13r)

A.2 Conformal vacuum Einstein field equations

The rescaled Weyl spinor φABCD is related to the Weyl spinor ΨABCD of the NP formalism by

φABCD = Ξ−1ΨABCD.

Moreover, φABCD is related to the spinorial counterpart of dabcd via

dAA′BB′CC′DD′ = −φABCDεA′B′εC′D′ − φA′B′C′D′εABεCD.

We denote the components of φABCD by

φ0 ≡ Ξ−1Ψ0, φ0 ≡ Ξ−1Ψ0, φ1 ≡ Ξ−1Ψ1, φ2 ≡ Ξ−1Ψ2, φ3 ≡ Ξ−1Ψ3, φ4 ≡ Ξ−1Ψ4.

The spinorial counterpart of the Schouten tensor is

LAA′BB′ = −ΛεABεA′B′ + ΦABA′B′ .

Finally, we denote the components of the derivative of the conformal factor Ξ by

Σ1 ≡ DΞ, Σ2 ≡ ∆Ξ, Σ3 = δΞ = Ξ01′ , Σ4 = δ̄Ξ = Ξ10′ .

A.2.1 The first conformal Einstein field equation

The spinorial counterpart of the first conformal Einstein equation, equation (2a), is

∇BB′∇AA′Ξ = −ΞΦABA′B′ + sεAB ε̄A′B′ + ΞΛεAB ε̄A′B′ . (14)

When we decompose it in terms of the NP null tetrad we obtain

−Σ1(ε+ ε̄) + Σ4κ+ Σ3κ̄+DΣ1 = −ΞΦ00, (15a)

Σ2(ε+ ε̄)− Σ3π − Σ4π̄ +DΣ2 = s+ ΞΛ− ΞΦ11, (15b)

−Σ3(ε− ε̄) + Σ2κ− Σ1π̄ +DΣ3 = −ΞΦ01, (15c)

−Σ1(γ + γ̄) + Σ4τ + Σ3τ̄ + ∆Σ1 = s+ ΞΛ− ΞΦ11, (15d)
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Σ2(γ + γ̄)− Σ3ν − Σ4ν̄ + ∆Σ2 = −ΞΦ22, (15e)

−Σ3(γ − γ̄)− Σ1ν̄ + Σ2τ + ∆Σ3 = −ΞΦ12, (15f)

−Σ1(ᾱ+ β) + Σ3ρ̄+ Σ4σ + δΣ1 = −ΞΦ01, (15g)

Σ2(ᾱ+ β)− Σ4λ̄− Σ3µ+ δΣ2 = −ΞΦ12, (15h)

−Σ3(−ᾱ+ β)− Σ1λ̄+ Σ2σ + δΣ3 = −ΞΦ02, (15i)

Σ4(−ᾱ+ β)− Σ1µ+ Σ2ρ̄+ δΣ4 = −s− ΞΛ− ΞΦ11. (15j)

A.2.2 The second conformal Einstein field equation

The spinorial counterpart of the second conformal Einstein equation, equation (2b), is given by

∇AA′s = Λ∇AA′Ξ− ΦABA′B′∇BB
′
Ξ. (16)

Its decomposition in terms of the NP null tetrad is given by

−Ds = −Σ1Λ + Σ2Φ00 − Σ4Φ01 − Σ3Φ10 + Σ1Φ11, (17a)

−∆s = −Σ2Λ + Σ2Φ11 − Σ4Φ12 − Σ3Φ21 + Σ1Φ22, (17b)

− δs = −Σ3Λ + Σ2Φ01 − Σ4Φ02 − Σ3Φ11 + Σ1Φ12. (17c)

A.2.3 The third conformal Einstein field equation

The spinorial counterpart of the third equation is

∇AA′ΦBCB′C′ −∇BB′ΦACA′C′ = εBC ε̄B′C′∇AA′Λ− εAC ε̄A′C′∇BB′Λ

− φ̄A′B′C′D′εAB∇ D′

C Ξ− φABCD ε̄A′B′∇DC′Ξ. (18)

The independent components of this equation can be found to be

∆Φ00 − δΦ10 + 2DΛ = Φ00(2γ + 2γ̄ − µ)− 2Φ10(ᾱ+ τ)− 2Φ01τ̄ + 2Φ11ρ̄+ Φ20σ

+ Σ3φ̄1 − Σ1φ̄2 (19a)

∆Φ01 − δΦ11 + δΛ = Φ01(2γ − µ) + Φ00ν̄ + Φ12ρ̄+ Φ21σ − Φ10λ̄− 2Φ11τ − Φ02τ̄

+ Σ3φ̄2 − Σ1φ̄1, (19b)

∆Φ02 − δΦ12 = Φ02(2γ − 2γ̄ − µ) + 2Φ12(ᾱ− τ) + 2Φ01ν̄ + Φ22σ − 2Φ11λ̄

+ Σ3φ̄3 − Σ1φ̄4, (19c)

∆Φ11 − δΦ21 + ∆Λ = Φ01ν + Φ10ν̄ + Φ21(2β − τ) + Φ22ρ̄− Φ20λ̄− 2Φ11µ− Φ12τ̄

+ Σ2φ̄2 − Σ4φ̄3, (19d)

∆Φ12 − δΦ22 = Φ22(2ᾱ+ 2β − τ) + Φ02ν + 2Φ11ν̄ − 2Φ12(γ̄ + µ)− 2Φ21λ̄

+ Σ2φ̄3 − Σ4φ̄4, (19e)

DΦ22 − δΦ21 + 2∆Λ = Φ22(ρ̄− 2ε− 2ε̄) + 2Φ21(β + π̄) + 2Φ12π − Φ20λ̄− 2Φ11µ

+ Σ3φ3 − Σ2φ2 (19f)

DΦ12 − δΦ11 + δΛ = Φ02π + 2Φ11π̄ + Φ12(ρ̄− 2ε̄) + Φ21σ − Φ22κ− Φ10λ̄− Φ01µ

− Σ2φ1 + Σ3φ2, (19g)

DΦ11 − δΦ10 +DΛ = Φ01π + Φ10(π̄ − 2ᾱ) + 2Φ11ρ̄+ Φ20σ − Φ21κ− Φ12κ̄− Φ00µ

− Σ4φ1 + Σ1φ2, (19h)

DΦ02 − δΦ01 = Φ02(2ε− 2ε̄+ ρ̄) + 2Φ01(π̄ − β) + 2Φ11σ − 2Φ12κ− Φ00λ̄

− Σ2φ0 + Σ3φ1, (19i)

DΦ01 − δΦ00 = 2Φ01(ε+ ρ̄) + Φ00π̄ + 2Φ10σ − 2Φ00(ᾱ+ β)− 2Φ11κ− Φ02κ̄
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− Σ4φ0 + Σ1φ1, (19j)

δΦ10 − δ̄Φ01 = Φ00(µ− µ̄) + 2Φ11(ρ− ρ̄) + 2Φ10ᾱ+ Φ02σ̄ − 2Φ01α− Φ20σ

+ Σ4φ1 − Σ3φ̄1 − Σ1φ2 + Σ1φ̄2, (19k)

δΦ11 − δ̄Φ02 + δΛ = 2Φ02(β̄ − α) + Φ01(µ− 2µ̄) + Φ12(2ρ− ρ̄) + Φ10λ̄− Φ21σ

+ Σ2φ1 − Σ3(φ2 + φ̄2) + Σ1φ̄3, (19l)

δΦ21 − δ̄Φ12 = 2Φ11(µ− µ̄) + Φ22(ρ− ρ̄) + 2Φ12β̄ + Φ20λ̄− 2Φ21β − Φ02λ

+ Σ2(φ2 − φ̄2)− Σ3φ3 + Σ4φ̄3. (19m)

A.2.4 The fourth conformal Einstein field equation

The spinorial counterpart of the fuorth conformal Einstein equation, equation (2d), is given by

∇DC′φ D
ABC = 0. (20)

Its decomposition in terms of the NP null tetrad is given by

∆φ0 − δφ1 = −2φ1(β + 2τ) + φ0(4γ − µ) + 3φ2σ, (21a)

∆φ1 − δφ2 = 2φ1(γ − µ) + φ0ν + 2φ3σ − 3φ2τ, (21b)

∆φ2 − δφ3 = 2φ3(β − τ)− 3φ2µ+ 2φ1ν + φ4σ, (21c)

∆φ3 − δφ4 = φ4(4β − τ) + 3φ2ν − 2φ3(γ + 2µ), (21d)

Dφ1 − δ̄φ0 = φ0(π − 4α) + 2φ1(ε+ 2ρ)− 3φ2κ, (21e)

Dφ2 − δ̄φ1 = 2φ1(π − α)− φ0λ+ 3φ2ρ− 2φ3κ, (21f)

Dφ3 − δ̄φ2 = 2φ3(ρ− ε)− 2φ1λ+ 3φ2π − φ4κ, (21g)

Dφ4 − δ̄φ3 = φ4(ρ− 4ε) + 2φ3(α+ 2π)− 3φ2λ. (21h)
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