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Abstract. We find and classify all bialgebras and Hopf algebras or ‘quantum

groups’ of dimension ≤ 4 over the field F2 = {0,1}. We summarise our results
as a quiver, where the vertices are the inequivalent algebras and there is an

arrow for each inequivalent bialgebra or Hopf algebra built from the algebra

at the source of the arrow and the dual of the algebra at the target of the
arrow. There are 314 distinct bialgebras, and among them 25 Hopf algebras

with at most one of these from one vertex to another. We find a unique
smallest noncommutative and noncocommutative one, which is moreover self-

dual and resembles a digital version of uq(sl2). We also find a unique self-dual

Hopf algebra in one anyonic variable x4 = 0. For all our Hopf algebras we
determine the integral and associated Fourier transform operator, viewed as

a representation of the quiver. We also find all quasitriangular or ‘universal

R-matrix’ structures on our Hopf algebras. These induce solutions of the
Yang-Baxter or braid relations in any representation.

1. Introduction

Quantum groups have been around in modern form since the 1980s, originally aris-
ing in quantum inverse scattering but also at the heart of TQFT’s leading to knot
and 3-manifold invariants on the one hand (the ‘quasitriangular’ Drinfeld-Jimbo
quantum groups [8]) and key to the first modern models of quantum spacetime as
quantum isometry groups (the ‘bicrossproduct’ quantum groups) as in [17], where
they could model quantum gravity effects. The latter quantum groups relate to
ideas of Born-reciprocity and observable-state symmetry [11] for quantum gravity.
TQFTs and their quantum groups are also behind quantum gravity in 2+1 dimen-
sions with point sources. Even finite-dimensional quantum groups are potentially
useful, such as uq(g) at roots of unity, for example in the Kitaev model of topo-
logical quantum computing [9] among others. They also provide ‘re-write rules’ in
ZX-calculus for quantum computing more generally [7]. Mathematicians first con-
sidered Hopf algebras starting in the 1940s, including the development of a theory
of characters and Hopf algebra Fourier transform [12] (but without many examples
at that time truly beyond those associated to groups and Lie algebras). This gener-
alises usual Fourier theory and transforms functions on a nonAbelian group to the
group algebra viewed as a noncommutative Fourier dual space (for example curved
momentum space Fourier transforms to noncommutative spacetime). By now, they
also provide sources of quantum geometries [5] with quantum differential structures
on them well studied following [19].
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Aside from very special classes, Hopf algebras or quantum groups in general have,
however, defied classification, although there are some partial results over alge-
braically closed fields of characteristic zero such as C, see e.g.[1, 4]. In this paper,
we try a new approach which does achieve a complete classification of all Hopf al-
gebras and bialgebras (these are like ‘quantum semigroups’) but only of dimension
n ≤ 4 and by working over the field F2 = {0,1} of two elements. The latter is nei-
ther algebraically closed nor characteristic zero and we find many even to this low
dimension. If one similarly classified them over F3,F5 etc. and looked for common
families, one would get a sense of what the moduli of quantum groups looks like
over a generic field. Although there is no guarantee and one would need to go to
higher dimensions to be interesting, natural constructions over C (even if that is
the case of interest) indeed tend to have versions over finite fields. Note that this is
necessarily a hard problem as the classification of all quasitriangular Hopf algebras
and their representations typically implies the classification of R-matrices or solu-
tions of the Yang-Baxter equations which itself remains open after some decades
due to its cubic-matrix form (there are partial results for example in the upper
triangular case). The classification of factorisable quasitriangular Hopf algebras is
in some sense dual to the classification of knots, another unsolved problem with
only partial results. Therefore even the F2 case here could be seen as a significant
step.

It is possible that the F2 or ‘digital’ case could also be interesting in its own right.
Indeed, this is the third in our series on ‘digital geometry’ where previous works
[14, 15] as well as [3, 13] looked at noncommutative geometry over F2. The work [15]
classified ‘digital’ quantum geometries to dimension 3 with few results for dimension
n = 4. Our complete classification of digital quantum groups for n ≤ 4 feeds into this
in the same way that Lie groups and their homogeneous spaces are key examples
of classical geometry. Since the axioms of a quantum group are well-known by
now in mathematical physics, their digital versions could also be the first to have
applications in other contexts. Whether or not they are actually useful in signal
processing or electrical engineering remains to be seen but digital quantum groups
allow the transfer of ideas from group theory, Fourier theory, topological quantum
computing [9] as well as ZX-calculus in general quantum computing [7] over to
digital algorithms and digital electronics. Digital quantum computers, for example,
while lacking the exponential increase of actual quantum computers, could be built
now and provide training wheels and experience towards quantum computing over
C.

Our results at the most rudimentary level can be summarised as

n algebras bialgebras Hopf algebras nontrivial quasitri. Hopf pairs
2 3 4 3 1
3 7 24 2 0
4 25 286 20 28

The starting point here is that algebras over F2 in low dimension were already clas-
sified in our previous work [14, 15] but only in the commutative case for n = 4 where
there are 16 of them denoted A-P; our first step will be to include noncommutative
ones and for n = 4 we find 9 of these, NA-NI. For n = 3, only the last of the algebras
A-G is noncommutative and for n = 2, none of the algebras is noncommutative.
Next, a bialgebra is a vector space that is both an algebra and a coalgebra in a
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compatible way. The latter is the arrow-reversed concept of an algebra and in the
finite-dimensional case corresponds to an algebra on the dual space. We will say,
for example, that a coalgebra is of type B* if it is isomorphic to the dual of B from
our list, and that a bialgebra is of type (A,B*) if the bialgebra is isomorphic as an
algebra to A from our list and isomorphic as a coalgebra to the dual of B from
our list. For a Hopf algebra, we also need an ‘antipode’ map (a kind of linearised
inverse) but this is uniquely determined if it exists, so not additional data.

In fact, some of the possible algebras do not feature in any bialgebra, for example
if they are simple as algebras (such as a field extension of F2 or a matrix algebra)
as they won’t then be able to admit a counit. Meanwhile, our results about the
allowed bialgebras and Hopf algebras will be shown by a quiver diagram on the
set of algebras where each arrow A→B, say, indicates a distinct bialgebra or Hopf
algebra of type (A,B*). In this form, all possible bialgebras and Hopf algebras for
n = 2,3,4 are shown in (3.1) in Section 3.1, (3.2) in Section 3.2 and (4.1) (Hopf
algebras only) in Section 4 respectively. Our results for n = 4 bialgebras are given
as an extended graph in Figure 1 with the number of a given type shown on the
relevant edge.

Finding these results will be a two-step process. First, we find all possible bialgebras
where the algebra is one of our fixed algebras. Thus, the appendix explicitly lists all
the coproducts that we find for n = 3. The second step, in Section 3.2 for n = 3, is to
analyse which of them are isomorphic as bialgebras so as to find the distinct ones.
For n = 4, there are too many to list here but we have made the data available
online [16]. This time we depend entirely on computer analysis except for some
simpler cases which are analysed by hand as a check. The n = 2,3 cases provide
the template as well as checks on the coding since these were analysed by hand.

Most of the bialgebras and some of the Hopf algebras we find are new, even after
we identify the low-dimension version of known general constructions. None of the
bialgebras for n ≤ 3 are ‘strictly quantum’ in the sense of both noncommutative
and noncocommutative (the latter means the algebra dual to the coalgebra is non-
commutative). For n = 4 there are many, but of these a unique one which is a
Hopf algebra (it is self-dual of type (NF,NF*)), see Proposition 4.2. As F2 is itself
the smallest finite field, this is in some sense the absolute smallest possible strict
quantum group. It appears to be new as a Hopf algebra and we call it dsl2 as it
resembles a ‘digital analogue’ of a quotient of uq(sl2) at q = −1 in the conventions
in [2]. The latter is 8-dimensional and commutative over F2, so we have more as
well as different relations. Also of note is a unique self-dual Hopf algebra in one
anyonic variable x4 = 0, which is not the obvious additive one, see Proposition 4.1.

Hopf algebra Fourier transform [12] is also of interest. In the finite-dimensional
case over F2, there is always a unique ‘Haar integral’ ∫ ∶ H → F2 and we compute
this for every n ≤ 4 Hopf algebra in Section 5 and Appendix B. This is then used
to compute the canonical Fourier transform H → H∗. An innovation is to view
Fourier transform as a representation of the quiver of Hopf algebras (i.e. a linear
‘Fourier transport’ map associated to each arrow). Geometrically, one can think of
this as a connection on the quiver, with curvature expressed as holonomies.

Finally, with applications in mind, we look in Section 6 at which of our Hopf algebras
admit quasitriangular structures and find all of them (the numbers above count
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the pairs (H,R) where H is a Hopf algebra and R is a nontrivial quasitriangular
structure or ‘universal R-matrix’ [8, 12]). For example, the Grassmann plane admits
16 quasitriangular structures, 15 of which are nontrivial. We say which of the ones
we find are involutive (‘triangular’) and which are factorisable [8, 12]. For example,
dsl2 is triangular. In fact, we find relatively few that are non-involutive (strictly
quasitriangular), but they include 8 on the Grassmann plane Hopf algebra as well
as the expected factorisable ones for the Drinfeld double of F2(Z2). We conclude
in Section 7 with some directions for further work.

The paper starts with preliminary definitions in Section 2. There are many books
on quantum groups but our starting point is to write everything out in terms
of structure constant tensors, as these will be solved for by computer. We used
Mathematica to find all the coproducts and R to look for isomorphisms.
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2. Preliminaries

In this section, we work over any field k, but we will be interested in the rest of
the paper in k = F2. Let xµ be a basis of our algebra A with x0 = 1 the unit and
µ = 0,⋯, n − 1. We write structure constants by

(2.1) xµxν = V µνρxρ, V µνρ ∈ k.
For a unital associative algebra we of course need

(2.2) V 0µ
ν = δµν = V µ0

ν , V ρνλV
λµ
γ = V νµλV ρλγ .

If we do not assume that x0 = 1 then more generally we assume that 1 = ηµxµ for
ηµ ∈ k, in which case the unity axiom is

ηνV
νµ
ρ = δµρ = ηνV µνρ.

If A admits the bialgebra structure, then we express the coproduct in terms of
structure constants as,

(2.3) ∆xµ = Cµνρxν ⊗ xρ, Cµνρ ∈ k, ε (xµ) = εµ ∈ k.

For the Hopf algebra one also has the antipode

Sxµ = sµνxν , sµν ∈ k.

On the unit of the algebra we require: ∆1 = 1⊗1 and the counit ε1 = 1 . If the Hopf
algebra structure exists then the antipode obeys S1 = 1 on the unit of A.

The co-associativity and counity axioms for the coalgebra structure are

(2.4) (∆⊗ id) ○∆ = (id⊗∆) ○∆, (ε⊗ id) ○∆ = id = (id⊗ ε) ○∆,

which in tensor terms become

(2.5) CµνγC
ν
αβ = CµαρCρβγ , Cµνρε

ν = δµρ, Cµνρε
ρ = δµν .
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This is because we need equality of

(∆⊗ id) ○∆xµ = Cµνρ∆xν ⊗ xρ = CµνρCνλγxλ ⊗ xγ ⊗ xρ = CµνγCναβxα ⊗ xβ ⊗ xγ

(id⊗∆)○∆xµ = Cµνρxν⊗∆xρ = CµνρCρα1β1x
ν⊗xα1⊗xβ1 = CµαρCρβγxα⊗xβ⊗xγ

and similarly for the counit. Henceforth, we leave similar such derivations below to
the reader.

Additionally, ∆ and ε are algebra homomorphisms which in terms of the structure
constants is:

V µνρC
ρ
λγ = CµαβCνρδV αρλV βδγ , V µνρε

ρ = εµεν .(2.6)

The antipode map obeys m ○ (S ⊗ id) ○∆ = η ○ ε =m ○ (id⊗ S) ○∆ which in tensor
terms is

(2.7) Sxµ = sµνxν , Cµνρs
ν
αV

αρ
β = εµδβ0 = CµνρsρλV νλβ .

The antipode S of a Hopf algebra H is necessarily an algebra anti-homomorphism
and a coalgebra anti-homomorphism of H, hence will obey
(2.8)

V µνρs
ρ
λ = sναsµβV αβλ, s0

µ = δ0
µ, sµνC

ν
αβ = Cµτηsτ βsηα, sµνε

ν = εµ.

An algebra homomorphism φ(xµ) = φµνxν from an algebra with product V to one
with product V ′ means

(2.9) V φ = (φ⊗ φ)V ′, V µνρφ
ρ
τ = φµαφνβV ′αβ

τ .

and we also demand that ηµφ
µ
ν = η′ν for the units (if both algebras are in standard

form then this is φ0
ν = δ0

ν). If φ is surjective (such as an isomorphism) then this
unit condition is automatic. Similarly, a coalgebra homomorphism ψ(xµ) = ψµνxν
from a coalgebra with coproduct C ′ to one with coproduct C means

(2.10) C ′(ψ ⊗ ψ) = ψC, C ′τ
αβψ

α
µψ

β
ν = ψτ ρCρµν .

and we also demand that ψµνε
ν = ε′µ for the counit, which is automatic in the

case of ψ injective (such as an isomorphism). Finally, we note that the data for a
coalgebra is exactly the same as the data for an algebra by

Cµνρ ↔ V νρµ, εµ ↔ ηµ

and an algebra homomorphism φ as above is equivalent to a corresponding coalgebra
homomorphism ψµν ↔ φνµ. Under this switch in interpretation, a bialgebra is
swapped to the dual bialgebra on the dual basis and likewise in the Hopf algebra
case. Another fact is that a bialgebra map between Hopf algebras is automatically
a Hopf algebra map, in that it connects the antipodes, so we do not have to consider
this additionally.

We also mention some Hopf algebras notation [12]. An element x is called primitive
if it has an ‘additive’ coproduct ∆x = x ⊗ 1 + 1 ⊗ x and grouplike if ∆x = x ⊗
x. Also, if H is a bialgebra then Hop (with reversed product) and Hcop (with
reversed coproduct) are again bialgebras. The same applies for Hopf algebras if the
antipode is invertible, which is always true for finite-dimensional Hopf algebras.
We leave the details for Fourier theory and quasitriangular structures to their later
sections, but note that the above duality swaps a quasitriangular structure with a
coquasitriangular one, so we do not have to classify these separately.
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3. Algebras and bialgebras of dimension n ≤ 3

Here, n = 2 will be done entirely by hand, while n = 3 will be done by manual
analysis of raw data in the Appendix (which lists all the possible coproducts as
generated) obtained with the help of Mathematica. This provides the methodology
for the much harder n = 4 case in Section 4.

3.1. Quiver for n = 2. Here, there are just three distinct unital algebras with basis
1, x as in [14] and looking for coproducts, one finds:

A: x2 = 0 i.e., F2Z2 = F2[x]/⟨x2⟩. This is also the unital algebra with all other
products zero.

2 Hopf algebras and no further bialgebras

● Hopf algebra of type (A,B*) with a coalgebra A.1: ∆x = x⊗1+1⊗x+x⊗x
with εx = 0 and Sx = x (this is F2Z2, s = 1+x is grouplike and obeys s2 = 1).

● Self-dual Hopf algebra of type (A,A*) with coalgebra A.2: ∆x = x⊗1+1⊗x
with εx = 0 and Sx = x (we call this the ‘Grassmann line’).

B: x2 = x i.e., F2(Z2) = F2[x]/⟨x2 + x⟩.

1 Hopf algebra and 2 further bialgebras

● Hopf algebra of type (B,A*) with coalgebra B.1: ∆x = x ⊗ 1 + 1 ⊗ x with
εx = 0 and Sx = x (this is F2(Z2), x = δ1 the delta-function at 1).

● Bialgebra of type (B,B*) with coalgebra B.2: ∆x = x ⊗ x with εx = 1 (we
call this the ‘projector bialgebra’).

● Bialgebra of type (B,B*) with coalgebra B.3: ∆x = x⊗1+1⊗x+x⊗x with
εx = 0.

In fact B has an algebra isomorphism φ(x) = 1 + x and (φ ⊗ φ)∆B.3 = ∆B.2φ
(while B.1 is invariant) with the result that B.2≅B.3 as bialgebras. Hence, up
to equivalence, we have only one distinct Hopf algebra and one distinct self dual
bialgebra.

C: x2 = x + 1 (this is F4 = F2[x]/⟨x2 + x + 1⟩ as an algebra over F2).
No bialgebras

Altogether, we find 3 distinct Hopf algebras and 1 further bialgebra. The Hopf
algebras are the group algebra and function Hopf algebra on Z2, which are clearly
dual to each other, and the Grassmann line which arises from the observation that
F2[x]/⟨a(x)⟩, where a contains only terms of degrees that are powers of 2, is always
a Hopf algebra over F2 with primitive ∆x = x⊗1+1⊗x. The group function algebra
F2(Z2) = A1 is also in this family, as the smallest member of a series of Hopf algebras
Ad introduced in [3] over any characteristic p > 0.

We can represent our results as a quiver by drawing an arrow for each bialgebra
of Hopf algebra according to its type. For example, A → B since we have a Hopf
algebra F2Z2 with algebra A and coalgebra isomorphic to the dual of B, i.e. of type
(A,B*) in our notation. The dual bialgebra then implies an arrow the other way,
in our case the Hopf algebra F2(Z2) as the arrow B→A. Altogether, we have four



DIGITAL QUANTUM GROUPS 7

arrows for n = 2:

(3.1) BA
with the 3 thicker ones signalling Hopf algebras. The self-arrow on the left is the
Grassmann line of type (A,A*). This is self-dual with the pairing

⟨1,1⟩ = ⟨x,x⟩ = 1, ⟨x,1⟩ = ⟨1, x⟩ = 0,

which one can check obeys the Hopf algebra pairing axioms with itself. The self-
arrow on the right is the projector bialgebra of type (B,B*). If we take it in the
form B.2, say, then this is dually paired as a bialgebra with itself by

⟨1,1⟩ = ⟨1, x⟩ = ⟨x,1⟩ = 1, ⟨x,x⟩ = 0.

3.2. Quiver for n = 3. In 3 dimensions we have found 7 unital associative algebras
over F2 in [15], six of them are commutative (A - F) and one is noncommutative
(G). These can all be written with basis 1, x, y and products

A ∶ x2 = y2 = xy = 0 (the unital algebra with all other products zero.)

B ∶ x2 = x, y2 = y, xy = 0 (this is the algebra of F2(Z3) or functions on a triangle.)

C ∶ x2 = x, y2 = xy = 0 (this is F2[z]/⟨z3 + z⟩ with z = 1 + x + y or conversely
x = 1 + z2 and y = z + z2.)

D ∶ x2 = y, y2 = x,xy = x+ y (this is the group algebra F2Z3 = F2[z]/⟨z3 + 1⟩ with
z = 1 + x.)

E ∶ x2 = y, y2 = xy = 0 (this is F2[x]/⟨x3⟩, the anyonic line.)

F ∶ x2 = y, xy = 1 + y, y2 = 1 + x + y (this is the field F8 = F2[x]/⟨x3 + x2 + 1⟩.)

G ∶ x2 = x, y2 = 0, xy = y, yx = 0 (this is noncommutative but G ≅ Gop by
x↦ 1 + x, y ↦ y.)

Of these we will find that B and D are the only algebras admitting a Hopf algebra
structure (namely the unique one indicated by the notation as group algebra or
function algebra on a group). The algebras B, C, D and G admit many bialgebras
(but no further Hopf algebras) and the algebras A, E, F admit no bialgebra struc-
tures. If we make a graph as we did for n = 2 then we can graph our results up to
equivalence as the quiver

(3.2)

B

C

D G

where the thick arrows are Hopf algebras. Here D→B is the expected group Hopf
algebra FZ3 and B→D is its dual F(Z3) of functions on the group Z3. All the rest
are strictly bialgebras and we see that two of them are self-dual and 12 of them
(those connecting to G) are noncommutative or noncocommutative (but not both).
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We will obtain this as follows. For each type of algebra, first step is to solve (2.2),
(2.5), (2.6) for all possible bialgebra structure constants in a basis including 1. For
each solution we see if it is a Hopf algebra and we compute the dual algebra to the
coalgebra to see what type it is. This ‘raw data’ was generated using Mathematica
and is collected for n = 3 in the Appendix. We now proceed below to analyse this
raw data for each algebra to determine which of the bialgebras are isomorphic, so
as to have the moduli of inequivalent or distinct ones up to isomorphism.

3.3. Analysis for algebra B. The code produces 33 bialgebras as detailed in the
Appendix:

● 6 bialgebras with coalgebras of type B*
● 18 bialgebras with coalgebras of type C*
● 3 Hopf algebras with coalgebras of type D*
● 6 bialgebras with coalgebras of type G*. These are grouped as B.8 = B.9cop,

B.14 = B.15cop, B.26 = B.27cop as bialgebras with opposite coproduct by
inspection.

To narrow down to the isomorphism classes we note that B has 6 algebra auto-
morphisms (including the identity) forming the group S3, with order 2 generators
providing bialgebra isomorphisms

x↦ 1+x+y ∶ (i) B.4 ≅ B.21 ; (ii) B.1 ≅ B.12, B.5 ≅ B.20, B.24 ≅ B.30 B.28 ≅ B.31

B.23 ≅ B.32, B.2 ≅ B.17, B.3 ≅ B.16, B.7 ≅ B.18, B.11 ≅ B.13

(iii) B.8 ≅ B.14, B.9 ≅ B.15, (iv) B.6 ≅ B.19, B.10 ≅ B.22, B.25 ≅ B.29

x↔ y ∶ (i) B.21 ≅ B.33; (ii) B.1 ≅ B.11, B.2 ≅ B.5, B.12 ≅ B.24, B.17 ≅ B.32

B.3 ≅ B.7, B.16 ≅ B.28, B.18 ≅ B.31, B.13 ≅ B.30, B.20 ≅ B.23

(iii) B.14 ≅ B.27, B.15 ≅ B.26, (iv) B.6 ≅ B.10, B.19 ≅ B.25, B.22 ≅ B.29

Now looking at the orbits under the action of the automorphism group generated
by these, we see from the four cases that:

(i) The 3 bialgebras are one orbit so there is one distinct bialgebra of type (B,D*),
a Hopf algebra (the group function Hopf algebra F2(Z3)).

(ii) The 18 bialgebras form three orbits and hence there are three distinct bialgebras
of type (B,C*).

(iii) The 6 bialgebras form two orbits hence there are two distinct bialgebras of
type (B,G*). By the above, one is the co-opposite of the other.

(iv) The 6 bialgebras are one orbit so there is one distinct bialgebra of type (B,B*).
This implies that B is self-dual, B ≅ B∗ as bialgebras.

Proposition 3.1. The coproduct B.19, say, i.e.,

∆x = x⊗ x, ∆y = y ⊗ 1 + 1⊗ y + y ⊗ y, εx = 1, εy = 0

makes B into a self-dual bialgebra with self-pairing

⟨1,1⟩ = ⟨1, x⟩ = ⟨x,1⟩ = ⟨x, y⟩ = ⟨y, x⟩ = 1, ⟨1, y⟩ = ⟨y,1⟩ = ⟨y, y⟩ = 0.
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Proof. This is obtained as follows. The Appendix gives the algebra on the dual
bases y0, y1, y2 to x0 = 1, x1 = x,x2 = y. Here y0 = 1 + y1 and y1, y2 obey the
relations for B. The dual of the product of B induces a coproduct on these,

∆yρ = ⟨xµxν , yρ⟩yµ ⊗ yν = ⟨1, yρ⟩y0 ⊗ y0 + ⟨x, yρ⟩(y0 ⊗ y1 + y1 ⊗ y0 + y1 ⊗ y1)
+ ⟨y, yρ⟩(y0 ⊗ y2 + y2 ⊗ y0 + y2 ⊗ y2)

in view of the relations x2 = x, y2 = y and xy = yx = 0. This gives

∆y1 = y1 ⊗ 1 + 1⊗ y1 + y1 ⊗ y1, ∆y2 = y2 ⊗ 1 + 1⊗ y2 + y1 ⊗ y2 + y2 ⊗ y1 + y2 ⊗ y2,

which from the Appendix we recognise as B.10. But this is isomorphic to B.6 by
the 2nd automorphism above (swapping y1, y2) and then B.6 is isomorphic to B.19
by the first isomorphism. Hence we can replace the yi by x = 1 + y1 + y2 and y = y1

and have a duality pairing of B.19 with itself. The yi being dual bases gives the
pairing among the x, y as shown. One can check directly that it is indeed a bialgebra
pairing as it has to be by construction. �

3.4. Analysis for the algebra C. The code produces the 8 bialgebras in the
Appendix:

● 3 bialgebras C.2, C.7, C.8 with coalgebras of type B*
● 3 bialgebras C.1, C.3, C.6 with coalgebras of type C*
● 2 bialgebras C4 = C5cop by inspection, with coalgebras of type G*.

Algebra C has only the identity as an algebra automorphism, so these are all dis-
tinct. The 3 bialgebras of type (C,C*) consist of one which is self-dual and one pair
related by bialgebra duality. By the same methods as in Proposition 3.1 we find
that C.6 is the self-dual coproduct on C

∆x = x⊗ x + x⊗ y + y ⊗ x, εx = 1, εy = 0

with self-pairing

⟨1,1⟩ = ⟨1, x⟩ = ⟨x,1⟩ = ⟨y, y⟩ = 1, ⟨x,x⟩ = ⟨1, y⟩ = ⟨y,1⟩ = ⟨x, y⟩ = ⟨y, x⟩ = 0.

(Use 1 = y0 + y2, x = y0, y = y2 in terms of dual basis elements for C.6 in the
Appendix.) A similar calculation for the coproduct C.1 in the Appendix with 1 = y0,
x = y0 + y1 and y = y2 in terms the dual basis there now gives the coproduct C.3 on
these, thus (C,C.1)*=(C,C.3) as bialgebras (viewing a bialgebra as a pair consisting
of an algebra and a compatible coalgebra) for the remaining two bialgebras of this
type.

3.5. Analysis for the algebra D. The code produces the 3 bialgebras in the
Appendix:

● 1 Hopf algebra D.1 with coalgebra of type B* (the group Hopf algebra F2Z3

with grouplike element z = 1 + x)
● 2 bialgebras D.2 = D.3cop by inspection with coalgebras of type G*.

The algebra D has only one nontrivial algebra automorphism x ↔ y which is not
an isomorphism between any of the coalgebras. Hence these are all distinct and we
have one Hopf algebra of type (D,B*) and two bialgebras of type (D,G*).
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3.6. Analysis for the noncommutative algebra G. The code produces the 8
bialgebras in the Appendix:

● 2 bialgebras G.3, G.7 with coalgebras of type B*
● 4 bialgebras G.1, G.2, G.5, G.6 with coalgebras of type C*
● 2 bialgebras G.4, G.8 with coalgebras of D*.

One can see by hand that there are coalgebra isomorphisms

x↦ 1 + x ∶ G.1 ≅ G.5, G.2 ≅ G.6, G.3 ≅ G.7, G.4 ≅ G.8

which, however, reverses the product. So G.1 ≅ G.5op, G.2 ≅ G.6op, G.3 ≅ G.7op,
G.4 ≅ G.8op as bialgebras.

The algebra G has only one nontrivial algebra automorphism which provides bial-
gebra isomorphisms

x↦ x + y ∶ G.1 ≅ G.2, G.5 ≅ G.6

(and bialgebra automorphisms on G.3, G.7, G.4, G.8). As a result, there are two
distinct bialgebras each of type (G,B*), (G,C*), (G,D*), with one the opposite
algebra of the other in each pair.

4. Algebras and bialgebras of dimension n = 4

Here it is known from [14] that there are 16 unital commutative algebras and the
same computer classification of algebras up to isomorphism now finds a further 9
noncommutative ones, listed in Section 4.2. Several are known to have at least one
or two commutative and cocommutative Hopf algebra structures, so part of our
work will be to identify known Hopf algebras and check that all of them turn up.
Writing the basis elements xµ explicitly as 1, x, y, z, Section 4.1 and Section 4.2
summarise all possible coproducts or ‘raw data’ in the commutative and noncom-
mutative cases – they are too many to list explicitly and we refer to [16] for the
actual lists in machine readable form. This data plays the role of the Appendix
A for n = 3. Then, in Section 4.3, we identify the equivalence classes, mostly by
computer but with some smaller cases analysed by hand in different subsections,
as a check on the coding.

Our final result for n = 4 in our previous quiver notation (where A→B means a
bialgebra or Hopf algebra of type (A,B*)) is at the Hopf algebra level

(4.1)

D

E

P

G

L

M

NF

The vertices here are the n = 4 algebras below, with NF the only noncommutative
one. We will come back to this diagram in Section 4.3 in a fully decorated form
where we identify all the arrows as either known Hopf algebras or new ones. Also
note that there is just one Hopf algebra which is both noncommutative and non-
cocommutative, namely the self-arrow on NF, studied in Proposition 4.2. The full



DIGITAL QUANTUM GROUPS 11

picture for all bialgebras is also found but has too many arrows to draw as a quiver,
so this is presented instead as an extended weighted graph Figure 1 in Section 4.3.

4.1. Commutative algebras for n = 4 and all their coproducts. We list the
commutative unital algebras, where possible, in a tensor form and/or a quartic
form with relations x4 = ax3 + bx2 + cx + d for a, b, c, d ∈ {0,1}. This description is
more systematic than in [14] but the names of the algebras are the same. Where
helpful, we will specify the original x, y, z with primes where needed, for the original
description in [14] for the same algebra.

A: The unital algebra with all other products of x, y, z zero.
No bialgebras

B: All products of x, y, z zero except x2 = z.
No bialgebras

C: All products of x, y, z zero except x2 = x.
90 bialgebras and no Hopf algebras:

● 1 bialgebra with coalgebra of type C*
● 6 bialgebras with coalgebras of type D*
● 3 bialgebras with coalgebras of type J*
● 24 bialgebras with coalgebras of type K*
● 3 bialgebras with coalgebras of type L*
● 9 bialgebras with coalgebras of type P*
● 6 bialgebras with coalgebras of type NC*
● 6 bialgebras with coalgebras of type ND*
● 2 bialgebras with coalgebras of type NE*
● 30 bialgebras with coalgebras of type NG*

D: F2(Z2) ⊗ F2Z2 ≅ F2[w]/⟨w4 + w2⟩ with x2 = x, y2 = 0 for the two commuting
subalgebras (with z = xy and the inherited relations zx = z and z2 = yz = 0). The
quartic description is related via w = x + y and conversely x = w2, y = w +w2. One
has x′ = 1+ x, y′ = y + z, z for the original description in [14]. There is a canonical
Hopf algebra structure on each tensor factor as indicated by the notation.
4 Hopf algebras and 48 further bialgebras:

● 2 bialgebras with coalgebras of type C*
● 2 Hopf algebras with coalgebras of type D* (includes selfdual doubleD(F2Z2))
● 4 bialgebras with coalgebras of type D* (includes selfdual proj. ⊗ Grass.)
● 2 Hopf algebras with coalgebras of type E* (includes F2(Z2)⊗ Grass. line)
● 10 bialgebras with coalgebras of type K*
● 8 bialgebras with coalgebras of type P* (includes projector bialgebra⊗F2Z2)
● 4 bialgebras with coalgebras of type NC*
● 4 bialgebras with coalgebras of type ND*
● 16 bialgebras with coalgebras of type NG*

E: F2Z2 ⊗ F2Z2 with all products of x, y, z zero except z = xy as in [14]. Setting
s = x + 1, t = y + 1 we have relations s2 = t2 = 1 and z = 1 + s + t + st and at least
two Hopf algebra structures, namely either with s, t grouplike and another [3] is the
dual of the algebra A2 = F2[x]/⟨x4 + x⟩ = L below.
76 Hopf algebras and no further bialgebras:
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● 24 Hopf algebras with coalgebras of type D* (includes F2Z2⊗ Grass. line)
● 4 Hopf algebras with coalgebras of type E* (includes Grass. plane)
● 12 Hopf algebras with coalgebras of type G* (included dual of the anyonic

line)
● 12 Hopf algebras with coalgebras of type L* (includes A∗

2 from [3])
● 8 Hopf algebras with coalgebras of type M*
● 4 Hopf algebras with coalgebras of type P* (includes F2Z2 ⊗ F2Z2 = F2Z2

2)
● 12 Hopf algebras with coalgebras of type NF*

F: F2[x, y]/⟨y2, x(x+y)⟩. Here all products of x, y, z are zero except x2 = z, z = xy,
as in [14].
No bialgebras

G: F2Z4 = F2[x]/⟨x4⟩ is a group algebra if we take s = 1 + x grouplike or the
‘anyonic line’ if we take x primitive. The latter is like the Grassmann line but
higher order. Setting y = x2 and z = xy = yx gives all other products of x, y, z zero
as in [14].
8 Hopf algebras and no further bialgebras:

● 2 Hopf algebras with coalgebras of type E* (includes the anyonic line)
● 2 Hopf algebras with coalgebras of type G*
● 2 Hopf algebras with coalgebras of type L*
● 2 Hopf algebras with coalgebras of type P* (includes F2Z4)

H: F4⊗F2Z2 ≅ F2[w]/⟨w4 +w2 +1⟩ where x2 = 1+x for F4 and y2 = 0 with z = xy.
The quartic version is related by w = x + z and conversely x = 1 + w2, y = 1 + w3.
Here x, y, z′ = y + xy for the original description in [14].
No bialgebras

I: F2[w]/⟨w4 + w3 + w2⟩ ≅ F2[a]/⟨a4 + a + 1⟩ where the second version is related
a = w + 1. One also has that x = w2 + w3 obeys x3 = x2 + x (which implies that
x4 = x) and together with y = w2, z = w +w4 fits the original description in [14].
4 bialgebras and no Hopf algebras:

● 1 bialgebra with coalgebra of type NC*
● 1 bialgebras with coalgebra of type ND*
● 2 bialgebras with coalgebras of type NG*

J: F2[y]/⟨y4 + y3⟩ ≅ F2[w]/⟨w4 +w3 +w2⟩ where x = y2 and z = x(y + 1) and the
relation yz = 0 is equivalent to the quartic for y, and one can check that z2 = 0 as
in [14]. The second quartic version is related by w = 1 + y.
6 bialgebras and no Hopf algebras:

● 1 bialgebra with coalgebra of type C*
● 1 bialgebra with coalgebra of type J*
● 2 bialgebras with coalgebras of type P*
● 2 bialgebras with coalgebras of type NE*

K: Includes algebra F2(Z3) with basis 1, x, y where x2 = x, y2 = y, xy = 0, plus an
additional z with all products zero, as in [14].
96 bialgebras and no Hopf algebras:



DIGITAL QUANTUM GROUPS 13

● 8 bialgebras with coalgebras of type C*
● 10 bialgebras with coalgebras of type D*
● 26 bialgebras with coalgebras of type K*
● 12 bialgebras with coalgebras of type P*
● 7 bialgebras with coalgebras of type NC*
● 7 bialgebras with coalgebras of type ND*
● 4 bialgebras with coalgebras of type NE*
● 22 bialgebras with coalgebras of type NG*

L: A2 = F2[x]/⟨x4+x⟩ as in [3] and z = x2, y = 1+xz gives y2 = y, z2 = x,xy = yz = 0
as in [14]. There is a canonical Hopf algebra structure with x primitive.
4 Hopf algebras and further 28 bialgebras:

● 2 bialgebras with coalgebras of type C*
● 2 Hopf algebras with coalgebras of type E* (includes A2 from [3])
● 2 Hopf algebras with coalgebras of type G*
● 2 bialgebras with coalgebras of type L*
● 4 bialgebras with coalgebras of type P*
● 4 bialgebras with coalgebras of type NC*
● 4 bialgebras with coalgebras of type ND*
● 4 bialgebras with coalgebras of type NE*
● 8 bialgebras with coalgebras of type NG*

M: F2[z]/⟨z4 + z3 + z⟩ ≅ F2[w]/⟨w4 +w2 +w⟩ ≅ F2[a]/⟨a4 +a3 +a2 +1⟩ ≅ F2[i]/⟨i4 +
i2 + i + 1⟩ with x2 = 1 + x + y + z, y2 = y, z2 = x, xy = 0, xz = 1 + x + y, yz = 0 as in
[14]. The isomorphism is given by w = z3 and z = w2 +w3. The other two quartics
are just shifts to a = z+1 and i = w+1. There is a canonical Hopf algebra structure
with w primitive.
1 Hopf algebra and 2 further bialgebras:

● 1 Hopf algebra with coalgebra of type E*
● 2 bialgebras with coalgebras of type NE*

N: This is F4 ⊗ F4 ≅ F2(Z2) ⊗ F4 with x2 = 1 + x, y2 = y + 1, z = xy. The second
version has basis 1, a, b, c and a2 = a, c = ab, b2 = b + 1, related by a = 1 + x + y,
b = x, c = 1 + z. We have x′ = x + y + z, y′ = 1 + x + z, z′ = 1 + z we get the relations
x′2 = z′, y′2 = 1 + x′ + y + z′, z′2 = x′, x′y′ = 0, y′z′ = 0 for the description in [14].
No bialgebras

0: F16 = F2[z]/⟨z4 + z + 1⟩ ≅ F2[w]/⟨w4 +w3 + 1⟩ = F2[a]/⟨a4 + a3 + a2 + a+ 1⟩. The
second quartic version is related by w = 1 + z2 + z3 and conversely z = 1 + w + w2.
The third is related by a = z3 and conversely z = a + a3, or equivalently w = a2 + 1.
There is also a different isomorphism a = z2 + z3, equivalent to w = a + 1. We have
x = z2, y = 1 + z3, z (or z = 1 + x2 and y = 1 + x + x3) for the description in [14].
No bialgebras

P: This is F2(Z2) ⊗ F2(Z2) ≅ F2(Z4) as algebras with x2 = x, y2 = y, xy = yx = z
and the induced relations xz = z, yz = z, z2 = z. The two notations indicate two
canonical Hopf algebra structures, where we could also canonically identify the first
version of the algebra as F2(Z2

2). Here x′ = y + z, y′ = x + z, z for the description
in [14].
16 Hopf algebras and 608 further bialgebras



14 S. MAJID AND A. PACHO L

● 36 bialgebras with coalgebras of type C*
● 96 bialgebras with coalgebras of type D* (includes projector bialgebra⊗F2(Z2))
● 4 Hopf algebras with coalgebras of type E* (includes F2(Z2) ⊗ F2(Z2) =
F2(Z2

2))
● 12 Hopf algebras with coalgebras of type G* (includes F2(Z4))
● 24 bialgebras with coalgebras of type J*
● 144 bialgebras with coalgebras of type K*
● 24 bialgebras with coalgebras of type L*
● 36 bialgebras with coalgebras of type P* (includes projector bialgebra⊗2)
● 48 bialgebras with coalgebras of type NC*
● 48 bialgebras with coalgebras of type ND*
● 8 bialgebras with coalgebras of type NE*
● 144 bialgebras with coalgebras of type NG*

In the course of the above, we have identified all 16 potential quartic algebras in
dimension 4. Summarising them in binary abcd we found only 8 distinct ones up
to isomorphism, namely

D = 0100, G = 0000 = 0001, H = 0101, I = 1011 = 1100,

J = 1000 = 1110, L = 0010, M = 1010 = 1101 ≅ 0110 = 0111, O = 0011 ≅ 1001 = 1111

where all except the two marked ≅ are given by the shift generator by 1 map.

We also identified all 6 possible tensor products of the three n = 2 algebras F2Z2

(the zero unital algebra for n = 2), F(Z2),F4 and found that only 5 of them are
distinct, namely

D = F2(Z2) ⊗ FZ2, E = F2Z2 ⊗ F2Z2, H = F4 ⊗ F2Z2,

N = F4 ⊗ F4 ≅ F2(Z2) ⊗ F4, P = F2(Z2) ⊗ F2(Z2).
This just leaves A,B,C,F,K of neither form. Of these, A,C,K are just an n = 3
algebra with basis 1, x, y and an additional z with zero products with x, y and
itself, while B,F are a kind of central extension with x2 = z.

These remarks reassure us that our n = 4 algebra classification indeed turns up all
the commutative algebras we might expect. If one carried out the above exercise
for n = 3 then only four of 8 possible cubics x3 = ax2 + bx + c give distinct algebras
with abc identified as

C = 010 = 100, D = 001 = 110, E = 000 = 111, F = 011 = 101,

just leaving A,B among commutative n = 3 algebras as not cubic. There is no scope
for a tensor product form as 3 is a prime number. For n = 2 all our algebras were
quadratic, with A=00=01, B=10 and C=11.

We then listed the maximum number of bialgebra structures for each fixed algebra,
obtained by solving the equations in Section 2 for Cµνρ and εµ using Mathematica.
This was done by first solving the equations for ε as these are quadratic in ε and
at most linear in ∆. These gave some of the variables of ∆ in terms of others,
and we then solved the remaining conditions for ∆ on the reduced set of variables,
which was then feasible in terms of computer resources. We then used R to iden-
tify the coalgebra type of each of our solutions. Note that many of the bialgebra
solutions for a fixed algebra will be isomorphic as bialgebras, which we will address
in Section 4.3. Aside from this multiplicity detail, we can, however, already see
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the main structure of (4.1) and Figure 1 from the above lists. We also identified
some expected bialgebras as indicated, including all ten tensor products of the four
n = 2 bialgebras: F2Z2, F2(Z2) (now as bialgebras), the Grassmann line and the
projector bialgebra. This gives some reassurance that the coding has turned up all
the n = 4 bialgebras that we might have expected.

4.2. Noncommutative algebras for n = 4 and all their coproducts. These
were not considered in [14] but the same method gives 9 distinct noncommutative
unital algebras in dimension 4. Some of them will be cross products of commutative
ones above, and for this we recall a little Hopf algebra theory. If H is a bialgebra
and acts on an algebra A then the cross product A>◁H has A,H as subalgebras
and cross relations ha = (h(1)▷a)h(2) where ▷ is the left action (say) and ∆h =
h(1) ⊗ h(2) (sum of terms) is a compact ‘Sweedler notation’. From our results for
n = 2, we have only H = F2(Z2) and H = F2Z2 as Hopf algebras to consider. In
fact each acts canonically on the other by ‘translation’ h▷a = a(1)⟨a(2), h⟩ where
⟨ , ⟩ is the duality pairing. This particular cross product is shown in [12] to be the
algebra of linear maps on A. In our case this means that

M2(F2) ≅ F2(Z2)>◁F2Z2 ≅ F2Z2>◁F2(Z2)

must be one of our examples and necessarily admits no bialgebra structures. We
also have an action of Z2 on F4 which will give us another example. Our 9 non-
commutative algebras for n = 4 are:

NA: All products of x, y, z zero except xy = z. Isomorphic to its opposite algebra.
No bialgebras

NB: All products of x, y, z zero except x2 = z, xy = z, y2 = z. Isomorphic to its
opposite algebra.
No bialgebras

NC: All products of x, y, z zero except x2 = x and xy = y. Opposite algebra to
ND. Note that yx = 0, so this is noncommutative. (This is the n = 3 algebra G with
z adjoined with zero products.)
30 bialgebras and no Hopf algebras:

● 2 bialgebras with coalgebras of type C*
● 4 bialgebras with coalgebras of type D*
● 1 bialgebras with coalgebra of type I*
● 7 bialgebras with coalgebras of type K*
● 2 bialgebras with coalgebras of type L*
● 4 bialgebras with coalgebras of type P*
● 2 bialgebras with coalgebras of type NC*
● 2 bialgebras with coalgebras of type ND*
● 6 bialgebras with coalgebras of type NG*

ND: All products of x, y, z zero except x2 = x, yx = y. Opposite algebra to NC.
(This is the n = 3 algebra Gop with z adjoined with zero products.)
30 bialgebras and no Hopf algebras:

● 2 bialgebras with coalgebras of type C*
● 4 bialgebras with coalgebras of type D*
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● 1 bialgebra with coalgebra of type I*
● 7 bialgebras with coalgebras of type K*
● 2 bialgebras with coalgebras of type L*
● 4 bialgebras with coalgebras of type P*
● 2 bialgebras with coalgebras of type NC*
● 2 bialgebras with coalgebras of type ND*
● 6 bialgebras with coalgebras of type NG*

NE: All products of x, y, z zero except x2 = x, xy = y, xz = z. Isomorphic to its
opposite algebra.
152 bialgebras and no Hopf algebras:

● 8 bialgebras with coalgebras of type C*
● 24 bialgebras with coalgebras of type J*
● 48 bialgebras with coalgebras of type K*
● 24 bialgebras with coalgebras of type L*
● 16 bialgebras with coalgebras of type M*
● 8 bialgebras with coalgebras of type P*
● 24 bialgebras with coalgebras of type NG*

NF: All products of x, y, z zero except x2 = x, yx = y, xz = z. Isomorphic to its
opposite algebra.
8 Hopf algebras and no further bialgebras:

● 4 Hopf algebras with coalgebras of type E*
● 4 Hopf algebras with coalgebras of type NF*

NG: All products of x, y, z zero except x2 = x, y2 = y, xz = z. Isomorphic to its
opposite algebra.
112 bialgebras and no Hopf algebras:

● 10 bialgebras with coalgebras of type C*
● 16 bialgebras with coalgebras of type D*
● 2 bialgebra with coalgebras of type I*
● 22 bialgebras with coalgebras of type K*
● 4 bialgebras with coalgebras of type L*
● 12 bialgebras with coalgebras of type P*
● 6 bialgebras with coalgebras of type NC*
● 6 bialgebras with coalgebras of type ND*
● 2 bialgebras with coalgebras of type NE*
● 32 bialgebras with coalgebras of type NG*

NH: x2 = x, xy = 0, yx = y, y2 = 0, xz = z, zx = 0, yz = 1 + x, zy = x, z2 = 0.
Isomorphic to its opposite algebra. This is M2(F2) with basis

1 = (1 0
0 1

) , x = (1 0
0 0

) , y = (0 0
1 0

) , z = (0 1
0 0

)

Note that x, y generate a 3-dimensional subalgebra Gop of lower triangular matrices
and x, z a 3-dimensional subalgebra G of upper triangular ones, much like a finite
version of U(gl2) with 1, x generating the Cartan subalgebra. One also has that
y + 1, z + 1 generate the group algebra of S3 as the group of invertible elements of
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M2(F2). For the isomorphism with the cross product, we take F2(Z2) generated by
x2 = x and F2Z2 generated by w say, with w2 = 0 and grouplike element s = w + 1
acting as s▷x = 1+x. Then the cross relations are sx = (1+x)s or wx = xw+w+1.
One can check that z = x(w + 1) and y = (w + 1)x inherit the remaining relations.
In matrix terms, w is the matrix with all entries 1.
No bialgebras

NI: x2 = 0, xy = x + z, yx = z, y2 = 1 + y, xz = 0, zx = 0, yz = x + z, zy = x, and
z2 = 0. Opposite isomorphic to itself. (This is F4>◁F2Z2 where F2Z2 with grouplike
element z = x+ 1 acts on F4 generated by y by the Frobenius automorphism z▷y =
y2. One can check that zy = y2z as equivalent to the cross relation xy + yx = z.)
No bialgebras

4.3. Classification of inequivalent bialgebras for n = 4. Unlike the n = 3 case,
most of our algebras have too many bialgebra coproducts to identify equivalence
classes by hand. Therefore this was implemented by computer, using R. We take
the full set of coalgebra solutions compatible with a fixed algebra and partition
them into the different coalgebra types (as listed in the preceding subsections and
obtained using Mathematica and R). We then consider all transformations ψ ∈
GL(4,F2) which are coalgebra maps in the sense of (2.10) between every pair of
coalgebras of the same type. Of these we ask which are algebra automorphisms (of
our fixed algebra). This gives the equivalence classes of bialgebras as well as, where
applicable, of Hopf algebras.

4.3.1. Analysis for algebra G (4 distinct Hopf algebras: E*,P*, G*,L*).
Number Hopf Algebra structure (all with εx = εy = εz = 0)

G.1
coalg. type E*
F2[x]/⟨x4⟩

∆x = 1⊗ x + x⊗ 1, ∆y = 1⊗ y + y ⊗ 1,
∆z = 1⊗ z + x⊗ y + y ⊗ x + z ⊗ 1, Sx = x, Sy = y, Sz = z

G.2
coalg. type G*

∆x = 1⊗ x + x⊗ 1 + y ⊗ y, ∆y = 1⊗ y + y ⊗ 1,
∆z = 1⊗ z + x⊗ y + y ⊗ x + z ⊗ 1, Sx = x, Sy = y, Sz = z

G.3
coalg. type E*

∆x = 1⊗ x + x⊗ 1 + x⊗ y + y ⊗ x + z ⊗ y + y ⊗ z, ∆y = 1⊗ y + y ⊗ 1,
∆z = 1⊗ z + x⊗ y + y ⊗ x + z ⊗ y + y ⊗ z + z ⊗ 1,
Sx = x, Sy = y, Sz = z

G.4
coalg. type G*

∆x = 1⊗ x + x⊗ 1 + x⊗ y + y ⊗ x + z ⊗ y + y ⊗ z + y ⊗ y,
∆y = 1⊗ y + y ⊗ 1, ∆z = 1⊗ z + x⊗ y + y ⊗ x + z ⊗ y + y ⊗ z + z ⊗ 1,
Sx = x, Sy = y, Sz = z

G.5
coalg. type P*
F2Z4

∆x = 1⊗ x + x⊗ 1 + x⊗ x, ∆y = 1⊗ y + y ⊗ 1 + y ⊗ y,
∆z = (1 + x + y) ⊗ z + z ⊗ (1 + x + y) + z ⊗ z + y ⊗ x + x⊗ y,
Sx = x + y + z, Sy = y, Sz = z

G.6
coalg. type L*

∆x = 1⊗ x + x⊗ 1 + x⊗ x + y ⊗ y + z ⊗ y + y ⊗ z + z ⊗ z,
∆y = 1⊗ y + y ⊗ 1 + y ⊗ y,
∆z = (1 + x + y) ⊗ z + z ⊗ (1 + x + y) + z ⊗ z + y ⊗ x + x⊗ y,
Sx = x + y + z, Sy = y, Sz = z

G.7
coalg. type P*

∆x = 1⊗ x + x⊗ 1 + x⊗ x + x⊗ y + y ⊗ x, ∆y = 1⊗ y + y ⊗ 1 + y ⊗ y,
∆z = (1 + x) ⊗ z + x⊗ y + y ⊗ x + z ⊗ (1 + x) + z ⊗ z,
Sx = x + y + z, Sy = y, Sz = z

G.8
coalg. type L*

∆x = 1⊗ x + x⊗ 1 + x⊗ x + x⊗ y + y ⊗ x + y ⊗ y + z ⊗ y + y ⊗ z + z ⊗ z,
∆y = 1⊗ y + y ⊗ 1 + y ⊗ y,
∆z = (1 + x) ⊗ z + x⊗ y + y ⊗ x + z ⊗ (1 + x) + z ⊗ z,
Sx = x + y + z, Sy = y, Sz = z



18 S. MAJID AND A. PACHO L

The algebra G has four algebra automorphisms (including the identity) forming
the group Z2

2 with order 2 generators leaving y, z invariant and resulting in Hopf
algebra isomorphisms

x↦ x + y ∶ G.5 ≅ G.7, G.6 ≅ G.8

x↦ x + z ∶ G.1 ≅ G.3, G.2 ≅ G.4, G.5 ≅ G.7, G.6 ≅ G.8.

Thus, the bialgebras on G are all Hopf algebras and up to isomorphism are:

(i) The anyonic line F2[x]/⟨x4⟩ Hopf algebra of type (G,E*) with primitive ∆x =
x⊗ 1 + 1⊗ x.

(ii) The group Hopf algebra F2Z4 of type (G,P*) with s = 1+x grouplike, ∆s = s⊗s.

(iii) A new Hopf algebra of type (G,L*) where the coproduct G.6 and antipode in
terms of the generator x obeying x4 = 0 are

∆x = x⊗ 1 + 1⊗ x + x⊗ x + (x2 + x3) ⊗ (x2 + x3), Sx = x + x2 + x3.

(iv) A new Hopf algebra of type (G, G*) which is self-dual. In terms of the generator
x obeying x4 = 0, the coproduct G.2 and the antipode are

∆x = x⊗ 1 + 1⊗ x + x2 ⊗ x2, Sx = x.

Proposition 4.1. The self duality pairing for this Hopf algebra on the basis 1, x, y =
x2, z = x3 is

⟨1,1⟩ = ⟨x, y⟩ = ⟨y, x⟩ = ⟨z, z⟩ = 1

and the others zero.

Proof. Here the dual basis has y0 = 1, the unit element of the dual, and the other
relations y2

2 = y1, y1y2 = y3 = y2y1 and other products zero. This dual algebra to
the coproduct is then isomorphic to G with y2 = x, y1 = y and y3 = z, giving the
self-pairing stated. Finally, the coproduct on the yµ by dualising the product of G
as in Proposition 3.1 is

∆y1 = y1⊗1+1⊗y1, ∆y2 = y2⊗1+1⊗y2+y1⊗y1, ∆y3 = y3⊗1+1⊗y3+y1⊗y2+y2⊗y1

and εy1 = εy2 = εy3 = 0. When written in terms of x, y, z, this is G.2 again. �

4.3.2. Analysis for algebra I (4 distinct bialgebras: NC*, ND*, 2 NG*).
Number Bialgebra structure (all with εx = εy = εz = 0)

I.1
coalg. type ND*

∆x = 1⊗ x + x⊗ 1 + x⊗ x + y ⊗ x,
∆y = 1⊗ y + y ⊗ 1 + x⊗ y + y ⊗ y,
∆z = 1⊗ z + x⊗ z + y ⊗ z + z ⊗ 1 + z ⊗ x + z ⊗ y

I.2
coalg. type NG*

∆x = 1⊗ x + x⊗ 1 + x⊗ x + y ⊗ x,
∆y = 1⊗ y + y ⊗ 1 + x⊗ y + y ⊗ y,
∆z = 1⊗ z + x⊗ z + y ⊗ z + z ⊗ 1 + z ⊗ x + z ⊗ y + z ⊗ z

I.3
coalg. type NC*

∆x = 1⊗ x + x⊗ 1 + x⊗ x + x⊗ y,
∆y = 1⊗ y + y ⊗ 1 + y ⊗ x + y ⊗ y,
∆z = 1⊗ z + x⊗ z + y ⊗ z + z ⊗ 1 + z ⊗ x + z ⊗ y

I.4
coalg. type NG*

∆x = 1⊗ x + x⊗ 1 + x⊗ x + x⊗ y,
∆y = 1⊗ y + y ⊗ 1 + y ⊗ x + y ⊗ y,
∆z = 1⊗ z + x⊗ z + y ⊗ z + z ⊗ 1 + z ⊗ x + z ⊗ y + z ⊗ z

Here I.1 = I.3cop and I.2 = I.4cop as bialgebras by inspection.
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The algebra I has only one nontrivial algebra automorphism: x↔ y which provides
an isomorphism of each coalgebra with itself. Thus all four bialgebras are distinct
but fall onto two pairs namely of types (I,NC*), (I,ND*) and two of type (I,NG*),
where in each pair one is the co-opposite bialgebra of the other. Recall that NC is
the opposite algebra to ND and NG is its own opposite algebra.

4.3.3. Analysis for algebra J (5 distinct bialgebras: C*, J*, P*, 2 NE*).
Number Bialgebra structure (all with εx = εy = 1, εz = 0)
J.1
coalg. type P*

∆x = x⊗ x, ∆y = y ⊗ y, ∆z = x⊗ z + z ⊗ x + z ⊗ z

J.2
coalg. type P*

∆x = x⊗ x, ∆y = x⊗ z + y ⊗ y + y ⊗ z + z ⊗ x + z ⊗ y,
∆z = x⊗ z + z ⊗ x + z ⊗ z

J.3
coalg. type J*

∆x = x⊗ x + z ⊗ z, ∆z = x⊗ z + z ⊗ x,
∆y = x⊗ x + x⊗ y + x⊗ z + y ⊗ x + y ⊗ z + z ⊗ x + z ⊗ y

J.4
coalg. type C*

∆x = x⊗ x + z ⊗ z, ∆z = x⊗ z + z ⊗ x,
∆y = x⊗ x + x⊗ y + x⊗ z + y ⊗ x + y ⊗ z + z ⊗ x + z ⊗ y + z ⊗ z

J.5
coalg. type NE*

∆x = x⊗ x + z ⊗ 1 + z ⊗ x, ∆z = x⊗ z + z ⊗ 1 + z ⊗ z,
∆y = x⊗ 1 + x⊗ y + y ⊗ 1 + z ⊗ 1 + z ⊗ y

J.6
coalg. type NE*

∆x = 1⊗ z + x⊗ x + x⊗ z, ∆y = 1⊗ (x + y + z) + y ⊗ x + y ⊗ z,
∆z = 1⊗ z + z ⊗ x + z ⊗ z

Here J.5 = J.6cop as bialgebras by inspection.

The algebra J has only one nontrivial algebra automorphism: y → y + z (leaving
x, z invariant). This provides a bialgebra isomorphism

J.1 ≅ J.2.

Thus up to isomorphism there is only one bialgebra of type (J,P*), one bialgebra
of type (J,C*), two distinct bialgebras of type (J,NE*) (one is the co-opposite
bialgebra of the other), and one self-dual bialgebra of type (J,J*).

4.3.4. Analysis for algebra M (1 distinct Hopf algebra E* and 2 distinct bial-
gebras NE*).
Number Bialgebra and Hopf algebra structure (all with εx = 0, εy = 1, εz = 0)

M.1
coalg. type NE*

∆x = x⊗ 1 + y ⊗ x, ∆y = y ⊗ y, ∆z = y ⊗ z + z ⊗ 1

M.2 - Hopf algebra
coalg. type E*

∆x = 1⊗ z + x⊗ y + x⊗ z + y ⊗ x + y ⊗ z + z ⊗ 1 + z ⊗ x + z ⊗ y,
∆y = 1⊗ (1 + x + y + z) + (x + y + z) ⊗ 1 + x⊗ y + x⊗ z + y ⊗ x

+y ⊗ z + z ⊗ x + z ⊗ y,
∆z = 1⊗ x + x⊗ 1 + x⊗ y + x⊗ z + y ⊗ x + y ⊗ z + z ⊗ x + z ⊗ y,
Sx = x, Sy = y, Sz = z

M.3
coalg. type NE*

∆x = 1⊗ x + x⊗ y, ∆y = y ⊗ y, ∆z = 1⊗ z + z ⊗ y

Here M.1 = M.3cop as bialgebras by inspection.

Algebra M has 3 algebra automorphisms (including the identity) forming the group
Z3 generated by: x → z, z → 1 + x + y + z (leaving y invariant). This provides
bialgebra automorphisms of M.1, M.2, M.3 separately, so these remain distinct.
Thus we have two distinct bialgebras of type (M,NE*) (one is the co-opposite of
the other) and one distinct Hopf algebra of type (M,E*). The latter, if we take M
in the alternative form F2[w]/⟨w4 +w2 +w⟩ with w = z3, is the canonical primitive
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coproduct ∆w = w⊗ 1+ 1⊗w (as well as εw = 0 and antipode Sw = w) which exists
because all powers of w in the relations are powers of 2.

4.3.5. Analysis for algebra NF (2 distinct Hopf algebras: E*, NF*).
Number Hopf algebra structure (all with εy = εz = 0)

NF.1
coalg. type E*
c[B+]∗

∆x = x⊗ 1 + 1⊗ x, ∆y = 1⊗ y + x⊗ y + x⊗ z + y ⊗ 1 + y ⊗ x + z ⊗ x,
∆z = 1⊗ z + x⊗ y + x⊗ z + y ⊗ x + z ⊗ 1 + z ⊗ x, εx = 0,
Sx = x, Sy = z, Sz = y

NF.2
coalg. type NF*
dsl2

∆x = 1⊗ x + x⊗ 1 + y ⊗ x + z ⊗ x,
∆y = 1⊗ y + x⊗ y + x⊗ z + y ⊗ 1 + y ⊗ x + y ⊗ y + y ⊗ z + z ⊗ x,
∆z = 1⊗ z + x⊗ y + x⊗ z + y ⊗ x + z ⊗ 1 + z ⊗ x + z ⊗ y + z ⊗ z, εx = 0
Sx = x + y, Sy = z, Sz = y

NF.3
coalg. type NF*

∆x = 1⊗ x + x⊗ 1 + x⊗ y + x⊗ z,
∆y = 1⊗ y + x⊗ y + x⊗ z + y ⊗ 1 + y ⊗ x + y ⊗ y + z ⊗ x + z ⊗ y,
∆z = 1⊗ z + x⊗ y + x⊗ z + y ⊗ x + y ⊗ z + z ⊗ 1 + z ⊗ x + z ⊗ z, εx = 0,
Sx = x + z, Sy = z, Sz = y

NF.4
coalg. type E*

∆x = 1⊗ x + x⊗ 1 + xy ⊗ +x⊗ z + y ⊗ x + y ⊗ z + z ⊗ x + z ⊗ y,
∆y = 1⊗ y + x⊗ y + x⊗ z + y ⊗ 1 + y ⊗ x + y ⊗ z + zx⊗ +z ⊗ y,
∆z = 1⊗ z + x⊗ y + x⊗ z + y ⊗ x + y ⊗ z + z ⊗ 1 + z ⊗ x + z ⊗ y, εx = 0,
Sx = x + y + z, Sy = z, Sz = y

NF.5
coalg. type E*

∆x = 1⊗ 1 + 1⊗ x + x⊗ 1,
∆y = 1⊗ z + x⊗ y + x⊗ z + y ⊗ x + z ⊗ 1 + z ⊗ x,
∆z = 1⊗ y + x⊗ y + x⊗ z + y ⊗ 1 + y ⊗ x + z ⊗ x, εx = 1,
Sx = x, Sy = z, Sz = y

NF.6
coalg. type NF*

∆x = 1⊗ 1 + 1⊗ x + x⊗ 1 + y ⊗ 1 + y ⊗ x + z ⊗ 1 + z ⊗ x,
∆y = 1⊗ z + x⊗ y + x⊗ z + y ⊗ x + y ⊗ y + y ⊗ z + z ⊗ 1 + z ⊗ x,
∆z = 1⊗ y + x⊗ y + x⊗ z + y ⊗ 1 + y ⊗ x + z ⊗ x + z ⊗ y + z ⊗ z, εx = 1,
Sx = x + z, Sy = z, Sz = y

NF.7
coalg. type NF*

∆x = 1⊗ 1 + 1⊗ x + 1⊗ y + 1⊗ z + x⊗ 1 + x⊗ y + x⊗ z,
∆y = 1⊗ z + x⊗ y + x⊗ z + y ⊗ x + y ⊗ y + z ⊗ 1 + z ⊗ x + z ⊗ y,
∆z = 1⊗ y + x⊗ y + x⊗ z + y ⊗ 1 + y ⊗ x + y ⊗ z + z ⊗ x + z ⊗ z, εx = 1,
Sx = x + y, Sy = z, Sz = y

NF.8
coalg. type E*

∆x = 1⊗ 1 + 1⊗ x + 1⊗ y + 1⊗ z + x⊗ 1 + x⊗ y + x⊗ z + y ⊗ 1
+y ⊗ x + y ⊗ z + z ⊗ 1 + z ⊗ x + z ⊗ y,

∆y = 1⊗ z + x⊗ y + x⊗ z + y ⊗ x + y ⊗ z + z ⊗ 1 + z ⊗ x + z ⊗ y,
∆z = 1⊗ y + x⊗ y + xz ⊗ +y ⊗ 1 + y ⊗ x + y ⊗ z + z ⊗ x + z ⊗ y, εx = 1,
Sx = x + y + z, Sy = z, Sz = y

Here NF.2 = NF.3cop and NF.6 = NF.7cop as bialgebras by inspection.

The algebra NF has 8 algebra automorphisms (including the identity) forming the
group D4 with order 2 and order 4 generators providing the following Hopf algebra
isomorphisms:

x→ 1+x, y↔ z ∶ (i) NF.1 ≅ NF.5, NF.4 ≅ NF.8, (ii) NF.2 ≅ NF.6, NF.3 ≅ NF.7,

x→ 1+x+y, y↔ z ∶ (i) NF.1 ≅ NF.8, NF.4 ≅ NF.5, (ii) NF.2 ≅ NF.7, NF.3 ≅ NF.6.

Thus all bialgebras on NF are Hopf algebras and we have up to isomorphism:

(i) A new Hopf algebra of type (NF,E*), which we will denote c[B+]∗. If we use
the new variable w = y + z in place of z and coproduct NF.1 then

x2 = x, xw = y +w, wx = yx = y, xy = y2 = w2 = yw = wy = 0
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∆x = x⊗ 1 + 1⊗ x, ∆w = w ⊗ 1 + 1⊗w, ∆y = y ⊗ 1 + 1⊗ y + x⊗w +w ⊗ x
εx = εy = εw = 0, Sx = x, Sw = w, Sy = y +w.

This has the structure of a Hopf algebra cross product [12, Prop. 6.2.1], namely
gra ⋊ F2(Z2) where the Grassmann line is generated by w and F2(Z2) by x. The
latter acts by x▷1 = 0, x▷w = w so that (1 ⊗ x)(w ⊗ 1) = x▷w ⊗ 1 + w ⊗ x or
xw = w +wx. Here y = w ⊗ x and the coproduct is the tensor product one.

(ii) A new Hopf algebra of type (NF,NF*). Surveying all our results, we can say
this more strongly:

Proposition 4.2. There is up to isomorphism a unique noncommutative nonco-
commutative Hopf algebra over F2 of dimension n = 4, given on a basis 1, s, x,w
by

s2 = 1, sx = wx = w2 = w, xs = 1 + s +w, ws = 1 + s + x, sw = xw = x2 = x

∆s = s⊗ s, ∆x = s⊗ x + x⊗ 1, ∆w = 1⊗w +w ⊗ s, εs = 1, εx = εw = 0

Ss = s, Sx = w, Sw = 1 + s + x.
This is of type (NF,NF*) and is self-dual with duality pairing

⟨1,1⟩ = ⟨1, s⟩ = ⟨s,1⟩ = ⟨s, s⟩ = ⟨s, x⟩ = ⟨s,w⟩ = ⟨x, s⟩ = ⟨w, s⟩ = ⟨w,w⟩ = 1

and the others zero in this basis. We denote it dsl2 due to similarities with uq(sl2).

Proof. This is the algebra NF and coproduct NF.2 in terms of new variables w =
x + y, s = 1 + y + z in place of y, z. Letting yµ be the dual basis to 1, s, x,w, we
first dualise the coproduct NF.2 to obtain the algebra in the dual as y2

0 = y0, y2y0 =
y2, y0y3 = y3, y

2
1 = y1, y1y2 = y2, y3y1 = y3 and all others zero. This is isomorphic to

NF by

1 = y0 + y1, s = y0 + y1 + y2 + y3, x = y1, w = y1 + y3.

This gives the self-pairing shown. Finally, we dualise the product of NF on the Hopf
algebra to a coproduct on the dual using the formula in the proof of Proposition 3.1.
Using the relations in NF to simplify and collecting terms, one arrives at ∆yρ.
For example, ∆y1 = y0 ⊗ y1 + y1 ⊗ y0 + y2 ⊗ y1 + y3 ⊗ y1 which then reproduces
the coproduct NF.2 or the stated coproduct on our identification of the yρ with
1, s, x,w. Hence this is a self-duality pairing of the stated Hopf algebra with itself.
Note that S4 = id. �

4.3.6. The n = 4 bialgebra graph and survey of all Hopf algebras for n ≤ 4.

The remaining n = 4 algebras admit too many bialgebras for us to list and analyse
in order to find the distinct ones. Instead we summarise the resulting number of
distinct bialgebras and Hopf algebras in the weighted extended graph of Figure 1.
Here an edge means one algebra forms a bialgebra with the dual of the other
algebra and the number on the edge is the number of distinct such bialgebras
or Hopf algebras. More precisely, A–i–B means there are i distinct bialgebras of
type (A,B*) and i of type (B, A*), while A–i–A means i of type (A,A*). We
show in bold/blue when these are actually Hopf algebras (and we show the split
bialgebras/Hopf algebra multiplicity in the one case where there are some bialgebras
which are not Hopf algebras). We also make the raw data available online [16] from
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Figure 1. Extended graph of all n = 4 algebras bonding with the
dual of another to form bialgebras, with multiplicity (Hopf algebras
in bold blue). 3/1 means 3 bialgebras of which 1 is a Hopf algebra.

which all bialgebra coproducts can be extracted (as done in the Appendix A for
n = 3) as well as lists of isomorphisms among them.

In the remainder of this section, we limit attention to the more important Hopf
algebra case and make an overview of our results as shown in quiver form in Figure 2.
The n ≤ 3 cases have already been identified as have some of the arrows in the
n = 4 diagram, notably G→P is the group Hopf algebra F2Z4 and P→G is the
function Hopf algebra F2(Z4) on the group Z4. In Section 4.1 we took the time to
identify which algebras are tensor products of our n = 2 algebras and what should
be type of coproduct when the n = 2 algebras are given their possible bialgebra
structures. Recall that the Grassmann line (i.e. one variable with x2 = 0 and
primitive coproduct ∆x = x⊗ 1+ 1⊗x) is self-dual while F2Z2 and F2(Z2) are dual
(but not isomorphic as they would be over C). This accounts for 6 inequivalent
tensor products as marked, where the Grassmann line tensored with itself is the two
variable Grassmann algebra or Grassmann plane with x, y primitive, and F2Z2 ⊗
F2Z2 is the group algebra of Z2

2 = Z2 × Z2. In addition, we have called G→E the
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Figure 2. Annotated quivers of all Hopf algebras for n ≤ 4.

anyonic line: it has one generator with x4 = 0 and primitive coproduct. Hence
E→G is the dual of the anyonic line, so we denote it the coanyonic line in Figure 2.
Taking E as for the Grassmann plane with x2 = y2 = 0 and xy = yx, the different
(non-primitive) coalgebra and antipode for the coanyonic line are

(4.2) ∆x = x⊗ 1+ 1⊗ x, ∆y = y ⊗ 1+ 1⊗ y + x⊗ x, εx = εy = 0, Sx = x, Sy = y.
Here the dual basis yµ to the standard basis of G has product dual to G.1 isomorphic
to E by y0 = 1, y1 = x, y2 = y, y3 = z = xy. The coproduct dual to the product of G
was already computed in the proof of Proposition 4.1, which then gives the stated
coproduct on x, y.

We also expect that L→E is the Hopf algebra A2 = F2[x]/⟨x4 + x⟩ introduced
in [3] (it is part of a family Ad defined for all Fp) with its primitive coproduct
∆x = x⊗ 1 + 1⊗ x, which exists because the relations only involve powers that are
powers of 2. This paper also computed A∗

2 which would therefore be E→L and
is indeed built on the algebra E in the alternative form s2 = t2 = 1 with st = ts,
justifying the identification.

The remaining arrows in Figure 2 are less familiar and we discuss each in turn. The
arrow M→ E was described in Section 4.3.4 as naturally built on F2[w]/⟨w4+w2+w⟩
with primitive coproduct ∆w = w⊗1+1⊗w, i.e. in the same family as A2 but with
different quartic relations. If we adopt a uniform notation by labels i, j, k ∈ {0,1}
(more compressed notation than we used before) by setting

(4.3) Aijk = F[w]/⟨iw4 + jw2 + kw⟩, ∆w = w ⊗ 1 + 1⊗w, εw = 0, Sw = w
then F2(Z2) = A011, the Grassmann line is A010, their tensor product F2(Z2) ⊗ gra
is A110, the anyonic line is A100, the Hopf algebra from [3] is A2 = A101 and finally,
the arrow M→ E is A111, as labelled in Figure 2. Its dual E→M with the algebra
E in the above Grassmann plane form now has the non-standard (non-primitive)
coproduct

(4.4)
∆x = x⊗ 1 + 1⊗ x + y ⊗ y + xy ⊗ xy + x⊗ xy + xy ⊗ x

∆y = y ⊗ 1 + 1⊗ y + x⊗ y + y ⊗ x + (x + y + xy) ⊗ (x + y + xy)
along with εx = εy = 0 and a certain antipode, as some kind of non-linear Grassmann
plane. Here the dual basis yµ to the standard basis of M has product dual to M.2
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isomorphic to E if y0 + y2 = 1, y1 = x + y + z, y2 = x and y3 = y (say) and then the
coproduct on the yµ dual to the product of M gives the above coproducts.

Next, the arrow NF→E was described in Section 4.3.5 and is noncommutative but
cocommutative. This is therefore ‘like’ a nonAbelian group algebra although not
precisely. Rather, we identified it as a cross product gra ⋊ F2(Z2). Its dual E→NF
is therefore commutative but noncocommutative, so something like functions on a
nonAbelian group, although not precisely (as there is none of order 4). In fact it
is a reduced version of an algebraic group of the Borel subgroup B+ ⊂ SL2 and
we denote it c[B+] in Figure 2 for this reason. Using the algebra E in the mixed
form with s = 1 + x in place of x (so that the relations are s2 = 1, y2 = 0 and s, y
commute), the Hopf algebra structure

(4.5) ∆s = s⊗ s, ∆y = y ⊗ 1 + s⊗ y, εs = 1, εy = 0, Ss = s, Sy = sy,

which is a cross coproduct of the Grassmann line and F2Z2. Here we take NF in
the basis 1, x, y,w = y + z for NF.1 in Section 4.3.5 then its dual basis yµ has
product dual to NF.1 which can be identified with E in its standard basis by
y0 = 1, y1 = x, y2 = z, y3 = y. Then the product of NF dualises to the coproduct
shown by calculations similar to those done previously. One can also think of
this Hopf algebra as a quotient of the Taft algebra or the reduced quantum group
uq(b+) ⊂ uq(sl2) at q = −1.

It remains to discuss the four arrows in Figure 2 which do not appear to be part of
known constructions. The self-arrow on NF was studied in detail in Proposition 4.2
as another self-dual Hopf algebra but this time noncommutative and noncocom-
mutative, and denoted dsl2 . The unmarked self-arrow on G is the self-dual Hopf
algebra in Proposition 4.1 built on the same algebra F2[x]/⟨x4⟩ as the anyonic
line but now with a certain non-standard (non-primitive) coalgebra, i.e. non-linear
version of the anyonic line. We also described in that section the arrow G→L as
built on this same algebra with another non-standard (non-primitive) coalgebra,
i.e. another nonlinear anyonic line. Its dual L→ G is built on the same algebra
F2[x]/⟨x4 + x⟩ as A2 but again with a non-standard (non-primitive) coalgebra and
antipode

(4.6) ∆x = x⊗ 1 + 1⊗ x + (x + x2) ⊗ (x + x2), εx = 0, Sx = x2

as a nonlinear version of A2. Here the dual basis yµ to the standard basis of G has
product dual to G.6 isomorphic to L by y0 = 1, y1 + y2 = x,1+ y1 + y2 + y3 = y, y2 = z.
The coproduct dual to the product of G was already computed in the proof of
Proposition 4.1, which now gives the stated coproduct on x.

This completes our narrative of Figure 2. We also make a general observation about
the figure itself. In principle, this should have been a quiver with possible multiple
arrows between nodes, but in practice we see that it is in fact a directed graph
extended to include self-arrows. This amounts to:

Proposition 4.3. For dimension n ≤ 4, there is at most one Hopf algebra over F2

of any given algebra-coalgebra type, up to isomorphism.
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5. Integrals and Hopf algebra Fourier transforms for n ≤ 4

Integrals and Fourier transform are canonically determined up to scale for any finite-
dimensional Hopf algebra, which over F2, means unique. Hence, in this section and
Appendix B, we compute and list them for each of the 25 Hopf algebras for n ≤ 4
with a fixed representative coalgebra in each isomorphism class and a each fixed
each algebra. Fourier transform then amounts to a linear map for every arrow in
Figure 2 or quiver representation, which one can think of as a connection on the
quiver [18, Lem. 4.1]. At any given algebra, we have arrows pointing to different
possible coalgebra types and if we choose one of these arrows then Fourier transform
on the corresponding Hopf algebra ‘transports’ an element of our source algebra to
an element of the target algebra. This quiver connection generically has curvature
in the sense of monodromy around a loop in the graph. This is already clear for
1-step loops (on a self-dual Hopf algebra) and 2-step loops. From a cocommutative
Hopf algebra to its dual and back, the composite is the antipode [12, 5] (more
generally, the canonical way back is a second ‘adjoint’ Fourier transform or quiver
representation with left and right reversed in the integrand).

We recall that every finite-dimensional Hopf algebra H has an integral ∫ ∶ H → k
on H characterised abstractly and then in tensor terms by

(5.1) (∫ ⊗id)∆ = 1∫ ; ∫ xµ = Iµ, CµνρI
ν = Iµδρ,0

for some Iµ ∈ k. This is for a right-integral (one can also have left one) and over
F2 it is unique as there is no scaling. We then define the Hopf algebra Fourier
transform H →H∗ as in [12, Prop 1.7.7], which in our terms comes down to

(5.2) F(xµ) = (∫ xνxµ)yν = Fµνyν ; Fµν = V νµρIρ,

where {yµ} is the dual basis to a basis {xµ} of H. This can be shown to be invertible
[5], key to which is the adjoint Fourier transform

(5.3) F#(xµ) = (∫ xµxν)yν = F#µνyν ; F#µν = V µνρIρ

which differs only in the noncommutative case and obeys F# ○ F ∝ S (meaning
up to a scalar multiple depending on the normalisation of the integrals). We work
over k = F2 (in which case F# ○ F = S) and we find Iµ and Fµν . In the spirit of
earlier sections, we first do the n ≤ 3 case in detail to show the method:

(i) For the self-dual Grassmann line, we have x2 = 0 and basis 1, x. Then

∫ 1 = 0, ∫ x = 1, FA→A = (0 1
1 0

) , F2
A→A = id.

Here, the primitive coproduct means we need 1 ∫ x = (∫ x)1 + (∫ 1)x which fixes
the integral as we don’t want ∫ = 0 entirely. The Fourier transform A→A is then
F(1) = (∫ x.1)y1 = x and F(x) = (∫ 1.x)y0 = 1 given the self-paring on (A,A*) in
Section 3.1. It squares correctly as the antipode is the identity map.

(ii) For Fourier transform F2Z2 → F2(Z2), we have standard form F2Z2 with x2 = 0
and F2(Z2) with x2 = x, both with denoted basis 1, x. Then

∫ 1 = ∫ x = 1, FA→B = (1 1
1 0

) .
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Here ∆x = x ⊗ 1 + 1 ⊗ x + x ⊗ x tells us that ∫ 1 = ∫ x so these are 1 for ∫ on
F2Z2. The two bases specified are already dual, y0 = 1 and y1 = x of F2(Z2), so
Fourier transform A→ B is F(1) = (∫ 1.1)1 + (∫ x.1)x = 1 + x, F(x) = (∫ 1.x)1 = 1.
Similarly, for Fourier transform F2(Z2) → F2Z2:

∫ 1 = 0, ∫ x = 1, FB→A = (0 1
1 1

) .

Here the target coalgebra and hence ∫ on F2(Z2) is the same as (i) and F(1) =
(∫ x.1)1 = x, F(x) = (∫ (1.x)1+(∫ x.x)x = 1+x. These are mutually inverse as the
antipode is the identity on these Hopf algebras.

(iii) For Fourier transform F2Z3 → F2(Z3), we have standard form F2Z3 with x2 =
y, y2 = x,xy = x + y = yx and F2(Z3) with x2 = x, y2 = y, xy = 0, both with basis
1, x, y. Then

∫ 1 = ∫ x = ∫ y = 1, FD→B =
⎛
⎜
⎝

1 1 1
1 1 0
1 0 1

⎞
⎟
⎠
.

Here the coproduct D.1 in Appendix A has the same form on x and y as in (ii)
so ∫ 1 = ∫ x = ∫ y, so these are all 1 for ∫ on F2Z3. It is also evident from
their relations in Appendix A that the bases are dual, y0 = 1, y1 = x, y2 = y,
so Fourier transform D→ B is F(1) = (∫ 1.1)1 + (∫ x.1)x + (∫ y.1)y = 1 + x + y,
F(x) = (∫ 1.x)1 + (∫ x.x)x = 1 + x and F(y) = 1 + y analogously. Similarly, for
Fourier transform F2(Z3) → F2Z3:

∫ 1 = ∫ x = ∫ y = 1, FB→D =
⎛
⎜
⎝

1 1 1
1 1 0
1 0 1

⎞
⎟
⎠
.

We use the coproduct B.4 in Appendix A where ∆x = x⊗1+1⊗x+x⊗y+y⊗x+y⊗y
from which ∫ 1 = ∫ x = ∫ y so these are 1 for ∫ on F2(Z3). Then F comes out with
the same formula by a similar calculation. The composite is

FD→B ○ FB→D = S, FB→D ○ FD→B = S, S =
⎛
⎜
⎝

1 0 0
0 0 1
0 1 0

⎞
⎟
⎠

being the antipode on either Hopf algebra. We also do the self-dual ones from n = 4
in detail, as operators F ∶H →H.

Proposition 5.1. The self-dual Hopf algebras for n = 4 have integrals and Fourier
transforms:

(i) (Grassmann plane) in the form x2 = y2 = 0, xy = yx and basis 1, x, y, xy:

∫ 1 = ∫ x = ∫ y = 0, ∫ xy = 1, F =
⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠
, F2 = id
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(ii) F2(Z2) ⊗ F2Z2 in the form x2 = x, y2 = 0, xy = yx and basis 1, x, y, xy:

∫ 1 = ∫ y = 0, ∫ x = ∫ xy = 1, F =
⎛
⎜⎜⎜
⎝

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎞
⎟⎟⎟
⎠
, F2 = id

(iii) The self-dual version of the anyonic line in Proposition 4.1 in the form x4 = 0
and basis 1, x, x2, x3:

∫ 1 = ∫ x = ∫ x2 = 0, ∫ x3 = 1, F =
⎛
⎜⎜⎜
⎝

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎞
⎟⎟⎟
⎠
, F2 = id

(iv) dsl2 in the form in Proposition 4.2 with basis 1, s, x,w:

∫ 1 = ∫ s = ∫ w = 0, ∫ x = 1, F =
⎛
⎜⎜⎜
⎝

1 1 1 1
0 0 1 1
0 1 0 1
0 0 1 0

⎞
⎟⎟⎟
⎠
, F3 = id.

Proof. Here F(xµ) = F̃µνxν defines the matrices F̃µν as displayed (they are Fµν

composed with the chosen self-duality pairing). The order of this matrix is also
shown. Note that from the quiver point of view, the matrices are FE→E,FD→D,
FG→G,FNF→NF for the respective self-arrows.

(i) As x, y are primitive, we similarly have ∫ 1 = 0 from their coproducts. Then
∆(xy) = xy⊗1+1⊗xy+x⊗y+y⊗x tells us that we also need 1 ∫ xy = (∫ xy)1+(∫ x)y+
(∫ y)x forces the values shown. This is the tensor product of two Grassmann lines
so the dual basis is y0 = 1, y1 = x, y2 = y, y3 = xy. Hence the Fourier transform
is F(1) = (∫ xy.1)y3 = xy, F(x) = (∫ y.x)y2 = y, F(y) = (∫ x.y)y1 = x, F(xy) =
(∫ 1.xy) = y0 = 1.

(ii) Here x is primitive so ∫ 1 = 0 and ∆y = y⊗1+1⊗y+y⊗y tells us ∫ y = 0. Then
∆(xy) = xy⊗1+x⊗y+xy⊗y+y⊗x+y⊗xy+1⊗xy tell us that ∫ x = ∫ xy hence these
have to be 1. One can check that the dual basis is isomorphic to D with y0 = 1,
y1 = y, y2 = x and y3 = z = xy (so the self-pairing is with ⟨1,1⟩ = ⟨x, y⟩ = ⟨y, x⟩ =
⟨z, z⟩ = 1 and the others zero). Then F(1) = (∫ xy.1)y3 = xy, F(x) = (∫ y.x)y2 = x,
F(y) = (∫ x.y)y1 = y and F(xy) = (∫ 1.xy)y0 = 1.

(iii) We have ∆x2 = (∆x)2 = x2 ⊗ 1 + 1 ⊗ x2 which forces ∫ 1 = 0. Then the
coproduct in ∆x = x ⊗ 1 + 1 ⊗ x + x2 ⊗ x2 needs ∫ x2 = 0. We then compute
∆x3 = x3 ⊗ 1 + x2 ⊗ x + x ⊗ x2 + 1 ⊗ x3, which tells us ∫ x = 0. Then F(1) =
(∫ x3.1)y3 = y3 = x3, F(x) = (∫ x2.x)y2 = y2 = x, F(x2) = (∫ x.x2)y1 = y1 = x2 and
F(x3) = ∫ (1.x3)y0 = 1 using the identification of the dual basis in Proposition 4.1.

(iv) We have ∫ 1 = ∫ s = 0 as s is grouplike, and ∫ w = 0 from the coproduct
of w, giving the stated integral. Then F(1) = (∫ x.1)y2 = 1 + s + x + w, F(s) =
(∫ w.s)y3 = y3 = x + w, F(x) = (∫ 1.x)y + 0 + (∫ x.x)y2 = y0 + y2 = s + w and
F(w) = (∫ x.w)y1 = y1 = x where we sum over basis elements that give product x
in the integrand and identify the dual bases as in Proposition 4.2. �
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The remaining 16 Hopf algebra integrals and Fourier transforms for n = 4 are done
similarly, with most of the work for the dual bases and their identification with the
standard basis of the dual algebra already done in Section 4.3. Results for these are
included in the combined n = 4 Hopf algebras tables in Appendix B. In each case
the algebra is in standard form with basis 1, x, y, z and we choose the coproduct
in each Hopf algebra isomorphism class that matches earlier sections, notably the
discussion of Figure 2. In particular, from the third columns there, we have that
the composition along the cycles,

FE→P→G→E =
⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠
, FE→G→L→E =

⎛
⎜⎜⎜
⎝

0 0 0 1
0 1 1 1
0 0 1 1
1 0 0 0

⎞
⎟⎟⎟
⎠
, FE→P→G→L→E =

⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 1 1
0 1 1 1
0 0 0 1

⎞
⎟⎟⎟
⎠

are all nontrivial. The matrix for the first case is the product of the matrices for
FE→P , FP→G, FG→E in that order, similarly for the others, and the matrix for the
third case is the product of the first two as it must be since the antipode on the
anyonic line (G,E*) is the identity (so the overlapping part cancels). The above
holonomies E→ E have orders 2,4,3 respectively.

6. Quasitriangular structures for n ≤ 4

A Hopf algebra or bialgebra H is called quasitriangular if equipped with an invert-
ible R ∈H ⊗H obeying [8, 12]

(6.1) (∆⊗ id)R = R13R23, (id⊗∆)R = R13R12, R∆h = (∆coph)R

for all h ∈ H, where the numerical suffices indicate the position in H⊗3. It can
be shown that (ε ⊗ id)R = 1 = (id ⊗ ε)R and in the Hopf algebra case that R−1 =
(S ⊗ id)R and (S ⊗ S)R = R. In the Hopf algebra case, we can use this to define
R−1 as long as the ε conditions hold. It is well known that R automatically obeys
the Yang-Baxter or braid relations in the form

R12R13R23 = R23R13R12.

For explicit formulae in the style of Section 2, one can write

R = Rµνxµ ⊗ xν

then the axioms and ε properties are easily seen to become

(6.2) RµρC
µ
αβ = RαµRβνV µνρ, RµνC

ν
αβ = RραRνβV νρµ

(6.3) RµνC
ρ
αβV

µα
σV

νβ
τ = RµνCρβαV αµσV βντ

(6.4) εµRµν = δν,0 = εµRνµ,

to which one can explicitly add the existence of an inverse R−1 = R−

µνx
µ⊗xν in the

bialgebra case, defined by its product with R.

For each such R, there is an associated quantum Killing form Q = R21R in [8, 12]
clearly given in our case by

(6.5) Q = Qµνxµ ⊗ xν ; Qµν = RαβRστV βσµV ατ ν .
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Following Drinfeld, we say that H is triangular if Q = 1⊗ 1, i.e., Qµν = δµ,0δν,0 for
a standard basis where 1 = x0, and factorisable if Q is invertible as an operator
H∗ →H, which just amounts to Qµν invertible.

For hand calculations, we will find it easier to work with a dual concept, a coqua-
sitriangular structure R ∶H ⊗H → k obeying [12]

(6.6) R(fg ⊗ h) = R(f ⊗ h(1))R(g ⊗ h(2)), R(f ⊗ gh) = R(f (1) ⊗ h)R(f (2) ⊗ g),

(6.7) g(1)h(1)R(h(2) ⊗ g(2)) = R(h(1) ⊗ g(1))h(2)g(2)
for all f, g, h ∈ H, where ∆h ∶= h(1) ⊗ h(2) is a standard notation (summation
understood). The counit condition now appears dually as

(6.8) R(h⊗ 1) = R(1⊗ h) = εh.
This is equivalent in the finite-dimensional case to a quasitriangular structure on
H∗. The quantum Killing form Q ∶H ⊗H → k is then defined by

(6.9) Q(g ⊗ h) = R(h(1) ⊗ g(1))R(g(2) ⊗ h(2)).

Finally, we note that for all cocommutative Hopf algebras, R = 1 ⊗ 1 is trivially a
triangular structure and also that if H is commutative and cocommutative then the
third axiom of (6.1) is automatic. In this case, if H1 → H is a Hopf algebra map
with H1 is quasitriangular then H inherits a quasitriangular structure by mapping
R to H ⊗H. This happens, in particular, if H has a triangular sub-Hopf algebra.

We now work over F2 and by our remark, all Hopf algebras for n ≤ 4 are trivially
triangular with R = 1 ⊗ 1 other than c[B+] and dsl2 . Likewise all are trivially
cotriangular with R = ε ⊗ ε other than c[B+]∗ and dsl2 . We are only interested in
nontrivial cases. As in Section 5, we analyse the n ≤ 3 Hopf algebra case by hand.
In fact there are very few.

Proposition 6.1. For n ≤ 3, only the Grassmann line with x2 = 0 and x primitive
admits a nontrivial quasitriangular structure, R = 1⊗1+x⊗x, which is triangular.

Proof. We are interested in quasitriangular structures, but it is equivalent and
easier to determine the coquasitriangular structures on the dual Hopf algebra.

(i) For the Grassmann line, we have a free choice of R(x ⊗ x) so this can be 0 or
1 for a coquasitriangular structure. This translates to the trivial option and the
non-trivial one shown, given the self-duality.

(ii) F2Z2 in the form x2 = 0 has ∆x = x⊗ 1 + 1⊗ x + x⊗ x, we have 0 = R(x2 ⊗ x) =
R(x ⊗ x)2 hence R is trivial. Equivalently, F2(Z2) admits only R = 1 ⊗ 1 for the
quasitriangular structure. On the dual side, for F2(Z2) in the form x2 = x with x
primitive, we have R(x⊗x) = R(x2⊗x) = 2R(x⊗x)R(x⊗ 1) = 0 so again only the
trivial R = 1⊗ 1 on F2Z2.

(iii) F2Z3 in the standard form has the same coproduct on x as in (ii) but now
the relation x2 = y tells us that R(y ⊗ x) = R(x ⊗ x)2 = R(x ⊗ x) and similarly
R(x ⊗ y) = R(x ⊗ x) on the other side. But by symmetry in x, y, these are also
R(y⊗y). Then considering xy = x+y we have 0 = R(xy⊗x) = R(x⊗x)R(y⊗x), so
these are all zero and F2(Z3) has only the trivial quasitriangular structure. On the
other side with F2(Z3) in standard form and coproduct B.4 in the Appendix, we
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have R(x⊗ x) = R(x2 ⊗ x) = R(x⊗ y)2 = R(x⊗ y) and similarly = R(y⊗ x) on the
other side. By symmetry in x, y this is also R(y⊗y). But expanding 0 = R(xy⊗x)
forces them all to be zero, so only the trivial quasitriangular structure for F2Z3. �

We now classify quasitriangular structures on most of the n = 4 Hopf algebras.
Recall that many of these were covered by the construction A1jk in (4.3) or its
dual.

Proposition 6.2. (i) The Hopf algebras A2 = A101, A
∗

2, A111, A
∗

111, F2Z2
2, F2(Z2

2),
F2Z4, F2(Z4) and the ones of type G→L, L→ G, admit no nontrivial quasitriangular
structure.

(ii) The anyonic line A100, its dual A∗

100, F2(Z2) ⊗ gra = A110 and its dual F2Z2 ⊗
gra = A∗

110 each admit a unique nontrivial quasitriangular structure. This is trian-
gular and inherited from a natural Grassmann line sub-Hopf algebra in each case.

(iii) The self-dual version of the anyonic line, G → G in Proposition 4.1 with
relation x4 = 0, admits only 4 quasitriangular structures (3 nontrivial)

R = 1⊗ 1 + αx2 ⊗ x2 + β(x⊗ x2 + x2 ⊗ x + x3 ⊗ x3), α, β ∈ {0,1}.

These are all triangular.

(iv) F2(Z2) ⊗ F2Z2 admits only 4 quasitriangular structures (3 nontrivial)

R = (1⊗ 1 + αy ⊗ x)(1⊗ 1 + βx⊗ y), α, β ∈ {0,1}

This is triangular iff α = β and factorisable iff α ≠ β (the ‘quantum double’ quasi-
triangular structure).

(v) The Grassmann plane Hopf algebra admits only 16 quasitriangular structures
(15 nontrivial)

R = 1⊗ 1 + rijxi ⊗ xj + det(r)xy ⊗ xy, r ∈M2(F2),

where x1 = x,x2 = y are the Grassmann variables. This is triangular iff r is sym-
metric, and is never factorisable.

Proof. For A1jk, the relation w4 = jw2 + kw implies that w5 = jw3 + kw2, w6 =
kw3 + jw2 + jkw. We also need to take the form R = 1 ⊗ 1 + ∑3

a,b=1Rabw
a ⊗ wb

to obey the counit condition. We then write out the (∆ ⊗ id)R and (id ⊗ ∆)R
conditions for a quasitriangular structure (the 3rd condition is automatic) and
reduce all powers of w. This results in some quadratic equations for the coefficients
Rab, which we then solve. We find no solutions when k = 1 and one solution each
when k = 0 and j = 0,1. For (ii), the Grassmann line generators of A100 and A110

are w2 and w2 +w, respectively.

For A∗

1jk, we look for coquasitriangular structures on A1jk. Since w is primitive,

R(w2 ⊗ w) = R(w ⊗ w)R(w ⊗ 1) + R(w ⊗ 1)R(w ⊗ w) = 0 and in a similar way
one finds all R(wa ⊗ wb) = 0 for either a, b > 1. Hence the only nontrivial option
is R(w ⊗w) = 1. For this to be defined on the quotient we need 0 = R(w ⊗w4) =
R(w ⊗ jw3) +R(w ⊗ kw) = kR(w ⊗w). So this allows nonzero R(w ⊗w) precisely
when k = 0, giving unique nontrivial quasitriangular structures on the two duals
stated. It easy enough to then identify them.
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For (iii), we similarly analyse R on the same algebra x4 = 0 as A100 but with x
not primitive. Here ∆x2 = x2 ⊗ 1 + 1 ⊗ x2 so R(x2 ⊗ x2) = 0. Analysing the other
powers, we find that R(x ⊗ x) = α and R(x2 ⊗ x) = R(x ⊗ x2) = R(x3 ⊗ x3) = β
are unconstrained and the others are zero. We now use R = R(xµ ⊗ xν)yµ ⊗ yν to
translate to a quasitriangular structure for the dual, which is isomorphic to the same
Hopf algebra as in the proof of Proposition 4.1 by y2 = x, y1 = y = x2, y3 = z = x3.
This gives R as stated. It squares to itself and is symmetric in its tensor factors,
hence triangular.

For (iv), if this is viewed as a Drinfeld double [8, 12] D(F2(Z2)) then R = 1⊗1+x⊗y
is the canonical factorisable R and its own inverse, so R21 is another. These are
the α ≠ β cases. To show that the four stated are all, since the Hopf algebra is
self-dual, we analyse coquasitriangular structures. Here x2 = x, with x primitive
and y2 = 0 with ∆y = y ⊗ 1 + 1 ⊗ y + y ⊗ y for the two tensor factors. Then
R(x ⊗ x) = R(x2 ⊗ x) = 0 and 0 = R(y2 ⊗ y) = R(y ⊗ y)R(y ⊗ y) which requires
R(y ⊗ y) = 0. This implies R(xy ⊗ xi) = R(xi ⊗ xy) = 0 where xi = x, y while
R(xy ⊗ xy) = R(x ⊗ y)R(y ⊗ x). This then dualises as stated. We then compute
Q = 1⊗ 1 + (α + β)(x⊗ y + y ⊗ x + xy ⊗ xy).

Similarly for (v), this is again self-dual so we analyse coquasitriangular structures.
Looking at all products we can set R(x⊗ x), R(x⊗ y), R(y ⊗ x), R(y ⊗ y) freely,
R(xy⊗xi) = R(xi, xy) = 0 for xi = x, y and R(xy⊗xy) = R(x⊗x)R(y⊗y)+R(x⊗
y)R(y⊗x). This immediately dualises to the stated quasitriangular structure. Note
that every quasitriangular structure R has a ‘conjugate’ one R−1

21 and in present
case, since R is its own inverse, this has same form but for the transposed r.

Finally, for F2(Z2
2),F2(Z4), G→L and their duals, we again look for coquasitrian-

gular structures and find there are none. Proofs for the first two are similar to
those of Proposition 6.1 and are omitted. For the non-primitive version G→L of
the anyonic line with x4 = 0, we start with ∆x2 = x2 ⊗ 1 + x2 ⊗ 1 + x2 ⊗ x2 so that
0 = R(x4⊗x2) = R(x2⊗x2)2 = R(x2⊗x2), then proceed to all powers. For the non-
primitive version L→G of A2, we work in the algebra x4 = x and coproduct (4.6), we
start with R(x2⊗x) = R(x⊗(x+x2))2 = R(x⊗(x+x2)) = R(x⊗x2)+R(x⊗x) and
R(x2 ⊗ x2) = R(x⊗ (x + x2)) similarly, hence R(x2 ⊗ x) = R(x2 ⊗ x2) = R(x⊗ x2)
by symmetry, hence R(x⊗ x) = 0. �

Case (iv) here includes the non-involutive strict quasitriangular structure of the
Drinfeld double D(F2(Z2)), inducing an R-matrix obeying the braid or Yang-
Baxter equations in any representation. The remaining 3 Hopf algebras are non-
commutative or noncocommutative (or both) and need more care.

Proposition 6.3. (i) c[B+] admits no quasitriangular structure.

(ii) c[B+]∗ admits a unique nontrivial quasitriangular structure. This is triangular
and inherited from a natural Grassmann line sub-Hopf algebra.

(iii) dsl2 in Proposition 4.2 admits only 2 quasitriangular structures, both nontrivial
but triangular, namely

R = 1⊗ 1 + u⊗w + x⊗ u + (x +w) ⊗ (x +w) + αu⊗ u; u = 1 + s, α ∈ {0,1}.

Proof. In all cases it is easier to look for coquasitriangular structures on the dual.
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For (i), working on the noncommutative c[B+]∗ described in Section 4.3.5(i), R(x⊗
x) = R(x2 ⊗ x) = 0 as x is primitive and R(x ⊗ w) = 0 similarly. Also R(x ⊗ y) =
R(x2⊗y) = 2R(x⊗x)R(x⊗w) = 0, R(y⊗x) = R(yx⊗x) = 0, R(y⊗w) = R(yx⊗w) =
0 and R(y⊗y) = R(yx⊗y) = R(y⊗x)R(x⊗w)+R(y⊗w)R(x⊗x) = 0, and so forth
to show that only R(1⊗ 1) = 1 on the basis 1, x, y,w. This translates to R = 1⊗ 1
for c[B+], but this is not cocommutative so the last of (6.1) does not hold.

For (ii), working on c[B+] with algebra s2 = 1, y2 = 0, s, y commuting and coalgebra
(4.5), 1 = R(1⊗s) = R(s2⊗s) = R(s⊗s)2 = R(s⊗s) and 0 = R(s⊗y2) = R(s⊗y)2 =
R(s ⊗ y) and so forth. In this way, one arrives at R(s⊗ ) = R( ⊗s) = 0 when the
space is y or sy and R(y ⊗ y) = R(sy ⊗ y) = R(y ⊗ sy) = R(sy ⊗ sy). This gives
potentially two coquasitriangular structures, and one can check that the third axiom
also holds. This implies that c[B+]∗ has the trivial and one other quasitriangular
structure. We can identify the latter as R = 1 ⊗ 1 + w ⊗ w which is that of the
Grassmann line as a sub-Hopf algebra in the description in Section 4.3.1(i). One
can check directly that the third of (6.1) indeed holds on ∆x and ∆y.

For (iii), working on dsl2 with the basis and algebra in Proposition 4.2, we apply the
same methods as above to determine a coquasitriangular structure, being careful
now that this is both noncommutative and noncocommutative. Details are omitted,
but the first two axioms eventually show that

R(s⊗ s) = 1, R(x⊗ x) = R(w ⊗ x) = R(w ⊗w) = α

R(s⊗ x) = R(x⊗ s) = R(s⊗w) = R(w ⊗ s) = γ, R(x⊗w) = α + γ; αγ = α
for α, γ ∈ {0,1}. The third (quasi-commutativity axiom) then fixes γ = 1. We then
use R = R(xµ ⊗ xν)yµ ⊗ yν and identify the yρ as in the proof of Proposition 4.2
to obtain the result stated. One can check that R21R = 1, so this is triangular.
Note for this that (x + w)2 = x2 + w2 + wx + xw = x + w + w + x = 0 and that
u2 = u(x +w) = (x +w)u = 0. �

7. Concluding remarks

We succeeded in determining all inequivalent bialgebras and Hopf algebras of di-
mension n ≤ 4 over F2. We presented our results in the form of extended graphs
(3.1), (3.2) and Figure 1 with further details of the bialgebras available online [16].
For Hopf algebras alone in Figure 2, we identified or described all 25 of them dur-
ing the paper and Appendix B. One important lesson is that while it is common
practice to refer to an algebra by its most important role, for example F2Z2 for the
group algebra of the group Z2, and we did the same when introducing our algebras
for the first time, we now see in Figure 2 that is much better to think of these as
labels of the arrows, not of the vertices. Thus F2Z2 is one arrow out of the n = 2
algebra A and the Grassmann line is another entirely different arrow. This gives
a much clearer view of both familiar and unfamiliar Hopf algebras by the time we
come to n = 4, with indeed seven different arrows coming out of the 2-variable
Grassmann algebra E with x2 = y2 = 0, only one of which is the Grassmann plane.
Likewise on the algebra G with x4 = 0 we identified four arrows, one of which is
the anyonic line but another was a self-dual Hopf algebra as a non-linear version of
it. Also self-dual was a unique noncommutative noncocommutative Hopf algebra,
dsl2 , as some kind of digital quantum group.
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We then looked at the canonical Fourier transform on each of our Hopf algebras,
viewed as linear maps attached to the arrows, or a quiver algebra representation
with monodromy at least for the representative Hopf algebras chosen. We also
looked at the digital version of Drinfeld’s quasitriangular Hopf algebra theory with
very few found for n ≤ 3 but rather more for n = 4, although mostly triangular. The
number of Hopf algebras was small enough that we could proceed algebraically, but
one could also look at the full answer for all n = 4 quasitriangular bialgebras using
computer methods and the data in [16]. This should be interesting, given that
there are many more noncommutative and noncocommutative bialgebras according
to the counting in Figure 1.

There are many further directions to go from here. Obviously, it would be in-
teresting to know about digital quantum groups for n ≥ 5. Certainly, many can
be constructed, for example applying the quantum double construction [8, 12] to
c[B+] (which is noncocommutative) and to dsl2 , will give 16 dimensional ones. The
Aijk construction (4.3) also works similarly for general Ai1⋯id [3]. To classify higher
dimensions by our methods would, however, need much more powerful computers
or a different approach. For n = 4, we already had to search among 8,184 ver-
sions of our 25 distinct algebras to identify the latter as well as to identify the
dual of each coalgebra solution for Sections 4.1 and 4.2. Similarly, we searched
among 20,160 = ∣GL4(F2)∣ potential maps between pairs of coalgebras of a given
type in order to identify isomorphic bialgebras for Section 4.3. The same methods
can also be applied for F3 and above, for small n. The Ai1⋯id construction in [3]
works similarly over any Fp (as polynomials involving only powers of x that are
powers of p) to provide some basic examples, as do group algebras, functions on
finite groups and algebraic groups, but we also expect many noncommutative and
noncocommutative ones.

It would also be interesting to look at the F2-linear or ‘digital’ monoidal category
of representations of a digital Hopf algebra. In the quasitriangular case, this is
braided (symmetric in the triangular case). To give a flavour, up to equivalence,
dsl2 has four distinct representations which appear to generate the others by direct
sums (this was checked in low dimension). We denote these according to dimension
by 1,1,2,2, where ρ1 = ε and ρ1(x) = ρ1(w) = ρ1(s) = 1 and, as representatives,

ρ2(x) = (1 1
0 0

) , ρ2(w) = (0 0
1 1

) , ρ2(s) = (0 1
1 0

) ; ρ2(x) = ρ2(w) = (1 0
1 0

) , ρ2(s) = (0 1
1 0

) .

Here 2 descends to e = x +w + s, 2 descends to x = w and 2⊕ 2 is equivalent to the
left regular representation. Also note that 1 ⊂ 2 and 1̄ ⊂ 2̄ spanned by the vector
with entries 1, so these are indecomposable but not irreducible (the algebra is not
semisimple). The Hopf algebra structure then adds rules for dual representations
and tensor products, which up to equivalence work out as 2,2 dual to each other,
1,1 self-dual and

⊗ 1 1 2 2

1 1 1 2 2
1 1 1 2 2
2 2 2 2⊕ 2 2⊕ 2
2 2 2 2⊕ 2 2⊕ 2.
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Figure 3. Fourier transform F on dsl2 in Proposition 5.1 as digital
electronics. Applied three times gives the identity.

The actual representations (not just up to equivalence) are many more, for example
there are 20 in dimension 2 and 394 in dimension 3. We also did not have room here
to cover ribbon structures and the transmutation from digital quasitriangular Hopf
algebras to digital braided groups [12] and braided-Fourier transform [10]. The
latter over C is at the heart of and leads naturally into topological quantum field
theories and knot and 3-manifold invariants, hence these should all have digital
versions. None of this is too surprising but should be interesting to work out
in detail. Likewise over Fp. A variant of such TQFT’s is the Kitaev model for
topological quantum computing [6, 9] and it would be interesting to see and possibly
actually build a digital version based on dsl2 . This will be looked at in a sequel.

Beyond quantum groups, we could of course relax our axioms and classify small
digital weak Hopf algebras, quasi-Hopf algebras and Hopf quasigroups, for exam-
ple. As mentioned in the introduction, our companion paper [15] already classified
digital quantum Riemannian geometries to dimension n = 3, with some partial re-
sults for n = 4. There are also interesting interactions between the Hopf algebra
duality, the curvature and de Morgan duality [13]. The digital quantum groups
in the present paper provide many more examples once equipped with bicovariant
differential structures and quantum metrics, which is another specific direction for
further work.

Finally, the constructions here may potentially be of interest to build in digital
electronics. Thus both Fourier transform processes and Yang-Baxter solution R-
matrices could be built in silicon as potential elements of digital quantum comput-
ers. An example is shown in Figure 3 in terms of XOR gates. An element of dsl2
is input at left with a signal at wire s say meaning the element includes s. The
output similarly appears at right. Since F is a linear operation, the effect of 1 on
the input is to add F(1) = 1 + s + x + w to the output which inverts what would
otherwise have been the signal output at s, x,w (this is the bank of 3 XOR gates).
Similarly F(s) = x+w means that the presence of s on the input inverts x,w, which
is the bank of 2 XOR gates. Prior to that, F(w) = x and F(x) = s +w means we
wire as shown. In this way we can translate natural operations from the quan-
tum group theory into digital processes. Although without the full benefits of true
quantum computer gates over C, we can gain experience with digital versions and
meanwhile we have potential for diverse applications, possibly in signal processing
and real-time encryption.
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Appendix A. Data for n = 3 bialgebras classification

Here we list all possible coalgebras forming bialgebras on each of the four n = 3
algebras for which these exist, obtained using Mathematica. This data is then
analysed in Section 3.2 to identify the bialgebra isomorphism classes. In the fol-
lowing, B.1 – B.33, for example, means we fix V µνρ as B in its standard form with
basis x0 = 1, x1 = x,x2 = y and solve for all possible Cµνρ, listing the solutions. For
each solution, we give the dual algebra and identify which algebra it is isomorphic
to, using R. The unit in the dual algebra is 1 = εµyµ, where ⟨xµ, yν⟩ = δµν for the
dual basis yν .

B.1. ∆x = 1⊗x+x⊗1+x⊗x+x⊗y+y⊗x+y⊗y, ∆y = 1⊗y+y⊗1, εx = 0 = εy.

Dual is commutative algebra C with 1 = y0, y2
1 = y1, y1y2 = y1, y

2
2 = y1.

B.2. ∆x = 1⊗ x + x⊗ 1 + x⊗ x, ∆y = 1⊗ y + y ⊗ 1 + x⊗ y + y ⊗ x , εx = 0 = εy.

Dual is commutative algebra C with 1 = y0, y2
1 = y1, y1y2 = y2, y

2
2 = 0.

B.3. ∆x = 1⊗x+x⊗1+x⊗x+y⊗y, ∆y = 1⊗y+y⊗1+x⊗y+y⊗x, εx = 0 = εy.

Dual is commutative algebra C with 1 = y0, y2
1 = y1, y1y2 = y2, y

2
2 = y1.

B.4. (Hopf algebra) ∆x = 1⊗ x + x⊗ 1 + x⊗ y + y ⊗ x + y ⊗ y,
∆y = 1⊗ y + y ⊗ 1 + x⊗ y + y ⊗ x + x⊗ x, εx = 0 = εy, Sx = y, Sy = x.

Dual is commutative algebra D with 1 = y0, y2
1 = y2, y1y2 = y1 + y2, y

2
2 = y1.

B.5. ∆x = 1⊗ x + x⊗ 1 + x⊗ y + y ⊗ x, ∆y = 1⊗ y + y ⊗ 1 + y ⊗ y, εx = 0 = εy.

Dual is commutative algebra C with 1 = y0, y2
1 = 0, y1y2 = y1, y

2
2 = y2.

B.6. ∆x = 1⊗x+x⊗1+x⊗y+y⊗x+x⊗x, ∆y = 1⊗y+y⊗1+y⊗y, εx = 0 = εy.

Dual is commutative algebra B with 1 = y0, y2
1 = y1, y1y2 = y1, y

2
2 = y2.

B.7. ∆x = 1⊗x+x⊗1+x⊗y+y⊗x, ∆y = 1⊗y+y⊗1+x⊗x+y⊗y, εx = 0 = εy.

Dual is commutative algebra C with 1 = y0, y2
1 = y2, y1y2 = y1, y

2
2 = y2.

B.8. ∆x = 1⊗x+x⊗1+x⊗x+y⊗x, ∆y = 1⊗y+y⊗1+x⊗y+y⊗y, εx = 0 = εy.

Dual is noncommutative algebra G with 1 = y0, y2
1 = y1, y1y2 = y2, y2y1 = y1,

y2
2 = y2.

B.9. ∆x = 1⊗x+x⊗1+x⊗x+x⊗y, ∆y = 1⊗y+y⊗1+y⊗x+y⊗y, εx = 0 = εy.

Dual is noncommutative algebra G with 1 = y0, y2
1 = y1, y1y2 = y1, y2y1 = y2,

y2
2 = y2.

B.10. ∆x = 1⊗x+x⊗1+x⊗x, ∆y = 1⊗y+y⊗1+x⊗y+y⊗x+y⊗y, εx = 0 = εy.

Dual is commutative algebra B with 1 = y0, y
2
1 = y1, y1y2 = y2, y

2
2 = y2.

B.11. ∆x = 1⊗x+x⊗1, ∆y = 1⊗y+y⊗1+x⊗y+y⊗x+x⊗x+y⊗y, εx = 0 = εy.

Dual is commutative algebra C with 1 = y0, y2
1 = y2, y1y2 = y2, y

2
2 = y2.

B.12. ∆x = x⊗ x, ∆y = 1⊗ y + y ⊗ 1, εx = 1, εy = 0.
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Dual is commutative algebra C with 1 = y0 + y1, y2
0 = y0, y0y1 = 0, y0y2 = y2,

y2
1 = y1, y1y2 = 0, y2

2 = 0.

B.13. ∆x = x⊗x, ∆y = 1⊗1+1⊗x+x⊗1+1⊗y+y⊗1+x⊗x, εx = 1, εy = 0.

Dual is commutative algebra C with 1 = y0 + y1, y2
0 = y0 + y2, y0y1 = y2, y0y2 = y2,

y2
1 = y1 + y2, y1y2 = 0, y2

2 = 0.

B.14. ∆x = x⊗ x, ∆y = x⊗ y + y ⊗ 1, εx = 1, εy = 0.

Dual is noncommutative algebra G with 1 = y0 + y1,

y2
0 = y0, y0y1 = 0 = y1y0, y0y2 = 0, y2y0 = y2, y

2
1 = y1, y1y2 = y2, y2y1 = 0, y2

2 = 0.

B.15. ∆x = x⊗ x, ∆y = 1⊗ y + y ⊗ x, εx = 1, εy = 0.

Dual is noncommutative algebra G with 1 = y0 + y1,

y2
0 = y0, y0y1 = 0 = y1y0, y0y2 = y2, y2y0 = 0, y2

1 = y1, y1y2 = 0, y2y1 = y2, y
2
2 = 0.

B.16. ∆x = x⊗ x, ∆y = x⊗ y + y ⊗ x, εx = 1, εy = 0.

Dual is commutative algebra C with 1 = y0 + y1, y2
0 = y0, y0y1 = 0, y0y2 = 0,

y2
1 = y1, y1y2 = y2, y

2
2 = 0.

B.17. ∆x = x⊗ x + y ⊗ y, ∆y = x⊗ y + y ⊗ x, εx = 1, εy = 0;

Dual is commutative algebra C with 1 = y0 + y1, y2
0 = y0, y0y1 = 0, y0y2 = 0,

y2
1 = y1, y1y2 = y2, y

2
2 = y1.

B.18. ∆x = x⊗x, ∆y = 1⊗1+1⊗x+x⊗1+x⊗x+x⊗y+y⊗x, εx = 1, εy = 0.

Dual is commutative algebra C with 1 = y0 + y1, y2
0 = y0 + y2, y0y1 = y2, y0y2 = 0,

y2
1 = y1 + y2, y1y2 = y2, y

2
2 = 0.

B.19. ∆x = x⊗ x, ∆y = 1⊗ y + y ⊗ 1 + y ⊗ y, εx = 1, εy = 0.

Dual is commutative algebra B with 1 = y0 + y1, y2
0 = y0, y0y1 = 0, y0y2 = y2,

y2
1 = y1, y1y2 = 0, y2

2 = y2.

B.20. ∆x = 1⊗ 1 + 1⊗ x + 1⊗ y + x⊗ 1 + x⊗ y + y ⊗ 1 + y ⊗ x + y ⊗ y,
∆y = 1⊗ y + y ⊗ 1 + y ⊗ y, εx = 1, εy = 0.

Dual is commutative algebra C with 1 = y0+y1, y2
0 = y0+y1, y0y1 = y1, y0y2 = y1+y2,

y2
1 = 0, y1y2 = y1, y

2
2 = y1 + y2.

B.21. (Hopf algebra) ∆x = 1⊗ y + x⊗ x + x⊗ y + y ⊗ 1 + y ⊗ x,
∆y = 1⊗1+1⊗x+1⊗y+x⊗1+x⊗x+y⊗1+y⊗y, εx = 1, εy = 0, Sx = x, Sy = 1+x+y.

Dual is commutative algebra D with 1 = y0+y1, y2
0 = y0+y2, y0y1 = y2, y0y2 = y1+y2,

y2
1 = y1 + y2, y1y2 = y1, y2

2 = y2.

B.22. ∆x = x⊗ x, ∆y = x⊗ y + y ⊗ x + y ⊗ y, εx = 1, εy = 0.

Dual is commutative algebra B with 1 = y0 + y1, y2
0 = y0, y0y1 = 0, y0y2 = 0,

y2
1 = y1, y1y2 = y2, y2

2 = y2.

B.23. ∆x = 1⊗x+x⊗1+x⊗x, ∆y = 1⊗1+1⊗x+x⊗1+1⊗y+y⊗1+x⊗y+y⊗x+x⊗x,
εx = 0, εy = 1.

Dual is commutative algebra C with 1 = y0+y2, y2
0 = y0+y2, y0y1 = y1+y2, y0y2 = y2,

y2
1 = y1 + y2, y1y2 = y2, y2

2 = 0.
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B.24. ∆x = 1⊗ x + x⊗ 1, ∆y = y ⊗ y, εx = 0, εy = 1.

Dual is commutative algebra C with 1 = y0 + y2, y2
0 = y0, y0y1 = y1, y0y2 = 0,

y2
1 = 0, y1y2 = 0, y2

2 = y2.

B.25. ∆x = 1⊗ x + x⊗ 1 + x⊗ x, ∆y = y ⊗ y, εx = 0, εy = 1.

Dual is commutative algebra B with 1 = y0 + y2, y2
0 = y0, y0y1 = y1, y0y2 = 0,

y2
1 = y1, y1y2 = 0, y2

2 = y2.

B.26. ∆x = 1⊗ x + x⊗ y, ∆y = y ⊗ y, εx = 0, εy = 1.

Dual is noncommutative algebra G with 1 = y0 + y2,

y2
0 = y0, y0y1 = y1, y1y0 = 0, y0y2 = 0 = y2y0, y

2
1 = 0, y1y2 = y1, y2y1 = 0, y2

2 = y2.

B.27. ∆x = x⊗ 1 + y ⊗ x, ∆y = y ⊗ y, εx = 0, εy = 1.

Dual is noncommutative algebra G with 1 = y0 + y2,

y2
0 = y0, y0y1 = 0, y1y0 = y1, y0y2 = 0 = y2y0, y

2
1 = 0, y1y2 = 0, y2y1 = y1, y2

2 = y2.

B.28. ∆x = x⊗ y + y ⊗ x, ∆y = y ⊗ y, εx = 0, εy = 1.

Dual is commutative algebra C with 1 = y0 + y2, y2
0 = y0, y0y1 = 0, y0y2 = 0,

y2
1 = 0, y1y2 = y1, y2

2 = y2.

B.29. ∆x = x⊗ x + x⊗ y + y ⊗ x, ∆y = y ⊗ y, εx = 0, εy = 1.

Dual is commutative algebra B with 1 = y0 + y2, y2
0 = y0, y0y1 = 0, y0y2 = 0,

y2
1 = y1, y1y2 = y1, y2

2 = y2.

B.30. ∆x = 1⊗ 1+ 1⊗x+ 1⊗ y +x⊗ 1+ y⊗ 1+ y⊗ y, ∆y = y⊗ y, εx = 0, εy = 1.

Dual is commutative algebra C with 1 = y0 + y2, y2
0 = y0 + y1, y0y1 = y1, y0y2 = y1,

y2
1 = 0, y1y2 = 0, y2

2 = y1 + y2.

B.31. ∆x = 1⊗1+1⊗y+x⊗y+y⊗1+y⊗x+y⊗y, ∆y = y⊗y, εx = 0, εy = 1.

Dual is commutative algebra C with 1 = y0 + y2, y2
0 = y0 + y1, y0y1 = 0, y0y2 = y1,

y2
1 = 0, y1y2 = y1, y2

2 = y1 + y2.

B.32. ∆x = x⊗ y + y ⊗ x, ∆y = x⊗ x + y ⊗ y, εx = 0, εy = 1.

Dual is commutative algebra C with 1 = y0 + y2, y2
0 = y0, y0y1 = 0, y0y2 = 0,

y2
1 = y2, y1y2 = y1, y2

2 = y2.

B.33. (Hopf algebra) ∆x = 1⊗ 1 + 1⊗ x + 1⊗ y + x⊗ 1 + y ⊗ 1 + x⊗ x + y ⊗ y,

∆y = 1⊗ x + x⊗ 1 + x⊗ y + y ⊗ x + y ⊗ y, εx = 0, εy = 1, Sx = 1 + x + y, Sy = y.

Dual is commutative algebra D with 1 = y0+y2, y2
0 = y0+y1, y0y1 = y1+y2, y0y2 = y1,

y2
1 = y1, y1y2 = y2, y2

2 = y1 + y2.

C.1. ∆x = 1⊗ x + x⊗ 1 + x⊗ x, ∆y = 1⊗ y + y ⊗ 1 + x⊗ y + y ⊗ x, εx = 0 = εy.

Dual is commutative algebra C with 1 = y0, y
2
1 = y1, y1y2 = y2, y

2
2 = 0.

C.2. ∆x = 1⊗x+x⊗1+x⊗x, ∆y = 1⊗y+y⊗1+x⊗y+y⊗x+y⊗y, εx = 0 = εy.

Dual is commutative algebra B with 1 = y0, y2
1 = y1, y1y2 = y2, y

2
2 = y2.
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C.3. ∆x = x⊗ x, ∆y = 1⊗ y + y ⊗ 1, εx = 1, εy = 0.

Dual is commutative algebra C with 1 = y0 + y1, y
2
0 = y0, y0y1 = 0, y0y2 = y2,

y2
1 = y1, y1y2 = 0, y2

2 = 0.

C.4. ∆x = x⊗ x, ∆y = x⊗ y + y ⊗ 1, εx = 1, εy = 0.

Dual is noncommutative algebra G with 1 = y0 + y1,

y2
0 = y0, y0y1 = 0, y0y2 = 0, y1y0 = 0, y2

1 = y1, y1y2 = y2, y2y0 = y2, y2y1 = 0, y2
2 = 0.

C.5. ∆x = x⊗ x, ∆y = 1⊗ y + y ⊗ x, εx = 1, εy = 0.

Dual is noncommutative algebra G with 1 = y0 + y1,

y2
0 = y0, y0y1 = 0, y0y2 = y2, y1y0 = 0, y2

1 = y1, y1y2 = 0, y2y0 = 0, y2y1 = y2, y
2
2 = 0.

C.6. ∆x = x⊗ x, ∆y = x⊗ y + y ⊗ x, εx = 1, εy = 0.

Dual is commutative algebra C with 1 = y0 + y1, y2
0 = y0, y0y1 = 0, y0y2 = 0,

y2
1 = y1, y1y2 = y2, y

2
2 = 0.

C.7. ∆x = x⊗ x, ∆y = 1⊗ y + y ⊗ 1 + y ⊗ y, εx = 1, εy = 0.

Dual is commutative algebra B with 1 = y0 + y1, y2
0 = y0, y0y1 = 0, y0y2 = y2,

y2
1 = y1, y1y2 = 0, y2

2 = y2.

C.8. ∆x = x⊗ x, ∆y = x⊗ y + y ⊗ x + y ⊗ y, εx = 1, εy = 0.

Dual is commutative algebra B with 1 = y0 + y1, y
2
0 = y0, y0y1 = 0, y0y2 = 0,

y2
1 = y1, y1y2 = y2, y

2
2 = y2.

D.1. (Hopf algebra) ∆x = 1⊗ x + x⊗ 1 + x⊗ x, ∆y = 1⊗ y + y ⊗ 1 + y ⊗ y,
εx = 0 = εy, Sx = y, Sy = x.

Dual is commutative algebra B with 1 = y0, y2
1 = y1, y1y2 = 0, y2

2 = y2.

D.2. ∆x = 1⊗x+x⊗1+x⊗x+y⊗x, ∆y = 1⊗y+y⊗1+x⊗y+y⊗y, εx = 0 = εy.

Dual is noncommutative algebra G with 1 = y0, y2
1 = y1, y1y2 = y2, y2y1 = y1,

y2
2 = y2.

D.3. ∆x = 1⊗x+x⊗1+x⊗x+x⊗y, ∆y = 1⊗y+y⊗1+y⊗x+y⊗y, εx = 0 = εy.

Dual is noncommutative algebra G with 1 = y0, y2
1 = y1, y1y2 = y1, y2y1 = y2,

y2
2 = y2.

G.1. ∆x = 1⊗ x + x⊗ 1 + x⊗ x, ∆y = 1⊗ y + y ⊗ 1 + x⊗ y + y ⊗ x, εx = 0 = εy.

Dual is commutative algebra C with 1 = y0, y2
1 = y1, y1y2 = y2, y

2
2 = 0.

G.2 ∆x = 1⊗x+x⊗1+x⊗x+y⊗y, ∆y = 1⊗y+y⊗1+x⊗y+y⊗x, εx = 0 = εy.

Dual is commutative algebra C with 1 = y0, y2
1 = y1, y1y2 = y2, y

2
2 = y1.

G.3. ∆x = 1⊗x+x⊗1+x⊗x, ∆y = 1⊗y+y⊗1+x⊗y+y⊗x+y⊗y, εx = 0 = εy.

Dual is commutative algebra B with 1 = y0, y
2
1 = y1, y1y2 = y2, y

2
2 = y2.

G.4. ∆x = 1⊗ x + x⊗ 1 + x⊗ x + y ⊗ y, ∆y = 1⊗ y + y ⊗ 1 + x⊗ y + y ⊗ x + y ⊗ y,
εx = 0 = εy.
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Dual is commutative algebra D with 1 = y0, y
2
1 = y1, y1y2 = y2, y

2
2 = y1 + y2.

G.5. ∆x = x⊗ x, ∆y = x⊗ y + y ⊗ x, εx = 1, εy = 0.

Dual is commutative algebra C with 1 = y0 + y1, y2
0 = y0, y0y1 = 0, y0y2 = 0,

y2
1 = y1, y1y2 = y2, y

2
2 = 0.

G.6. ∆x = x⊗ x + y ⊗ y, ∆y = x⊗ y + y ⊗ x, εx = 1, εy = 0.

Dual is commutative algebra C with 1 = y0 + y1, y2
0 = y0, y0y1 = 0, y0y2 = 0,

y2
1 = y1, y1y2 = y2, y

2
2 = y1.

G.7. ∆x = x⊗ x, ∆y = x⊗ y + y ⊗ x + y ⊗ y, εx = 1, εy = 0.

Dual is commutative algebra B with 1 = y0 + y1, y2
0 = y0, y0y1 = 0, y0y2 = 0,

y2
1 = y1, y1y2 = y2, y

2
2 = y2.

G.8. ∆x = x⊗ x + y ⊗ y, ∆y = x⊗ y + y ⊗ x + y ⊗ y, εx = 1, εy = 0.

Dual is commutative algebra D with 1 = y0 + y1, y2
0 = y0, y0y1 = 0, y0y2 = 0,

y2
1 = y1, y1y2 = y2, y

2
2 = y1 + y2.

Appendix B. Standard forms and Fourier transforms for n = 4

Here we fix a standard form representative for each of the 20 distinct Hopf alge-
bras for n = 4, shown in a series of tables according to algebra. The 3rd column
includes an isomorphism between the dual Hopf algebra with dual basis yµ and the
corresponding standard form with basis 1, x, y, z (written for brevity as an iden-
tification). We give the Fourier transform both in its canonical form in the 2nd
column and as a ‘Fourier transport’ map from the standard basis 1, x, y, z of one
algebra to another. The four self-dual cases are in Proposition 5.1 but included here
with standard bases; the proof in general is similar, with the specific coproducts
numbered according to [16].

Algebra D, εx = εy = εz = 0
Dual algebra, integral,
Fourier transform

Standard dual
Fourier transport

(D,D*), F2(Z2) ⊗ F2Z2, D.2:
∆x = x⊗ 1 + 1⊗ x,
∆y = y ⊗ 1 + 1⊗ y + y ⊗ y,
∆z = 1⊗ z + x⊗ y + y ⊗ x

+z ⊗ 1 + z ⊗ y + y ⊗ z
Sx = x, Sy = y, Sz = z.

y0 = 1, y1y2 = y3 = y2y3,
y22 = y2, y21 = y1y3 = y23 = 0,
I = (0,1,0,1) ,

F =
⎛
⎜⎜⎜
⎝

0 1 0 1
1 1 1 1
0 1 0 0
1 1 0 0

⎞
⎟⎟⎟
⎠

yµ = (1, y, x, z),

FD→D =
⎛
⎜⎜⎜
⎝

0 0 1 1
1 1 1 1
0 0 1 0
1 0 1 0

⎞
⎟⎟⎟
⎠

(D,E*), F2(Z2) ⊗ gra, D.1:
∆x = x⊗ 1 + 1⊗ x
∆y = y ⊗ 1 + 1⊗ y,
∆z = 1⊗ z + x⊗ y + y ⊗ x + z ⊗ 1
Sx = x, Sy = y, Sz = z.

y0 = 1, y1y2 = y3,
y21 = y1y3 = y22 = y2y3 = y23 = 0,
I = (0,0,0,1) ,

F =
⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 1 1
0 1 0 0
1 1 0 0

⎞
⎟⎟⎟
⎠

yµ = (1, y, x, z),

FD→E =
⎛
⎜⎜⎜
⎝

0 0 0 1
0 1 0 1
0 0 1 0
1 0 1 0

⎞
⎟⎟⎟
⎠
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Algebra E, εx = εy = εz = 0
Dual algebra, integral,
Fourier transform

Standard dual
Fourier transport

(E,D*), F2Z2 ⊗ gra, E.2:
∆x = 1⊗ x + x⊗ 1,
∆y = 1⊗ y + y ⊗ 1 + y ⊗ y,
∆z = 1⊗ z + x⊗ y + y ⊗ x + y ⊗ z

+z ⊗ 1 + z ⊗ y,
Sx = x, Sy = y, Sz = z

y0 = 1, y1y2 = y3 = y2y3,
y22 = y2, y21 = y1y3 = y23 = 0,
I = (0,1,0,1) ,

F =
⎛
⎜⎜⎜
⎝

0 1 0 1
1 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠

yµ = (1, y, x, z),

FE→D =
⎛
⎜⎜⎜
⎝

0 0 1 1
1 1 0 0
0 0 1 0
1 0 0 0

⎞
⎟⎟⎟
⎠

(E,E*), Grass. plane, E.1:
∆x = x⊗ 1 + 1⊗ x,
∆y = y ⊗ 1 + 1⊗ y,
∆z = 1⊗ z + x⊗ y + y ⊗ x + z ⊗ 1,
Sx = x, Sy = y, Sz = z

y0 = 1, y1y2 = y3,
y21 = y1y3 = y22 = y2y3 = y23 = 0.
I = (0,0,0,1)

F =
⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠

yµ = (1, x, y, z),

FE→E =
⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠

(E,G*), coanyonic line, E.5:
∆x = 1⊗ x + x⊗ 1,
∆y = 1⊗ y + x⊗ x + y ⊗ 1,
∆z = 1⊗ z + x⊗ y + y ⊗ x + z ⊗ 1,
Sx = x, Sy = y, Sz = z

y0 = 1, y21 = y2, y1y2 = y3,
y1y3 = y22 = y2y3 = y23 = 0,
I = (0,0,0,1) ,

F =
⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠

yµ = (1, x, y, z),

FE→G =
⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠

(E,L*), A∗
2, E.15:

∆x = (1 + z) ⊗ x + x⊗ (1 + z) + y ⊗ y,
∆y = (1 + z) ⊗ y + y ⊗ (1 + z) + x⊗ x,
∆z = 1⊗ z + x⊗ y + y ⊗ x + z ⊗ 1 + z ⊗ z,
Sx = x, Sy = y, Sz = z

y0 = 1, y21 = y2y3 = y2,
y1y2 = y23 = y3, y1y3 = y22 = y1,
I = (1,0,0,1),

F =
⎛
⎜⎜⎜
⎝

1 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠

yµ = (1, x, z,1 + y),

FE→L =
⎛
⎜⎜⎜
⎝

0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠

(E,M*), A∗
111, E.16:

∆x = (1 + z) ⊗ x + x⊗ (1 + z)
+y ⊗ y + z ⊗ z,

∆y = (1 + z) ⊗ y + y ⊗ (1 + z) + x⊗ x
+x⊗ z + y ⊗ y + z ⊗ x + z ⊗ z,

∆z = 1⊗ z + x⊗ y + y ⊗ x + y ⊗ z
+z ⊗ 1 + z ⊗ y + z ⊗ z,

Sx = x, Sy = y, Sz = z

y0 = 1, y21 = y2, y1y2 = y3,
y1y3 = y22 = y1 + y2, y2y3 = y2 + y3,
y23 = y1 + y2 + y3,
I = (1,1,0,1) ,

F =
⎛
⎜⎜⎜
⎝

1 1 0 1
1 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠

yµ =
(1,1 + x + y, x + z, x),

FE→M =
⎛
⎜⎜⎜
⎝

0 0 1 0
1 1 0 1
1 1 1 0
1 0 0 0

⎞
⎟⎟⎟
⎠

(E,P*), F2Z2
2, E.38:

∆x = 1⊗ x + x⊗ 1 + x⊗ x,
∆y = 1⊗ y + y ⊗ 1 + y ⊗ y,
∆z = (1 + x + y) ⊗ z + z ⊗ (1 + x + y)

+z ⊗ z + y ⊗ x + x⊗ y,
Sx = x, Sy = y, Sz = z

y0 = 1, y21 = y1, y22 = y2,
y1y2 = y2y3 = y23 = y1y3 = y3,
I = (1,1,1,1) ,

F =
⎛
⎜⎜⎜
⎝

1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠

yµ = (1, x, y, z),

FE→P =
⎛
⎜⎜⎜
⎝

1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠

(E,NF*), c[B+], E.40:
∆x = 1⊗ x + x⊗ 1 + x⊗ x,
∆y = 1⊗ y + x⊗ y + y ⊗ 1,
∆z = 1⊗ z + z ⊗ 1 + (y + z) ⊗ x + x⊗ y,
Sx = x, Sy = y + z, Sz = z

y0 = 1, y21 = y1, y1y2 = y2 + y3,
y2y1 = y3y1 = y3,
y1y3 = y22 = y2y3 = y3y2 = y23 = 0,
I = (0,0,1,1) ,

F =
⎛
⎜⎜⎜
⎝

0 0 1 1
0 0 1 0
1 1 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠

yµ = (1, x, y + z, y),

FE→NF =
⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 1 1
1 1 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠
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Algebra G, εx = εy = εz = 0
Dual algebra, integral,
Fourier transform

Standard dual
Fourier transport

(G,E*), anyonic line G.1:
∆x = 1⊗ x + x⊗ 1,
∆y = 1⊗ y + y ⊗ 1,
∆z = 1⊗ z + x⊗ y + y ⊗ x + z ⊗ 1,
Sx = x, Sy = y, Sz = z

y0 = 1, y1y2 = y3,
y21 = y1y3 = y22 = y2y3 = y23 = 0,
I = (0,0,0,1) ,

F =
⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠

yµ = (1, x, y, z),

FG→E =
⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠

(G,G*), G.2:
∆x = 1⊗ x + x⊗ 1 + y ⊗ y,
∆y = 1⊗ y + y ⊗ 1,
∆z = 1⊗ z + x⊗ y + y ⊗ x + z ⊗ 1,
Sx = x, Sy = y, Sz = z

y0 = 1, y1y2 = y3, y22 = y1
y21 = y1y3 = y2y3 = y23 = 0,
I = (0,0,0,1) ,

F =
⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠

yµ = (1, y, x, z),

FG→G =
⎛
⎜⎜⎜
⎝

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎞
⎟⎟⎟
⎠

(G,P*), F2Z4, G.5:
∆x = 1⊗ x + x⊗ 1 + x⊗ x,
∆y = 1⊗ y + y ⊗ 1 + y ⊗ y,
∆z = (1 + x + y) ⊗ z + z ⊗ (1 + x + y)

+y ⊗ x + x⊗ y + z ⊗ z,
Sx = x + y + z, Sy = y, Sz = z

y0 = 1, y21 = y1, y1y2 = y3 = y1y3,
y22 = y2, y2y3 = y3 = y23 ,
I = (1,1,1,1) ,

F =
⎛
⎜⎜⎜
⎝

1 1 1 1
1 1 1 0
1 1 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠

yµ = (1, x, y, z),

FG→P =
⎛
⎜⎜⎜
⎝

1 1 1 1
1 1 1 0
1 1 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠

(G,L*), G.6:
∆x = 1⊗ x + x⊗ 1 + x⊗ x

+(y + z) ⊗ (y + z),
∆y = 1⊗ y + y ⊗ 1 + y ⊗ y,
∆z = 1⊗ z + x⊗ (y + z) + (y + z) ⊗ x

+z ⊗ 1 + y ⊗ z + z ⊗ y + z ⊗ z,
Sx = x + y + z, Sy = y, Sz = z

y0 = 1, y21 = y1 = y1y3, y1y2 = y3
y22 = y1 + y2, y2y3 = y1 + y3 = y23 ,
I = (1,1,1,1),

F =
⎛
⎜⎜⎜
⎝

1 1 1 1
1 1 1 0
1 1 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠

yµ =
(1, x + z, z,1 + x + y),

FG→L =
⎛
⎜⎜⎜
⎝

0 0 1 0
1 1 0 0
1 1 0 1
1 0 0 0

⎞
⎟⎟⎟
⎠

Algebra L, εx = 0, εy = 1, εz = 0
Dual algebra, integral,
Fourier transform

Standard dual
Fourier transport

(L,E*), A2, L.6:
∆x = 1⊗ x + x⊗ 1,
∆y = 1⊗ 1 + 1⊗ y + x⊗ z + y ⊗ 1

+z ⊗ x,
∆z = 1⊗ z + z ⊗ 1,
Sx = x, Sy = y, Sz = z

y20 = y0 + y2, y0y1 = y1,
y0y3 = y3, y0y2 = y1y3 = y2,
y21 = y1y2 = y22 = y2y3 = y23 = 0,
I = (0,0,1,0) ,

F =
⎛
⎜⎜⎜
⎝

0 0 1 0
0 0 0 1
1 0 1 0
0 1 0 0

⎞
⎟⎟⎟
⎠

yµ = (1 + z, x, z, y),

FL→E =
⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

⎞
⎟⎟⎟
⎠

(L,G*), L.11:
∆x = 1⊗ x + x⊗ 1 + x⊗ x + x⊗ z

+z ⊗ x + z ⊗ z,
∆y = 1⊗ 1 + 1⊗ y + x⊗ x + y ⊗ 1 + z ⊗ z,
∆z = 1⊗ z + x⊗ x + x⊗ z + z ⊗ 1

+z ⊗ x + z ⊗ z,
Sx = z, Sy = y, Sz = x

y20 = y0 + y2, y0y1 = y1, y0y2 = y2,
y0y3 = y3, y21 = y23 = y1 + y2 + y3,
y1y3 = y1 + y3, y1y2 = y22 = y2y3 = 0
I = (0,0,1,0) ,

F =
⎛
⎜⎜⎜
⎝

0 0 1 0
0 0 0 1
1 0 1 0
0 1 0 0

⎞
⎟⎟⎟
⎠

yµ =
(1 + z, x + z, z, x + y),

FL→G =
⎛
⎜⎜⎜
⎝

0 0 0 1
0 1 1 0
1 0 0 0
0 1 0 1

⎞
⎟⎟⎟
⎠
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Algebra M, εx = 0, εy = 1, εz = 0
Dual algebra, integral,
Fourier transform

Standard dual
Fourier transport

(M,E*), A111, M.2:
∆x = 1⊗ z + x⊗ (y + z) + (y + z) ⊗ x

+z ⊗ 1 + y ⊗ z + z ⊗ y,
∆y = 1⊗ 1 + y ⊗ z + z ⊗ y

+1⊗ (x + y + z) + (x + y + z) ⊗ 1
+x⊗ (y + z) + (y + z) ⊗ x,

∆z = 1⊗ x + x⊗ 1 + x⊗ (y + z)
+(y + z) ⊗ x + y ⊗ z + z ⊗ y,

Sx = x, Sy = y, Sz = z

y20 = y0 + y2, y0y1 = y2 + y3,
y0y2 = y2, y0y3 = y1 + y2,
y1y2 = y2y3 = y1y3 = y1 + y2 + y3,
y21 = y22 = y23 = 0,
I = (0,1,1,1) ,

F =
⎛
⎜⎜⎜
⎝

0 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1

⎞
⎟⎟⎟
⎠

yµ =
(1 + x,x + y + z, x, y),

FM→E =
⎛
⎜⎜⎜
⎝

0 0 0 1
1 0 1 1
1 0 0 0
1 1 1 0

⎞
⎟⎟⎟
⎠

Algebra P, εx = 0, εy = 0, εz = 0
Dual algebra, integral,
Fourier transform

Standard dual
Fourier transport

(P,E*), F2(Z2
2), P.1:

∆x = 1⊗ x + x⊗ 1,
∆y = 1⊗ y + y ⊗ 1,
∆z = 1⊗ z + x⊗ y + y ⊗ x + z ⊗ 1,
Sx = x, Sy = y, Sz = z

y0 = 1, y1y2 = y3,
y21 = y1y3 = y22 = y2y3 = y23 = 0,
I = (0,0,0,1) ,

F =
⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 1 1
0 1 0 1
1 1 1 1

⎞
⎟⎟⎟
⎠

yµ = (1, x, y, z),

FP→E =
⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 1 1
0 1 0 1
1 1 1 1

⎞
⎟⎟⎟
⎠

(P,G*), F2(Z4), P.3:
∆x = 1⊗ x + x⊗ 1,
∆y = 1⊗ y + x⊗ x + y ⊗ 1,
∆z = 1⊗ z + x⊗ y + y ⊗ x + z ⊗ 1,
Sx = x, Sy = y, Sz = z

y0 = 1, y21 = y2, y1y2 = y3,
y1y3 = y22 = y2y3 = y23 = 0,
I = (0,0,0,1) ,

F =
⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 1 1
0 1 0 1
1 1 1 1

⎞
⎟⎟⎟
⎠

yµ = (1, x, y, z),

FP→G =
⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 1 1
0 1 0 1
1 1 1 1

⎞
⎟⎟⎟
⎠

Algebra NF, εx = 0, εy = 0, εz = 0
Dual algebra, integral,
Fourier transform

Standard dual
Fourier transport

(NF,E*), c[B+]∗, NF.1:
∆x = 1⊗ x + x⊗ 1,
∆y = 1⊗ y + x⊗ y + x⊗ z

+y ⊗ 1 + y ⊗ x + z ⊗ x,
∆z = 1⊗ z + x⊗ y + x⊗ z

+y ⊗ x + z ⊗ 1 + z ⊗ x,
Sx = x, Sy = z, Sz = y

y0 = 1, y1y2 = y2 + y3 = y1y3,
y21 = y22 = y23 = y2y3 = 0,
I = (0,0,1,1) ,

F =
⎛
⎜⎜⎜
⎝

0 0 1 1
0 0 1 0
1 0 0 0
1 1 0 0

⎞
⎟⎟⎟
⎠

yµ = (1, x, y + z, y),

FNF→E =
⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 1 1
1 0 0 0
1 1 0 0

⎞
⎟⎟⎟
⎠

(NF,NF*), dsl2 , NF.2:
∆x = 1⊗ x + x⊗ 1 + y ⊗ x + z ⊗ x ,
∆y = 1⊗ y + x⊗ y + x⊗ z + y ⊗ 1

+y ⊗ x + y ⊗ y + y ⊗ z + z ⊗ x ,
∆z = 1⊗ z + x⊗ y + x⊗ z + y ⊗ x

+z ⊗ 1 + z ⊗ x + z ⊗ y + z ⊗ z,
Sx = x + y, Sy = z, Sz = y

y0 = 1, y21 = 0,
y1y2 = y2 + y3 = y1y3,
y2y1 = y1 + y2 + y3 = y3y1,
y22 = y2 = y2y3, y3y2 = y3 = y23 ,
I = (0,1,1,1) ,

F =
⎛
⎜⎜⎜
⎝

0 1 1 1
1 1 1 0
1 0 0 0
1 1 0 0

⎞
⎟⎟⎟
⎠

yµ =
(1, y + z, x + y, x),

FNF→NF =
⎛
⎜⎜⎜
⎝

0 0 0 1
1 1 0 1
1 0 0 0
1 0 1 1

⎞
⎟⎟⎟
⎠

Data availability statement

The data that supports the findings of this study are available within the article
and in supplementary material made available as packages for R on GitHub [16].
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