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Bayesian network analysis of Covid-19 data reveals higher
infection prevalence rates and lower fatality rates than
widely reported

Martin Neila,b , Norman Fentona,b , Magda Osmanc and Scott McLachlana

aSchool of Electronic Engineering and Computer Science, Queen Mary University of London, London, UK;
bAgena Ltd, Cambridge, UK; cBiological and Experimental Psychology Group, Mary University of London,
London, UK

ABSTRACT
Widely reported statistics on Covid-19 across the globe fail to take
account of both the uncertainty of the data and possible explanations
for this uncertainty. In this article, we use a Bayesian Network (BN)
model to estimate the Covid-19 infection prevalence rate (IPR) and infec-
tion fatality rate (IFR) for different countries and regions, where relevant
data are available. This combines multiple sources of data in a single
model. The results show that Chelsea Mass. USA and Gangelt Germany
have relatively higher IPRs than Santa Clara USA, Kobe, Japan, and
England and Wales. In all cases the infection prevalence is significantly
higher than what has been widely reported, with much higher commu-
nity infection rates in all locations. For Santa Clara and Chelsea, both in
the USA, the most likely IFR values are 0.3–0.4%. Kobe, Japan is very
unusual in comparison with the others with values an order of magni-
tude less than the others at, 0.001%. The IFR for Spain is centred around
1%. England and Wales lie between Spain and the USA/German values
with an IFR around 0.8%. There remains some uncertainty around these
estimates but an IFR greater than 1% looks remote for all regions/coun-
tries. We use a Bayesian technique called ‘virtual evidence’ to test the
sensitivity of the IFR to two significant sources of uncertainty: survey
quality and uncertainty about Covid-19 death counts. In response the
adjusted estimates for IFR are most likely to be in the range 0.3–0.5%.
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1. Introduction

Widely reported statistics on Covid-19 across the globe fail to take account of both the uncer-
tainty of the data and possible explanations for this uncertainty (Fenton et al. 2020a, 2020b). In
this article, we use a Bayesian Network (BN) model to estimate the Covid-19 infection prevalence
rate (IPR) and infection fatality rate (IFR) for different countries and regions, where relevant data
are available. Unlike other statistical techniques that have been used to interpret Covid-19 data,
BNs combine multiple sources of data in a single model that provides statistical estimates that
better reflect the uncertainty regarding mechanisms that generate the data, and the amount and
type of data that is available.
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The article examines results from recent serological antibody surveys carried out globally.
Plainly, any uncertainty about the accuracy of serological testing will influence the estimate of
the size of community infected with Covid-19 and this will in turn influence any estimate of the
IFR. A serological test with low accuracy will tend to poorly estimate the size of the community
infected and this, in turn, will lead to a poor estimate of the fatality rate. Also, if the fatality
count is itself unreliable the fatality rate will suffer again, because if we do not know how many
had the disease and how many have died, we cannot estimate the fatality rate with confidence.

The Bayesian approach is generally recognised as more advanced than classical statistical
approaches that are typically applied and can therefore address more complex questions (Pearl
1986, Fenton and Neil. 2018). Unfortunately, while it may seem like there has been a deluge of
Covid-19 data, there is a dearth of publicly available data of the type necessary for conducting
an unbiased analysis of true infection and death rates. Typically, there is also a lack of transpar-
ency surrounding the analysis and use of data, with much of the detail and data remaining
secret. Hence, we have gathered data from academic papers (mainly pre-prints), press interviews,
and other sources including state archives and the mass media.

The BN model (which is implemented in a commercial, state of the art, probabilistic modelling
software application – AgenaRisk; Agena Ltd 2020) provides answers to these questions, even in
the presence of such basic uncertainties. Specifically:

� What is the accuracy of serological antibody testing under development and how well does
it estimate population infection prevalence?

� What serological testing surveys have been done and what does the data tell us about the
prevalence of community infection in different locations.

� If the serological testing surveys are imperfect what effect does this have on our estimated
IPR s?

� Given our prevalence estimates, how does this compare to the case infection numbers?
(those who test positive for Covid-19) that is, how much higher is actual community infec-
tion compared to reported infection?

� From reported fatality statistics what is the IFR? How does serological test quality affect the
reliability of these estimates? Likewise, how does uncertainty about fatality counts affect
these estimates?

� How do our estimates of covid-19 IFR compare to influenza IFR?

The article is structured as follows: In Section 2, we discuss Covid-19 testing with a particular
focus on serological tests and their accuracy (sensitivity and specificity). In Section 3, we present
the data and assumptions used in our analysis. In Section 4, we present the single BN model
that provides answers to a series of epidemiological questions about the disease, prevalence and
infection, simultaneously, and in such a way that uncertainties about the answers to one ques-
tion will influence our uncertainties about the other and vice versa. The results are presented in
Section 5. Our conclusions are presented in Section 6.

2. Covid-19 serological testing

What is the accuracy of serological antibody tests under development how well does it estimate
population infection prevalence?

The Covid-19 IPR rate can be deduced from serological antibody testing, which identifies
those in the tested population whose body retains an immune response arising from prior infec-
tion with Covid-19. As the disease spreads through the population, the proportion of people
who develop antibodies increases and the proportion with antibodies depends on exposure and
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time since the disease was introduced into the community. Hence, different countries and
regions will be at different points in this process and will exhibit different IPR rates.

The Covid-19 IPR rate will also be crucially dependant on our ability to accurately measure
whether an individual has antibodies. Typically, serological tests of blood or other body fluids
are used to detect antibody levels and hence determine either infection (IgM antibodies) or
potential immunity (IgG antibodies). Presence of the latter identifies whether patients have previ-
ously had the disease, independent of whether they exhibited symptoms. Leaving aside concerns
about whether immunity is temporary or indeed absent, our uncertainty about whether a patient
has had Covid-19 depends on the accuracy of the serological testing process. A patient who has
tested positive using a Covid-19 serological test can do so for two reasons—they genuinely have
antibodies at detectable levels (these are called ‘true positives’), or the testing process falsely
identifies them as antibody positive (these are called ‘false positives’). Hence, accuracy of the test
is determined by its sensitivity1 and specificity, where:

Sensitivity ¼ True positive rate ¼ 1� False negative rateð Þ
Specificity ¼ 1� False positive rateð Þ

As false positive and false negative rates rise, the greater our uncertainty will be about any
diagnosis of Covid-19 for an individual and across a population.

Serological testing processes, kits and machines are presently being assessed for accuracy using
samples drawn from patients who are known to have the disease or are disease free.
Pharmaceutical companies and academic researchers use these known samples to determine the
sensitivity and specificity. At the time of writing a number of pharmaceutical serological tests have
been made available in the marketplace and indeed some have received FDA emergency author-
ised approval for use (FDA 2020). Accuracy for many of these tests is presently being debated.

The Covid-19 IFR rate is simply the number of fatalities up to some point in time divided by
the size of the community infected with the virus. The number of infected will include those
who test positive for antibodies, which includes those who tested positive (IgM antibodies) and
those who currently test negative, but show an immune response (IgG antibodies) identifying
that they were infected with Covid-19 sometime in the past. Likewise, the number of community
infected cases will include those who are asymptomatic and symptomatic, whether hospitalized
or not, those who finally die with (or of) the disease, and those who were infected but have fully
recovered. We can estimate the number of community infected from the serological testing, and
as we have said, this depends on the accuracy of the testing process. If the serological tests are
inaccurate estimates of the number of infected will be more uncertain, leading to less reliable
estimates for IFR: Similarly, the number of fatalities, and any uncertainty about the true number
of fatalities, also influences the IFR: For example, overestimation of causalities by certifying
Covid-19 deaths where patients died as a result of some pre-existing condition while infected
with Covid-19, rather than only those where Covid-19 was the direct cause of their death
(Fenton et al. 2020a) will lead to greater uncertainty about the fatality rate.

3. Data and assumptions

What serological testing surveys have been done and what does the data tell us about the
prevalence of community infection in different locations?

We use serological antibody survey data from these sources:

� Santa Clara County, California, USA (Bendavid et al. 2020)
� Kobe, Japan (Doi 2020)
� Gangelt, Germany (Streeck et al. 2020)
� Chelsea, Massachusetts, USA (Saltzman 2020)
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� NHS England and Wales serological survey, UK (Blanchard 2020)
� Spain (Carlos 2020)

We have also gathered and used publicly available data on serological antibody test accuracy
for each of these test sources from the FDA (2020), manufacturer websites and research papers:

� Roche, as hypothetical for England and Wales UK (FDA 2020)
� Kurabo Inc, for Kobe, Japan (Karubo Ltd 2020)
� Premier Biotech, for Santa Clara, California, USA (Bendavid et al. 2020)
� EUROIMMUN for Gangelt (FDA 2020)
� BioMedomics for Chelsea, Massachusetts, USA (BioMedomics 2020)
� Orient Gene Biotech, for Spain (Carlos 2020)

It is important note that the sensitivity and specificity values are normally calculated using simply
arithmetic ratios; so if the sample tested had zero false positives or false negatives then the sensitiv-
ity and specificity would be reported to be perfect (100%), no matter how many were tested.
However, if you run one, and only one, test and confirm it positive, would you believe the test to
be perfect on such a small experiment? This issue is addressed by the BN model. Some tests iden-
tify early or existing infection through detection of IgM antibodies. Other tests can identify patients
who at some point in the past were infected with and successfully fought off the disease through
detection of IgG antibodies. Many antibody tests are developed that can detect both, and where a
test has this capability the regulated clinical trial and test validation process generally identifies dif-
ferent sensitivity and specificity values for that test for each antibody. Many of the Covid-19 anti-
body tests receiving emergency clearance can detect two or three antibodies but are only reporting
one sensitivity and specificity value. More often this is for IgM antibodies, creating further uncer-
tainty when we use that test to identify those who previously had the disease.

To illustrate our uncertainties about the results of serological testing we look at the false posi-
tive and false negative rates for the various serological test sources, used to estimate population
infection prevalence, as shown in Table 1.

UK fatality data and Covid-19 infection rates were collected from the UK Office for National
Statistics (ONS) (ONS 2020a) and from the worldometers website (Worldometers 2020).

All available data are taken from the mid-April to early May 2020 snapshot. Thus, different
countries and regions within countries will have different IPRs as these will be a determined by
when the virus was first introduced and the time elapsed. For data we assume the time from
infection to recovery (or fatality) is sufficient to ensure that any anyone infected will have detect-
able traces of antibodies in their blood.

4. The Bayesian network (BN) model

A BN is a graphical model consisting of nodes and arcs where the nodes represent variables and
an arc between two variables represents a dependency. The strength of each dependency, as

Table 1. Sensitivity and specificity tests.

Test source Number of FP tests False positives Specificity (%) Number of FN tests False negatives Sensitivity (%)

Roche 5272 10 99.8 29 0 100.0
Kuraboa 521 0 100.0 500 100 80.0
Premier Biotech 371 2 99.5 160 7 95.6
EUROIMMUN 80 0 100.0 30 3 90.0
BioMedomics 128 12 90.6 397 45 88.7
Orient Gene Biotecha 500 0 100.0 500 75 85.0

a Note the Karubo and Orient Biotech test sources are inferred from published sensitivity and specificity statics and total
sample sizes.

4 M. NEIL ET AL.



well as the uncertainty associated with these, is captured using probabilities and statistical distri-
butions. When observed data are entered into the model for specific variables all the probabil-
ities for, as yet unknown, unobserved or latent variables, are updated by Bayesian inference.

The BN model used for our analysis is shown in Figure 1 for the joint probability density func-
tion below:

f TPR, FNR, . . . :, IFRð Þ ¼ f TPRjFNRð Þf FNjnFN, FNRð Þ�
f TNRjFPRð ÞfðFPjnFP, FPRÞfðPjIPR, FNR, FPRÞ�

fðPSjnS, PÞf CjZ, Pð ÞfðRjC, RCCÞfðIFRjF,CÞ f IPRð Þf Zð ÞfðRCCÞ
This represents the conditonal and prior probability functions for these variables, as shown in

Table 2. The statistical distributions and conditional probability densities are given in
the Appendix.

Bayesian inference is performed in AgenaRisk (Agena Ltd 2020) which uses the dynamic dis-
cretization algorithm (Neil, Tailor, and Marquez 2007).

The goal of a mass serological antibody survey is to estimate the IPR of the virus in the popu-
lation. If we knew the IPR, the false negative rate (FNR), and false positive rate (FPR) then we can
determine the probability, P, of a positive test result as:

P ¼ IPRð1� FNRÞ þ ð1� IPRÞFPR
This is because there are two ways to test positive. The first is where someone is infected

(probability IPRÞ and correctly test positive (probability ð1� FNRÞÞ, giving ð1� FNRÞ � IPR: The
second is where someone is not infected, ð1� IPRÞ, but they falsely test positive, FPR and this
gives us 1� IPRð ÞFPR:

Here we use the BN to solve the ‘inverse problem’, where we estimate the IPR given informa-
tion about FNR, FPR, and P, that is, the test accuracy (sensitivity and specificity) and the number
of positive tests from a given serological survey. Again, poor test accuracy will lead to poorer
estimates of the IPR and, again, the size of the survey, in terms of samples taken, will determine
the confidence in our estimates, with bigger samples translating to better information.

Once the BN model estimates the distribution for IPR this is used to estimate community
infections, C, and ultimately the infection fatality rate, IFR:

Figure 1. Bayesian Network Model to estimate Covid-19 IPR and IFR.
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5. Results using available data

5.1. Infection prevalence rates

If the serological testing surveys are imperfect what effect does this have on our estimated
IPR s?

To date very few serological surveys have been carried out and where they have been, some
results have been difficult to obtain given the secrecy involved. The survey data and sources are
listed below in Table 3. Note that here we are using raw data unadjusted for demographic or
other population features.

�Note that the positive test results for England and Wales is inferred from public announce-
ments made by the UK Government’s Chief Medical Officer (Blanchard 2020) about the UK ONS
antibody survey (ONS 2020b).

We have the serological test results from the Santa Clara County, California USA, study
(Biomedomics 2020) and Gangelt, Germany (FDA 2020). However, for the Kobe, Japan, study we
only had specificity and sensitivity point values and total sample sizes from Kurano (Karubo Ltd
2020) and had to infer the likely values. Also, we do not know what serological tests were
applied in England and Wales. The UK government have, however, announced they were choos-
ing Roche as one of their serological antibody test suppliers, and so we assume a test with
equivalent accuracy was used (FDA 2020).

The full probability distributions that the BN model computes IPR for all cases are shown in
Figure 2 and the associated summary statistics are listed in Table 4.

From Figure 2 and Table 4 we can see that Chelsea Mass. USA and Gangelt Germany have
relatively higher IPRs than Santa Clara USA, Kobe, Japan and England and Wales.

5.2. Estimates of community infections

Given our prevalence estimates, how does this compare to the case infection numbers? (those
who test positive for Covid-19) that is, how much higher is actual community infection compared
to reported infection?

Now we have an estimate of the IPR we can use this to estimate the number of community
infections, C, in a region or country, given the relevant community population size. We can also
compare this estimate with the number of reported cases of Covid-19 in the community, to
determine the extent to which Covid-19 is more or less widespread than thought and also to
determine proportion of cases likely to be symptomatic/asymptomatic and severe/slight.

Source data on the actual number of Covid-19 infection cases have been taken from the rele-
vant research papers or other sources, and in the case of the UK from worldometers, for mid-
April, where it reported to be circa. 100,000 (Worldometers 2020). The summary statistics form
the distributions calculated from the BN of the number of community infections are given in
Table 5.

Table 5 shows that the estimated community prevalence is much higher than reported preva-
lence. Figure 3 and Table 6 show the results from the model of the ratio of estimated to

Table 2. Variables in Bayesian Network model.

TPR True positive rate (sensitivity) IPR Infection Prevalance Rate

TNR True negative rate (specificity) PS Survey number of positive tests
FN False negatives in testing nS Number of survey tests
FP False positives in testing IFR Infection fatality rate
nFN Number of false negative tests C Community number of infections
nFP Number of false positive tests Z Community population size
FPR False positive rate R Ratio of infection cases to reported cases
FNR False negatve rate RCC Number of reported cases in community
P Positive test result rate F Number of fatalilites

6 M. NEIL ET AL.



reported cases and the effect that unreliability in survey testing has on the result. Clearly in all
cases the extent of community prevalence is much higher than reported. There is however con-
siderable uncertainty about the ratio distribution for Kobe and Santa Clara, given their confi-
dence interval is so wide.

5.3. Infection fatality rates

From reported fatality statistics what is the Covid-19 IFR?
The final piece of the jigsaw puzzle is our estimation of IFR, for each of the countries and

regions where we have data available, and here this includes, England and Wales and Chelsea
Mass. USA, Santa Clara USA, Kobe Japan, Spain, and Gangelt, Germany.

The reported fatalities up to mid-April in the UK is 23,554 (ONS 2020b). The reported fatality
count for Chelsea, Massachusetts is 39 (Saltzman 2020) and for Santa Clara, California is 94
(Ioannidis 2020). For Gangelt, Germany it is 7 (Streeck et al. 2020). For Spain, the fatality count is

Table 3. Serological surveys.

Test source Samples Positive tests

Santa Clara 3330 50
Kobe 521 22
Gangelt 500 75
Chelsea 200 64
England and Wales 1000 50�
Spain 50983 3049

Figure 2. Posterior marginal distribution of Infection prevalence rate (IPR) for country/region cases.

Table 4. Summary statistics for IPR:

Case Test source Assumption Mean 95% CI

Santa Clara Premier Biotech Actual source 0.00879 (0.88%) (0.0009, 0.0165)
Kobe Kurabo Actual source 0.040 (0.4%) (0.0254, 0.0562)
Gangelt EUROIMMUN Actual source 0.162 (16.2%) (0.1162, 0.0208)
Chelsea Mass. BioMedomics Actual source 0.28 (28.1%) (0.1795, 0.3780)
England and Wales Roche Hypothesised source 0.0506 (0.51%) (0.0368, 0.0670)
Spain Orient Gene Biotech Actual source 0.05663 (0.56%) (0.0496, 0.0617)
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27,888 (Worldometers 2020) and for Kobe Japan it is 10 (Ioannidis 2020). Figure 4 shows the pre-
dicted distributions from the BN model for each IFR, while Table 7 shows the summary statistics.

The most likely (modal) IFR values are grouped for Santa Clara and Chelsea, both in the USA,
with mode values of 0.3–0.4%. However, for Santa Clara there is higher uncertainty giving a long

Figure 3. Posterior marginal distribution of Ratio of estimated community infections (R) to cases to reported cases by coun-
try/region cases (excluding Kobe, Japan).

Table 5. Summary statistics for Community number infections, C:

Case Test source Assumption Mean 95% CI Reported cases

Santa Clara Premier Biotech Actual source 15,668 (1617, 29529) 956
Kobe Kurabo Actual source 60,839 (38428, 85499) 69
Gangelt EUROIMMUN Actual source 2,015 (1443, 2595) 10
Chelsea Mass. BioMedomics Actual source 16,131 (12821 19637) 803
England and Wales Roche Hypothesised source 2,839,500 (2057300, 3753600) 100,000
Spain Orient Gene Biotech Actual source 2,600,100 (2274700, 2804900) 230,000

Figure 4. Posterior marginal distribution of Infection fatality rate (IFR) for country/region cases.
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tail in the data hence the mean value is significantly higher at 1.02%. This shows the estimate
for Santa Clara is less informative. Kobe, Japan is very unusual in comparison with the others
with values an order of magnitude less at 0.001%. The IFR for Spain has a low variance, which is
unsurprising given the very large survey conducted, with a mean and mode rate close to each
other centred around 1%. England and Wales lie between Spain and the USA/German values
with a mode and mean of 0.8%.

5.5. Sensitivity to uncertainty

How does serological test quality affect the reliability of the above estimates of the IFR?
Likewise, how does uncertainty about fatality counts affect these estimates?

The preceding analysis has simply used the available ‘raw’ data without any adjustment for
demographics or to take account of differences between countries and regions. In this section,
we choose two sources of uncertainty that have not been covered by other researchers and
which strongly determine the sensitivity of results, especially for IFR: These concern fatality
counts and the quality of the serological surveys themselves.

There is some controversy over UK fatality counts (Fenton et al. 2020a) and there appear to
be many reasons not to trust the fatality count, including:

� Ambiguity and confusion about diagnostic criteria for Covid-19
� Care home deaths not certified by a qualified medical practitioner
� Hospital and other deaths signed off as ‘caused by’ Covid-19 when they are ‘with’ Covid-19
� The number of excess deaths could be much higher because of cases that remain

undiagnosed

Similar concerns apply to Spain and potentially elsewhere. Given that these uncertainties
work in both directions we must be careful to include under and over-estimates and not chose
one to suit our prejudices or political outlook.

The Santa Clara study has been heavily criticised by some statisticians in a popular blog (Stats
Blog 2020), mainly because subjects were recruited using Facebook and perceived issues with
sample sizes and other aspects of the analysis undertaken. Similar observations and comments
have been made about the Chelsea study because subjects were chosen for convenience and
availability rather than at random.

Typically, experimenters would design their study to address the sensitivity of the results to
uncertainties, using relevant and, potentially, causal classifications such as demographic stratifica-
tion of the relevant population. However, given that we have observational rather than experi-
mental data we can only perform a post hoc evaluation of the sensitivity of the results. Hence,
in this section we address these major uncertainties, using our BN model. The lack of controls in
these observational studies translates into less informative estimates and more variability.

We use the notion of ‘virtual’ evidence to assess how different observations might affect our
results. In this way we view the observations not as ‘facts’ but as random variables, bounded by
possible ranges of value. This enables us to ask hypothetical questions such as: What would the

Table 6. Summary statistics for ratio of estimated community infections, R, to reported cases.

Case Test source Assumption Mean 95% CI

Santa Clara Premier Biotech Actual source 16 (1.68, 30.98)
Kobe Kurabo Actual source 881 (556.93, 1240.5)
Gangelt EUROIMMUN Actual source 201 (144.24, 259.7)
Chelsea Mass. BioMedomics Actual source 14 (8.95, 18.92)
England and Wales Roche Hypothesised source 28 (20.3, 37.5)
Spain Orient Gene Biotech Actual source 11 (9.88, 12.19)
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results have been had fatalities been exaggerated or the number of positives from a study
been fewer?

For the Santa Clara PSobs ¼ Binomial nS, Pð Þ ¼ 50, meaning we have 50 positive results from
the binomial model. Virtual evidence allows us to place a likelihood over the distribution for PSobs
that reflects our uncertainty about the study design. Here we use PSobs � Uniformð1, 50Þ represent-
ing a sceptical belief that any value between one and fifty is equally likely from this study because
the study design was such that it made it more likely that prior infected subjects would volunteer.
Once we enter this virtual evidence into the BN it will compute the posterior probability distribu-
tion using this likelihood instead of a single point observation. Bayesian inference then computes
the posterior distribution using this ‘sceptical’ likelihood along with other evidence in the model.
Clearly, the resulting posterior will not necessarily match the likelihood provided, and indeed may
contradict it, perhaps demonstrating the scepticism was unwarranted. We can apply the same pro-
cess to the fatality counts and apply ‘virtual evidence’ that reflects deeper uncertainties about
whether people ‘died because of’ Covid-19 as opposed to ‘with’ Covid-19.

We applied virtual evidence in four cases, as shown in Table 8. Uncertainties about the study
design are represented for Santa Carla and Chelsea, Mass., USA. Uncertainties about the true
fatality count are represented for England & Wales and Spain.

The sensitivity of IFR to these changes to the evidence is shown with the full distributions in
Figure 5 and summary statistics in Table 9.

The effect of virtual evidence is to increase the variability of the results, as one would expect.
For the Santa Clara and Chelsea studies where we adjusted the observed survey positives the
mean fatality rate estimates increase. However, the modal values do not change much at all,
remaining around 0.3–0.5%, suggesting that the BN model is balancing the sceptical explana-
tions against other evidence in the model and discounting any virtual evidence that is perhaps
too sceptical. Figure 6 shows the posterior marginal distributions that result from the application
of virtual evidence on the number of positive tests for these studies. Clearly any strong scepti-
cism that the number of genuine positives must be close to zero is not warranted and in the
case of Chelsea observations less than 30 are difficult to justify. The model clearly ‘believes’ the
survey results are credible.

After the adjustment, distributions of the IFR across the USA, Spain and the UK look very similar;
the most likely range for IFR is between 0.2 and 1%, with values beyond this looking less likely.

5.6. Comparison with influenza

How do our estimates of covid-19 IFR compare to influenza IFR?

Table 7. Summary statistics for the IFR rate.

Case Test source Fatality count Mode Mean 95% CI

Santa Clara Premier Biotech 94 0.004 (0.4%) 0.0102 (1.02%) (0.0031, 0.0595)
Kobe, Japan Kurabo 10 0.00015 (0.001%) 1.7271E� 4 (0.0002%) (1.16E� 4, 2.60E-4)
Chelsea Mass. BioMedomics 39 0.003 (0.3%) 0.0029 (0.29%) (0.0025, 0.0054)
Gangelt, Germany EUROIMMUN 7 0.003 (0.3%) 0.0036 (0.36%) (0.0026, 0.0048)
England and Wales Roche 23,554 0.008 (0.8%) 0.0085 (0.85%) (0.0062, 0.0114)
Spain Orient Gene Biotech 27,888 0.010 (1.0%) 0.0107 (0.107%) (0.0099, 0.0122)

Table 8. Virtual evidence scenarios.

Case Virtual evidence

Santa Clara Observed positives PSobs � Uniformð1, 50Þ
Chelsea Mass. Observed positives PSobs � Uniformð1, 64Þ
England and Wales Fatalities Fobs � Triangularð5000, 10000, 30000Þ
Spain Fatalities Fobs � Triangularð6000, 12000, 35000Þ
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For comparison, the fatalities in England and Wales for the ‘higher than seasonal average’ in
the year 1999/2000 were 21,290 excess deaths attributed to influenza like illness (Crofts et al.
2004), from an infected population of 440,440 (influenza like illness reports) (ONS 2015). With a
population of approximately 52m this is an IPR of just over 0.8% and a case fatality rate CFR of

Table 9. Summary statistics for IFR in virtual evidence scenarios.

Case Test source Fatality count Mode Mean 95% CI

Santa Clara Premier Biotech 94 0.005 (0.5%) 0.0217 (2.17%) (0.0038, 0.0968)
Chelsea Mass. BioMedomics 39 0.003 (0.3%) 0.0124 (1.24%) (0.0030, 0.0485)
England and Wales Roche 23,554 0.004 (0.4%) 0.0056 (0.56%) (0.0024, 0.0106)
Spain Orient Gene Biotech 27,888 0.004 (0.4%) 0.0107 (1.07%) (0.0032, 0.0118)

Figure 5. Posterior marginal distribution of Infection fatality rate (IFR) for country/region cases in virtual evidence scenarios.

Figure 6. Posterior marginal distribution of Infection for the number of positive tests for the Santa Clara and Chelsea cases.
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4.8%. However, it should be noted that the equivalent of population level serological antibody
testing is not routinely performed for influenza hence the IPR is likely to be underestimated and
the IFR significantly less than the CFR:

6. Conclusion

Widely reported statistics on Covid-19 across the globe fail to take account of both the uncer-
tainty of the data and possible explanations for this uncertainty. In this article, we have used a
BN model to estimate the Covid-19 IPR and IFR for different countries and regions, where rele-
vant data are available. This combines multiple sources of data in a single model.

We used this model, and available data on serological surveys, fatality counts and test accur-
acy, to answer the following questions: What is the accuracy of serological antibody tests under
development and will it be sufficient to estimate population infection prevalence? What sero-
logical testing surveys have been done and what does the data tell us about the prevalence of
community infection in different locations? If the serological testing surveys are imperfect what
effect does this have on our estimated IPR s? Given, our prevalence estimates, how does this
compare to the case infection numbers? From reported fatality statistics what is the IFR? How
does serological test quality affect the reliability of these estimates? Likewise, how does uncer-
tainty about fatality counts affect these estimates? How do our estimates of Covid-19 IFR com-
pare to influenza IFR?

The results show that Chelsea Mass. USA and Gangelt Germany have relatively higher IPRs
than Santa Clara USA, Kobe, Japan and England and Wales. In all cases the infection prevalence
is significantly higher than has been widely reported, with much higher community infection
rates in all locations. For Santa Clara and Chelsea, both in the USA, with most likely IFR values of
0.3–0.4%. Kobe, Japan is very unusual in comparison with the others with values an order of
magnitude less than the others at, 0.001%. The IFR for Spain has a low variance, which is unsur-
prising given the large survey conducted, with an IFR centred around 1%. England and Wales lie
between Spain and the USA/German values with an IFR around 0.8%. There remains some uncer-
tainty around these estimates but an IFR greater than 1% looks remote. We used a Bayesian
technique called ‘virtual evidence’ to test the sensitivity of the IFR to two significant sources of
uncertainty: survey quality and uncertainty about death rates. In response the adjusted estimates
for IFR that are most likely to be in the range 0.3–0.5%. The unadjusted and adjusted Covid-19
IFR s calculated may be significantly less than that from the 1999/2000 UK influenza season,
which had an IPR of just over 0.8% and a case fatality rate CFR of 4.8%. However, the influenza
IPR is likely to be underestimated and the IFR significantly less than the CFR due to the absence
of routine serological surveillance.

It is worth emphasising the significant problems facing any researcher with objectives like
ours. There is a severe lack of transparency and important data sets are inaccessible. To support
open debate these should be treated as a public good and shared openly throughout the scien-
tific community in a timely manner.

Note

1. Note that these rates can either be presented as percentages (ranging from 0 to 100%) or as probabilities
(ranging from 0 to 1) as done in the formulas here.
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Appendix: Bayesian network model

f TPR, FNR, . . . :, IFRð Þ ¼ f TPRFNRð Þf FNnFN, FNRð Þ�
f TNRFPRð ÞfðFPjnFP , FPRÞfðPjIPR, FNR, FPRÞ�

fðPSjnS , PÞf CZ, Pð ÞfðRjC, RCCÞfðIFRjF, CÞ f IPRð Þf Zð ÞfðRCCÞ
False Positive Rate : FPR � Uniformð0, 1Þ
False Negative Rate : FNR � Uniformð0, 1Þ

Specificity ðFPRÞ ¼ 1� FPR

Sensitivity ðTPRÞ ¼ 1� FNR

Testing number of false positives : FP � Binomial nFP , FPRð Þ
Number of FP tests : nFP

Testing number of false negatives : FN � Binomial nFN , FNRð Þ
Number of FN tests : nFN

Infection prevalence rate : IPR � Uniform 0, 1ð Þ
Positive test result rate : P ¼ IPRð1� FNRÞ þ ð1� IPRÞFPR

Number of survey tests : nS
Survey number of positive tests : PS � BinomialðnS , PÞ

Community population size : Z � Uniformð1, 1E10Þ
Number of reported Covid19 cases in the community : RCC

Community number of infections : C � maxðRCC, Binomial Z, IPRð ÞÞ
Ratio of infected cases to reported cases : R ¼ C

RCC
Fatalities : F

Infection Fatality Rate : IFR ¼ F=C

Virtual evidence for England and Wales: Fatalities : Fobs � Triangularð5000, 10000, 30000Þ
Virtual evidence for Spain: Fatalities : Fobs � Triangularð6000, 12000, 35000Þ
Virtual evidence for Santa Clara, USA study: PSobs � Uniformð1, 50Þ
Virtual evidence for Chelsea, USA study: PSobs � Uniformð1, 64Þ
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