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A Blind Source Separation Framework for Ego-Noise
Reduction on Multi-Rotor Drones

Lin Wang

Abstract—A coustic sensing from a multi-rotor drone is heavily
degraded by the strong ego-noise produced by the rotating motors
and propellers. To address this problem, we propose a blind source
separation (BSS) framework that extracts a target sound from noisy
multi-channel signals captured by a microphone array mounted on
a drone. The proposed method addresses the challenging problem
of permutation alignment, in extremely low signal-to-noise-ratio
scenarios (e.g. SNR < —15 dB), by performing clustering on the
time activities of the separated signals across frequencies. Since
initialization plays an important role to the success of clustering,
we propose a pre-processing algorithm which uses time-frequency
spatial filtering (TFS) to generate a reference to pre-align the
permutation. The pre-alignment not only improves the perfor-
mance of clustering and permutation alignment, but also solves the
target-channel selection problem for BSS. The proposed method
integrates the advantages of both TFS and BSS. Experimental
results with real-recorded data show that the proposed method is
capable of processing the audio stream continuously in a blockwise
manner and also remarkably outperforms the state-of-the-art.

Index  Terms—Acoustic sensing, reduction,

microphone array, multi-rotor drone.

ego-noise

1. INTRODUCTION

ULTI-ROTOR drones equipped with audio interfaces
have been increasingly attracting interest for acoustic
sensing in search and rescue, wildlife monitoring, broadcasting,
and human-robot interaction [1]-[6]. However, the rotating mo-
tors and propellers generate strong ego-noise, which degrades
acoustic sensing [7]. Since the microphones embedded on the
drones are much closer to the motors and propellers than target
sound sources, the target sound is heavily masked by the ego-
noise and the signal-to-noise ratio is extremely low (e.g. SNR
lower than —15 dB) [8]. Sound enhancement and ego-noise
reduction are therefore necessary to extract the target sound
before further processing.
Microphone arrays have been widely used for sound enhance-
ment and source localization [9], [10], but most algorithms are
designed for indoor settings with relatively high SNR at the
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microphones, and thus are unsuitable for drone-based applica-
tions [11], [12]. Several microphone-array drone sound datasets
have been made publicly available recently [13], [14]. The
acoustic sensing performance of traditional microphone-array
algorithms usually drops significantly due to the extremely
low SNR, the time-frequency dynamics of the ego-noise, and
additional natural wind noise [8].

Time-frequency spatial filtering (TFS) [15]-[17] and blind
source separation (BSS) [8], [16] represent the state of the art for
ego-noise reduction on drones. Assuming the direction of arrival
(DOA) of the target sound to be known, TFS works robustly in
low-SNR scenarios by exploiting the time-frequency sparsity of
the acoustic signals. A drawback of TFES is its remarkable drop
in performance when the DOA of the target sound is close to
that of the source of ego-noise [17]. The application of BSS to
ego-noise reduction is straightforward as most BSS algorithms
are based on independent component analysis (ICA) and thus do
not require the knowledge of the locations of the microphones
and the target sound source [18], [19]. One study suggested that
ICA can better separate the ego-noise and the target sound than
TFS at individual frequency bins [16]. However, the inherent
permutation ambiguity [18] is a very challenging problem in
case of extremely low SNRs.

In this paper, we propose an ego-noise reduction framework
that combines blind source separation, time-frequency spatial
filtering, and single-channel spectral post-filtering to jointly
enhance a target sound. Specifically, we employ ICA to sep-
arate the target sound and the ego-noise at individual frequency
bins and then solve the permutation ambiguity problem with a
two-stage permutation alignment scheme. Finally, we employ
single-channel post-filtering to further enhance the target sound
by suppressing the residual stationary noise. The main novelty of
the framework is the two-stage permutation alignment scheme
that takes advantage of the spatial filtering capability of the
TES algorithm. In the first stage, we employ TFS to enhance
the sound from a target DOA, outputting a full-band signal.
In the second stage, we use the TFS output as a reference to
pre-align the ICA outputs across frequencies, and further im-
prove the permutation with a clustering algorithm, which groups
the separated frequency components based on their temporal
activities.

The proposed framework, which is robust in low-SNR sce-
narios by integrating the advantages of TFS and BSS while
compensating their weaknesses, has two main benefits. First,
the TFS algorithm can already enhance the microphone signal
remarkably with a full-band output that is free of ambiguities.
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TABLE I
ALGORITHMS FOR DRONE EGO-NOISE REDUCTION

Category Algorithm Reference
Supervised Template-based [20]
Reference-based [31, [28], [29]
Deep learning [30]-[32]
Beamforming [34]-[39]
. Blind source separation [8], [16]
Unsupervised . . .
Time-frequency spatial filtering  [16], [17]
Hybrid method Proposed

This provides a desirable initialization for the subsequent clus-
tering algorithm, leading to improved permutation alignment
performance. Second, by aligning to this TES reference, the
proposed method can extract the target sound to a desired
channel (e.g. the first output channel), which naturally solves the
target-channel selection problem. This is an important benefit
when employing a blockwise scheme for processing signals
continuously in practice. After solving the permutation ambigu-
ity and the target-channel selection problems, BSS outperforms
TFS in noise suppression.

II. RELATED WORK

A. Ego-Noise Reduction

The ego-noise reduction literature can be separated into su-
pervised and unsupervised approaches (Table I).

Among the supervised approaches, template-based methods
build a noise template database from which the spectrum [20]
or the correlation matrix [21] of the ego-noise can be estimated
by monitoring, using for example a motor-speed sensor, the
flight status of the drone. The estimated ego-noise information
(the fundamental frequency of the harmonic component of the
ego-noise is proportional to the rotating speed of the motor)
can be used to design single-channel spectral filters [20] for
ego-noise reduction, and can be used for noise-robust source
localization [21]. Template-based methods are also applied to
ground-robot ego-noise suppression [22]-[25]. To avoid using
monitoring sensors, non-negative matrix factorization can be
employed to learn noise bases from pre-recorded training data
and to estimate, online, the noise spectrum from the noisy
recording. This approach was applied to ground robots [26],
[27], but its application for drone ego-noise, which is much
stronger, has not been reported yet. Reference-based methods
use (reference) microphones close to motors to pick up the ego-
noise and then cancel it adaptively from the signals captured by
the microphone array [3], [28], [29]. While effective, the need for
dedicated monitoring sensors limits the versatility of supervised
approaches. Deep learning approaches are also being applied
to ego-noise reduction on drones, but are still in a preliminary
stage [30]-[32]. A comprehensive survey on ego-noise reduction
on both ground and drone robots was presented in [33].

Unsupervised approaches reduce the ego-noise using only
the microphone array through beamforming [34]-[39], time-
frequency spatial filtering [16], [17], or blind source separa-
tion [8], [16]. Delay-and-sum fixed beamforming has limited
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performance in improving the SNR [34], [35]. Adaptive beam-
forming performs better, but requires the knowledge of the corre-
lation matrix of the ego-noise, which is difficult to estimate when
the noise is nonstationary [36]-[39]. Time-frequency spatial
filtering (TES) performs ego-noise reduction by exploiting the
time-frequency sparsity of audio signals to estimate the DOA of
the sound at each time-frequency bin and then formulate a spatial
filter based on these instantaneous DOA estimations [16]. This
approach is suitable for drone sound processing as the harmonic
components of the ego-noise have concentrated energy peaks at
isolated harmonic frequencies, and likewise, target sounds such
as human speech or emergency whistles also consist mainly of
harmonic components [40]. However, there are several issues
to be addressed when deploying this approach in practice. First,
TFS requires the knowledge of the target sound direction and the
location of the microphones to estimate the DOA of the sound
at each time-frequency bin and calculate the correlation matrix
of the target sound. Recently, several sound source localization
algorithms were proposed for the drone platform [14], [15],
[41]-[45]. Second, TFS is sensitive to the direction of the target
sound. If the target sound comes from a direction close to
that of the ego-noise, the time-frequency bins belonging to the
ego-noise might be erroneously detected as target sound, thus
degrading the noise suppression performance [17].

Blind source separation (BSS) performs sound enhancement
by treating the target and noise signals equally and by separating
the sources from the mixed signals captured by the array of
microphones [18]. The application of BSS to ego-noise reduc-
tion is straightforward as the locations of the microphones and
the target source are not needed [8], [16]. BSS consists of two
key components: independent component analysis (ICA) and
permutation alignment. ICA, which is applied per frequency bin,
exploits the statistical independence between source signals to
estimate a demixing matrix [19]. This demixing matrix can be
interpreted as the inverse of the acoustic mixing network and can
recover the source signals up to permutation ambiguities: each
source can be extracted individually from the observed mixture
but with a random order in the output channels. A subsequent
permutation alignment procedure is needed to group the individ-
ual signals that belong to the same source so that the separated
frequency-domain signals can be correctly transformed back
to the time domain. In general, three strategies exist to tackle
the permutation ambiguity problem, based on inter-frequency
dependency [46]-[49], sound source locations [50]-[53], and
independent vector analysis [54], [55], respectively.

While ICA-based BSS can suppress directional ego-noise ef-
fectively, there are still several issues that remain unsolved when
using BSS in practice. First, permutation ambiguity becomes a
crucial and challenging problem in low-SNR scenarios, espe-
cially when the microphones outnumber the sources, leading to
an over-determined mixture [56], [57]. Second, BSS typically
works as a batch process and thus requires the acoustic mixing
network to remain stationary for a certain interval, i.e. with
physically static sound sources and microphones. In order to pro-
cess the data continuously and adapt to dynamic environments,
blockwise processing is usually required [10]. How to improve
the performance with a short processing block is still an open
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TABLE II
APPROACHES THAT USE THE DIRECTIONS OF THE SOUND SOURCES
TO IMPROVE BLIND SOURCE SEPARATION

Reference
[61]-[63]

[52], [53], [64]
[50], [65]-[69]
[70]-[74]

[75]1, [76]

Approach

Pre-processing

Initialization

Informed permutation alignment
Geometrical constraint
Post-processing

problem. Third, the target sound is extracted randomly into one
of the output channels, leading to the target-channel selection
problem. This problem is also referred to as the outer (channel-
wise) permutation ambiguity, in contrast to the inner (bin-wise)
permutation ambiguity. While the inner permutation problem
has been investigated intensively, the outer permutation problem
has been relatively less addressed. While several algorithms
have been proposed, e.g. by exploiting prior knowledge on the
target sound location [58], [59], target-channel selection is still
challenging in adverse acoustic scenarios where the reliability
of the above-mentioned information is significantly degraded.
In [8], [16], the authors skipped this problem by assuming the
target channel to be known, which is not feasible in practice.

In summary, BSS using ICA provides better noise suppression
performance at individual frequency bins, but has a severe per-
mutation ambiguity problem in the case of low SNR and the case
of over-determined source separation. How to select the target
channel is also a challenging problem. TFS does not have the
permutation ambiguity problem, but has relatively worse noise
suppression performance, and the performance is sensitive to
the DOA of the incoming sound.

B. BSS With Known Sound-Source Directions

Approaches that improve source separation by exploiting the
direction of the sound sources are based on pre-processing, ini-
tialization, informed permutation alignment, geometrical con-
straints, or post-processing (Table II).

Pre-processing approaches formulate a set of beamformers,
pointing at the sound sources, as a pre-processor of BSS by
enhancing the sound sources and reduce reverberation in the
mixture [61]-[63]. Initialization approaches formulate a set
of null beamformers, each pointing at the sound sources, as
an initialization of ICA [52], [53], [64]. This can accelerate
the convergence of ICA and can partly solve the permutation
ambiguity problem. The location of the sound sources can be
used for informed permutation alignment as frequency-wise
contributions from the same source are likely to come from
the same direction. Geometrically constrained BSS imposes a
geometrical constraint on the ICA cost function to help solve the
permutation ambiguity problem and to extract the sound from
a desired direction only [70]-[74]. Post-processing approaches
use time-frequency masks to further improve the ICA outputs,
but produce artifical musical noise [75], [76].

Unlike the above approaches, the proposed method solves
the bin-wise permutation ambiguity and target-channel selection
problem jointly by combining TFS and BSS. We formulate

2525

(a)

Fig. 1. Setup for acoustic sensing from a multi-rotor drone. (a) Illustration
of a hovering multi-rotor drone equipped with a microphone array capturing a
target sound. (b) Side and (c) top view of the platform consisting of a circular
microphone array mounted on the drone.

a spatially-informed filter to enhance the target sound and to
provide a reference for permutation alignment. The reference
provides a better initialization to the clustering-based permu-
tation alignment algorithm, thus supporting the improvement
of the alignment results. Moreover, by aligning to this refer-
ence, the proposed method naturally solves, as a by-product,
the target-channel selection problem. The idea of permutation
alignment using a reference was presented in [60], which is
based on a fixed-beamformer output as a reference to align the
permutation. We differ from previous works in how we generate
the reference signal with a time-frequency spatial filter and
the way we align permutations, by cascading reference-based
and clustering-based schemes. In fact, the performance of a
fixed-beamformer is very limited for ego-noise reduction (e.g.
only few dB SNR improvement with eight microphones [16])
and is not a good reference in extremely-low SNR scenarios. The
proposed method is a semi-blind approach as it assumes the tar-
get DOA to be known. Compared to geometrically constrained
BSS [70]-[74], which incorporates the DOA information in the
ICA procedure to solve the permutation ambiguity problem, we
decompose the task into multiple stages (i.e. ICA and permuta-
tion alignment) that offer more flexibility to optimize individual
components and improve the performance in challenging acous-
tic scenarios.

III. PROPOSED ALGORITHM
A. Problem Definition

Let a circular array with M microphones mounted on a
multi-rotor drone capture the sound emitted by a target (Fig. 1).
The locations of the microphones in a 2D coordinate system
are R = [r1,..., 7], where 7., = [Fy0, 7y |7 is the location
of the m-th microphone and the superscript (-)T denotes the
transpose operator. The target sound source is assumed to be
in the far field and emit sound with DOA 6. The microphone
signals, (n) = [x1(n), ...,z (n)]T, contain both the target
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Fig. 2. Block diagram of the proposed framework for ego-noise reduction, which consists of three main processing steps: time-frequency spatial filtering, blind
source separation, and single-channel spectral post-filtering, which are highlighted with orange, blue and green shadows, respectively. The time-frequency spatial
filtering block enhances the target sound preliminarily assuming its DOA to be known. The output of the time-frequency spatial filtering provides a reference to help
solve the permutation ambiguity problem of the blind source separation block, which can better enhance the target sound. The single-channel spectral post-filtering

block further reduces stationary noise, whose PSD can be estimated with a single-channel noise tracker.

sound, s(n) = [s1(n), ..., sy (n)]T, and the ego-noise, v(n) = cross correlation (GCC) function [77]
[v1(n),...,vpm(n)]T, ie. (R, 1,6)
z(n) = s(n) +v(n), (D
or, written in the short-time Fourier transform (STFT) domain: =R ﬁ/[: Ko (8 D) Xy (£ 1) gf2m T (m1,m2,6) ¥
’ ~ 2 TRan (6D Ko ) ’

X (k1) = 8S(k, )+ V(k,1), 2)
where X (k,1)= [X1(k,1),..., Xa(k,D]T, S(k,1)= [S1(k,1)
voo s S (kD) V(kD = [Va(k, D), ..., Vg (k)] k and [
are the frequency and frame indices, respectively. Let K and
L be the total number of frequency bins and time frames in a
processing segment, respectively.

Given x(n), R and 64, we aim to design a spatial filter
that extracts the target sound from the noisy recording. To this
end, we propose a framework that combines time-frequency
spatial filtering (TFS), blind source separation (BSS) and spec-
tral post-filtering (Post) to suppress the ego-noise (Fig. 2). In
this framework, ICA blindly separates the target sound and the
ego-noise at individual frequency bins, while TFS enhances the
sound from the target DOA, which is assumed to be known. The
ICA outputs across frequencies are pre-aligned by using the TFS
output as a reference, and then the permutation is improved with
a clustering algorithm. The details of each algorithmic step will
be described in Section. III-B to III-F.

B. Time-Frequency Spatial Filtering

The TFS algorithm works effectively for sound processing
on drones since it can well exploit the time-frequency sparsity
of the speech signal and the ego-noise [16]. It estimates the
instantaneous DOA at each time-frequency bin, which is then
used to estimate - given the target DOA - the correlation matrix
of the target signal and construct the spatial filter. Since the
algorithm estimates the spatial information at individual time-
frequency bins, we call it time-frequency spatial filtering. We
summarize the algorithm [16] as below.

Given the microphone signals X (k,[) and the microphone
location R, the instantaneous DOA of the sound at each time-
frequency bin can be estimated by building a local generalized

mi#Eme

where fi denotes the frequency at the k-th bin, the super-
script (-)* denotes the complex conjugation, and the operator

M{-} denotes the real component of the argument. The term

T(my, ma,0) = Irmy —Te ”;”r"”l "ol denotes the delay between

two microphones m; and mgy with respect to the sound coming
from 6, where c is the velocity of sound and 7y is the location
of the far-field sound source from direction 6 (in practice we set
179 = 10 m to simulate a far-field case). The instantaneous DOA
of the sound at the (k, [)-th bin is determined as

O (k,1) = argmax vy (k,1,6).

6c(-180°,180°]

“

To formulate a spatial filter pointing at a target direction 64,
we first measure the closeness of each time-frequency bin (k, {)
to 0. Assuming the DOA estimate to be Gaussian-distributed
with mean 6, and standard deviation o4, the closeness measure
is defined as

Cd(/ﬂ, l7 Hd) = exp <—

(O (R, 1) — Qd)2> ’ )

202
where the scalar ¢;4(+) € [0, 1]. The higher c,4(+), the higher the
confidence that the sound at the (k,!)-th bin arrives from the
direction 6.

We calculate the correlation matrix of the target sound as

L
Boulh,100) = 1 D0 Ak LODX (K DX (R D), (©)
=1

where the closeness measure cq(k,[,0,) indicates the contri-
bution of the (k,)-th bin to the correlation matrix. With the
target correlation matrix, we formulate a standard multichannel
Wiener filter as [78]

~—1 ~
wTFS(k’l>0d) = (Pzr(k7l)¢ssl(k7l79d)> (7)
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where ¢, (k,1,04) is the first column of @, (k,l,0,),
and ®,, (k1) = 1 Zle X (k, 1) X" (k, 1) is estimated directly
from the microphone signals. Finally, the sound coming from 6,
is extracted as

Yaes(k, 1, 04) = wh(k, 1, 02)x (K, 1), (8)

where the superscript (-) denotes the Hermitian transpose.

C. Independent Component Analysis

BSS involves ICA and permutation alignment [18]. ICA is
applied per frequency bin to estimate a demixing matrix, which
can recover the source signals up to permutation ambiguities.
A subsequent permutation alignment procedure is employed to
group the individual signals that belong to the same source so that
the separated signals in the frequency domain can be correctly
transformed back to the time domain.

We apply an M x M ICA directly to the M-channel input,
assuming an M x M mixing network with M sources [57].
These M sources contain a target sound source component S
and M’ = M — 1 noise components Vi, ..., Vi, consisting
of harmonic noise, diffuse noise and uncorrelated noise.! The
M -channel microphone signal can thus be written in the time-
frequency domain as

X (k,1) = H(k, U (k. 1), ©)

where U (k,1) = [S(k,1), Vi (k,1), ..., Vap(k,1)]T is a vector
containing the M sources, and H (k,1) is the M x M mixing
matrix between the M sources and M microphones.

We choose a widely used algorithm, Infomax [79], for the
separation task, which estimates the demixing matrix iteratively
by using

Y (k1) <« W (k)X (k1)

W (k) « W (k) + 1 (T = EQU(Y (b, 0)Y" (k,)}) W (k)

(10)
where the operator E{-} denotes mathematical expectation
(which in practice can be approximated by sample mean over
time frames), 7 is a step-size parameter, ¥(-) is a nonlinear
function that measures the mutual information of the separated
outputs, I is an identity matrix of size M x M. After conver-
gence, the output Y (k,1) = [Yi(k,1), ..., Yas(k,1)]" recovers
the source signals up to scaling and permutation ambiguities,
ie.

Y (k,1) = A(k)D(k)U (K, 1), (11)

where D(k) is an M x M permutation matrix and A (k) is an
M x M scaling matrix at the k-th frequency bin.

D. Reference-Based Permutation Alignment

We use the TFS output Yrgs(k, ) as a reference to pre-align
the permutation of ICA outputs Y (k, 7). This is achieved by
comparing the similarity between the components in Y (k,1)

11t should be noted that, in practice, the M — 1 noise sources are unknown.
However, this does not affect the processing result since only the target sound-
source is of interest.
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and Yrgs(k, ). For two sequences Y;(k, 1) and Yyps(k, 1), their
similarity is measured by the correlation coefficient of their
amplitudes, ~y;, which is defined as [80]

S kDR Dl
VIR Wik, DS Yies (k. D)2

The index of the channel that is closest to the reference is
determined as

(k) 12)

Itps(k) = arg maxw(kz). (13)

The permutation is then realigned by swapping the Itrs channel
and the first channel, i.e.
I
[Itgs, ..., 1, ] <= [1,..., Itps, - |. (14)
The demixing matrix and the output after permutation alignment
are updated similarly as

W (k) < W (k), (15)
Y (k1) <5 Y (k, D). (16)

In this way, the frequency bins that belong to the target sound
are roughly grouped to the first channel. While this group still
contains many frequency bins from the ego-noise, it provides a
good initialization for the clustering-based permutation align-
ment, which aims to further remove the ego-noise components
from the first channel.

E. Clustering-Based Permutation Alignment

We align the permutation by performing a clustering proce-
dure on the time-activity sequences of the separated signals [49].
Let us interpret A(k) = Wﬁl(k) =lai(k),...,an(k)] as the
mixing matrix, with a;(k) being an M x 1 vector describing
the transfer functions between the separated source Y;(k, 1) and
the M microphones. We use 'uk(l) to denote the time-activity
sequence of Y;(k, ) at the frequency k [80]. The definition is

a7)

where || - || denotes the 2-norm operation. Usually v** and v*2,
the time-activity sequences at two frequencies, tend to show high
dependency if 7 and j are from the same source.

Let II denote the permutation of the M outputs, i.e. the
projection from the original order [1,..., M] to a new order
[II(1),...,II(M)], and let IT denote a set of all possible projec-
tions. The permutation is aligned by clustering the time-activity
sequences from all frequency bins and all output channels into
M groups, maximizing the correlation between M centroids and
their associated group members. The clustering is implemented
as an iterative expectation maximization procedure, where in
each iteration the centroids and the permutation are updated
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N (18)
I, = ]'Ca 1=II(m ) vk
k arﬁgrl[axg{p(vz em) lietiom) }

where II; denotes the permutation at the frequency k;
¢y, ...,cy denote the estimated centroids; and p(vy,vy) de-
fines a correlation measure between the two sequences. After
convergence, the demixing matrix is permutated as

W (k) &5 W (k), (19)

Finally, we correct the scaling ambiguity with a back projec-

tion [81]

W (k) = diag (W 1(k)) W (k). 20)

where the operator diag(-) retains only the diagonal elements of
a matrix.
The permutation aligned outputs are represented as

Y (k1) = W(k)X (k,1) = [Yi(k,1),..., Y (k,D]T, (21)

where the first channel contains the target sound.

F. Post-Filter

We apply a spectral post-filter to enhance the first channel,
i.e. the target sound. In the well-known Wiener filter [82], the
target signal is enhanced as

where the spectral gain is computed as
PY (kal) 7PN(kvl)
k1) = - min | » 2
G(k,1) max( Py (5.1) ,G (23)

where G iy is the minimum gain to reduce distortions; Py, is
the power spectral density (PSD) of Y7; Py is the noise PSD
estimated with a single-channel noise PSD tracker [83].

G. Remarks

While the proposed framework consists of several algorithmic
blocks, the key idea is the two-stage permutation alignment
scheme that combines TFS and BSS to address the permutation
ambiguity problem. ICA can better separate the target sound
and the ego-noise at individual frequency bins, but suffers from
the permutation ambiguity problem. TFS can enhance the noisy
signal through a DOA-informed spatial filter, with a full-band
output, which is free of permutation ambiguity. Using TFS as
a reference can provide a good initialization of the clustering
algorithm, and thus can better solve the permutation ambiguity
problem. The proposed framework tends to outperform TFS and
BSS (which employs a randomly initialized clustering algorithm
for permutation alignment) by integrating the advantages of the
two and complementing their respective weakness.

Due to permutation ambiguities, for a traditional BSS, the
target sound usually appears randomly at one of the M output
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channels. How to detect this target sound channel reliably is
still a challenging problem. One possible solution would be
to perform source localization at each output channel [50] and
choose the one with the highest coherence value, i.e. the most
directional one. For the proposed method, the output selection
can be naturally implemented, as the target sound is always
extracted into the first output channel. This is an additional
benefit of the proposed method.

TFES requires the knowledge of the DOA of the target sound,
which can be estimated with sound source localization algo-
rithms [15], [44], or with an onboard camera and an object
detector [14], [43]. While the proposed method considers one
source only, it can be extended to multiple sources as long as
their DOAs are known. For instance, an onboard camera can
be used to localize multiple potential human speakers [43]. For
speech enhancement, we can steer multiple TFS filters towards
each sound source, whose output is then used to initialize the
clustering algorithm for BSS permutation alignment.

While the proposed method assumes a static acoustic envi-
ronment, the drone and the sound sources often move in the
environment. There is a trade-off between the spatial filtering
performance and the robustness to acoustic dynamics when
determining the block size in blockwise processing. The impact
of the block size on performance is discussed in the experiments
(e.g. Fig. 8 and Fig. 10).

The proposed method assumes that the microphones M out-
number the sources N, which include the target sound sources
and the ego-noise sources. This over-determined case can be
treated as a pseudo-determined case [57], where an M x M ICA
is applied to separate the sources in the mixture. In practice, an
under-determined case (/N > M) may occur and the proposed
method might not be able to deal with this scenario robustly,
as the condition of formulation an M x M ICA does no longer
hold. However, we expect the algorithm to be able to extract
the target sound if it is stronger than other noise sources. An
in-depth investigation on this issue is left for future work.

IV. EXPERIMENTAL RESULTS

In this section we present the evaluation setup, the datasets,
the evaluation measures, the results of the proposed algorithm
and its ability to perform continuous processing, as well as the
performance for permutation alignment, global speech enhance-
ment and robustness under DOA estimation errors.

A. Evaluation Setup

We compare blind source separation (BSS) [49], time-
frequency spatial filtering (TFS) [16], the proposed combination
of the two methods (TFBSS), and post-filtering (Post). We in-
clude in the comparison two additional algorithms as reference:
the BSS algorithm that assumes that permutation ambiguities
are perfectly solved by referring to the original source signals
(BSSnp) [16] and the BSS algorithm with the permutation ambi-
guities solved via pre-alignment (Re£BSS), cf. Eq. (14). We also
compare with two traditional beamforming algorithms: fixed
delay-and-sum beamformer (FBF) and adaptive beamformer
(ABF). FBF is implemented assuming the target DOA to be
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Fig. 3. Spatial likelihood of the ego noise and the direction of arrival (DOA)
of the target sounds, 67 and 62, in Scenario S1.

known. ABF is implemented as a multichannel Wiener filter
with the noise correlation matrix assumed to remain constant
and estimated in advance from a segment of ego-noise of 20
seconds [16].

We set the STFT frame length as 512, with half overlap, for
all the algorithms. For TFS, we assume the DOA of the target
sound to be known. We set o4 = 10° in (5), as suggested in
[16], which determined this value as a trade-off between spatial
discriminability and robustness to DOA estimation errors. BSS
employs the clustering algorithm, as presented in Section. III-E,
alone for permutation alignment. Since BSS has multichannel
outputs, we solve the channel selection problem assuming the
source signal to be known (which however is not feasible in
practice). For Post, we set Gyyin = 0.1 in (23).

B. Datasets

To validate and compare the proposed method, we use three
self-collected datasets and DREGON [13], an external dataset.

To collect data we used a hardware prototype (Fig. 1) com-
posed of a circular microphone array with eight omnidirectional
lapel microphones mounted on a 3DR IRIS quadcopter [8]. The
diameter of the array is 20 cm and its distance from the top
side of the drone is 15 cm. The specific mounting position of
the array helps to avoid the influence of the self-generated wind
blowing downwards from the propellers. The signals are sam-
pled simultaneously at 44.1 kHz (downsampled to 8 kHz before
processing) with a Zoom R24 multichannel audio recorder. A
tripod holds the quadcopter at a height of 1.8 m.

We consider three setups: S1, §2 and S3. S1 is a
6 m X 5m x 3 mroom with a reverberation time of around
200 ms. A loudspeaker is 3 m away from the drone and at
a height of 1.3 m, playing speech signals as the target sound.
The drone and the loudspeaker are physically static during the
recording. The ego-noise and the speech are recorded separately.
The speed of the motors varies randomly during the recording
of the ego-noise. The speech is recorded at two directions with
DOAs 6, = 160° and 65 = 20°. The noise and the speech are
mixed at a varying input SNR from —25 dB to —5 dB, with an
interval of 5 dB. Fig. 3 depicts the spatial likelihood function for
a 15-second segment of ego-noise and indicates the locations
of the two target sounds, where 60, is close to the DOA of
one ego-noise while 6, is far from the ego-noise. The spatial
likelihood is computed from the histogram of the DOA estimates
at local time-frequency bins (cf. Eq. (4)), normalized with the
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Fig. 4. Visualisation of S2 (a) and S3 (b), and processing results obtained by
Post (Section. IV-D). In both scenarios, the speech is not visible in the input
spectrograms but can be identified in the output spectrograms.

highest frequency count [17]. We can observe four peaks of
the spatial likelihood, corresponding to the locations of the four
motors (ego-noise sources). The shape of the spatial likelihood
function is time-varying and the amplitudes of the four peaks
also vary with the power applied to each motor [17]. The peaks
at £150° are weaker than the other two because the two front
motors are closer to the microphones than the two back motors,
and thus the time-frequency bins are dominated by the ego-noise
from the front side.

The top two panels in Fig. 4 depict S2 and §3. In §2 and
&3 the sound from the drone and the human are simultaneously
recorded. S2 is an office environment with reverberation time
400 ms. The drone operates at hovering status (i.e. with a power
that keeps the drone hovering) and the speaker stands at a 4 m
distance. S3 is outdoors, with a low reverberation density. The
drone operates at hovering status and the speaker talks at a 6 m
distance.

The DREGON dataset [13] was collected with a hovering or
flying drone with an 8-microphone cubic array (whose side is
about 10 cm) mounted below the body of the drone. The array
thus received a stronger wind noise from the propellers. The ego-
noise in the DREGON dataset is different from our own datasets
and it is useful to evaluate the performance of the algorithms.
The cubic array allows dealing with sound sources in 3D. The
locations of the sound sources relative to the microphone array
are also provided.

C. Performance Measures

We quantify the permutation alignment and sound enhance-
ment performance. We evaluate the success of permutation
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alignment with the permutation error ratio, F,,, defined as

g, = e

P K ’

where K is the number of bins with erroneous permutation. The

correct permutation is obtained by assuming the clean speech
and clean ego-noise at the microphones to be known [49].

We evaluate the target-sound enhancement in terms of noise
reduction, target speech distortion and global perception. We use
signal-to-noise ratio (SNR) to measure the noise reduction per-
formance, assuming the speech s(n) and the noise component
v(n) at the microphones to be known [82]. Given a spatial filter
w(n), which is a time-domain version of w(k,[), the spatial
filtering procedure is written as

(24)

(25)
=ys(n) + yu(n) = w(n) *x s(n) + w(n) x v(n),

where ‘x’ denotes the convolutive filtering procedure and L, is
the length of the filter w(n); ys(n) and y, (n) are, respectively,
the speech and noise components at the spatial filtering output.
The SNR is calculated in speech-active periods N as

en, V20)

Given the input and output SNR of a spatial filter being SNR;,
and SNR,,, the SNR improvement is defined as

SNRjmp = SNRy — SNR;y.

SNR = 101log,, (26)

27

For the target speech distortion introduced by spatial filtering,
we compute the cepstral distance between the speech component
ys(n) atthe spatial filtering output and the reference clean speech
sr(n) (e.g. the speech component at the first microphone). We
refer to this measure as speech cepstral distortion (SCD), which
is defined as [85]

SCD = cd(ys, s,), (28)

where cd(-) computes the cepstral distance (a non-negative
value). The lower SCD, the lower the distortion.

For global perception, we compute the short-time objective
intelligibility (STOI) of the processed output y(n), with refer-
ence to the clean speech s,.(n) [84]:

STOI = stoi(y, sy), (29)

where stoi(-) computes the intelligibility, which lies in [0, 1].
The higher STOI, the better the intelligibility of the speech.

D. Contribution of Each Step and Continuous Processing

1) Intermediate Processing Results: Fig. 5 shows the spec-
trograms of the intermediate processing results of the proposed
method for a 6-second recording with an input SNR —10 dB
from S1, with the target sound coming from 6; (close to the
ego-noise source). Table III lists the corresponding results ob-
tained by the five algorithms involved: spatial filtering (TFS,
BSS, RefBSS and TFBSS) and post-filtering (Post).
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Fig. 5. Intermediate processing results by the proposed method. The blue
arrows indicate the signal flow: RefBSS combines BSS and TFS results for
permutation pre-alignment; TFBSS improves the permutation of RefBSS with
a clustering algorithm; Post applies a post-filter to further enhance the target
sound.

TABLE III
OBJECTIVE EVALUATION MEASURES CORRESPONDING TO FIG. 5

Input TFS BSS RefBSS TFBSS Post
T SNR [dB] 00 52 59 T4 04 5.1
1 SCD 0 42 52 40 35 42
1 STOT 049 066 057 068 072 073
| Permutation /630 132 10.8 /

error ratio [%]

It can be observed in Fig. 5 that the target sound is masked by
the ego-noise in the input. TFS improves the target sound but
still with residual noise at many frequency bins, thus achieving
the second-lowest SNR (5.2 dB) and second-highest distortion
(SCD 4.5) among the four spatial filtering algorithms (see
Table III). BSS achieves slightly higher SNR than TFS, but
suffers from severe permutation ambiguities. In this example,
only the sound in the low-frequency band is recovered, with
permutation error as high as 63.0%. As a result, BSS achieves
the highest distortion (SCD 5.2). RefBSS uses the full-band
output from TFS to pre-align the permutation across frequen-
cies and can recover the target sound in both low and high
frequency bands, thus achieving much lower distortion (SCD
4.0) than BSS. However, the pre-alignment procedure introduces
additional harmonic noise, which remains in the TFS output,
into the permutation result. Consequently, Re £BSS achieves the
lowest SNR (1.4 dB) among the four spatial filtering algorithms.
TFBSS employs a clustering algorithm to further improve the
permutation of RefBSS, leading to the highest SNR (9.4 dB)
and the lowest distortion (SCD 3.5) among the four spatial
filtering algorithms. The residual noise in RefBSS is effec-
tively removed by TFBSS. For instance, some harmonic noise
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Fig. 6. Processing a long segment of signal continuously in a blockwise
manner. The block size is 6 seconds. The SNR and STOI of the input and output
(Post) are compared for each processing block.

residuals presented in RefBSS spectrogram, as indicated with
a black eclipse, disappear in the TFBSS spectrogram.

The permutation error of BSS, 63.0%, is reduced to 13.2% by
RefBSS and further to 10.8% by TFBSS (Table III). Finally,
Post applies single-channel noise reduction to further suppress
stationary noise, improving the SNR of TFBSS by 5.7 dB, at the
cost of a increased SCD from 3.5 to 4.2. For global perception,
Post achieves the highest STOI (0.73), followed by TFBSS
(0.72), RefBSS (0.68) and TFS (0.66), whereas BSS achieves
the lowest STOI (0.57).

2) Continuous Processing: TFBSS extracts the target sound
to the first channel and thus naturally solves the channel se-
lection problem, which is essential for processing long signals
continuously in a blockwise manner.

To verify this, we generate a testing signal of 290 seconds
using the data from S1 with the target sound from 61, and process
the signal continuously in a blockwise manner, with block size 6
seconds and step size 6 seconds. Fig. 6 compares the input SNR
at the microphone and the output SNR achieved by Post at
each processing block: while the input SNR is time-varying, the
proposed algorithm can always improve the SNR. The average
input and output SNRs across all blocks are —11.8 dB and
9.6 dB, respectively. The average input and output STOIs are
0.38 and 0.62, respectively.

We further take the signals recorded in S2 and S3 and process
them in a blockwise manner, with block size 6 seconds and step
size 6 seconds. Since the human speech and the ego-noise are
recorded simultaneously, the SNR measure cannot be computed.
Fig. 4 shows sample input and Post output waveforms and
10-second long spectrograms. The time-domain waveform and
the time-frequency spectrum suggest that the ego-noise is sup-
pressed and the speech is extracted. A demo corresponding to
Fig. 4 and Fig. 6 is available online.?

E. Permutation Alignment Performance

We compare the permutation alignment performance of BSS
and TFBSS for a varying input SNR and signal length. We use
the same 290-second signal as in Fig. 6 and process the signal
in a blockwise manner. The block size varies from 2 seconds
to 10 seconds, with the stepping size being the minimum value

2[Online]. Available: http://www.eecs.qmul.ac.uk/~linwang/tfbss.html
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Fig. 7. Boxplots of the permutation alignment performance for BSS (Algo-
rithm A) and TFBSS (Algorithm B) for various input SNRs and processing
block sizes. TFBSS achieves much lower permutation error than BSS in most
testing scenarios.

between half-block size and 3 seconds. The input SNR varies
from —25 dB to —5 dB, with an interval of 5 dB. For each
block, we perform blind source separation and compute the
permutation error ratio achieved by the two algorithms.

Fig. 7 boxplots the permutation alignment performance by
BSS and TFBSS for various input SNRs and processing block
lengths. For extremely low input SNR —25 dB, BSS and TFBSS
both show large permutation errors while TFBSS performs
slightly better. When the input SNR varies between —20 dB
and —15 dB, the advantage of TFBSS becomes evident. This is
because TFS performs better at high input SNRs thus providing
a better reference for TFBSS. For both BSS and TFBSS, the
permutation error drops when the processing block size is in-
creased. This is because the additional temporal information in
the longer signal helps permutation alignment. When the input
SNR varies between —10 dB and —5 dB, TFBSS outperforms
BSS significantly and the advantage increases with the block
size. In summary, even with high SNRs and large block sizes
BSS still suffers from severe permutation errors, whereas TF -
BSS improves monotonically.

Fig. 8 shows the median of the permutation error ratio corre-
sponding to the boxplots in Fig. 7. In all testing scenarios TFBSS
performs best, confirming the previous analysis. For input SNR
—10 dB and —5 dB, the gap between TFBSS and BSS widens
remarkably with the processing block size.

F. Speech Enhancement Performance

We compare the speech enhancement of seven algorithms,
BSS, TFS, TFBSS, Post, BSSnp, FBF and ABF using the
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TFBSS for various input SNRs and processing block sizes. For both algorithms,

the permutation error decreases when increasing the block size.
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Fig. 9. Boxplots of the SNR, SCD and STOI achieved by the considered
algorithms for input SNR —15 dB and processing block size 6 seconds. BSSnp
sets the benchmark. TFBSS outperforms TFS and BSS in both measures. Post
improves the SNR of TFBSS at the cost of a higher SCD. FBF and ABF improve
the SNR of the input very limitedly.

same data as in Section. I'V-E and the same blockwise processing
strategy. Note that BSSnp assumes the permutation ambiguities
can be perfectly solved and thus provides benchmark perfor-
mance. For each block size, we compute the speech enhancement
performance at individual blocks, and then the median SNR,
SCD and STOI across all blocks.

Fig. 9 boxplots the SNR, SCD and STOI of the considered
algorithms for input SNR —15 dB and block size 6 seconds.
Among the first four spatial filtering algorithms (BSSnp, BSS,
TFS, TFBSS), BSSnp benchmarks the best performance in
terms of the three measures. BSS outperforms TFS in terms of
both SNR and SCD, but achieves slightly lower STOI than TFS.
TFS performs the worst in terms of the SCD measure. TFBSS
performs better than TF'S and BSS in terms of the three measures
by integrating their advantages. Post can further improve the
SNR of TFBSS at the cost of a higher SCD. TFBSS and Post
achieve similar STOIs. FBF and ABF can only improve the SNR
limitedly by only several dB, and thus achieves the least STOIs.
ABF assumes a constant noise correlation matrix, which does not
hold in practice for the drone ego-noise, thus leading to limited
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Fig. 10.  The variation of the median SNR improvement, median SCD and

median STOI with respect to the block size by the four spatial filtering algorithms
for various input SNRs. TFBSS achieves higher SNR;y,,, lower SCD and higher
STOI than TF'S and BSS in most testing scenarios. The performance of TFBSS
improves when the block size increases.

SNR improvement. Since FBF and ABF perform significantly
worse than other algorithms, we discard them from the rest of
the experiments.

Fig. 10 depicts the variation of the median SNR improvement,
median SCD, and median STOI with respect to the block size
obtained by the four spatial filtering algorithms (BSSnp, BSS,
TFS, TFBSS) for various input SNRs. BSSnp, as the bench-
mark, always performs the best among the four. For the SNRy,;,
measure, TF'S performs the worst and the performance does not
vary much with the block size. BSS outperforms TFS in most
testing scenarios except at block size 2 seconds. The SNR;y,,
performance of BSS and TFBSS improves with the increasing
block size, although the improvement slows down when the
block size is larger than 6 seconds. TFBSS outperforms BSS
especially for low input SNR —15 dB. For the SCD measure,
BSSnp achieves the lowest distortion while TFS the highest
distortion. TFBSS and BSS achieve similar SCDs when the input
SNR < —10 dB, while TFBSS achieves lower SCD for input
SNR —5 dB. The SCD performance of all the four algorithms
does not vary much with the block size. One exceptionis TFBSS,
whose SCD decreases with the increasing block size at input
SNR —5 dB. For STOI, BSSnp achieves the highest STOI and
its performance does not vary much with the block size. The
performance of TFS also remains constant for the varying block
size. The performance of TFBSS and BSS improves with the in-
creasing block size, although the rate of improvement decreases
after a 6-second block size. The STOI of TFBSS is higher than
that of BSS in all testing scenarios. TFBSS outperforms TFS in
most testing scenarios with a block size larger than 2 seconds. In
summary, a block size of 4 or 6 seconds is desirable, as it strikes
a balance between spatial filtering performance and robustness
to acoustic dynamics.
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Fig. 11.  The variation of the median SNR improvement, median SCD and
median STOI with respect to input SNR by the four spatial filtering algorithms
for the block size 6 seconds. TFBSS achieves higher SNRjy;,, lower SCD and
higher STOI than TFS and BSS in most testing scenarios. The performance of
TFBSS tends to increase when increasing the input SNR.

Fig. 11 shows the variation of the median SNR improvement,
median SCD, and median STOI with respect to the input SNR
obtained by the four spatial filtering algorithms for block size
6 seconds. The performance of all the algorithms improves
with the increasing input SNR. For SNR;y,, the performance
of all the four algorithms improves with increasing input SNR.
BSSnp performs the best among the four algorithms. TFBSS
and BSS show similar variation trends, where SNR;,,, improves
quickly for input SNR < —15 dB and then the improvement
slows down for input SNR > —15 dB. TFBSS outperforms
BSS in all SNR scenarios. The SNR;,, of TFS shows a much
slower increase than TFBSS and BSS. TFS shows a higher
SNRiyp than TFBSS when the input SNR < —20 dB, while
TFBSS shows a higher SNR;,, when the input SNR > —20 dB.
For SCD, BSSnp and TFS achieve the lowest and the highest
distortion, respectively, and TFBSS achieves lower distortion
than BSS in all SNR scenarios. The SCD of BSSnp decreases
monotonically with increasing input SNR; the SCDs of TFS,
BSS and TFBSS increase firstly at low input SNR and then
decrease at higher input SNR. For STOI, the performance of
all the four algorithms improves with increasing input SNR.
BSSnp performs the best, followed by TFBSS and TFS, and
BSS performs the worst. TFBSS achieves higher STOI than TF'S
for input SNR > —15 dB, while TF'S achieves higher STOI for
input SNR < —15 dB.

Fig. 12 compares the median SNR improvement, SCD, STOI
for TFBSS and Post at various input SNRs, and with block
size 6 seconds. Post suppresses the residual stationary noise
in the TFBSS output, leading to higher SNR;y,, but also higher
distortion. As a result, TFBSS achieves very similar STOI for
all SNR scenarios. In addition, Post improves SNR more
effectively for input SNR > —15 dB.

G. Robustness to DOA Estimation Errors

As TFS and TFBSS assume the DOA of the target sound to be
known, we evaluate their performance under errors of the DOA
estimation from the microphone signal. If B is the total number
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seconds. Post improves the SNR of TFBSS at the cost of a higher SCD.
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Fig. 13.  Boxplots of the SNR and SCD by the considered algorithms for input
SNR —15 dB and processing block size 6 seconds. TFS and TFBSS assume the
target DOA to be known. TFS2 and TFBSS2 use the DOA estimated from the
microphone signals. TFBSS and TFBSS2 outperform TFS and TFS2 in both
measures.

of processing blocks, then the DOA estimation error ratio, D.,
is
B.
D, = 5
where B, is the number of blocks whose DOA estimation error
is larger than 10°.

We consider two sets of algorithms: TFS and TFBSS assume
the DOA of the target sound to be known; whereas TFS2 and
TFBSS2 estimate the DOA of the target sound with the algo-
rithm presented in [15]. We use the same data as in Section. [V-
E and the same blockwise processing strategy. We compute
the DOA estimation and speech enhancement performance at
individual blocks, and then compute the median performance
across all blocks. Fig. 13 boxplots the SNR and SCD for input
SNR —15 dB, and block size 6 seconds. For the SNR measure,
TFS2 performs much worse than TF'S due to DOA estimation
errors. TFBSS2 has similar median values as TFBSS, but with
lower box bottoms. For the SCD measure, TFS and TFS2
perform similarly; TFBSS and TFBSS2 also perform similarly.
However, TFBSS and TFBSS2 achieve much lower SCD than
TFS and TFS2. This suggests that the TFBSS is more robust to
DOA estimation errors than TFS.

Fig. 14 depicts the variation of the median DOA estimation
error, median SNR improvement and median SCD with respect
to the input SNR for block size 6 seconds. The DOA estimation
error drops significantly when the input SNR is increased from
—25 dB to —15 dB. For the SNR measure, TFS outperforms

x 100, (30)
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DOA estimation error decreases when increasing the input SNR. TFBSS and
TFBSS2 outperform TFS and TFS2 in both measures.
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Fig. 15. SNR improvement performance by the considered algorithms for

a target sound from two DOAs (01 and 63), respectively. TFS and TFBSS
assume the DOA of the target sound to be known. TFS2 and TFBSS2 use the
DOA estimated from the microphone signals. When the DOA is known, TFBSS
performs similarly for ¢; and 62 while TFS performs differently. When the
target DOA is unknown, TFBSS2 performs similarly for 6 and 65 while TFS2
performs differently.

TFS2 when the input SNR < —15 dB, with the DOA estima-
tion error ratio larger than 20%. Similarly, TFBSS outperforms
TFBSS2 when the input SNR < —15 dB, but performs sim-
ilarly when the input SNR > —15 dB. TFBSS and TFBSS2
significantly outperform TFS and TFS2 when the input SNR >
—15 dB. For the SCD measure, TFS achieves lower SCD than
TFS when the input SNR < —15 dB, but performs similarly
when the input SNR > —15 dB. Similar observations can be
made for TFBSS and TFBSS2. In short, the observations made
in Fig. 14 demonstrate that TFBSS is more robust to DOA
estimation errors than TFS.

Fig. 15 compares the performance of TFS and TFBSS when
the target sound comes from the directions 67 and 65 (see Fig. 3:
0, is closer to and 65 is farther from the ego-noise sources).
When the target DOA is known, TFBSS does not show big
difference for the two DOAs, although it performs slightly better
for A5. TFS performs significantly differently for 6, and 65,
with much better performance when the target DOA (65) is
far from the ego-noise source. TFBSS obviously outperforms
TFS for all input SNRs when the target sound comes from
;. For 6, TFBSS performs slightly worse than TFS when the
input SNR < —20 dB, and much better for higher input SNRs.
When the DOA is unknown and has to be estimated from the

microphone signals, TFBSS2 does not show big difference for
the two DOAs. When the input SNR > —15 dB, the performance
of TFBSS2 improves significantly as the DOA can be better
estimated. TFS2 achieves similar (low) performance for #; and
05 when the input SNR < —15 dB, as the target DOA can not
be accurately estimated. However, when the target DOA can be
better estimated at higher input SNRs, TFS2 performs much
better for 5 than for #;. TFBSS2 significantly outperforms
TFS2 for both target DOAs. In summary, TFBSS is more robust
than TFS to the variation of the target DOA, and also more robust
to DOA estimation errors.

H. Evaluation on the DREGON Dataset

The original TFS algorithm considers sound sources in 2D
space (i.e. azimuth 6 only). We extend it to 3D by including
an addition parameter, elevation v. For instance, the local GCC
function (3) can be adapted as

fYTF(kalaoa'l/))
Mo X (kDX (kL
=N Z ml( ) ) mz( s ) eI2m i (m1,m2,0,1)
mi,mo=1 IXml (k’l)sz (kvl)|
miFEme

(€29

We consider two scenarios for the DREGON dataset, namely
ahovering drone and a flying drone. While the proposed method
assumes the target sound source to be static relative to the micro-
phone array, it would be interesting to measure its performance
when the array is moving.

1) Hovering Drone: We generate testing data with sep-
arately recorded speech and ego-noise. The ego-noise is
recorded when the drone is hovering stably (the 18-
30th seconds in ‘DREGON_hovering_nosource_room2’). The
speech is recorded when the drone is fixed on a tri-
pod and muted. The speech comes from the azimuth
75°, elevation —30° and distance 2.4 meters (‘75_-30_2.4’
in ‘DREGON_clean_recordings_speech’). The length of the
speech and the ego-noise are both 12 seconds. The speech and
noise are added at a varying input SNR from —25 to —5 dB with
a step of 5 dB. We compare the speech enhancement of TFS,
TFBSS, and BSSnp with a block size varying from 2 seconds
to 6 seconds. We compute the speech enhancement performance
at individual blocks, and then compute the average SNR, SCD
and STOI across all blocks.

Fig. 16 depicts the average SNR improvement, SCD and STOI
achieved by the considered algorithms for various input SNRs
and block sizes. All three algorithms can improve the SNR and
STOI of the input signal in all testing scenarios. For the SNRiy,,
measure, the performance of BSSnp and TFBSS improves with
the input SNR while the performance of TFS decreases with
the input SNR. The performance of BSSnp and TFS does
not vary much with the block size while the performance of
TFBSS improves with the increasing block size. For block size
2 seconds, TF'S achieves higher SNR;,,, than BSSnp and TFBSS
in most SNR scenarios, except at high input SNR —5 dB. For
block size 4 and 6 seconds, BSSnp and TFBSS achieve higher
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Fig. 16. Performance for a hovering-drone recording from the DREGON

dataset: variation of the mean SNR improvement, mean SCD and mean STOI
with respect to the input SNRs by the three spatial filtering algorithms for various
block sizes. TFBSS tends to perform worse than TF'S for small block sizes, but
outperforms the latter for larger block sizes. The performance of TFBSS tends
to improve when increasing the block size and input SNR.

SNR;y,p than TFS in most SNR scenarios, except at low input
SNR —25 dB. TFBSS performs similarly as BSSnp when the
input SNR > —15 dB. For the SCD measure, BSSnp achieves
the lowest distortion, followed by TFBSS and TF'S. The SCD of
TF'S does not vary much with the input SNR and the block size.
The SCDs of TFBSS and BSSnp do not vary much with the
block size, but decrease with the increasing input SNR. For the
STOI measure, the performance of all the algorithms improves
with the input SNR. The STOI of BSSnp and TFS does not
vary much with the block size, while the STOI of TFS tends to
increase with the block size. BSSnp achieves the highest STOI
among all the algorithms in all testing scenarios. For block size 4
and 6 seconds, TFBSS outperforms TF'S in most SNR scenarios
except at input SNR —25 dB. For block size 2 seconds, TFBSS
outperforms TFS when the input SNR > —15 dB, but performs
worse at lower input SNRs.

2) Flying Drone: We consider speech and ego-noise
recorded simultaneously when the drone is flying (‘Free Flight
Speech Source at High Volume (Room 1)’). The average input
SNR is about -12.8 dB. We applied the proposed method (Post)
to the testing signal, employing a blockwise processing strategy
with non-overlapped blocks of 4 seconds. Interestingly, even
if it was not designed for this scenario, the proposed method
still works when the drone is moving slowly. Fig. 17 shows a
processing result for a 10-second segment (second 16 to 26 in
the original recording). The trajectory shows that the azimuth,
elevation and distance of the target sound source are varying
relatively to the drone. The noisy microphone input is dominated
by the ego-noise, making it very difficult to identify the speech
component from the spectrogram. However, after processing,
the speech component can be observed from the spectrogram of
the output (with some distortions). Due to the lack of clean sound
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Fig. 17. Processing results by Post on a flying-drone recording from the
DREGON dataset. The human sound is not visible in the input spectrograms but
can be identified in the output spectrograms.

at the microphones, objective measures cannot be computed. A
demo corresponding to Fig. 17 is available online® and confirms
the enhanced output signals.

V. CONCLUSION

We presented a microphone-array framework that effectively
combines time-frequency spatial filtering (TFS) and blind source
separation (BSS) for ego-noise reduction on a drone. The
proposed method integrates the advantage of TFS and BSS,
while tackling their drawbacks: we use the TFS output as a
reference to better solve the permutation ambiguity problem
in the subsequent BSS stage, thus enabling the selection of
the target sound channel naturally from multiple outputs. We
conducted extensive experiments that show that the proposed
method achieves better speech enhancement performance and
higher robustness to DOA estimation errors than the state of the
art, and also allows processing long signals continuously in a
blockwise manner.

As future work we will port the code on an embedded platform
to comprehensively investigate the performance of the proposed
method when the drone flies in a multi-source environment.
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