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Abstract

Pooling of samples can increase lab capacity when using Polymerase chain re-
action (PCR) to detect diseases such as COVID-19. However, pool testing is
typically performed via an adaptive testing strategy which requires a feedback
loop in the lab and at least two PCR runs to confirm positive results. This can
cost precious time. We discuss a non-adaptive testing method where each sam-
ple is distributed in a prescribed manner over several pools, and which yields
reliable results after one round of testing. More precisely, assuming knowl-
edge about the overall incidence rate, we calculate explicit error bounds on the
number of false positives which scale favourably with pool size and sample mul-
tiplicity. This allows for hugely streamlined PCR testing and cuts in detection
times for a large-scale testing scenario. A viable consequence of this method
could be real-time screening of entire communities, frontline healthcare work-
ers and international flight passengers, for example, using the PCR machines
currently in operation.

Keywords: Polymerase Chain Reaction, Pool testing, Non-adaptive testing,
COVID-19, SARS-CoV-2

1. Introduction

One key to containing and mitigating the COVID-19 pandemic is suggested
to be rapid testing on a massive scale [HZW'20, SBY]. It would be beneficial
to develop the ability to routinely, and in particular rapidly, test groups such as
frontline healthcare workers, police officers, and international travellers. Test-
ing for SARS-CoV-2 is currently performed via the polymerase chain reaction
(PCR) on nasopharyngeal swabs [TTY*20]. Typically, the population size sig-
nificantly exceeds the capacity for testing, with the number of available PCR
machines and reagents an important bottleneck in this process.

There are two basic approaches to PCR testing in populations: 1. individ-
ual tests, where every single sample is examined, and 2. pooled tests where
larger sets of samples are mixed and tested en bloc. Pooled testing was pi-
oneered by Dorfman in 1943 [Dor43] in the context of blood tests and led
to a host of research activity, both on the lab side as well as the theoretical



side [AJS19, DH99, DHO06]. If the disease is rare in the population, pooled test-
ing may be advisable. In this case it can assist in optimizing precious testing
capacity since most individual results would be negative. Pooling relies on the
fact that the PCR is reasonably reliable under the combination of samples: the
preprint [YAST+20] suggests that a detection of SARS-CoV-2 in pools of size
32 and possibly 64 is feasible.

While a classic pooling strategy has the advantage that less overall PCR
tests are required, there are disadvantages in terms of lab organisation and
— more crucially — time: pooling only indicates whether a pool contains at
least one infected individual. If samples are tested in pools of size n and the
incidence p is small (more precisely, if p - n is small) then a number of samples
will be in pools that are tested positive and hence undergo a second round of
testing. In other words, pooled testing with individual verification of positive
pools is an adaptive testing strategy, the lab organisation for which is a labour,
management, and resource intensive process. It has several drawbacks, since it
requires keeping multiple lab samples and re-running of the time-intensive PCR,
process. The lab feedback loop makes the entire workflow more susceptible
to delays (see Figure 2). This may result in delays in individual results — a
particular problem when the objective is to rapidly identify infected individuals,
who may infect others while waiting for the test outcome. Furthermore, since the
number of samples undergoing a second round of testing is an unknown quantity,
some reserve capacity is required to prevent further delays. This makes it more
challenging for the lab to operate near its maximal capacity.

In the theoretical research on testing strategies the distinction is made be-
tween adaptive testing, for example when all samples in a positive pool undergo
a second round of testing, and non-adaptive strategies, where all tests can be
run simultaneously [DH99]. Testing every sample individually can be considered
as a trivial non-adaptive strategy, but there exist non-adaptive strategies which
combine the benefit of pooling with the advantages of non-adaptive testing.

In this note, we propose a non-adaptive pooling strategy for rapid and large-
scale screening for SARS-CoV-2 or other scenarios where detection time is criti-
cal. This allows for significant streamlining of the testing process and reductions
in detection time. Firstly because only one round of PCR is required, and sec-
ondly because it eliminates actions in the lab workflow that require input from
results determined in the lab, i.e. the testing infrastructure can be organized
completely linearly, cf. Figure 2 for an illustration. The strategy will system-
atically overestimate the number of positives, but we can provide error bounds
on the number of false positives which scale favourably with large numbers and
will be small in realistic scenarios.

2. Definition of the non-adaptive testing strategy: multipools

Our testing strategy is as follows: every individual’s sample is broken up
into k samples and distributed over k different pools of size n such that no two
individuals share more than one pool. An individual is considered as tested
positive if all the pools in which its sample has been given are tested positive
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Figure 1: Pooling along rows and columns to arrange N = 64 samples into 16 pools of size 8
to form a (64,8, 2)-multipool. Different background patterns and colours represent different
pools.

or — in our case equivalently — an item is considered as tested negative if it
appears in at least one negative pool. This decoding algorithm is also known
as COMP (Combinatorial Orthogonal Matching Pursuit), an algorithm easily
implementable in practice with low run-time and storage [JAS19].

Let us make our definition more formal:

Definition 1 (Multipools). Let a population (Xi,...,Xy) of size N, a pool
size n, and a multiplicity k be given, and assume that Nk is a multiple of n.
We call a collection of subsets/pools of {X1,...,Xn} an (N,n, k)-multipool, or
briefly multipool, if all of the following three conditions hold:

(M1) Every pool consists of exactly n elements.
(M2) FEvery sample X; is contained in exactly k pools.

(M3) For any two different samples X;, X; there exists at most one pool which
contains both X; and X;.

In the context of non-adaptive testing, designs as in Definition 1 are called
(k — 1)-disjunct matrices and it is known that such matrices correctly identify
up to k infected samples [Maz12]. However, we will be interested in scenarios
where the number of infected samples can exceed the multiplicity k. If N = n?
and k = 2 the construction of an (N, n,2)-multipool is quite straightforward,
see Figure 1: arrange the N samples in a rectangular grid and then pool along
every row and column, cf. [SSWT16, FFLH, ZDF ' 14]. However, as we shall see
below, k = 2 is in many realistic scenarios insufficient for the desired precision.

Some recent contributions [FFLH, MNB*20] propose to arrange samples in
a (3 or higher dimensional) hypercube and to pool along all hyperplanes. This
makes every individual sample appear in three or more pools, but it is not
a multipool in the sense of Definition 1 above, since in dimension three and
higher, any two hyperplanes will intersect in more than one point, in violation
of Property (M3). This creates unnecessary correlations between different pools
and impairs performance. If k£ = 3, systems as in Definition 1 are also called
Steiner triples and have been recently used in non-adaptive group testing for
SARS-CoV-2 [GAR™'20]. A flexible way to construct multipools of various mul-
tiplicities k is given by the Shifted Transversal Design [TM06, EGN*15] which
we explain in Section 4.
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Figure 2: Comparison of the work flow in adaptive testing and non-adaptive testing. In the
adaptive setting in Figure (a), two of the time-expensive PCR steps (in red) are required.
Furthermore, the interplay of data interpretation after the first PCR and the sample storage
management introduces another possible bottleneck. In the non-adaptive case, shown in
Figure (b), the work flow is completely linear.



3. Controlling the number of false positives

We always assume that the incidence p of the disease is small compared to
the inverse pool size 1/n. This is a reasonable requirement, also in classical
pooling strategies (a pn portion of samples will have to undergo second testing,
thus a large pn would attenuate the benefit of pooling).

Assuming perfect performance of the PCR, also under pooling (see Section 6
on how to deal with uncertainty here), multipooling will identify all infected
individuals, since all their pools will be positive. However, a sample might
falsely be declared positive if all pools in which it is contained happen to contain
an infected sample.

The expected portion of false positives in a multipool strategy is

pip = P(X; negative but all its pools positive) (3.1)
= (1 — p) - P(all pools containing X; positive | X; negative) (3.2)

n— k
=(1-p)(1-01-p"") (3.3)

Here, the third identity crucially uses the property (M3) which guarantees inde-
pendence between the poolmates in the different pools of a sample. By Bayes’
rule, the probability to actually be negative when tested positive by the mul-
tipool (i.e. the portion of subjects falsely declared positive among all subjects
declared positive) is

P(X; negative | all pools containing X; positive) (3.4)
P(all pools containing X; positive | X; negative)P(sample X; negative)

P(all pools containing X; positive)
(3.5)

(1-p)(1-a-pH°*

St —p - (1—p

Let us calculate for which k the probability of a positive test result being a false
positive does not exceed €g, > 0:

(3.6)

k

1-p)(1-(1-p)"") E .
p+(1—p)(1—(1_p)n—1)kS b (3.7)
= (1 — p) (1 — (1 _ p)nfl)k < €fp(1 _ p) (1 o (1 - p)nfl)k +erpp (38)

e (1-(1-pm < (1—;% (3.9)
In (1?;]3) +1In (f’p)
& kz Tt (3.10)

This provides a lower bound on the necessary multiplicity k in terms of the
sample size n, the knowledge on the incidence p, and the acceptable portion



erp of false positive results among all positives. Assuming ey, < 1 and p < %

(which are both reasonable assumptions, recall that pn is small), the lower
bound in (3.10) is monotone increasing in p. Hence, if the exact incidence is
unknown but we have an upper bound on it, we can work with the largest/worst
case p. Let us summarize these findings in the following

Theorem 1. Let the incidence be at most p < %, and let 0 < e, < 1. If

In lifé’fp +In 1Tpp
s 1£<1—21—p)£1>> (311

then in any multipooling strategy with pool size n and multiplicity k, the proba-
bility of a positive test being a false positive does not exceed ey .

The number of tests required in a multipool strategy is Nk/n, an improve-
ment compared to individual testing by a factor n/k. A key observation is that
the lower bound on k in Inequality (3.11) scales favourably with large multi-
plicities n. Indeed, recall that in an adaptive pooling strategy one wants on the
one hand large pool sizes n, but on the other hand np should be small. It is
therefore reasonable to have n proportional to the inverse of p, i.e. np = C.
Using that 1 —p~ 1 and 1 — (1 — p)"~! ~ (n — 1)p ~ np, the lower bound
in (3.11) behaves approximately as

. In (ﬁf{p) +1Inp . In (iffp) + ln(n/C).
In(np) InC

(3.12)

that is k grows only logarithmically with the pool size n. An analogous analysis
shows that k also grows logarithmically with the inverse of e, when the error
probability eg, is sent to zero. We compare the theoretical values found in the
lead-up to Theorem 1 to simulated values in Figure 3

4. Generating multipools

The question for which combiniations (N, n, k) a multipool exists seems to be
in general a non-trivial combinatorial problem. We focus here on the case when
N = n? and on constructions based on the Shifted Transversal Design [TMO06].

It is useful to imagine all N samples arranged in an n x n-square and label
samples by their x and y-coordinate, i.e. denoting the sample at position (i, j) €
NZ by X;;, where we define the the sample in the lower left (south-west) corner
to be Xgo. For multiplicity & = 2, a (N, n, k)-multipool can be constructed by
pooling along rows and columns, as in Figure 1.

Unfortunately, for reasonable parameter choices, a multiplicity of £ = 2 turns
out to lead to large false positive rates: For instance, arranging N = 64 samples
from a population with incidence p = 0.01 in a rectangular grid and pooling
along all rows and columns (in our notation this is an (64, 8,2)-multipool),
Identity (3.6) will imply that on average 31.4% of positive results will actually
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Figure 3: Comparison of the ratio of false positives to positive results in simulations on
synthetic data for 200 - 931 samples with different incidences p at pool size n = 31 and
sampling strategies with multiplicities k € {4,5,6,7}, and the theoretical value calculated in
the lead-up to Theorem 1. The code for the simulation can be found in [Tau20].
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Figure 4: Pooling along rows, columns, and periodically continued diagonals to arrange N = 64
samples into 24 pools of size 8 to form a (64, 8, 3)-multipool. Different background patterns
and colours represent different pools.

Figure 5: The two diagonals (red and blue) intersect in two points (black). They cannot both
be used as pools in a multipool.

be false positives. To improve on this and pass to multiplicity £ = 3, one
can sample along diagonals, where the diagonals are continued periodically, see
Figure 4. This works for any pool size n > 2 and leads to

Theorem 2. Let N = n? and n > 2. Then there exists an (N,n, 3)-multipool,
obtained by sampling along rows, columns, and all periodically continued south-
west-to-north-east diagonals.

In the situation of N = 64 and n = 8, this allows for the construction of a
(64,8, 3)-multipool in which, by (3.6), the probability of a positive result being
erroneous is reduced to 3.01%. In such a scenario, one would test 64 individuals
with 24 tests, a compression by a factor 0.375. A higher compression rate would
require larger pool sizes n. Since the lower bound (3.11) on & in Theorem 1 is
monotonous in n, this will in turn also require to higher multiplicities k£ in
order to achieve comparable false positive error probabilities. To pass to k = 4,
one might now be tempted to pool along the other (north-west-to-south-east)
diagonals, but this is not going to yield a multipool in general, see for instance
Figure 5 where, in the case n = 8, two diagonals intersect in more than one
point, in violation of Property (M3) in Definition 1.

This is due to the fact that n = 8 has non-trivial divisors, i.e. it is not a
prime number. South-west-to-north-east diagonals are of the form

{Xj,l+j(mod8) IjZO,...,7}, lE{O,,n—l}, (41)



and north-west-to-south-east diagonals

{Xji—jmoas)y: j=0,...,7}, 1€{0,...,n—1} (4.2)

were, (modn) means that we use arithmetic modulo n, that is as soon as we
exceed n — 1, we start counting from 0 again. These diagonals are lines of slope
+1 and —1, respectively, and the difference of these slopes is 2, which divides
8. Since intersections of two such lines are given by solutions to the equation

= 2j = (12 — ll)(mod 8) (44)

there can be more than one j solving (4.4): Indeed, if some j, € {0,...,7}
solves (4.4), then j’ := j + 4(mod 8) is a solution as well, since 25’ = 2j(mod 8).

More generally, it is well-known that for m € {1,...,n — 1} and j €
{0,...,n — 1}, the equation

mj = l(modn), (4.5)

has a unique solution j if and only if the greatest common divisor of m and n is
1. Since this must hold for all m € {1,...,n — 1}, n must be a prime number.
In this case, the integers modulo n form an algebraic structure called a field,
in which every non-zero element has a well-defined multiplicative inverse. For
prime n, the unique solution of (4.5) is therefore given by j = m~!l, where m~—!
denotes the multiplicative inverse of m in arithmetic modulo n.

This suggests to use a prime pool size n and sample along lines of different
slopes, that is to use pools of the form

P(l,m) == {X; 11 jmmodn) : 4 =0,...,n—1}, L,me{0,...,n—1}. (4.6)

We can add one more type of pool by sampling along all vertical lines (their
slope can be considered as ”infinity”) which we denote by

P(l,00) :={X;;:7=0,...,n—1}, 1€{0,...,n—1}. (4.7

Such ensembles of pools are sketched in Figure 6 for the case n = 5.
This construction is also referred to as the Shifted Transversal Design in [TMO6].
We summarise our findings in the following

Theorem 3. Let n be a prime number and let N = n?. Then, there exists a

(N, n, k)-multipool for k = (n+ 1), and consequently also for every smaller k.
This multipool is given by pooling along all sloped lines, that is:

P(l,m):= {Xi,l+mj(modn) :j=0,...,n— 1} , L,me{0,...,n—1}, (4.8)
and pooling along all columns (or lines of slope infinity), that is

P(l,o0) :={X;;:j=0,...,n—1}, 1€{0,...,n—1}. (4.9)



P(0,3) P(0,4) P(0, 00)
Figure 6: Pools of different slopes as in Theorem 3 for n = 5.

Figure 6 contains an illustration of elements of such a multipool in the case
n = 5 with multiplicity ¥ = 6. Theorem 3 allows for multiplicities up to
k =n+ 1, but in practice, one will want to work with much lower multiplicities
k since a high multiplicity would require many tests and defeat the purpose
of pooling. From a practical perspective it seems reasonable to generate large
pools by a sequence of unions of two equally diluted pools. This leads to pool
sizes which are a power of 2, certainly not a prime number (except for 2 itself).
One approach to accomodate for that would be population sizes N = n? where
n is a prime just below a power of 2, e.g. n = 31, which is just below 32 or
n = 61 which is just below 64. Then pools of size n can be mixed by adding a
small number of negative dummy samples and proceeding as if n was a power
of 2.

5. Examples and scenarios

Let us sketch some concrete examples where the pool sizes are a prime
number and where the multipooling strategy might be useful:

N =961, p<1%, n =31

Let the population size be N = 312 = 961. This could for instance be
the number of employees in a company or passengers which depart from an
international airport within a certain time window. Let the incidence rate p
be no more than 1.0% and let us work with a pool size n = 31. Since n is
prime, Theorem 3 allows to construct (961, 31, k)-multipools for any & < 32 and
Theorem 1 allows to bound the probability of a positive test being erroneous for
different multiplicities k& as in Table 1. Accepting for instance a false positive
probability of 3% requires 6N/n = 186 PCR tests, 19.4% of what would be
required in individual testing. Let us emphasize again here that this means
that 3% among the results flagged as positive will be false positives, not 3% of
the overall test results.

10



k €fp k:/n
4| 0.32 | 0.129
5| 0.11 | 0.161
6| 0.03 | 0.194
71 0.008 | 0.226

Table 1: Probability of a positive result being a false positive and the compression k/n com-
pared to individual testing for pool size n = 31, incidence p < 0.01 and different multiplicities

k.

N = 3721, p < 0.1%, n = 61

The multipool method scales well with larger numbers. Let the population
size be N = 612 = 3721 and the pool size n = 61, which is of the order of pools
being used for the PCR today [YAST'20]. Let furthermore be the incidence
rate be no larger than 0.1%, a realistic upper bound for the prevalence of SARS-
CoV-2 in many countries [fNS20]. Since n = 61 is prime, Theorem 3 allows
to construct (3721, 61, k)-multipools for any k& < 62 and the error bounds in
Theorem 1 lead to Table 2. If we choose k = 4 and accept e, = 1.2% as the

k €fp k/n
31 017 | 0.049
4 0.012 | 0.066
5 | 0.0007 | 0.082

Table 2: Probability of a positive result being a false positive and the compression k/n com-
pared to individual testing for pool size n = 31, incidence p < 0.01 and different multiplicities

k.

probability for positive results being false positives, we need 4N/n = 244 tests
in order to fast and efficiently test 3721 individuals, that is 6.6% of what would
be needed with individual testing.

6. Discussion and possible extensions

The non-adaptive multi-pooling strategy provides a streamlined and efficient
organisation of the testing process and cuts in detection time. This significant
benefit comes with potential reductions in accuracy compared with adaptive
testing, but this false positive rate can be tightly controlled and tailored to suit
the circumstance. The false positive probability €, deemed an acceptable cost
for the increased testing efficiencies may depend on, for example, the infection
characteristics, the government policy and resource levels.

A small modification of our strategy might furthermore allow for an improve-
ment of the false negative rate — even compared to usual adaptive pool testing
strategies: even though commonly used, pooling samples can potentially di-
lute samples close to the identification threshold of the PCR and increase the
probaility of false negatives. The recent preprint [YAST*20] estimates a false

11



negative rate of 10% when detecting SARS-CoV-2 in pools of size 32. One can
reduce this type of false negative in our strategy by declaring all samples which
are in at least k — 1 positive pools as tested positive.

This strategy is known as the ”Noisy COMP” (NCOMP) decoding algo-
rithm [CCJS11, CJSA14] where an item is declared infected if more than a
certain portion of its pools test positive. This will on the one hand lower the
probability of false negatives, but more importantly it will only mildly affect the
false positive rate. This could be seen by adding a next-order term in the error
analysis performed leading up to Theorem 1. For a sound analysis, knowledge
on the false positive rate gained through experiments would be required, but
the general message that the necessary multiplicity k£ will grow slowly with large
n and small €g, remains.

Let us finally note that the basic idea is close to compressed sensing and
sparse recovery [CT06, FR13]. While in our situation the output space consists
of {0, 1}-vectors, which make the mathematics we use rather elementary, there
also seem to be applications of the PCR where quantitative measurements are
taken and where compressive sensing techniques might be applied. A very recent
approach in this direction is Tapestry pooling [GRK'20, GAR™20] which takes
quantitative data from PCR measurements and uses methods from compressed
sensing to decode. In the scenario of testing N = 961 samples in pools of
size n = 31 discussed in Section 5, this approach suggests reasonable results at
multiplicity k& = 3, a higher compression rate than in our approach. However
we emphasise that the (experimental) error analysis performed in the context of
Tapestry pooling focuses on fixed numbers of infected samples and is therefore
in a slightly different spirit than our approach which is based on the prevalence
of the disease in the population.
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