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Abstract—With the fast development of wearable IoT devices, 

their applications are becoming more and more pervasive, 

ranging from social networking, payment, and navigation to 

health and activity monitoring. The security of the 

communication between these devices is essential to protect the 

transmitted sensitive information from tampering and 

eavesdropping. With the integration of accelerometers into 

wearable IoT devices, the gait-based biometric cryptography 

technology has emerged as a data securing tool for wearables. 

This paper proposes a light-weight noise-based group key 

generation method, which utilizes the noise signals imposed on the 

raw acceleration signals to generate an M-bit key with high 

randomness and bit generation rate. Moreover, a signed sliding 

window coding (SSWC)-based common feature extraction 

method was designed to extract the common feature for sharing 

the generated M-bit key among devices worn on different body 

parts. Finally, a fuzzy vault-based group key distribution system 

was implemented and evaluated using a public dataset. The 

performed comprehensive analysis of the proposed key generation 

and distribution method proved that the binary keys generated 

via the introduced noise-based procedure have high entropy and 

can pass both the NIST and Dieharder statistical tests with high 

efficiency. The experimental results obtained prove the robustness 

of the proposed SSWC-based common feature extraction method 

in terms of the similarity and discriminability of intra- and 

inter-class features, respectively. 

 
Index Terms— Communication security, gait, body area 

network, secret key generation, key distribution 
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I. INTRODUCTION 

ECENT years witnessed a remarkable growth in the 

variety and number of wearable IoT devices. The 

application of wearable IoT devices becomes more and 

more pervasive, ranging from social networking, payment, 

navigation, to health and activity monitoring [1]. A typical 

application scenario of the wearable IoT devices is shown in 

Fig.1. Various kinds of personal data concerning health status, 

social data, daily activity, bank accounts, etc., are collected and 

wirelessly transmitted to the mobile gateway by wearable IoT 

devices [2, 3]. Due to the privacy and sensitivity features of 

personal data and the wireless nature of the communication, the 

security of communication between these devices is essential to 

protect the transmitted data from being eavesdropped, tampered, 

or injected with malicious commands, while data sharing has to 

be kept strictly among body-worn devices that belong to the 

same user [4, 5].  

 
Fig.1. Typical application  scenarios of wearable IoT devices 

 

However, due to the limited power and computing resources 

of wearable IoT devices, traditional channel encryption 

methods such as the Diffie-Hellman (D-H) peer-to-peer key 

exchange algorithm, Secure Sockets Layer (SSL), Transport 

Layer Security (TLS), etc., cannot be directly applied to 

wearable devices [6]. The personal identification number (PIN) 

is currently used as an authentication method for some mobile 

devices like cellphones, but it is not suitable for small-sized 
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wearable IoT devices, which usually have no input interface 

[7]. 

Since the conventional security schemes proposed for 

computers are too computationally demanding for miniaturized 

wearable IoT devices [8], new methods of securing body sensor 

networks (BSNs) have been offered, in which a biometric 

cryptosystem (BCS) is considered a quite effective solution [9]. 

The biometrics-based approach avoids memory overload and 

obviates expensive computation, insofar as biometric traits are 

already available in the wearable device. With regards to BCS 

security solutions, such physiological characteristics as an 

individual’s face, iris and fingerprints have already been widely 

applied to the identity authentication of mobile devices, but 

these biometric features are vulnerable to theft and duplication. 

In contrast, the recently emerged bioencryption technology 

uses real-time physiological biometrics such as the 

electrocardiogram (ECG) [10-12] and photoplethysmogram 

(PPG) [13-15] to generate the random key to secure private 

information. However, these physiological biometrics require 

specialized sensors to be in physical contact with the human 

body, which can make the user uncomfortable. Moreover, the 

sampled signal quality can be easily interfered with by the 

external environment and human activity [16].  

Nowadays, with the availability of the integrated inertial 

measurement units (IMU) in wearable IoT devices, such 

behavioral traits as gait, keyboard tapping, etc. are gaining 

much attention for their noninvasive and unique features [17, 

18]. In many types of wearable IoT devices, it is more 

convenient to extract the gait signal than other physiological 

signals like ECG and PPG. 

Due to human gait uniqueness and non-variability over time, 

it has been utilized for user authentication or identification of 

wearable IoT devices in multiple previous studies [19-22]. 

These studies used gait information to protect the security of 

the wearable devices by providing a gait-based access control 

mechanism; however, the safety of the data transmitted 

between devices was not guaranteed. Wazid et al. proposed a 

key agreement and management scheme for implantable and 

wearable medical devices [23, 24] and used the formal security 

verification and informal security analysis to prove their 

scheme’s security against known attacks. 

Acceleration-based symmetric key generation method was 

first proposed by Bichler et al.  to encrypt the communication in 

wireless body area networks [25]. In their scheme, the devices 

have to be shaken together to ensure that they can generate the 

same symmetric key based on the acceleration signal caused by 

the shake. This direction was followed by Mayrhofer et al., who 

proposed a secure pairing scheme of mobile devices that 

exploited the joint movement caused by simultaneous shaking 

as a shared secret to realizing the secure pairing of devices [27]. 

Further, Sun et al. proposed the IPIs (Inter-Pulse Intervals) 

based random number generation method for securing the 

communication of wearable IoT devices [28, 29]. However, the 

key generation rate of this method was too low, as they used the 

gait cycles instead of sample points to extract the random 

binaries. Alternatively, Xu et al. designed a symmetric secret 

key generation scheme that allowed two legitimate devices to 

establish a common cryptographic key by exploiting users’ gait 

characteristics [30, 31]. In contrast to the above shake-based 

key generation methods, gait-based ones require no human 

intervention and are more user-friendly. Bruesch et al. provided 

a comprehensive discussion of the security properties of pairing 

schemes, including the efficiency of the quantization and 

authentication algorithms, statistical properties of the generated 

sequences, and the possible threats and security levels of the 

system, etc. [32]. 

Recently, Wu et al. proposed a novel machine learning 

framework that uses an auto-encoder to help one device predict 

the gait observations at another remote device attached to the 

same body and generate the key using the predicted sensor data 

[33]. However, this method is not flexible because once the 

sensor’s position changes, a new predicting model target for the 

new sensor position needs to be trained. 

From another view of point, Revadigar et al. presented a 

gait-based group key generation and distribution scheme for 

body area networks [26]. The on-board accelerometer sensor 

and the unique walking style of the user were used to generate 

random binaries by M-ary coding algorithms. Although sample 

points were used for key generation in this scheme, the guard 

band inserted between two consecutive quantization levels 

decreased the key generation rate. Moreover, the common 

information extraction algorithms used for sensors and 

coordinator placed on body parts other than chest is too energy 

and time-consuming. 

We proposed an acceleration-based key generation and 

distribution method for wearable IoT devices based on the 

above survey and comparative analysis of available techniques. 

The coordinator takes advantage of the noise randomness to 

generate a group key and uses the common feature of the gait 

signal sampled from different body parts to distribute the key to 

other sensor nodes on the same body. The motivation for this 

study can be summarized as follows: 

1. Due to the privacy and sensitivity features of personal 

data and the wireless nature of the communication, the security 

of the communication between these devices is essential to 

protect the transmitted data from being eavesdropped, tampered, 

or injected with malicious commands, while data sharing has to 

be kept strictly among body-worn devices that belong to the 

same user. 

2. The available robust security solutions are not suitable 

for wearable devices. Firstly, conventional security schemes 

proposed for computers are too computationally demanding for 

miniaturized wearable IoT devices. Secondly, there are some 

deficiencies in data acquisition, anti-jamming and anti-attack of 

the recently emerging physiological biometrics-based 

bio-encryption technology. 

3. With a decrease of in the cost and size of the 

acceleration sensors, more and more wearable IoT devices are 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

3 

integrated with accelerometers for monitoring the human daily 

activities. The behavioral biometrics based bio-encryption 

methods are gaining much attention for their noninvasive and 

unique features. 

4. Despite numerous advantages of accelerometer-based 

bio-encryption methods over conventional ones, their 

significant improvement is still required, including such 

features as the key randomness and the key distribution success 

rate.  

The rest of this paper is organized as follows. The relavant 

recent works are discussed in Section II. The overview of the 

proposed security system for wearable IoT devices is 

introduced in Section III. The noise-based key generation 

method and gait characteristic-based common information 

extraction method are described in Section IV. The design of 

the fuzzy vault-based key distribution protocol is presented in 

Section V. The system performance concerning the key 

randomness, bit generation rates, and common information 

similarity are evaluated in Section VI. Finally, the conclusions 

are drawn, and the direction of follow-up studies outlined in 

Section VII. 

II. BACKGROUND 

With the development of wearable IoT devices, their 

information security became the object of multiple studies. In 

this section, related works on biometric cryptographic systems 

and gait based key generation and distribution methods are 

summarized and analyzed.  

A. Random bit sequence generation methods  

To provide strong security of wearable IoT devices, a good 

random number generator (RNG) is essential. RNG is a critical 

component in any cryptographic system, producing random 

numbers to be used for both asymmetric and symmetric key 

generation, block cipher initialization vectors, one-time 

padding, digital signatures, and password storage [34]. 

There are two basic types of RNGs: true random number 

generators (TRNG) and pseudo-random number generators 

(PRNG). PRNGs are widely used in cryptographic systems as 

they can easily generate not truly random numbers at high 

speeds. However, PRNGs are vulnerable to brute-force attacks 

if the seed selection is faulty. To solve this problem, many 

state-of-the-art practical PRNGs use seeds generated by 

TRNGs to enhance the entropy and security level. However, the 

hardware-based TRNG methods, which require special 

integrated circuits to be embedded into the devices, are not 

suitable for wearable IoT decices due to their limited power and 

computational resources [35]. 

In recent years, several researchers used physiological 

signals to generate secure keys. For example, Pirbhulal et al. 

used IPIs of heartbeats to generate the random binary sequence 

for wireless BSNs, which incorporated a finite monotonic 

increasing sequence generation mechanism of IPIs and a cyclic 

block encoding procedure that extracted entropic bits from each 

IPI [13]. However, the heartbeat rate of a healthy person varies 

between 60-100 beats/min, as the above method uses the 

unpredictable change of IPIs to generate a random binary 

sequence, so the random bits generation rate is usually lower 

than the heartbeats rate. Miao et al. used the PPG and ECG 

signals to generate the key and secure the BSN [15]. However, 

the sampled signal quality was found to be deteriorated by the 

external environment. Human gait, due to its uniqueness and 

non-variability over time, has started to be utilized for securing 

wearable IoT devices in numerous studies [16-29], and is 

becoming an emerging research field. 

B. Security key distribution method 

The key distribution techniques are established based on two 

cryptographic primitives, namely the fuzzy commitment [35] 

and fuzzy vault [36] schemes. These two primitives have been 

widely investigated for the purpose of biometric key 

distribution, and their applicability to wearable device security 

has been analyzed by numerous studies [26, 35, 38]. These 

techniques used physiological or behavioral signals as common 

information to distribute and extract the key securely. The 

similarity of the common information is a key factor that 

influences the key distribution success rate. 

Since each person has his/her own walking style, including 

the stride length and the stepping frequency, the gait signal 

collected at different body parts has a remarkable similarity, 

insofar as sensors placed in different body locations capture the 

same signal. Thus, gait features have been exploited to 

construct the vault and unlock it.  

However, due to the complexity of body movements, devices 

placed in different body locations will capture different 

acceleration signals due to the movement of other body parts 

(such as arms), and this becomes the key challenge when 

exploiting the common gait signal for key fuzzy vault-based 

key distribution.  

Fig. 2 depicts the acceleration signal in the gravity direction 

captured by devices placed at different body locations when the 

user was walking. It was infeasible to use the raw motion 

signals captured by the sensors to generate a common secret 

key directly. To address this challenge, we used the principal 

component analysis technique to separate the signals produced 

from gait and arm swing and apply the SSWC-based peak 

coding method to extract the common gait feature for fuzzy 

vault-based key distribution.  

 
Fig.2. Acceleration signal from different body parts in the gravity direction 

captured by devices worn at different body locations when the user was 

walking 
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C. Challenges and contributions  

Despite a significant progress made in previous studies, 

developments, the following problematic issues in the 

gait-based key generation and distribution methods need to be 

solved for their further large-scale application: 

1. Generating a robust random key sequence: using the gait 

signal to generate a random key sequence directly would reduce 

the randomness due to the periodicity of human gait. Under the 

limited computing and energy resources, improving the 

randomness of the gait-based secret key is quite a challenge. 

2. Extracting common information for key distribution: to 

distribute the generated key among all legitimate devices 

secretly, the common information shared by all devices should 

be extracted to lock and unlock the vault. Unlike the ECG or 

PPG signals sampled from different body parts which have a 

strong similarity, the acceleration signals sampled from 

different body parts are quite different due to the movement of 

other body parts (such as arms). Hence, extracting common 

information from acceleration signals sampled from different 

body locations is a more challenging problem, as compared to 

the ECG based methods. 

To resolve the above problems, a light-weight noise-based 

random number generation method and a signed sliding 

window coding (SSWC) based common information extraction 

method were proposed in this work. In addition, the M-bit key 

distribution system was designed based on the fuzzy vault 

algorithm, and its performance was validated with a public 

dataset. The main contributions of this work can be 

summarized as follows. 

1. A light-weight noise-based key generation method with high 

randomness and bit generation rate was proposed. The key 

generation rate (100bps in this study) for the proposed method 

is as high as the signal sampling rate when using no multilevel 

coding schemes.  

2. The energy and time consumption of the proposed methods 

was significantly reduced. The energy and time consumed by 

the coordinator for key generation, common information 

extraction, and vault construction are 4.95mJ and 3.84ms, 

which reduced the energy and time consumption by 61% and 

98.2%, respectively, as compared to [26]. 

3. An SSWC-based common information extraction method 

was proposed to lock and unlock the vault in the key 

distribution process. Time scale and frequency scale 

information was fused to extract the common features. The 

average intra-body similarity of common features extracted 

from sensors on different body locations was 0.92, while the 

average inter-body similarity was just 0.39 (λ=0.5), which 

proved its excellent ability of detecting whether the sensors 

were worn on the same body or not. 

4. A fuzzy vault-based key distribution method was proposed to 

share the generated key among sensors on the same body. 

Based on the proposed common information extraction, and the 

fuzzy vault construction framework, the average key 

distribution success rate reached 0.95. 

III. SYSTEM OVERVIEW 

In this section, the system overview of the proposed key 

generation method is presented. The system consists of a hub 

node and several sensor nodes. The hub node is usually a 

smartphone, which acts as a controller and a signal processor. 

The sensor nodes transmit the sampled various kinds of 

information to the hub node and execute the instructions issued 

by the hub node. In the network, the hub node generates the 

secret key using the accelerometer and pre-shares with 

legitimate sensor nodes through a fuzzy vault. The legitimate 

sensor nodes extract the key using the common gait feature 

received from the vault. The proposed wearable sensor network 

is shown in Fig.3 (a). 

 
Fig. 3. The overview of the system and the proposed methods 

The overview of the proposed key generation and 

distribution system is depicted in Fig.3 (b). The network 

coordinator first sends a broadcast packet through the public 

channel to start the processes of key generation and distribution. 
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The broadcast1 contains the information on time duration T for 

the next data collection. The coordinator and sensors, which 

need to join the network, start to collect the acceleration data 

upon receiving the broadcast packet for the next T duration. 

Then, the coordinator uses the collected data to generate the 

random group key and extract the common information. After 

hiding the group key in a vault constructed using the common 

information, the coordinator integrates the vault with another 

broadcast packet and sends it to sensors. When sensors receive 

the second broadcast packet, they unlock the vault using the 

common information they extracted from the collected 

acceleration data and get the group key hidden in the vault. The 

definitions of parameters used in the proposed system are listed 

in Table I.  
TABLE I. DEFINITIONS OF THE SYSTEM PARAMETERS  

Parameter Description  

M The length of key bits 

wt The window size of the time scale 

λ 
The coefficient used to calculate the window 

size 

N The polynomial order 

L 
The length of the acceleration signal used to 

extract common information 

v The vault size 

In the following sections, the key generation methods, the 

common information extraction method, and the fuzzy 

vault-based key distribution method are described in detail. 

IV. KEY GENERATION METHOD 

In this section, we introduce the noise-based M-bit key 

generation method, including the noise extraction method 

based on the zero-phase Butterworth filter, the coding method, 

and the M-bit key generation method. The main idea of the 

proposed method was inspired by the fact that the noise 

superimposed on the regular gait signal, which mainly caused 

by the irregular motion of human body parts and the nearby 

environment (such as electromagnetic interference and power 

frequency interference), possesses the characteristic of 

randomness and uncertainty, and is a good source of entropy.  

Noteworthy is that the accelerometer's noise is random, 

which makes it a good entropy source to generate the random 

binary sequence. A noise-based random key generation method 

was designed, and the common gait information was extracted 

to share the key among the devices worn on the same body. The 

proposed scheme can improve the user experience significantly, 

as walking is a normal activity, and the wearable IoT devices 

can access the network automatically when the user is walking. 

A. Overview of the noise-based key generation algorithm  

The proposed key generation method is presented in 

Algorithm 1. It includes five main steps: filtering, 

normalization, noise extraction, coding according to the noise 

level, and downsampling to enhance the randomness. First, the 

three-axis acceleration signal (ACCx, ACCy, and ACCz) is 

filtered through a specially designed zero-phase filter, and the 

amplitudes of raw and filtered signals are normalized. Then, the 

noise is extracted via the difference between the raw and 

filtered signals. The random bit sequences are generated 

according to the noise level and the XOR operator is applied to 

the RBS to enhance the randomness of the sequences. Finally, 

the M-bit random key is generated by down-sampling the 

generated sequence. 

 

B. Zero-phase filtering process 

An accurate noise signal extraction is the key to the 

noise-based key generation method. However, the phase shift 

caused by the conventional filter makes it very difficult to 

extract the noise signal.  

Keeping the phase and amplitude of the signal undistorted is 

a key factor to precisely extract the noise superimposed on the 

gait signal. For this purpose, we designed a zero-phase 

four-order low-pass Butterworth filter to remove the 

high-frequency noise. As the average gait frequency is between 

1.7 and 2.7 Hz, the cut-off frequency of the designed filter is set 

to 3 Hz. The flowchart of the zero-phase filtering process is 

shown in Fig. 4. 

The three-axis raw acceleration signals (represented by r_sig) 

are first inputted into the designed low-pass Butterworth filter. 

Then, the first output filtered signal f_sig is reversed and 

converted to the time-reversed signal rev_f_sig. The latter is 

inputted into the above filter and reversed again to yield 

rev_ff_sig with a zero-phase distortion. 

Figure 5(a) presents an example of zero-phase filtering 

results: as compared to the raw signal, the phase of the filtered 
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one remains unchanged, but the amplitude is largely attenuated 

by the square of the filter's response magnitude. 

 

 
Fig.4. Flowchart of the zero-phase filtering process 

 
Fig.5. An example of zero-phase filtered signal and its normalization 

C. Noise extraction and coding 

To compensate for the attenuation of signal amplitude, the 

magnitudes of signals r_sig and the ff_sig are normalized 

before calculating their difference. As seen in Fig. 5 (b), the 

difference between the amplitudes of r_sig and ff_sig was 

reduced by the above normalization procedure. 

Next, the noise n-sig is calculated via the difference between 

the raw and filtered signals as follows:  

_ _ _n sig r sig ff sig                            (1) 

For the coding process, three binary sequences would be 

generated, according to the noise value imposed on the 

three-axis acceleration. If n_sig is negative, the binary is set at 

“1”; otherwise, it is set at “0”. After the same process is 

performed for the three-axis acceleration signal, values of 

key_x, key_y, and key_z are calculated, as shown in Fig.6. 

 
Fig.6. Coding by the n-sig value  

To enhance the generated key randomness, the XOR 

operation is performed for key_x, key_y, and key_z.  

_ _ _key key x key y key z  
                (2) 

According to the length of the acceleration signal used to 

generate the secret key, one can further enhance the 

randomness by downsampling the binary sequence. Finally, the 

wearable IoT device generates the M-bit secret key key_M, 

which will be used to secure the data transmitted through the 

wireless channel.  

V. SSWC-BASED GAIT COMMON INFORMATION EXTRACTION 

METHOD 

The common gait feature information shared by all sensor 

nodes worn on the same body is used to lock and unlock the 

vault. The intra-similarity of the extracted common information 

is a very important factor for key distribution.  

During walking, the raw acceleration measured by multiple 

body-worn devices is the result of the user's gait as well as the 

movement of individual body parts, e.g., feet and arms, and 

hence, devices located in different places experience different 

accelerations, as shown in Fig.2. However, from the time scale, 

positions of the peak points caused by heel-strike events and 

though/valley points caused by toe-off events are identical. So, 

in this section, the time scale information of the gait features is 

extracted as common information, and a signed slide window 

coding (SSWC)-based method is designed and used to extract 

the common information shared by all nodes on the same body. 

Before the SSWC-based common information extraction, the 

raw signal is firstly preprocessed by the principal component 

analysis (PCA) method to reduce the dimensionality of the 
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acceleration signal. 

A. Data preprocessing 

For the data preprocessing, the high-frequency noise was 

first reduced by a low-pass Butterworth filter with a 3 Hz 

cut-off frequency. In order to reduce the impact of the irregular 

motion of other body parts on common gait information 

extraction, the sampled acceleration signal was first 

preprocessed by a low-pass filter and the principal component 

analysis (PCA) algorithm. The PCA could effectively extract 

the signal caused by gait from the raw signals, whereas the first 

component of the signal represented the motion caused by gait. 

According to our test results, the contribution rate of the first 

component was exceeded 90%.  

The r_signal is composed of the three-axis acceleration 

signals. The format of the r_signal is given by Eq.(3). The PCA 

analysis results are formulated in Eq.(4), where E and E(:,1) 

correspond to eigenvectors of r_signal and maximum 

eigenvalues, respectively. 

1 2

1 2

1 2

_ _ _

_ _ _ _

_ _ _

M

M

M

acc x acc x acc x

r signal acc y acc y acc y

acc z acc z acc z

 
 


 
  

(3) 

'_ (:,1) * _pca signal E r signal                    (4) 

The signal after the PCA process is depicted in Fig.7. The 

peak points of the pca_signal are caused by toe-off events 

while the valley points are caused by heel-strike events. The 

occurrence time of the two gait events detected by different 

sensors is of high consistency. Therefore, in this study, the 

occurrence time of the toe-off and heel-strike events was used 

to generate the common information, as well as to construct and 

deconstruct the fuzzy vault. 
 

 
Fig.7. The PCA results of the acceleration signal sampled from different body 

parts  

B. SSWC-based common information extraction 

In this section, the proposed signed slide window coding 

(SSWC) method is described. Firstly, the pca_signal is inputted 

into the fast Fourier transformation (FFT) model to calculate 

the step frequency fstep, and then the window size for 

SSWC-based common feature extraction is set according to fstep. 

It can be seen in Fig.8 that frequency peaks of signals sampled 

from three different body parts are very similar.  

 
Fig. 8. The FFT results of the pca_signal sampled from different body parts 

The sliding window size wt for SSWC-based common 

information extraction is defined as follows:  

* s
t

step

f
w

f

 

  
  

                                    (5) 

where fs is the sampling frequency, fstep is the detected step 

frequency, λ is a parameter set according to the application 

scenarios. The range of λ is (0,1], whereas smaller values of λ

correspond to higher the security level and computing 

complexity.  

 

In the proposed SSWC quantization method, the existing peak 

and valley points in the Nth window, if any, are coded as N and –

N, respectively. In the absence of such peak or valley points in 

the window, the latter just slides forward. One of the 

quantization examples is depicted in Fig. 9. We set the window 

size factor λ= 0.15. 

 
Fig.9. Non-overlapping signed sliding window coding of the peak value.  

VI. KEY DISTRIBUTION METHOD 

Fuzzy vault is a theoretically secure cryptographic construct 

for hiding a secret key in vault V by using a set A. The vault can 

be unlocked only by another set B that sufficiently overlaps 

with A. 

The proposed fuzzy vault-based key distribution method 

mainly includes two procedures: the vault locking process and 

the vault unlocking one. The workflow of the key distribution 

algorithm is presented in Fig.10. 
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Fig.10 Fuzzy vault-based secrete key distribution process 

A. Vault construction 

The fuzzy vault construction process mainly includes the 

following steps, as shown in Fig.10: 

1. Data segmentation: in order to conceal the random binary 

key sequence in the vault, the binary sequence is segmented 

into N, and  

0 1 2bit / / / / / / / / Ns C C C C                    (6) 

2. Polynomial construction: the segmented values are used as 

coefficients to construct an N-order polynomial f(x). 
2

0 1 2( ) ... N

Nf x C C x C x C x               (7) 

3. Vault construction: using the common information A 

extracted in the previous subsection, the mapping of common 

information on polynomials is computed to obtain P. Then, a 

large number of chaff points are added, and the fuzzy vault is 

constructed. Finally, the coordinator sends the constructed 

fuzzy vault V to the sensor nodes. 

The projection of set A on polynomial p is calculated to 

obtain the set P = (A, f(A)). A large set of random chaff points C 

that excludes set A of elements and does not intersect with 

polynomial p is constructed to obtain the vault via Eq.(10). 

Vault V will be a large set of points, in which secret points of P 

are masked by random chaff points (noise). The chaff points are 

added to V in such way that they cannot be distinguished from P 

using the statistical analysis:  

 0 1 2, , , , kA x x x x                              (8) 

 0 0 1 1 2 2( , ( )), ( , ( )), ( , ( )),..., ( , ( ))K KP x f x x f x x f x x f x   (9) 

V P C                                                 (10) 

B. Unlocking the vault 

For the vault unlocking process, when sensor nodes receive 

the vault sent by the coordinator, they use the common 

information B extracted from the acceleration signal to 

reconstruct the polynomials and then get the key concealed in 

the polynomials.  

 ' ' ' '

0 1 2, , , , lB x x x x                         (11) 

VII. EVALUATION 

In this section, we design experiments to test the 

performance of the proposed key generation and distribution 

methods. For the key generation methods, the randomness and 

bit generation rate are mainly considered. For the key 

distribution rates, we mainly analyze the correlation coefficient 

among the common data extracted from different body parts. 

The Pearson correlation coefficient (PCC) is used to evaluate 

the intra- and inter-similarity of common information.  

A. Performance of the key generation method 

For key extraction between a pair of wireless devices, the bit 

mismatch rate is defined as the number of bits that do not match 

between two devices divided by the total number of secret bits 

extracted. For group key extraction, it is defined as the 

averaged bit mismatch rate from all pairs of devices in the 

group. 

1. Randomness test 

For the randomness of the generated binary sequence, the 

NIST (National Institute of Standards and Technology) and the 

Dieharder tests were conducted to assess the randomness 

performance. The latest NIST-STS version 2.1.2 included 15 

tests, each of which was designed to test a pre-defined null 

hypothesis. The tested sequence was random and designated by 

H0. It also produced a probability value (p-value) in the range of 

the interval [0, 1]. If the p-value was larger than the threshold, 

H0 was accepted; otherwise, H0 was rejected [38]. However, 

limited by the length of the generated binary sequence, we 

selected several tests from NIST to perform the randomness 

evaluation. The test results are listed in Table II.  

Dieharder statistical tests consisted of tests from Diehard and 

many improved tests from NIST [39]. The distribution of 

p-values of 100 runs of the Dieharder tests for the dataset 

sampled from the right wrist is shown in Fig. 11. If a p-value 

from the Dieharder statistical test is below 0.001, the test is 

considered as failed. However, p-values are expected not to 

exceed 0.05 (weak) 5% of the time. The results showed no 

failure incidents in any tests and included a few incidents where 

p ≤ 0.05 was expected. Furthermore, the p-values of all tests 

were well-distributed over the interval [0, 1], indicating that 

keys successfully passed all the Dieharder statistical tests. 
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                                   TABLE II: P-VALUE RESULTS OF THE  NIST  STATISTICAL TESTS  

NIST Test 

p-value 

Right wrist Right side of the pelvis 

Frequency 0.890121 0.869021 

Block frequency 0.730901 0.887932 

FFT 0.233295 0.678987 

Runs 0.212568 0.689091 

Longest run 0.476970 0.744939 

Entropy 0.989152 0.996787 

Serial 0.517388 0.897461 

Non-overlapping template 0.367982 0.476098 

Cumulative sums forward 0.873556 0.901933 

Cumulative sums reverse 0.657120 0.790993 

 

Fig.11. The distribution of p-values in the Dieharder tests 

 

2. Bit generation rate 

The bit generation rate represents the number of secret bits 

extracted per measurement. It denotes the average number of 

bits generated from acceleration samples per unit time and is 

usually measured in bits per second (bps). This metric evaluates 

how fast the coordinator can generate secret bits. 

As we used no complex multilevel coding methods, the bit 

generation rate of the proposed noise-based key generation 

method was only affected by the sampling rate of the 

acceleration signal. The maximum bit generation rate was the 

same as the sampling rate (100bps in this study). It took less 

than 2 seconds to generate a 128-bit key. 

Further, we compared the bit generation rate with three 

related works. The comparative analysis results listed in Table 

III strongly indicate that the proposed method, which uses no 

multilevel coding schemes, such as the m-ary, exhibits the bit 

generation rate outperforming those of three related key 

generation methods used for comparison. In particular, the first 

method was  the IPIs-based key generation method proposed by 

Sun et al. [29] using the variation between the lengths of each 
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gait cycle to generate the binary sequence. As the gait 

frequency is far lower than the sampling frequency, its bit 

generation rate is still very low, although multi bits were 

assigned to each cycle in the quantization process. The second 

one was the symmetric  key generation method proposed by Xu 

et al. [31], which implied coding the acceleration sample point 

itself to generate the random binary sequence. In the third 

method proposed by Revadigar et al. [26], the bit match rate 

and the bit sequence randomness were improved by using a 

multilevel quantization scheme, where a small band called 

‘guard band’ was inserted between two consecutive 

quantization levels. The samples in the guard band were 

excluded during quantization, which would reduce the bit 

generation rate. 

TABLE III: BIT GENERATION RATES OF THE PROPOSED METHOD AND THREE OTHER ONES [26, 29, 31]  

 
Sampling 

rate (Hz) 
Method Parameters 

Bit generation 

rate (bps) 

Time to generate a 

128-bit key (s) 

This study 100 
Noise-based key 

generation 
/ 100 1.28 

Sun et al. [29] 100 
IPIs-based key 

generation 
/ / ≈ 16 (32 gait cycles)  

Xu et al. [31] 100 
m-ary 

quantization 

m=2 28 4.6 

m=4 37 3.5 

m=8 43 3 

Revadigar et al. 

[26] 
50  

m-ary 

quantization 

m=2 

𝛼1∗ = 0.5 

W2*=50 

25 5.12 

m=8 

𝛼1∗ = 0.5 

W2*=50 

75 1.71 

m=32 

𝛼1∗ = 0.5 

W2*=50 

125 1.02 

1*: 𝛼 is the guard band- to-data ratio 

2*: W is the size of the non-overlapping moving window 

 

B. Performance of the key distribution method 

In this section, the factors that influence the key distribution 

are discussed, and the key distribution success rate is evaluated 

for different scenarios. Firstly, the similarity of the common 

information extracted from different body parts is compared 

and analyzed. 

1. The similarity of the common information 

The Pearson correlation coefficient (PCC) was used to 

evaluate the similarity of the common information extracted 

from different body parts. PCC shows the linear relationship 

between two sets of data. Its value is ranged between -1 and +1, 

where −1 implies the total negative linear correlation, 0 

corresponds to no linear correlation, and +1 is the total positive 

linear correlation. The following equation is used to derive 

PCC. 

,

(( )( ))cov( , ) x y

x y

x y x y

E x yx y  


   

 
                   (12) 

where Cov is the covariance between x and y, σx and σy are the 

standard deviations of x and y, respectively, 𝜇𝑥 and 𝜇𝑦 are the 

mean values of x and y, respectively, while E is the expectation. 

The correlation between datasets is a measure of their 

relation closeness. The PCC between the common information 

extracted from different body parts reflects their similarity. The 

intra-similarity (of different body parts of the same subject) and 

the inter-similarity (of different body parts of different subjects) 

were analyzed.  

Firstly, in order to test the similarity of the common 

information extracted from sensors worn on different body 

parts, we used the PCC to evaluate the intra- and inter- 

similarities of the extracted common information when the 

window size factor λ varied from 0.1 to 1. 

The test results on the PCC between different body parts 

(Fig.12) implied that the correlation coefficient grew with  the 

window size. This finding was quite expected: when the 

window widened, peaks or valleys of different sensor signals 

were more likely to be in the same window.  
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Fig.12. Comparison of the similarity of time scale common information extracted from different body parts of the same subject and different subjects versus the 

window size: wt 

2. The key distribution success rate 

Besides, the key distribution success rate was tested to 

evaluate the overall key distribution performance. In this 

experiment, 500 samples of acceleration signals were collected 

by the hub node and sensor nodes synchronously. Then, a 

128-bit binary key sequence (b1, b2, …, b128) was first generated 

in the hub node, and a 16 order polynomial function was 

constructed using segments of the generated 128-bit binary key 

sequence as its coefficients, Ci=b(8*i+1), b(8*i+2), …, b(8*i+8), 

where i=0, 1, …, 16. The hub and the sensor node extracted 

their own common information through the previously 

collected 500 samples of acceleration signals using the 

proposed SSWC method with λ=0.15. Then the hub node sent 

the common information concealed in the vault with size of 300 

to the sensor nodes through a public channel. The sensor nodes 

attempted to reconstruct the eight-order polynomial using their 

own common information on receiving the vault.  

First, we tested the key distribution success probability using 

the open dataset ZJU-GaitAcc shared by [17]. The 

ZJU-GaitAcc dataset contains the gait acceleration series of 

175 subjects. 153 of which are present in two sessions (Session 

1 & 2). For each subject, six records are included in one session, 

where each record contains five gait acceleration series 

simultaneously measured at the right wrist (rw), left upper arm 

(lua), right side of the pelvis (rp), left thigh (lt), and right ankle 

(ra), respectively. In this experiment, we used the acceleration 

data of the 153 subjects in session 1 to test the key distribution 

success probability. For each subject, the sensor placed on the 

right side of the pelvis acted as a hub node and generated a 

128-bit binary key sequence using the data collected in the first 

record. Then, the hub node distributed the key sequence to 

other sensor nodes through the proposed fuzzy vault-based key 

distribution method. The intersection between the common 

information datasets extracted by the hub node and the sensor 

nodes was computed. If the size of the intersection dataset 

exceeded the polynomial order, the key distribution was a 

success, otherwise, it was failed. As there were six records for 

each subject, if the key was not successfully shared between the 

hub and sensor nodes, the next record was used to generate 

another common information datasets and make another 

attempt to distribute the binary key sequence through the fuzzy 

vault. The probabilities of success against the number of 

attempts for the sensors placed in different body locations (the 

hub node being placed on the pelvis right side) were calculated 

and plotted in Fig. 13. The results obtained show that the 

average success rate after a single attempt is about 0.95, and 

after four attempts, the success rate reaches 1. 

 
Fig. 13. Key distribution success probability tested on ZJU-GaitAcc dataset 

Further, we used the real word dataset RealWorld (HAR) 

shared by [42, 43] to test the robustness of the proposed 
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methods. This dataset was collected in real-world scenarios and 

covers six kinds of sensor data of 8 common activities: 

climbing stairs down and up, jumping, lying, standing, sitting, 

running/jogging, and walking. There were fifteen subjects 

(eight males and seven females) enrolled in the data collecting 

process. The participants’ statistical characteristics were: age 

31.9±12.4, height 173.1±6.9, and weight 74.1±13.8. For each 

activity, the acceleration of seven body positions (chest, 

forearm, head, shin, thigh, upper arm, and waist) was recorded 

simultaneously. According to our test purpose, only walking 

acceleration data of each subject was used for this experiment. 

The sampling frequency of the acceleration signal for walking 

is 50Hz, and the length of the acceleration signal for each 

subject is about ten minutes. Firstly, we removed the data 

collected in the first two minutes after the start to reduce the 

interference in the start-up phase of the experiment. Then, the 

next 3000 samples (about 1 minute long) were extracted and 

divided into six sections with equal length. 

The acceleration data collected on the waist were used to 

generate the key and construct the vault. In contrast, the 

acceleration data collected on the other body positions in the 

same section was used to unlock the vault and recover the key 

hidden in it. If the key was not successfully distributed through 

the acceleration data in the first section, the next section of 

acceleration data was used to generate another common 

information dataset and make another try to distribute the 

binary key sequence through the fuzzy vault. The key 

distribution success probabilities against the number of 

attempts for the sensors placed in different body locations (the 

waist sensor was used as the hub) were calculated and plotted in 

Fig. 14. We can see from the results that the distribution success 

probability after a single attempt was 0.94, being slightly lower 

than that obtained on the ZJU-GaitAcc dataset. The reason for 

the performance degradation is that the complex walking 

environments (non-flat ground condition, etc.) and the motion 

of other body parts (head, hand, etc.) deteriorated the gait 

signal's consistency sampled from different body positions.

 
Fig 14. Key distribution success probability tested on RealWorld (HAR) 

dataset 

C. Resource consumption analysis 

In this section, we evaluated the light-weight feature of the 

proposed method from the perspective of resource (including 

energy and time) consumption. The proposed noise-based key 

generation algorithm, SSWC-based gait common information 

extraction algorithm, and the fuzzy vault locking and unlocking 

algorithm were first converted to Android application programs. 

Next, the Trepn Profiler diagnostic tool [40] designed by 

Qualcomm was used to test the energy and time consumption of 

the proposed algorithms when generating and distributing a 

128-bit binary key. The energy and time consumptions of the 

proposed algorithms are summarized in Table IV. We further 

compared the resource consumption of the coordinator and the 

sensor with the model proposed in [26]. The comparison results 

are listed in Table V. One can see that, although the energy and 

time consumptions of the sensor in our work exceeded those of 

the chest-worn sensor in [26], the total energy and time 

consumption of the coordinator and the sensor were much 

lower than those in [26]. Besides, as the wrist-worn sensor 

needs to extract the gait signal from the sampled complex 

signal using the independent component analysis algorithm, the 

energy and time consumption of the wrist-worn sensor in [26] 

significantly exceeded ours.  

TABLE IV: ENERGY AND TIME CONSUMPTION TEST RESULTS 

Algorithm Energy (mJ) Time (ms) 

Key generation algorithm 0.1207 0.1331 

Gait common information 

extraction algorithm 
4.7911 3.6763 

Vault locking algorithm 0.0398 0.0277 

Vault unlocking algorithm 0.0467 0.0302 

 

TABLE V: COMPARISON RESULTS OF ENERGY AND TIME 

CONSUMPTION WITH [26] 

Device Energy (mJ) Time (ms) 

Coordinator 

(this study) 
4.9516 3.8371 

Sensor 

(this study) 
4.8378 3.7065 

Coordinator [26] 12.7713 208.782 

Chest-worn sensor 

[26] 
0.0720 0.6820 

Wrist-worn sensor 

[26] 
364.7503 486.4320 

 

D. Security analysis 

1. Vault security 

In this section, we discuss the security level of the vault. The 

security offered by the vault depends on the vault size (v) and 

the constructed polynomial order (N). More chaff points added 

to the vault and higher order of the constructed polynomial 

increase the vault security level. The latter can be calculated as 

follows:  
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𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 𝑙𝑒𝑣𝑒𝑙 = 𝑙𝑜𝑔2(𝐶𝑣
𝑁)                                  (13) 

The test results obtained for different vault sizes and 

polynomial orders are shown in Fig.15.  

 

 
Fig. 15 Security level test results for different vault sizes (100 to 600) 

2. Anti-imitation attack ability 

In order to further evaluate the security performance of the 

proposed methods, we designed imitation attack experiments 

and analyzed the mimicking attack threats. 

In these experiments, 8 subjects were recruited and 

subdivided into 4 groups as shown in Table VI. Two subjects 

with a similar body shape (height and weight) or their walking 

style are naturally similar were selected in each group to act as a 

genuine user and his/her imitator (adversary). To achieve better 

mimicking effects, the adversaries were asked to imitate the 

walking style of the genuine users during the experiments. At 

the same time, two (wrist- and waist- worn) IMU sensors with a 

100Hz sampling frequency [41] were used to collect the 

walking acceleration data of the genuine user and the adversary 

simultaneously. The test scenario is illustrated by Fig. 16. 

 

TABLE VI: GROUPING AND PHYSICAL PARAMETERS OF THE TEST 

SUBJECTS 

Group Subject Gender 
Age 

(yrs) 

Height 

(cm) 

Weight 

(kg) 

G 1 
Sbj. 1 F 29 163 50 

Sbj. 2 F 37 164 55 

G 2 
Sbj. 3 M 30 157 62 

Sbj. 4 M 30 170 56 

G 3 
Sbj. 5 M 29 172 70 

Sbj. 6 M 36 174 80 

G 4 
Sbj. 7 F 32 165 56 

Sbj. 8 M 33 170 63 

 
Fig. 16 The imitation attack test scenario: genuine user and his/her gait 

imitator (adversary) 

For the threats’ model analysis, we considered the following 

two scenarios. The first one envisaged that the adversaries 

would try to generate the same key as genuine users of the same 

group by using their own acceleration signal through 

mimicking the walking style of the genuine user. For this 

scenario, the hamming distance (HD) between the keys 

generated by the genuine user and the adversary was used to 

evaluate the anti-imitation attack ability of the proposed 

methods.  

The acceleration signals collected by the IMU sensors worn 

on the wrist and waist were used to generate a 128-bits key, 

respectively, based on the proposed noise-based random key 

generation method. Then, the HD between the keys generated 

by genuine users and adversaries in the same group was 

computed, as shown in Fig. 17. The results indicate that the 

average HDs between keys generated from IMU sensors worn 

on the wrist and waist were 81 and 88 bits, respectively. Thus, 

the proposed noise-based random key generation method 

effectively prevented the adversaries to achieve the true key by 

mimicking the walking style of genuine users. 

 
Fig. 17 The HD between the keys generated by the genuine users and their 

adversaries 

The second scenario implied that the adversary would 

attempt to extract the key from the vault transmitted by the 
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genuine user through the public channel using his/her own gait 

feature through mimicking the walking style of the genuine 

user. 

In this test, a 128-bit binary key sequence and S (S=20) gait 

common information (gc1, gc2,…,gcS) were generated using the 

proposed methods based on the wait-worn acceleration sensor 

signal collected by the genuine user. Then, a 16-order 

polynomial function f(x) was constructed using segments of the 

generated 128-bit binary key sequence as its coefficients, and 

the genuine pairs of values (gci, f(gci)) which could be used to 

unlock the vault was computed by substituting the common gait 

information into the polynomial. A software random number 

generator was used to generate chaff points pairs that were not 

present in the polynomial function f(x), and genuine pairs and 

the generated chaff point pairs were merged and mixed to form 

a vault with a size of 300. The adversaries tried to unlock the 

vault using the common gait information extracted from their 

own acceleration sensors. In the absence of the application 

program for the sensor nodes, the performance was evaluated 

offline using the acceleration data collected in advance. It was 

assumed that the adversary nodes had no prior knowledge on 

the key length and the polynomial order, so the recovered key 

length could differ from that of the true/genuine key. We 

modified the similarity index (SI) defined in [26] to evaluate the 

similarity between the recovered and genuine keys via Eq. (13).  

𝑆𝐼 =
|𝑔𝑒𝑛𝑢𝑖𝑛𝑒 𝐾𝑒𝑦∩𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝐾𝑒𝑦|

|𝑔𝑒𝑛𝑢𝑖𝑛𝑒 𝐾𝑒𝑦|
                (13) 

Here, SI varies between 0 and 1. Higher values indicate that 

the genuine and recovered key have more common elements. SI 

will be 1 if the recovered key is a subset of the genuine key and 

contains no chaff points. 

The SI values between (i) the genuine key generated by the 

waist-worn acceleration of the genuine user and those 

recovered via his/her wrist-worn acceleration sensor, (ii) the 

genuine key generated by the waist-worn acceleration of the 

genuine user and those recovered by the waist- and wrist-worn 

acceleration of the adversary, were computed and plotted in Fig. 

18. These test results strongly indicate that it is hard for any 

adversary to recover the genuine key by mimicking the walking 

style of the genuine user. 

 
Fig. 18 The values of SI  for the genuine  and recovered keys  

VIII. CONCLUSION AND FUTURE WORK 

This paper proposed a light-weight noise-based M-bit key 

generation method for wearable IoT devices. We designed a 

zero-phase filter to extract the noise imposed on the regular gait 

signal. As the noise has the properties of randomness and 

uncertainty, the binary sequence generated based on the noise 

value has good randomness and high entropy. For sharing the 

generated key among different wearable IoT devices in the 

same body area network, an SSWC-based common feature 

extraction method was first designed to extract the gait 

common information from acceleration signals sampled by 

different wearable IoT device. Next, fuzzy vault-based key 

distribution methods were used to secretly transmit the 

generated key among wearable IoT devices in the same body. A 

comprehensive analysis of the proposed key generation and 

distribution method proved that the binary keys generated via 

the introduced noise-based procedure have high entropy and 

can pass both the NIST and Dieharder statistical tests with high 

efficiency. The experimental results proved  the robustness of 

the proposed SSWC-based common feature extraction method 

in terms of the similarity and discriminability of intra- and 

inter-class features, respectively. 

For future research, the realistic scenarios’ online tests for 

gait-based key generation and distribution should be performed. 

The active attacks, including walking posture imitation and 

machine vision-based gait synthesis should be taken into 

consideration. The follow-up studies are envisaged to apply 

multi-biometric fusion-based secure methods to further 

enhance the security level of wearable devices. 
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