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ABSTRACT 24 

Background: Cardiometabolic morbidity and medications, specifically Angiotensin Converting 25 

Enzyme inhibitors (ACEi) and Angiotensin Receptor Blockers (ARBs), have been linked with adverse 26 

outcomes from coronavirus disease 2019 (COVID-19). This study aims to investigate, factors 27 

associated with COVID-19 positivity in hospital for 1,436 UK Biobank participants; compared with 28 

individuals who tested negative, and with the untested, presumed negative, rest of the cohort. 29 

 30 

Methods: We studied 7,099 participants from the UK Biobank who had been tested for COVID-19 in 31 

hospital. We considered the following exposures: age, sex, ethnicity, body mass index (BMI), diabetes, 32 

hypertension, hypercholesterolaemia, ACEi/ARB use, prior myocardial infarction (MI), and smoking. 33 

We undertook comparisons between 1) COVID-19 positive and COVID-19 negative tested participants; 34 

and 2) COVID-19 tested positive and the remaining participants (tested negative plus untested, 35 

n=494,838). Logistic regression models were used to investigate univariate and mutually adjusted 36 

associations. 37 

 38 

Results: Among participants tested for COVID-19, Black, Asian, and Minority ethnic (BAME) 39 

ethnicity, male sex, and higher BMI were independently associated with a positive result. BAME 40 

ethnicity, male sex, greater BMI, diabetes, hypertension, and smoking were independently associated 41 

with COVID-19 positivity compared to the remining cohort (test negatives plus untested). However, 42 

similar associations were observed when comparing those who tested negative for COVID-19 with the 43 

untested cohort; suggesting that these factors associate with general hospitalisation rather than 44 

specifically with COVID-19.  45 

 46 

Conclusions: Among participants tested for COVID-19 with presumed moderate to severe symptoms 47 

in a hospital setting, BAME ethnicity, male sex, and higher BMI are associated with a positive result. 48 

Other cardiometabolic morbidities confer increased risk of hospitalisation, without specificity for 49 

COVID-19. ACE/ARB use did not associate with COVID-19 status. 50 

 51 

Keywords: coronavirus disease 2019; UK Biobank; ethnicity; sex; obesity; cardiometabolic disease; 52 

Angiotensin Converting Enzyme inhibitors; Angiotensin Receptor Blockers  53 
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INTRODUCTION 54 

Coronavirus disease 2019 (COVID-19), the clinical illness caused by the severe acute respiratory 55 

syndrome coronavirus 2 (SARS-CoV-2), has reached pandemic levels. There has been growing 56 

recognition that patients with underlying cardiometabolic morbidities may be suffering higher rates of 57 

infection and a more severe disease course than the general population1–3. Debate has ensued regarding 58 

whether these observations relate to the conditions themselves or the medications with which they are 59 

treated. In particular, some have suggested a mechanistic role for Angiotensin Converting Enzyme 60 

inhibitors (ACEi) or Angiotensin Receptor Blockers (ARBs)4. However, recent reports have not 61 

produced convincing evidence for the specific association of ACEi/ARBs with poorer outcomes4–6. 62 

Cardiometabolic diseases are common and ACEi/ARBs are used by many vulnerable patients. It is 63 

therefore important to better understand the augmented risk associated with cardiometabolic factors and 64 

ACEi/ARB use with COVID-19, to inform clinical practice, and guidance to patients. 65 

 66 

The UK Biobank (UKB) is a large cohort study comprising data from over 500,000 participants from 67 

across the UK, characterised in detail at baseline (2006-2010), and with linkages to Hospital Episode 68 

Statistic (HES) data. In response to the COVID-19 pandemic, the UKB facilitated rapid release of 69 

COVID-19 testing data for its participants through linkage with Public Health England7, providing a 70 

unique opportunity to study the effects of many well-defined exposures on COVID-19 status. 71 

 72 

The aim of this study is to investigate the association of demographic factors (age, sex, ethnicity), 73 

cardiometabolic profile [body mass index (BMI), diabetes, hypertension, hypercholesterolaemia, prior 74 

myocardial infarction (MI), smoking], and ACEi/ARB use with COVID-19 positivity in hospital using 75 

data from UKB.  76 
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METHODS 77 

Setting and study population  78 

UKB is a prospective cohort study including over 500,000 participants from across the UK. Individuals 79 

aged 40-69 years old identified via National Health Service (NHS) registers were recruited over a four-80 

year period between 2006-2010. Participants underwent detailed baseline assessment including 81 

characterisation of socio-demographics, lifestyle, medical history, and a series of physical measures. 82 

The protocol is publicly available8. Linkages with HES data permit longitudinal tracking of health 83 

outcomes for all participants with conditions recorded according to international classification of 84 

disease (ICD) codes. In addition, UKB has produced algorithmically defined outcome data for incidence 85 

of key illness, such as MI, through integration of data from multiple sources9. The latest data release 86 

(24th June 2020) includes test results from 16th March to 14th June. In the UK, until the 18th of May 87 

2020, testing was almost entirely limited to hospital settings, after this date, testing was extended to the 88 

community. Therefore, we consider a positive test performed up to the 18th of May as indicative of 89 

hospitalisation, beyond this date we required explicitly labelling of the sample as “inpatient”. Testing 90 

was based on a real-time polymerase chain reaction (RT-PCR) assay antigen test; for most participants 91 

the sample tested was from combined nose and throat swab; for patients in intensive care lower 92 

respiratory samples may have been used. Thus, we defined a cohort of participants who were tested for 93 

SARS-CoV-2 whilst admitted to hospital, and therefore are likely to have a relatively severe 94 

presentation. 95 

 96 

Ethics 97 

This study was covered by the ethics approval for UKB studies from the NHS National Research Ethics 98 

Service on 17th June 2011 (Ref 11/NW/0382) and extended on 10th May 2016 (Ref 16/NW/0274). 99 

 100 

Statistical analysis 101 

Statistical analysis was performed using R Version 3.6.2 [R Core Team (2019). R: A language and 102 

environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 103 

URL https://www.R-project.org/], and RStudio Version 1.2.5019 [RStudio Team (2015). RStudio: 104 

Integrated Development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com/]. We 105 

considered the following exposures: age, sex, ethnicity, body mass index (BMI), diabetes, hypertension, 106 

high cholesterol, ACEi/ARB use, prevalent MI, and smoking. The cardiometabolic and demographic 107 

factors were selected based on existing reports of their potential association with COVID-19 108 

outcomes3,10,11. ACEi/ARBs were considered due to reports of potential mechanistic role of these 109 

medications in the clinical course of COVID-194. We used age, sex, and ethnicity (White vs BAME) 110 
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as recorded at baseline. BMI was calculated from height and weight recorded at baseline. Smoking 111 

status was based on self-report. Hypertension, diabetes, and hypercholesterolaemia were defined 112 

through cross-checking across self-report and HES data. A list of ICD codes used is available in 113 

Supplementary Table 1. Information on prior MI was obtained from the UKB algorithmically defined 114 

health outcomes. ACEi/ARB use was determined from self-report (Supplementary Table 2). We 115 

considered the effect of ACEi and ARBs both separately and as an aggregate variable. We created three 116 

cohorts: test positives, test negatives, and the untested cohort (Figure 1). Individuals who were tested, 117 

but with unclear hospitalisation status were excluded from the analysis. We firstly compared the 118 

COVID-19 test positive cohort with the combined cohort of test negatives and the untested UKB 119 

population. In order to investigate possible bias relating to hospitalisation status, we also considered the 120 

importance of these exposure variables in two further comparisons: test positives vs test negatives and 121 

test negatives vs untested population. We used logistic regression models to elucidate univariate and 122 

then multivariate associations. There was no evidence of multicollinearity with inflation factor (VIF) 123 

<2.0 for all covariates. As the observed association with ethnicity was strong, we tested for potential 124 

interaction effects between ethnicity and all tested covariates in multivariate models. We present odds 125 

ratio (OR) for each exposure with the corresponding 95% confidence interval (CI) and p-value. Given 126 

the low background prevalence of COVID-19 positivity, the odds ratios can be interpreted as relative 127 

risks.  128 
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RESULTS 129 

Baseline characteristics 130 

Of the 7,668 UKB participants tested for COVID-19, 7,099 were likely in a hospital setting and are 131 

included in this analysis (Table 1, Figure 1), of these 1,439 tested positive and 5,660 tested negative. 132 

There was no record of testing for the remainder of the UKB cohort (n=494,838) (Figure 1). 133 

 134 

In comparison to the untested cohort, the COVID-19 positive cohort were predominantly male (52.9% 135 

vs 45.5%), had a greater proportion of BAME individuals (12.9% vs 5.3%), and an all-round poorer 136 

cardiometabolic profile, with higher BMI, higher rates of smoking, prior MI, diabetes, hypertension, 137 

and high cholesterol; they also reported greater use of ACEi/ARB agents (21.8% vs 14.3%). However, 138 

comparing the COVID-19 positive cohort with the tested negative cohort (n=5,660), the differences 139 

were much less pronounced, as the test negative cohort also had a globally poorer cardiometabolic 140 

profile than the untested population. 141 

 142 

Association of exposures with COVID status 143 

COVID-19 positive vs not COVID-19 positive (tested negative cohort plus untested cohort) 144 

We first tested whether there were univariate associations between exposures and COVID-19 positives 145 

(n=1,439) vs not COVID-19 positives (including tested negative and untested cohort, n=500,498). 146 

Univariate associations were significant for all covariates considered, except age. In multivariate 147 

models, the independent predictors of COVID-19 positivity were younger age, male sex, BAME 148 

ethnicity, greater BMI, diabetes, hypertension, and smoking (Table 2, Figure 2: Comparison 1).  149 

 150 

COVID-19 positive vs COVID-19 tested negative 151 

We next considered associations between exposures and COVID-19 positives (n=1,439) vs tested 152 

negative cohort (n=5,660). Within this sample, the univariate predictors of positivity were male sex, 153 

younger age, BAME ethnicity, greater BMI, and diabetes. These variables, with the exception of 154 

diabetes, remained statistically significant in the multivariate model with mutual adjustment for all other 155 

covariates (Table 2, Figure 2). The greatest magnitude of effect related to ethnicity; BAME individuals 156 

had almost twice the likelihood of a COVID-19 positive result compared to White ethnicities in the 157 

fully adjusted models [OR 1.95, 95% CI (1.60, 2.36)]. There was no evidence of interaction effect with 158 

ethnicity and any of the other covariates (Supplementary Table 3). Compared with women, men had 159 

22% greater odds of a COVID-19 positive test [OR 1.22, 95% CI (1.08, 1.38)]. For every 5kg/m2 160 

increase of BMI, there was 9% greater odds of COVID-19 positive status (Table 2, Figure 2: 161 
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Comparison 2). There was a negative association with age, this may reflect older age of participants 162 

admitted to hospital for reasons other than COVID-19; alternatively, it may be an artefact of the data 163 

related to the narrow age range in the sample. Notably, there was no significant association between 164 

ACEi/ARB use and COVID-19 status, which was consistent when testing effect of ACEi and ARBs 165 

separately (Supplementary Table 4). 166 

 167 

COVID-19 tested negatives vs untested population 168 

Finally, we investigated associations between the exposures with a negative test (n=5,660) vs untested 169 

UKB population (n=494,838). There were significant univariate associations for all covariates 170 

considered. In the multivariate model, BAME ethnicity, older age, higher BMI, diabetes, hypertension, 171 

high cholesterol, previous MI, and smoking were significant predictors of a having a negative test, and 172 

therefore of presenting to hospital, perhaps with respiratory symptoms, compared to not being tested 173 

(Table 2, Figure 2: Comparison 3).  174 
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DISCUSSION  175 

Summary of findings 176 

In this analysis of 7,099 UKB participants tested for COVID-19 in a hospital setting, BAME ethnicity, 177 

younger age, male sex, greater BMI, diabetes, hypertension, and smoking were independently 178 

associated with COVID-19 positive test in comparison to the rest of the cohort (tested negatives plus 179 

untested). However, within the tested sample, a positive result was more likely for men, BAME 180 

individuals, younger ages, and with greater BMI. Indeed, when compared with the background 181 

population, the pattern of associations between exposures and COVID-19 positive was similar to that 182 

for COVID-19 test negative. These findings suggest that BAME ethnicity, male sex, and higher BMI 183 

have specific relevance to COVID-19, whilst the other exposure associations between COVID-19 184 

positive and the remainder of the population reflect morbidities associated with general requirement for 185 

hospitalisation, without specificity to COVID-19. Furthermore, as testing was in a hospital setting, these 186 

associations relate specifically to the more severe end of the COVID-19 manifestations requiring 187 

hospitalisation. Notably, ACEi/ARB usage was not associated with COVID-19 status. 188 

 189 

Comparison with existing literature  190 

With the rapid global spread of COVID-19, understanding the determinants of infection risk and 191 

severity is a priority. Differences in ethnic background are known to contribute to differences in patterns 192 

of a number of diseases, including influenza12, due to different genetic susceptibilities and 193 

environmental exposures13. In the UK, national audit data demonstrates as many as one-third of 194 

COVID-19 patients admitted to intensive care are from BAME backgrounds; a rate which is 195 

disproportionate to their representation among the general UK population14. In our study, BAME 196 

ethnicity had specific association with higher risk of COVID-19 positive status that appeared 197 

independent from often-quoted confounders of cardiovascular and metabolic morbidity that are known 198 

to be higher in prevalence in BAME cohorts15. Having accounted for cardiometabolic morbidity, the 199 

possible explanations for this association remain numerous16, gravitating around both genetic and social 200 

factors; behavioural, cultural, and socioeconomic differences, including health-seeking behaviour and 201 

intergenerational cohabitation are all likely to play a role in the strong disparity observed in our study, 202 

providing key targets for both further research and public health policy. Initial studies, demonstrate 203 

complex interplay of biological and socio-economic factors and highlight need for urgent research in 204 

this area17.   205 

 206 

Since the first reports emerging from China at the beginning of the outbreak, it has been widely 207 

recognized that males suffer higher rates of infection and poorer outcomes compared to females; with 208 
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reported distributions of approximately three-fifths men and two-fifths women18,19. The reasons for this 209 

are unclear. Animal studies demonstrate, that in mice infected with SARS-CoV, oestrogen-deplete 210 

status either due to male gender or ovariectomy is associated with higher risk of acute respiratory 211 

distress syndrome (ARDS), indicating a possible protective role of oestrogen signalling20. Men are 212 

known to have higher burden of cardiovascular disease than women up to the perimenopausal years; 213 

and thus, lower cardiometabolic morbidity among women in the younger cohort has been postulated to 214 

contribute to better outcomes. However, we demonstrate that in our study population, the association 215 

between male sex and higher infection rates was independent of cardiometabolic disease. Furthermore, 216 

male sex appears significant in our sample comprising an older cohort with almost all women being 217 

post-menopause, indicating that sex-differential disparities in COVID-19 disease severity relate to 218 

factors other than immediate-term oestrogen exposure. Thus, our findings suggest that the higher risk 219 

of COVID-19 in men is not sufficiently explained by the oestrogen pathway or greater burden of 220 

cardiometabolic disease.  221 

 222 

Obesity is a global health issue, rising in prevalence and public health burden in both developed and 223 

developing countries. Patients who suffer from obesity are known to be at increased risk of a number 224 

of conditions, including cardiometabolic and respiratory disease, contributing to a poor physiological 225 

reserve. It is already known that patients with obesity have worse outcomes from influenza infection21,22. 226 

With the wealth of emerging research on COVID-19, concern has grown over the association between 227 

obesity and poor outcomes of infection23; with studies consistently demonstrating higher rates of critical 228 

or intensive care requirement among individuals with higher BMI24–26. Similar to ethnicity, the 229 

relationship between obesity and severe infection must be isolated from the confounding of obesity-230 

related comorbidity. In our study, we demonstrate the distinct role of obesity from that of associated 231 

cardiometabolic diseases; with the major finding that obesity, and not its comorbidities, had 232 

independent and specific association with COVID-19 positivity. This is of important relevance, as 233 

mechanistic understanding of the reason behind this association may provide therapeutic insight. For 234 

example, obesity enhances risk of thrombosis, which has been a recent focus of interest given concern 235 

over a possible association between COVID-19 and prothrombotic intravascular coagulation27. The 236 

results of our study provide useful information for risk stratification of patients, highlight important 237 

avenues for further research, and emphasise the public health-level importance of continued targeting 238 

of obesity. 239 

 240 

Several reports hypothesise potential mechanistic links between ACEi/ARB usage and adverse 241 

outcomes from COVID-194. SARS-CoV-2 has been shown to exhibit specific tropism for the 242 

angiotensin-converting enzyme 2 (ACE2) receptor; by which means it enters the cells and establishes 243 
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itself in the host28. The expression of ACE2 receptors in epithelial cells of the lung, intestine, kidney 244 

and endothelium may be increased in those treated with ACEi/ARBs, thereby facilitating entry and 245 

multisystem manifestations of COVID-1929,30. The relationship between COVID19 infection risk and 246 

use of ACEi/ARBs has been a matter of debate since the early days of the outbreak, but recent studies 247 

have revealed a lack of independent association when morbidity variables, including atherosclerotic 248 

cardiovascular disease, heart failure and cardiometabolic diseases such as diabetes and hypertension 249 

were accounted for4,5. Furthermore, a recent study from Spain demonstrates no association between 250 

ACEi/ARB use and COVID-19 mortality or requirement for intensive care31. Findings from our sample 251 

are consistent with these reports, demonstrating univariate association with ACEi/ARB use which 252 

becomes non-significant after adjustment for cardiometabolic and demographic factors.  253 

 254 

Strengths and Limitations 255 

UKB is a comprehensive data source, incorporating a large sample with linkages to prospectively 256 

tracked health outcomes recorded in a standardised manner using ICD codes, enabling reliable and up-257 

to-date definition of morbidities. The rapid release of COVID-19 testing data provides a huge 258 

opportunity to examine association of a large number of exposures with COVID-19 status and 259 

outcomes. Due to the observational study design, we cannot comment on causal relationships from the 260 

results, however, the prospective nature of the study ensures confident temporal separation of exposure 261 

and outcome. Whilst analyses using the whole UK Biobank cohort of over 500,000 people may detect 262 

very small associations which are unlikely to be clinically significant, we studied a subset of much more 263 

modest sample size, with exposures and covariates chosen on the basis of prior literature and biological 264 

plausibility with the magnitude of relationships observed likely to be clinically meaningful.  Further 265 

research in different cohorts would be helpful in better understanding the impact of the exposures 266 

studied. Whilst we can be reasonably confident about hospitalisation status of the tested cohort in this 267 

study, there is uncertainty about the degree of symptoms. We acknowledge that there are local variations 268 

in testing approaches and that conclusions regarding disease severity drawn from hospitalisation status 269 

alone have limitations. Studies in cohorts with more granular outcome data are needed. Furthermore, 270 

our results cannot be generalisable to asymptomatic or mildly symptomatic patients.   271 

 272 

Conclusions 273 

This work highlights specific associations of BAME ethnicity, male sex, and higher BMI with COVID-274 

19 positive status, which were independent of other demographic or cardiometabolic factors. More 275 

detailed characterisation of these associations in larger and more diverse cohorts is warranted, 276 

particularly with regards ethnicity. Investigation of potential biological pathways underlying these 277 
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observed associations may provide insight into the mechanisms by which SARS-CoV-2 causes disease 278 

enabling more informed pursuit of potential therapeutic targets.  279 
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FIGURE LEGENDS 294 

Figure 1 Title: Summary of COVID-19 testing and results for UK Biobank participants 295 

Figure 1 legend: Data includes COVID-19 test results from 16/03/2020 to 14/06/2020. During this 296 

time period, 7,688 participants, of the whole UK Biobank cohort (n=502,506) have been tested for 297 

COVID-19. 7,099 were likely in a hospital setting, of whom 1,439 participants had a positive result and 298 

5,660 tested negative. The remaining participants (n=494,838) have not been tested. 299 

 300 

Figure 2 Title: Odds Ratios and 95% confidence intervals for each exposure from the multivariate 301 

logistic regression models in the three different comparisons* 302 

Figure 2 legend: *Comparison 1: COVID-19 positive (n=1,439) vs not COVID-19 positive (tested 303 

negative plus untested cohort) (n=494,838); Comparison 2: COVID-19 positive (n=1,439) vs COVID-304 

19 test negative (n=5,660); Comparison 3: COVID-19 test negative (n=5,660) vs untested population 305 

(n=494,838).  Results are odds ratios with 95% confidence intervals. Dashed lines represent non-306 

significant and solid lines statistically significant results, with threshold at p<0.05.   307 
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Table 1 caption: Data are n (%), mean (standard deviation), or median [interquartile range]. COVID-407 

19 data includes test results from 16/03/2020 to 14/06/2020 from hospital settings. *We report age of 408 

participants as of 01/04/2020. **smoking includes current and previous smoking. †ACEi/ARB use is 409 

defined as a binary measure, defined as true if record of any of medications in supplementary Table 2. 410 

ACEi: Angiotensin Converting Enzyme inhibitor; ARB: Angiotensin Receptor Blocker; BAME: Black, 411 

Asian, and Minority ethnic; BMI: body mass index; COVID-19: coronavirus 2019. 412 

 413 

Table 1. Baseline participant characteristics 414 

  415 

 

COVID-19 tested 

(n=7,099) 

COVID-19 positive 

(n=1,439) 

COVID-19 negative 

(n=5,660) 

Untested population 

(n=494,838) 

Sex (Male) 3,525 (49.7%)   761 (52.9%) 2,764 (48.8%) 225,352 (45.5%) 

Age* 69.11 (± 8.65) 68.22 (± 9.19) 69.34 (± 8.49) 68.24 (± 8.10) 

White ethnicity  6,498 (91.5%) 1,242 (86.3%) 5,256 (92.9%) 465,681 (94.1%) 

BAME ethnicity   562 (7.9%)   185 (12.9%)   377 (6.7%) 26,429 (5.3%) 

BMI (kg/m2) 27.66 [24.78, 31.13] 27.97 [25.18, 31.50] 27.58 [24.69, 31.02] 26.7 [± 24.13, 29.89] 

Smoking**  3,663 (51.6%)   732 (50.9%) 2,931 (51.8%) 221,478 (44.8%) 

Prior MI   557 (7.8%)   103 (7.2%)   454 (8.0%) 20,227 (4.1%) 

Diabetes 1,029 (14.5%)   241 (16.7%)   788 (13.9%) 38,046 (7.7%) 

Hypertension 3,338 (47.0%)   676 (47.0%) 2,662 (47.0%) 171,415 (34.6%) 

High cholesterol 2,388 (33.6%)   477 (33.1%) 1,911 (33.8%) 115,133 (23.3%) 

ACEi 1,117 (15.7%)   227 (15.8%)   890 (15.7%) 50,635 (10.2%) 

ARB   418 (5.9%)    87 (6.0%)   331 (5.8%) 20,416 (4.1%) 
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Table 2 caption: **Comparison 1: COVID-19 positive (n=1,439) vs not COVID-19 positive (tested 416 

negative plus untested cohort) (n=494,838); Comparison 2: COVID-19 positive (n=1,439) vs COVID-417 

19 test negative (n=5,660); Comparison 3: COVID-19 test negative (n=5,660) vs untested population 418 

(n=494,838). Results are odds ratio, 95% confidence interval, and p-value (from top to bottom) for 419 

each exposure. For continuous variables (age, BMI) coefficients refer to the effect on odds of the 420 

outcome per five unit increase in the exposures, i.e. 5-year increase in age and 5kg/m2 increase in 421 

BMI. The remaining exposures are set as binary measures with results showing effect of change from 422 

non-disease to disease states, male sex vs female sex, BAME ethnicity vs White ethnicity; smoking 423 

history (current/previous) vs never smoked; ACEi/ARB use vs no ACEi/ARB use on odds of the 424 

outcome. *indicates p-values <0.05. ACEi: Angiotensin Converting Enzyme inhibitor; ARB: 425 

Angiotensin Receptor Blocker; BMI: body mass index; coronavirus 2019: COVID-19; BAME: Black, 426 

Asian, and Minority ethnic; MI: myocardial infarction. 427 

 428 

 429 

 430 

 431 

 432 

 433 

 434 

 435 

 436 

 437 

 438 

 439 

 440 
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Table 2. Odds Ratios, 95% confidence intervals, and p-values for each exposure from univariate and multivariate logistic regression models in the 441 

three defined comparisons** 442 

 Comparison 1 Comparison 2 Comparison 3 

Predictors Univariate Models Multivariate 
Model 

Univariate Models Multivariate 
Model 

Univariate Models Multivariate 
Model 

Male sex 1.34* [1.21, 1.49] 1.19* [1.07, 1.32] 1.18* [1.05, 1.32] 1.22* [1.08, 1.38] 1.14* [1.08, 1.20] 1.00 [0.95, 1.06]  
3.07×10-8 0.0017 0.0061 0.0012 7.68×10-7 0.9759 

Age (per 5 years) 1.00 [0.97, 1.03] 0.96* [0.93, 1.00] 0.93* [0.90, 0.96] 0.94* [0.90, 0.97] 1.09* [1.07, 1.11] 1.03* [1.01, 1.05]  
0.8620 0.0316 1.17×10-5 9.64×10-4 5.81×10-24 0.0013 

BAME ethnicity 2.62* [2.23, 3.05] 2.47* [2.10, 2.89] 2.08* [1.72, 2.50] 1.95* [1.60, 2.36] 1.26* [1.14, 1.40] 1.27* [1.14, 1.41]  
4.58×10-34 5.58×10-28 1.59×10-14 2.07×10-11 1.29×10-5 1.70×10-5 

BMI (per 5kg/m2) 1.30* [1.24, 1.36] 1.19* [1.13, 1.25] 1.10* [1.04, 1.16] 1.09* [1.03, 1.16] 1.19* [1.16, 1.22] 1.09* [1.06, 1.12]  
2.19×10-29 7.63×10-11 3.62×10-4 0.0031 4.47×10-42 3.78×10-9 

Diabetes 2.39* [2.08, 2.74] 1.52* [1.29, 1.79] 1.24* [1.06, 1.45] 1.17 [0.98, 1.41] 1.94* [1.80, 2.09] 1.34* [1.23, 1.46]  
7.39×10-35 3.72×10-7 0.0066 0.0882 1.05×10-65 2.80×10-11 

Hypertension 1.66* [1.50, 1.84] 1.25* [1.09, 1.43] 1.00 [0.89, 1.12] 0.98 [0.84, 1.14] 1.68* [1.59, 1.77] 1.28* [1.20, 1.37]  
8.27×10-22 0.0010 0.9704 0.7727 1.27×10-82 5.90×10-13 

High cholesterol 1.62* [1.45, 1.81] 1.12 [0.97, 1.28] 0.97 [0.86, 1.10] 0.95 [0.81, 1.11] 1.68* [1.59, 1.78] 1.19* [1.11, 1.27]  
5.20×10-18 0.1234 0.6592 0.5006 3.31×10-75 1.52×10-6 

ACEi/ARB 1.65* [1.45, 1.87] 1.04 [0.89, 1.22] 1.01 [0.88, 1.17] 0.99 [0.83, 1.19] 1.64* [1.54, 1.75] 1.04 [0.96, 1.13]  
7.54×10-15 0.5885 0.8563 0.9468 2.31×10-51 0.3193 

Prior MI 1.79* [1.45, 2.17] 1.18 [0.94, 1.46] 0.88 [0.70, 1.10] 0.85 [0.66, 1.08] 2.05* [1.85, 2.25] 1.39* [1.25, 1.54]  
1.41×10-8 0.1377 0.2770 0.1893 1.70×10-47 1.02×10-9 

Smoking 1.27* [1.15, 1.41] 1.26* [1.13, 1.40] 0.96 [0.86, 1.08] 1.02 [0.90, 1.15] 1.33* [1.26, 1.40] 1.24* [1.17, 1.31]  
4.58×10-6 3.02×10-5 0.5348 0.7369 5.91×10-26 9.40×10-15 

 443 


