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Abstract 

 This paper investigated a hybrid Meshless Displacement Discontinuity Method (MDDM) 

for a cracked plate subjected to static and dynamic loadings. The purpose of MDDM is to model 

displacement discontinuity on a cracked surface by the displacement discontinuity method in an 

infinite plate. This was achieved by considering a meshless approach, the equilibrium equations, 

and the boundary conditions for a domain with an irregular nodes distribution. Also, by 

imposing the principle of superposition, accurate and convergent solutions can be obtained. In 

this paper, the static and dynamic stress intensity factors, and the crack growth for different 

initial crack length and crack slant angles are investigated. The Laplace transform method is 

applied to deal with dynamic problems and the time-dependent values are obtained by the 

Durbin inversion technique. Validations of the presented technique are demonstrated by four 

numerical examples of plates with a central embedded crack.   
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1. Introduction 

 It is well known that the numerical simulation of crack-growth processes is mature as many 

numerical strategies including the finite element method (FEM) have been developed. As a 

general numerical tool, FEM has been developed for crack propagation simulation in solid 

structures [1,2,3]. The early attempt to model crack growth in mixed-mode conditions was 

reported by Gallagher [4], Rice and Tracey [5], Shephard et al [6] and Rice [7]. Recently, the 

extended finite element method (XFEM) [8,9,10] was proposed for fatigue/ fracture analysis in 

nonhomogeneous materials. In spite of the great success of general boundary value problems, 

the new and advanced computational methods are still required due to the need for 

computational accuracy and efficiency, and structure complexity. As the discontinuities of the 

stress/strain by FEM between elements affect the accuracy significantly, the boundary element 

method (BEM) is able to achieve high accurate solutions. The two main advantages of BEM is 

the reduction of the spatial dimensions by at least one and the high accuracy is achieved 

especially if the domain of interest is infinite or semi-infinite. Early investigations of mixed-

mode crack growth conditions by BEM were reported by Ingraffea et al [11] and Grestle [12] 

for two- and three-dimensional problems with the multi-region technique. Cen and Maier [13] 

applied BEM to simulate crack growth in concrete structures. In the 1990’s, the Dual Boundary 

Element Method (DBEM) with a single region technique for the crack growth analysis was 

demonstrated by Portela et al [14] for two-dimensional and by Mi and Aliabadi [15,16] for 

three-dimensional problems. One of the advantages of DBEM is that the crack extension 

procedure can be modelled easily by new elements. For DBEM applications in crack mechanics, 

a general review was given by Aliabadi [17]. Apart from DBEM, the indirect boundary element 

method is another accurate method formulated with the principle of superposition including the 

Fictitious Load Method (FLM) and the Displacement Discontinuity Method (DDM). This was 

reported by Crouch [18] in the “Boundary Element Methods in Solid Mechanics”. The DDM 

was extended to static/dynamic 2D/3D fracture mechanics by Wen et al in [19,20,21,22,23].

 How to interpolate a variable accurately using the values of irregular node arrangement in a 

domain is a fundamental task in meshless methods. The multiquadric Radial Basis Function 

(RBF) 2 2( )R r c r= + was studied by Hardy [24] in 1971 for topographical surfaces, and this 

can be considered as the first development for meshless method. Similar to the Moving Least 

https://www.sciencedirect.com/topics/engineering/fatigue-fracture�
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Square (MLS) algorithm, the compact support RBF has been explicitly constructed to 

multivariate surface reconstruction. Later Belyschko et al [25] developed the element-free 

Galerkin method (EFGM) based on accurate interpolation methods including the MLS and RBF 

respectively. Pathak et al [26] developed and utilised the enriched EFGM method to investigate 

fatigue problems in homogeneous and bi-material interfacial cracks structures. Jameel 

and Harmain [27] also investigated fatigue crack growth of material discontinuities using the 

EFG method, and Muthu et al [28] also investigated the impact of T-stress on crack propagation 

using a variant of the EFG method. In addition, the local support domain technique provides a 

form of theoretical basis for large scale problems, see Hon et al [29]. Atluri et al [30] reported a 

series of Meshless Local Petrov-Galerkin formulations (MLPGs) for general partial differential 

equations with MLS approximation from the past two decades. The local boundary integral 

equation with the MLS and RBF was reported by Sladek et al [31,32] to deal with fracture 

problems in anisotropic non-homogeneous media. With enriched RBF at the crack tip, Wen and 

Aliabadi [33] demonstrated the application of meshless method to fracture problems with 

functionally graded materials. However, a drawback of the meshless method is the accuracy and 

convergence, precisely to the modelling of singular stresses at the crack tip by using the MLS 

and RBF interpolations. In the present paper, we aim to develop a hybrid method with the DDM 

and mshless method in order to take advantages of both the boundary element method (high 

accuracy) and the meshless method (body force terms). The advantages and disadvantages for 

meshless strong form method and displacement discontinuity method are listed in Table 1.  

  The time-dependent values of displacement, stress and stress intensity factor are obtained 

from an inverse transform of the corresponding Laplace-transformed quantities. Great attention 

has been paid to the numerical inversion of the Laplace transformation. General introduction of 

the Laplace invers was given by Fu et al [34,35,36]. In this paper, the formulations for crack 

problem are coupled with distributed dislocation on the crack surface (discontinuous field in 

infinite plate) and meshless solution (continuous field) to deal with fracture problems. The 

crack growth is simulated simply by adding a new crack segments ahead of the crack tip. The 

Laplace transform technique is applied to deal with dynamic problems by using static Kelvin 

solution of displacement discontinuity for 2D elasto-dynamic problems and the Durbin 

inversion method [37] is used to obtain the time-dependent solution. Numerical results of 

cracked rectangular plate and cracked circular plate are presented to illustrate the applicability 
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and degree of accuracy with the MDDM. Comparisons with analytical and BEM results show a 

good agreement.  

 

Table 1 The advantages and disadvantages of meshless and DDM methods 

Method Advantages Disadvantages 

BEM/DDM Dimension reduction, excellent 

for crack modelling, infinite 

domain, static/dynamic loads, 

high accuracy, high convergent, 

easy to code; Computational 

effort is much less than other 

methods in solving linear 

algebraic equations. 

Fundamental solutions, not 

available for material and 

geometry nonlinear problem.  

Meshless strong 

form methods 

True mesh free, computational 

efficient to treat nonlinear 

problem, good convergent rate, 

easy to code; no fundamental 

solutions; More computational 

effort used. 

Free parameters, unstable, 

convergence issue, not accuracy 

for crack problem. 

 

2. Displacement discontinuity method 

The displacement discontinuity method is attributed to one of the indirect boundary element 

techniques. Using the displacement discontinuity method, a high level of accuracy and rapid 

convergence is obtained when applied in fracture analysis to determine the stress intensity 

factors. Consider a concentrated force acting at point A( , )x y  as shown in Figure 1 in an 

infinite plate, the fundamental solution of the stress tensor is given, for 2D plane strain problem 

[17], by 

*
, , , , , ,

1( ) (1 2 )( ) 2
4 (1 )ijk k ij j ik i jk i j kS r r r r r r

r
ν δ δ δ

π ν
 − = − − − − −

X x        (1) 
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where r = −X x , , ( ) /i i ir X x r= − , X  is the coordinate of considered point and ν is the 

Poisson ratio, subscript k denotes the direction of concentrated force. Consider an opening 

mode (I) displacement discontinuity at the origin as shown in Figure 1, i.e. 

 2 2 1 1( ,0),   0u u x u uδ+ − + −− = − =                (2) . 

where the superscript + and - indicate the upper and lower semi-infinite plates. The 

displacement field can be obtained by the reciprocal theory  

 

 

 

  

 

                                           

         

 

      Figure 1. Displacement discontinuity at the origin. 

  

 * * 2 3
2 2 2 2 2 2 2 2

1( ) ( ) (1 2 )( ) / 2 /
4 (1 )k k k k k ku S x x x r x x r

r
ν δ δ

π ν
−  = − = − − − − −

x x     (3) 

where subscript  =1,2)k (  indicates the direction of displacement. Consider a shear mode (II) 

displacement discontinuity at the origin, i.e. 

 1 1 2 2( ,0),   0u u x u uδ+ − + −− = − =  .                (4)  

Then, the displacements can be obtained as  

 * * 3
1 12 2 1 1 2 1 2

1( ) ( ) (1 2 )( ) / 2 /
4 (1 )k k k k ku S x x r x x x r

r
ν δ δ

π ν
 = − = − + + −

x x      (5) 

By Hook's law, the fundamental solution of stress tensor * ( )ijkσ x  deriving from the 

fundamental displacement above is given by 
* *( ) ( )ijk ijnl nlkCσ ε=x x                   (6) 

where ( )* * *
, , / 2,   and  nlk kn l kl n ijnlu u Cε = +  denotes the elasticity tensor. For a homogeneous 

isotropic solid, we have 

1 2( , )A x x  

2x  

1x  

O  
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( )ijnl ij nl in jl il jnC λδ δ µ δ δ δ δ= + +                (7) 

where λ is the Lame’s constant and μ is the shear modulus. Consider a constant displacement 

discontinuity distributed on a straight line shown in Figure 2(a), the displacement and stress 

fields are obtained by the following integrations 

  
( )

( )

( ) *
1 2( ) ( , )

l

l

l
i ik ku u x t x dtψ

∆

−∆

= −∫x    and   
( )

( )

( ) * ( )
1 2( ) ( , )

l

l

l l
ij ijk kx t x dtσ σ ψ

∆

−∆

= −∫x       (8) 

where ( )l∆  is half-length of the constant element l, ( )l
kψ is the displacement discontinuity of 

different modes ( 1k =  signify the shear mode and 2k =  the opening mode). Integrating (8) 

results [18] 

 ( ) ( ) ( )( ) ( )l l l
i ik ku U ψ=x x    and  ( ) ( ) ( )( ) ( )l l l

ij ijk kTσ ψ=x x             (9) 

where 

 ( ) ( )
11 ,2 2 ,11 21 ,1 2 ,12( ) 2(1 ) ,   ( ) (1 2 ) ,l lU f x f U f x fν ν= − − + = − − +x x        (10a) 

 ( ) ( )
12 ,1 2 ,12 22 ,2 2 ,22( ) (1 2 ) ,   ( ) 2(1 ) ,l lU f x f U f x fν ν= − + = − − +x x         (10b) 

for displacement and    

 ( ) ( ) ( )
111 ,12 2 ,122 221 2 ,122 121 ,22 2 ,222( ) 2 ( 2 ),  ( ) 2 ,  ( ) 2 ( ),l l lT f x f T x f T f x fµ µ µ= − − = = − −x x x    (11a) 

 ( ) ( ) ( )
112 ,22 2 ,222 222 ,22 2 ,222 122 2 ,122( ) 2 ( ),  ( ) 2 ( ),  ( ) 2 .l l lT f x f T f x f T x fµ µ µ= − − = − + =x x x    (11b) 

in which 

 

2 2
1 2 2

1 1

2 2 2 2
1 1 2 1 1 2

1( , ) arctan arctan
4 (1 )

                 ( ) ln ( ) ( ) ln ( )

x xf x x x
x x

x x x x x x

π ν

     
= − −      − − ∆ + ∆     

− − ∆ −∆ + + + ∆ + ∆ + 

     (12) 

Different orders of the partial derivative function 1 2( , )f x x  used in the DDM are given in 

Appendix A. The normal and tangential components of the displacements and tractions at the 

centre of segment m  caused by displacement continuities ( )l
kψ of element l   shown in Figure 

2(b) can be determined by 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2( ) [ ( ) co s( ) ( )sin ( )] ,n lm lm m l lm m l l n lm l
k k k k ku U U Uθ θ θ θ ψ ψ= − + − =x x x   (13a) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2( ) [ ( )sin ( ) ( ) co s( )] ,lm lm m l lm m l l lm l
k k k k ku U U Uτ τθ θ θ θ ψ ψ= − − + − =x x x   (13b) 
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 ( ) ( ) 2 ( ) ( ) ( ) 2 ( ) ( )
11 22( ) [ ( ) co s( ) ( )sin ( )n lm lm m l lm m l

k kt T Tθ θ θ θ= − + −x x x  

    ( ) ( ) ( ) ( ) ( ) ( )
12 ( )sin 2( )] ,lm m l l n lm l

k k k kT Tθ θ ψ ψ+ − =x           (13c) 

 
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )11 22
12

( ) ( )( ) sin 2( ) ( ) cos 2( )
2

lm lm
lm m l lm m l lk k

k k
T Tt Tτ θ θ θ θ ψ
 −

= − + − 
 

x xx x  

   ( ) ( )lm l
k kT τ ψ=                   (13d) 

where ( ) ( ) ( )
1 2( , )lm lm lmx x=x , ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 2 2( ) co s( )sinlm m l l m l lx x x x xθ θ= − + − , ( ) ( ) ( )
2 1 1( )lm m lx x x= − − ×   

( ) ( ) ( ) ( )
2 2sin ( ) cosl m l lx xθ θ+ − , ( ) ( ) ( ), ,n lm lm n lm

k k kU U Tτ  and ( )lm
kT τ are all named as influence 

coefficients. Considering a curved crack with cN  segments in infinite plate shown in Figure 2(b) 

with the following traction boundary conditions 

 

 

 

 

 

 

 

                                    (a)                                                        (b) 

      Figure 2. Constant displacement discontinuity: (a) A displacement discontinuity element in 

the local coordinate system; (b) Influence between two segments l and m. 

  ( ) ( ) ( )

1
( )

cN
n lm l n m

k k
l

T tψ
=

=∑ x   and  ( ) ( ) ( )

1
( )

cN
lm l m

k k
l

T tτ τψ
=

=∑ x    ( 1, 2,..., )cm N=     (14) 

where ( )( )n mt x  and ( )( )m mtτ x denote the prescribed normal and tangential tractions on element 

m , respectively, and ( )  ( 1, 2)l
k kψ =  are unknown displacement discontinuities for each segment. 

By solving a set of linear algebraic equations in Eq.(14), 2 cN  unknown displacement 

discontinuities ( )l
kψ  can be obtained.  

 

3. Meshless approach with radial basis function 

2x  

1x  

( ) ( )
1 2 A( , )m mx x•  

( ) ( )
1 2  B( , )l lx x•  

( )lθ  

( )mθ  

2 i∆  

tip 1 

tip 2 

      ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥  

2x  

1x  

−∆  ∆  

1 2 A( , )x x•  

dξ  
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Consider a domain Ω  surrounded by a boundary Γ and a sub-domain sΩ  centred at point η 

( ) ( )
1 2( , )m mx x  shown in Figure 3. With scattered nodes ( ) ( )

1 2 ( , )p p
p x x=ξ  ( 1, 2,..., mp L= ) in the 

sub-domain, function u  can be approximated as 

1 1
( ) ( ) ( ) ( ) ( )

mL Q

p p q q
p q

u R a P b
= =

= + = +∑ ∑η η η R η a P η b             (15) 

where mL  is the number of scattered points in the sub-domain sΩ , 

{ }1 2( ) ( ), ( ),. . . ,( )
mLR R R=Rη η η η  is the vector of the Radial Basis Function (RBF) associated 

nodal values and centred at the point η, { }
1

mL

p p
a

=
 are unknown coefficients, Q is the number of 

polynomial basis functions which can be chosen based on the reproduction requirement and 

{ }Q
qqb

1=
 are unknown coefficients for the polynomial basis { }Q

qqp
1

)(
=

η . We noticed that the 

contribution of the polynomial basis by computational tests can be ignored. In general, a 

meshless method utilizes an interpolation to represent the trial function with the values (or the 

fictitious values) of the variable at scattered nodes in a local area. The moving least-squares 

(MLS) approximation, the Kringing interpolation and the radial basis function interpolation 

have slight difference in accuracy. However, the radial basis function interpolation is the 

simplest with the lesser computational effort. The radial basis function is selected as 

multiquadrics [24] in this paper as 

 2 ( ) 2 ( ) 2
1 1 2 2( ) ( ) ( )p p

pR c x x x x= + − + −x                 (16) 

where c  is a free parameter. Therefore, we have 

 1 ( )
0

1
( ) ( ) ( )

mL
p

p
p

u uφ−

=

= =∑η R η R u η                (17a) 

where { }T( )(1) (2), ,..., mLu u u=u , ( )pu represents the nodal value of the scattered node p in the sub-

domain, ( )pφ η  is defined as the shape function and the matrix 
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1 1 2 1 1

1 2 2 2 2

0

1 2

( ) ( ) . . . ( )

( ) ( ) . . . ( )

. . ... .

. . ... .

. . ... .
( ) ( ) . . .( )

m m m m

L

L

L L L L

R R R

R R R

R R R

η

η

 
 
 
 
 =
 
 
 
   

ξ ξ ξ

ξ ξ ξ

R

ξ ξ ξ

                                  (17b) 

For 2D elasticity, the governing equations are given, for plane strain case, as 

 
2 2 2

1 1 2
12 2

1 2 1 2

2 (1 ) 0
(1 2 ) 1 2

u u u b
x x x x

µ ν µµ
ν ν

∂ ∂ ∂−
+ + + =

− ∂ ∂ − ∂ ∂
           (18a) 

 
2 2 2

1 2 2
22 2

1 2 2 1

2 (1 )+ 0
1 2 (1 2 )

u u u b
x x x x

µ µ ν µ
ν ν

∂ ∂ ∂−
+ + =

− ∂ ∂ − ∂ ∂
           (18b) 

where kb  are body forces. With the RBF interpolation by Eq.(16), one has a set of linear 

algebraic equation from Eq.(18) 

 ( ) ( )
,11 ,22 1 ,12 2 1

1 1

2 (1 )
(1 2 ) (1 2 )

m mL L
p p

p p p
p p

u u bµ ν µφ µφ φ
ν ν= =

   −
+ + = −   − −   

∑ ∑         (19a)

 ( ) ( )
,12 1 ,22 ,11 2 2

1 1

2 (1 )+
(1 2 ) (1 2 )

m mL L
p p

p p p
p p

u u bµ µ νφ φ µφ
ν ν= =

   −
+ = −   − −   

∑ ∑         (19b) 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 3. Support-domain Ωs centred at field point η:     nodes in domain;       collocation point; 

    nodes in support domain. 

Ω 

Γ 

crack Γc Ωs 
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for collocation points mη , 1, 2,..., mm N= , mN  is the number of scattered nodes in the domain Ω . 

For each boundary collocation point, we have boundary conditions in the normal and tangential 

( , )n τ  directions as 

(1) Displacement boundary condition 

 
( )( )

( ) ( ),  ( ) ( )
mm

n n
m i i m m i i mu u n u u u uτ ττ= = = =

ηη
η η η η          (20) 

in which 1 2( , )n n=n  is the outward unit normal vector to the boundary, 1 2= nτ −  and . 2 1nτ = . 

(2) Traction boundary conditions 

 ( )2 2
11 1 22 2 12 1 2 ( )

2 ( )
m

n
mn n n n tσ σ σ+ + =

η
η , ( ) 2 2

11 22 1 2 12 1 2
( )

( ) ( )
m

mn n n n t τσ σ σ − + − =  η
η  (21) 

where the stress components are from Hook's law 

 ( ) ( )
11 ,1 1 ,2 2

1

2 (1 ) 2( )=
(1 2 ) (1 2 )

mL
p p

m p p
p

u uµ ν νµσ φ φ
ν ν=

 −
+ − − 

∑η           (22a) 

 ( ) ( )
22 ,1 1 ,2 2

1

2 2 (1 )( )=
(1 2 ) (1 2 )

mL
p p

m p p
p

u uνµ µ νσ φ φ
ν ν=

 −
+ − − 

∑η           (22b) 

 ( )( ) ( )
12 ,2 1 ,1 2

1
( )

mL
p p

m l l
p

u uσ µ φ φ
=

= +∑η                (22c) 

Therefore, 2 mN  the unknown nodal displacements can be obtained by solving a set of linear 

equations from Eqs (19-21). For a 2D dynamic problem, the governing equations become 

 
2 2 2 2

1 1 2 1
12 2 2

1 2 1 2

2 (1 )
(1 2 ) 1 2

u u u ub
x x x x t

µ ν µµ ρ
ν ν

∂ ∂ ∂ ∂−
+ + + =

− ∂ ∂ − ∂ ∂ ∂
          (23a) 

 
2 2 2 2

1 2 2 2
22 2 2

1 2 2 1

2 (1 )+
1 2 (1 2 )

u u u ub
x x x x t

µ µ ν µ ρ
ν ν

∂ ∂ ∂ ∂−
+ + =

− ∂ ∂ − ∂ ∂ ∂
         (23b) 

where t  is the time and ρ  is the mass density of the plate. Let the body forces be zero and the 

speed of longitudinal wave 1/ 2
1 [2 (1 ) / (1 2 )]c µ ν ρ ν= − − , Eqs (23a,23b) become 

  
2 2 2 2

1 1 2 1
2 2 2 2
1 2 1 2 1

(1 2 ) 1 1
2(1 ) 2(1 )

u u u u
x x x x c t

ν
ν ν

∂ ∂ ∂ ∂−
+ + =

∂ − ∂ − ∂ ∂ ∂
           (24a) 
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2 2 2 2

1 2 2 2
2 2 2 2

1 2 2 1 1

1 (1 2 ) 1+
2(1 ) 2(1 )

u u u u
x x x x c t

ν
ν ν

∂ ∂ ∂ ∂−
+ =

− ∂ ∂ ∂ − ∂ ∂
           (24b) 

To eliminate time t in Eq.(23), the Laplace transformation
 

 
[ ]

0

( , ) ( , ) ( , ) ptf t f p f t e d t
∞

−= = ∫x x xL                                                                           (25) 

is applied to this system of governing equations and one has 
2 2 2 2

1 1 2
12 2 2

1 2 1 2 1

(1 2 ) 1
2(1 ) 2(1 )

u u u s u
x x x x c

ν
ν ν

∂ ∂ ∂−
+ + =

∂ − ∂ − ∂ ∂
  

             (26a) 

2 2 2 2
1 2 2

22 2 2
1 2 2 1 1

1 (1 2 )+
2(1 ) 2(1 )

u u u s u
x x x x c

ν
ν ν

∂ ∂ ∂−
+ =

− ∂ ∂ ∂ − ∂
  

             (26b) 

Considering the boundary conditions, the nodal displacements can be obtained for certain 

Laplace parameters s in the Laplace transformed domain. 

 

4. Hybrid method for crack problems 

The DBEM or DDM are very convenient to analyze crack problems due to their high 

accuracy and efficiency. However, for nonlinear material properties and geometrically nonlinear 

problems, the fundamental solutions are not available and therefore, the domain integrals are 

required. To deal with body forces, the meshless method such as point collocation method is the 

first option due to its simplicity. Therefore, a hybrid method with the DDM and meshless 

method is expected to take advantages of both the DDM and the meshless approach for 

handling complicated fracture problems.  

4.1 Static case 

We assume that the solutions are combined with 
D M

i i iu u u= +                     (27) 

for displacements and 
D M

ij ij ijσ σ σ= +                     (28) 

for stresses, where superscripts "D" and "M" represent the DDM and Meshless respectively. For 

the DDM in section 2, one has displacements in the domain from Eq.(13) by letting ( ) 0mθ =  



Hybrid meshless displacement discontinuity method (MDDM) in fracture mechanics: static and dynamic                    Li, Sladek, Sladek and Wen 

 - 12 - 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 2 1

1 1
( ) [ ( ) co s   ( ) ( ) sin  ( )] ( ) ,

c cN N
D l l l l l l l

k k k k k
l l

u U U Uθ θ ψ ψ
= =

= − =∑ ∑x x x x      (29a) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 1 2 2

1 1
( ) [ ( ) sin  ( ) ( ) co s   ( )] ( ) ,

c cN N
D l l l l l l l

k k k k k
l l

u U U Uθ θ ψ ψ
= =

= + =∑ ∑x x x x      (29b) 

The stress components D
ijσ can be obtained from Eq.(13) too. As the DDM solution satisfies the 

equilibrium equation, displacements D
ku  disappear in the equilibrium equations Eq.(18) and one 

has 

 
2 2 2

1 1 2
12 2

1 2 1 2

2 (1 ) 0
(1 2 ) 1 2

M M Mu u u b
x x x x

µ ν µµ
ν ν

∂ ∂ ∂−
+ + + =

− ∂ ∂ − ∂ ∂
          (30a) 

 
2 2 2

1 2 2
22 2

1 2 2 1

2 (1 )+ 0
1 2 (1 2 )

M M Mu u u b
x x x x

µ µ ν µ
ν ν

∂ ∂ ∂−
+ + =

− ∂ ∂ − ∂ ∂
          (30b) 

Traction boundary conditions in terms of 2N displacement discontinuities kiψ and meshless 

nodal values of displacement are given 

  ( ) ( ) ( ) 2 ( ) 2 ( ) ( )
11 1 22 2 12 1 2

1
2 ( )

cN
n lm l M m M m M m n m

k k
l

T n n n n tψ σ σ σ
=

+ + + =∑ x         (31a) 

 ( )( ) ( ) ( ) ( ) ( ) 2 2 ( )
11 22 1 2 12 1 2

1
( ) ( )

cN
lm l M m M m M m m

k k
l

T n n n n tτ τψ σ σ σ
=

+ − + − =∑ x         (31b) 

where ( ) ( )( )n lm m
kT x  and ( ) ( )( )lm m

kT τ x  are given in Eq.(13) and displacement conditions  

 ( ) ( )

( )( )
m

D M n m
k k kn u u u+ =

x
x                 (32a) 

 ( ) ( )

( )( )
m

D M m
k k ku u u ττ + =

x
x                 (32b) 

where node coordinate ( )mx  can collocate on the boundary Γ  and crack surface cΓ . Therefore, 

the unknown number in total is 2 2c mN N+ , which can be obtained by solving 2 mN  equations 

from the meshless approach and 2 cN  equations from the DDM. It is evident that DDM and 

meshless method are coupled in the boundary conditions Eqs (31,32) only.  

4.2 Dynamic case 

Similarly to the static case, the solutions of displacement for elastodynamics are coupled as 
D M

i i iu u u= +                      (33) 
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where D
iu  is given in Eq.(29) with transformed displacement discontinuity kψ  in the Laplace 

space. Substituting Eq.(33) into the governing equation Eq.(24) results 

( )
2 2 2 2

1 1 2
1 12 2 2

1 2 1 2 1

(1 2 ) 1
2(1 ) 2(1 )

M M M
D Mu u u s u u

x x x x c
ν
ν ν

∂ ∂ ∂−
+ + = +

∂ − ∂ − ∂ ∂
  

          (34a) 

( )
2 2 2 2

1 2 2
2 22 2 2

1 2 2 1 1

1 (1 2 )+
2(1 ) 2(1 )

M M M
D Mu u u s u u

x x x x c
ν

ν ν
∂ ∂ ∂−

+ = +
− ∂ ∂ ∂ − ∂

  

          (34b) 

Again, the DDM fundamental solutions of displacement and stress ( , )D D
i iju σ  are the same for 

static case with 2 cN unknown displacement discontinuities l
kψ ,  

 ( ) ( )

1
( ) ( )

cN
D l l
i ik k

l
u U ψ

=

=∑x x    and  ( ) ( )

1
( ) ( )

cN
D l l
ij ijk k

l
Tσ ψ

=

=∑x x            (35) 

Then, by considering the boundary conditions including crack surface and outer boundary, the 

nodal displacements of meshless method and displacement discontinuities of the DDM can be 

obtained for specified Laplace parameter s in the Laplace transformed domain. Suppose a set of 

sample in the transformation space ,  0,1, 2,...,gs g K= , are selected in the Laplace transform 

domain. Then, the time dependent function can be obtained by the Laplace inversion technique. 

Here, the algorithm proposed by Durbin [37] is used in this paper as following 

    ( ){ }2 /

0

2 1( ) ( ) Re 2 /
2

t K
k ti T

k

ef t f f k i T e
T

η
πη η π

=

 = − + +  
∑                        (36) 

where ( )gf s  represent the transformed variables in the Laplace domain while the Laplace 

parameters 2 /gs g i Tη π= + )1( −=i . There are two free parameters η  and T. It is worth to 

point out that the selection of parameters T depends on the observing period in the time domain 

and 5 /Tη = .   

4.3 Equivalent stress algorithm to determine stress intensity factors 

 There are several methods to evaluate stress intensity factors at the crack tip including crack 

opening displacement (COD), J-integrals and weight functions etc. The COD is the simplest 

way with reasonable degree of accuracy. The J-integral and weight function methods are 

accurate but their computational efforts are much larger due to domain/boundary integrals. An 

accurate algorithm by the DDM is called as the equivalent stress technique proposed by Wen 
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[22,23] in both static and dynamic cases. It is clear that the discontinuity displacements ( )l
kψ on 

the crack elements are the true opening displacements between the upper and lower crack 

surfaces; therefore, the stress intensity factors are determined by ( )l
kψ only. Suppose the crack is 

a straight line (or part of crack in front of crack tip) which is divided into incN segments as 

shown in Figure 4. In the local coordinate system, one has 

 1
2 1 1l

f
inc

lx a
N

 −
= − 
 

 and ( ) fl

inc

a
N

∆ =               (37) 

where fa  is the half-length of crack extension ( 0fa a=  for initial crack length). The equivalent 

normal and shear stresses  ( )mσ  and ( )mτ  [20] can be obtained from the solutions of the 

discontinuity displacement in Eq.(9) as 

 

 

  

 

 

 

 

     Figure 4. Crack growth by straight line segments at crack tips. 

  

 
( ) ( )

2
1

=
incN

m l
ml

l
σ α ψ

=
∑ ,

( ) )
1

1
=

incN
m l

ml
l

τ α ψ
=
∑ (

              (38) 

where the coefficient 

 
( )

( ) ( ) 2 ( )2
1 1

=
(1 )[( ) ]

l

ml l m lx x
µα

π ν
∆

− − −∆
              (39) 

in which ( )l∆  is the half-length of segment l , and ( )
1

lx  is the mid-point of segment l  in the local 

coordinate shown in Figure 2(a). From the stress intensity factor handbook [38], one has  

 1 ( )
1 1 2

1 11

1 ( )
f inc inc

f

a N N
f m l

I ml f
m lfaf

a x
K x dx F a

a xa
σ α ψ π

π
± ±

= =−

±
= =∑∑∫



        (40a) 

original crack tip 

increment f increment f+1 

+12 fa  
2 fa

 

02a  
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 1 ( )
1 1 1

1 11

1 ( )
f inc inc

f

a N N
f m l

II ml f
m lfaf

a x
K x dx F a

a xa
τ α ψ π

π
± ±

= =−

±
= =∑∑∫



        (40b) 

where the coefficient 

 

( ) ( )
1( ) ( )

1

( ) ( )
( ) ( )1
1

2
1 1 1

1
1

1 1 arcsin 1

m m
m m

m m
m m

x
x

fm

f fx x

a x x xF dx
a a x a aπ π

+∆
+∆

±

−∆
−∆

 ±     = = ± −        
∫



     (41) 

The positive sign refers to the right-hand crack tip and the negative sign to the left-hand tip. 

From Eq.(40), it is obvious that the singularity of stresses depend on the discontinuity 

displacements of all the crack segments. However, the closer the segment is to the crack tip, the 

greater its influence. In addition, the dynamic stress intensity factors in the Laplace domain can 

be written in the same form as the statics by replacing the static displacement discontinuities l
kψ  

in Eq.(40) with the transformed one l
kψ . 

 

4.4 Crack growth 

 The crack propagation path is a smooth curve. However, crack propagation is simulated by 

successive linear increments in numerical approach. Several criteria have been proposed to 

describe the direction of crack growth. The maximum principal stress criterion is more popular 

in engineering and is adopted in this paper. This criterion postulates that the growth of crack 

will occur in a direction perpendicular to the maximum principal stress. Thus, at each new crack 

tip, the local direction of crack growth is determined by the condition that the singular shear 

stress is zero, that is 

0)1cos3(sin III =−+ cc KK θθ                (42) 

and therefore 

( )
( )

2

2

2arctan 8 / 4 for 0

2arctan 8 / 4 for 0

II

c

II

K

K

ϕ ϕ
θ

ϕ ϕ

  − + >   = 
  + + <  

           (43) 

where /I IIK Kϕ = . The computation procedure can be summarized as following 

(i) Input of data for meshless and DDM including geometry and nodes distribution, 

crack segments and boundary conditions; 
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(ii) Assemble system of equations and use linear equations solver; 

(iii) Determine mixed-mode stress intensity factors and crack growth angle; 

(iv) Model crack propagation with incN segments on one crack extension;  

(v) Update/output crack path; 

(vi) Go to (ii) if necessary for next crack extension, otherwise stop. 

 

5. Numerical examples 

5.1 A rectangular plate with a central crack 

 In order to validate the applicability of the MDDM proposed in this paper, a rectangular 

plate containing a central crack is considered as shown in Figure 5 loaded by a uniform tensile 

stress 0σ  on the top and bottom of the plate. Firstly, the regularly distributed nodes ( 1 2N N× ) 

are specified in the domain for the meshless method and segments ( cN ) for the DDM are used 

on the crack surface. The Poisson ratio ν  is taken as 0.3 with plane strain assumption. Densities 

of nodes and segment 1 2 20cN N N N= = = = . The radius of the support domain rη  centered at 

collocation η  is determined such that the minimum number of nodes in the support domain 

12mL =  and the shape parameter in the multiquadric radial basis function 8 mc r= . By 

computational tests, the numerical solutions are stable with a large range selection of parameter 

c. The relative error ( * *(%)=100 /MDDM
I I IK K Kε × − ) versus the node number N are shown in 

Table 2 to demonstrate the convergence and stability when / 0.5a b = , where the reference value 

is from the handbook [38] *
0=1.9897IK aσ π . Excellent agreement can be obtained when 

20N ≥ . To demonstrate the convergence of the free parameter in the multi-quadrics, the 

relative errors are also shown in Figure 6 against the dimensionless number ς , c rης=  while 

20N = . It can be seen that the accurate results can be obtained in the region of 4 14ς≤ ≤  with 

the relative error less than 4%. The stress intensity factors IK  versus the ratios /h b  and /a b  

are plotted in Figure 7. Compared with the existing results in handbook [38], good agreement is 

achieved. 
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      Table 2. Convergence study 

N MDDM ε ( % ) 
10 1.8292 8.1 
20 2.0604 3.6 
30 2.0587 3.5 
40 2.0371 2.4 

Ref.[38] 1.9897 --- 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
    Figure 5. Rectangular plate with a central slant crack of length 2a. 
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  Figure 6. The influence of dimensionless parameter ς  in multiquadric RBF. 
 
 
 
 
 

                                
    
      Figure 7. The influence of free parameter c in multiquadric RBF. 
 
 

/a b
 

K
I/σ

0√
πa

 

/ 1.0h b =  
/ 0.7h b =  
/ 0.5h b =  

[15] 

 

ς  

| K
IM

D
D

M
 - 

K
I*  |/

K
I* 



Hybrid meshless displacement discontinuity method (MDDM) in fracture mechanics: static and dynamic                    Li, Sladek, Sladek and Wen 

 - 19 - 

5.2 A circular plate with a central crack  

 A circular plate of radius R  with an embedded crack length 2a  subjected to either a 

uniform load shown in Figure 8(a) on the boundary or rotation with angle speed ω  in Figure 

8(b). A plane strain assumption is considered and mass density ρ . The distribution of nodes 

using the meshless approach is shown in Figure 8(c) with 335 nodes in total and the crack 

segment number 20cN =  in the DDM. For the case of rotation, the body forces can be written 

as 2
k kb xρω=  ( 1, 2)k = . Normalized stress intensity factors for uniform tensile 0/IK aσ π  

and for rotation 2 2/IK R aρω π  with different Poisson ratios are presented in Figures 9 and 10 

respectively. Also the analytical solutions from [38] are presented in the same figure in order to 

show the accuracy of the MDDM.  

 

 

 

 

 

  

 

 

 

 

                     

                       (a)                (b)          (c)          

Figure 8. Circular plate with central crack under (a) tensile load, (b) rotation around centre of 

plate and (c) node distribution in MDDM.  
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     Figure 9. Normalized stress intensity factors under uniform tension 0σ . 
 
 
 
  

                                  
 

     Figure 10. Normalized stress intensity factors with angle speed ρ . 
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5.3 Fatigue crack growth for a single edge slant crack 

 In linear elasticity, the conventional crack growth approach is based on the singular stress 

portions at the crack tip represented by mixed mode stress intensity factors in general case. In 

this paper, a rectangular plate of width 2b and height 2h containing an inclined central crack of 

length 02a  with angle 045θ =  is considered first. We assume the ratio / 1h b = , the density of 

nodal distribution 1 2 20N N= =  and segment number 100cN =  for initial crack. Again, the 

minimum number of node in the support domain 12mL =  and the dimensionless shape parameter 

in the multiquadric radial basis function 8ς = . For each crack growth, the half pace of 

extension is taken as 00.05fa a a= ∆ =  and the number of segment 10incN =  in each extension. 

The crack propagations are shown in Figure 11 for different initial crack lengths 0a . Obviously 

the angle of crack extension is always negative and tends to zero gradually. Normalized stress 

intensity factors , 0/I IIK aσ π  versus the crack extension measured from crack tip 

2 fs a= ∑ are shown in Figure 12. Noticeably, there is a jump for both mode I and mode II 

stress intensity factors at the first crack growth. The mode II stress intensity factor drops to zero 

immediately. The FEM results by Patrício et al [42] are plotted in Figure 13 for compression. A 

good agreement can be seen at the beginning of crack propagation. However, the gap is 

increased gradually when crack tip coordinate 1 0.3x > . It is also observed that using the FEM, 

the angle of crack growth cθ becomes positive, which is not reasonable. Similar case is analyzed 

by Andrade and Leonel [40] by using the DBEM and the crack growth angle cθ  is always 

negative and tends to zero gradually as expected.  
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`                          Figure 11. Crack growth path with different initial crack lengths 0a .   

 

 

                                  
  Figure 12. Variation of normalized stress intensity factors against the crack extension s, where 

2 fs a= ∑ . 
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              Figure 13. Crack growth pathes by MDDM and FEM. 

 

5.4 Rectangular plate with one central crack under dynamic load 

 For dynamic loadings, we consider a rectangular plate of width 2b  and length 2h  with a 

centrally located crack of length 2a , firstly, as shown in Figure 5, when 0θ = . It is loaded in 

the direction perpendicular to the crack by a uniform tension 0 ( )H tσ , where ( )H t  is the 

Heaviside function with dimensions / 2h b = , / 0.24a b = , 20cmh = with material properties: 

shear modulus 0.76923µ = Mb; density 35g/cmρ = and 0.3ν =  (plane strain state). It was 

studied firstly by Chen in [41]. Therefore, we have elastic wave speeds 1 0.743cm / secc µ= , 

2 0.392cm / secc µ=  (shear wave speed) and Rc = 0.363cm / secµ  (surface wave speed). Let the 

number of sample in Laplace space 25K = , time 010T t= , 0 1/t h c=  and 5 /Tη = . All free 

parameters are kept the same as in previous example 5.1. In order to validate the convergence of 

MDDM. Firstly, two nodal densities are considered, i.e. 1 210,  20N N= = , 10cN =  and 

1 220,  40N N= = , 20cN = . The variations of the dynamic stress intensity factors 

MDDM 

FEM 

1 /x b  

x 2
/b
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0( ) /IK t aσ π  are shown in Figure 14. Clearly the differences between the two dynamic stress 

intensity factors with two nodal distributions are reasonably small. Comparison between 

difference results by Wen [42], Chen [41], Fedelinski et al [43] and are also shown in Figure 15. 

The first sharp peak can be observed clearly by the MDDM which is caused by the elastic 

surface wave. There are two free parameters in the Durbin's Laplace inverse method, i.e. 

 and Tη . The stability and accuracy analysis influenced by these two parameters were studied 

comprehensively in by Durbin [37] for general case and by Wen et al [22,23] for solid 

mechanics.   

 Finally, a rectangular plate with a central slant crack is observed with the same material and 

configurations above. The angle of the crack 045θ =  as in Figure 5. The normalized mixed 

dynamic stress intensity factors 0( ) /IK t aσ π  and 0( ) /IIK t aσ π  are shown in Figure 16 for 

two crack lengths (dash lines for the case of / 2 / 3a b =  and solid lines for / 2 / 2a b = ). 

Compared with the BEM [42], excellent agreement is achieved.  

 

 

                          

  Figure 14. Normalized dynamic stress intensity factor 0( ) /IK t aσ π  for different nodal 

densities. 
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Figure 15. Normalized dynamic stress intensity factor 0( ) /IK t aσ π  with different approaches.  

 

                      

Figure 16. Normalized dynamic stress intensity factors , 0( ) /I IIK t aσ π  versus the normalized 

time 1 /c t h  with different approaches.  
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6. Conclusion 

 This paper presented a hybrid method with meshless and displacement discontinuity 

procedure for two-dimensional fracture mechanics under static and dynamic loads. By BEM 

including DBEM, the fundamental solutions have to be derived both for static and dynamic 

problems. I addition, the fundamental solutions are complicated either in the time domain or in 

Laplace transformed domain. The main advantage of MDDM is that the static fundamental 

solutions can be adopted to deal dynamic case directly. Advantages of meshless method and 

displacement discontinuity method are inherited to deal with fracture problems more efficiently. 

The MDDM is of high accuracy with body forces (Meshless) and mixed-mode crack 

propagation problem (DDM). The static fundamental solutions of DDM are required only for 

cases of dynamics. Although this paper analyses the crack growth for two dimensional isotropic 

material only, the MDDM can be extended to anisotropic cracked structures with functionally 

graded materials and other nonlinear phenomenon. 
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Appendix  A. Partial differentials of function f 

 From Eqs.(10a), (10b), (11a) and (11b), the partial differentials for different order are 

obtained by 
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