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Abstract

Retrieval models are the core components of informatiameretl systems, which guide the doc-
ument and query representations, as well as the documekingaachemes. TF-IDF, binary
independence retrieval (BIR) model and language mode(lin) are three of the most influ-
ential contemporary models due to their stability and pennce. The BIR model and LM
have probabilistic theory as their basis, whereas TF-IDieaws/ed as a heuristic model, whose
theoretical justification always fascinates researchers.

This thesis firstly investigates the parallel derivatiorBéiR model, LM and Poisson model,
wrt event spaces, relevance assumptions and ranking atgmnlt establishes a bridge between
the BIR model and LM, and derives TF-IDF from the probakistamework.

Then, the thesis presents the probabilistic logical mouglbf the retrieval models. Vari-
ous ways of how to estimate and aggregate probability, aednaltive implementation to non-
probabilistic operator are demonstrated. Typical modaigelbeen implemented.

The next contribution concerns the usage of of contextipdquencies, i.e., the frequen-
cies counted based on assorted element types or withirrafifféext scopes. The hypothesis
is that they can help to rank the elements in structured deoumetrieval. The thesis applies
context-specific frequencies on term weighting schemehkase models, and the outcome is a
generalised retrieval model with regard to both elementdowiment ranking.

The retrieval models behave differently on the same queryfeesome queries, one model
performs better, for other queries, another model is sopefiherefore, one idea to improve the
overall performance of a retrieval system is to choose faheguery the model that is likely
to perform the best. This thesis proposes and empiricalbjoees the model selection method
according to the correlation of query feature and querygreréince, which contributes to the
methodology of dynamically choosing a model.

In summary, this thesis contributes a study of probabilistiodels and their relationships,
the probabilistic logical modelling of retrieval modelsetusage and effect of context-specific
frequencies in models, and the selection of retrieval nedel
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Notation of this thesis
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Notation Description Traditional
in this thesis notation
d a document
q a query
c a collection
NL(c) Number of locations in collection
nL(t,c) Number of locations at which terimoccurs in collectiorc
Np(c) Number of documents in collectian N
np(t,c) Number of documents in which tertroccurs in collectiorc df
Np(c) Number of documents in collectian N
np(t,c) Number of documents in which tertroccurs in collectiorc n
Np(r) Number of relevant documents in collection R
np(t,r) Number of relevant documents in which tetraccurs in collectiorc r
N (d) Number of locations in documendt dl
n_(t,d) Number of locations at which tertmoccurs in documerd tf
A(t,x) = T\Llét(;)) Average frequency of terrin the setx of documents
avgtfit,x) = :;(&f) Average frequency of termin thet document set
avgdi(x) = r':;((g Average document length in document set
P (t|d) = ”,\L‘L(Eg’g) Probability that ternt occurs in a location of documedt
R (tlc) = ”NLL(ECC) Probability that ternt occurs in a location of collection
Po(t|r) = ”,\fl)D(Erf%) Probability that occurs in a relevant document, also notedag(t|r) pt
Po(t|r) = n,fl’DE’rr Probability that occurs in a non-relevant document, also noteBsg(t|r) | o
Po(tlc) = ':\fl’ét(cc)) Probability that occurs in a document of collectianalso noted aBgr(t|c)
RS\ r(d, Q) BIR retrieval status valueRS\gr(g,d) = O(r|d) rank Stednglogw(t) ,
nND“(}? . NDm’N'ﬁf'zc’)fﬁ“(‘f;’"'?("'”
W(t) = L nD(t.c)—nD(t,r;D. ND(r)D—nD(t,r)
. Np (¢)—Np(r) Np ()
RSVYwm(d,q) LM retrieval status value RSYm(d,q) = Pm(gld) = C- Fieqnalog(l +
AP(t|d)
AP
RS\m(d, ) Poisson retrieval status valueRS\Wm(d,q) = O(r|d) = EEgI% =
PPoissor(tlr) PPoissor(t‘r)
[Tt €dNa Prsso(tlr) TN Prgissot7)
(T,P) Probabilistic relation, which consists of a tuple $eand a probability sel.
T andP have the same set size, each probability value correspotuidea
T Tuple in a relation, which contains a few attribute$l], 7[2]...7[n]).
in Index of an attribute in a tuple. Thereforé1, iy, ...in] is a new tuple which
contains of the attributds, io, ...in from tupler.
P(1) Probability of tupler.

Table 1: Notation overview
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Chapter 1

Introduction

Information retrieval (IR) is a field of science concernedhgearching collections for the objects
relating to a searcher’s interests, which can be text, imsmend, etc. Text retrieval was initially
developed in the 70’s, and was concerned with keyword oradistetrieval. Today it has been
developed into full document retrieval in a very large-scdlhe collections concerned can be of
terabyte size, centralized or distributed on a network.

The main components of an IR system are document and quemgsesyations, retrieval
models (or matching functions), and some systems incluégarce feedback parts. Document
and query representations are sets of indexed terms whéckokenized from documents and
queries, each term is presented with its occurrence infiioma Retrieval models decide how
to match the documents and queries and how to assign a scarddoument with respect to
a query. How to index document and query terms, and what kirsfadistical information is
to be represented along with the terms, are also decidedebsettieval models. The relevance
feedback part allows a system to gather relevance infoomatnd use it in a further search. Not
all the retrieval systems have a relevance feedback part.

The retrieval model is the key component of a retrieval systavhere the model
guides the representations of queries and documents, amdwHys of matching be-
tween them. In past decades, there have been various modeédoped, mainly di-
vided into three categories: Boolean models, vector spacelets, and probabilistic
models. Even the probabilistic model includes many difierenodels, such as the

famous binary independence retrieval model, Poison modmhguage modelling, di-
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vergence from randomness, inference network, and manyrstiderived from them

[Robertson and Sparck Jones, 1976, Ponte and Croft, 1998a,0elleRe and Wang, 2006,
Amati and van Rijsbergen, 2002, Ponte and Croft, 1998a, fdeand Walker, 1994,
Robertson et al., 1995, Lavrenko and Croft, 2001, Hiem2080, Zaragoza etal., 2003,
Zhai and Lafferty, 2004, Harter, 1975a, Harter, 1975b, Grast al., 1998] .

The research of this thesis started from probabilisticdamodelling introduced in chap-
ter 4, which aims to bring to IR model implementation with fldg data management, and
concise form, as well as the ranking ability on objects beytaxt. During our implementing,
following research questions inspired us to investigateréiationships of the models, context-

specific frequencies and model selection:

e With the existing probabilistic models, some of them usepttedabilities of terms appear-
ing in the documents and the probabilities of terms appgdtie collection. When they
represent the probability of a term occurring in a documenikection, they useP(t|c).
However, in different model$?(t|c) are estimated in different ways. Some are defined as
the number of documents where the the term appears dividdueldptal number of docu-
ments in the collection, others are defined as the numbemestithat the term appears in
the collection divided by the total number of terms in thdextion. So the questions are:
What are the relationships between models? For those samiagarobabilities from

different probabilistic models, what are the relationshijgtween them?

e There is a non-probabilistic model, TF-IDF[Salton et a@714], long been famed for its
simple formulation and robust performance over differasitections. TF-IDF model also
uses the frequencies of terms appearing in the documentshanidequencies of terms
appearing the collection to weight a term. IDF started fronuition, and it has been
given an approximation to probabilistic model [Roberts2@04]. In the past few years,
TF-IDF has been investigate from probability and inforroattheory by [Aizawa, 2003,
Hiemstra, 2000, Roelleke, 2003a]. There remain the questiavhat is the relationships
of TF-IDF to those probabilistic models, could we give alferttheoretical justification to

the TF-IDF?

e When using inverse document frequency & weight how effective a term can distin-

LIDF, inverse document frequency, is the logarithms of thiiection size divided by the number of
documents containing the term. Please find detailed defm#gction 2.9.3
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guish different documents, we found that IDFs computed iwitlifferent document sets

can be different. For example the term “Artificial”’s IDF felhe sub-collection concern-
ing about artificial intelligence, also different to the 1Bd¥ the sub-collection concerning
computer graphics. How to choose an appropriate colled@riaining the term to get a
proper IDF value is one question. When we replace the documébF definition with

section or paragraph, we can have different IDF values dubey are compute within the
same collection. Which type of IDF can achieve better redfieesult is also a question.

How to apply these different frequencies to probabilisticdels, and what is outcome of

utilizing these frequencies will be worthwhile to investig?

When running different retrieval models on a set of quemesfound that no one retrieval
model can outperform other against whole set of queriesrefbtie, we expect if we can
find for each query a suitable retrieval model that is likedyperform the best than other
models, then we can improve the overall high retrieval dqualiver a set queries without
improving the existing models or developing new models. ghestions are whether we
are able to choose the model that performs the best, and sttt criteria for the model

selection?

IR systems assign weights to terms according to the retrieedels, and instantiate term
weight to facilitate the retrieval process. When a systecofiporates more than one re-
trieval models, it needs to maintain different term weigdhited to corresponding models.
All these weights are normally collection dependent, thegcto be updated when the
collection changes with time. If the term weights or relgpedbabilities can be estimated
during the retrieval time from basic occurrence informatisuch as term-document rela-
tion, then the retrieval system just need to maintain a cdpgron occurrence information.
Whenever new documents are included into the the collectaty the additional term
occurrence information is to be appended, or when some dectsare removed from the
collection, only the related term occurrence informatisma be removed. Hence, no extra
work will be involved. The probabilistic relational langye can meet such expectation,
and provide great re-usability of data in modelling. Howetee probabilistic modelling
is not straightforward as not every operation in retrievaldels are probabilistic, which re-
quire us to look for a alternative way to explain and impletrteem with the probabilistic

relational language.
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1.1 Contributions

This thesis investigates the following aspects of prolgtiil models: relationships of the mod-
els, probabilistic modelling, application of context-sffie frequencies in probabilistic models,
model selection based on the correlation between staifisjicery features and retrieval perfor-

mance.

1.1.1 Relationships between Retrieval Models

This thesis investigates the probabilistic models (Binagependence model, Poisson model
and Language modelling) and TF-IDF. The strictly paralieleistigations show: 1. The clarifi-
cation of probability spaces, relevance assumptions, anking rationales for the probabilistic
models are displayed in parallel. 2. The Poisson model canelmeed as a bridge that connects
BIR model and LM (Poisson bridge). 3. Both the BIR and LM carubed in a dual way for
representing TF-IDF. 4. Under disjointness and indepecel@ssumptions, the decompositions
of relevance probability lead to TF-IDF justification witbrae extreme but meaningful assump-
tions. 5. TF-IDF is the integral of document and query indej@ace model, which gives TF-IDF

another justification.

1.1.2 Probabilistic Modelling of Retrieval Models

Probabilistic modelling enables integrating probahtigstimation and evaluation into the mod-
elling, which brings a great flexible data management, &lsad¢adability and re-usability of the
code. Although there are difficulties in modelling non-pabbistic retrieval models and adap-
tions of the models are to be made, the adaption lead to iarsadbf the retrieved models. Some
of the adaptions actually simplify the operation duringiesal time, some bring better retrieval

performance than the original ones.

1.1.3 Context-specific Frequencies in Retrieval Models

Although context is a confusing term in information retagvand applies to anything related
to the retrieval process, here it is about the text collecsarrounding a document or a part
of a document. According to the different contexts, the diestries involved can be section or
paragraph frequencies in addition to document frequendieg application of context-specific
frequencies in the retrieval models, brings a generaledtimodel, where a retrieval object can

be any type of element in a document, and the frequencieshmsen based on the retrieval
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object. It also brings to the retrieval systems great sdélatand flexibility, and can also be

extended into distributed retrieval.

1.1.4 Model Selection by Statistic Query Features

Model selection comes from the observation that differetrigval models may work differently
on the same query. If it is possible to choose for each quergpgmopriate retrieval model
from existing ones, then, without elaborating the retriewadels, overall better performance
can be achieved. The last chapter of this thesis contritariesxtensive study and methodology
to exploit the query features and to identify the necessanditions for improvements through

model selection.

1.2 Overview of the Thesis

Chapter 2 introduces some retrieval models and relatedviexighting schemes.

Chapter 3 investigates the derivations of BIR model, PM alt] &nd explains the TF-IDF
model from different aspects: with Poisson bridges, thertwain probabilistic model the binary
independence retrieval model and language modelling carsée to represent TF-IDF in dual
ways; starting from decomposition of relevance probapitiased on independent or disjoint
terms, TF-IDF can be derived with some extreme assumptatetsgmposition based on disjoint
term leads to the document and query independence measurdraerelates to TF-IDF.

Chapter 4 introduces how to use highly abstract languagiesgie@ment the retrieval models,
and shows how to integrate probability estimation into migeipand how different probabilistic
assumptions can affect the retrieval results. In this drapiternatives ways are presented to
model the non-probabilistic model in the probabilisticnfrework.

Chapter 5 applies context-specific frequencies to IDF anguage modelling to retrieve the
element or document in structured document collectionleCtibn selection by context-specific
frequencies is also studied. An alternative informatigsnmeasurement to IDF is investigated
in this chapter too.

Chapter 6 proposes a way to choose a suitable retrieval namdekrding to correlation of
statistical query features and query performance. Theimgntorrelation of the models and the
correlation of statistical query features and query penfamce are detailed studied.

Chapter 7 summarizes the work that has been done so far avidgg@n overview of future
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research.
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Chapter 2

Background

A brief history of retrieval models is given in this chaptand then some classical models based
on set theory, probabilistic theory and algebra are intoedu At the end of this chapter, proba-

bilistic estimation methods related to these models areritesl.

2.1 History of Retrieval Models

The earliest retrieval model is the Boolean model comingifdatabase retrieval, which returns
the documents satisfying a Boolean expression. The staRtzolean model does not rank the
retrieved documents. In the early 80s, [Bookstein, 198Gp8&t al., 1983] started to use fuzzy
logic or extended Boolean operators to support documeitrgn

In the early 60s, [Maron and Kuhns, 1960] introduced prdisiu theory into IR. In the 70s,
[Robertson and Sparck Jones, 1976] proposed the binarpéndence retrieval (BIR) model
based on the probabilistic ranking principle [Robertsd@¥7]. [Croft and Harper, 1979] ex-
tended the binary independence retrieval model to theexetricorpus without relevance in-
formation. [Harter, 1975a, Harter, 1975b] investigateBdsson model in term weighting as-
pect, and [Margulis, 1992] studied the N-Poisson model. ifTiverks showed that the 2-
Poisson model can best express term distributions. [FuhBawckley, 1991] devised a feasi-
ble probabilistic indexing model, which is the counterpafrthe BIR model. In the mid 90s,
[Robertson and Walker, 1994, Robertson et al., 1995] sfieglithe 2-Poisson model, and cre-
ated the BM25 model by combining 2-Poisson and BIR models, flr BM25 is one of the best

retrieval models. There were another two branches of piistid model lying from the 80s and
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90s, [van Rijsbergen, 1986, van Rijsbergen, 1989] intreducon-classical probabilistic logic
P(d — q) to IR models, [Wong and Yao, 1995] generalized the logic rhéded — q), which
can express other models. [Turtle and Croft, 1990, Turtte@roft, 1991] applied Bayesian in-
ference networks to document retrieval. From the end of Pste and Croft, 1998a] first ap-
plied language modelling to IR, and a lot of work [Lavrenkal&roft, 2001, Hiemstra, 2000,
Zaragoza et al., 2003, Zhai and Lafferty, 2004] based onftastbeen carried out since then. In
the early 2000s, a probabilistic framework based on divergdrom randomness appeared as an-
other successful model, which utilizes different termrifisttions in the model, and can also rep-
resent some other existing probabilistic models [Amati @aud Rijsbergen, 2002]. For more de-
tailed information about probabilistic models, pleaseréd [Crestani et al., 1998], [Fuhr, 1992]
and [Baeza-Yates and Ribeiro-Neto, 1999].

The last type of retrieval model is the vector space modelchvitarted in the early 70s
[Salton, 1971, Salton et al., 1975]. Originally term weghtere binary, later terms are weighted
by their occurrences within the document (TF) and inverssudeent frequencies (IDF, see sec-
tion 2.9.3) due to the retrieval systems being able to indéxdbcuments. The weight with com-
bination TF and IDF greatly improved retrieval performand&occhio, 1971] included users
interactive relevance feedback into the models. Howekeryector space model was criticized
for conflicting with the principle of vector space model in vy and Raghavan, 1984]. Be-
cause there is dependence between terms, it is inappmpoidteat those terms as orthogonal.
[Wong et al., 1985, Raghavan and Wong, 1999] solved thislgnolthrough the use of general
vector space model which projects the terms mtsthogonal dimensions first, then uses the new
orthogonal vectors to represent the query and documentlaféet semantic indexing model is
another kind of model based on algebra which indexes therdents in a much lower dimension
space [Dumais et al., 1988, Deerwester et al., 1990].

With the fast development of the world wide web in the 90s,ifBmnd Page, 1998,
Kleinberg, 1999] applied linkage information of webpaga® iretrieval models to improve web

retrieval, PageRank and Hits are the two of the most effeatigb retrieval models.

2.2 Boolean Model

The Boolean model is based on set theory and Boolean logeddtuments are regarded as sets

of terms. A document is relevant to a query if the documentesake query formula true. For
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example, for a queryd AND b”, terms “a” and “b” must be all contained in retrieved documents.
For another query,& OR b”, either “a” or “b” being contained in the documents will make the
query successful.

The Boolean model can be easily and rapidly calculated, aswidely used in early com-
mercial retrieval systems. The drawbacks of Boolean modettee difficulty for inexperienced
end users to formulate their information needs into strégirded Boolean expressions, no ranking
of the retrieved documents, and either no or too many rettimsults sometimes.

There are some extended works on Boolean model, like they flazgc [Bookstein, 1980]
and the extended Boolean model [Salton et al., 1983], whilthess the ranking problem by

redefining Boolean operator and giving a term an originalglvebased on TF and IDF.

2.3 Vector Space Model

The vector space model (VSM) treats both queries and docismes) n-dimension vectors
q (0, %...0n) and H(dl,dz,...dn). The angle between the two vectots and? acts as an

estimation of the similarity or relevance between the doentrand the query: the bigger the
angle is, the less similar the document and query are, ardwdrsa. Therefore the similarity

score is given by the cosine value of the angle:

d-q
VId 2 [aP

In the basic representation of VSM, the components of theoveee binary. In other words,

simd,q) = (2.2)

if the term ‘t;” occurs in the document, then the corresponding coordioite;” is 1, otherwise
0. Therefore, the basic representation will not take intooaat the term frequencies within
the document. Salton and Buckley [Salton and Buckley, 1888pested using TF-IDF as the
coordinate if a term occurs in a document, and this providesieh better retrieval quality than
basic VSM.

TF-IDF model is a typical kind of vector space model, whiclsigis term weight with
tf(t,d)-idf(t) as a coordinator, whetét,d) is number of times that a term appears in a docu-
ment, anddf(t) is the inverse document frequency of a term, i.e. the numbdoa@ment s in the
collection divided by the number of documents containimgntéin the collection. Logarithms
is applied to changed thdf(t)?s score scale. Detailed information about IDF will be dised

in the later section.
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2.3.1 General Vector Space Model And Latent Semantic Analys

The issue around VSM is that it assumes terms are indepetwleath other (orthogonal in the
vector space), which is not the necessary case. A gener@nsgace model (GVSM) was pro-
posed in [Wong et al., 1985] which decomposes a term imimension orthogonal concepts,
T =G-m. Gisthe representation matrix. Then the transformed repteﬂ'en&), a) and their

similarity as follows.

d - d.6 2.2)

qd = GG 2.3)
simd.,q) = d-GG'g" (2.4)
2.5)

Latent semantic analysis (LSA) can be viewed as a specialafdsVSM. LSA is atechnique
in natural language processing, which analyzes relatipadfetween a set of documents and the
terms and generate a set of concepts related to the docuarehtsrms [Deerwester et al., 1990].
Then the documents and queries are represented by the toimepified by LSA. The projec-
tion of the document or query vector to lower dimensionalcgpean remove the noise repre-
sented in the document, also can decrease the computatimstddy removing the less important

concept concept.

To carry on a LSA process, a term-document matrix has to kaenldirst. Suppose there are

mdocuments in the collection, and vocabulary size is n, theixnaill be:

d (2.6)
iy tip tig - tm
by o toz -+ ftom

A = t31 f32 33 -+ fam |t (2.7)
tn,l tn,2 tn,3 e tn,m

Here,t ; is the term weight for ternt; in documentd;, which can be binary weight. K

appears imj, thent; j=1; otherwisd; j=0. t; ; can also be setup with other weighting schemes.

With singular vector decomposition (SVD), matrix A can bead®posed to the inner product

of three matrix.

A=U.S.VT (2.8)
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WhereU is term-concept matrixy is document-concept matri§is singular value matrix
andV are orthogonal matrix. By reducing the rank of singular ma8, the less important
information or noise can be removed.

According to decomposition 2.8, the document transforamaiv[i] = d/ = d;-U -S~1. Then
a query will be transformed in the same wgy= q-U -S 1. Consequently, documents and

gueries can be compared in concept space.

2.4 Probabilistic Retrieval Model

Probabilistic retrieval model also refers to binary indegence retrieval model, which tries to
estimate the probability that a user will find a documentvate to a query, according to the
term occurrences in the relevant document set and nonar@l@ocument set. The idea behind
probabilistic retrieval model is the probabilistic rangiprinciple. In this section we introduce
the probabilistic ranking principle, binary independemegieval model, and using the binary

independence model with little or no relevance information

2.4.1 Probabilistic Ranking Principle (PRP)

Maron and Kuhns [Maron and Kuhns, 1960] suggested thate shree retrieval system needs to
deal with uncertainty, it is better to use probability, andegusers the retrieval result according
to the probability of relevance. If it is difficult for the sigsn to give a probability value, then the
alternative is the ranking of the probability. This is thegimming of the probabilistic Ranking
principle, and Robertson formalized the PRP in [Robert46,7]:

If a reference retrieval system’s response to each reqaestanking of the docu-

ments in the collection in order of decreasing probabilityusefulness to the user
who submitted the request where the probabilities are astidias accurately a pos-
sible on the basis of whatever data made available to thersyfstr this purpose, then
the overall effectiveness of the system to its users willHeeliest that is obtainable

on the basis of that data.

Robertson justified the PRP optimal retrieval procedureudio decision theory in
[Robertson, 1977]. If the cost of reading a non-relevantudeent isa; and the cost of miss-

ing a relevant document &, then the minimal cost of retrieving a documehwill be:
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ap-P(r|d) > a; - P(r[d) (2.9)
or:
ay-P(r|d) >a;- (1—P(r|d)) (2.10)
then:
a
p(rld)>a1+a2 (2.11)

Thus documents can be ranked by the relevance probabilitg 51@;2 is the cut-off of the

probability ranking list.

2.4.2 Binary Independence Retrieval (BIR) Model

The BIR model ranks a document according to the probabiligt tisers think the document
relevant to a quer(r|d). Due to the difficulties of estimating the relevance probighihe BIR
model estimates the probability that a document occurserrélevant document set via Bayes
theorem, instead of the probability of a document beingvegie

P(r[d) = (2.12)

Using odd<O(r|d) instead ofP(r|d) will removeP(r) andP(d) from the probability estima-

tion.

P(rld) _ P(d|r)
P(rd) — P(dlr)

Under term independence assumption, the probability ofcamhent being relevant can be

o(r|d) = (2.13)

estimated by the terms’ occurrence probability in the r@hand non-relevant set:

P(dlr) = []P(tIr) (2.14)
ted

Independence assumption means that terms appearing in¢hendnt are considered inde-
pendently from each other, i.e. there is no associationdxtvterms. This assumption is not true

in reality, but in practice it simplifies the modelling workégives acceptable retrieval quality.
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When it is assumed that only the query terms play a role inirgnkin other words, non-
query terms have the same probability to occur in relevadtraom-relevant document§)(r|d)

will be written as:

P(d|r) [tedng P(t]r) x [Tteq\d P(t|r)
Olrla) = - al 2.15
(r| ) P(d|l’_) Htedﬂq P(t|l’_) X Hteq\d P(t|l’_) ( )

When equation 2.15 is multiplied by-1 [cqng piifr-pyir - then theO(r|d) will be:

(t]r)P(
o tadhg PEINP(r) +teq PN (2.16)
tedng P(tIr)P(t[r) (2.17)

The second of part of equation 2.]43@%_}%, can be removed as it is estimated for the

whole query and is the same for any document. The first partje&ton 2.16 is the product of
term weights for all the common terms between the documehtt@nquery. The weight for the

query term is:

_ P(t[r)P(t]r)
w(t) = R0 (2.18)

The estimation of term occurrence probability in the refévar non-relevant documents are

based on document frequency, and they are listed in equatidn

Pl = ”NDét(’rr), P@lr) = 1— P(t|r) (2.19)
np(t,c) —np(t,r)

ND(C) — ND(r)

~—

P(t|r) , PN =1-P(tN)

By replacing equation 2.19 into equation 2.18, the prolgtlulterm weight will be:

nD(t(,r) . ND(C)fND(rzf)(nD(téc%an(t,r))

Np Np (c)—Np (r

W(t) - Np (t,0)—Np(t,r)  No(r)—np(t,r) (2-20)
Nb (¢)—No (r) Nb(r)

Notation:
P(t|r) : the probability that ternh occurs in relevant documents.
P(t|r : the probability that ternt occurs in non-relevant documents.

P(t]r) : the probability that terrhdoes not occur in relevant documents, which equal®{t;|r).
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P(t[r) : the probability that termt does not occur in non-relevant documents, which equals

1—P(tr).

d,q : d={ty,t,...tn}, d is @ document consisting of termg;= {t1,t2,...tm}, q is a query with

query terms.
dngq : all terms that occur in both the documehand the query.
g\ d : all terms that occur in the query but not in the documert.
w(t) : term weight for ternt, which is termed BIR term weight.
np(t,c) : the number of documents in which tetroccurs.
Np(c) : total number of documents in the collection
np(t,r) : the number of relevant documents in which terotcurs.

Np(r) : total number of relevant documents.

As log-odds keeps the ranking Bfr|d), the document’s BIR retrieval status value (RSV),

the score assigned by retrieval model with respect to theygsielefined as equation 2.21:

RSWr(a.d) = O(r[d) X 5 logw(t) (2.21)
tednq

The logarithms in the retrieval status value formula is tokenghe term weight addable.
As it is a monotonic function, it will keep the ranking the adds, thus it will not change the
document’s probability ranking.

For better understanding of term weight estimation in BIRdelpa simple example follows:
Run a query “computer” on a collectianwith 1000 documentsNp(c) = 1000), in which 20
documents are relevant to the queNp(r) = 20). In these 20 relevant documents, only 15
documents contain the term “computerip(t,r) = 15); while in the whole collection, there are
40 documents containing the query term “computeg (€, c) = 40).

The probabilities and term weight estimation are the foarfiP2 and 2.23:

np(t,r) 15 3 np(t,c) —np(t,r) 40—15 5
_ _ 29 _ _ - 2.22
PN = ~20~ 2 PUD = Roo—Nor) ~1000-20 196 (222
np(t,r) No(D)—Np(r)—(np(t,.C)—np(t,r)) 15 955 573
w(t) = log Np (1) No (C)—No(r) — log 20980 _ |og (2.23)

np (t,C)—np(t,r) Np(r)—np(t,r) ]
IBID(C)fN[;(r) = ND(rg 980 ' 20
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The times of a term occurring in a document (term frequendy), i$ involved in the BIR
term weighting scheme. For the early abstract or keyworéximdy systems, where there were
not many repeated words in a abstract, thus TF was not so taemor However TF plays a
different role in full document retrieval systems, giver fthenomenon that some terms appear
in a document many more times than the others when the dodumahout a certain subject.
Including 2-Poisson estimated TF and document length irgtreeval function together with

BIR term weight leads to best match function (BM25), whicli is& introduced in section 2.6

2.4.3 Variations of the BIR Term Weight

BIR term weighting takes into account relevance and noevegice, as well as occurrence and
non-occurrence information. When there is not enough sofdrmation involved during the
estimation, the BIR term weight can be simplified. [Robertaad Sparck Jones, 1976] gave

four variations of BIR term weight by combining the relevarand occurrence information:

np(t,r)/Np(r)
Flo o to/No(© (2.24)
np(t,r)/Np(r)
-2 (np(t,c) —np(t,r))/(Np(c) — Np(r)) (2.25)
np(t,r)/(Np(r) —np(t,r))
P8 o)/ (No(0) (o) (2.26)
F4 np(t,r)/(No(r) —no(t,r)) 227

F1: only takes account of occurrence probability, and agstira whole collection is non-

relevant.
F2: only takes account of occurrence probability.

F3: takes account of both occurrence and non-occurrendgpildy, and assume the whole

collection is non-relevant.
F4: takes account of both occurrence and non-occurrendmpilay.

Empirical results show that F4 has a better performance. d<4l$o called RSJ
term weight in some papers. Salton and Robertson’s empiimvastigation on term rel-
evance weight can be found in [Yuetal, 1982] [Wu and Salit®81] [Robertson, 1981]
[Robertson and Walker, 1997].
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2.4.4 BIR without Relevance Information

The BIR model needs initial relevance information for proitity estimation, whereas for real re-
trieval systems, there is no such relevance informatioe&mh query. To carry out the estimation

work without relevance information, [Croft and Harper, 89assumed that all the query terms

np (ti,C)
Np (C)

(which assumed the whole collection size is far bigger thenrelevant collection size, this is

have the same probability to occur in the relevant documeartd estimatedP(ti|r) =

also called non-relevant assumption). Then under no metevanformation situation, the alter-

native BIR term weight will be formula 2.30.

_ P(t|r)P(i[r)
w(t) = log PP (2.28)
P(t|r) P(t[c)
~ log =i +log P({o) (2.29)
~ Ctloghe©—Mo(t0) (2.30)

If P(t|r) is 0.5, which means that a term has the same probability tar@rdo be absent from

a relevant collection, then constabwill be zero. With very large collection size (> n), the

term weight can be approximated Iagn'\ll"(t(%. It is the same as Sparck Jones’ inverse document

frequency (IDF) [Jones, 1988].

2.4.5 BIR with Little Relevance Information

In relevance feedback retrieval, the system can get retevardgement for a small portion of
documents, or say little relevance information. Howevele tb the relatively extremely small
size of the judged document set, term distributions in tligga documents would not be able
to represent the term distributions in the whole collectidihus, [Robertson and Walker, 1997]
suggested: if there is no relevance information, the terrnghteshould based on the inverse
collection frequency prior; the term weight should be tuealbnd not be negative; if there is a
large amount of relevance information, then the term wesjiauld be based on the relevance
evidence, and not to take account prior; if there is littleoamt of relevance information, then
the term weight should be the combination of prior and reteeaweight; the relevance and
non-relevance judgement should be separate.

In their work, the RSJ weight is decomposed into two partigvesice and non-relevance

weight.
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P PP

w(t) =log 1-P@ 1-P@[7 = Wp(t) —wy(t) (2.31)
Where the prior weights are:
Np (c) np(t,c)
Wp—prior (t) = Kg + 100 ———————, Wg—prior (t) = l0g —————— 2.32
Relevance and non-relevance based weights are:
np(t,r)+0.5 np(t,r)+0.5
Wp.rei(t) =log (L) Wy ra(t) = log (L) (2.33)

Np(r) —np(t,r) +0.5° Np(r) —np(t,r)+0.5
According to the principle of ranking with little relevangerior weight and relevance weight can

be combined, then:

. k5 _ ND(r)
Wp(t) = m *Wp—prior (t)+ m *Wp—rel (t) (2.34)
N
we(t) = e +"£Dm Wi (1) + +D|\(l?(5 Wo_ra(t) (2.35)

In their experiment, the result showed that the force ofvialee weight increases quickly as the
relevance set size increases, whilst non-relevant infdomas not that powerful, but still useful

when combined with relevance information.

2.5 Poisson Model

The Poisson model (PM) estimates the term weight with theiwidocument term frequency
and the average term frequency in the collection. Althougé mot a widely studied model, we
would like to introduce it here as we will use it as a bridgewsstn BIR model and language
modelling in chapter 3.

na—A
PIt]C) = Prossoft(t,d) = njc) = 2 (2.36)

HereA is the average term frequency for tetniThe probability will be maximal when equals
the average term frequency.
With term independence assumption, the Poisson basedhilihbaf a documentd being

relevant will be:
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P(d|g,r) = |_| P(tlg,r) = I_l Proissor{ tf(t,d)[q, ) (2.37)

ted ted

The Poisson model might be a little inappropriate in termghigng, as for the same term
t, if this term occurs in documemt; times ind;, np times indy, andny > ny > A(t,r), then we
intuitively think t is a good discriminator for these two documents, and shoelight it higher
for document;. Unfortunately the Poisson model weights it lowerRadssod tf(t,d1) = m|r) <
Pem(tf(t,d2) = ny|r)), asm deviates further to average TF than It meang contributes less to
d; thand, in Poisson model. Actually this is not what we expected, astintent words should
be favored if they occur more frequently in a document.

To address this problem, odds®fd|r) may be a good solution. Because if the teisrfre-
quency deviates from average term frequency in the reled@cuments, then it tends to deviate
more from the average TF in the non-relevant documents.

Follow the BIR model’'s term independence assumption, ahdarery term affect the rank-

ing, the Poisson model is:

_ P(d|r) _ Proissort|1) ) Phoissort|1)
P(d|r) tedng Proissor{t|F) teq\d Ppoissor(tr)

RSV(d,g) = O(r[d) (2.38)

Then we replace the Poisson probabilities in equation 2.@88 tleir estimations. When
the query term appears in the document, Bbgssor(t f (t,d) = n|x) = W When the
query term does not appear in the document Rigsodt f (t,d) = 0|r) = e A(X) . Here,A (t,x)
is termt’s average term frequency in document sedndx can ber or r representing relevant or

non-relevant document set.

( ) )\ (t r) nL(Ld) e—)\ (t,r) e—A (t,r)
tel;lm A(t,r) teI;Lq e~An teE!d e At
A,r) > et
x log ( +C (2.40)
te;jq )\ (t7 r_)

In equation 2.40C equalszteqlog%. C depends on the query but not the document,
which can be dropped from the RSV.

In the Poisson model, the distributions of term within th#emtion and document are both
taken into account in the retrieval function.

[Harter, 1975a] found good terms (non-functional) actuadind to have different distribu-
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tion in relevant and non-relevant document, and if therenitlzer parametek describing the
probability that a document comes from relevant documehés) the Poisson model can also be
formulated as 2-Poisson model shown in equation 2.41, wheend A, are the average term
frequencies in relevant and non-relevant collections.

e MAD e 2\l

Popoissor tf = n) = kT +(1- k)T (2.41)

[Margulis, 1992] has looked into N-Poisson model, whichdid the whole collection into n
sub-collections and assumed each term has a separaterPdistsibution in each sub-collection,
with average term frequency:

e—)\i)\in
n!

Prpoissoftf = n) = z Ki

yh-1

(2.42)

He found that most terms or words are 2-Poisson distribution

2.6 BM25

BM25, best matching function, was developed from BIR modgblertson et al., 1994]
[Jones et al., 2000a][Jones et al., 2000b]. It differs fréwm BIR model in that it incorporates
within document term frequency, query term frequency, doent length and various parameters

to adjust the term weight. As a whole, BM25 also adjusts RSt diocument length and query

length.
B avgdl—di(d)
RSWw2s(d, q) —%W(t)Jrkz ql(q) avgdi+ di(d) (2.43)
Wt =SS e e ae Y ket i)
B di(d)
o (a0 +689)
Notation:

w;: term weight for the tern.
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tf: times that ternt occurs in the documert

gtf: times that ternt occurs in the query formulg.

gl: length of the query.

dl: length of the documerd.

avgdl average length of the documents in the collection.

K: TF normalization factor. It varies with respect to docuinkmgth. K is bigger for long

documents than for short ones.
w(b: RSJ term weight function.
S: parameters for tuning term weight.

b,c: constants used to adjust TF normalization in term weighi.aifidc are set to 1, BM25 will
be the BM11; ifc= 1 andb = 0, BM25 will be the BM15. Different values df will yield

different results.

This model includes TF, RSJ term weight, document lengtlenglength and other pa-
rameters into the retrieval function. Document length hasnapact on TF normalization, as
well as the RSV. The formult/(K + tf) is the simple approximation of 2-Poisson distribution
[Robertson and Walker, 1994]. The second part of BM25 is timuchent length corrector used
to modify the effect of document length on RSV. It is a docutewel corrector and used only
once after all the term weights have been calculated. Wheddbument length is average doc-
ument length, then the RSV will not be affected. For the doeninthat is longer than average
length, its RSV will be decreased slightly. The longer thewoent, the more will be deducted
from the RSV. For the document shorter than average, its R8\bw increased slightly, the
shorter the document, the more will be added to the RSV. Tasoreand techniques of normal-
ization in the retrieval function will be discussed in sent2.10.

In practical application, BM25 model is simplified by seftisome parameters to certain
values due to the heavy work of parameter estimation. Fample whenc =1, = 1+kj,

s3 = 1+ k3, BM25 is simplified to formula 2.44:

(ke +D)tf(t,d) 1) (ks +1)qtf(t,q) avgdl—dl(d)

RSMALA) = > W Ta) oratt ¢ VD ayedirdia)

(2.44)
tey
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2.7 Divergence From Randomness (DFR) Model

The Divergence from Randomness (DFR) is a model measurmglittergence of actual term
distribution from random distribution [Amati and van Rigigen, 2002]. There are three com-
ponents in the DFR: information function computing the mfiation that a term contains from

the random distribution, risk function adjusting the infa@tion gain and term normalization.

e Information Function based on Randomness Models

The information that a term contain is defined as: “The more tlivergence of
the within document term frequency of tertnfrom its frequency distribution within
the collection, the more the information carried by the tetnin the document

d’[Amati and van Rijsbergen, 2002].

In order to estimate the probability that a term occurs in auteenttf times, different

assumption can be applied.

Binomial distribution:

tf
Prandon(t,d|C) = ¢ ptfd(l_ p)ﬁciﬁ‘% p=1/N (2.47)
tfy

Notation:

tf.: the term frequency of the tertrin the collectionc, also in notatiorN, (t, c).
tfy: the term frequency of the tertrin the documentl, also in notatiorN, (t,d).
N: the number of documents in the collection.

p: the probability ternt occurs in the documenp = 1/N.

Geometric distribution:

tfy
Prandon(t,d|C) = <li)\> : (li)\> (2.48)
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whereA is average term frequency in the collectidambda= n_(t,c)/Np(c).

Term is independent of all other tokens:

tf,
n+0.5> (2.49)

Prandon(t,d|C) = ( N1

wheren is the number of document containing the query term, ldrid total number of

documents in the collection. Angeight(t,d) o Iog(”,j[ff)ﬁ“ = tf - idf

e First Normalization for Information Gain

The aim of first normalization is to smooth the weight assijaecording to random pro-
cess 2.46. Risk function is used to decide the portion ofoamuess weight that should be

assigned to the term. It is also called information gain.

gain(t,d) = Piisk - Prandond(t,d|C) (2.50)

The more the term occurs in the elite set, the less the tempémrcy is due to randomness,

and thus the smaller the probability Risk is, that is:

Prisk-L Laplace model (2.51)

thy+1
tf,

m RatioB of two binomial distributions (2.52)

Risk-B2
wheredf is the number of documents containing the term.

e Term Frequency Normalization

Term frequency normalization is also call second normtbmain DFR. To sort the prob-
lem that long documents tend to have high within documemjueacy (TF), TF normal-

ization in DFR is:

(2.53)

tf, = tf-log <1+c- a‘:jg:d'>

whereavgdlis the average document length, aflds the document length.
DFR is a framework which can accommodate many retrieval isdmereplacing the variants
of the three components. BM25 can also be expressed in #sefvork, when token indepen-

dence assumption, Laplace risk model and TF normalizajmfied.
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2.8 Language Modelling

Language Modelling (LM) is another successful model confiiog the statistic language mod-
elling area, it ranks a document based on the probability dhguery generate the document
P(dg).

By using Bayes theorem, the estimation of the probabiliggt tjuery generates the docu-
ment can be replaced by the probability that the query octuthe document (see equation
2.54). The assumption behind this equation is that the jiityaof a document being rele-
vant to a query is correlated to the probability of the queeyng generated by the document

[Ponte and Croft, 1998a].

P(qld) - P(d)
P(a)

SinceP(q) is the same for any query, amid) is assumed to the same for every document

P(d]g) = (2.54)

in the whole collection, then:

P(d|q) o P(qld) = [P(t/d) o ¥ logP(t|d) (2.55)

teq feqy

Certainly there is no necessity to assume tRétl) is constant for the entire doc-
ument collection, estimatindg®(d) with document length will lead to different results.
[Blanco and Barreiro, 2008, Kamps et al., 2005] all showeat the length prior will improve
the retrieval performance.

To avoid the situation thaP(t|d) will be set to O due to some query terms being ab-
sent from the document, a smoothing method is needed. Ewfte and Croft, 1998a],
Hiemstra[Hiemstra, 2000] and Zhai [Zhai and Lafferty, 2DB2ve introduced different smooth-

ing methods. The simplest, yet effective smoothing metletsear mixture:

P(t|d) = (1—A)P(t|c) + AP(t|d) (2.56)

Here, P(t|c) is the probability that ternt occurs in the collection, it is used to smooth the
P(t|d). When ternt does not occur in the document, term weight will be decidethbyrobabil-
ity that it occurs in the collectiorP(t|c) is the same for all the documents because it is estimated
by collection frequency.

Language model term weight can also be reformulated asiequa57, when it is divided
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by a constan€ = [iq(1—A)P(t|c):

AP(t[d)

- AP0 (@57)

RSVYm(d,q) =Rm(gld) =C- 5 log(1+

tegnd

Notation:

P(t|c): Probability that a term occurs in the collection. Two kirafsestimations can be used:

one is document event space bas%%; the other one is term location space based,

”,\jft(cc)) n_(t,c) is the number of times that tertroccurrs in collectiorc, andN, (c) is the

total token number in collectioa

P(t|d): Probability that a term occurs in a documen(t|d) = ”,\LIL(ES)) n_(t,d) is the number of

times that termt occurrs in documerd, andNy (d) is the total token number in document

d.

A: Parameter used to balance the importance oPthe) or P(t|d). Experience shows that LM

works best when is approximate 0.2.

2.8.1 Smoothing in LM

In recent years, different smoothing methods have beenstigaed: Jelinek-Mercer(J-
M), Laplace, Dirichlet or Risk based, which can be found irorjf2 and Croft, 1998b,
Zhai and Lafferty, 2004, Zaragoza et al., 2003, Hiemstr@120T he followings are widely used

smoothing methods:

e Jelinek-Mercer Smoothing

In Jelinek-Mercer smoothing, the probability that a docatrgenerates a query is a linear
interpolation of document model and collection model. B term does not occur in the

documents, then this probability only comes from the cailbecmodel.

Pym(tld,c) = A-P(tjd)+(1—A)-P(t|c) (2.58)
_ o, n(t,d) B n_(t,c)
= A NL(d) +(1-2) NL(C) (2.59)

e Laplace Smoothing

Laplace smoothing is a method which adds one extra counétietin, whero in equation

2.60 equals 1, it is Laplace smoothing. Sometime 1 is not s go the probability
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estimation, sa can be any real positive number, which is termed as Lidstomeothing.

tf(t,d
PLaplace(t |d,c) ﬁ (2.60)
- nL(t,d) +1
ON(d)+V (2.61)

e Dirichlet Smoothing

Dirichlet Smoothing is a Bayesian smoothing which estimdtee maximum posterior
probability of a multinomial distribution model[Zaragoeé&al., 2003]. The name come
from the Dirichlet distribution which a typical multinomidistribution and conjugate prior

for Bayesian analysis.

tf(t,d) + uP(t|c)

d+p

d  ntd) @ nto)
d[+p N(d) |d[+u N(c)

Pbirichlet(t|d, C) (2.62)

(2.63)

Dirichlet smoothing can be expressed in linear combinaiida sensitive to collection size
and vocabulary sizeu is bigger if the documents contain more rare terms, and smiéll
the documents contain more repeated terms. Laplace smgatan be treated as a special

case of Dirichlet smoothing. Hetd| is the document lengtN, (d).

There are also some other smoothing methods: risk basedtlsimgpoleave-one-out, abso-
lute discounting, two stage smoothing, etc ([Zhai and Lraff2002] [Ponte and Croft, 1998b]
[Generet et al., 1995] [Ney et al., 1994] [Chen and Goodm8&8e]L[Chen et al., 2000]), which

we do not cover here.

2.8.2 Relevance in LM

When [Ponte and Croft, 1998a] started applying languageetting to information retrieval,
there was no explicit relevance variable in LM. Neverthgldbey assumed that users have a
reasonable idea of terms that are likely to occur in documehinterest, and will choose query
terms that can distinguish documents from others in thectitin. They also assumed that prob-
ability of relevance and probability of query generatior eorrelated. From all the assumptions,

it can be concluded that the query is generated from the mdese relevant document.
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[Lavrenko and Croft, 2001] introduced explicit the releganvariable into LM. They as-
sumed that query is not generated from single document mbdelfrom relevant document
set. As the query termg, 0, - - ,qn are the only knowledge about the relevant documents, so

the probability that occurs in the relevant documents can be approximated bytiequa64

P(t>q1>q2> tee 7qn)

P(t|r) = P(t|on, 02, ,On) = 2.64
(t|r) = P(t|ow, g2, ,Gn) P 0. ) (2.64)
There are two ways to estimaiét, q1,0q, -+ ,0n):
n
P(LQLQZV B aQn) = z P(MD)P(t|MD) I_!P(Q||MD) (265)
MpeM i=
or:
n n

Here,M is a universe of sample of distributioMp is a document model, the sample from
M, which corresponds to a document.

Different to Lavrenko's relevant document set estimatedomfr query term,
[Hiemstra et al., 2004] included limited relevance infotioa from user feedback into the

LM mixture.

P(ty,t2,..ti[d) = [ ] (1 — p— A)P(ti[c) + uP(ti[r) + AP(ti|d)) (2.67)

|
And [Azzopardi and Roelleke, 2007] proposed to smooth terabability from both relevant
and no-relevant document set, although they did not givehout to estimate the relevant and

non-relevant document set.

2.9 Term Weighting and Probabilistic Estimation

2.9.1 Probability Estimation

Probability estimations are also important parts in prasiz retrieval model, which will lead
to different term weights, and rankings of the documentse fitlowings are the normally used

probabilistic models in term weighting:

e Binomial Model
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If the event of a term occurring in document is an indepen&smnhoulli trial with success
probability p, then the binomial probability model for the tetnoccurring in a document

k times is:

Pavamang(tt.) = Ko) = ({0 per 269

p = 1N, g=1-p=(N-1)/N

Herep is the probability that the term occurs in a document, it caéfined as AN; N is
total number of documents in the collectianis the probability that termhwon’t occur in

a documentn is the total term frequency in the document collectipft, c).

e Poisson Model

The binomial distribution given above can be approximatgdPbisson distribution when

nis large enough:

N\ L p Ake?
PPoissom)\(tf(tad):HC) = lim K p g = Kl (2-69)

nN—o0

np = A

In the Poisson distributiory means the average term occurrences in a document.

Document frequency distribution is similar to term freqagnThe Poisson model can be
used to describe the document frequency. But accordingstdtrebserved, the predicted
IDF value computed based on Poisson model has some distancelbserved IDF value

especially in the middle value[Church and Gale, 1995].

Harter proposed 2-Poisson model in [Harter, 1975b], whigguees term has one Poisson
distribution in elite set and another Poisson distributiomon-elite set. Each set has its
own average term frequency for tety; andA, separately.

Na—A
Ale Mt

Me %
PZfPoissom)\l,)\z (tf(t,d) = k|C) =a n! + (1_ a)i

n!

(2.70)

Robertson [Robertson et al., 1981] investigated 2-Poissodel, found that it has the

same performance as BIR model, and worse than IDF after igicagion.

o K-mixture Model
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According to the experimental results, Poisson model canfinthe data well, the k-
mixture model is better fitting to empirical data. K-mixtusebased on the conditional
probability of having more than k occurrences in a documeiven that exactly k occur-

rences have already occurred [Katz, 1996].

_ a B
Px—mixture(K) = (1 — o) & o+ m(m)k (2.71)

B=A2PF 1

a=2/B

o is 1 when k=0, and O otherwise) is the average term frequency in the collection
A = N_(t,c)/Np(c). Continuous K-mixture can be thought as a mixture of Poisson

when@ corresponds to average occurrence in different set of deatsn

Pk _mixture_continuelK) — /0 0(0)(6,k)d0  for k=0,1,2---  (2.72)

®(0) is some density function, an” ¢(0)d6 = 1. For eact®, r(6,k) is the correspond-

ing Poisson distribution function.

2.9.2 Entropy

The concept of entropy originated in physics (the second dathermodynamics), Shannon
introduced it into information theory, where informationtepy is a measure of the uncertainty
associated with a random variable. It quantifies the infeionacontained in a message, usually
in bits. It is the minimum message length necessary to conwatminformation. In IR, each
term can be treated as a signal, then the information caddmthe document can be measured
by the distribution of the terms.

In this section we brief some concepts of entropy, which bélused in the later sections.

More information about entropy can be found in [Thomas M. &p2006]

Entropy

Entropy is a measure of the uncertainty associated withdoranvariable:

n

H(X)=E((X)) = - ZP(Xa) logP(x) (2.73)
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Here I(X) is a measure of the information content associai#d the outcome of a random
variable, which is—logP(x;).

As 1> P(x) > 0, H(X) is non-negative. If alP(x) are equal, themid (X) is maximal, and
the system conveys maximum information Pifx;) equals 1 or O, thehl (X) equals 0. Because
0-log0=1-log1= 0, there is no uncertainty in the system.

The joint entropy H(X,Y) is defined as :
H(X,Y) = Z( P(x,y)logP(x,y) (2.74)
yE

Conditional Entropy

Conditional entropy is the expected value of entropy of tbeditional distribution, averaged

over the conditional variable.

HY|X) = pr H(Y|X = x) (2.75)
= —Z(IogP ZYP(y|x)|ogP(y\x) (2.76)
Xe ye
— _Z< P(x,y) logP(y|x) (2.77)
yE
(2.78)

The relations between conditional entropy and joint entiisp H(X,Y) = H (X) + H(Y|X).

Relative Entropy

Relative entropy, also known as the Kullback-Leibler dipgrce, is the distance between two

probability mass functions P(x) and Q(x). And it is defined as

X

Dr(POIIQ(X)) = 3 P(¥109 55 (2.79)

D(P||Q) = 0, if P=Q. Relative entropy is a commonly used measuremerihédistance of

term being informative in a given model and its real disttito.

Mutual Information

Mutual information is a measure of the amount of informatibat one variable contains about
another one. It is the relative entropy between the jointoability and the product of two

marginal probabilities.
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[(X;Y) = Z( P(x,y)log% (2.80)
XEX YE

= H(X,Y)—H(X]Y) (2.81)

2.9.3 Inverse Document Frequency

After talking about probabilistic models and probabilitstienation, we will look at the simple

and effective term weight scheme: inverse document frequ@BF ). IDF was proposed as term
weighting scheme in [Jones, 1988], it measures the impoetaha term to a query by counting
the number of documents in which the term occurs. It is bagetth® intuition that good terms

should not occur in too many documents, as if a term occursamiany documents, it is not
able to distinguish the documents. Lower term weights shbelgiven to those terms occurring
in more documents, and higher weights to the terms occumifgwer documents.

The definition of IDF is:

Nb(c)
Np (t, C)

np(t,c)

N (2.82)

idf(t,c) = —log

=log

Here,Np(c) is the document number for the collectiom (t,c) is the number of documents
in which termt occurs with respect to the collection.

Features of IDF ([Robertson, 2004]):

° ”,\?D(t(cc)) is the probability that a random document contain térm

e Operation log makes term weight additive (with the assuomptif independent term oc-

currences).
e IDF can act as a probabilistic model when there is no relevamformation.

In early bibliographic retrieval, pure IDF is an effectiverin weighting scheme. With the
appearance of full document retrieval, the term frequendhimwdocument (number of a term
occurring in a document) was also found to be important tmteeight. Currently TF and IDF
are involved in almost all term weight schemes, althougliouarnormalizations or parameters
are applied to emphasize different factors.

Many researchers investigated IDF in both theoretical amgigcal aspects after its in-

troduction. [Croft and Harper, 1979] theoretically provdtht IDF can be an alternative to
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relevance term weight when there is no relevance informatod relevant document set
size is fairly small compared to the whole document coltecti [Greiff, 1998] statistically
showed that lo@ddst|r) is roughly linear to lo@ddst|c), which supports the conclusion in
[Croft and Harper, 1979]. [Wu and Salton, 1981] showed thatfiedium frequency terms, the
differences between their relevance term weight and IDEesare small, and most query terms
fall into medium frequency range. They also found that thensot much improvement in re-
trieval performance by replacing of IDF by relevance ternighie

[Church and Gale, 1995] pointed out that the IDF measurerisemiore robust than purely
Poisson based measurement, but K-mixture method is bletteiDF. This is because key words
are far from Poisson distribution. The further the disttibns are from the Poisson, the move
effective the words distinguish the documents. HoweveF, i®better than ILF although they
are similar in some respects, as IDFexpresses the clirggofabe term.

ILF is inverse location frequency, also named inverse ctiba token frequency (ICTF). The

definition of ILF is:

n.(t,c)

ilf (t,c) = —log NL(O)

(2.83)

ILF is different to IDF in that IDF is defined on document spaeilst ILF is defined on
location space. It is inversely proportional to the totainier of times that the term appears
in the document collection. IDF and ILF can sometimes wot&lly differently, as for the two
terms, they can have the same location frequencies, but @ayeogtur in a large number of
documents, and the other one occurs in a small amount of deratigmor vice versa. Because
IDF can show the clinginess of terms, IDF will be better in #spect discriminating document
[Church and Gale, 1995]. However, IDF and ILF can be used ima day, which will be

introduced in chapter 3.

2.10 Normalization

Normalization is another important aspect of retrieval wed In full document retrieval, the
document length has a great impact on the retrieval redtiigugh the relevance of a document
to a query is independent of document length. The reasomistterm will occur more times in
long documents than in short documents, which leads to a&high value; and long documents

have a higher probability of matching the query terms beeaighe larger number of terms in
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the long documents. These two aspects enable the long datsitnehave a higher chance to be
retrieved, and with a higher rank. A good normalization wille an equal retrieval chance to
each document independent of length. Commonly used namatiain methods include: cosine
normalization, maximum TF normalization, byte length nalization and pivoted document

length normalization.

1. Cosine Normalization:

w

Weosinenorm =
\/W§+W§+...+Wﬁ

(2.84)

Cosine normalization decreases the document length effetdrm frequency, but it has a

bias toward small documents. Hewa,is the term weight for terny.

2. Max TF Normalization:

tf
fmaxnorm = (1— ) +5x ma>gf’0 <s<1 (2.85)

This normalization restricts the value of TF from 0 to 1. Bifint retrieval systems use dif-
ferent s value(SMART-0.5, INQUERY-0.6) to adjust term weigSometimes logarithms

are used for a large collection. This normalisation solesgroblem that a term occurs
more times in the long documents, but still has a bias to thg tmcuments, because it can

not solve the problem of long documents having more chanogatch the query term.

3. Byte Length Normalization:

(ki t Df ) (et Dgtf | avdl—dl

R gl 222
S\d,a) = & K+t oratt 2 Yavdird

(2.86)

The above formula is the normalization used in the BM25 moBelcument byte length
will be used to normalize both TF and the RSV. TF normalizafactor K is affected by
document length; on top of that, RSV of the document will bemadized by the document

length again in order solve the two effects of long documefpigase refer to section 2.6).

4. Mapping Normalization:
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logw — 10gW(g max
logW(g max — 109W(d min) + €

J+1 (2.87)

Wmapnorm = |_

The mapping method is a local normalization working on theutieents, which maps the
weights to the area of 1 to k [Anh and Moffat, 2002]. This metkloes not concentrate on
the value of term weight, it relies more on its rank. The tergights can be mapped to a

geometric sequence or an arithmetic sequence.

. Pivoted Document Length Normalization:

w
1—slope - pivot+ slope old_norm.normalization

Whpivoted norm = ( (2.88)

Pivoted document length normalization is thought to havéebg@erformance according

to the observation of retrieval quality ([Singhal et al.969. It is based on the idea that
the probability of retrieving a relevant document should be influenced by its length,

the equivalent chance will help to achieve better retrigpaaformance. Some other nor-
malizations like cosine normalization, may have bias ta&rort documents. To make
the retrieval relevance close to the real document rel@®jasmmetimes the normalization
factor should be increased and sometimes vice verse. Palwé pivot here can be any

collection specific value, i.e.. average of old normal@atiaverage document length...
After training, the best normalization parameters will lehiaved. Pivoted normalization

provides a method that can be used to normalize other naatians in order to decrease
the distance between probability of relevance and proibataf retrieval. It is similar to

the normalization in the BM25 model.

. DFR Normalization: DFR has two steps of normalization: one is for informatioringa
based on random distribution; the other is for observed fesguency according to docu-

ment length[Amati and van Rijsbergen, 2002]. The latterisras the following:

tf, o = tf-10g,(1+ C- m(’j—?d') (2.89)

whereavgdlanddl are the average length of a document in the collection anigitgth of

the observed document, respectively. Although differeribim, the second normalization
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of DFR does the same job as BM25 or pivoted document lengtimalaation, penalizing

the long document.

All these normalization methods can be combined togethsomme can be selected to achieve
better retrieval results. Smoothing in language modelpitays the same role as normalization,

apart from avoiding the zero probability problem.

2.11 Summary

In this section, we have presented some successful rétnmgels, term weighting schemes and
normalization methods. Most of the models are based on ther@nce probabilities, although
each model has its own assumptions. In some models, theeditfprobability estimations are
termed identically. It is of great interest to find out whetlige probabilistic models are con-
nected and how they are connected? For the heuristic modd#DFFhow can it be connected to

probabilistic models? In the next chapter, we will look itik@se questions.
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Chapter 3

Relationships between Models

The search for the best retrieval model drives informatietnieval research. Over the decades,
many different types of retrieval models have been prop@seti developed. Although some
probabilistic models share the same origin, namely theairibby of relevance, they differ with
respect to event spaces. In this chapter, we investigatstiingent mathematical formalism the
parallel derivation of three grand probabilistic modelsidny independent retrieval (BIR) model,
Poisson model (PM), and language modelling (LM) from theerg spaces, probability estima-
tions, relevance assumptions and ranking rationales, tsamd draw the theoretical justification

from the probabilistic framework.

This chapter is structured as follows. In section 3.1 wethist event spaces, probability
estimations, and relevance assumptions of the three gradls In section 3.2 we show the
ranking rationales of the models. In section 3.3 we starnftbe average characteristic of PM,
then show how it bridges BIR model and LM. In section 3.4 wesstie dual representation of
TF-IDF with BIR or LM parameter. In section 3.5 we decompBéé|q, c) andP(q|d, c) based on
either independent or disjoint terms, then derive TF-IDifrfola with appropriate assumptions.
In section 3.6 we define a document and query independencd) (Dqlel according to the
disjoint decomposition, and draw a connection to TF-IDFwinitegral. The summary is briefed

in section 3.7.
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3.1 Probability Spaces for the IR Models

Probability is the chance or likelihood of something happgnA probability space is expressed
by a triple Q,F,P). Q is sample space, which is a set of all possible outcomes factwity or
experiment.F is called events, which are sets of outcomes for which oneasira probability.
Probability measur® is a function which maps event space to real space [0,1],rafiddtes the
chance that everi will happen. In this section the probability spaces of BIRdslp PM and

LM are clarified.

3.1.1 Sample Space of the Models
BIR Model

Sample spaceR.

R: set of relevance judgements. The relevance judgement is query-based.

As it is hard to assign relevance probability directly, ssitonverted to the product of the
probability odds of document terms appearing in relevacudeent set. Hence, the sample space
shifts to an alternative one.

Alternative sample spack:

T: set of termdy,ty, ....t, which independently constitute queries or documents.

PM

Sample spaceD.

D: set of documentsl;,dy,--- ,dy. The probability of a documerd being relevant is the
product of the probabilities of document terms appearing tocumentf times. Hence, the
sample space shifts to an alternative sample spaagain.

However, PM takes account of the number of times that the texppears in a document.

LM
Sample spaceR.

Q: set of queries)y, g, - -+ ,0m- The probability that a documedtgenerates a quenyis the
product of the probabilities of query terms appearing indbeument. Again, the sample space
will be shift to term spacé .

Although the sample spaces for the three models are the sampedtice, the statistical

processes are different. BIR model checks whether tespears in a document, and assign
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with relative frequency. PM and LM checks the times of térappearing in a document, and

assignt a probability according to the corresponding distributiondel and term frequency.

3.1.2 Probability Estimation

Binary Independence Retrieval Model

BIR Model ranks the document based on the probability of audwmt relevant to a query
P(r|d,q). Due to the difficulty of estimating the relevance probapilBIR model estimates
the probability of a document occurring in the relevant doeat set$>(d|qg,r) and non-relevant

document setB(d|q,r) instead. With Bayes theorem, the odds of a document beiryeanet is:

Olrld.a) = pG 61)

With a binary representation of a document, and the assomitiat non-query terms have

the same probability of occurring in relevant and non-ratexdocumentO(r|d,q) will be:

_P(d‘Qar) - P(t|q,r '[_ )
O(rld,Q)_P(d\Qﬂ B L qu( ] [ P(i[q 7] (3.2)
Lqup(thﬂ t_ ] [D P{lar ] (3.3)

rank o P(tIG.n)- (_|<ﬂ
- el;Lq P(t|g,r) - P(t]q,r) (3.4)

As the second part in equation 3.3 is a query dependent &maiiill be the same for any docu-
ment. Thus it won't affect the ranking and can be dropped out.

Actually not all non-query terms will not have the same ocence probabilities in the rel-
evant and non-relevant document set, as some non-querg teay be about the query. As a
result, the occurrence of these non-query terms will affieetranking. Ranking function incor-

porating the non-query terms is:

orld.q - Pelan [ P<t|q,r>], no _|q,r>] 35)

(
P(tjg,r)-P(tja,) | . |~ Pa.n) 3.6
[tequ ( ' ] [U ] o

The second part in equation 3.6 is a document dependentidanethich will be different for

each document.
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For the probabilities of a term appearing in a relevantrsat non-relevant set, it will be

estimated as:

np(t,r)

Np(r)
P00 = RN o

P(t|r) = , P(]r)=1-P(t]r) (3.7)

Poisson Model
PM estimates the probability of observing tetmvith f times in a document based on term
Poisson distribution, and the expectation of the times tgeoket in a document:A . With
term independence assumptidt(y|d,q) = [icqP(fi|r), where f; is termt’s within-document
frequency.
The Poisson estimation &y ( f;|r) is as follows:
o) = 2D gaen g gy = M0 (3.9)

fi!

As in the BIR model, PM uses odds to rank the documents:

Pdigr) =[] Pem(flar) [] e (3.10)
tednq teq\d
k At,r)\ "9
o(dlgr) & > (3.11)
S Gen

Language Modelling
LM judges the relevance of document to a query by the proibaliilat a document generates the

query. Again, term independence assumption is applied here

P(gld) -P(d)  rank _
g ) P = []P-u(ti) (3.12)

Here the assumption is thB{d) is the same for any document.

P(d|a) =

For the smoothing oP(t|d), there are many different methods which have been intratluce
in section 2.8. We follow the linear mixture method, with @2 the classical setting in this

chapter.

Pyw(t|d) = A -P(t|d) + (1— A) - P(t[c) (3.13)
nL(t,d) nL(t,c
NL(d) ’ NL(C)

~

P(tld) = Ptlc) = (3.14)
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3.1.3 Relevance Assumptions

Relevance assumptions impact the probability estimatioossequently the ranking of docu-
ments. The assumptions in the following sections will helpnterpret the probability estima-

tions in different models.

Non-relevance Assumption

BIR model and PM assume that the whole collection is a navagit collection. This is because
when there is no relevance information, [Croft and Harp8r,9] assumed that each term has the
same probability of occurring in the relevant documentsl aiso assumed that the non-relevant
documents are a very large portion of the collection, whicikes it reasonable to estimate the
occurrence probability in non-relevant collection by aceace probability in the whole collec-
tion. In other words, the whole collection is a non-releveoliection. This assumption leads
BIR term weight toc+ Iogw, [Robertson, 2004] further assumed the probability that

np(t,c)

a term occurs in relevant documents i§,0then BIR weight is lo D(f])D_(t?E)(t’C). PM uses the
same way to estimate the average term frequency in the hewvaerg set. This is the so called

non-relevance assumption.

Relevance Assumption

Language Modelling implicitly assumes all the documentshin collection are relevant docu-
ments, which estimaté®(d|q,r) by P(q|d,c). This is because [Ponte and Croft, 1998b] assumed
that the users can properly formulate their informationcdhesnd each document is a document

model to generate the query.

Relevance and Non-relevance Assumption

[Lafferty and Zhai, 2003] included both relevant and nolevant concept in LM formula math-

ematically, but dropped out the non-relevant based on thenggstion that document and query
are independent given the condition of non-relevance. ppardi and Roelleke, 2007] proposed
to combine two document model given it is being relevanceoorelevant. Nevertheless, they

did not give out the solution how to decide whether the doaurisebeing relevant or not.

P(qld) = P(q|d,r) - P(r|d) + P(q[d,r) - P(r[d) (3.15)
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3.2 Ranking Rationales

BIR: Terms that occur more often in relevant than in non-relewlttuments have a positive
effect on the RSV, whereas terms that occur less often imante¢han in non-relevant documents
have a negative effect on the RSV. Mathematically, we surizedhis as follows:Pgr(t|r) >
Peir(t]r): good term, positive effect on RSWr(t|r) < Psir(t]r): bad term, negative effect on
RSV.Rsr(t|r) = Pgir(t|r): neutral term, no effect on RSV.

With logarithms of odds, good terms have positive term wisighad terms have negative
term weights and neutral terms have 0 weights. However, égative weight seems to penalize
too much the documents with the bad term, as our work in [Rkeland Wang, 2007] showed
that better performance was achieved when replacing thatimegveight with 0.

PM: Terms, whose average occurrence in relevant documentghisihihan the average oc-
currence in non-relevant documents, have a positive effiethe RSVs. Whereas terms, whose
average occurrence in relevant documents is less than émag®/occurrence non-relevant doc-
uments, have a negative effect on the RSVs. Mathematicalysummarize this as follows:
Apm(t,r) > Apm(t,r): good term, positive effect on RS¥pm(t,r) < Apm(t,r): bad term, nega-
tive effect on RSVApm(t,r) = Apm(t,r): neutral term, no effect on RSV. The occurrence within
the documenhy (t,d) increases the effect of a term.

The probabilityP-p(d|g,r) is maximal for a document that represents the average term oc
currences in the relevant documents, and the probalsiity(d|q,r) is maximal for a document
that represents the average term occurrences in the nevargldocuments. However, the maxi-
mal odds is not at the point of average term occurrences.

LM: Large (small)P(t|d) implies strong (little) effect on RSV. Small (larg€)t|c) implies
strong (little) effect on RSV. A document containing rarenie (smallP(t|c)) will have a higher

RSV.

3.3 Poisson Bridge BIR and LM

This section shows that PM can be viewed as a bridge congeBtR and LM. Term’s average
occurrence connects the document-based and locatiod-lpagbkabilities. This relationship is

obtained from rewriting\ (t,c) = A (t,c). sinceA (t,c) :=n.(t,c)/Np(c), it can be written as:

n(t,c)/Np(c) = nc(t,c)/Np(c) (3.16)
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And multiply 1= 2388 and 1= Htggg on each side,

n(t,c) np(t,c) _ n(t,c) N.(c)
Np(c) np(t,c) Np(c) N(c)

(3.17)

ReplacePgr(t|c) := np(t,c)/Np(c)t, andPu(t|c) := n.(t,c)/N_(c)? into Equation 3.17,

we get:

nL(t,c)
nD(t,c)

Psir(t[C) - =Rwm(t|c)- (3.18)

The two fractions in the equation have the following meaniaggdl(c) := N_(c)/Np(c) is
the average document length, amaytft, c) :=n_(t,c)/np(t,c) is the average term frequency of
termt in the all documents containirtg

With the definitions ofivgdi(c) andavgtf(t,c), we obtain the following equation connecting

BIR and LM:

Puir(t]c) - avgtit, ¢) = Lw(t|c) - avgdic) (3.19)

We refer to this equation as Poisson bridge , since the exuatit,c) = A(t,c) with the
Poisson parametér(t,c) leads to the connection of BIR and LM probabilities.

For example, if the termsailing’ occurs in 5 locations and 4 documents (sailing,c) =
5, np(sailing,c) = 4), and the collection has 100 locations and 10 documeMts&c| = 100,
Np(c) = 10). Then, the average within-document frequency of gibpy(sailing,c) = 5/10,
avgtf(sailing,c) = 5/4 locations containingailing per sailing document, aral/gdl(c) = 100/10
locations per document are expected. Hawgtf(sailing,c) < avgdlc), and this is the usual case
for most of the terms.

From equation 3.19, it can be concluded that if and only if élverage term frequency
avgtfit,c) is less (greater) than the average document lemagtdlc), then the probability
Psir(t|c) is greater (less) than the probabil@Byy (t|c).

avgt f(t,c) < avgdl(c) <= Pgr(t|c) > Pm(t|c)
avgt f(t,c) > avgdl(c) <= Pgr(t|c) < PLm(t|c)

This means that for most of the termeygtf(t,c) is less thamavgdl(c), their Pgr(t|C) is

greater tharP v (t|c). Only in the extreme case that a term occurs in very few exhgrong

'Pgir(t|c) is also noted aBh(t|c) somewnhere.
2R v (t|c) is also noted aB\ (t|c) somewhere.
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documents, and the term is repeated throughout the docantéen term will havePsr(t|c)

smaller tharR m(t|c).

3.4 TF-IDF’'s Explanation with BIR and LM

In this section, the TF-IDF retrieval function will be degd from RSV of PM, with the probabil-
ities Pgir(t|c) or ALm(t|c) respectively, whereas the two formulae are equivalents@ iermulae
stress the duality of BIR and LM: Although there are differenn event space, parameter esti-
mation, bothPsr(t|c) andP u(t|c) can be alternatively used for expressR§\byv and TF-IDF

respectively.

3.4.1 Dual Application of BIR and LM Parameters
In this section we will show how to formulate PM with BIR or LMa@ameters. Let's start from

the followingRS\¢w(d, q) introduced in section 2.5:

At,r)
A(t,r)

Insert the definitions (t,r) := n.(t,r)/Np(r), andA(t,r) :=n_(t,c)/Np(c), i.e. the definitions

RS\[SM(d,Q) = ; nL(t7d)'|Og (320)
tedng

for the average term occurrence, also multiplt,r) andA (t,r) with 1 = np(t,r)/np(t,r) and

1=np(t,c)/np(t,c) respectively,

No(r) ;
RSVu(O) = 3 ntd)I0o TG g (3.21)
tedng

No(c) mp(t,c)

Then, insert the definition&sr(t|x) := np(t,X)/Np(X), avgtf(t,x) := n_(t,x)/np(t,x),
wherex is the set of relevant documents, or the whole collectionis Téads to the following

BIR-based formulation dRS\by, which is equivalent to the starting point in equation 3.20.

Peir(t|r)-avgtf(t,r)
Reir(t|c)-avgtft,c)

t€dnq

Similarly by multiplying A (t,r) by 1=n_(t,r)/n_(t,r), andA(t,r) by 1=n(t,c)/n_(t,c), and
replacingny (t,x) /N (x) with B m(t,x) andNg (x)/Np (x) with avgdli(x), we have anotheéRS\by

expressed b¥A v parameter.
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Rwm(tr)-avgdl(r)
RAwm(t|c)-avgdl(c)

RS\m(d,0) = g n(t,d)-log (3.23)
tednqg

The BIR-based and LM-based formulaeR$B\4y (Equation 3.23, 3.23) show that both BIR and

LM parameters can be used in a dual way.

3.4.2 Dual Representation with IDF and ILF

When we apply the definitiomdf(t,x) := —logPgr(t|x) to the BIR-based equation 3.22, we
obtain equation 3.24
. . avgtf(t,r)>
RS\m(d,q) = n.(t,d ~<|dft,c —idf(t,r)+log ———— 3.24
W(@@= 3 nit.d)-{idft.c)-iaf(tr)log T (3.24)
With the inverse location frequency (ILF) analogous to IDFt,X) := —log R m(t|x), we obtain
equation 3.25 from the LM-based equation 3.23:
RSVWm(d,q)= 3 Nt d)-<i|f(t o) —ilf (t r)+|ogM> (3.25)
MY, te;q L\Y ) ) andl(C) .

These IDF-based and ILF-based formulae show that the PMbpespto correct classical TF-
IDF by a factor. For IDF, this corrector is IDF within the reét collection and average term
frequency; For ILF, this corrector is ILF within the relevarpllection and average document
length. The BM25, pivoted document length and many otheeexyents confirmed that taking
into account normalization factors does improve retrigpadlity compared to basic TF-IDF. The
summation ofidf(t,c) — idf(t,r) coincides with the formula in [de Vries and Roelleke, 2005]

and F1 weight in [Robertson and Sparck Jones, 1976].

3.5 Explanation of TF-IDF with Term Disjointness or Independence Assumption

In the previous section, we represent PM as TF-IDF with witR Bnd LM parameters, includ-
ing average normalization. In this section, we will expldiR-IDF starting from either a term

disjointness or independence assumption.

3.5.1 Independent Terms: P(¢d,c)

In this section, we show that the components of LM term weggiitespond to component TF-

IDF term weight, but there is some distance to TF-IDF formula
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“Pure” and mixed estimates

The purely location-based LM term weight is captured in tifving definition:

5 A
LLwim(t,d,c) .—l—l—lTé RL(t[c)

(3.26)

The prefixLL indicates the respective event spaces. For Heftid) andP(t|c), location-based
probabilities are applied. [Hiemstra, 2000] involves a rafxevent spaces, and the prefi

indicates this in the next definition:

LDwyu(t,d,c) i=14+ ——- (3.27)

The Poisson bridge (equation 3.18) relates the purely imtdiased estimate in equation 3.26

and the location-document-based mix in equation 3.27.

__avgtfit,c)

InsertingR (t|c) = Taars

-Po(t|c) into equation 3.26 inject&(t|c) into the purely location-

based estimate:

d-avgdi(c) R (t]d)
(1—9)-avgtfit,c) Po(t|c)

LLwim(t,d,c) =1+ (3.28)

Analogously, inserting(t|c) = :\)’gt?(fcg) -R.(t|c) into equation 3.27 inject® (t|c) into the

document-location mix:

B 0-avgtft,c) R (t|d)
LDwim(t,d,c) =1+ 1-5)-avgdld) RA.({[0) (3.29)

The above solution regarding the event space mix has a sigmifimpact on the understand-
ing and validity of parameter estimation and interpretatidhe location-document mix is from a
probabilistic semantics point of view difficult to justifyhile the location-based formulation can
solve this problem. For the location-document mix, theisgtof the mixture parametey can
be viewed as the fix that transfers the location-documentintoxthe location-based formula-
tion. This solution supports that LM could be viewed as a philistic interpretation of TF-IDF,
however, this interpretation is still distant to the gemuihF-IDF. Therefore, the next section
discusses the LM-like decomposition Bfd|q), which leads to a conclusive interpretation of

TF-IDF.
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3.5.2 Independent Terms: P(¢g,c)

In this section, we show that TF-IDF is contained in B(el|g,c) based on term independence

assumption.

Starting from represer®(d|q,c) with independent terms:

P(d|g,c) = []P(tla,0™ " (3:30)

ted
The first transformation splits the product over documemh#einto two products: a product

over document and query terms, and a product over docunmyterms.

P<d|q,c>=[ M P<t|q,c>"t<t’d>] [ M P<t|q,c>”t<t=d>] (3.31)

tedng €d—q
Next, a query/non-query term assumption is specified, asdagsumption is applied to estimate
the unknown term probabilit?(t|q, c).
For query termsP(t|g,c) = P(t|g). For non-query termsP(t|qg,c) = P(t|c).
This assumption can be viewed as a radical mixR(tég,c) = oP(t|q) + (1— d)P(t|c), this
corresponds for query terms o= 1, and for non-query terms @= 0. The next equation builds

on this assumptiorP(t|q,c) is replaced byP(t|q) andP(t|c), respectively.

P(dla,c) = [ M P(t|q)”L“*d>] [ M P<t|c)”L“=d>] (3.32)
tednq ted—q
. . - . P(t|c) n(t.d) .
Equation 3.32 is multiplied with .0 = [(icqng [W] . Through this, the product over

document-only terms (right product) becomes a product alfefocument terms.

_ P(tjg) \™ "] (L)
P(d|g,c)= Lmq <P(t|c)> ] [ﬂ P(t|c) (3.33)

ted
The right product corresponds ®(d|c). We move this document normalization factor to the
left side of the equation, and it prepares for establishimgraalogy to the probabilistic odds and

TF-IDF.

Pa.c) _ o (Pltla)™" 334
1, (Fwe) 6
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In the next two steps, we insert separately the documerigbasd location-based estimation
of P(d|c), P(t|g), andP(t|c). The document-based estimation could be viewed as “inctirre
since the starting point is independent terms; howevetyéuition in IR to mix document-based

and location-based estimates is a significant rationaleviestigate document-based estimates.

Document-based

Inserting the document-based probabilities into equai@d yields:

P(d]g.c) _ <PD(t|Q)>nL(t’d) 335
PO g \Po(tlo) (559
Then, the logarithmic form is as follows:
P(d[g,c)
= n (t,d)-[—lo t|c)+lo t 3.36
Roidle) 2,0 0) [1ogRb(tio)+ogR(ta) (3.36)

This leads to a document-based TF-IDF interpretation:

IogP(d\q,c)—Z(nL(t,d)-idf(t,c)): ; n.(t,d) - [idf(t,c) —idf(t,q)] (3.37)
tednq

ted

For independent termsP(d|g,c), and document-based probabilities, TF-IDF assumes
idf(t,q) =0, i.e.P(t|g) = 1.

This is an exciting interpretation of TF-IDF. The discrirativeness expressed if(t,c) is
combined with the query-specific discriminativenetft, q), and foridf(t,q) = 0, equation 3.37
uncovers TF-IDF. The interpretation of the term probapifh (t|q) in the query is to view the
query as a structured document; frequent terms occur iry@aet of the queryidf(t,q) =0, and

for non-frequent termsdf(t,q) > 0.

The component loBy(d|c) can be viewed as fixed document prior if we assume uniform
probability for each document. Or the componentMg¢d|c) = $,cqnL(t,d) - idf(t,c) is the
query-independent TF-IDF value of the documel.(d|c) is high for documents that contain
discriminative terms. This prior corresponds to the noimadion proposed for the vector-space

model.

Location-based

Inserting the location-based probabilities into equaB8d¥ yields:
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(3.38)

P(dja,c) _ <a<t|q>>"““’>
Rdle) — dubq \RL(tIO)

Equation 3.38 corresponds to equation 3.35. To approactDH-the Poisson bridgB (t|c) =

1‘\’%;(}(3 -Pp(t|c) injects the document-based probabilRy(t|c). This leads to the next equation:

P(dla.c) _ ( avgdic) a<t|q>>”t“’°” 339
R(dle)  Jghq \avgtit,c) Po(tfc) (3.39)
The logarithmic transformation yields:
B | ~avgdi(c)
0gP(A0.) ~logRL(AE) = 3 ()| ogo(te) +log (Rt S )| 40

Equation 3.40 corresponds to equation 3.36, and the firalegipliesidf(t,c) = —logPy(t|c) to

uncover TFE-IDF.

logP(d|q,c) — ZdnL(t,d)-iIf(t,c) _ ; n(t,d)- [idf(t,c) +log (PL(t|q) - %)](3.41)
te tednq )

For independent terms,P(d|g,c), and location-based probabilities, TF-IDF assumes
avgtfit,c) = R (t|q) - avgdl(c), which isR_(t|g) = P (t|d).

The location-based equation 3.41 corresponds to the dattnased equation 3.37.

The component l08_(d|c) = SicqnL(t,d) -ilf(t,c) is the query-independent TF-IDF value
of the document.R_(d|c) is high for documents that contain discriminative terms.isTgrior

corresponds to the normalization proposed for the vegacs model.

3.5.3 Independent Terms: O(td,q)

In this section, we show the TF-IDF is also a intrinsic panpadbabilistic odds of document and

query being relevar®(r|d,q).

For independent terms, the following sequence of equatimt®mposes the probabilistic

odds:

P(r|d,q) rank P(d|q,r)

Orld® = BFda — Pdar (3.42)
P(th,r)>nL(t’d) 343
Q(P(thﬂ B
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The ranking equivalence in 3.42 follows from Bayes’ theoré(n|d,q) = W' Then,
P(q,r) can be dropped since it is document-independent.

Equation 3.43 viewsl as a sequence of conditionally independent term eventstiethe
frequency (multiple occurrence) of a term is captured byetkgonenin (t,d).

The next transformation reflects the non-query-term assiomp for non-query terms,
P(t|g,r)=P(t|g,r) is assumed, i.e. non-query terms occur in relevant docwsveernthey occur in
non-relevant documents. Through this, the product oveta@dliment terms reduces to the prod-
uct over document and query termiss(d N q). A softer approach is to assurRét|q,r)/P(t|q,r)

to be a constant for the non-query terms ([Croft and Harpg##9]). For convenience, we ontjt

in the conditional from this point. This is consistent, gimémpliesq.

P(t|r)

The right side of equation 3.44 shows a strong analogy to ititg side of equation 3.34

nL(t,d)
O(rjd,a) = ] <P(t\r)> (3.44)
tednq

(P(d|g,c)/P(d|c)). Forr=q andr=c, they are equivalent! This is reasonable since the rel-
evant documents can be viewed as the query, and viewing tleettan as an approximation of
non-relevant documents is common.

The next sections concern the document-based and lodadised estimates &f(t|r) and
P(t|r).
Document-based

The document-based estimate is:

[Pomr)} e
tedng LPD(EIN)

rank gnL(t,d)-Iog
tednq

O(r|d,q) (3.45)

Po(t|r)
Fo (t]r)

(3.46)

From the document-based estimate in equation 3.46 and finitide of IDF, the ranking equiv-

alence follows:

O(r|d,q) = ;nL(t,d)-[idf(t,F)—idf(t,r)] (3.47)
tednq

For independent termsO(r|d,q), and document-based probabilities, TF-IDF assumes
idf(t,r) =0, i.e.Py(t|r) = 1.

Forr=candr =q, the odds-based interpretation in equation 3.47 is ecqgrivab the interpre-
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tation based o®(d|q,c) in equation 3.37. This result also shows why query term oiitias

can be estimated from the set of relevant documents.

Location-based

The location-based estimate is:

AL ™
O(r|d,q) Sl [H(tlﬂ} (3.48)
RL(tn) (3.49)

rank
= n (t,d)-lo
2, D) OO

For the location-based probabilities, equation 3.44 aedRbisson bridge (equation 3.18) lead

to:

orlday= 5 n(t,d)- |iaft, ) +log R (tfr) - 29N (3.50)
avgtfit,r)
tednq )

For independent terms,O(r|d,q), and location-based probabilities, TF-IDF assumes
avgtft,r) = R(t|r) - avgdl(r).
Again, forr = gandr = c, the odds-based interpretation in equation 3.50 is ecgrivab the

interpretation based dA(d|q, c) in equation 3.41.

The theorem of the total probability allows us to decompbseprobabilityP(h) for a set of
disjoint and exhaustive evends,... e, (i.e.P(g Agj) =0and 10 = §;P(e)).

P(h)=> P(hle)-P(a) (3.51)

|
For the event (hypothesif)being a document or query, and for events (evideecbging terms,

the decomposition dP(g|d) andP(d|q) follows. and this decomposition can be viewed as the
disjunctivealternative to theconjunctivealternative when assuming independent terms. From
the next section,term are treated as disjoint events. Weeapitesent the relevance probabilities
(P(qld,c), P(d|g,c) andP(d,q|c)) based on disjoint terms. Although disjointness assumptio
does not lead to exact TF-IDF, TF ag@l@ do appear in the formulae.

3.5.4 Disjoint Terms: P(qd,c)

ForP(q|d), the decomposition via disjoint terms yields:
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P(qd) = Y P(qlt)-P(t|d) (3.52)
{=0)
1
= W-teqp(qh)-P(dﬂ)-P(t) (3.53)
1
= P(q) teqP(tIQ) P(t|d) D) (3.54)

When the collectiort is explicit included in the formula:

d t P(t|d 3.55
P(qld,c) g qlt,c) - P(t|d,c) (3.55)
1
BP0 t;P glt,c) - P(d|t,c) - P(t|c) (3.56)
1
=P(q|c) téqu, (t\d,c)'W (3.57)

The equations 3.56 and 3.57 reflect the application of Bagre=drem forP(t|d,c) and
P(qlt,c), respectively. Inserting(t|d,c) = w into equation 3.55 yields equation 3.56.
Similarly, insertingP(q|t,c) = W into equation 3.55 yields equation 3.57. Notaly%—
in equation 3.57 lacks a probabilistic interpretation, the derivatived log(P(t|c))/dP(t|c) =

1/P(t|c) seems promising in helping to interpret TF-IDF via disjdietms (section 3.6.1).

3.5.5 Disjoint Terms: P(dq,c)

The decomposition d?(d|g,c) is analogous to equations 3.55.

P(d|lg,c) = zdP(d\t) -P(t|q,c) (3.58)
= P(;\c) -tzd P(d|t,c)-P(q[t,c) - P(t|c) (3.59)
=P(d|c) -té P(t|d,c) - P(t|g,c) - B[ (3.60)

The equation 3.60 has a similar explanation as for equation iB section 3.5.4. Although
P(d,q) = P(d) - P(q/d) = P(q) - P(d|q), and the decompositions are related, it is still intergstin
to investigateP(d, q).

3.5.6 Disjoint Terms: P(d,qc)

With the assumption that document “d” and query “q” are irglggent given term “t”, formula

3.61 will be written as in formula 3.62.
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P(d,qlc) = ZP(d,q|t,c)-P(t|c) (3.61)

— ZP(d|t,c) -P(qlt,c) - P(t|c) (3.62)

Next, by replacing?(d[t,c), P(qt,c) with P(t‘gzt'i()d@, P(”gzt'i()q‘c) respectively, and inserting

the location based estimates into equation 3.62, we obtain:

P(d,qlc) =

Sndna = (3.63)

1
NL(C) L(t,C)

P(d,qg|c) equation: location frequencies only
Equation 3.63 contains location frequencies only. Theegfihe next step is to inje€h(t|c)
to approach TF-IDF.
i . t, .. . te)
For approaching TF-IDF, the equation(t,c) = ,L‘EE”?) -Po(t|c) injectsPo(t]c). Slncegggt‘?) =
Np(c) - avgtfit,c), we obtain the following equation for the joint probabil®d, g|c):

1

P(.ald) = g5

n. (t7 d)
avgtfit,c

) .nL(t’q). (364)

Po(tlc)

Equation 3.64 contains two components of TF-IDF: normdlizéthin document term fre-

n(t,d)

quency avgtfit,c)’

and inverse document frequen%f(lt‘—c). ”L(t’d)) also is an interesting compo-

avgtf(t,c

nent, namely divergence from randomness:

nL(t,d)

The rationale of this component is:

e a term with within-document frequenayi (t,d) greater than the expected frequency

avgtf(t,c), is agoodterm;
e aterm with within-document frequenaey (t,d) lessthan expected, is poor term.

The componen% is greaterthan 10 for good equal to 10 for average andlessthan 10

for poor terms.
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3.6 Document and Query Independence (DQI) Model

Whether a document and a query are independent can be a ghicdtam of the relevance be-
tween them. In this section we look into the DQI measureni2@, based retrieval function and

their relations to TF-IDF.

If document and query are independent, tfd,g|c) = P(d|c) - P(qg|c). This formula is
different to formula 3.62, as for the latter one, the indefseTt assumption is given terim

If there is dependence between document and query, Rerg|c) can be expressed by
eitherP(q|d,c) - P(d|c) or P(d|q,c) - P(q|c). P(q|d,c)-P(d|c) is chosen as query likelihood is
convenient to estimate. Again the estimationfgg|d, c) can be found in formula 3.56,

With dependence and independence assumption, DQI is des/éhe follows:

. P(d,qc)
PRI 4¢) = ey Piafe) —

avgdi(c) n.(t,d) n(t,q) 1
= Yavgtit.o) M) N@) oo

(3.66)

This measure corresponds to the overlap of document ang:quer

e DQI(d,g|c) > 1: the overlap of document and quengi®aterthan if they were dependent.

e DQI(d,qg|c) = 1: document and query are conditionally independent.

e DQI(d,qg|c) < 1, the overlap of document and queryi@ssthan if they were dependent.

The remaining question is: how does b€ relate to TF-IDF? From equation 3.66, the

following formulation of TF-IDF is born:

RS\gi-tr-ipe(d, g, €) =
avgdllc) n.(t,d) n.(t,q)

= Zavgto M@ N 00 (367)
- Z%-PL(tld)-PL(t|q)-idf(t,c) (3.68)

Here, the inverse term probability (in 3.66) is replaced lwy megative logarithm of the term

probability. How can this be explained?
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3.6.1 DQI and TF-IDF

TF-IDF can be interpreted as an area under the DQI curve. iSHiecause of the following

integral:

/)—1(dx — logx (3.69)

Through this, the inverse term probabil% can be related to the inverse document frequency

idf(t,c) =—logPp(t|c). This is achieved by the definite integral ranging frépit|c) to 1.0.

10 1
/ = dx = log(1.0) — logPo (t[c) — idf(t, ) (3.70)
Po(tlc) X
Figure 3.1 illustrates this interpretation of TF-IDF.
2 T T T T 2 H ‘\ T T T 2 T T T T
“‘ | t%ood t%ood
| DQI(t,x) = 100/2* 2/100 * /5 * 1/x || © fve avg
15 (avg term in avg document) 51 A DQI(tX) poor 1.5 TF-IDF(t,x) poor
LN derivative of TF-IDF = DQI
1t TF-IDF(t,0.1) = H---peorave ood - DQI(tx) = 1 :
=int(0.1,1) DQI(t,x) dx N
05 L =1/5*-log 0.1 o5l
0 8 !
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6

Po(tle) Po(tle) Po(tle)
Figure 3.1: TF-IDF is integral of Document-Query Indepemzie (DQI) over term probability
Po(t/c)

The left plot shows TF-IDF to be the area under @I curve. The y-axis shows tHaQI
values for an average termy((t,d) =avgtf(t,c)) in an average documenti((d)=avgdi(c)), and
the x-axis corresponds to the probabilRy(t|c). The example shows a term with(t,d)=2, in
a document withiN_(d) =100. The query has five terms, iR.(t|q) =1/5.

The middle plot showsDQI curves for three terms: amaverageterm, agood term
(N (tgooa, d) = 2 - avgtf(tyood, €)), and apoor term (. (tpoor, d) = 0.5 - avgtfitpoor, €)). For exam-
ple, the curve fotayg follows from avgdi(c) /avgtf(t,c) - B (tavg/d) =1. Then,R (tavglq) - 1/X is
theDQI of tayg, Wherex s the probabilityPy(t|c) that termt occurs in a document of collectian
For example, i (tavg/C) =0.2, thenDQI(tayg, 0.2) =1.

The right plot shows the TF-IDF values of the three termstle TF-IDF values correspond
to the area under the respectd@I curve in the middle plot. In the right plot, the TF-IDF values
for a good term abFy(t|c) =0.4, an average term & (t|c) =0.2, and a poor term & (t|c)=0.1

are marked, since at these points, the gradient of the TFelD¥e is equal to D, i.e. this is the
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probability Py (t|c) where the TF-IDF slope goes from large to small.

For facilitating the mathematical expressions to follolae inverse average term frequency

iatf of a term is defined as follows:

avgdi(c)

inverse average term frequencyiatf(t,c) := avgtit,c)

(3.71)

For example, in a collection witavgdi(c) = 1,000, if a term occurs on average 10 times in its
elite set avgtf(t,c) =10), theniatf(t,c) =1,000/10= 100.

When DQI and DQI based TF-IDF are defined as follows,

(3.72)

DQI(t,x) = iatf(t,c).pL(t|d).pL(t|q),)_1(
df(t,c)x (3.73)

RS\qi-trpr(t) = iatf(t,c)-R.(t|d)-PL(t|q)-i

Then TF-IDF an be interpreted as as the integrdD@f over the probabilityx= Py (t|c):

1.0
RS\6Q|-T|:.|D|:('[) = /PD(t|c) DQI(t,x) dx (3.74)

The values of the occurrence probabibity Py (t|c) for whichDQI(t, x)=1 holds, are deemed
to be of particular interest. Therefore, the DQI and TF-106&t show the respective points.
These are where TF-IDF changes from fast to slow fall. DI thresholdDQI(t, Py (t|c)) =
seems to open hew opportunities for judging the power ofs¢dondiscriminate between relevant

and non-relevant documents.

3.6.2 DQI and Mutual Entropy

Mutual entropy is widely used in crossing language. [Chumeth Hanks, 1990,

Gale and Church, 1991] have used mutual entropy betweeneﬂnestlog(t'ité)) to study

the the word association in the same corpus or term depeadenc
In DQI model, query and document are viewed as two undividatraspectively. If query
and document are decomposed to term level, the mutual iafitom of document and query
I(d:q) can be defined as follows:
P(ti,t))
P(ti,t; Iog (3.75)
= 2 9B

tj edtjeq

P(d;,qi) can be estimated based on co-occurrence of the terms.
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DQI measure is based on the independence of query and dotuntereas 1(d:q) is based

the independence query and document on term level.

3.7 Summary

The motivation for this chapter is to clarify the mathemaltiftormalism of probabilistic mod-
els, theoretically justify TF-IDF model. We parallelly iestigate the three grand probabilistic
retrieval models: BIR, PM, and LM, from the event spaceskbemund models, frequencies,
probabilities, term probability interpretations, pardereestimations to retrieval status values.

The parallel investigation of the models showed: PM can beed as a bridge connecting
BIR and LM, thus PM can explain TF-IDF with either BIR or LM frabilities in a dual way.

The interpretations of TF-IDF were also explored systecadlti by decomposing relevance
probability based on independent and disjoint terms.

For independent terms, the LM-like decompositionRgtl|g,c) yields an interpretation of
TF-IDF, with an extreme query/non-query assumpti@ft|q,c) = P(t|q) for query terms, and
P(t|g,c) = P(t|c) for non-query terms. Decomposition of probabilistic odeads to a TF-IDF
interpretation showing an analogy betwé¥ul|g, c) andO(r|d, q); this backs the approximations
of term probabilities expressed in the equatiorsc andr = q.

For disjoint terms, the decomposition Bfd, g|c) yields manifold results. Divergence from
randomness and pivoted document length are shown to beemhearts of a document-query
independence (DQI) measure, where the DQI follows the egidin of maximum-likelihood
estimations. The interpretation of TF-IDF as integral & QI uncovers novel meanings and

properties of TF-IDF.
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Chapter 4

Implementing Retrieval Models with High

Abstract Languages

In the past half century, many kinds of retrieval systemsetmeen developed. In the early stages,
the file representations were managed in the file system. ihWghdevelopment of relational
databases, some IR systems store the file representatitims database to utilize the powerful
data management functions of large relational databasageasystem. Their retrieval models,
the matching and ranking of the document to the query, ardlynogplemented with structured
programming languages such as C++, Java or Perl etc. Th@séenmantations are hard to prove
whether they express the mathematical models in exactlyeime way and hard to trace mistakes

generated during the implementation.

In the last ten years, IR models have attracted great ingefesm database researchers,
who used IR models to rank database retrieval results [Agiratval., 2003, Cohen, 1998,
Chaudhuri et al., 2006, Chandel et al., 2007]. Some of theegrate the ranking functions into
the database system, which loses the flexibility in term okireg strategy. Others use standard
SQL, but have to explicitly dealing with probability comption.

The integration of DB and IR, probabilistic database, psstbe capability for modelling
the uncertainty of knowledge, and free users from the dipgobability manipulations. The
motivation of probabilistic relational modelling for usts provide an approach for implementing
retrieval strategies, which is possible to describe an#l eawell-defined ranking of objects in a

relational database. The objects are not restricted tg,teah be extended to projects, persons,
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products, etc. On the other hand, it is also to provide thétyalo easily modify the retrieval
model.

In this chapter we present how some famous contemporary IRsa@re implemented in
High Abstract Languages - Probabilistic Relational Algeand Probabilistic SQL. Before start-
ing the modelling, we give a brief introduction to the langaa of probabilistic relational algebra

and probabilistic SQL.

4.1 High Abstract Languages

The platform that we use is HySpirit [Fuhr and Roelleke, 19@/hich is a probabilistic retrieval
framework with four abstraction layers: probabilistic et oriented logic (POOL), four-valued
probabilistic Datalog (FVPD), probabilistic Datalog (PBj)d probabilistic relational algebra
(PRA). It provides concise syntax and powerful probabdiselational modelling ability. Re-
cently, another user friendly interface, ProbabilisticLS@SQL), has been developed. PSQL
has a similar syntax to standard SQL, whilst including pholityt estimation and aggregation
capabilities. PSQL needs to be explained as PRA for executbith means that any PSQL
statement has an equivalent PRA expression. Dependingecscthal preference, the user can
choose any appropriate abstraction layer to build theirensl models.

Our modelling work is mainly based on PRA level, at the mearetive implement the mod-
els with PSQL to make it more readable to non-computer ssteifformal probability estimation
and aggregation definitions can also be found in [Roellele. £2008]. Here we give the syntax
of PRA and PSQL and some examples to help in understandirigtéresections’ retrieval model

implementations.

4.1.1 Probabilistic Relation Algebra (PRA)

PRA comes from relation algebra and probability theorys Ithe lowest level of HySpirit, and
all the other level languages need to be translated into PRAder to be executed.

Apart from 5 basic relational operatorBROJECT SELECT JOIN, UNITE, SUBTRACT,
there is one extra probability estimation operadédtY ESncluded in PRA. ThBAYE Soperator
solves the problem of probability estimation from non-mbllistic data, integration probability

estimation into the retrieval model. The syntax of the ofmgis as shown in Table 4.1.
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PROJECT.="PROJECTassumption [ targetist ] ( expression )
SELECT:="SELECT/[ cond_list ] ( expression )

JOIN::="JOIN" assumption [ condist ] ( expression,expression )
UNITE::="UNITE ( expression,expression )
SUBTRACT:="SUBTRACTassumption ( expression,expression )
BAYES="BAYESassumption [ evidence key ] ( expression )

Table 4.1: Basic operators of PRA

The first 5 operators are almost the same as traditionaloe&dtalgebra, whilst they provide

probability aggregation for each tuple. The assumptiomogdor the operator includes the prob-

ability assumption, which can s joint, inde pendenbr subsumealso the assumptions in the

relational operation which may also be beyond classicdbaidity theory and aims to facilitate

IR model modelling. For different operators, they might édalkfferent assumptions. Table 4.2

lists all the assumptions for each operator:

Operator Assumption
PROJECT | disjoint, independent, subsumed, distinct, slag, maxlog
JOIN mixed, exponential

UNITE disjoint, independent, subsumed
SUBTRACT)] disjoint, independent, subsumed
BAYES sum, max, sumdf, max.idf

Table 4.2: Assumptions for each operator

The evidence key is a list of column (attribute) identifierss used to specify the condition
of the probability estimation.
Next we will give a definition of each of PRA operator, with exales of how it works based
on one mini-collection and one query in table 4.4.

Before we start the definition, we describe all of symbolgusehis section:

Notation | Explanation
(T,P) is a probabilistic relation, which consists of a tuple $etnd a probability seP.
T andP have the same set size, each probability value correspotugdea

T is a tuple in a relation, which contain a few attributes, 15...1,).

in is the index of an attribute in a tuple. Therefargio,...in] is a new tuple which
contains of the attributes, io, ...i, from tupleT.

P(1) returns the probability of tuple.

Table 4.3: Notations in the definitions of PRA operators

Suppose the mini-collectiocoll only contains the occurrence information, lets see thdtresu

after each operation.
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coll query
| Term | Docld | QTerm | Queryld
sailing | docl 1|| boats | gl
sailing | docl 1 || fish ql

sailing | docl
boats | docl
boats | docl
fish doc2
boats | doc2
segull | doc3
boats | doc3
sailing | doc3

PR RPRRPRRERRRE

Table 4.4: Representation of collection and query

Relational BAYES

The relationalBAYESoperator is a special operator for estimating frequensetdaprobabil-
ity e.g. probability of term occurring in a document (ttRROJECT[$Term,$DocID]BAYES
[$DoclID](coll))). It can also be used to compute term infatimeness (IR feature), e.g. inverse
document frequency (idf BAYESmax.idf [ ] (PROJECT[$Term] (Coll))), which is tailored
specially to IR tasks. The maglf is used to normalize the IDF value with the maximum IDF

from the collection.

Definition 1 BAYES:
(T,P) = ‘BAYES’ assumption{i. .. in](a)

T = {1]T€Ta}
. Pa(T)
PO = B

The keyi...i, is referred to theevidence kegince the relational BAYES generates a relation
where the tuple probabilities correspond to the conditigmabability P(T|t]i...in]).

The probabilistic relation “b” is the so-calle@vidence keyrojection:

b =‘PROJECT assumption{i...ip](a).

If no assumption is specified, i.e. given BAYES]...](hgntthe assumption ‘disjoint’ is the
default.

¢ end of definition
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Table 4.5 shows two probabilistic relatiotfssumandidf, which are computed frorooll
with BAYESoperator. To comput#f, the evidence key is document ID. And evidence key is

empty for computingdf, as thedf is estimated based on the whole collection.

tf idf

P(t|d) (tfsun) || Term | Docld P(idf) || Term
0.600000|| sailing | docl 0.369070|| sailing
0.400000|| boats | docl 0.000000|| boats
0.500000]|| fish doc2 1.000000|| fish
0.500000|| boats | doc2 1.000000{| segull
0.333333|| segull | doc3
0.333333|| boats | doc3
0.333333|| sailing | doc3

PROJECTsum [$1,$2] BAYES$2](Coll)) BAYESmax.idf[] (PROJECT[$1] (coll))
Table 4.5: Operations based BAYES

PROJECT

PROJECT is an operator used for probability aggregation based oticpéar columns of a

relation, it can also select distinct tuples from the relati

Definition 2 PROJECT:

Lett = 7'[i;..In] be a tuple composed of the attribute values at columns {posjti..iy in
tuplet’, and T, be the set of tuples of relation “a” that share the same atitéovalues at columns
i1..im.

(T,P) = ‘PROJECT’ assumption[praTargetList](a)

T = {1jt="1i1.in) AT €Ta}
Y /eTa(i..in) Pa(T') if assumption="disjoint’
1 - MeeTafiv.in (L= Pa(T’[iz.in]))
P(t) = if assumption=‘independent’
max({Pa(t")|T'[i1..in] € Ta(i1..in)}
if assumption="‘subsumed’

Apart from the above three basic probabilistic assumptidhere are two supplementary as-
sumptions for convenience in IR modelling: complement amilsg. The Complement as-

sumption can be used to comput@Pwhen Ra) already exists; while the suthog is used for
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the product of the probability from the tuples in the samatieh, e.g. the probability of the
termssailing and boatsoccurring in the documerdoclat the same time based on independent
assumption.

P(1) ._{ 1—Py(1) if assumption=‘complement’
"\ Meliv.injeTa(is.in) Pa(T)  if assumption="sum-log’

If no praTargetList is specified, i.e. PROJECT assumptiprtteen this is equivalent to the
praTargetList that contains all attributes of the argumegiation “a”.

< end of definition

Table 4.6 shows some results frd@ROJECTbased on distinct, disjoint and independent

assumptions respectively.

doc dl weighteddoc
| Docld | Docld | Docld
1.000000(| docl 5.000000|| docl 0.760000|| docl
1.000000{| doc2 2.000000|| doc2 0.750000|| doc2
1.000000(| doc3 3.000000|| doc3 0.703704|| doc3
PROJECTdistinct [$2](coll) PROJECTdisjoint [$2](coll) PROJECT independent
[$2](tf _sum)

Table 4.6:PROJECTwith different assumptions

SELECT

SELECT is an operator used for choosing the tuples that satisfytainezondition.

Definition 3 SELECT:
(T,P) = ‘SELECT[condition](a)

T = {1]teTang(1)}
P(t) = Pi(1)
Here, ¢ represents the semantic truth value function that corraggdo the syntactic “con-

dition” in the selection.

< end of definition

1The value of for each document length in here is greater thavhich is not probabilistic. This can
be solved by normalizing the term with collection lengdfROJECT[$2] (BAYES](coll))). Here we are
only to show the probability can be summed up WRiROJEC Dperator.
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For example we want to show all the termsdocl, we useSELECT[$2=doc1]¢oll) (see Ta-
ble 4.7).

docl
H Term \ Docld

1.000000|| sailing | docl
1.000000|| sailing | docl
1.000000|| sailing | docl
1.000000|| boats | docl
1.000000|| boats | docl

Table 4.7:SELECT docl=SELECT[$2 = doc1]¢oll)

JOIN

JOIN is used to connect the two relations, which can be a conditioim or just a cross product
when no condition presented. The probabilities from twatiehs will be multiplied to form the

new probability of the tuple in the result relation.

Definition 4 JOIN:

(T,P) ="JOIN’ assumption(a,b)

T = {TTa€ TaATh E ToAT = [Ta, Tp]}
0 if assumption="disjoint’

Pa(Ta) - Po(To)
P(t) = if assumption="independent’

min({Pa(Ta), Py(Tb) })

if assumption='subsumed’

¢ end of definition

Table 4.8 shows the result when relatiaw! (in Table 4.4) anddf in Table 4.5 are joined
together with condition that terms from each relation a $hme, each term in the collection

coll has adf weight:

UNITE and SUBTRACT

UNITE, SUBTRACre used to merge two relation, and aggregate the prolyallihe aggre-

gated probability is less than zero, then the tuple proltghilill be set to zero.
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coll_weighted
| Term | Docld | Qterm

0.369070|| sailing | docl | sailing
0.369070|| sailing | docl | sailing
0.369070|| sailing | docl | sailing
0.000000|| boats | docl | boats
0.000000|| boats | docl | boats
1.000000}| fish doc2 | fish
0.000000|| boats | doc2 | boats
1.000000(| segull | doc3 | segull
0.000000|| boats | doc3 | boats
0.369070|| sailing | doc3 | sailing

Table 4.8:JOIN: coll_weighted = JOIN [$1=$1](Coll, pdf)

Definition 5 UNITE:
(T,P) = ‘UNITE’ assumption(a,b)

T = {tjteTavteT}
Pa(7) + Py(7) if assumption="disjoint’
Pa(T) +Rb(T) — Pa(T) - By(T)
P(t) = if assumption=‘independent’

max({Pa(T), (1) })

if assumption='subsumed’

¢ end of definition

Definition 6 SUBTRACT:
(T,P) = ‘SUBTRACT assumption(a,b)

T = {1jteTa}
Ps(7) if assumption="disjoint’
Pa(T) - (1= R(T))
P(t) = if assumption=‘independent’
Pa(T) — R(T)
if assumption='subsumed’

¢ end of definition

To illustrate how the assumption affect the result, we give telations that have identical
attributes in table 4.9, then show the results of unite artdraat with different assumptions in

table 4.10 and table 4.11.
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idf idf 1
| Term | Term
0.369070|| sailing 0.7 || sailing
0.000000|| boats 0.3 || panda
1.000000|| fish
1.000000{| segull

Table 4.9: Two relations with the same attributes

idf idf idf
| Term | Term | Term
1.069070|| sailing 0.810721|| sailing 0.700000|| sailing
0.000000|| boats 0.000000|| boats 0.000000|| boats
1.000000|| fish 1.000000(| fish 1.000000(| fish
1.000000{| sequll 1.000000{| sequll 1.000000(| seagull
0.300000|| panda 0.300000|| panda 0.300000|| panda
UNITE disjoint(idf,idf 1) UNITE independentidf,idf 1) UNITE subsumedidf,idf 1)

Table 4.10:UNITE with different assumptions

4.1.2 Probabilistic SQL (PSQL)

PSQL has the same syntax as standard SQL apart from a few agwee concerned with prob-
ability estimation and aggregation during query process@ther data definition and manipula-
tion statements (i.eCREATE INSERT, DROP) have no difference in terms of both syntax and
operation. Therefore, we are not going to introduce thosestents. Readers who are interested
in SQL can refer relevant book, note that our PSQL does ngi@tipransaction or consistency
validation the complex function. It can create table, viemgate index, insert data, remove data
or drop table.UNION and MINU S have to be used in conjunction with select to perform set
minus or sum. It is inevitable to do probability aggregatfonthe tuples. The probability as-
sumption are the same BENITE and SUBTRACTthat have introduced in section 4.1.1. We
only describeéSELECTin this section

The syntax oSELECTstatement is as follows:

psql Sel ect ::="SELECT sql TargetLi st
‘FROM rel ationLi st
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idf idf idf
| Term | Term | Term
0.369070|| sailing 0.110721|| sailing 0.000000|| sailing
0.000000|| boats 0.000000|| boats 0.000000|| boats
1.000000(| fish 1.000000|| fish 1.000000|| fish
1.000000{| segqull 1.000000{| segull 1.000000{| seagull

SUBTRACTdisjoint (idf,idf 1) SUBTRACTindependentidf,idf1) SUBTRACTsubsumedidf,idf 1)

Table 4.11:SUBTRACTwith different assumptions

[ WHERE' sql Condi tion]

[ aggAssunption] [ * EVI DENCE KEY' (sql TargetList) ]

aggAssumption ::= ‘ASSUMPTION’ assumption

e assumption ::= ‘disjoint] ‘independent’| ‘subsumed’
e sqlTargetList ::=.. asin SQL ...

e relationList ::=... asin SQL ...

e sqglCondition ::=.. asin SQL ...

‘SELECT.FROM..WHERE.. statement in PSQL is executed the same as standard SQL,
apart from it probability aggregation and estimation fumet All the probability aggregation
assumptions applied to PRA are adopted in PSQL too. EVIDEKEF sub-clause indicates
the BAY E Soperation in the query statement. Detailed informationudipoobability aggregation

assumption an8AY E Soperation can be find in section 4.1.1.

4.2 Probabilistic Relational Modelling of Retrieval Models

4.2.1 Simple Modelling Example

In this section we give an example of modelling a basic retitienodel, assuming we have a
relational representation of a TF-based document indexD&rbased term space, and a query

(see Table 4.12).

Given such a knowledge representation, TF-IDF retrievisieneal strategy can be described
in PSQL (Probabilistic SQL) and PRA (Probabilistic RelatibAlgebra) as follows. Note that

PSQL and PRA's comments start with—’ and ‘##’, respectively.
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tf idf query
P(t[d) ][ Term [ Docld | [P(t[c) ]| Term | Collection Term | Queryld
0.5 || sailing | docl 0.1 sailing | c1 sailing | q1
0.5 || boats | docl 0.8 || boats | c1 boats | g1
0.6 || sailing | doc2
0.4 || boats | doc2

Table 4.12: Representations of TF, IDF and Query

—— IDF—based query term weighting:
CREATE VIEW weightedQuenAS
SELECT ALL Term, Queryld
FROM query, idf
WHERE query.Term = idf.Term;

—— TF—IDF —based retrieval:

CREATE VIEW retrieveAS
SELECT DISJOINT Term, Queryld
FROM weightedQuery, tf
WHERE weightedQuery.term = tf. Term;

The above PSQL program is equivalent to the PRA program ksl

# IDF—based query term weighting:
weightedQuery PROJECT ALL [$1,$2]JOIN [$1=$1](query, idf));

# TF—IDF —based retrieval:
retrieve =PROJECT DISJOINT [$4,$2]JOIN [$1=$1](weightedQuery, tf));

For the relations (views) “weightedQuery” and “retrievaie obtain them in Table 4.13:

weightedQuery retrieve
Prob|| Term | Queryld Prob || Docld | Queryld
0.10|| sailing | q1 0.45| docl | gl
0.80 || boats | g1 0.38| doc2 | q1

Table 4.13: Weighted query and retrieval result

For example, Petieve(docl,ql) = 0.45 is the result of A -0.5+ 0.8-0.5, where

Rueightedquerysailing,cl) = 0.1, andPx(sailing,docl) = 0.5, and so forth. ThaOIN over the



wWnN -

88 Chapter 4. Implementing Retrieval Models with High Abstlzaguages

terms leads to the multiplication of probabilities, and digoint PROJECTadds the query term
weights together to form the document retrieval statuse/alu
Next, we focus on the probabilistic relational modellingtioé models. For the purposes of

this chapter, we restrict them to the classical case of dectumetrieval only.

4.2.2 TF-IDF Modelling

The standard definition of the TF-IDF-based retrieval statalue (RSV) is of the form
RSMd, Q) = Yicanqtf(t,d) -idf(t). When investigating the implementation of TF-IDF in a prob-
abilistic relational framework, we came across differeatiants which we will report in this
section. For implementing the standard form, we need t@ntigtte probabilistic relations to
model TF and IDF. Since we move in a probabilistic framewerk,need to think about a prob-
abilistic interpretation of TF-IDF, or, at least, define pabilities that are proportional to TF and
IDF respectively. This is fairly straight-forward for the=Tcomponent, but for the IDF compo-
nent, we need a log-based normalization and the probabiligérpretation of the value obtained
is not obvious (see [Roelleke, 2003b] for a discussion oftteantics of such a probability).

We illustrate this in the following several TF-IDF implentations. One is the standard TF-
IDF, and one is a simple alternative but with TF-IDF features

First, lets look at the PSQL script for modelling standardIDi--based retrieval. There are
views for defining the probabilistic relationsf” and “idf”, which is the merit of probabilistic
modelling mentioned before. The probability estimation agtrieval strategy modelling can be

integrated in a few lines, once you have the representafitireacdocument collection.

—— PSQL: standard TFIDF retrieval
—— Extensional relations :
—— coll(Term, Docld); query(Term, Queryld); _foissona (Term, Docld);

—— within—document term frequency:
CREATE VIEW tfCollSpaceAS

SELECT Term, Docld

FROM caoll

ASSUMPTION DISJOINT

EVIDENCE KEY (Docld);
CREATE VIEW tf AS

SELECT DISJOINT Term, Docld

FROM tfCollSpace;

—— Optional: Bind tf to extensional relation .
——CREATE VIEW tf AS
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__ SELECT Term, Docld
- FROM tt poissona;

—— inverse document frequency:
CREATE VIEW idf AS
SELECT Term
FROM caoll
ASSUMPTION MAX _IDF
EVIDENCE KEY ();

—— query term weighting and normalization :
CREATE VIEW wQueryAS

SELECT Term, Queryld

FROM query, idf

WHERE query.Term = idf. Term;
CREATE VIEW normwQueryAS

SELECT Term, Queryld

FROM wQuery

EVIDENCE KEY (Queryld);

—— retrieve documents:

CREATE VIEW std.tf_idf_retrieveAS
SELECT DISJOINT Docld, Queryld
FROM normwQuery, tf
WHERE norm.wQuery.Term = tf. Term;

CREATE VIEW retrieveAS
SELECT Docld, Queryld
FROM std.tf_idf_retrieve ;

The PSQL script contains views for defining the probabdisélations tf” and “idf”. For
“tf”, the first two views demonstrate how to define a maximumliliikeod estimate, which is
of the form P(t|d) = n(t,d)/N(d). This linear estimate is outperformed by a non-linear esti-
mate of the formn(t,d)/(n(t,d) + K), wheren(t,d) is the number of times terrh occurs in
documend, andK is a term-independent value, which might reflect, for examitle document
length (BM25, [Robertson et al., 1995]). This non-linedimeate can be viewed as a Poisson ap-
proximation, and the term-document pairs with the respegirobabilities are stored in relation
“tf_poisson&

The query terms are joined withdf” to generate the relatiorw/Query of weighted query
terms. The normalized query terms are required for obtgiaiprobabilistic interpretation of the
sum over the TF-IDF products. Finally, we define the viestd‘tf_idf_retrieve’, which contains
the document-query pairs with their probabilistic TF-IDfrieval status values.

The translation of the PSQL script yields an equivalent PRAymm which is shown below.
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# PRA: TFIDF retrieval
# Extensional relations :
# coll (Term, Docld); query(Term, Queryld); _foissona (Term, Docld);

# tfCollSpace (Term, Docld):

tfCollSpace =BAYES[$2](coll);

# tf (Term, Docld):

tf = PROJECT disjoint[$1,$2](tfCollSpace);

# Optional: Bind tf to extensional relation .
#tf = tf_poissona ;

# idf (Term):
idf = BAYES max_idf[J(PROJECT[$1](coll));

# wQuery(Term, Queryld):
wQuery =PROJECT([$1,$2]JOIN [$1=$1](query, idf));

# Normalization:
normwQuery =PROJECT[$1,$2] BAYES[$2](wQuery));

# Retrieve documents:
# stdtf_idf_retrieve (Docld, Queryld):
stdtf_idf_retrieve =~ =PROJECT disjoint[$4,$2]JOIN [$1=$1](normwQuery, tf));

retrieve = stdf_idf_retrieve ;

Each PRA equation corresponds to a view in the PSQL scripiQLP8ews that involve
evidence keys or assumptions lead to PRA expressions irhvithécrelationaBAY ESerforms
the required probability estimation. This is the case fenttew ‘t fCollSpacé, and for the view
“idf”.

We have modeled standard TF-IDF. The maximum-likelihodoiretion is a conceptual part
of the minimal probabilistic relational framework we hawegented so far. It is one of the main
contributions of the relationdAYESthat such estimations are now part of the probabilistic re-
lational paradigm, and do not need to be computetideof the relational algebra, and do not
need the instantiated TF relation. For non-linear estiomatan approximation of the 2-Poisson
process, we still bindtf” to the extensional relationtf_poissond in which probabilities were
generated offline. There are several ways in the PSQL/PRAdreork to compute 2-Poisson ap-
proximated probabilities, however, our aim is to integnattebability estimations neatly into the
conceptual framework of probabilistic relational modwdij rather than to invent new assump-

tions or SQL syntax extensions for various probabilitiegnestion. In this chapter we focus on
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the minimal PRA and its relation®AYES

When implementing TF-IDF, we encountered less complex PB8@grams that provide a
TF-IDF-like RSV. Consider the following alternative andrfacompact PSQL program, where
we join IDF-weighted query terms with the relationdll” rather than tf”. In “coll”, we have
non-distinct Term-Docld tuples, whereas tfi”; tuples are distinct since the non-distinct Term-

Docld tuples have been aggregated into the probabiliti¢seofuples in tf”.

—— PSQL: alternative TFIDF—like retrieval
—— This TFIDF variant does not rely on the generation of an explicit télation .

CREATE VIEW altl tf_idf_retrieveAS
SELECT INDEPENDENT Docld, Queryld
FROM wQuery, coll
WHERE wQuery.Term = coll.Term;

Corresponding PRA:

altl tf_idf_retrieve = =PROJECT independen{$4,$2](JOIN[$1=$1](wQuery, coll));

The independent assumption leads to an aggregation of #g tgrm probabilities that we
obtain from the probabilities indft1 tf.idf_retrieve’. RSMd,q) = 1 — [(a)econ (1 — P(qt)).
Note that the aggregation of non-distin¢td) tuples in the relation coll” reflects the within-
document term frequency. The light-weight nature of thigplementation motivated us to in-
vestigate other similar forms against TF-IDF-implemebota that contain an explicit relation
“tf .

For another candidate with explicitf® relation, consider the following script in which we
join the non-normalized rather than the normalized quampteeights, and view the query terms

as independent rather than disjoint, we then obtain anathi@ementation of TF-IDF:

——PSQL.: alternative TFIDF—like retrieval
—— Aggregation of independent, nenormalized query term weights.

CREATE VIEW alt2_tf_idf_retrieveAS
SELECT INDEPENDENT Docld, Queryld
FROM wQuery, tf
WHERE wQuery.Term = tf.Term;

Corresponding PRA is:

alt12tf_idf_retrieve =~ =PROJECT independen{$4,$2](JOIN[$1=$1](wQuery, tf));

Note the difference between aft2_tf_idf_retrieve and “std. tf_idf_retrieve’: In
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“alt2_tf_idf_retrieve’, we (have to) apply an independence assumption.std tf_idf_retrieve,
we (had to) normalize the weighted query terms for the safiegiion of a disjoint projection.

It is not our aim in this chapter to study the performance @f fitrieval model. However,
the variants of TF-IDF that emerged when modelling TF-IDPBQL/PRA intrigued us enough
to investigate their performances. We ran the TF-IDF vasiaim the 500MB structured INEX
collection with around 12K articles , 15 million retrievabtontexts (sections, paragraphs, etc),
and 32.5 million terms. The representation of INEX is ideatito the relation €oll” in our run-
ning example. Due to the fact that the INEX test collectioddgsigned for element retrieval and
assessment[Fuhr et al., 2003a], it assess the element cLiandat from two aspects specificity
and exaustivity with scale 0 to 3. We adapted the elemenssassnts to document assessment,

where the rule is:
If an element has any aspect judged with value greater thap&c{ficity> O or
exaustivity> 0), then this element is relevant.
If any element of a document is relevant, then this docunserglévant.
Here, we use mean average precision (MAP) and precision r@tfiéved document (P@10)

to indicate the retrieval quality. For these TF-IDF var@nwe obtain the retrieval quality pre-

sented in table 4.14, where the variants are sorted by pesgioce.

TF-IDF | tf wQuery MAP | P@10
stdl Poissortf normalized 0.2713]| 0.4138
std2 Likelihood tf | normalized 0.2077| 0.4103
altl implicit tf non-normalized| 0.2038| 0.4091
alt2 Likelihood tf | non-normalized| 0.1224| 0.2586

Table 4.14: Retrieval quality for TF-IDF alternatives

The experiment confirms that TF-IDF with Poisson-approxedalF performs best. The
standard variants (std1l and std2) work with normalized l2Ked probabilities for query term
weighting, whereas the alternative variants (altl and &tk with non-normalized query term
weights. The variant with implicit TF, where the join of quelerms with the relation coll”
followed by an independent projection implicitly captutke TF part, performs quite well, taking
into account that this implementation actually frees thsteay from providing a viewtf” or even
a materialized relation.

The aim of this part is to demonstrate that PSQL/PRA are flexibth respect to retrieval



=

o]

10

12
13

15
16

18
19
20

22
23

4.2. Probabilistic Relational Modelling of Retrieval Model93

strategy modelling, capable in queries involving compleiation schema, and suitable for large
scale data. They also provide various methods in probglgifitimation and aggregation. Above
all they allow us to formulate and investigate retrieval migdn an abstract, relatively compact
representation.

In later sections we will use PRA/PSQL to implement some fasncontemporary proba-

bilistic models.

4.2.3 Binary Independence Retrieval Model

In the BIR model, there are F1 - F4 term weights (see sectid2®.we implement F1 weight,

and other weights can be implemented in the same way. F1 wisigh

Po(t]r)
Fo(tlc)

np(t,r)/Np(r)

np(t,r) np(t,c)
Mo (t,¢)/No (C) ~log

Np(r) Np(c)

After reforming the the equation 4.1 with the definition ofHDwe obtain the F1 weight as

Wr, = log

= log = log (4.1)

wg, = idf(t,c) —idf(t,r) which is central to the BIR model implementation.
The PRA program contains the equations (views) for impleaingrihe probabilistic variants

of the BIR model. The PSQL program is equivalent to the PRAy@m .

# Extensional relations :
# coll (Term, Docld); query(Term, Queryld); relevant (Quif, Docld);

# Part 1: Basic declarations

# queries (Queryld):
gueries =PROJECT distinct[$2](query);

# relevantDocs (Queryld, Docld):
relevantDocs PROJECT[$1,$3]JOIN[$1=$1](queries, relevant));

# relColl (Term, Docld):
relColl =PROJECT[$3,$4]JOIN[$2=$2](relevantDocs, coll));

# distinct collection
distinctColl =PROJECT distinct(coll);

R T R R T R e R T R
# Part 2: Term probabilities and aggregation
# Part 2.1: Term probabilites base on document space

pt.c = BAYES df[J(PROJECT[$1](coll)):
ptr = BAYES df[J(PROJECT[$1](relColl));
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# idf for whole collection (idfc) and

# idf for the collections constructed from relevant docutedrdfr).
idf.c = BAYES max_idf[J(PROJECT all[$1](coll));

idf.-r = BAYES max_ idf[[(PROJECT all[$1](relColl));

# Query term probabilities :

wQueryc = PROJECT all[$1,$2](SELECT[$1=$3](JOIN (query, idfc)));
wQueryr = PROJECT all[$1,$2](SELECT[$1=$3]JOIN (query, idfr)));
normwQuery.c = BAYES[$2](wQuery.c);

normwQuery.r = BAYES[$2](wQueryr);

# Part 2.2: Aggregation of query term probabilities

wQuerysubsumed =SUBTRACT subsumed(wQuery.c, wQueryr);
wQueryindependent SUBTRACT independen{wQuery.c, wQueryr);

normwQuery subsumed SUBTRACT subsumednorm wQuery c, normwQueryr);
normwQueryindependent SUBTRACT independeni{norm.wQuery.c, normwQuery.r);

B
# Part 3: Retrieval

# Set wQuery and indexColl according to strategy . For exampl
wQuery = wQuernysubsumed;
collindex = distinctColl ;

bir_retrieve =PROJECT disjoint[$4,$2]JOIN [$1=$1](wQuery, collindex));

—— Part 1: Basic declarations :
CREATE VIEW queriesAS SELECT QueryldFROM query;

CREATE VIEW relevantDocAS
SELECT Queryld, DocldFROM queries, Relevant
WHERE queries.Queryid = Relevant.Queryld;

CREATE VIEW relColl AS
SELECT Coll.Term, Coll.DocldFROM relevantDocs, coll
WHERE relevantDocs.Docld = coll.Docld;

CREATE VIEW distinctCollAS SELECT DISTINCT Term, DocldFROM caoll;
—— Part 2: Term probabilities and their aggregation :
—— Part 2.1: Term probabilities :
CREATE VIEW idf_c AS

SELECT TermFROM coll ASSUMPTION MAX _IDF EVIDENCE KEY ();
CREATE VIEW idf_r AS

SELECT TermFROM relColl ASSUMPTION MAX _IDF EVIDENCE KEY ();

CREATE VIEW wQuerycAS

SELECT Term, QueryldFROM query, idic WHERE query.Term = idic. Term;
CREATE VIEW wQueryr AS

SELECT Term, QueryldFROM query, idir WHERE query.Term = idfr.Term;
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CREATE VIEW normwQuerycAS
SELECT Term, QueryldFROM wQuery.c
ASSUMPTION DISJOINT EVIDENCE KEY (Queryld);
CREATE VIEW normwQuery.r AS
SELECT Term, QueryldFROM wQueryr
ASSUMPTION DISJOINT EVIDENCE KEY (Queryld);

—— Part 2.2: Term probability aggregation:
CREATE VIEW wQuery subsumedS
wQueryc MINUS SUBSUMEDwQuerysr;
CREATE VIEW normwQuery subsumed\S
normwQueryc MINUS SUBSUMED normwQuery;
CREATE VIEW wQueryindependenAS
wQueryc MINUS INDEPENDENT wQuery.r;
CREATE VIEW normwQuery.independenAS
normwQueryc MINUS INDEPENDENT normwQuery.r;
—— Part 3: Retrieval :
—— Set wQuery and collindex according to strategy . For example
CREATE VIEW wQueryAS SELECT Term, QueryldFROM wQuery subsumed;
CREATE VIEW collindexAS SELECT Term, DocldFROM distinctColl;

CREATE VIEW birm_retrieveAS
SELECT DISJOINT Docld, QueryldFROM wQuery, collindex
WHERE wQuery.Term = collindex.Term;

The programs are structured in three parts: 1. A basic dsadarblock. 2. The definition of
the main probabilistic relations. 3. The definition of redat"bir _retrieve’ to the retrieval result.

To understand the meaning of the PRA/PSQL programs, canfidedocument and query
representations in Table 4.15. There are ten documentstwithty term-document tuples, one
query with 2 query terms and four relevant documents fordhisry.

Central to the implementation of the BIR model are the twdptmlistic relationgdf _c and
idf _r: idf _c is the discriminativeness of a term in the collectierdénotes the collection), and
idf _r is the discriminativeness of a term in the set of relevardudeents  denotes the set of
relevant documents). The relatioi$ _c andidf _r are based on the document-based probabilities
Po(t|c) andPy(t|r), i.e. the probabilities that ternoccurs in the respective set of documents.

The occurrence-based probabilitids(t|c) andPy(t|r) are generated by the new probabilistic
relational operator, the relational BAYES. Basically, te&ational BAYES performs a computa-
tion that leads to the estimaky(t|x) = %t(xx)) wherex is either the collectiort or the setr of
relevant documentsp (t,X) is the number of documents containing term setx, andNp () is

the total number of documents.
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coll

query

Prob|| Term | Docld

Prob || Queryld | Docld

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

sailing
boats
sailing
boats
sailing
sailing
east
coast
sailing
boats
sailing
boats
east
coast
sailing
boats
boats
east
coast
sailing

docl
docl
doc2
doc2
doc2
doc3
doc3
doc3
doc4
doch
doc6
doc6
doc6
doc6
doc6
doc6
doc7
doc8
doc9
docl10

1.0
1.0
1.0
1.0

relevant

Prob || Queryld | Docld
ql doc2
ql doc4
ql doc6
ql doc8

1.0
1.0

sailing
boats

ql
ql

Table 4.15: Representations of collection, query and agleinformation
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For our running example, we obtain the relations in Tabl&4.1

p_tc p_t_r
Prob H Term Prob H Term
0.60000| sailing 0.75000| sailing
0.50000|| boats 0.50000|| boats
0.30000|| east 0.50000|| east
0.30000]|| coast 0.25000]| coast
idf _c idf _r
Prob || Term Prob || Term
0.424283|| sailing 0.207519|| sailing
0.575717|| boats 0.500000|| boats
1.000000|| east 0.500000|| east
1.000000(| coast 1.000000(| coast

Table 4.16: Probabilities in collection and relevant set

There arenp(sailing,c) = 6 sailing documents, anblp(c) = 10. Then, for example,
Pyt c(sailing) = 6/10 = 0.6, Pyic(boatg = 5/10 = 0.5, and Py (sailing) = 3/4 = 0.75.
Pytr(boatg = 2/4 = 0.5. The expressions with BAYES madf perform an idf-based proba-
bility estimation. This corresponds to a normalizationw form log Py ¢ c(t))/109(Po.t c(tmin))
and yields, for exampleRgs ¢(sailing) ~ 0.42, andRg¢ ¢(boatg ~ 0.57.

The query terms are weighted with the IDF-based probadslitiThis leads to two relations

in table 4.17:
wQueryc wQueryr
Prob | Term | Queryld Prob | Term | Queryld
0.424283|| sailing | q1 0.207519|| sailing | q1
0.575717|| boats | gl 0.500000|| boats | g1

Table 4.17: Relation of weighted query

Next, we approach the critical step, namely the aggregatfdhe query term probabilities

idf(t,c) —idf(t,r). If idf(t,c) > idf(t,r), then ternt is more likely to occur in relevant documents
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than in the documents of the collection; otherwise tér@nds to occur more in the collection
than relevant documents.

The IDF-based probabilitydf(t,x) can be viewed a®(t informativex). For the proba-
bilistic subtraction, it can be computed based on two pridibalassumptions: subsumed and
independent. For the subsumed ckde= idf(t,c) —idf(t,r) whenidf(t,c) > idf(t,r), and F1=0
whenidf(t,c) < idf(t,r). For the independent cafd = idf(t,c) - (1—idf(t,r)). This yields the

weighted query terms in Table 4.18:

wQuerysubsumed wQueryindependent

Prob | Term | Queryld Prob | Term | Queryld
0.216765|| sailing | q1 0.336237|| sailing | q1
0.075717|| boats | gl 0.287858|| boats | gl

Table 4.18: Query terms’ F1 weight in BIR model

For example, the probability for boats in the subsumed cagisir — 0.5 = 0.07, and in
the independent case, we obtaib D« (1 — 0.5) ~ 0.28. This example illustrates the numerical
effect of the probabilistic assumption. This effect is e@tronger for normalized query term
probabilities, as we illustrate next.

Normalized query term probabilities are based on a disjaimt exhaustive space of events
(i.e. sum over probabilities equal to0). This normalization forms an alternative to the non-
normalized WQuery relations, which allows the disjoint projection in thenieval model.

Note that due to the normalization, boats is viewed as ma@@idiinative (rare) in the rele-
vant documents than in the collection (probability of bdatsnorm wQueryr” greater than in
“normwQueryc”). Therefore, in the subsumed case, the probability zemssgned to boats
since it is viewed as a poor term to retrieve relevant documérhis makes sense as BIR model
prefers the terms that occur more in relevant documentseswih non-relevant documents.

This section illustrates the generation of the core prdlsaigi relations applied for imple-
menting the BIR model in a probabilistic relational reasgniramework. The relations shown
in this section explain the effect of the PSQL/PRA prografise high-level abstraction of re-
trieval functions leads to optimal flexibility and re-usl#tlyj and these are the main motivations

for modelling IR in a probabilistic relational framework.
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normwQueryc normwQueryr
Prob | Term | Queryld Prob| Term | Queryld
0.424283|| sailing | g1 0.293305|| sailing | g1
0.575717|| boats | gl 0.706695|| boats | gl
norm wQuery subsumed normwQueryindependent
Prob | Term | Queryld Prob| Term | Queryld
0.130978|| sailing | q1 0.299839|| sailing | q1
0.000000|| boats | g1 0.168861| boats | gl

Table 4.19: Normalized query term weight

4.2.4 Language Modelling

In this section we show how to model LM with linear mixture. elterm weight is shown as

follows:

Wim =log(A - RL(t[d) +(1—A)-R.(t[c))

LM term weight is linear mixture from probability that therte occurs in document and
probability that the term occurs in collection. The everdasgs of these two probability are tuple
(location) spaces, which is indicated by theubscript.

The PSQL script implemented of LM is as follows:

—— PSQL: LM retrieval
—— Extensional relations :
—— coll(Term, Docld); query(Term, Queryld); _fum (Term, Docld); mixture (name);

—— mixture:

DELETE FROM mixture;
INSERT INTO mixture VALUES
0.8 ("ptd’), 0.2 ("ptc’);

CREATE VIEW lambdalAS
SELECT FROM mixture
WHERE mixture.name = "pt_d’;
CREATE VIEW lambda2AS
SELECT FROM mixture
WHERE mixture.name = "pt_c’;
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——P(t|d):
—— Principle description via views:
CREATE VIEW tfCollSpaceAS
SELECT Term, Docld
FROM coll
EVIDENCE KEY (Docld);
CREATE VIEW p_t.dAS
SELECT DISJOINT Term, Docld
FROM tfCollSpace;

—— For efficiency ,
——bind pt.d to extensional instance .
CREATE VIEW p.tdAS

SELECT Term, Docld

FROM tf_sum;

——P(t[c):
CREATE VIEW p_t_c_evidenceAS
SELECT Term
FROM caoll
EVIDENCE KEY ();
CREATE VIEW p_t.cAS
SELECT DISJOINT Term
FROM p_t_c_evidence;

—— retrieved (Docld, Queryld):
—— Needed for generating schemeompatible views docModel and collModel.
CREATE VIEW docAS

SELECT DISTINCT Docld

FROM caoll;

CREATE VIEW docModelAS
SELECT Term, Docld
FROM lambdal, pt_d;

CREATE VIEW collModel AS
SELECT Term, Docld
FROM lambda2, pt_c, doc;

—— combine document and collection models
CREATE VIEW Iml1pt cdAS
docModelUNION DISJOINT collModel;

—— retrieve documents

CREATE VIEW Im1 retrieveAS
SELECT SUM_LOG Docld, Queryld
FROM query, Imlp_t__c.d
WHERE query.Term = Imlp_t__c_d.Term;

CREATE VIEW retrieveAS
SELECT Docld, Queryld
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4.2. Probabilistic Relational Modelling of Retrieval Modeld401

FROM Im1_retrieve;

The PSQL script shows that the probabilities in viewst“d” and “p_t_c” correspond to
R (t|d) andBR (t|c) respectively. Similar to the TF-IDF script, we show the piple generation
of A (t|d), which we then overwrite with a view that takes advantage wfagerialized relation
“tf_sun that contains the pre-computed probabilities. This isgbufor reasons of efficiency,
since the view tf” requires an aggregation of probabilities, and this aggtieg can be pre-
computed in a materialized relation.

Equivalent PRA translation is as the follows:

# PRA: Im retrieval
# Extensional relations :
# coll (Term, Docld); query(Term, Queryld); _$um (Term, Docld); mixture (name);

# Mixture:

_delete (mixture);

0.8 mixture(pt.d);

0.2 mixture(ptc);

lambdal sPROJECTI[](SELECT[$1=p.t_d](mixture));
lambda2 PROJECT[](SELECT[$1=p.t_c](mixture));

# P(t|d): p-td(Term, Docld):
tfCollSpace =BAYES[$2](coll);
pt.d = PROJECT disjoint[$1,$2](tfCollSpace);

# Optional usage of precomputed tf:
ptd = tf sum;

# P(t|c): p-t_c (Term):
collSpace =BAYES[](PROJECT[$1](coll));
pt.c = PROJECT disjoint[$1](collSpace);

# Retrieved documents for the generation of the collectiondehthat can be
# united with the document model.

# retrieved (Docld):

doc =PROJECT distinct[$2]( coll);

# Document model:
# docModel(Term, Docld):
docModel SJOIN[](lambdal, pt.d);

# Collection model:
# collModel(Term, Docld):
colliModel =JOIN[](lambda2,JOIN[](p_-t.c, doc));

# Combination of docModel and collModel:
Im_term weight =UNITE disjoint (docModel, collModel);
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# Retrieve documents:
Im_retrieve  =PROJECT sum.log[$4,$2]JOIN[$1=$1](query, Imterm.weight));

retrieve = Imretrieve ;

The PSQL views correspond to their respective PRA equatidhe view ‘tolIModel’ in-
volves an expensive join of query term weights basedP(ic) with the the whole collection.
This join is required since the relational union requirdsesna-compatible relationsiocMode?
and ‘collModel’. The relations tocModet! and “collModel’ are shown in Table 4.20.

The implementation shown above is semantically correctniotitefficient, because of the
required schema compatibility. We have started to look artalternative mathematical formu-
lation 4.3, and we have defined an extended PRA with specidlrei“JOIN” according to the
mathematical formulation. With assumption “mixed”, thénjprobability is not the product of
probability of P; andR,, but P(1) = PaP#r’) The new mixture JOIN” supports a correct

(T)+R(1") "
and efficient implementation of LM.

- ARL(t]d) + (1—A)R.(t|c)
RSV = | mq'og (1-A)R(tlc)
5 g (1-A)RL(t[c)

tecylﬁq APL(t|d)+ (1—A)PL(t|c)

(4.2)

(4.3)

Here we will show the extended LM modelling code:

——LM with mixed JOIN
——P(t|d)
CREATE VIEW tfCollSpaceAS
SELECT Term, Docld
FROM caoll
EVIDENCE KEY (Docld);
CREATE VIEW p_t.dAS
SELECT DISJOINT Term, Docld
FROM tfCollSpace;

——P(tlc)
CREATE VIEW p_t_c_evidenceAS
SELECT Term
FROM coll
EVIDENCE KEY ();
CREATE VIEW p_t.cAS
SELECT DISJOINT Term
FROM p_t_c_evidence;

——P(t/d,c)=P(t|c) /(P(t|c)+P(t|d)), assume average document length, alanda=0.5
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p_t.d p_t.c
0.500000]|| sailing | docl 0.400000]|| sailing
0.500000|| boats | docl 0.300000|| boats
0.666667|| sailing | doc2 0.150000|| east
0.333333|| boats | doc2 0.150000|| coast

0.333333|| sailing | doc3
0.333333|| east doc3
0.333333|| coast | doc3
1.000000(| sailing | doc4
1.000000{| boats | doc5
0.333333|| sailing | doc6
0.333333|| boats | doc6
0.166667|| east doc6
0.166667|| coast | doc6
1.000000|| boats | doc7
1.000000(| east doc8
1.000000(| coast | doc9
1.000000|| sailing | doc10

docModel collModel
0.400000|| sailing | docl 0.080000|| sailing | docl
0.400000|| boats | docl 0.080000|| sailing | doc2
0.533333|| sailing | doc2 0.080000|| sailing | doc3
0.266667|| boats | doc2 0.080000|| sailing | doc4
0.266667|| sailing | doc3 0.080000|| sailing | doc5
0.266667|| east doc3 0.080000|| sailing | doc6
0.266667|| coast | doc3 0.080000|| sailing | doc7
0.800000|| sailing | doc4 0.080000|| sailing | doc8
0.800000|| boats | doc5 0.080000|| sailing | doc9
0.266667|| sailing | doc6 0.080000|| sailing | doc10
0.266667|| boats | doc6 0.060000|| boats | docl
0.133333|| east doc6 0.060000|| boats | doc2
0.133333|| coast | doc6 0.060000|| boats | doc3
0.800000|| boats | doc7 0.060000|| boats | doc4
0.800000|| east doc8 0.060000|| boats | doc5
0.800000|| coast | doc9 0.060000|| boats | doc6
0.800000|| sailing | doc10 0.060000|| boats | doc7
0.060000|| boats | doc8
0.060000|| boats | doc9
0.060000|| boats | docl0

Table 4.20: Document model and collection model
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0.480000
0.460000
0.613333
0.326667
0.346667
0.296667
0.296667
0.880000
0.860000
0.346667
0.326667
0.163333
0.163333
0.860000
0.830000
0.830000
0.880000
0.080000
0.080000
0.080000
0.080000
0.060000
0.060000
0.060000
0.060000
0.060000
0.030000
0.030000
0.030000
0.030000
0.030000
0.030000
0.030000
0.030000
0.030000
0.030000
0.030000
0.030000
0.030000
0.030000

sailing
boats
sailing
boats
sailing
east
coast
sailing
boats
sailing
boats
east
coast
boats
east
coast
sailing
sailing
sailing
sailing
sailing
boats
boats
boats
boats
boats
east
east
east
east
east
east
east
coast
coast
coast
coast
coast
coast
coast

docl
docl
doc2
doc2
doc3
doc3
doc3
doc4
doch
doc6
doc6
doc6
doc6
doc7
doc8
doc9
docl10
doch
doc7
doc8
doc9
doc3
doc4
doc8
doc9
docl0
docl
doc2
doc4
doch
doc7
doc9
docl0
docl
doc2
doc4
doch
doc7
doc8
docl0

Im_retrieve
0.220800|| docl | gl
0.200356|| doc2 | gl
0.113244| doc6 | gl
0.068800| doc7 | gl
0.068800|| doc5 | g1
0.052800| doc4 | gl
0.052800|| doc10| gl
0.020800| doc3 | gl
0.004800|| doc9 | gl
0.004800|| doc8 | g1

Table 4.21: Term weights and document RSVs in LM
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CREATE VIEW p_t.dcAS
SELECT Term, Docld
FROM p_t_.c JOIN RATIONAL p-td
WHERE p_t_c.Term = pt_.d.Term;

——1-\Prod.t P(t|d,c)

CREATE VIEW p_d_dcAS
SELECT PROD Docld, Queryld
FROM query, pt_dc
WHERE query.Term = p t dc.Term;

CREATE VIEW LM AS
SELECT COMPLEMENT Docld, Queryld
FROM p_d_dc;

Corresponding PRA code:

#H##LM with mixed JOIN

tfCollSpace =BAYES[$2](coll);
pt.d = PROJECT disjoint[$1,$2](tfCollSpace);

# P(t|c): p-t_c(Term):
collSpace =BAYESI[](PROJECT[$1](coll));
p.t.c = PROJECT disjoint[$1](collSpace);

#p-t_dc
pt.dc =JOIN RATIONAL [$1=%1] (pt_c,p.t.d);

#lm
pd_dc=PROJECT SUM_LOG [$5,$2]JOIN (query,pt_dc));
Im=PROJECT COMPLEMENT [$1=$2] (n.d_dc);

Relations ‘p_t_d” and “p_t_c” are identical to the previous implementation, but we cam se

that there is no need to join the@'t_c” with the whole collection.

4.2.5 BM25

BM25 formula is defined as in equation 4.4:

avgdl dl

R 4.4
S\émzs(d, q) tquH— 2 avgdH—dI (4.4)

tf¢ gtf

S-S wi.

M= S el Y it (4.5)

dl
K =K ((1—b)+b—o) (4.6)

avgdl
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p-t_dc Im
0.444444| sailing | sailing | docl 0.997240|| doc3 | gl
0.375000|| sailing | sailing | doc2 0.996639| doc6 | gl
0.545455|| sailing | sailing | doc3 0.982987|| doc9 | g1
0.285714|| sailing | sailing | doc4 0.982987|| doc8 | gl
0.545455|| sailing | sailing | doc6 0.972222|| docl | gl
0.285714|| sailing | sailing | doc10 0.968447| doc2 | gl
0.375000|| boats | boats | docl 0.946746|| doc7 | gl
0.473684|| boats | boats | doc2 0.946746| doc5 | gl
0.230769|| boats | boats | doc5 0.918367| doc4 | gl
0.473684|| boats | boats | doc6 0.918367| docl0| gl

0.230769|| boats | boats | doc7
0.310345|| east east doc3
0.473684|| east east doc6
0.130435|| east east doc8
0.310345|| coast | coast | doc3
0.473684|| coast | coast | doc6
0.130435|| coast | coast | doc9

Table 4.22: Term weights and document RSVs in alternativdettiog of LM

The weightw(!) in BM25 is RSJ term weight as introduced in section 2.4.2 ehveg use F1
weight to replace it in order to simplify the implementatiofhe F1 implementation is shown
in section 4.2.3. therefore we demonstrate only the remgipirt in this section. The whole
BM25 is F1 weight multiplied with TF weight, and plus a docurhéength corrector for the

whole document.

#coll (Term, Docld);
#para(name); keep the parameters;
#wQuery(term); see section 4.2.3

0.004 para(k2);

1.2 para(kl);

0.5 para(bl);#bl+b2=1
0.5 para(b2);

#average document length of the collection
doc =PROJECT distinct [$2] (coll);

dl = PROJECT disjoint [$2] (coll):

avgdlcoll = PROJECT disjoint [J(JOIN [$1=$1](doclength,BAYES disjoint [] (doc)));

#TF normalize, currently parameter ¢ is set to 1
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#if we take all the document as same length the K will be 1
# 1 K()
# we take into account the document length in normalization
k = PROJECT [$1](

JOIN [I(

UNITE disjoint (
JOIN[](doc, select [$1="b1’](para)),
JOIN [](JOIN [](dl, PROJECT inverse[](avgdl_coll)), select [$1="b2’](para))
) ’
select [$1="k1’](para)
)
#iraw TF
tf = PROJECT disjoint [$1,$2] (coll);

tih = PROJECT disjoint [$1,$2] JOIN mixed [$2=$1](tf, K));
# tin can be pre-computed as well for the efficient purpose

#TF x BIRM
bm25=PROJECT disjoint [$3] (JOIN [$1=$1](wQuery, tfn));

#with document length corrector
gl =PROJECT disjoint [] (Query);
dLcorrect =PROJECT [$3](
JOIN [J(qgl,JOIN (SELECT [$1="k2"](para) JOIN mixed [$1=%$1] (dl,avgdlicoll))));
bm25dI=SUBTRACT subsume (bm25, diorrect);

In this implementation, parametess and sz are not involved, but it is not difficult to in-
corporate them into the retrieval function by joining thggegameters with bm25 relation. For
the document length corrector, we adapt it a little to suithabilistic implementation, without

changing the rankings of original formulation. In the ongi formula, the document length cor-

avgdidl

rector isky - gl - avodiidl”

It can be replaced with-2-k; - ql - m as ko - gl is constant in all

the documents.

avgdl—dlI

dlcorrector = 2" m (4-7)
2d|

= keal-(1- avgd|+ ar’ (4.8)
dl

~ “Zked avgdI+dI (4.9)

The implementation of BM25 in PSQL is as follows:

—— wQuery(Term); see section 4.2.3
——coll(Term, Docld);
—— para(hame), para meters for BM25;

——para: (b1+b2=1)
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DELETE FROM para;
INSERT INTO paraVALUES
0.004('k2’) ,1.2( 'k1’) ,0.5('b1"),0.5 para('b2’);

CREATE VIEW b1AS

SELECT FROM parawhere para.name="b1’;
CREATE VIEW b2AS

SELECT FROM parawhere para.name="b2’;
CREATE VIEW k1AS

SELECT FROM parawhere para.name="k1’;
CREATE VIEW k2 AS

SELECT FROM parawhere para.name="k2’;

——average document length of the collection
CREATE VIEW docAS
SELECT distinct Docld from coll;
CREATE VIEW docSpacé\S
SELECT Docldfrom doc
EVIDENCE KEY (Docld);

CREATE VIEW dI AS
SELECT disjoint Docldfrom coll;

CREATE VIEW avgdLcoll As
SELECT disjoint from doclength, docSpace
where doc length . docld=docSpace.docld;

——TF normalize, currently parameter c is set to 1
——ifwe take all the document as same length the K will be 1
——1K()
——we take into account the document length in normalization
CREATE VIEW tf blas

SELECT docldfrom doc, b1,
CREATE VIEW inverseavgdlas

SELECT inverse docldfrom avgdLcoll;
CREATE VIEW tf b2 AS

SELECT docldfrom doclength, inverseavgdl,b2;
CREATE view ktmp as

tf.bl Union disjoint , tf b2 ;
CREATE VIEW k as

SELECT Docldfrom ktmp, k2;

——raw TF
——tfn can be pre-computed as well for the efficient purpose
CREATE VIEW tf as
SELECT disjoint term,docldfrom coll;
CREATE VIEW tfn as
SELECT mixed term,docldfrom tf,k
where tf .docld=k.docld;
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——TF % BIRM
CREATE VIEW bm25AS
SELECT docldFROM wQuery,tfn
Where wQuery.Qterm=tfn.term;

——with document length corrector
CREATE VIEW (¢l AS

SELECT disjoint FROM Query;
CREATE VIEW dl_normAS

SELECT mixed docldfrom dl,avgdLcoll;
CREATE VIEW dl_correctAS

SELECT docldfrom dI_norm, gl, k2;
CREATE VIEW bm25AS

SUBTRACT subsume bm25, dbrrect;

4.2.6 Divergence From Randomness

DFR model has two parts: informativeness and informatidn.géhere are many probabilistic
models for these two parts. However, some of them are diffiouhodel with relational algebra
if there are no building functions for probability estin@iibased on their different distribution
assumptions. Therefore, we choose TF-IDF as informats&nend Laplace law of succession
as information gain part, which is suitable for modellinghwielationaBAYES As a result, the
termt’s weight will be expressed byi—l - (tf, - Iognﬂ)). Heretfis row term frequency, (t,d), tf,

is normalized term frequencyy is number of documents in the collection, amés number of
documents contain termn If more distribution assumptions, such as Bernoulli or @&snstein
model, are to be modeled, then the probabilities need to loellated outside the PRA/PSQL,

and instantiated in advance.

#coll (Term, Docld); query(Qterm,Queryld);

#tf_sum (Term, DoclD); document length normalized TF
# tf_poissona (Term, DoclD);-2Poisson approximated TF
#log N/n is similar to log N+1/n+0.5

#INF1 tf«idf

idf = BAYES max.idf [J(PROJECT [$1](coll));

#tf can be any normalized tf

tf = tf_sum;

InfL=PROJECT[$1,$5,%$2](
JOIN[$1=$1]JOIN[$1=$1](query,idf),tf));

#INF2 1-tf/(tf +1)

Inf2=PROJECT complement[$1,$4,$2](
JOIN[$1=$1](query,tfpoissona));
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#wQuery=PROJECT$L,$2,%3](
SELECT[$1=$4,$2=$5,$3=$6MOIN (Inf1,Inf2)));

wQueryPROJECT [$1,$2,$3](
JOIN[$1=$1,$2=$2,$3=$3](Inf1,Inf2));

dfr=PROJECT disjoint [$2,$3](wQuery);

The corresponding PSQL implementation is :

#coll (Term, Docld); query(Qterm,Queryld);
#tf_sum(Term, DoclID); document length normalized TF
# tf_poissona (Term, DoclD);-2Poisson approximated TF

——log N/n is similar to log N+1/n+0.5

—— INF1
CREATE VIEW idf AS
SELECT TermFROM coll ASSUMPTION MAX _IDF EVIDENCE KEY ();

——tf can be any normalized tf
CREATE VIEW tf AS
SELECT term, docldfrom tf_sum;

CREATE VIEW infl AS
SELECT Qterm, docld, Queryldrom query,idf, tf
Where query.Qterm=;

——INF2

CREATE VIEW inf2 AS
SELECT complementQterm docld, Queryldrom Query,tf poissona
WHERE Query.Qterm=tfpoissona.ternand query.Qterm=tf. Term;

CREATE VIEW wQueryAS
SELECT Qterm, docld, Queryldrom infl, inf2
where infl . Qterm=inf2.Qtermand infl.docld=inf2 . docldand infl . Queryld=inf2.
Queryld;

CREATE VIEW dfr AS
SELECT disjoint docld, Queryldrom wQuery;

4.3 Modelling Precision and Recall

Precision and recall are frequently used retrieval quatigasurements. They can be interpreted
as the conditional probabilitie3(relevantretrieved andP(retrievedrelevan respectively. This
interpretation implies that we can model precision andltéca probabilistic relational frame-

work which supports the description of conditional protisibs. This has two benefits: Firstly,
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retrieved relevant

Queryld | Docld Queryld | Docld
ql doc2 ql docl
ql doc4 ql doc4
gl doc6 gl doc9
ql doc8 ql docll
gl docl gl docl4
ql doc3 ql docl9
gl doch g2 doc4
ql doc7

gl doc9

g2 doc5

g2 doc4

Table 4.23: Retrieved and relevant documents

the measures become part of the conceptual framework inhwhé model IR. Secondly, by
replacing black-box tools that produce precision/recallies, we enable the application-specific
modification of measures.

For illustration, consider the following data in relationsetrieved which is ranking list
from search engine andélevant which is the ground truth for queries:

Based on these extensional relations, we define three el be used later for defining

precision and recall.

—— PSQL

—— Extensional relations :
—— retrieved (Queryld, Docld);
—— relevant(Queryld, Docld);

CREATE VIEW retrievedSpac@&S
SELECT Queryld, Docld
FROM retrieved
ASSUMPTION DISJOINT
EVIDENCE KEY (Queryld);

CREATE VIEW relevantSpac@S
SELECT Queryld, Docld
FROM relevant
ASSUMPTION DISJOINT
EVIDENCE KEY (Queryld);

CREATE VIEW retrievedand.relevantAS
SELECT Queryld, Docld
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FROM relevant, retrieved
WHERE relevant.Queryld = retrieved.Queryld
AND relevant.Docld = retrieved .Docld;

The view ‘retrievedSpack contains for each query the probabilistic tuples that fle
the probability that a document is among the retrieved dasumof the query. The view
“relevantSpacehas an analogous role for the relevant documents. GivesetBpaces and the

view “retrieved.and_relevant, we describe precision and recall:

—— PSQL: precision and recall

CREATE VIEW precisionAS
SELECT DISJOINT query
FROM retrievedandrelevant, retrievedSpace
WHERE retrievedand relevant.Queryld =
retrievedSpace .Queryld
AND retrievedandrelevant .Docld =
retrievedSpace .Docld;

CREATE VIEW recallAS
SELECT DISJOINT query
FROM retrievedandrelevant, relevantSpace
WHERE retrievedand relevant.Queryld =
relevantSpace . Queryld
AND retrievedandrelevant .Docld =
relevantSpace . Docld;

The translation of the first PSQL script with viewretrieved S paceand “relevantS pace

yields the following PRA program:

# PRA

retrievedSpace BAYES[$1](retrieved);
relevantSpace BAYES[$1](relevant);

retrievedandrelevant =PROJECT[$1,$2]JOIN[$1=$1,$2=%2](relevant, retrieved));

The first two equations yield the two spacesttievedS paceand “relevantS pace where
in each space a document occurs with the probaliips.dd|q) = 1/N(q), whereN(q) is the
number of documents for quegy The third equation yields the relation of retrieved aneéveaht
documents.

The third equation yields the relation of retrieved andvefg documents in Table 4.24.

Next, consider the PRA equations for precision and recall:

1 |# PRA: precision and recall
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retrievedSpace relevantSpace retrievedand relevant
Prob || Queryld | Docld Prob || Queryld | Docld Prob || Queryld | Docld
19 | q1 doc2 1/6 gl | docl 1 gl | docl
19 | q1 doc4 1/6 gl | doc4d 1 gl | doc4d
1/9 1 g1 doc6 1/6 gl | doc9 1 gl | doc9
19 | q1 doc8 1/6 gl | docll 1 g2 | doc4d
1/9 || g1 docl 1/6 gl | docl4
19 | q1 doc3 1/6 gl | docl9
1/9 || g1 doc5 1 g2 | doc4
19 | q1 doc7
1/9 || g1 doc9
1/2 || g2 doc5
1/2 || g2 doc4

Table 4.24: Retrieved and relevant spaces

3 | precision =PROJECT disjoint[$1](JOIN [$1=$1,$2=$2](retrieved@nd relevant,
retrievedSpace ));

4 | recall =PROJECT disjoint[$1]( JOIN [$1=$1,$2=$2](retrievednd relevant,
relevantSpace));

The joins of “retrievedand relevant” with the respective spaces, followed by disjpirtjec-

tions, yield the precision and recall values in Table 4.25:

precision recall
Prob || Queryld Prob || Queryld
3/9 | q1 3/6 || q1
1/2 || g2 1] g2

Table 4.25: Precision and Recall Relations

4.4 Summary

In this chapter, we have demonstrated the implementatiofivefmain models, namely TF-
IDF, BIRM, LM, BM25, and DFR. In addition, the modelling ofgmision and recall has been
discussed.

For TF-IDF and LM, we showed semantically correct impleragions, whereas the BIRM
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implementation does not implement the genuine BIRM foritioia For DFR, we only model
the informativeness based on the assumption that termépérdient to all other tokens.

The implementation of the retrieval models and their vaieg demonstrates that our prob-
abilistic modelling is flexible regarding probability estation and aggregation; it is applicable
to large-scale data; and it allows to formulate and investigetrieval models in an abstract,
relatively compact but still efficient representation.

The implementation of evaluation measures (precision ecall) shows that the quality mea-
sures can also be embedded into the conceptual frameworklodlpilistic relational modelling.
The expressiveness of relational modelling allows us tdornize the measures and perform

post-processing of the retrieval result.
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Chapter 5

Context-specific Frequencies in Probabilistic

Retrieval Models

Term weighting in probabilistic models is based on the teatuorence frequency within a cer-
tain context. The “context” has two meanings: 1. the part e or statement that surrounds a
particular word or passage and determines its meaning;ecithumstances in which an event

occurs, including user information need, searching enwirent etc.

The second definition is more general and more difficult torm®iporated into retrieval
models. For example, when a user types in a qugnahtum computirig he prefers to know
algorithms in computer graphics rather than an explanatfdhe quantum computing in modern
physics. The retrieval system would not be able to know thifere is no user profile, search
history, or explicit user specification to show user seanglgreference. Therefore, thedntext
in this thesis refers the text surrounding a certain word; & physical association rather than a
semantic one. This is different to the concept of contextrzppardi, 2005] which explicitly

assumes that the context is a set of semantically assoclateanents.

The “context here is also remarkably different to the fixed text block iaspage
retrieval[Kaszkiel and Zobel, 1997], which divides a doamninto smaller chunks (i.e.passage),
weights the terms according to the chuck where the termsaapfieen combines the evidence
from the passage to score the document. In our study, thextosttope is decided by retrieval
objects, it can be a document, a set of documents, or a fewosescument. When the con-

text involves a few sets of documents, the documents in acsabticoncern the same subject,
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although there is such a possibility when the collectiores @ganized by subject. Later, we
will also study whether the set documents have same subjidtmpact the retrieval quality of
context-frequencies based retrieval model.

In this chapter we investigate the retrieval qualities & thodels utilizing the probabilities
estimated from frequencies within specific surroundinggeke., context-specific frequencies,
which also denotes the frequencies counted base on diffetements rather than traditional
document or token based frequencies. The whole study otltlaipter is based on the structured
document collection INEX[Fuhr et al., 2003b] to benefit theigture information. However, we
do not consider the structure characteristic of the eleméiat structured document, i.e. title,
body, as [Robertson et al., 2004] do.

This chapter is structured as follows. In section 5.1 wepihiice the basic concepts in struc-
tured document retrieval, which is closely related to thdivation of context-specific frequen-
cies. In section 5.2 we brief the two main motivations for asnivestigate the context-specific
frequencies. In section 5.3 we discuss the applicationettntext-specific frequencies in doc-
ument and collection ranking in multi-collections. In sent5.4, related works on structured
document retrieval are introduced. In section 5.5 and @e@i6, we define the context-specific
frequencies, and the retrieval state value for the documethielement based on context-specific
frequencies. In section 5.7, we run the experiment on atsirext document collection with the
retrieval function defined in section 5.6. As we postulat thhether a set documents concern-
ing same subject would affect the retrieval result, we cahdnother experiment which hires the
same methodology, while the original document collectias been mixed and divided randomly
into sub-collections. Detailed results and analysis ae déscribed in this section. In section 5.8
we investigate an alternative distinctiveness measurgraed compare it with traditional IDF.

At the end of this chapter we summarize the main findings iti@e&.9.

5.1 Structured Document Retrieval

The idea of context-specific frequencies was initially watiéd by structured document retrieval,
therefore, we would like first to introduce structured doeunnretrieval before we start context-
specific frequencies.

Structured documents, XML documents, are widely used flmrination representation and

exchange. They contain tags which explicitly divide the wtoents into logical parts: title,
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author, abstract, body, section, subsection, paragraqhlist etc. These logical parts are called
the elements of the structured documents, which are difterem the segmentation defined
by physical size. Some elements must be nested in specifiteats, for example, document
contains title, author, abstract and body, body contain8®es and paragraphs, section contains
subsections, paragraphs, and so on. This constitutes-atitexture, in which the leaf node of
a document tree is a paragraph , a list, or a table etc, the imode of the tree (or intermediate
element) is a section, a subsection etc, and the root nothe trfite is a document. In some XML
documents, the tags have semantic meaning, which can bielfelpretrieval. However, such
tags are designed for special information needs, and cabeapplied generally. Therefore,

our study focuses on the structural tags. Figure 5.1 showstiucture and code of an XML

document example.

<article>

<title>

TF-IDF Uncovered

</title>

<author>

Thomas Roelleke , Jun Wang

</author>

<abstract>

Interpretations of TF-IDF are based on

</abstract>

<section>
<paragraph>
Introduction and background...
</paragrah>
<subsection>
IR fundations...
</subsection>
<subsection>
Models....
</subsection>

</section>

<section>

summary...

</section>

</article>

(a) Structure of XML (b) Example of XML

Figure 5.1: An example of a XML document

The structured information of XML documents makes it pogstb retrieve smaller objects
than a whole document, such as sections, paragraphs ety ighiermed as element retrieval.

There are two main types of element retrieval. For the firgt dme users specify only the subject
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that they want to know, for example “relevance feedback&yttlo not care in which part of the

document the words occur. The retrieval system will try talfihe most relevant elements and
return them to the user. The second one requires users tifyspeth content and structure need,
for example the users want information about “relevancedlieek”, also they want it to occur in

the title or the abstract of a document. For this kind of qudrg system will return to the users
the specific elements containing “relevance feedback”. @@y the important issue for both

types of the element retrieval is how to rank the element.r8foee our later work concentrates
on content only retrieval.

In the next section we discuss the reason that we look inttegbspecific frequencies.

5.2 Motivation of Context-specific Frequencies in Structue Document Retrieval

Figure 5.2 illustrates a mini structured document coltattollection, with three documents,
each of which has sections, subsections, paragraphs. Taifgirthe problem, the terms are
assigned to the leaves of the documents. For example,tieisrassigned to some document
leaves ofdog . A document leaf could be, for example, a paragraph or a.tdlble inner node of
a document tree could be a section or a subsection. The assigrof terms to the inner nodes

is usually based on the following aggregation rule[Fuhr e2®03a]:

If term t is assigned to nodd’, and noded’ is a child (direct successor) of node

in other wordsd is the parent (direct ancestor) df, thent is assigned tal.

We view the issue of whether terms can be directly assignether nodes as being of minor
importance, as we can always consider an extra leaf for a, rmdkthis leaf contains the content
(term) of the inner node.

Based on the structured document collections, there areretvations for context-specific

frequencies as shown in section 5.2.1 and section 5.2.2

5.2.1 Inverse Document or Element Frequency?

In non-structured document collections, where the docusnare streams of terms, the frequen-
cies related to terms are location based (e.g. TF) or docubssed (e.g. DF). Whereas for the
structure document, whose structure information is expflicepresented, the frequencies can

be counted based on different element types, e.g. documseetipn, paragraph, which is also
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super-collectionl

collectionl

Figure 5.2: An illustration of a mini structured documentlection

called element frequency (EF) in general. Considering twichents and terms in figure 5.2, we

observe the corresponding document and leaf element fneggewhich are shown in table 5.1:

Term Document| Leaf element
frequency (df)| frequency (ef)

1 2 4

to 3 3

Table 5.1: Document frequency and element frequency fotettmas in figure 5.2

There is a contradiction when we try to use different invdrequencies to judge the impor-

tance of aterm:

From an IDF-point of view, ternt; is more discriminative than terta: idf(t;) >

idf(ty).

From an IEF-point of view, ternt, is more discriminative than term: ief(t;) <

ief(tz).

This contradicting evidence for the discriminativenesseoins, i.e. the ability of a term that
can distinguish relevant and non-relevant document, isrtai@ motivation for carrying out the
research on context-specific frequencies. The questiorhishwdiscriminativeness we should

apply for structured document retrieval, IDF or IEF?
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5.2.2 Element Ranking with Context-specific Frequencies

Another motivation for context-specific frequencies isttlley can effectively rank ele-
ments, based on the fact that users do not expect retrievdemyreturn them a long

list[Betsi et al., 2006]. Therefore, our strategy for reting object is:

If an elemente and its childreng are all concerning the same subjector say,
they all contain the same keywords, then we prefer to rankefge higher than its
individual childg, which means elememtwill be assigned higher RSV. If only one
of the children €,) is about the subjed then we would like to see only the chigg

rather than the paremst

If we use IDF which is computed based on the whole collectmmdnking an element and
its children, then the query term will contribute the samdhe RSV of all the elements. It
will not be able to differentiate which element is more reletx However, the IDF computed
based on element frequency within their parents can helplt@ such a problem. Aef(t,e)
for the termt in context of elemeng will be low if the termt occurs frequently in the children of
elemente, which leads that the RSV for thes child will be lower than the RSV of the element
e. Accordingly, the elemerg will gain a higher rank. Similarlyief(t,e) for the termt in context
of elemente will be high if the termt occurs in few children of elemer which implies that
the RSV’s for thee's children will be higher than the RSV of the elementAs a result, the
element will gain a lower rank than its children. Withoutngsiany parameters, context-specific
IDF based RSV can meet the user’s ranking requirement.

Given the collection example in figure 5.2 and a query abguie can see thaef(t;,dog ) =
— Iog%1 is smaller thanef(t;,dog) = — Iog%l, becausé; occurs in most of the elements diog; .
ief(t;,dog ) = — Iog;31 is also smaller thamf(t;, collection ) = — log % This helps to rank docu-
mentdoc, and the elements idioc in higher orders. It makes sense as the whole docunheat
is aboutt;, hence, it is better to return the whole document to the wdber than the individual
elements. Also as only one element in docurmeod; is aboutt;, so it is better to return the
single element in a higher rank.

We have discussed the benefit of applying context-specédguincies to retrieval in a single
collection. In the next section we will show the merit of cexttspecific frequencies in multi-

collection retrieval, in term of both document or collectianking.
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5.3 Retrieval in Structured Document Collections

We have introduced the idea that a document collection caedresented as a virtual document
tree in figure 5.2. If more such virtual document trees areneated from root to a new virtual
root node, then a bigger virtual document tree can be cartstiu Figure 5.3 demonstrates such

a super tree structure for a multi-collection.

super-collection]

e Y = T "\__ *-.L__i
n, (11 sub-c1)=0999 - o n{tlelF2. o .
_(ﬁi(f_’,sub-cl)=999 ; 5 : /T =
2 e

T

Sub-
e oollectionn

coilectionm

Figure 5.3: Tree-structured document collection

With the assumption that each leaf node is a document, thelyuwided test collection CACM
can be viewed as a small structured document with only 1;lévelNEX IEEE collection can be
viewed as a medium size structured document with 2 levelsiwénie journal and year in journal
respectively; and the TREC text collection can be viewedrgelaized structured document
with 3 levels: volume, journal/press/registration in eachume respectively, and year in each
journal/press/registration. All these test collectioms de formed into a bigger document tree

when necessary.

From practical point of view, this virtual document tree yides the retrieval system with
great flexibility for context management. All the documen# be viewed as a huge tree-
structured document, where the sub-tree can be a document or a set of documenth<(a s
collection), likewise the elements of a document can alseid&ed as a sub-tree df. When a
sub-tree or more sub-trees are removed from the virtual mecu treeT, T is still a document
tree. Similarly, one or more sub-trees can be appendddwdthout affecting the existence of
other sub-trees. This tree structure enables the retrgggiém to dynamically index or remove
data from its data presentation, as well as to retrieve mé&tion in the sub-tree starting from any
sub-tree’s root node. Such mechanics will be of great betwefitstributed retrieval, efficiency

issues or security restrictions.
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In distributed retrieval, some data collections may be ailalle due to network problems,
then the retrieval process can not be run over the whole ddiections. Or in order to decrease
the overhead of data transmission over the network, onliygidhe data collections are chosen
for retrieval. Even for the centralized the data collectittrcan benefit the system efficiency to
run the retrieval process on part of the data collection.

For security reasons, access to some data set could betexsto certain people. According
to the user’s profile, these data can be removed form thealidacument during the retrieval
process. This will not only ensure to exclude certain usanfthe restricted data, but also avoid
inappropriate ranking because of the occurrence freqasnithe restricted data.

For those retrieval systems that wish to continue the serdiaring system updating time,
context-specific frequencies provide a system on-line datiate ability. During the data updat-
ing period, part of the data is quarantined for update, aaddtrieval process can be carried out
on the rest of the data as usual.

All the cases mentioned above can be viewed as dynamicalhagirag a document col-
lection during retrieval time, and the informativeness deem is decided by its occurrence
probability in a particular document tree, context-spedifequencies. retrieving in the specific
context.

The tree structure of the collections defines the elemerdyment and collections with a
generalized concept: sub-tree. It also provides a unifoay t rank elements, documents and
collections. Documents and elements are both retrievdljcts, and a document is the biggest
element that can be retrieved. Collections can be a retr@ject too, which can be treated
as source selection in distributed retrieval. However, ritgeval of collection is the interme-
diate step of retrieval, document or element retrievaloio$ after the promising collections are
selected.

In the next two sections, we introduce document and codagtinking in the multi document

collections.

5.3.1 Document Ranking with Context-specific IDF in Multi-ollection Retrieval

In distributed retrieval, it is widely accepted that the downt from the collection where more
query terms occur will be more likely to be relevant, and dtidoe assigned high relevant score.
We believe however that the document from the collectiortaiamg less query terms should

be ranked higher. One of the reasons is the same as what weneshin section 5.2.2 about
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element retrieval, which prefers to rank higher the elenfenh the document with few query
terms. Another reason is based on the decision theory: ifladtion has very few documents
containing the query terms, and these document are higldyanet to the query, then these
documents should be ranked higher than those documentglii@gollections with more query
terms. Because this mechanics makes it possible for usdrateelevant documents with less

reading.

Following Steven Robertson’s PRP, we can prove that rartkiaglocument with fewer query

terms higher will be the optimum from the cost point of view.

Assumea; and a, are the cost for reading a relevant and a non-relevant docunee
spectively, and reading a relevant document costs lessahmm-relevant documen( < ap).

Cost(d,c) is the cost for reading a document d in collection ¢

The cost of a user reading a document is:

COSt(d7C) =ap- P(r‘q,d,C) +az- P(r—[q,d,C) =a+ (al - a-Z) : P(r|q,d,C) (51)

As a; — a» < 0, so the more relevant a document is to a query, the less castat that
document. If the probability of a document being relevara tueryP(r|q,d, c) is estimated by
BIR model without relevance information, and purely basedab-collection frequency, then it

will be:

P(rla,d,c) ~ 5 mM

2, o0 (5.2)

Assume collectiom; has more documents containing more query terms than dolfet, i.e.
np(t,ci) > np(t,cj), thenP(r|g,dn,c) < P(r|q,dm,c;), consequentifost(d,c) > Cost(dn, ;).
This shows that the cost of reading a document from the d@lecontaining less query terms

is low.

Similarly to element retrieval, context-specific IDF cartanatically rank high the docu-
ments from collections containing fewer query terms. Bsearontext-specific IDF for the term
from the collection with fewer query terms is high, whichdsato high RSV for those docu-
ments in the collection with fewer query terms. And contepécific IDF assigns a low RSV to

the document in the collection with more query terms.
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5.3.2 Collection Ranking with Context-specific Frequencigin Multi-collection Retrieval

In distributed information retrieval, one of the importésgues is resource selection (i.e. database
selection, or collection selection), which is to choose sawllection likely to have more relevant
documents. The motivation behind this topic is to save traffier the network, and decrease the

overhead of retrieval in every data collection.

In previous distributed retrieval studies, there are maegource selection algorithms,
three representatives are [Yuwono and Lee, 1997], [GraeadoGarcia-Molina, 1995] and
[Callan et al., 1995b]. [Callan et al., 1995b] used DF and t€Ehoose the collection follow-
ing the argument of TF-IDF used in document retrieval. [Henglkand Thistlewaite, 1999] con-
firmed the effectiveness of this method. While [Gravano aadc@-Molina, 1995] ranked the
document collection according to the summary of similadfyeach document in that collec-
tion to the query § 4. Sim(d,q)), and then ranked the documents from top collections wigir th
local similarity scores. [Yuwono and Lee, 1997] mainly uskd skewness of distribution of a
term to measure its discriminativeness in terms of colbectiSi et al., 2002] applied language
modelling in the source selection, the importance of a ctibe is decided by the probability
that the collection generates the query, which is smootlyetidoprobability that the term occurs
in all the collections. All these methods need to maintaobgl term statistics in the broker of
the distributed retrieval system, or probe the term distidn in the sub-collections, or estimate

the collection relevant score based on previous query.

However, it is not a simple task to maintain and update thiesstal information for all the
data collections or relevance history. [Callan et al., 3&&hd queries to database and examine
the return documents to get the term distributions. Theirkvemlightens us with a strategy for
collection selection. We send a query to each collecticen thoose some promising collections

according to the returned statistical result about quemmse

In section 5.3.1 we have showed that documents from theatiolfewhich contains fewer
query terms should be ranked higher from the cost point affvéd IDF can better meet such
a requirement. Therefore we use the summary of IDF over tleygterms to measure the
informativeness of a query in terms of collectid@l( f(qg, c)). If a query is highly informative in

a collection, then this collection should be ranked as psorgicollection.

QInf(qg,c) = z idf(t,c) (5.3)

teq
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On the other hand, previous resource selection works sugtfiegsin distributed information
retrieval the data collections or resources which have rdoceiments containing the query terms
(i.e. highdf(t,c)) should be chosen [Callan et al., 1995b]. To compare pedoo® of our query
informativeness strategy with traditional most occureestategy, we also run another collection
selection strategy, query document freque@iyF(q,c), which uses the summary of context-

specific DF (or local DF) over the query terms to rank the @it .

QDF(g,c) = df(t,c) (5.4)

t€q
So far, we have argued that context-specific frequenciesrara element, document and
collection effectively. Before we go to the details of cowtspecific frequencies, lets look at

related work in structured document retrieval.

5.4 Related Work on Structured Document Retrieval

Structured document retrieval enables the retrieval ahelgs, whose main issues is to assign
a retrieval status value (RSV) to each element. The hieyaofla structured document makes
it more complicated to assign RSVs to the elements. As wstilited before a document may
contain sections and paragraphs, sections may contaieestiions and paragraphs, and so on.

Here are normally used term weight strategies: either aggeeterm weights or aggregate
RSV’s, or provide an alternative inverse frequency to tlassical inverse document frequency.

[Fuhr and GroRjohann, 2001] aggregated whole term weigged@dependent assumption.
Whilst [Roelleke et al., 2002] aggregated part of the termgive TF by assigning each child
element an access probability, then children’s TF weightgegate to their parent proportion-
ally. [Ogilvie and Callan, 2003], [Ogilvie and Callan, 2QGhd [Ogilvie and Callan, 2005] ap-
plied language Modelling in term weight aggregation, wHidkearly combines the probability
the term occurs in the element and the probabilities the tercars all its children or parents.

In RSV aggregation aspect, [Callan, 1994] and [Callan efl8B5a] gave each passage a
TF-IDF based score which indicate its contribution to thewoent. Their passage score
function can be applied to distributed retrieval for soussgection with little modification.
[Grabs and Schek, 2002] used the distance between two no@eddcument tree to decide the
element’s weight contribution to its ancestor's. The geedlie distance from an element to its

ancestor, the less contribution of the elements to theiestoc.
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To aggregate the term weight or RSV, each element usuallgsnteebe assigned an aggre-
gation weight, which is not an easy task. Because the agipagaeight is normally estimated
from a particular data set, and need to be trained to achiewvd etrieval performance. The
drawback is that the aggregation weights estimated basdldednaining data set will not guar-

antee good performance in any other data sets.

Apart from aggregation method, alternative IDF is anothexywor element ranking.
[Grabs and Schek, 2002] indexed the TF for the leaf nodesn@iés) of document tree, and
EF for each sub-tree (categorized by subject). Accordinth¢oquery, the system dynamically
decides the computation of RSV. They have three modelslesguilection, multi-collection or
nested model. In the first two models, the IDF value is congpbi@sed on one or more sub-
collections during retrieval time. This retrieval funatidnas great flexibility to respond users’
information need. [Mass and Mandelbrod, 2003] indexed T for different type elements
(document, section, paragraph etc), and computed RSV &brtgae element based on this type
element’s inverse element frequency, then merge the seslthough Mass and Mandelbrod
had type specific IDF’s, these IDF’s are computed based owltode collection, which do not

utilize all merits of context-specific frequencies.

Our work is to investigate the retrieval model based on typeeific and context-specific
frequencies. It will be generally called context-specificthie later part, as the frequency type

and its context are chosen according to the retrieval object

In the next section 5.5 we will give the definition of the freqgies. And in section 5.6 we

will define the retrieval function with context-specific frgencies.

5.5 Context-specific Frequencies Definition

Before we extend the discussion of application of contpeiesfic frequencies, we give a dual and
consistent notation and the definition of the frequenciedtection frequency (CF), document
frequency (DF), element frequency (EF), location freqye(id=), and the respective inverse

frequencies.

Definition 7 Frequencies:



5.5. Context-specific Frequencies Definitioh27

t aterm

c a collection

nc(t,c) number ofsub-collectionsn which t occurs
Nc(c)  number ofsub-collectionsn ¢

np(t,c) number ofdocumentsn which t occurs
Np(c)  number ofdocumentsn c

ne(t,c) number ofelementsn which t occurs
Ng(c)  number ofelementsn c

n_(t,c) number oflocationsin which t occurs

N.(c)  number oflocationsin c

cfit,c) = nlflét(’cc) (5.5)
dit,c) = ”NDét(’C ) (5.6)
efit,c) = nI\ElE(t(’c():) (5.7)

. n. (t7 C)

lf(t,c) := N©) (5.8)
icf(t,c) = —logcf(t,c) (5.9)
idf(t,c) = —logdf(t,c) (5.10)
ief(t,c) := —logef(t,c) (5.11)
iif(t,c) = —loglf(t,c) (5.12)

Here, the elemeri is a generalized representation of elements, which can péyae of
element: section, subsection, paragraph... Also theatale frequency that we use is different
to some other works which take the total number of a term ajpmgean a collection as collection
frequency, it the number of collections in which a term appea

The inverse document frequency (IDF) is the highest aktstram the sense that the possi-
bly multiple occurrence of a term in a document is completigcarded. The inverse element
frequency (IEF) discards only the multiple occurrence oémntin an element. The inverse lo-
cation frequency (ILF) preserves the multiple occurrenficeeons. It is also called inverse token
frequency (ITF) or inverse collection token frequency (F)Tn some others’ work, we use the
name ILF to avoid the confusion with TF. The inverse collectirequency (ICF) measures the
importance of term in term of collection selection.

With tree-structure based collection, we can generalifimition 7 for any root of a sub-tree:
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Definition 8 Tree-based frequencies: Letc..,c, be the children of node c. Then:

ne(t,c) =3 ne(t,¢), Ne(c) = Ne(ci)
np(t,c) = zlnn(t,ci% Np(c) := ZIND(Ci)
ne(t,c) = Ian(t,Ci% Ne(c) := IZNE(Ci)
n(t,c) = IIZnL(t,ci), NL(c) i= IIZNL(ci)

Definition of cf(t,c), df(t,c), ef(t,c), If(t,c) and inversrequencies is strictly analogous to defini-

tion 7, 5.6 to 5.12.

Since we consider elements in documents, and we considiidos in elements, we obtain:

Vit :nc(t,c) <np(t,c) <ng(t,c) <n.(t,c) andNc(c) < Np(c) < Ng(c) < N.(c)

For illustrating the difference between IDF and ILF, comsithe following example: In a
collection withNp(c) = 1,000 documents and, (c) = 200,000 locations, the average document
length is 200 locations.

Let termt; occur inn_(t3,¢) = 2,000 locations. Then, in averagg, occurs inlf(ty,c) =
2,000/200,000 = 1/100 locations. This means thattif is evenly distributed, thety occurs
in averageN, (d) - If(t,c) times in a document, witkf = 1000/1000= 1. And if t; is clingy
together, then it can occur in only 10 documents wiith- 10/1000= 1/100.

As discussed above, IDF is superior to ILF since the burssirfelinginess) of good terms is
reflected by IDF but not by ILF. From this point of view, |IEF ispected to be better than ILF,
since the same argument holds for IEF versus ILF.

More complex, but actually leading to the motivation for antext-specific discriminative-
ness, is the discussion of IDF vs IEF. Since IDF considersbthetiness in documents, IDF
is more suitable in retrieving documents (large elemermistsrof sub-trees), whereas IEF suits
smaller granular element retrieval.

In the section 5.6, we generalize the ranking definitiongtas a tree-structured collection.

5.6 RSV with Context-specific Frequencies

Section 5.5 shows different type frequencies and discutbsss properties. It also reminds

us of the work on IDF and inverse token (term) frequency (I'BBme to our ILF) (see
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[Church and Gale, 1995] and related publications). Theygutdhat IDF works better than ILF
in document retrieval. The main explanation is: Good quernns tend to be not frequently in
the collection, but if they occur in a document, then theyuoaelatively frequent in that docu-
ment. This distribution structure of good terms is calledsbiness (occurrence is bursty in some
documents). We also refer to this nature of terms as clisginemeaning that the occurrences of
good terms tend to cling together in the same document[@hamd Gale, 1995]. An IDF-value
reflects clinginess, and ILF-value does not. For exampliéwie termst; andt, both occur in 100
locations. We havéf (t1,c) = ilf (t2,c). If the locations ot; are primarily in the same documents
whereas locations ®f are distributed among many documents, then we faiyg, c) > idf(tz, c),
i.e.t; is more discriminative. From that point of view, IDF supmothe effect achieved by the
within-document term frequency. Therefore, we tend to e flor document retrieval and IEF
for element retrieval.

With context-specific frequencies, we mainly investighigit performance with TF-IDF and

LM:

Definition 9 TF-IDF Retrieval Function with Context-Specific Discrimiiveness

RSV (d,q) = th(t,q) -tf(t,d) - ief(t, root(d))
RSV4t(d,q) := th(t,q) -tf(t,d) - idf(t, root(d))
o RS+ (d,q) if d is an element
RSMd.q) = { RSV4¢(d,q) if d is a document

In the definition of the RSV for elements, we replace the ctitte by the root of the sub-tree
in which the retrieved element is located. Thus, the RSV $&lan the frequencies with respect
to this root. The definitions are generalizations of clessld=-IDF retrieval, in whicthroot(d) is
a collection where the document or element situate.

The retrieval function of LM stays in the same form when cghspecific frequencies are
applied, butd can be element, document or collection, aodt(d) will be chosen according to
the type ofd. Different type frequency and different context can be end®r the smoothing.

_ Ap(t|d)
RSMd,q) = Zlog(1+ (T=2)(p(t[root(d)) (5.13)

From the next section, we will empirically investigate therformance of context-specific

frequencies and discriminativeness.
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5.7 Experiments with Context-specific Frequencies

For the context-specific frequencies experiment, we setwptypes of retrieval: document
retrieval and element retrieval. To understand whetherllact@dn concerns a common subject
will influence the retrieval quality of models utilizing ctaxt-specific frequencies, we run the
the document and element retrieval in two environments:athesub collection has a common
subject, only contains document from one journal or protegsy 2) or each sub-collection has
no common subject, i.e. its document come from differentrjalior proceeding.

This section is structured as follows: Section 5.7.1 dbssriexperimental settings context-
specific frequency based retrieval. Section 5.7.2 expliiashe experiment methodology based
on TF-IDF retrieval model and lists the results. In this gecthe test collection is the INEX
original collection, where each sub-collection has a sttbj8ection 5.7.3 analysis the retrieval
results from the collection organized by subject, try tonidfy the type of queries that can ben-
efit from the context-specific frequencies. Section 5.7 rthe same experiment introduced
in section 5.7.2, on the reorganized INEX collection, wheseh sub-collection has no subject,
contains article from different journals or proceedingsesRits are also listed in this section.
Section 5.7.5 analysis the retrieval results from the ctib@ which is not organized by subject.
Section 5.7.6 presents the methodology we used for eleratngval, results and analysis are
also shown in this section. Section 5.7.7 shows how corgjeatific frequencies apply to lan-
guage modelling, and the results from both the subject agdrcollection and the non-subject

organized collection.

5.7.1 Experimental Settings

To be able to utilize the structure information in the docaiseand collections to investigate
the context-specific frequencies, we choose INE%$ our test collection, which provides a large
XML document collection, query sets and relevance judgasérhe INEX document collection
contains the publications of the IEEE computer sciencengigr which are organized into direc-
tories. The highest level directory is journal, and eachijauis grouped into sub-directories by
year. The INEX collection can be viewed as a document tree.ré&trieval process can be carried
out within any sub-tree (Journal or Journal+Year) or witthie whole INEX document tree.

The INEX document collection includes 18 journal/magagimevering 8 years. It has

!Please refer to http://inex.is.informatik.uni-duisbwiey for more information on INEX
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500MB of structured documents, around 12,000 articles , llmretrievable objects (sections,
paragraphs, etc), and 32.5 million terms. Our investigaisoto use context-specific frequencies
to rank the element without preference of element type,efoee we use INEX content-only
(CO) queries from year 2002 to year 2005. There are 116 a$&39 queries overall that will
be used in the later context-specific frequencies expetimen

In our experiment, we use TREC evaluation software to meaMAP and P@10 of each
retrieval runs to indicate the retrieval quality. The TRE@leation program computes precision
and recall based on binary document relevant assessmeitf) wén not be applied to INEX
relevant assessment in a straight forward manner, as th¥ tdHt collection is designed for XML
document retrieval, and it assesses the relevance of aretemtwo dimensions: “specificity”
and “exaustivity”. Each of the dimension is judged at 3 leQgll, or 2 [Fuhr et al., 2003a].

Therefore we adapt the relevant assessment of INEX to theCTiginat. The rule we use is:

If an element has any aspect judged with value greater thap&c{ficity> O or

exaustivity> 0), then this element is relevant.

If any element of a document is relevant, then this docunseraléevant.

All the experiment runs will be evaluated based on this asthpssessment. We evaluate the
top 1500 retrieved documents from each run as INEX does.

Currently, our context-specific experiments focus on TH~&hd LM. In TF-IDF we apply
context-specific IDF in retrieval model; in LM, we use coritspecific frequencies to smooth

the probabilityP(t|d).

5.7.2 Document Retrieval with TF-IDF in the Multi-collections Organized by Subject

In document retrieval, there are tree types of retrievatsties: 1) use global discriminativeness
to rank the documents; 2) use local discriminativeness & the documents; 3) choose top
promising collections, and rank the documents from thedleatmns with their local RSV. In
each strategy, discriminativeness based on differenteriétgpe will be used.

Settings for document retrieval:

e Use global IDF, IEF, ILF to weight terms and documents.

e Use local IDF, IEF, ILF to weight terms and documents.
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e Go into the most promising collections, and use local IDR5,IEF to weight terms and

documents. The promising collection choosing criteria:

— useycqidf(t,c) to choose promising collectiof)(n f(q,c))

— useyqdf(t,c) to choose promising collectiolQDF(q,c))

When the retrieval uses global IDF, the IDF will be computedttee whole document col-

lection . In INEX the global IDFis computed on the term’s domnt frequency over the whole

Np (t,CiINEX)

. When the retrieval uses local
Nb (CINEX)

INEX document collection, i.eidf(t,cnex) = —log

IDF, the IDF will be computed based on a given sub-collectidn INEX, the sub-collections

Np (t,Cjournal)

No (Cpouma) ° Therefore,

can be a journal or a journal in a specific year, id(t, Cjournal) = —l0g
one term can have several different IDF values accordingaaontext.

When documents are retrieved from sub-collections, they e be merged into one ranking
list. We merge the documents purely according to their I&&&AY. By local RSV we mean that
the RSV is calculated based on query term’s local IDF or ladf@rmativeness. Here we give
an example of result merging: given the unordered TF-IDRltedrom each sub-collection:
0.5(d,c¢1), 0.7(d2,c1), 0.8(ds3, c2), and 06(dg,c3), the result list will be 06(dy,¢;), 0.6(dg, C3),
0.7(dz,c1) and 08(ds, c,). There is no collection statistical information involved.

When retrieval is carried out within the top promising suilections, the retrieval process
will first choose some good sub-collections likely to havaeen@levant documents, either based
on the query’s informativeness in a particular collectiolmi(y},c), or the number of documents
containing the query terms QDF(t,c). Then the retrievalkcpeses are carried on within these
selected sub-collections. The retrieved documents frarséhection sub-collection are merged
the same way as what was introduced in the local IDF strateggp promising strategy exper-
iments, we set one third as a cut-off to choose the promisibecsllections. For example there
are totally 18 journals, then we allow 6 sub-collections @spsing. Similarly, if the documents
are grouped by year, there will be 8 sub-collections, themwlleallow 3 sub-collections as top
promising.

The retrieval function has been introduced in section 56yl not reiterate here.

Although it is known that document frequency is better thardvfrequency in document
retrieval [Church and Gale, 1995], we are interested instigating what is the performance
of element frequency, which locates in the middle of docunserd word frequency. When

we use context-specific frequencies to estimate thesesiemezquencies, how do they behave
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retrieval globalidf (t,INEX) | localidf(t,journal) | Top-6 QDF(q,journal)| Top-6 QInf(qg,journal)
function MAP P@10, MAP P@10| MAP P@10| MAP P@10
idfyoe tTnax 0.2217| 0.4267| 0.1767| 0.3241| 0.1637 0.3371| 0.0203 0.0931
idfyoe tfsum 0.2019| 0.3603| 0.1737| 0.3078| 0.1654 0.3319 0.0230 0.1276
idfyoe tfpoissona | 0-3107 0.5009| 0.1382| 0.2345]| 0.1497 0.2940| 0.0277 0.1164
idfseotlimax 0.2069| 0.4233| 0.1828| 0.3690| 0.1650 0.3690 | 0.0159 0.0767
idfseotfsum 0.1736| 0.3155| 0.1654| 0.3121| 0.1528 0.3121| 0.0145 0.0681
idfsectfpoissona | 0-3070| 05043 | 0.1705| 0.2940| 0.1788 0.3103| 0.0265 0.1129
idf paratfmax 0.1973| 0.4138| 0.1802| 0.3759| 0.1635 0.3665| 0.0142 0.0655
idf parartfsum 0.1604| 0.2957| 0.1553| 0.2862| 0.1422 0.2862| 0.0132 0.0586
idfpara thooissona | 0-3039|  0.5034| 0.1792| 0.2974| 0.1904 0.3078| 0.0243 0.1017
idfioertfmax 0.1839| 0.3810| 0.1769| 0.3655| 0.1513 0.3328| 0.0164 0.0741
idfioe tfsum 0.1426| 0.2655| 0.1390| 0.2552| 0.1220 0.2414| 0.0147 0.0603
idfioc tfooissona | 0-2984|  0.5009| 0.2297 0.3810 | 0.2109 0.3603 | 0.0290 0.1267

Table 5.2: TF-IDF: Document retrieval with context-speacifiequencies in collection organized
by subject

differently. Therefore, we use TF-IDF based retrieval fimT in context-specific frequencies,
with different combination of TF and IDF estimation. Theense frequencies that we use in this
section are: inverse document frequency, inverse seatouéncy, inverse paragraph frequency
and inverse location frequency. Figure 5.2 lists the refuliall TF-IDF runs. And for each
strategy, we display the best performance with italic font.

Our result shows that:

e With global frequencies, global IDF outperforms global IBRd global ILF. When the
size of the element is decreasing, the performance of iesxysevfrequency drops. It is not

surprising as document frequency shows better the clisginéthe term.

e When comparing global and local inverse frequencies, ¢ltibg, IEF and ILF all dis-
tinctly outperform respectively local IDF, IEF and ILF. Bhiesult supports the views that
in distributed retrieval the central indexed system arearedfective than the system with

data indexed distributively [Hawking and Thistlewaite 999

e With the top promising sub-collection strategy, we find tishbosing collections by
QDF(q,c) has better performance than choosing with Qlaf(gThis confirms the work
of [Callan et al., 1995b], which extends TF-IDF to collectiselection. They believed that
the collection having more documents containing the quemys$ tends to be more about
the query, then this collection may possess more relevasurdents. Although QInf(q,c)

is theoretically proved more efficient from cost point ofwjét does not perform well. Be-
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cause it chooses the sub-collections that have less dotsim@mtaining the query terms,
which gives a small chances having potential relevant decusn Thus, it is not surprising

that the strategy choosing sub-collections by QInf(g,s) &@oor performance.

e Interestingly, the performances of local IDF and the topging strategy with QDF(q,c)
are very similar. In some runs, the top promising strategyn\@DF(q,c) even performs

better than local IDF strategy.

5.7.3 Analysis of TF-IDF Document Retrieval Results from tle

Multi-collections Organized by Subject

In this section we look into the details of each query, to skether the context-specific frequency
based model favors certain the query term distribution. AsoWserve that although some query
terms are rare, but they appear in each sub-collection.evdoime query terms are frequent, but
tend to clingy into few sub-collections. It would be usefalknow whether such difference
in distribution would impact the retrieval quality, thusgwean decide in which situation that
context-specific frequency would be beneficial. Here, wenigdbok at the retrieval function
with Poisson based TF and document frequencies based 1D&h Wwas the best MAP among all
retrieval runs.

Table 5.2 shows the mean average precision (MAP) of diffesgategies, which are ranked
with the order as global IDF, local IDF, top DF(QDF) and tog-(@Inf). We wonder if this is the
case for any query. Therefore, we show each query’s foutegfies’ AP and P@10 in figure 5.4.
We found that there are some queries having better AP peagioce with top DF promising
strategy than global IDF strategy, even more queries hatterd@@10 with top DF promising
strategy than global IDF. Surprisingly there are few guehaving higher AP and P@10 with top
IDF promising strategy than global IDF, as the MAP and P@1tpfIDF promising strategy
are far lower than global IDF. As these queries are only nitiypaso we will not look further into
them.

We wonder whether the number of sub-collections in whichgirery terms occur correlates
to the retrieval performances of local IDF strategy or topFJWwomising strategy, therefore, we
list all query term collection frequencies to observe. €bI3 shows top 5 and bottom 5 per-
formed queries with local IDF promising strategy due thecepiasue. The top well performing

queries with local IDF strategy, tend to have query termaugarg in all the sub-collections,
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QDF(q,c) and top QInf(g,c) strategies in the multi-coliestorganized by subject
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Qid AP | P@10| Number of sub-collections containing query terms

112 | 0.6156 | 0.9000 | cascad=18, styl=18, sheet=18, cont=18, scrambl=16, rayi&
99 0.5207 | 0.7000 | perl=18, featur=18

50 | 0.5118| 0.7000 | xml=18, edit=18, pars=18

46 | 0.5076| 0.9000 | firewal=16, internet=18, secur=18

100 | 0.5000 | 0.1000 | associ=18, min=18, rul=18, med=18

209 | 0.0000| 0.0000| min=18, frequ=18, pattern=18, itemset=5, sequ=18, graBhassoci=18
205 | 0.0000| 0.0000 | marshal=17, mcluhan=7

202 | 0.0000| 0.0000 | cas=18, stud=18

192 | 0.0000 | 0.0000 | cybersick=1, nausea=7, virtu=18, real=18

117 | 0.0000 | 0.0000 | patricia=14, tri=18

Table 5.3: CF statistics: Top 5 and bottom 5 queries withlltiok strategy

and the bottom well performing queries tend to have one orduery terms occurring in less

sub-collections. Due to the small amount of sub-collesjcemd small amount of queries we
use, we can not draw such conclusion safely. To better utaaelshe impact of query term dis-
tribution, in table 5.4 we show the details of how many docotseontaining the query terms in
each sub-collection. It shows that the query terms of thé pegforming queries occur in all the

sub-collections, while the bad queries have some quensterich occur in few sub-collections,

and have low DF value.

Table 5.3 and table 5.4 show that the query terms should bibdiged into every collection
in order to have a better retrieval result with local IDF &gy, but it does not necessarily lead to
better result. For those queries with the worst AP and P@ 1@cal IDF strategy, they usually
have 1 or 2 query terms that appear in very few sub-collesti@md also rarely in these sub-
collections. These rare terms will have high local IDF valoensequently they lead to high
RSV for the documents containing these terms. If these deatsrare not relevant, then such
a retrieval strategy will greatly damage the retrieval perfance. This is the reason that some
queries have bad retrieval performance with local IDF eggat

Next we list all the queries that have better performancdb lecal IDF than global IDF in
table 5.5 and table 5.6, and queries having better perfaresawith top QDF promising strategy
than global IDF in table 5.7 and table 5.8. Queries that harg small difference of precision
from two retrieval strategies, e.g. less than 0.01, will betisted in the tables. In the following
tables, the subscriptions G, L, T after AP and P@10 meansjllaizal and top QDF promising

strategy respectively.

Qid ARs AR | Number of sub-collections containing the query terms

117 | 0.2278 | 0.2941 | patricia=14, tri=18
218 | 0.2628| 0.3145| comput=18, assist=18, compos=18, mus=18, not=18, midi=10
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194 | 0.3852 | 0.4345| multi=18, lay=18, perceptron=12, radi=18, basi=18, ferd@®, comparison=18

241 | 0.0570| 0.0776 | singl=18, sign=18, Idap=10

203 | 0.0330| 0.0521 | cod=18, sign=18, verifi=18

Qid ARy AR | DF'sin sub-collections
patricia=3,2,30,2,,1,4,9,3,5,4,14,,,,2,1,2,

117 0.2278) 0.2941 tri=134,150,370,120,76,216,100,48,126,104,73,26518%,58,166,317,190,
comput=316,680,1902,571,539,677,547,204,554,41773%88.042,756,225,571,1030,558,
assist=82,109,216,61,48,157,60,28,54,59,34,98,89/40,77,111,
compos=53,155,273,83,73,131,105,19,80,121,85,11228,84,223,326,284,

218 | 0.2628 0.3145 mus=42,67,104,21,10,51,44,12,32,111,14,41,5,3 %121,
not=301,597,1756,545,462,646,507,241,542,387,3081900,745,202,553,998,538,
midi=,7,10,3,1,4,,,2,22,,3,1,,,,1,,
multi=12,64,98,41,38,92,103,10,52,45,36,41,191 36445,258,89,
lay=74,186,455,148,118,196,212,69,191,141,112,B883185,64,127,186,162,
perceptron=2,2,6,6,,12,,,4,,,1,4,2,,10,78,2,

194 | 0.3852 | 0.4345 | radi=30,73,49,89,31,56,2,4,27,14,9,6,27,4,41,151107/3
basi=142,177,623,178,148,256,188,78,155,131,96233251,105,292,481,327,
funct=184,389,953,356,313,407,306,131,374,237,831793,579,183,482,879,452,
comparison=74,159,269,145,141,162,84,27,149,68,60496,457,135,365,648,293,
singl=154,407,939,324,306,380,310,142,391,244,B87793,614,166,461,756,442,

241 | 0.0570| 0.0776 | sign=156,240,711,182,388,271,186,74,329,209,116481250,96,139,591,189,
ldap=,1,18,3,,,34,10,,1,2,1,,1,,1,,,
cod=154,256,1090,339,199,276,283,128,321,213,289163,338,97,240,402,389,

203 | 0.0330| 0.0521 | sign=156,240,711,182,388,271,186,74,329,209,11¢481250,96,139,591,189,
verifi=27,41,326,48,269,108,60,23,105,45,42,153 A3 35,151,286,280,

Table 5.5: CF and DF statistics: Queries with better AP bylldDF strategy
than global IDF strategy

Qid | P@1Q | P@1Q | Number of sub-collections containing the query terms

93 0.0000 | 0.3000 | charl=18, babbag=8, institut=18, inst=18

42 0.4055| 0.7000 | decrypt=17, enigma=10, cod=18

209 | 0.3936| 0.6000 | min=18, frequ=18, pattern=18, itemset=5, sequ=18, graphassoci=18

218 | 0.5000| 0.7000 | comput=18, assist=18, compos=18, mus=18, not=18, midi=10

113 | 0.0000| 0.1000 | markov=17, model=18, user=18, behaviour=17

117 | 0.2000| 0.3000 | patricia=14, tri=18

194 | 0.6000| 0.7000| multi=18, lay=18, perceptron=12, radi=18, basi=18, feri@, comparison=18

201 | 0.7000| 0.8000 | web=18, www=18, relevanc=18, scor=18, rank=18

203 | 0.0000| 0.1000 | cod=18, sign=18, verifi=18

241 | 0.1000| 0.2000 | singl=18, sign=18, Idap=10

44 0.1000 | 0.2000 | internet=18, soci=18, communic=18, netizen=7, soci=t8iadog=5, web=18, usenet=16
mail=18, network=18, cultur=18

Qid | P@1Q | P@1Q | DF'sin sub-collections
charl=166,31,178,47,34,51,59,16,19,26,25,54,310602130, 15,
babbag=136,,14,,2,1,1,,4,,,5,,,,1,,,

93 0.0000 ) 0.3000 institut=217,281,633,243,193,373,173,63,192,168324475,444,141,295,526,304,
inst=34,38,147,88,12,154,18,9,22,34,63,106,12341092,180,103,
decrypt=15,6,74,2,7,5,26,10,15,12,4,8,16,4,,3,1,13,

42 0.4055| 0.7000 | enigma=26,2,2,1,,6,1,,3,,3,2,,,,,,1,
cod=154,256,1090,339,199,276,283,128,321,213,289163,338,97,240,402,389,
min=90,121,312,111,68,252,70,38,113,56,102,14738%237,299,408,209,
frequ=103,116,473,93,72,180,111,61,127,77,85,28222@,54,220,209,228,
pattern=100,274,541,184,209,314,94,54,166,127,524489,402,117,318,1046,259,

209 | 0.3936| 0.6000| itemset=,,5,,,1,,,,,1,,,,,17,1,,
sequ=96,217,385,156,152,226,101,24,152,151,115864191,135,325,615,347,
graph=81,677,709,259,183,247,173,53,225,292,16(26552,225,337,683,318,
associ=232,374,1000,336,312,466,286,145,335,26@22315,629,175,508,743,473,
comput=316,680,1902,571,539,677,547,204,554,4177338.042,756,225,571,1030,55
assist=82,109,216,61,48,157,60,28,54,59,34,98,88940,77,111,

218 | 0.5000!| 0.7000 compos=53,155,273,83,73,131,105,19,80,121,85,11228,84,223,326,284,

mus=42,67,104,21,10,51,44,12,32,111,14,41,5,3 26121,
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not=301,597,1756,545,462,646,507,241,542,387,308,000,745,202,553,998,538,
midi=,7,10,3,1,4,,,2,22,31,,,1,,

markov=3,6,24,25,6,31,4,,10,7,2,9,99,43,3,33,233,42
model=196,555,1227,441,392,557,369,143,335,325%385/41,663,207,518,921,514,

113 0.0000/ 0.1000 user=175,500,1380,305,256,496,460,195,405,390,28288,275,163,423,262,389,
behaviour=2,3,3,4,1,10,1,,2,4,3,2,12,5,8,16,24,25,
patricia=3,2,30,2,,1,4,9,3,5,4,14,,,,2,1,2,

1171 0.2000 0.3000 tri=134,150,370,120,76,216,100,48,126,104,73,265 11%85,58,166,317,190,
multi=12,64,98,41,38,92,103,10,52,45,36,41,191 36,345,258,89,
lay=74,186,455,148,118,196,212,69,191,141,112,883]185,64,127,186,162,
perceptron=2,2,6,6,,12,,,4,,,1,4,2,,10,78,2,

194 | 0.6000| 0.7000 | radi=30,73,49,89,31,56,2,4,27,14,9,6,27,4,41,15110/3
basi=142,177,623,178,148,256,188,78,155,131,96833251,105,292,481,327,
funct=184,389,953,356,313,407,306,131,374,237,831793,579,183,482,879,452,
comparison=74,159,269,145,141,162,84,27,149,68.60496,457,135,365,648,293,
web=86,312,989,222,121,346,464,193,197,312,151934%5,45,144,124,112,
www=64,334,928,293,164,443,458,172,256,264,201983803,63,119,154,154,

201 | 0.7000| 0.8000| relevanc=36,19,72,28,11,80,28,5,6,28,16,51,13,187161,54,
scor=18,40,87,29,7,92,25,14,16,49,2,61,10,14,6259338,
rank=47,34,136,39,17,94,42,20,16,33,18,85,87,13P189242,79,
cod=154,256,1090,339,199,276,283,128,321,213,289163,338,97,240,402,389,

203 | 0.0000| 0.1000| sign=156,240,711,182,388,271,186,74,329,209,116481250,96,139,591,189,
verifi=27,41,326,48,269,108,60,23,105,45,42,153 A3 35,151,286,280,
singl=154,407,939,324,306,380,310,142,391,244,B87/93,614,166,461,756,442,

241 | 0.1000| 0.2000 | sign=156,240,711,182,388,271,186,74,329,209,116481250,96,139,591,189,
ldap=,1,18,3,,,34,10,,1,2,1,,1,,1,,,
internet=74,184,972,140,56,257,547,183,218,280265157,84,19,102,33,89,
soci=163,70,317,58,23,153,88,25,62,84,34,176,251282,49,70,
communic=53,156,496,90,67,206,212,82,143,148,189188,327,21,100,28,216,
netizen=3,,3,,,1,5,,1,3,1,,,,,.,,
soci=163,70,317,58,23,153,88,25,62,84,34,176,25]1242,49,70,

44 0.1000 | 0.2000 | sociolog=3,1,1,,,1,,..1,,,,,,»
web=86,312,989,222,121,346,464,193,197,312,151934%5,45,144,124,112,
usenet=8,3,26,2,1,9,24,1,5,2,5,11,4,,,3,2,3,
mail=109,120,672,172,87,151,251,129,108,166,779684680,201,546,978,520,
network=140,309,1236,256,187,483,453,184,353,383389,650,664,66,364,422,323,
cultur=93,56,209,38,22,73,50,30,23,79,9,234,6,1@,22,15,

Table 5.6: CF and DF Statistics: Queries with better P@1@b#llIDF strategy
than global IDF strategy

Qid ARs APr | Number of sub-collections containing the query terms

100 | 0.1000 | 0.5000 | associ=18, min=18, rul=18, med=18

174 | 0.0398 | 0.0915 | internet=18, web=18, pag=18, prefetch=17, algorithm=p8=18, mem=18, disk=18

208 | 0.0214 | 0.0500 | artifici=18, intellig=18, hist=18

109 | 0.2771| 0.2996 | cpu=18, cool=18, cool=18, fan=18, design=18, design=a8{+18, dissip=18, airflow=12,
cas=18

190 | 0.1347 | 0.1555| commerc=18, bus=18, data=18, warehous=18

Qid AR APr | DF’sin sub-collections
associ=232,374,1000,336,312,466,286,145,335,260122915,629,175,508,743,473,

100 | 0.1000 | 0.5000 min=90,121,312,111,68,252,70,38,113,56,102,147388287,299,408,209,

' ' rul=106,147,510,139,133,348,169,93,188,111,91,380221,74,387,433,323,
med=37,34,88,20,11,38,9,4,18,13,8,28,47,60,18,3%4 96
internet=74,184,972,140,56,257,547,183,218,280265157,84,19,102,33,89,
web=86,312,989,222,121,346,464,193,197,312,151934%5,45,144,124,112,
pag=163,198,687,152,128,229,327,106,202,196,134,23(125,44,183,118,145,
prefetch=2,4,52,3,7,2,8,,53,9,25,2,79,36,6,25,1,13,

17410.0398 | 0.0915 | 0 orithm=82,380,729,392,263,401,186,43,251,181 1Z#894,727,203,487,943,385,
cpu=26,82,234,93,100,33,67,13,196,43,85,39,20H B34 7,69,98,
mem=86,21,134,34,165,41,12,1,115,20,46,10,159,9K) 17,36,
disk=81,132,303,91,40,57,70,37,123,105,88,70,10378482,81,57,
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artifici=63,129,341,87,25,479,81,10,57,83,52,82,88,9,294,557,120,

208 | 0.0214 | 0.0500 | intellig=100,150,574,101,68,663,216,55,143,170,186,126,132,64,372,1046,133,
hist=64,6,35,11,1,21,16,5,3,6,11,17,12,8,2,37,10,29
cpu=26,82,234,93,100,33,67,13,196,43,85,39,20H 34X 7,69,98,
cool=32,31,64,30,28,30,16,10,39,8,15,23,16,16,6618,
cool=32,31,64,30,28,30,16,10,39,8,15,23,16,16,6618,
fan=23,37,73,15,42,29,18,5,42,21,14,39,86,45,18267,

109 | 0.2771| 0.2996 des@gn=264,549,1596,403,539,587,425,175,519,37,47,88,2921,690,189,480,621,500,
design=264,549,1596,403,539,587,425,175,519,374,88221,690,189,480,621,500,
heat=42,36,96,86,33,55,16,5,42,5,12,26,11,11,18%,2
dissip=10,7,34,27,66,5,2,2,79,2,3,4,36,10,5,3,5,2,
airflow=1,6,3,7,,3,1,,4,,2,1,,1,2,1,,,
cas=203,428,1115,380,355,487,312,158,385,254,25969,727,200,538,948,521,
commerc=32,40,339,19,12,101,194,129,66,90,41,232546,13,39,

190 | 0.1347 | 0.1555 bus=209,178,1007,134,249,297,279,219,403,186,16296,278,19,146,56,190,
data=221,529,1475,420,377,558,437,213,447,373,802,66,641,196,585,880,486,
warehous=6,11,80,6,1,39,20,32,9,6,14,24,4,3,473,2,

Table 5.7: CF and DF statistics: Queries with better AP by@@F promising
strategy than global IDF strategy

Qid | P@1Qs | P@10r | number of sub-collection containing the query term

40 0.4194 | 0.9000| cont=18, bas=18, retriev=18

45 0.4000 | 0.7000 | augm=18, real=18, medicin=18

46 0.6476 | 0.9000 | firewal=16, internet=18, secur=18

101 | 0.0000| 0.1000 | test=18, inform=18

110 | 0.6000| 0.7000 | stream=18, deliv=18, stream=18, synchroniz=18, audipwiti®0=18, stream=18, appli=18

123 | 0.3000| 0.4000 | multidimension=18, ind=18, near=18, neighbour=11, deat8

167 | 0.2000| 0.3000| que=18, proces=18, spati=18, data=18, multimedia=18=&@n

169 | 0.7000| 0.8000 | que=18, expans=18, relevanc=18, feedback=18, web=18

174 | 0.1000| 0.2000 | internet=18, web=18, pag=18, prefetch=17, algorithm=p8~=18, mem=18, disk=18

176 | 0.3000| 0.4000 | secur=18, web=18, cook=18, authenti=17, integr=18, cenfidl=17

190 | 0.2000| 0.3000| commerc=18, bus=18, data=18, warehous=18

193 | 0.1000| 0.2000 | good=18, tur=18, estim=18, smooth=18

198 | 0.6000| 0.7000 | appli=18, develop=18, python=15, java=18, comparison=18

203 | 0.0000| 0.1000 | cod=18, sign=18, verifi=18

208 | 0.1000| 0.2000 | artifici=18, intellig=18, hist=18

222 | 0.5000| 0.6000 | eletron=3, commerc=18, bus=18, strateg=18

36 0.2000 | 0.3000 | heat=18, dissip=18, microcomput=18, chip=18

47 0.6000 | 0.7000 | concurren=18, control=18, semant=18, transact=18, n=k&gppli=18, performanc=18,
benefit=18

94 0.4000 | 0.5000 | hyperlink=18, analysi=18, distil=18

50 0.6757 | 0.7000 | xmlI=18, edit=18, pars=18

Qid | P@1Q; | P@16r | DF’s in sub-collections
cont=108,226,662,123,119,279,304,107,198,296,9%284177,61,253,230,229,

40 0.4194 | 0.9000 | bas=252,609,1664,475,468,650,489,226,517,421,38969,732,208,561,989,538,
retriev=51,97,351,67,15,245,154,37,58,177,60,98841,325,197,122,
augm=24,94,157,39,36,101,43,11,50,65,36,52,125391128,113,103,

45 0.4000| 0.7000 | real=210,574,1307,390,274,534,363,183,406,367,26/589,451,178,426,798,442,
medicin=35,84,106,67,2,94,15,9,10,33,16,35,7,10%831,18,
firewal=,8,98,6,4,3,72,46,9,12,13,32,5,5,,3,1,6,

46 0.6476 | 0.9000 | internet=74,184,972,140,56,257,547,183,218,280265157,84,19,102,33,89,
secur=98,72,761,80,42,140,327,165,120,123,122,3827,0,4,117,41,138,

101 | 0.0000! 0.1000 _test:156,308,1027,277,539,401,211,107,296,172,155568,334,151,351,750,424,

' ' inform=283,556,1637,428,392,654,502,237,445,42773111963,729,204,572,1022,545,
stream=32,120,315,58,56,85,128,39,130,190,86,58,18287,81,115,81,
deliv=108,121,511,81,108,140,201,107,150,168,9918%215,15,75,33,155,
stream=32,120,315,58,56,85,128,39,130,190,86,58,18287,81,115,81,

110 | 0.6000!| 0.7000 synchroniz=16,77,248,58,71,42,96,25,114,139,1423%330,18,93,22,175,

audio=45,137,265,29,32,59,96,27,98,275,41,31,34,35,37,30,
video=61,303,497,60,70,126,143,54,168,372,75,862384,105,248,41,
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stream=32,120,315,58,56,85,128,39,130,190,86,53,1837,81,115,81,
appli=227,680,1625,499,444,615,474,212,503,4197343939,713,207,550,973,529,

123

0.3000

0.4000

multidimension=3,62,68,43,10,20,5,12,14,18,16,13,4%,48,86,122,28,
ind=104,202,480,176,97,253,182,67,158,192,124,1712638,167,494,819,410,
near=154,311,618,258,144,253,179,84,205,139,10826314,152,181,603,169,
neighbour=1,1,,1,,1,,,,,1,,2,1,2,2,15,1,
search=115,177,541,158,91,397,211,86,108,170,143349,277,109,355,592,221,

167

0.2000

0.3000

que=32,87,348,37,4,189,161,53,29,109,53,94,50,398386,116,
proces=251,579,1626,442,456,606,416,205,534,38833326,746,204,549,972,524,
spati=7,238,161,138,20,97,19,1,44,111,43,15,89289146,478,36,
data=221,529,1475,420,377,558,437,213,447,373,83027%6,641,196,585,880,486,
multimedia=21,201,530,32,71,108,148,41,152,46580623,127,40,225,90,69,
min=90,121,312,111,68,252,70,38,113,56,102,147388287,299,408,209,

169

0.7000

0.8000

que=32,87,348,37,4,189,161,53,29,109,53,94,50,398386,116,
expans=54,41,122,77,31,53,26,16,49,14,30,40,1&9§45,185,50,
relevanc=36,19,72,28,11,80,28,5,6,28,16,51,13,187141,54,
feedback=26,153,288,75,108,183,69,29,88,98,48,80%7,31,94,74,118,
web=86,312,989,222,121,346,464,193,197,312,151934%,45,144,124,112,

174

0.1000

0.2000

internet=74,184,972,140,56,257,547,183,218,2802685157,84,19,102,33,89,
web=86,312,989,222,121,346,464,193,197,312,151934%,45,144,124,112,
pag=163,198,687,152,128,229,327,106,202,196,134,33(125,44,183,118,145,
prefetch=2,4,52,3,7,2,8,,53,9,25,2,79,36,6,25,1,13,
algorithm=82,380,729,392,263,401,186,43,251,181 188894,727,203,487,943,385,
cpu=26,82,234,93,100,33,67,13,196,43,85,39,20H B4 7,69,98,
mem=86,21,134,34,165,41,12,1,115,20,46,10,159,38) 17,36,
disk=81,132,303,91,40,57,70,37,123,105,88,70,10378482,81,57,

176

0.3000

0.4000

secur=98,72,761,80,42,140,327,165,120,123,122,2620,4,117,41,138,
web=86,312,989,222,121,346,464,193,197,312,151934%,45,144,124,112,
cook=19,31,64,12,3,31,32,14,8,11,12,35,12,11,2%,23,
authenti=,12,161,10,1,21,110,37,26,25,21,34,15,12,24,26,
integr=156,375,1134,319,394,458,326,176,355,299%5196454,303,143,374,535,371,
confidential=5,4,59,4,2,4,26,12,10,8,5,20,3,3,,10,3,

190

0.2000

0.3000

commerc=32,40,339,19,12,101,194,129,66,90,41,2832546,13,39,
bus=209,178,1007,134,249,297,279,219,403,186,16296,278,19,146,56,190,
data=221,529,1475,420,377,558,437,213,447,373,8302,56,641,196,585,880,486,
warehous=6,11,80,6,1,39,20,32,9,6,14,24,4,3,453,2,

193

0.1000

0.2000

good=212,288,848,319,247,388,270,154,313,177,171483,399,130,320,677,315,
tur=73,6,58,7,3,33,12,1,6,1,7,17,10,5,1,15,11,16,
estim=84,145,450,194,169,200,95,76,138,87,80,382281,106,248,824,248,
smooth=38,189,142,104,23,89,37,22,44,73,34,78,413456,518,47,

198

0.6000

0.7000

appli=227,680,1625,499,444,615,474,212,503,4197343939,713,207,550,973,529,
develop=294,575,1723,475,452,625,479,215,514,42/897,727,600,180,494,779,505,
python=1,3,18,24,,1,14,2,1,2,4,6,,1,3,1,,2,
java=5,85,426,77,27,92,280,72,90,87,78,174,22 289,91,
comparison=74,159,269,145,141,162,84,27,149,68/604696,457,135,365,648,293,

203

0.0000

0.1000

cod=154,256,1090,339,199,276,283,128,321,213,2691683,338,97,240,402,389,
sign=156,240,711,182,388,271,186,74,329,209,116{81250,96,139,591,189,
verifi=27,41,326,48,269,108,60,23,105,45,42,153 Z¥3 35,151,286,280,

208

0.1000

0.2000

artifici=63,129,341,87,25,479,81,10,57,83,52,82,88,8,294,557,120,
intellig=100,150,574,101,68,663,216,55,143,170,196,126,132,64,372,1046,133,
hist=64,6,35,11,1,21,16,5,3,6,11,17,12,8,2,37,10,29

222

0.5000

0.6000

eletron=1,,,,,,,,.,,1,,1,,,.,,
commerc=32,40,339,19,12,101,194,129,66,90,41,92324546,13,39,
bus=209,178,1007,134,249,297,279,219,403,186,16296,278,19,146,56,190,
strateg=98,146,689,182,238,317,168,140,170,1251032420,411,95,349,356,291,

36

0.2000

0.3000

heat=42,36,96,86,33,55,16,5,42,5,12,26,11,11,18®,2
dissip=10,7,34,27,66,5,2,2,79,2,3,4,36,10,5,3,5,2,
microcomput=44,10,53,5,7,12,5,3,47,6,2,10,19,18B%6
chip=43,77,489,58,365,60,48,21,374,49,64,55,3249148,33,27,

47

0.6000

0.7000

concurren=3,2,131,24,32,24,43,3,23,14,284,44,103]1418,5,142,
control=218,458,1251,310,335,506,372,151,426,28/6P8,664,514,167,381,528,467,
semant=15,45,304,33,45,187,135,14,46,108,76,12M823,317,93,294,
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transact=57,46,446,52,58,114,190,103,119,57,119,083,765,219,584,1044,570,
manag=213,299,1408,237,267,452,416,215,344,29526,845,345,75,479,151,390,
appli=227,680,1625,499,444,615,474,212,503,4197343939,713,207,550,973,529,
performanc=109,321,1105,333,331,363,262,140,41(226)44,734,660,135,432,728,35
benefit=101,214,744,154,173,255,208,126,227,143%59%71,242,82,223,164,300,

hyperlink=1,26,55,11,2,34,47,6,5,47,3,11,1,1,2,B4,3

94 0.4000| 0.5000 | analysi=169,323,908,368,303,429,169,97,235,186813/61,614,179,455,1045,498,
distil=4,10,18,13,2,12,14,3,8,9,4,24,1,1,1,4,1,18,
xml=1,13,146,10,7,57,149,53,9,37,9,19,1,2,2,16,2,9,

50 0.6757| 0.7000 | edit=254,287,781,320,215,320,244,79,199,248,1593297317,91,262,310,310,

pars=7,24,123,19,12,84,81,17,17,38,26,49,30,27,3868Y,

Table 5.8: CF and DF statistics: queries with better P@ 1@pyDF promising
strategy than global IDF strategy

We observe that in 116 queries, there are 7 queries whichlyetter AP with local IDF than

global IDF and 31 queries which have better P@10 with loc# tban global IDF; there are 9

queries which have better AP with top QDF promising than gldDF, and 46 queries which

have better P@ 10 with top QDF promising than global IDF. Vdatiishow all the queries which

have better performance with local IDF or top QDF strategtabies 5.5,5.6, 5.7 and 5.8, only

those queries with the difference of AP or P@10 from two etjags greater than or equal to

0.01.

Queries having better performance with local IDF stratelyyagis have one or two query

terms occurring in few sub-collections and very rarely. \&'tthe queries having better per-

formance with top QDF promising strategy always have queryns occurring in all the sub-

collections. This can be the reason that top QDF promisiragegty works well with such kind

of queries. It does not matter which sub-collections aresehpthere should always be some rele-

vant documents existing in these sub-collections. On therdtand, if the query terms only occur

in few sub-collections and these sub-collections are noseh as promising sub-collection, then

there is a high chance that retrieved documents are notargleyAs a result, extremely low AP

for these queries with the top QDF promising strategy.

5.7.4 Document Retrieval with TF-IDF in Multi-collections Organized without Subject

In the previous section 5.7.2, the test collection is orgeahiby the subjects, where some terms

tend to appear more in the sub-collection than others whesuh-collection concerning related

subject. We postulate that such term distribution will méke context-specific retrieval hav-

ing different performance to that from the test collectiohase sub-collection has no common

subject. In the latter case, the term distributions in eathllection would be similar.

In order to find out the impact of the different term distrilouis in the sub-collections on the
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Qid

AP

P@10

Df in each sub-collection

112

0.6156

0.9000

cascad=4,9,55,19,17,17,35,11,32,11,3,9,81,29,829,3
styl=104,115,329,82,90,102,110,34,94,108,67,1988R7,79,95,200,
sheet=62,67,92,36,23,33,43,17,39,23,5,35,15,848 18,
cont=108,226,662,123,119,279,304,107,198,296,9323477,61,253,230,229,
scrambl=4,6,37,2,3,8,13,4,9,15,2,7,4,4,,1,2,,
system=266,606,1780,494,504,696,508,234,559,43B35P70,765,198,565,935,54

99

0.5207

0.7000

perl=2,6,65,25,7,9,52,15,15,8,3,27,19,5,1,6,1,13,
featur=160,421,974,284,275,401,302,122,371,2964183392,329,163,354,816,341,

50

0.5118

0.7000

xml=1,13,146,10,7,57,149,53,9,37,9,19,1,2,2,16,2,9,
edit=254,287,781,320,215,320,244,79,199,248,15%3297317,91,262,310,310,
pars=7,24,123,19,12,84,81,17,17,38,26,49,30,27 3868V,

46

0.5076

0.9000

firewal=,8,98,6,4,3,72,46,9,12,13,32,5,5,,3,1,6,
internet=74,184,972,140,56,257,547,183,218,280285157,84,19,102,33,89,
secur=98,72,761,80,42,140,327,165,120,123,122,2670,4,117,41,138,

100

0.5000

0.1000

associ=232,374,1000,336,312,466,286,145,335,26@,22915,629,175,508,743,473
min=90,121,312,111,68,252,70,38,113,56,102,147388287,299,408,209,
rul=106,147,510,139,133,348,169,93,188,111,91,31M)221,74,387,433,323,
med=37,34,88,20,11,38,9,4,18,13,8,28,47,60,18,3%96

209

0.0000

0.0000

min=90,121,312,111,68,252,70,38,113,56,102,147388%287,299,408,209,
frequ=103,116,473,93,72,180,111,61,127,77,85,29222@ ,54,220,209,228,
pattern=100,274,541,184,209,314,94,54,166,127,52489,402,117,318,1046,259,
itemset=,,5,,,1,,,,,1,,,,,17,1,,
sequ=96,217,385,156,152,226,101,24,152,151,11%86491,135,325,615,347,
graph=81,677,709,259,183,247,173,53,225,292,16(26%52,225,337,683,318,
associ=232,374,1000,336,312,466,286,145,335,26@.2215,629,175,508,743,473

3

i

205

0.0000

0.0000

marshal=15,4,26,5,,15,6,2,5,5,5,5,8,7,3,11,7,22,
mcluhan=1,,2,1,,1,,,5,5,1,,,,,,,,

202

0.0000

0.0000

cas=203,428,1115,380,355,487,312,158,385,254,25069,727,200,538,948,521,
stud=252,359,968,370,243,460,216,119,239,232,20%88,557,147,441,641,443,

192

0.0000

0.0000

cybersick=,4,,,,,,111551010

nausea=1,8,2,,,3,,,1,1,,1,,,,,,,

virtu=105,425,719,187,121,198,257,91,213,268,1 M251,315,126,163,191,163,
real=210,574,1307,390,274,534,363,183,406,367,26/589,451,178,426,798,442,

117

0.0000

0.0000

patricia=3,2,30,2,,1,4,9,3,5,4,14,,,,2,1,2,
tri=134,150,370,120,76,216,100,48,126,104,73,26518%,58,166,317,190,

Table 5.4: DF statistics in each sub-collection: Top 5 arttbbo5 queries with local IDF strategy
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retrieval global idf(t,INEX) | local idf(t,year) | Top-3 QDF(q,year) Top-3 QInf(q,year)

function MAP P@10| MAP | P@10| MAP P@10| MAP P@10

idfyoe e | 0.2217| 0.4267] 0.2146] 0.4115| 0.1152| 0.3517| 0.0621| 0.2345
idfyo th, | 0.2019| 0.3603| 0.1999| 0.3638| 0.1096| 0.3060| 0.0621| 0.2345
idf o0 ooissona | 0-3107 | 0.5009| 0.2576| 0.3733| 0.1530|  0.4216 | 0.0951 | 0.3096
if oot 0.2069| 0.4233| 0.2023| 0.4121| 0.1151| 0.3353| 0.0525| 0.2172
idfgootfoym 0.1736| 0.3155| 0.1725| 0.3224| 0.1046| 0.2922| 0.0438| 0.1862
idfoectfpoissona | 0-3070| 05043 | 0.2656 | 0.3957| 0.1647 |  0.4155| 0.0623| 0.2422
idf paratfmax | 0.1973| 0.4138| 0.1923| 0.4052| 0.1118| 0.3284| 0.0537|  0.2060

idfparatfoum | 0.1604| 0.2957| 0.1584| 0.2940| 0.0924|  0.2655| 0.0402|  0.1793
idf para tfpoissona | 0-3039|  0.5034| 0.2621| 0.3966| 0.1613|  0.4096 | 0.0643|  0.2405
i0lfy ot e 0.1839| 0.3810| 0.1801| 0.3853| 0.1043| 0.3147| 0.0478| 0.2009
idlfy o tfsum 0.1426| 0.2655| 0.1402| 0.2664| 0.0873| 0.2517| 0.0395| 0.1543

idfioc tFooissona | 0-2984|  0.5009| 0.2708 | 0.4198 | 0.1583|  0.4147| 0.0629| 0.2397

Table 5.9: TF-IDF: Document retrieval with context-speacifiequencies in collection organized
without subject

retrieval quality, we reorganized the collection and rua same retrieval strategies described in

section 5.7.2. The retrieval results from the reorganizatéction are shown in table 5.9.

Similar to the context-specific frequencies experiment@ncollection organized by subject,
this experiment shows that globe IDF outperforms global I&fd global ILF . Global IDF ,
IEF and ILF all distinctly out perform respectively local /D IEF , ILF . However, the results
from the collection organized without subject show that difeerence of global IDF and local
IDF are not as distinguishable as that from the collectioganized by subject. Actually the
performances of local IDF and global IDF are quite similarewtthe retrieval processes are
carried on the collection organized without subject. Ttas be explained by the fact that the
distribution of terms in the sub-collection is similar teetthe distribution in the whole collection,
because there is no common subject in the sub-collectiohis ré&sult is similar to the work in
[Church and Gale, 1995], which have showed that the termilalisions of a journal in each year
are stable to that of the next year. Therefore purely usiegdbal IDF without normalization

can achieve the similar result as global IDF.

The result that the local IDF strategy has a similar rettiggeformance to global IDF,
demonstrates that the distributed retrieval can have aimpegrformance to centralized retrieval
if documents are randomly distributed among the data didles. No global statistical informa-
tion is needed in the broker of distributed retrieval syst@imis discovery enables the distributed

retrieval system to avoid the resource intensive task ohtaaiing centralized statistics.

The results of top QDF promising strategy from non-subje@trtded collection is not as
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good as what we got from the collection organized by subjEee top QDF promising strategy’s
MAP is only half of the global IDF’s. This is understandabgvehen the documents are grouped
randomly, and there is no a common subject for each subetiolfe the relevant documents can
be assumed randomly distributed in each sub-collection.w@only choose one third of the
collections to retrieve, then two thirds of the relevant wiments will be missing. However, the
loss of mean average precision can boost the efficiency okthieval system.

Still the performance of top QInf(g,c) promising strategyvery low when the retrieval is
carried on the sub-collections without subject. Hencenaishe informativeness of the query

within the sub-collection is not good criterion to choosemising sub-collections.

5.7.5 Analysis of TF-IDF Document Retrieval Results from Muti-collections

Organized without Subject

Again we choose Poisson based TF and document based IDévagtiiinction to compare its
retrieval results from different strategies. Figure 5.6wk that there are many queries that have
better AP or P@10 with local IDF or top QDF promising stratélggn global IDF. Out of 116
query topics, for local IDF strategy, there are 17 queriegtvhave AP no less than global IDF,
and 53 queries which have P@10 no less than global IDF; foQDp promising strategy, there
are 12 queries which have AP no less than global IDF, and 6desuehose AP and P@10 are
no less than global IDF. Still we only list those queries wh&® or P@10 difference are greater
than or equal to 0.01 in tables 5.10,5.11, 5.12 and 5.13.

It shows the similar statistical results to the experimarhe collection organized by subject.
For those queries having better retrieval quality with Id&F or top QDF promising strategy
than global strategy, most of their query terms occur in alinadl the sub-collections, also fre-
quently in the sub-collections.

There are more queries having a better performance witrota IDF or top QDF promising
strategy when queries are executed on the text collectiganized without subject, especially
so when looking into the precision at 10 retrieval document.

Interestingly, the well performing queries with local IDFtop QDF promising strategy on
the collection organized without subject are not those wetforming ones on the collection
organized with subject. However, there is no remarkableefasion showing which kind of
queries suit collection with subject or without subject whising local IDF or top QDF promis-

ing strategy. The only conclusion we can draw is that morerigsevork better using local



IDF or top QDF promising strategy than global IDF strategyewlthe retrieval is carried on the
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collection without subject.

Qid ARs AR | Number of sub-collections containing the query terms

104 | 0.5213 | 0.5966 | toy=18, sto=18

192 | 0.5577| 0.5811| cybersick=1, nausea=7, virtu=18, real=18

123 | 0.3339 | 0.3562 | multidimension=18, ind=18, near=18, neighbour=11, de=at8

229 | 0.0504 | 0.0699 | lat=18, semant=18, anlysi=3, lat=18, semant=18, ind=18

213 | 0.5362| 0.5542 | gib=16, sampl=18

227 | 0.3521 | 0.3699 | adaboost=2, bag=18, ensembl=17, learn=18

169 | 0.4550 | 0.4712 | que=18, expans=18, relevanc=18, feedback=18, web=18

198 | 0.2621 | 0.2744 | appli=18, develop=18, python=15, java=18, comparison=18

Qid AR AR | DF'sin sub-collections
toy=26,29,48,11,5,41,10,5,23,7,13,18,7,4,8,20,39,20

1041 0.5213 | 0.5966 st0=170,106,196,56,24,110,86,47,63,74,24,153,43 82,24,
cybersick=,4,,,,,,111551010
nausea=1,8,2,,,3,,,1,1,,1,,,,.,,

192/ 0.5577) 0.5811 virtu=105,425,719,187,121,198,257,91,213,268,1™2A1,315,126,163,191,163,
real=210,574,1307,390,274,534,363,183,406,367,267589,451,178,426,798,442,
multidimension=3,62,68,43,10,20,5,12,14,18,16,13,14,48,86,122,28,
ind=104,202,480,176,97,253,182,67,158,192,124,172688,167,494,819,410,

123 | 0.3339 | 0.3562 | near=154,311,618,258,144,253,179,84,205,139,10826814,152,181,603,169,
neighbour=1,1,,1,,1,,,,,1,,2,1,2,2,15,1,
search=115,177,541,158,91,397,211,86,108,170,16(3349,277,109,355,592,221,
lat=260,320,946,301,267,370,268,124,340,231,158/8461481,100,357,457,360,
semant=15,45,304,33,45,187,135,14,46,108,76,12M823,317,93,294,
anlysi=,,,,1,,,11115151,1,2,

229 1 0.0504 1 0.0699 lat=260,320,946,301,267,370,268,124,340,231,158/8461481,100,357,457,360,
semant=15,45,304,33,45,187,135,14,46,108,76,12M823,317,93,294,
ind=104,202,480,176,97,253,182,67,158,192,124,1712688,167,494,819,410,
gib=11,2,19,11,,10,9,3,,11,1,11,2,3,12,11,93,5,

213 1 0.5362] 0.5542 sampl=50,229,350,178,122,208,71,47,149,128,56,088,23,138,214,685,210,
adaboost=,,,,,1,,,,,,,1,%,,
bag=13,7,26,7,9,23,8,3,8,4,6,18,4,5,4,17,22,15,

2271 0.35211 0.3699 ensembl=2,11,13,21,3,13,3,,4,10,13,3,9,20,3,6,51,7,
learn=185,204,735,211,112,472,180,119,154,196,66632,71,31,204,403,208,
que=32,87,348,37,4,189,161,53,29,109,53,94,50,398386,116,
expans=54,41,122,77,31,53,26,16,49,14,30,40,16884,185,50,

169 | 0.4550| 0.4712 | relevanc=36,19,72,28,11,80,28,5,6,28,16,51,13,187161,54,
feedback=26,153,288,75,108,183,69,29,88,98,48,30%7,31,94,74,118,
web=86,312,989,222,121,346,464,193,197,312,15193485,45,144,124,112,
appli=227,680,1625,499,444,615,474,212,503,4197343939,713,207,550,973,529,
develop=294,575,1723,475,452,625,479,215,514,42/491,727,600,180,494,779,505

198 | 0.2621 | 0.2744 | python=1,3,18,24,,1,14,2,1,2,4,6,,1,3,1,,2,
java=5,85,426,77,27,92,280,72,90,87,78,174,22 28,991,
comparison=74,159,269,145,141,162,84,27,149,68.60496,457,135,365,648,293,

Table 5.10: CF and DF: Queries with better AP by local IDFtsgg than global
IDF in the collection organized without subject

Qid | P@1Qs | P@1Q | Number of sub-collections containing the query terms

38 0.4000 | 0.7000 | multidimension=18, ind=18

119 | 0.5724| 0.8000 | optimiz=18, join=18, rel=18, databas=18

50 0.6757 | 0.9000 | xmlI=18, edit=18, pars=18

228 | 0.6000| 0.8000 | ipv6=11, deploy=18, ipv6=11, support=18

46 0.6476 | 0.8000 | firewal=16, internet=18, secur=18

104 | 0.4000| 0.5000 | toy=18, sto=18

123 | 0.3000| 0.4000 | multidimension=18, ind=18, near=18, neighbour=11, de=t8

176 | 0.3000| 0.4000 | secur=18, web=18, cook=18, authenti=17, integr=18, cenfidl=17
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213 | 0.7000| 0.8000| gib=16, sampl=18

Qid | P@1Q | P@1Q | DF'sin sub-collections

38 0.4000| 0.7000 muItidimension:3,62,68,43,10,20,5,12,14,18,16,],3,1!27,48,86,122,28,
ind=104,202,480,176,97,253,182,67,158,192,124,172688,167,494,819,410,
optimiz=43,189,495,245,242,208,113,57,234,91,155485,363,130,328,501,228,

119 | 05724| 0.8000 join=167,126,350,82,81,108,123,40,90,82,61,15638539,298,334,218,

’ ’ rel=237,507,1341,410,374,568,407,201,396,320,2B4889,679,192,543,939,521,
databas=59,203,780,146,69,357,278,135,103,221 468 37,190,44,493,354,231,
xml=1,13,146,10,7,57,149,53,9,37,9,19,1,2,2,16,2,9,

50 0.6757 | 0.9000 | edit=254,287,781,320,215,320,244,79,199,248,1593297317,91,262,310,310,
pars=7,24,123,19,12,84,81,17,17,38,26,49,30,27, B8V,
ipv6=,1,39,3,,,50,13,5,6,2,2,1,2,,,,,
deploy=15,53,379,33,46,130,217,105,60,91,67,172835,43,22,75,

228 | 0.6000 0.8000 ipv6=,1,39,3,,,50,13,5,6,2,2,1,2,,,,,
support=222,463,1419,368,343,511,443,201,442,32439,757,653,174,505,687,49
firewal=,8,98,6,4,3,72,46,9,12,13,32,5,5,,3,1,6,

46 0.6476 | 0.8000 | internet=74,184,972,140,56,257,547,183,218,280265157,84,19,102,33,89,
secur=98,72,761,80,42,140,327,165,120,123,122,382,0,4,117,41,138,
toy=26,29,48,11,5,41,10,5,23,7,13,18,7,4,8,20,39,20

104 | 0.4000/ 0.5000 st0=170,106,196,56,24,110,86,47,63,74,24,153,43 82,24,
multidimension=3,62,68,43,10,20,5,12,14,18,16,13,14,48,86,122,28,
ind=104,202,480,176,97,253,182,67,158,192,124,172688,167,494,819,410,

123 | 0.3000| 0.4000 | near=154,311,618,258,144,253,179,84,205,139,10826314,152,181,603,169,
neighbour=1,1,,1,,1,,,,,1,,2,1,2,2,15,1,
search=115,177,541,158,91,397,211,86,108,170,16(339,277,109,355,592,221,
secur=98,72,761,80,42,140,327,165,120,123,122,287,0,4,117,41,138,
web=86,312,989,222,121,346,464,193,197,312,15193485,45,144,124,112,
cook=19,31,64,12,3,31,32,14,8,11,12,35,12,11,28,23,

176 1 0.3000) 0.4000 authenti=,12,161,10,1,21,110,37,26,25,21,34,15,12,24,26,
integr=156,375,1134,319,394,458,326,176,355,299%5196454,303,143,374,535,371,
confidential=5,4,59,4,2,4,26,12,10,8,5,20,3,3,,10,3,
gib=11,2,19,11,,10,9,3,,11,1,11,2,3,12,11,93,5,

2131 0.7000/ 0.8000 sampl=50,229,350,178,122,208,71,47,149,128,56,088,23,138,214,685,210,

Table 5.11: CF and DF: Queries with better P@10 by local ID&tsgy than
global IDF in the collection organized without subject

Qid ARs APr | Number of sub-collections containing the query terms

168 | 0.4029| 0.4583 | new=18, zealand=17, digit=18, libr=18, project=18

229 | 0.0504 | 0.0862 | lat=18, semant=18, anlysi=3, lat=18, semant=18, ind=18

207 | 0.1836 | 0.2131 | dom=17, sax=10

186 | 0.1016 | 0.1280 | electron=18, bus=18, data=18, min=18

174 | 0.0398 | 0.0585 | internet=18, web=18, pag=18, prefetch=17, algorithm=p8=18, mem=18, disk=18

111 | 0.1706 | 0.1857 | natur=18, languag=18, proces=18, program=18, languggnflel=18, languag=18,
human=18, languag=18

241 | 0.0570| 0.0672 | singl=18, sign=18, Idap=10

170 | 0.0277 | 0.0376 | map=18, web=18

Qid AR APr | DF’sin sub-collections
new=282,618,1775,526,474,655,503,236,534,433,38383,716,206,549,951,531,
zealand=12,8,34,5,4,11,7,2,2,3,1,7,,3,6,4,7,6,

168 | 0.4029 | 0.4583 | digit=213,326,869,173,314,223,240,102,337,326,681521,205,86,186,437,119,
libr=135,193,648,202,165,224,162,44,142,129,14918%156,56,171,108,192,
project=242,488,1184,309,212,447,300,151,310,28478D,292,261,160,367,624,400
lat=260,320,946,301,267,370,268,124,340,231,158/8461481,100,357,457,360,
semant=15,45,304,33,45,187,135,14,46,108,76,12M823,317,93,294,
anlysi=,,,,1,,,11115101,1,2,

229 1 0.0504 1 0.0862 lat=260,320,946,301,267,370,268,124,340,231,158/8461481,100,357,457,360,
semant=15,45,304,33,45,187,135,14,46,108,76,12M823,317,93,294,
ind=104,202,480,176,97,253,182,67,158,192,124,1712688,167,494,819,410,
dom=1,9,25,2,,12,29,4,4,7,3,5,5,7,4,46,26,24,

207 | 0.1836 | 0.2131 sax=,3.1153.. 741,12
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electron=239,255,855,193,387,301,265,100,319,2832838,468,248,55,166,293,171,

186 | 0.1016 | 0.1280 bus=209,178,1007,134,249,297,279,219,403,186,16296,278,19,146,56,190,
data=221,529,1475,420,377,558,437,213,447,373,8302,56,641,196,585,880,486,
min=90,121,312,111,68,252,70,38,113,56,102,14738%237,299,408,209,
internet=74,184,972,140,56,257,547,183,218,280265157,84,19,102,33,89,
web=86,312,989,222,121,346,464,193,197,312,151934%5,45,144,124,112,
pag=163,198,687,152,128,229,327,106,202,196,134,23(125,44,183,118,145,
prefetch=2,4,52,3,7,2,8,,53,9,25,2,79,36,6,25,1,13,

174 | 0.0398 | 0.0585 algorithm=82,380,729,392,263,401,186,43,251,181 1B8894,727,203,487,943,385,
cpu=26,82,234,93,100,33,67,13,196,43,85,39,20H 34X 7,69,98,
mem=86,21,134,34,165,41,12,1,115,20,46,10,159,9) 17,36,
disk=81,132,303,91,40,57,70,37,123,105,88,70,10378482,81,57,
natur=196,358,671,321,157,474,197,81,187,238,183168,391,143,389,689,398,
languag=165,206,1046,228,200,431,288,105,220,28520,281,298,43,347,184,442,
proces=251,579,1626,442,456,606,416,205,534,38833926,746,204,549,972,524,
program=269,437,1487,444,372,560,376,170,456,3117/37,686,604,128,453,462,522,

111 | 0.1706 | 0.1857 | languag=165,206,1046,228,200,431,288,105,220,28%520,281,298,43,347,184,442,
model=196,555,1227,441,392,557,369,143,335,325%385/41,663,207,518,921,514,
languag=165,206,1046,228,200,431,288,105,220,28520,281,298,43,347,184,442,
human=151,353,605,168,45,455,189,80,103,214,843(,104,187,481,193,
languag=165,206,1046,228,200,431,288,105,220,28520,281,298,43,347,184,442,
singl=154,407,939,324,306,380,310,142,391,244,B87793,614,166,461,756,442,

241 | 0.0570| 0.0672| sign=156,240,711,182,388,271,186,74,329,209,116481250,96,139,591,189,
Idap=,1,18,3,,,34,10,,1,2,1,,1,,1,,,

170 | 0.0277 | 0.0376 map=56,408,495,175,192,265,153,67,169,189,142,843122,161,322,627,277,

' ' web=86,312,989,222,121,346,464,193,197,312,15193485,45,144,124,112,
Table 5.12: CF and DF: Queries with better MAP by top QDF stwtthan
global IDF in the collection organized without subject

Qid | P@1Qs | P@16r | Number of sub-collections containing the query terms

93 0.0000| 0.4000 | charl=18, babbag=8, institut=18, inst=18

45 0.4000 | 0.7000 | augm=18, real=18, medicin=18

42 0.4055| 0.7000 | decrypt=17, enigma=10, cod=18

234 | 0.5138| 0.8000 | cal=18, pap=18, confer=18, workshop=18, multimedia=18

46 0.6476 | 0.9000 | firewal=16, internet=18, secur=18

110 | 0.6000| 0.8000 | stream=18, deliv=18, stream=18, synchroniz=18, audipviti®0=18, stream=18, appli=1

111 | 0.5000| 0.7000 | natur=18, languag=18, proces=18, program=18, languagnd8el=18, languag=18,

human=18, languag=18

123 | 0.3000| 0.5000 | multidimension=18, ind=18, near=18, neighbour=11, deat8

176 | 0.3000| 0.5000 | secur=18, web=18, cook=18, authenti=17, integr=18, cenfidl=17

186 | 0.1000| 0.3000 | electron=18, bus=18, data=18, min=18

206 | 0.4000| 0.6000 | problem=18, phys=18, limit=18, miniaturiz=16, micropess18

213 | 0.7000| 0.9000| gib=16, sampl=18

216 | 0.5000| 0.7000 | multimedia=18, retriev=18, system=18, architectur=18

33 0.6201| 0.8000 | softwar=18, pat=18

39 0.6328 | 0.8000 | video=18, demand=18

50 0.6757 | 0.8000 | xml=18, edit=18, pars=18

102 | 0.3000| 0.4000 | distribut=18, storag=18, system=18, grid=18, comput=18

163 | 0.8000| 0.9000 | multi=18, agen=18, network=18, internet=18

165 | 0.2000| 0.3000 | techno=18, disabl=18, handicap=17, peopl=18

174 | 0.1000| 0.2000 | internet=18, web=18, pag=18, prefetch=17, algorithm=p8~=18, mem=18, disk=18

207 | 0.7000| 0.8000| dom=17, sax=10

212 | 0.8000| 0.9000 | hmm=13, hidden=18, markov=17, model=18, equ=18

218 | 0.5000| 0.6000 | comput=18, assist=18, compos=18, mus=18, not=18, midi=10

229 | 0.2000| 0.3000 | lat=18, semant=18, anlysi=3, lat=18, semant=18, ind=18

43 0.3000 | 0.4000 | approxim=18, str=18, match=18, algorithm=18

Qid | P@1Q; | P@10r | DF’s in sub-collections

approxim=108,271,332,289,130,250,81,32,169,96,726493,418,180,290,822,253,

43 03000 0.4000 str=27,36,169,46,19,88,62,15,28,41,30,46,104,8P283140,107,

match=45,228,442,127,112,249,141,50,176,118,9306307,80,276,644,244,
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algorithm=82,380,729,392,263,401,186,43,251,181 188894,727,203,487,943,385,

229

0.2000

0.3000

lat=260,320,946,301,267,370,268,124,340,231,158/94]481,100,357,457,360,
semant=15,45,304,33,45,187,135,14,46,108,76,12M823,317,93,294,
anlysi=,,,, 1., 1,2,
lat=260,320,946,301,267,370,268,124,340,231,158/94]481,100,357,457,360,
semant=15,45,304,33,45,187,135,14,46,108,76,12M823,317,93,294,
ind=104,202,480,176,97,253,182,67,158,192,124,1712638,167,494,819,410,

218

0.5000

0.6000

comput=316,680,1902,571,539,677,547,204,554,41773381042,756,225,571,1030,553
assist=82,109,216,61,48,157,60,28,54,59,34,98,86940,77,111,
compos=53,155,273,83,73,131,105,19,80,121,85,113228,84,223,326,284,
mus=42,67,104,21,10,51,44,12,32,111,14,41,5,3 26121,
not=301,597,1756,545,462,646,507,241,542,387,308,900,745,202,553,998,538,
midi=,7,10,3,1,4,,,2,22,,3,1,,,,1,,

212

0.8000

0.9000

hmm=1,3,7,1,,6,2,,3,3,1,4,,,,4,67,1,
hidden=27,76,138,47,14,69,33,14,47,40,31,66,6216434191,79,
markov=3,6,24,25,6,31,4,,10,7,2,9,99,43,3,33,233,42
model=196,555,1227,441,392,557,369,143,335,325%385/41,663,207,518,921,514,
equ=142,309,446,371,206,218,121,59,226,119,13835M/57,182,444,883,389,

207

0.7000

0.8000

dom=1,9,25,2,,12,29,4,4,7,3,5,5,7,4,46,26,24,
sax=,,3,,1,1,5,3,,,,,7,4,1,1,2,

174

0.1000

0.2000

internet=74,184,972,140,56,257,547,183,218,280285157,84,19,102,33,89,
web=86,312,989,222,121,346,464,193,197,312,151934%,45,144,124,112,
pag=163,198,687,152,128,229,327,106,202,196,134,33(125,44,183,118,145,
prefetch=2,4,52,3,7,2,8,,53,9,25,2,79,36,6,25,1,13,
algorithm=82,380,729,392,263,401,186,43,251,181 188894,727,203,487,943,385,
cpu=26,82,234,93,100,33,67,13,196,43,85,39,20H B4 7,69,98,
mem=86,21,134,34,165,41,12,1,115,20,46,10,159,38) 17,36,
disk=81,132,303,91,40,57,70,37,123,105,88,70,10378482,81,57,

165

0.2000

0.3000

techno=257,491,1564,360,447,582,439,215,495,38®H68%141,532,134,387,531,388,
disabl=6,18,53,4,27,23,21,5,44,14,13,16,52,34,83130,
handicap=9,5,6,6,1,10,2,,8,6,1,4,8,3,1,5,5,1,
peopl=230,270,890,206,111,372,260,167,217,235,26158,33,41,122,146,172,

163

0.8000

0.9000

multi=12,64,98,41,38,92,103,10,52,45,36,41,191 36,345,258,89,
agen=111,121,566,107,47,399,265,75,89,132,118,08847,174,110,177,
network=140,309,1236,256,187,483,453,184,353,3833B9,650,664,66,364,422,323,
internet=74,184,972,140,56,257,547,183,218,280285157,84,19,102,33,89,

102

0.3000

0.4000

distribut=92,261,916,264,156,331,365,118,208,245.38,641,765,105,403,382,389,
storag=126,145,465,120,89,120,121,60,186,154,125,9206,70,254,141,133,
system=266,606,1780,494,504,696,508,234,559,43885,070,765,198,565,935,548,
grid=18,161,117,163,28,48,22,5,44,24,49,24,73,13854b,229,29,
comput=316,680,1902,571,539,677,547,204,554,41773381042,756,225,571,1030,553

50

0.6757

0.8000

xml=1,13,146,10,7,57,149,53,9,37,9,19,1,2,2,16,2,9,
edit=254,287,781,320,215,320,244,79,199,248,1593227317,91,262,310,310,
pars=7,24,123,19,12,84,81,17,17,38,26,49,30,27, 358V,

39

0.6328

0.8000

video=61,303,497,60,70,126,143,54,168,372,75,862344,105,248,41,
demand=124,164,597,157,142,210,182,122,218,178048198,191,48,140,123,151,

33

0.6201

0.8000

softwar=197,467,1603,368,305,495,417,207,442,309936,460,474,122,359,201,570,
pat=92,60,222,23,67,45,49,13,118,35,13,62,160,65%®,31,

216

0.5000

0.7000

multimedia=21,201,530,32,71,108,148,41,152,46580623,127,40,225,90,69,
retriev=51,97,351,67,15,245,154,37,58,177,60,98841,325,197,122,
system=266,606,1780,494,504,696,508,234,559,43885,070,765,198,565,935,548,
architectur=124,248,1081,217,318,357,352,115,3@2282,404,716,632,76,311,200,325

213

0.7000

0.9000

gib=11,2,19,11,,10,9,3,,11,1,11,2,3,12,11,93,5,
sampl=50,229,350,178,122,208,71,47,149,128,56,088,23,138,214,685,210,

206

0.4000

0.6000

problem=250,454,1400,492,384,576,394,205,400,293/29,842,692,195,522,965,515,
phys=118,243,318,344,83,167,75,18,147,81,87,121176911,103,316,102,
limit=186,397,1031,320,291,417,310,130,351,248 £2D662,521,160,418,757,427,
miniaturiz=12,16,33,11,9,9,4,3,19,4,4,,6,1,,1,1,1,
microproces=46,30,347,38,204,22,19,8,268,19,54183%,5,9,6,28,

186

0.1000

0.3000

electron=239,255,855,193,387,301,265,100,319,28%88,468,248,55,166,293,171,
bus=209,178,1007,134,249,297,279,219,403,186,16296,278,19,146,56,190,

data=221,529,1475,420,377,558,437,213,447,373,8302,56,641,196,585,880,486,

’
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min=90,121,312,111,68,252,70,38,113,56,102,147388287,299,408,209,

176

0.3000

0.5000

secur=98,72,761,80,42,140,327,165,120,123,122,2620,4,117,41,138,
web=86,312,989,222,121,346,464,193,197,312,15193485,45,144,124,112,
cook=19,31,64,12,3,31,32,14,8,11,12,35,12,11,2%,23,
authenti=,12,161,10,1,21,110,37,26,25,21,34,15,12,24,26,
integr=156,375,1134,319,394,458,326,176,355,2995196454,303,143,374,535,371,
confidential=5,4,59,4,2,4,26,12,10,8,5,20,3,3,,10,3,

123

0.3000

0.5000

multidimension=3,62,68,43,10,20,5,12,14,18,16,13,4%,48,86,122,28,
ind=104,202,480,176,97,253,182,67,158,192,124,1712638,167,494,819,410,
near=154,311,618,258,144,253,179,84,205,139,10826314,152,181,603,169,
neighbour=1,1,,1,,1,,,,,1,,2,1,2,2,15,1,
search=115,177,541,158,91,397,211,86,108,170,143349,277,109,355,592,221,

111

0.5000

0.7000

natur=196,358,671,321,157,474,197,81,187,238,18%168,391,143,389,689,398,
languag=165,206,1046,228,200,431,288,105,220,28520,281,298,43,347,184,442,
proces=251,579,1626,442,456,606,416,205,534,388B33326,746,204,549,972,524,
program=269,437,1487,444,372,560,376,170,456,311737,686,604,128,453,462,522,
languag=165,206,1046,228,200,431,288,105,220,28520,281,298,43,347,184,442,
model=196,555,1227,441,392,557,369,143,335,325%3@5/41,663,207,518,921,514,
languag=165,206,1046,228,200,431,288,105,220,28520,281,298,43,347,184,442,
human=151,353,605,168,45,455,189,80,103,214,813(4,,104,187,481,193,
languag=165,206,1046,228,200,431,288,105,220,28520,281,298,43,347,184,442,

110

0.6000

0.8000

stream=32,120,315,58,56,85,128,39,130,190,86,53,1887,81,115,81,
deliv=108,121,511,81,108,140,201,107,150,168,991%26215,15,75,33,155,
stream=32,120,315,58,56,85,128,39,130,190,86,53,1887,81,115,81,
synchroniz=16,77,248,58,71,42,96,25,114,139,14233330,18,93,22,175,
audio=45,137,265,29,32,59,96,27,98,275,41,31,34,35,37,30,
video=61,303,497,60,70,126,143,54,168,372,75,862344,105,248,41,
stream=32,120,315,58,56,85,128,39,130,190,86,53,1887,81,115,81,
appli=227,680,1625,499,444,615,474,212,503,4197343939,713,207,550,973,529,

46

0.6476

0.9000

firewal=,8,98,6,4,3,72,46,9,12,13,32,5,5,,3,1,6,
internet=74,184,972,140,56,257,547,183,218,280285157,84,19,102,33,89,
secur=98,72,761,80,42,140,327,165,120,123,122,2670,4,117,41,138,

234

0.5138

0.8000

cal=237,455,1227,373,308,500,390,162,404,321,26385%,688,182,513,809,482,
pap=237,229,535,162,195,281,181,54,171,172,11828(,50,218,559,971,543,
confer=158,142,474,101,245,213,137,51,96,154,953284363,70,274,243,250,
workshop=42,118,386,93,210,248,121,22,83,136,1163248,337,113,316,444,336,
multimedia=21,201,530,32,71,108,148,41,152,46580623,127,40,225,90,69,

42

0.4055

0.7000

decrypt=15,6,74,2,7,5,26,10,15,12,4,8,16,4,,3,1,13,
enigma=26,2,2,1,,6,1,,3,,3,2,,,,,,1,
cod=154,256,1090,339,199,276,283,128,321,213,269163,338,97,240,402,389,

45

0.4000

0.7000

augm=24,94,157,39,36,101,43,11,50,65,36,52,125391128,113,103,
real=210,574,1307,390,274,534,363,183,406,367,26/589,451,178,426,798,442,
medicin=35,84,106,67,2,94,15,9,10,33,16,35,7,10%881,18,

93

0.0000

0.4000

charl=166,31,178,47,34,51,59,16,19,26,25,54,3106021.30,15,
babbag=136,,14,,2,1,1,,4,,,5,,,.1,,,
institut=217,281,633,243,193,373,173,63,192,168324475,444,141,295,526,304,
inst=34,38,147,88,12,154,18,9,22,34,63,106,12341182,180,103,

Table 5.13: CF and DF: Queries with better P@10 by top QDRegjyathan
global IDF in the collection organized without subject

5.7.6 Element Retrieval with TF-IDF

Although in the definition of context-specific IDF, IDF can bemputed based on any non-

leaf node of the the collection tree, due to the computatioast we only define three types of

IDF: inverse document frequency, inverse section frequemd inverse paragraph frequency to

retrieve three types of elements: document, section arapgsh. The smallest element in our
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Figure 5.5: Comparison of single query performance residta global IDF, local IDF, top QDF
and top QInf strategies in the multi-collection organizeithaut subject
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experiment is the paragraph.

For the retrieval procedure:

(1)match all three types of elements containing query terms

(2)compute the RSV’s for all the elements, the rule for IDa$ing is as the
following:

if the element is a paragraph, then udk,,(t, Cjournal—year)

if the element is a section, then usé;(t, Cjournal)

if the element is a document, then udg,.(t, Cinex)

(3)re-rank the elements according to their RSV’s

To compare context-specific TF-IDF performance to the @asgF-IDF with the single

type IDF, we set up the runs as follows:

(1) Global IDF: using IDF computed based on the whole cdbhect

(2) Local IDF: using IDF computed based on the journal subkection to which
the element belongs.

(3) Mixed IDF: using global IDF for document, local journgpecific IDF for

section, and local journal-year-specific IDF for paragraph

IDF's used in global and local strategies are all computegtshree element type separately:
document, section and paragraph.

For the TF part, we still use maximum, element length, Poisssed normalization. Here

maximum normalization itf,,,.,(t,e) = %, length normalization if,,{t,€) = ”,\jL(t(:))
'ce )

and Poisson normalization is the same to document retrigyak,n.= nL”(Lt(g;j)rl.

Element retrieval results in table 5.14 show that retristategy with Poisson approximated
normalized TF and document based global IDF has the best diBson based TF has better
performance in retrieval strategies comparing to otheisTElement length normalized TF has
extremely low MAP and P@10, the reason may be that the elelaegth normalized TF is
biased to small elements, and ranks the small elements gbo i fact the small element may
not be judged as relevant during the assessment due toiii¢gaekough information, while their

parent elements are more appropriate to be judged as rélevan
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retrieval function globalidf (t,INEX) | localidf(t,journal) | mix idf(t,journal)

MAP P@10| MAP P@10| MAP P@10
idfyoe tTnax 0.0279| 0.3284| 0.0150| 0.2078| 0.0191| 0.5112
idfyoe tfsum 0.0063| 0.1052| 0.0051| 0.0802| 0.0164| 0.4078
idfgoe tfpoissona | 0-0533 0.5888| 0.0281| 0.3500| 0.0208| 0.5793
idfseotlimax 0.0261| 0.3284| 0.0162| 0.2560| 0.0229| 0.3509
idfseotfsum 0.0036| 0.0948| 0.0030| 0.0621| 0.0143| 0.1784
idfsec tfpoissona 0.0470( 0.5931| 0.0300| 0.4060| 0.0293| 0.4534
idf paratfmax 0.0244| 0.3241| 0.0159| 0.2638]| 0.0245| 0.4104
idf parartfsum 0.0028| 0.0828| 0.0024| 0.0534| 0.0114| 0.1198
idfpara thooissona | 0-0441| 05957 | 0.0293| 0.4060| 0.0324| 0.4845
idfioertfmax 0.0225| 0.3216| 0.0180| 0.2862| 0.0258| 0.4017
idfioe tfsum 0.0024| 0.0836| 0.0022| 0.0603| 0.0039| 0.0853
idfioc tfooissona 0.0406| 0.5922| 0.0333| 0.4793| 0.0386| 0.5052
idfy ¢ prtfmax 0.0258| 0.4500
idfg 5 pstfsum 0.0112| 0.1129
01l i 0.0317| 0.5862

Table 5.14: TF-IDF element retrieval with context-specibé-

Context-specific IDF in element retrieval, which choosesetgpecific and context-specific
IDF according to the type of the retrieved element, does aeelgood MAP, whereas the P@10
value is similar to the best P@10 value.

When we look into each query’s ranking list, we find that adf thns tend to rank documents
in high ranks. Because when the document contain more geenstthan the paragraptfit, d)
is greater thartf(t,e), as a result the document’s RSV is always greater than ggohgr This is
the case for global and local IDF strategy. Mixed IDF strategl give some lift on the RSV’s
of those elements that contain the rare terms in term of@e@tequency or paragraph frequency.
However TF normalization seems to play more important nolelement retrieval with TF-IDF
function.

Because the element retrievals rank the document highereiement, which makes top 10
the retrieval result list is similar to document retrievahd have similar average precisions as
document retrieval. While element retrievals return toagleanking lists, so that the MAPs are
very low.

For context-specific IDF, there are two aspects that deteththat our hypothesis did not
come true. The first is that pure TF-IDF retrieval functioagardless IDF type tends to rank doc-
uments in high rank as we discussed in the previous paragiidmhsecond is due to the system
limit, that we only maintain the document, section and peaply frequency spaces with respect

to INEX collection, journal sub-collection and journalsresub-collection. IDF on the sub-
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collection can show the term’s discriminativeness forisecbr paragraph in the sub-collection
, but not in the document. This result suggests that comgitiia IDF within the collection and
IDF within the document could better rank the elements arwich@nts. However it will in turn
unavoidably incur some parameters for the combinationchvig deviating from our original
target parameter-free.

Next, lets look at context-specific frequencies in LM. Aslidi, the probability that a doc-
ument generate a query term is based only on location freguémerefore, there are much less
runs than what we have with TF-IDF. We show both LM documetmieneal and element retrieval

result in the same section.

5.7.7 Context-specific Frequencies in LM

Using LM in structured retrieval has been explored by [SilgtZz®02], [Kamps et al., 2004], and
[Ogilvie and Callan, 2003] etc. [Si et al., 2002] used LM toigle: sub-collection, and smooth
the document weight by the collection weight, [Kamps et2l04] applied LM to XML re-
trieval, whose retrieval objects varied from document netnt. The important impact of this
work is the introducing element length prior into retriemabdel.

We just use a unified LM framework to retrieve both documernt element. Global or local
frequencies, based either document or element, can be aisshdothing. When simulating the
distributed retrieval, we use the same strategies as whdtincontext-specific TF-IDF retrieval:
QDF and QInf

As parameter tuning is not the main focus of our work, we setghrameted to classical
value 0.2, which has general good performance across tleetiohs (see [Hiemstra, 2001]).

Same to the experiment in TF-IDF, the document collectioritiser grouped by Journal
(subject), or year (without subject).

The smoothing strategies we use are:

(1) Global DF: Using DF, EF and LF to smooth document model.

(2) Local DF: Using DF, EF and LF within a sub-collection to@sth document
model

(3) Top promising collections: choose promising collestipthen use their local

DF, EF, LF to smooth document model.
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LM globaldf(t,INEX) | localdf(t,journal) | Top-6 QDF(qg,Journal] Top-6 QInf(g,Journal)
smoothing with| MAP P@10| MAP P@10| MAP P@10| MAP P@10
DF 0.2277| 0.4078| 0.1724| 0.2914)| 0.1749 0.3784| 0.0229 0.1078
SF 0.2418| 0.4138| 0.1510| 0.2586| 0.1563 0.3207| 0.0184 0.0983
PF 0.2556| 0.4414| 0.1388| 0.2328| 0.1613 0.3560| 0.0133 0.0776
LF 0.3210 | 0.5388 | 0.1999| 0.3750| 0.1934 0.4243| 0.0237 0.1035
Table 5.15: LM document retrieval with context-specific fburnal, with subject) frequencies
smoothing

LM global df(t,INEX) local df(t,year) | Top-3 QDF(q,year) Top-3 QInf(qg,year)
smoothing with| MAP P@10| MAP | P@10| MAP P@10| MAP P@10

DF 0.2277| 0.4078| 0.2201| 0.3931| 0.1074 0.3112| 0.0808 0.2698

SF 0.2418| 0.4138| 0.2303| 0.3871| 0.1105 0.3095| 0.0816 0.2733

PF 0.2556| 0.4414| 0.2365| 0.4060| 0.1235 0.3371| 0.0760 0.2716

LF 0.3210 | 0.5388 | 0.3049| 0.5216| 0.1603 0.4360| 0.0951 0.3096

Table 5.16: LM document retrieval with context-specific (mar, without subject) frequencies

smoothing

LM document retrieval results in table 5.15 and 5.16 show B{#d) smoothing with LF

can produce the best result. With the granularity dimimghismoothing with document, sec-

tion, paragraph and location basB(t|c) respectively increases the retrieval precision. This is

different from conclusion in [Hiemstra, 2001], which clachthat document model smoothing

with document baseB(t|c) outperforms the run smoothing with location bas¥tic).

LM smoothing with respect to global, local and top QDF prdngscollection strategy, shows

the same behavior to TF-IDF model that global strategy idts, then local strategy, and then

top QDF promising strategy. Smoothing with global DF, EF BRds better than smoothing with

local DF, EF and LF respectively. When the collection is aiged by subject, the local strategy

works similarly to top QDF promising strategy, but all arerg® than global strategy. While

there is no subject in each sub-collection, the local sisateorks similarly to global strategy,

and better than top QDF promising strategy.

Next we show the element retrieval results in table 5.17:

LM-element globaldf(t,INEX) | localdf(t,journal) | local df(t,year) mix df
smoothing with| MAP P@10| MAP P@10| MAP | P@10| MAP | P@10
DF 0.0126| 0.1664| 0.0070| 0.1112| 0.0118]| 0.1543| 0.0070| 0.1211
SF 0.0152| 0.2043| 0.0076| 0.1241| 0.0138| 0.1871| 0.0073| 0.1155
PF 0.0195| 0.2759| 0.0083| 0.1578| 0.0171| 0.2638| 0.0074| 0.1276
LF 0.0358| 0.4043| 0.0199| 0.3276| 0.0330| 0.3983| 0.0195| 0.3155
mixed DF 0.0053| 0.1276

Table 5.17: LM element retrieval with context-specific DF
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In LM element retrieval, still the retrieval strategy whismooths the element mode(t|e)
with global frequencies has a better retrieval result, acdtion based smoothing works the best.
Similar to LM document retrieval, local strategy works leetbn the collection organized without

subject than with subject. The reason should be the samesdseba discussed before.

5.8 Variance of LF as A New Discriminativeness Measurement

IDF indicates the discriminativeness of term, so does ILR toertain degree. Consideration
of the average allows for measuring the randomness of a tertheadeviation (variance) of
the actual document location frequency from the expectedident location frequendy(t, c)

([Amati and van Rijsbergen, 2002]).

If(t,c) :=

If(t,d) =

ol(t,c) = . g(lf(t,d) —If(t,c))? (5.14)

The deviationo?(t,c) (we use here the old and intuitive/Nip (c) factor in the deviation but
1/(Np(c) — 1) would be the statistically correct factor; however, thigisninor importance for
the discussion here.) is small for randomly distributednigrand large for the other terms. One
of the fundamental observations of term statistics is thatfion words (stop-words, terms that
are not discriminative, and do not lead to a high chance fevamt documents) are randomly
distributed, whereas “good” terms (terms that lead to @e\documents) are not randomly dis-

tributed ([Church and Gale, 1995], [Amati and van Rijsbergg002], others).

Formulating this observation in a mathematical theorera,dlaim is that the randomness

measure and the discriminativeness measure are correlated

02(t1,¢) > 02 (t2,€) <= idf(ty,c) > idf(tz,C) (5.15)

As in structured document retrieval elements can be viewetha intermediate between

locations and documents, we can formulate the randomneasureewith respect to elements:
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efit,c) = nNEét(’C(;)
efit,d) = ”I\Elét(’d‘];)
og(t,c) = ﬁ(c)%(ef(t,d)—ef(t,c))z (5.16)

Definition 5.16 for the randomness measure with respecte@tbment frequency is analo-
gous to definition 5.14 for the randomness with respect tédbetion frequency.
Analogously to rule 5.15, we formulate a rule for locationdamnesss?(t,c) andief(t,c),

and a rule for element randomnes$(t, c) andidf(t, c).

0P (t1,€) > 0P (tp,¢) <= ief(ty,c) > ief(ty, ) (5.17)
OE(t1,C) > 0Z(tp,C) <= idf(ty,c) > idf(ty,C) (5.18)

The investigation result of theorem 5.15 based on INEX ctitha is as the follows:
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Figure 5.6: IDF value against TF variance value

There is no correlation between IDF and TF variance, but Blyigegative correlation be-
tween their ranks. This result does not confirm our assumgtimut IDF and TF variance, which

is also good as it may be used into improve the performancBlef |

5.9 Summary

We have presented and investigated a new generalizedvedtniedel for structured document
retrieval in this chapter. The basic idea of the model is extrspecific frequencies and discrim-

inativeness. By context-specific frequencies we mean teatdtrieval function choose appro-
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Figure 5.7: IDF rank against TF variance rank

priate size of surrounding text for the retrieval object tuot the term, element or document
frequencies, also the type of frequency to compute the tésamichinativeness or to smooth term
weights. This is different to classical retrieval functowhich usually use global frequencies.

The motivation for the context-specific discriminativeme®mes from the observation that
in a structured collection, a term might be relatively freqtiin one sub-collection, whereas
the same term might be relatively rare in another sub-ctidlec Then, the term should have a
relatively small effect on the RSV of an element retrieveatrirthe sub-tree in which the term is
frequent, and, on the other hand, the term should have &edastrong effect on the RSV of an
element retrieved from the sub-tree in which the term is.rare

The main experimental finding is:

The retrieval function based on context-specific discrativeness is a generaliza-
tion of classical retrieval model, and does not require drii@heuristic parameters
for term weight or RSV propagation as those alternative @ggines in structured

document retrieval.

For document retrieval in the collection organized by sabjglobal IDF or LM
smoothed with global frequency have better performance theal IDF or LM
smoothed with local frequency. However if the collectiomat organized by sub-
ject, each sub-collection contains various subjects, thepal IDF has similar per-

formance to local IDF. Similar results of LM are obtained e texperiments.

For TF-IDF, the document based IDF performs the best; wikitst LM, P(t|d)

smoothed with document based probabif{t|c) performs the worst compared to
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element and location based probabilR{t|c), smoothing with location base®{t|c)

works the best.

Whether a collection is organized by subject has a strongaatnpn local or top
QDF promising strategy. If the collection is organized bljsat, then local strategy
works similarly to top QDF promising strategy, but worserthgobal strategy. If
there is no subject in each sub-collection, then localegsatvorks similar to global

strategy, and much better than top QDF promising strategy.

To select the most promising sub-collections, the numbelootiments containing
query terms in the sub-collection is a good criteria. The-soltection that has
more documents containing query terms tends to have maeardi document. The
sub-collections chosen by query informativeness are lkskyIto contain relevant

documents.

When doing context-specific IDF document retrieval experits, we also tried dif-
ferent TF normalization: maximum TF normalization, lengtbrmalization and
Poisson approximate normalization. Different combinadiof IDF and TF yield
different results. Poisson normalized TF and global IDF agfsvhas the best per-

formance.

The experiment in this chapter confirms that global IDF \getide best retrieval quality de-
spite the intuition that IEF or context-specific frequesa@ver better the specialties of element
retrieval.

In current experimental setting, we maintain a discrimigatess space for each sub-
collection. In theory, we would like to maintain a discrirativeness space per node in a struc-
tured document collection, which requires significant teses and has not been implemented
yet. We find that with our experiment setting, purely relyimg discriminativeness from a sin-
gle context would not improve the retrieval performancdfedént context-specific frequencies
should be combined in order to improve the quality of elemetiteval. The next research steps
could include the development and investigation of dynamiombination of context-specific

frequencies.
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Chapter 6

Model selection Based on Correlation of Query

Statistical Features and Performance

TF-IDF and Language Modelling (LM) are retrieval modelsiwstable and good performance
over sets of queries. For some queries, TF-IDF performshéfibr others, LM is superior.

Therefore, one idea to improve the overall performance daftdeval system is to choose for
each query the model that is likely to perform best. In thiapthr, we investigate the ranking
correlation of TF-IDF and LM, as well as the correlation adt&tical query features (SQF) and
query performance, in order to identify the query featutest imake TF-IDF better than LM,
or vice versa. We focus on the average term frequency (Av@ni)its related statistical query
features: number of documents with TF greater than AvgTF,qmage of documents with TF

greater than AvgTF, and relevant entropy of TF distributémd Poisson distribution.

This chapter is structured as follows. In section 6.1 wepthtice the motivation for ranking
correlation study. In section 6.2 we present the backgraamdesearch of query performance
prediction, and correlation test methods used in this $heStudies on average TF and TF dis-
tribution are shown in section 6.3. The mathematical amalgsthe retrieval models, and the
reason using correlation test is described in section 6.4ettion 6.5 we show the model selec-
tion experiments based on SQF, the empirical analysis &imgrcorrelation of retrieval models,
the statistical query feature values of selected queries,tlae analysis the experiment results.

The summary and future work are discussed in section 6.6.
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6.1 Motivation

To improve retrieval performance, IR researchers continwevelop new retrieval models and
study parameter estimation in retrieval models. Howevgs tan only improve the retrieval
qualities over some queries, not all queries. Even if a mbdslgood performance in one col-
lection, it is not guaranteed to have the same good perfazenamanother collection. The main
reason is that some models have a bias to certain kinds of ¢erens. Hence, if we choose an
appropriate retrieval model for each query based on itsstital query features against the data

collection, then the overall performance can be improvetaovuit further elaborating the models.

Previous studies show statistical query features (SQF@melated to the performance of
retrieval models. [He and Ounis, 2004] used statisticahygteatures to cluster the queries, and
showed that queries in the same cluster perform the samehwidicates that they are favoring
the same retrieval models. [Cronen-Townsend et al., 20824 elarity score to identify difficult
queries, which is more correlated to average precision tbdéh (the correlation coefficients
are from 0.368 to 0.577 in TREC2-8). The query’s clarity sc Kullback-Leibler distance
(or relevant entropy) between the term distribution in gueend collection. [Amati et al., 2004]
applied an information function as a query difficulty preitio in query expansion, and obtained

better performance by selective query expansion than cgeigrgnsion for all the queries.

In this study, we choose TF-IDF and LM as the candidates thelotodel selection, because
the two models have simple forms and robust performancésalso due to the fact that TF-IDF
and LM have different retrieval qualities for the same quernythe same collection, which is
necessary for our study. The candidate models are notatestronly to TF-IDF and LM, as long
as the two models work differently, we can choose a perfogmétrieval model for a query. As
a result we can achieve better average precision with migirigmodels than with any single

model. The question is which SQF should be used in the motisitsm.

To address the problem, we focus on average term frequengyT@® and within document
term frequency (TF) distribution. AvgTF of tertris the average term frequency among the doc-
uments containing terry denoted byavgtft,c) := % wheren, (t,c) denotes the locations
where termt occurs in the collection, andy(t,c) stands for number of documents containing
termt. Usually the discriminativeness of a term is decided bynit®ise document frequency
(IDF) within the collection, as a less frequently occurritegm is good to discriminate doc-

uments. IDF has been proved as an effective discriminas&measurement. However, we
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wonder whether two termg andt, are equally discriminative if they occur in the same amount
of documents, but with different distributions? For exaetploccurs innp(t;,c) =10,000 doc-
uments withavgtft;,c) = 2, to occurs innp(tz,¢) = 10,000 documents witlavgtfty,c) = 4.5.
Further, what if ternt; andt, have the same AvgTF 2, btjtis evenly distributed in these 10,000
documents, while, is mainly concentrated in 100 documents and occurs only oneach of
the remaining 9,900? The intuitive answer to the questiathas AvgTF and TF distribution
could have an impact on the performances of retrieval mod8ksiton, Church, and Kwok’s
work also support the idea: [Salton et al., 1975] showed dhgdod term is neither a very rare
nor very frequent term; [Church and Gale, 1995] showed tbhatdgerms are far from having a
Poisson distribution, have more documents with high TF tgrected by a Poisson distribu-
tion; [Kwok, 1996] showed that average TF and peaked IDF ngrave MAP; [Kwok, 2005]
showed that combined IDF and the distribution of average drFlmetter predict the query diffi-

culty, especially for short queries.

In this study, we propose a method using the statisticalygieztures to choose a suitable
retrieval model for each query. With two retrieval models-ICF and LM, we aim to divide the
training queries set into 3 groups. In one group, TF-IDF grenfs better than LM (i.e. average
precision of TF-IDF is greater than average precision of LM)he other group, LM performs
better (i.e. average precision of LM is greater than avemgeision of TF-IDF); and in the last
group, TF-IDF and LM perform similarly. Then we will check wh Statistic query feature can

better divide the queries into groups, and what is thresfalthe grouping.

Based on the assumption there is a correlation between a Sf)e@ieval quality, we expect
that the ideal relationship between the SQF and retrievalityu average precision (AP) - should
be as shown in figure 6.1: when the query’s SQF is less thareahbld values,, LM performs
better on this query; when the query’s SQF is higher thgnTF-IDF performs better; and for
query having SQF between andv,, either TF-IDF or LM can perform better on this query.
Note the threshold;, andv, are collection dependent, can be obtained empirically. Bying
the TF-IDF and LM separately on a training query set, anduatalg the retrieval results, we can
group the queries into three classes according to averagésfun. Subsequently, the threshold

of query features can be identified.

With the identified thresholds, the queries with SQF gretitanv; can be processed with

TF-IDF, the queries with SQF less thencan be processed with LM, and the queries having SQF
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betweenv; andv, can be retrieved by any retrieval model, but only one modelikhbe applied.

As the queries with SQF betwegnandv, can be applied to any retrieval model, therefore, these
queries can be merged into either group with SQF greatenthanless less thaw,. As a result,
only one threshold is required to choose a proper retrievalehfor the query. This setting will
hopefully lead to better retrieval performance, as eachmygigseassigned a retrieval model which

works best for it.

LM is better TF-IDF is better

i W
5 . . Choose TF-IDF
S| v o gl e g v1
L
el . .. ¢ we |% 35 8, 87 Choose either one
3 |v2 . P . v2
S
© .
rot +
E * .
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n = Choose LM

= 0 +

AP(TF-DF)— AP(LM)

Figure 6.1: The ideal scenario in which the queries can bapgd into 3 classes according to
SQF and AP: When SQF is greater than TF-IDF performs better than LM; When SQF is
less thanv,, LM performs better than TF-IDF; When SQF is betwegnand v, there is no
conclusion whether TF-IDF or LM has a better performance, retrieval model can be chosen
for this group of queries.

6.2 Background

This section introduces the background involved in thislgtuSome query features are intro-
duced in section 6.2.1, and the correlation test methodbealpip this chapter are described in

section 6.2.2.

6.2.1 Statistical Query Features

In this section, we introduce some previously studied stiaéil query features.

e Query Length.

Query length is the number of terms in a query. [He and Oufi832

Zhai and Lafferty, 2004] show that query length has a strofigce on smoothing in
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language modelling, and length normalization methods abg@bilistic models. For short

queries, the length impact is not significant.

e Distribution of Information Amount of Query Term.

idf(t) is usually viewed as a measure of the information carrieddosnt, and used to

maxcqidf(t)

predict query performance. [He and Ounis, 2006] proposedivee di4f) and eI

to measure the distribution of information amount carrieé iquery, but their experiment

shows that these two measures have a low correlation tevatiperformance.

e Query Scope.

Query scope is the number of documents in the collection iichvht least one query term
occurs, and it measures the query specificity. Due to thdtsétysto collection size, the

. . N (C) . . .

inverse algorithm Iog‘m is applied. However, [He and Ounis, 2006] shows that

there is no strong correlation between query scope and guefgrmance.

e Query Clarity.

Query clarity score is the measure of query ambiguity witspeet to a document col-
lection, initially proposed in [Cronen-Townsend et al.02Q It is the relative entropy
between a query language model and a collection languagelwith is expressed as

Eg'@; [He and Ounis, 2006] simplify the query language model to

follows Sy P(t|q) -log
the maximum likelihood estimation. Both of Cronen-Towrgs@md He find a strong cor-
relation between query clarity score and MAP. However [He @unis, 2006]'s simplified

clarity score does not outperform average inverse cotladirm frequency as query per-
formance predictor, and the clarity score in [Cronen-Toswitset al., 2002] is expensive

to compute.

e Average Inverse Document Frequency (AvIDF).

Inverse document frequency is given by % which is also an informative-
ness measurement for a query term. When used as query parfoempredictor,
AVIDF shows some correlation to MAP, but not as strong as yjudarity score

[Cronen-Townsend et al., 2002].

e Average Inverse Collection Term Frequency (AVICTF).
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Inverse collection term frequency, expressed asn—“L\‘é%, can be viewed as an alter-
native to IDF [Church and Gale, 1995]. It has strong coriefato average precision
[He and Ounis, 2006]. [Wang and Roelleke, 2006] shows thvat#e collection token fre-

guency (ICTF) has similar retrieval performance to IDF.

So far, the correlation of AvgTF and performance, and itsdotpn model selection have
not been studied. We will use AvgTF related features to jgteghich of the two models TF-IDF

and LM works better on a query.

6.2.2 Ranking Correlation Test

In order to identify whether the retrieval result from two dats are ranking correlated, we use
some popular correlation methods in probability theory atstistics: Kendall, Pearson, and
Spearman. These are used to test the strength and direétibe inear relationship between

two random variables. The Pearson method tests the caorelat the value, The Kendall and

Spearman test the correlation of the rank. However, the r&meacorrelation is based on the
rank assigned to the element of a list, whilst the Kendalffament is based on the rank order of
the elements [Abdi, 2007].

The Kendall coefficient is used to study the ranking orders, and is calculated ama/fsll

_N(N-1)-D(P,P)

NN 1) (6.1)

Kendall: 1

Here,N is the dimension of the variabl®, is the set rank paird)(P;,P,) is the number of
discordant pairs.
The Pearson correlation is the product-moment correlaifdhe value of two random vari-

ables, which express the linear relation of two random \ée®m

NYXYi— Y% > Vi 6.2)
VNZR —(5x)2\/N3Y2 -~ (3 91)2

Pearson: r =

Herex;,y; are two random variables.

Spearman correlation is the product-moment correlatigffiment for the rank:

65d?

NN T) ©3

Spearman: p=1—
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d; is the rank difference between the two random variaklgs.

From the formula we can see that the denominator ahd p are square or cubically in-
creasing with regard tdl. If N is very large then the coefficient will tend to be 1. This wid b
problematic when the correlation tests are based on higkmion data, or the data dimensions
vary greatly, which is common in retrieval ranking lists. fs different queries, the sizes of
retrieval results vary greatly, some queries have 100enafiresult, whilst others have 100K re-
trieval result. The correlation coefficient may be very eliéint. Even if the two retrieval models
may behave very similarly on different queries, the cotretatest result will be various due to
the size of the retrieval result. Being aware of this sharticw is important when interpreting

the experiment results.

6.3 Average TF and TF Distribution

In this section, we will show the reason that we are partityiaterested in AvgTF related query
features as retrieval selectors. Previous research hasssfally incorporated the AvgTF into
the retrieval functions, whilst we believe not only AvgTRjttkalso the distribution of TF can
impact the retrieval model performance. Because burstygeend to appear in a document with
high term frequencies, while low term frequency for nondtyrterms. Indeed, when we looked
into the detail of the TF distribution of query terms we fouthdt the TF distributions are greatly
different even if the query terms have the same AvgTFs. Heeegive the formal definition of

AvgTF:

Definition 10 Average term frequency (AvgTF) is defined as:

avgtfit,c) := : (6.4)
D

In this section we use TREC-3 query terms as an example, sgofwigTF against DF in
Figure 6.2. The horizontal and vertical lines in the figure mredians of AvgTF and DF, which
respectively divide the query terms roughly into 4 groupsguFe 6.2 shows that some terms
have high DF also high average TF, some have high DF and lovaged F, some have low DF
and high average TF, and the others have low DF and low av@ragAalthough the terms are
grouped into four classes, it remains hard to show the TKiloligion for each group. Figures
6.3, 6.4, 6.5, 6.6 show the TF distributions of some typieatis from each group, which can be

very different even when the terms have similar AvgTFs and.DF
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Figure 6.2: Average TF against DF: all 372 TREC-3 query terms
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Figure 6.6: Number of Docs (TF): Low DF and low average TF

Due to the big range of TF for some terms and the number of deatsrwith a given TF,
when we zoom the plot into a small area, some points will notisplayed. For example,
high DF and AvgTF term “test”, has more than 500 documentgaioimg “test” only once (
|{d|n_(test d) = 1}| >> 500), the number of these documents will not be displayed iagao
large to fit in the figure. Therefore, the number of documemwistaining the term “test” more
than 100 times|{d|n_(test d) > 100}|), and the high number for documents with very small TF
({d|n_(testd) = 1}| >> 500), will not be displayed in the figure either.

Intuitively we prefer the terms with high AvgTF and occugim more documents with a TF
greater than AvgTF, because this type of terms are the olingirms. The number of documents
that have a higher TF will more likely be high when the termB B high, therefore we think
that the proportion of documents with a higher TF than AvgTéuld be a more appropriate
statistical query feature for model selection.

Next we will give the definition of the number and the percgetaf documents with TF

greater than AvgTF of a terinin definition 11 and 12.

Definition 11 The number of documents with TF greater than AvgTF of a temdéfined as:

n-tf-gt-avgtf(t,c) ;= |{d|n_(t,d) > avgtft,c)}| (6.5)
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Definition 12 Percentage of documents with TF greater than AvgTF of a term t

|{d|n_(t,d) > avgtft,c)}|

p-tf-gt-avgtft,c) := o0

(6.6)

Here, {d|n_(t,d) > avgtf(t,c)} is a set of documents which contain term t with a frequency
higher than the average term frequency aftgtf) in the whole collection. g\(t,c) is the number

of documents that contain term t, and(d) is the times that term t occurs in the document d.

Figure 6.7 compares AvgTF, number and percentage of dodsméth TF above AvgTF
to IDF. It shows that AvgTF, the number and percentage of ohasus with TF above AvgTF
are all deviating from IDF. As IDF is not a very good query pemiance predictor (see
[He and Ounis, 2006], [Cronen-Townsend et al., 2002]), ss¢lAvgTF related statistical query
features (SQF) may act as an alternative query performarschgor.

Even if some terms have the same AvgTF, the total number areptage of documents
containing a term with TF above AvgTF, the distribution of fldf these terms can be different.
Let us look at figure 6.5, term “textil” has approximate 80 diments with TF=13, while other
terms (“amtrak”, “abesto” or “nra”) have only few documenigh TF=13. This distribution of
query term may help to choose retrieval model for querieshufch and Gale, 1995] observed
that a good term is far from having a Poisson distributiore iamber of documents containing
term with high frequency is higher than the expected numbatocument based on Poisson
distribution. Following this work, we expect that the quevith more terms far from Poisson
distribution will have better query performance. Therefove also check the distance of the
query term’s observed TF distribution from Poisson disitidn. The distance we use is defined
in equation 6.7. It is also referred as relative entropy olitkack-Leibler distance, and we will

call it relative entropy in the rest of the chapter.

Definition 13 Distance between observed TF distribution and Poisson S#iblution:

. Pobservegtf)
D (Pobserve|Proisson := ) Pobservdltf) - 100 ——— 6.7
(Pobservd|Proisson ; bservd f) - 1og Froseor ) (6.7)

In figure 6.8, we compare the relative entropy with IDF. Itwkdhat a term with low IDF
(high DF) tends to have high relative entropy in the docunsemtcontaining this term, i.e. the
relevant entropy is negatively correlated to IDF. The reasothat the size of document set

containing each term is different. For the terms with thesamsimilar DF, their relative entropy
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can be different. Because 6.8(a) is similar to figure 6.Afl®,plot the relative entropy against
the number of documents with TF higher than AvgTF in figure(l§.8 We can see that the

number of documents that have TF above AvgTF is stronglyetated to the relative entropy

(coefpearman— 0.9450221 p—value< 2.2e—16). Therefore, the number of documents with
TF above AvgTF can be used as an alternative to the relativepnwhen considering the cost

of computing.

In the later experiments, we will use the following AvgTFatdd query features to choose
retrieval model for each query: AvgTF, the number and pdegmn of documents having query
term with TF higher than AvgTF, and relevant entropy betwten probability of observing a
document containing query tertrwith TF n and probability of a document containing query

termt with TF n expected based on Poisson distribution with an average.TF

6.4 Mathematical Analysis of Ranking Functions

As there are many variations of ranking functions for LM anB-IDF models, we give the

definition of the ranking function for each retrieval moded wse in this chapter in table 6.1.

Model | Retrieval Functions

TE-IDF
RSMr.pr(d,q,c) = tfemzs(t, d) - idf(t, c) (6.8)
tedng
d
thapos(t, ) = % SR, K=1  (6.9)
idf(t, ¢) = log nNDfocg) — _logPb(t[c) (6.10)
M A-PRL(t|d)

SVu(dgo = S I _A-Rtld) 6.
RSV (d a0 = 3 100 (ahAgg) 6w
B (t|d) = ”I\Llit(’d‘;),a(qc) - ”I\Llft(’c‘;) A=02 (612

Table 6.1: Two candidate retrieval models

Here,n (t,x) is the number of locations (subscripfor location-based event space) at which
termt occurs inx, wherex can be a document, a query, the set of relevant or non-rdlevan
documents, or the whole collection. Accordingh(t,x) denotes the number of documents
(subscriptD for document-based event space). In TF-IDF model, K is sét tehich leads to
simplified BM25. And in LM,A = 0.2 is applied, which is the general setting for the linear

mixture model [Hiemstra, 2001].
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Next, we will show how the term weights change with respedifand DF/LF. To make the

formula shorter, we write the term weights as follows:

oty Np
WT|:_|D|:(tfd,df) = tfd+1~log af (613)
A Ha
Wi (tfy, tf) = log(1+ ——9—) (6.14)
(1-A)-<f

Heretfy = n_(t,d), df=np(t,c), tf,=n.(t,c), dl =N.(d), cl =N.(c), Np=Np(c).
Although we know thatfy andtf./d f are discrete variables in the retrieval system, the term
weights all fall into the curve of the function we defined aboVhe partial derivative of the term
function will show the changing rate of term with respect t6 &d TF.

The partial derivative of the TF-IDF term weight is:

OWTF-IDF 1 Np
o — " og—2 A
atf, (thy 112 9 af (6.15)
OWTF.IDF tfy
adf (i +1)df (6.16)

Similarly the partial derivative of the LM term weight is:

0W|_|\/| 1
T a— (6.17)
otfy [EREEATS
OWLm _ A-cl ~tfd (6 18)
otf, (1—A)-dl-t2+ A -tfy-cl - tf, '

From the partial derivatives, we can see that both of therpesgive with respect to TF, they
become smaller when TF increase (in other words, the terrghté@creasing rate will be less
distinct with the increasing of TF ). Partial derivativesthwiespect to DF/LF are both negative,
and also the absolute values become smaller when DF/LFasereln other words, the term
weights become small with respect to the increasing of DFdbB the changing of term weights
are less distinct when DF/LF are greater. To visualize ttenging of term weights, we plot the
term weights against TF and DF/LF in figure 6.9. To simplife tharameter in the figure, we
useP(t|d) andP(t|c) instead of TF and DF/LF. The definitions Bft|d) andP(t|c) used in the
figure 6.9 are listed in table 6.2.

From the figure and partial derivative we can see that botHOF-and LM assign high

weights to rare terms, especially TF-IDF will assign extetyrhigh weights to rare terms.
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TF-IDF LM

A0 = T L) —
t t.

Po(tlc) — "BlLe PL(t]c) = 1t

Table 6.2: The definition dP(t|d) andP(t|c) for TF-IDF and LM

W,
W,_M,Iambdy;bD.E ,,,,,,,

O P N W b~ O

p(t|d)

Figure 6.9: Term weights of TF-IDF and LM regardiRg(t|c) /P (t|c) andR (t|d)
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Although it is possible to analyze the weight changing rdi& single term, it is not possible
to predict multiple term weights as the term weight changatg varies according to TF and DF,
and the number of terms in a query is not fixed. Therefore wencajustify whether two models
are equivalent or ranking equivalent mathematically, ttoper way to test the ranking correlation
of two models is to use statistical correlation test. Alseréare no mathematical models between
retrieval performance and SQFs, so again, we rely on statishethods. In our experiments, we
will use Spearman and Kendall ranking correlation to testdbrrelation between the ranking

lists from TF-IDF and LM, and the correlation between SQF @neddifference of APs from two

models Gap = APrr.ipF — APLw).

6.5 Experiments and Results

The experiments are carried out on TREC-2, TREC-3 and TREGH8ctions with stemming
and stop-word removal. TREC-2 and TREC-3 share the sameardadicollection with 741,859
documents and 180,250,322 terms, but different querie€dR has 556,078 documents and
177,157,259 terms. TREC-3 is used to identify the queryufeat that correlate to retrieval
performance, and the thresholds that can divided the quérte two groups. Thereafter the
criteria will be applied to other collections TREC-2 and TRB. The queries used in this chapter
are title only, with an average query length 3.6 (max 6 and 2)ifor TREC-3.

The experiment methodology is described in section 6.5He fEsults of the ranking cor-
relation of the retrieval models and typical queries witlghhior low ranking correlations are
presented in section 6.5.2. The correlations of SQFsdpdire presented in section 6.5.3. In
section 6.5.4, we use the criteria identified based on TRE€e®oose retrieval model for the

queries, also apply the criteria to TREC-2 and TREC-8.

6.5.1 Experimental Settings

The experiments in this study has three steps: ranking letioe of the retrieval models, the

correlation of SQF and query performance, and model seletiased on SQF.

e Ranking correlation of retrieval models.

In order to test whether two retrieval models are rankingveent or highly correlated, we
run each query with two retrieval models, then use sta#iktitethod to test the correlation

of the ranking lists from the two models.
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If the correlation coefficient is 1, then the two models amekiag equivalent. And the
study should stop here, as the two models have the sameva¢pierformance. However
this would not be the case. If there is no ranking equivalegsts, it is still interesting
to find out whether some queries have high ranking correiaiod what kind of features

these query have.

Here, we compute the correlation coefficient based on thd @90 retrieved documents.
As stated previously, if we compute the correlation coedfitibased on the whole ranking
lists, the coefficient will be affected by the length of thekimg lists. For some queries
with less discriminative terms, the ranking lists will berlialong, whereas the queries
with high discriminative terms retrieve relatively fewena@iments. To better observe the
ranking correlation of two retrieval models, we would algelto investigate how many

overlaps between the ranking lists from two models.

Even if the two ranking lists are not highly correlated, trean have the same or very
similar average precision. Therefore we also test the taiioa of average precision for

queries.

Correlation of statistical query feature and retrievalfpemance.

In this part of the experiment, we look into the correlatidnacSQF and the difference
of two models’ AP fap,equalsARy — APt pE). The optimal case that we expect to
observe is as what is shown in figure 6.1: 1) TF-IDF performitebevith the queries
having SQF greater than thresheld 2) LM performs better with the queries having SQF
lower than threshold,; 3) TF-IDF and LM have the same probability to performs bette
with queries having SQF between andv,. As we apply TF-IDF to the queries in the

group 3, therefore only the thresholg needs to be found out.

In order to find the threshold, we first plot down the statatiquery features againéhp.

If the result looks like the ideal example that we have givefigure 6.1, then it is easy
to decide the threshold. Otherwise, the better method iartowgp thedap from the query
with smallest query feature, and find out the particular gdeature value that make the
> dap to have the maximum value. This query feature value will kettiveshold. The

definition is as follows:
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v=argmaxx) 3 (APLw (Gi) — APrripr(Gi)), sqf(g) <x (6.19)
|
wherei is query topic ID,sqf(q;) is the statistical query feature value for queyy

e Model selection based on SQF

After identifying the threshold; for each SQF, we can assign each query a better perform-
ing retrieval model according to the their SQF during theiegtl stage. If the query’'s SQF

is less tharvy, then we apply LM to this query; otherwise we apply Tf-IDFto i

We firstly run the retrieval process with model selection &®EC-3, where we identified
the threshold for the SQF, then we test this retrieval proesthe other two test collection

TREC-2 and TREC-8.

6.5.2 Ranking Correlation of TF-IDF and LM

In this section we show the ranking correlations of TF-IDE &M for all 50 TREC-3 queries in
table 6.3. All the correlation test are based on top 100@eretd documents. At the mean time,
the overlaps of the retrieval results are shown in the table.

From table 6.3, we can see that the correlations of the rgrists vary greatly from 0.856
to -0.104. And these ranking correlation coefficients hawes correlation to the overlap of
ranking lists €oef peqrmar= 0.6434712 p—value= 4.651e—07). Generally if the query has
high overlap from different models, then it tends to havehhigrrelation between the ranking
lists from the two models. Whereas some queries, like quédy, have high overlap but low
ranking correlation. Most importantly, there is no highkeng correlation between TF-IDF and
LM in general, which is necessary for model selection.

When we look into the ranking correlation for each query, wed that there are some queries
that do have a very high or very low ranking correlation betwéhe models. Thus we look
into their statistical query features to see if these qgehiave the same SQF. We list in table
6.4 the top-5 and bottom-5 ranking correlated queries withabd AvgTF of each query term.
The queries that have highly correlated ranking lists ugusve terms with small DFs, but no
significant correlation to AvgTFs. However the correlatioetweeny ., df(t) and the corre-
lation coefficient for two ranking lists based on whole TRB@d hoc topics, is not so strong

(coefpearmar— —0.4441297 p—value=0.001371).
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Qid ngig O\grllgg %’iggg Pearson| Spearman | Kendall
168 4 57 564 0.805 0.856 0.693
162 0 56 594 0.797 0.828 0.631
173 1 53 870 0.854 0.823 0.628
151 7 60 703 0.862 0.819 0.644
180 5 50 594 0.794 0.815 0.639
192 0 38 807 0.823 0.783 0.587
155 7 59 750 0.778 0.766 0.584
175 5 84 525 0.900 0.751 0.591
183 1 73 606 0.799 0.747 0.552
170 4 75 769 0.762 0.743 0.570
169 1 59 613 0.685 0.727 0.550
165 3 69 729 0.802 0.725 0.537
185 4 55 580 0.762 0.699 0.523
189 2 62 699 0.740 0.689 0.510
163 1 89 776 0.881 0.684 0.512
196 1 55 458 0.678 0.616 0.460
193 7 72 629 0.818 0.611 0.456
188 6 47 600 0.813 0.588 0.456
157 2 45 341 0.597 0.587 0.431
179 1 43 525 0.606 0.570 0.405
178 3 37 647 0.600 0.541 0.392
182 3 55 493 0.699 0.538 0.386
200 0 33 658 0.495 0.535 0.385
184 0 36 652 0.541 0.521 0.371
156 0 11 446 0.445 0.521 0.377
177 0 34 484 0.601 0.501 0.352
161 0 22 896 0.477 0.461 0.341
152 2 48 492 0.572 0.459 0.321
181 0 14 544 0.345 0.436 0.307
160 1 45 330 0.408 0.436 0.309
174 0 24 616 0.361 0.424 0.272
187 1 24 257 0.400 0.421 0.291
158 0 3 219 0.479 0.416 0.300
171 0 14 577 0.354 0.383 0.272
191 0 7 468 0.285 0.381 0.272
164 0 16 462 0.351 0.373 0.259
199 1 34 522 0.372 0.364 0.260
153 0 7 484 0.348 0.359 0.259
166 0 29 343 0.411 0.354 0.243
194 0 13 504 0.291 0.306 0.211
197 8 39 454 0.738 0.298 0.212
190 0 9 338 0.232 0.297 0.205
176 1 5 309 0.522 0.275 0.192
198 2 27 403 0.174 0.263 0.196
186 1 18 274 0.269 0.223 0.148
159 0 6 166 0.273 0.177 0.126
154 0 16 772 0.126 0.167 0.120
172 0 1 255 | -0.012 0.047 0.033
195 1 6 492 0.142 -0.039 | -0.014
167 0 5 294 | -0.130 -0.104 | -0.069

Table 6.3: Ranking correlation of TF-IDF and LM for each gueBorted by Spearmagn
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Qld ql %’iggg p T DF | DF and AvgTF of query terms

168 | 2| 64| 08s6| 0603 42845 purdClL R B nancL 6707

102 || 2| 54| oszs| oe31| 19268 | o0 AHONOT IR e 5047

75| 2| oo | ouss| ouas| zeeso| SLBIITE OCTES

181 ]| 3| 703 | oo | 0| 62558 | Ll TR erorowL 1 3376, prison=2.2599
180 || 3| o5 | 0e1s| 0630|904 | s p e ieffecive1.1261, Sanei=2.0696
150 || 3| 366 | 0477 026 | 287250 [ rEE i evelope2 3471, leciod 8560

0| 2| 72| otwr| oumn| wewe | T g

172 || 3| 255 | 0047 | 0033 | 271740 | el L mede2 1805, produci 3322

195 | 5| 492 | ouss | oot | sousz | DT APCISOS, mae 10z prs-277, ST
167 || 4| 204 | 004 | 0060 | 107863 | i egulod.0920, showL.7152, AS0E

Table 6.4: TF-IDF and LM: Statistics for top-5 and bottomesrelated queries

Next, we list the queries with top and bottom retrieval perfance from TF-IDF and LM
separately in the tables 6.5 and 6.6. The two models sharecmumon queries in top-5 per-
forming queries, one in the bottom group. The average pgoesn the bottom group are very
low. Nevertheless, we can not draw a conclusion which typguefries perform well with re-
spect to query length, IDF or AvgTF. Here, we test the coti@haof average precision from
two models. For the average precision, we care more abouidlue, therefore we use Pear-
son correlation to test the correlation of average precidiar the two models, and we get
CO€hbearson= 0.8792603 p—value< 2.2e—16. This means for most queries, the two mod-
els behave the same, but for some queries they behave differ we are able to find out those
queries with greadap from two models based on statistical query feature, thenamemprove
the overall retrieval performance. In next section, we &ilbw the correlation of SQF and the

Oap from the two models.
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| Qid || AP | P@10] ql DF | DF and AvgTF of query terms |
109 07321 oot | | v | SO0 e e e e
170 || 0:6651 | 0.8000) 4 | 25927 | pr co R, gel-3.002, mplana 4ato,mied 0215
163 || 0.6538| 09000 | 3 | 144264 | puf2 oG LI 00D wsuited 7112, 101 7398
186 || 0.0041 0.0000| 4 | 200074 | v G 5711, loame1.6739, lovebae
194 || 0.0019 | 0.0000| 3 | 189033 | rEe B O o0, wite1.4.2736
17 | o007 | 01000 & | o | B SIS, b0t i s
172 || 0.0000| 0.0000] 3 | 273740 | i re e ez 1805, produet=5.3222

Table 6.5: TF-IDF: Statistics for top-5 and bottom-5 pemigrg query
Qld | AP | P@10] ql DF | DF and AvgTF of query terms
103 07305 osoo] o | a0 D HTSEID e e wema e
170 | o730 msoon| 4 | ase27 | B e e e e ezt
173 | 07342| 07342 | 2| 24649 | pueri ) e dois ot
183 | 00489 | 06499 | 3| 144244 o EE T s 7112, el 7308
151 || 05040 0.7000| 3 | 62559 | Ll ER o1 3325, prison=2.2509
195 | ouo]| auo| o | s DA nAEE IS perrreT S
185 || 00078 | 0.1000| 4 | 200074 | it Gl 6o nnet 5711, oam-1,5739, lovebae
155 || 00019 | 0.0000 | 4 | 90907 | e amental-1 4124, ight-10ABInG=1. 5278
172 0.0000 | 0.0000 271740 DF: effectiv=55594, med=30238, product=185908

AvgTF: effectiv=2.0313, med=2.1809, product=3.3322

Table 6.6: LM: Statistics for top-5 and bottom-5 performungery
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6.5.3 Correlations of SQFs an®dp of TF-IDF and LM

In table 6.7, we list the average precisions from two mod&is,(APrr_pr — AP.m) and the
statistical query features (DF, AvgTF and Entropy) for eA&EC-3 query, also the correlations
of SQFS andap. Out of 50 query topics, eight queries have better resubis fT F-IDF model,
and LM generally has better retrieval performance. Detilthese 8 queries are listed in table
6.8. The correlation 0dxp with some statistical query features are also listed theltres the
last two rows of table 6.7. The correlation between relagimeropy anddap is the strongest one

among all the query features we tested.

Table 6.8 shows that the queries having better TF-IDF perdmice usually have small DFs.
However, there is no conclusion for AvgTF, and these AvgTiHpuery terms range from 1.1716
to 3.4824 compared to average AvgTF 2.1422.

We obtain the threshold by plotting the SQFs againsdpd AR v — APre.pr) in figure 6.10,
and observing the threshold which can divide the queriestimb groups. In one group, most of
the queries have better performance with LM, in the otheugrenost have better performance
with TF-IDF. The observed thresholds are 6 for AvgTF, 20,8@0relative entropy, 20,000 for
number of documents with TF higher than AvgTF and 0.6 for eetage of docs with TF above
AvgTF. The threshold can also be automatically calculatarling to the formula 6.19.

Next we will run model selection experiment based on thestioél identified in this section.

6.5.4 Experiment Results of Model Selection

With the thresholds identified in the previous section, weose a retrieval model for each query.
If the SQF of a query is less than the threshold, then LM isiadpbtherwise, TF-IDF is applied.
Firstly we run the model selection retrieval on TREC-3, anal@ate the result in table 6.9. The
best run igVIAP=0.2252 and P@10=0.446My using relative entropy.

To test whether the SQFs and their threshold identified inaliection will work on the
other collections, we run the experiments in the same waydifferent test collection: TREC-
2 (same document collection as TREC-3) and TREC-8 (diffedercument collection). We
obtain the results in table 6.10. Both of them have a minoravgment with model selection.

To better understand why the criteria found in TREC-3 failedvork in the other two col-
lections, we looked into the correlation of SQF abg on TREC-2,3,8 in table 6.11. It shows
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TF-IDF LM
Qld AP | P@I0 AP [ P@I0 0AP | 06P10 DF | AvgTF Entropy
161 0.607 | 0.607 | 0.348 | 0.500| 0.259 | 0.107 19803 4.54 6918.0
154 0.538 | 0.100| 0.357 | 0.100| 0.182| 0.000 42558 6.21 | 17648.4
192 0.408 | 0.600 | 0.313| 0.100| 0.095| 0.500 45806 8.55| 18841.9
160 0.242 | 0.300| 0.185| 0.400| 0.057| -0.100 || 172266 524 | 777413
188 0.194 | 0.900| 0.151| 0.900| 0.043 | 0.000 2990 2.73 1671.5
168 0.281| 0.600| 0.241| 0.200| 0.039| 0.400 42845 4.55| 16665.0
174 0.247 | 0.200 | 0.226 | 0.100| 0.020| 0.100 28753 10.85| 23324.0
189 0.145| 0.600 | 0.133| 0.300| 0.012| 0.300 92056 4.80 | 35906.0
169 0.141| 0.200| 0.133| 0.100| 0.008 | 0.100 || 140547 7.97 | 60652.2
155 0.007 | 0.000| 0.002 | 0.000| 0.005| 0.000 90997 7.06 | 34273.6
183 0.654 | 0.900 | 0.650 | 0.650 | 0.004 | 0.250 || 144244 9.81| 65417.0
179 0.022 | 0.000| 0.019 | 0.100| 0.003 | -0.100 96334 6.83 | 36541.0
172 0.000 | 0.000| 0.000 | 0.000| 0.000| 0.000 | 271740 7.54 | 102335.6
171 0.018 | 0.000 | 0.019| 0.000 | -0.001| 0.000 || 107152 7.48 | 63398.2
194 0.002 | 0.000| 0.004 | 0.000| -0.002 | 0.000 || 189033 4.73 | 98213.9
195 0.006 | 0.000| 0.009 | 0.000 | -0.003 | 0.000 || 250932 9.90 | 93422.0
186 0.004 | 0.000 | 0.008 | 0.100 | -0.004 | -0.100 || 200074 6.79 | 87433.9
193 0.215| 0.215] 0.222 | 0.222 | -0.006 | -0.006 12708 3.16 8220.8
187 0.002 | 0.100| 0.009 | 0.100 | -0.008 | 0.000 || 196867 6.15 | 84447.1
197 0.011| 0.400| 0.020 | 0.400 | -0.010| 0.000 || 217892 6.92 | 90939.6
178 0.063 | 0.000| 0.076 | 0.000 | -0.013 | 0.000 5816 211 29735
173 0.721| 0.721| 0.734| 0.734| -0.013 | -0.013 24649 4.38 | 10531.3
167 0.001 | 0.000| 0.015| 0.000 | -0.014 | 0.000 || 197863 9.18 | 89289.5
185 0.258 | 0.400| 0.275| 0.800| -0.018 | -0.400 || 221971 7.83 | 928315
200 0.133| 0.100 | 0.152| 0.400 | -0.019 | -0.300 || 117249 10.23 | 46147.5
152 0.057 | 0.300| 0.079 | 0.500| -0.021 | -0.200 || 179105| 11.20| 82284.9
177 0.153| 0.100 | 0.182| 0.500 | -0.029 | -0.400 || 154847 6.35| 46552.6
176 0.014| 0.000 | 0.047 | 0.300 | -0.034 | -0.300 || 104651 3.61 | 45884.2
180 0.180 | 0.400| 0.220 | 0.300| -0.039 | 0.100 9074 4.76 4540.8
184 0.034| 0.000 | 0.074| 0.300 | -0.040 | -0.300 || 267530 10.50 | 110483.3
165 0.289| 0.700 | 0.334| 0.700 | -0.045 | 0.000 || 290485 9.63 | 89876.5
175 0.174 | 0.300| 0.220 | 0.300 | -0.046 | 0.000 || 153400| 12.48| 61108.9
198 0.032| 0.000 | 0.080| 0.200 | -0.048 | -0.200 84104 5.72 | 445442
190 0.005| 0.000 | 0.062 | 0.300 | -0.057 | -0.300 || 226996 8.26 | 89435.1
163 0.732| 0.900| 0.793 | 0.900| -0.061 | 0.000 || 111027 10.51| 61341.6
166 0.034| 0.000| 0.100| 0.300 | -0.067 | -0.300 91884 7.88 | 45118.3
170 0.665| 0.800| 0.738| 0.900 | -0.073 | -0.100 25927 790 | 14174.8
191 0.059 | 0.200| 0.137 | 0.400 | -0.078 | -0.200 || 158543 5.90 | 71596.5
181 0.015| 0.000 | 0.095| 0.100 | -0.080 | -0.100 || 158653 9.85| 64626.1
164 0.009| 0.000| 0.121| 0.500 | -0.111 | -0.500 || 314007 12.23 | 135117.7
151 0.429 | 0.600| 0.544 | 0.700 | -0.115 | -0.100 62559 5.74 | 21630.4
159 0.013| 0.000 | 0.132| 0.500 | -0.118 | -0.500 || 287250 6.44 | 109822.6
182 0.171| 0.600 | 0.306 | 0.800 | -0.135| -0.200 || 162512 16.10 | 71365.8
199 0.034 | 0.000| 0.176 | 0.500 | -0.143 | -0.500 45583 6.60 | 22886.4
162 0.226 | 0.400 | 0.409 | 0.409 | -0.183 | -0.009 19268 291 | 10138.3
157 0.215| 0.400 | 0.404 | 0.700 | -0.189 | -0.300 || 140620 9.47 | 64275.5
156 0.053 | 0.200| 0.249 | 0.900 | -0.197 | -0.700 || 216153 8.98 | 90677.9
153 0.023| 0.000 | 0.223 | 0.600 | -0.200 | -0.600 || 389192 12.87 | 161481.1
196 0.247| 0.100 | 0.530 | 0.900 | -0.283 | -0.800 || 331008 12.99 | 147246.3
158 0.034 | 0.000| 0.409 | 0.800| -0.375| -0.800 || 274018 8.39 | 120854.4
corp -0.3656 | -0.3550 -0.4842
p-value 0.0094 | 0.0118 0.0004

Table 6.7: TF-IDF and LM: AP and P@10 for each query, cori@tadf SQFs andap
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Qld || APre—ipr | ARwm | DF | DF and AvgTF of query terms
DF: acid=10938, rain=8865
161 0.6070] 0.3481 | 19803 AvgTF: acid=2.3835, rain=2.1535
DF:0il=38477, spil=4081
154 0.5385] 0.3566 | 42558 AvgTF: 0il=3.4824, spil=2.7263
DF: cleanup=3248, 0il=38477, spil=4081
192 040801 0.3130 | 45806 AvgTF: 0il=3.4824, spil=2.7263, cleanup=2.3396
DF: caus=62740, cur=108877, vitamin=649
160 0.2421) 0.1848 | 172266 AvgTF: vitamin=1.9322, cur=1.7542, caus=1.5506
DF: beachfront=188, eros=2802
188 0.1941] 0.1515 2990 AvgTF: beachfront=1.2128, eros=1.5157
DF:amtrak=532, financ=42313
168 0.2807] 0.2415 42845 AvgTF: financ=1.6706, amtrak=2.8816
DF: motiv=7446, murd=9318, real=75292
189 0.14481 0.1329 | 92056 AvgTF: real=1.7702, motiv=1.1716, murd=1.8592
DF: cost=103601, garbag=2059, remov=32893, trash=1994
169 01410 0.1334| 140547 AvgTF: cost=2.5, remov=1.9913, garbag=1.9262, trasts725
Table 6.8: Statistics for top queries with better TF-IDFfpanance than LM
18 T T T T T T 180000 T T T T T T
16 o i 160000 | ° -
14 + i .. 140000  °° . i
I | & 120000 | o .
= o2 g 100000 G 8 -
g’ 10 o o o — © o oo g§
z . K . . 2 80000 oL -
8r e ] & 60000 - ° P & -
6 o © oo °°o ° E o 40000 F oo@og) i
4 " 20000 ce e e o o
2 ] L’ ] L ° ] 0 ] ° L o ] L °
-04 -0.3 -0.2 -0.1 0 0.1 02 0.3 -04 -03 -02 -01 0 0.1 0.2

Number of Docs (TF>AvgTF)

Difference between TF-IDF and LM Average Precision

(a) AvgTF vsdnp

120000

(b) Entropy vsdap

100000

80000

60000

40000

20000

)

L°

0.3
Difference between TF-IDF and LM Average Precision

0
0.4

Figure 6.10: Statistical query features g (APre-pr — APLm)

-03 -02 -01 O

Difference between TF-IDF and LM Average Precision
(c) Number of Docs(TBAVgTF) vs dap

T ™y 16 T T T T T T
'_
i 2 14 o 3 .
7\( o
N 1.2 - . o .
7] £ 1+ ’ - %9 .
a S e
1 8 0.8 |- oo oo:o‘”" ° -
1 5 osf o ed _
g oaf o - "
] c
R g 0.2 o ]
L ° gf 0 1 1 1 1 1 1
0.1 0.2 0.3 -04 -0.3 -0.2 -0.1 0 01 02 03

Difference between TF-IDF and LM Average Precision
(d) Percentage of Docs (TFAVQTF) vs dap



6.6. Summary 183

that the correlations between SQF apg on TREC-2 and TREC-8 are much lower than TREC-
3, although the correlation in TREC-3 is already relativer.loThis explains why there is no
distinguishable improvement on retrieval performancehia dther two collections. This also
underlines that the SQF arddp need to be correlated in order to use a SQF to choose a model

which is likely to perform best.

TREC-3
Improvement% Improvement%
MAP TF-IDF | LM P@10 TF-IDF | LM

TF-IDF 0.1763 0.2880
LM 0.2194 0.4300
AvgTF=6 0.2169 23.0| -1.1| 0.4260 47.9| -0.9
Entropy=20000 0.2252 27.7| 2.6 0.4460 549 | 3.7
Number of Docs=20000Q| 0.2169 23.0| -1.1| 0.4260 479 -0.9
Percentage of Docs=0.6 0.2212 255| 0.8| 0.4240 472 -1.4

Table 6.9: Using AvgTF related SQF to choose different modelrREC-3

TREC-2
Improvement% Improvement%
MAP TF-IDF | LM P@10 TF-IDF | LM
TF-IDF 0.1641 0.3260
LM 0.1541 0.3560
AvgTF=6 0.1621 -1.2 5.2 | 0.3500 7.4\ -0.17
Entropy=20000 0.1652 0.8 7.2 0.3620 11.0 1.7

Number of Docs=20000| 0.1263 23.0| -18.0| 0.3294 10| -75
percentage of Docs=0.6 0.1837 11.9| 19.2| 0.4370 34.0| 22.8

TREC-8
Improvement% Improvement%
MAP TF-IDF | LM P@10 TF-IDF | LM
TF-IDF 0.1955 0.3260
LM 0.2323 0.4220
AvgTF=6 0.2343 19.8| 0.9 0.4320 325| 24
Entropy=20000 0.2240 14.6| -3.6| 0.4080 25.2| -3.3

Number of Docs=20000| 0.2126 8.7| -85 0.3740 14.7| -17.8
Percentage of Docs=0.§ 0.2348 20.1 1.1 0.4360 33.7 3.3

Table 6.10: Using AvgTF related SQF to choose different noiteTREC-2 and TREC-8

6.6 Summary

This chapter studied the ranking correlation of retrievaldels and how to select an appropriate

model for a query according to its statistical query fea(@@F).
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AvgTF Entropy Number of Docs| Percentage of Docs
(TF>AvgTF) (TF>AvgTF)
p | p-value p | p-value p | p-value p | p-value

TREC2| -0.298| 0.035| -0.240| 0.091| -0.251| 0.077| -0.102 0.478
TREC3|| -0.359| 0.010| -0.366| 0.009| -0.406| 0.003| -0.2981 0.035
TREC8|| -0.096| 0.502| -0.079| 0.583| -0.156| 0.278| -0.0095 0.947

Table 6.11: Correlations ajyp and SQF in TREC-2,3,8

Regarding SQFs, this study focused on AvgTF, TF distribytibF, and relative entropy
as criteria for model selection, as it is known that inclgdiévgTF into a retrieval model can
improve retrieval performance and combining AvgTF and IR predict query performance to
a certain degree. The main findings regarding these pati@QFs are: (1) Only when there
exists correlation between a SQF ah)@, it will be possible to improve the retrieval performance
by SQF-based model selection; (2) the relative entropy skoled TF and random (Poisson-
expected) TF are more correlatedds than AvgTF and DF are.

The main contribution of the study with SQF and ranking datien is the methodology for
model selection based on statistical query features: figas the correlation of models and the
correlation of SQF and performance difference in order toidke whether and how to select a
model. The work focuses on TF-IDF and LM, and a few SQFs. Q@tisréhe model selection is
based on one single query feature, and this could be pdtgmtidended into a combined feature
space. This study confirms that it is difficult to identify aagh threshold for a single SQF.
The correlations between SQFs adgh differ in different collections; therefore, future work
is to incorporate the correlation coefficient into the perfance prediction (model selection).
Also, the model selection should have access to possiblg@danount of models, i.e. the space
of models contains many synthetic variants of TF-IDF, LM atider models where parameter
learning aims at both, firstly at the optimization of theimtal quality, and secondly at achieving

a strong correlation between a SQF and performance differ@ap) to enable model selection.
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Chapter 7

Conclusions

This chapter summarises the work that has been carried dhisithesis. We also outline our

contributions to IR and make suggestions for future re¢earc

7.1 Summary

Firstly, we investigated the theoretical interpretatidnT&-IDF from various aspects based on
binary independence retrieval (BIR) model, Poisson mddelguage modelling (LM), and in-
formation theory. With the “average” characteristic of tReisson model, we built a bridge
between BIR model and LM, and showed that the components 9DFrare an inherent part of
this equation. Based on the term independence assumptoshewed that the decomposition of
relevance probabilities or odds, which are adopted in thesital probabilistic model BIR model
and language modelling, will lead to TF-IDF formulation enaertain assumptions. While the
decomposition based on the term disjointness assumptals e the DQI model, which mea-
sures the relevance of a document to a query according trendepcy between the document
and the query. Once more the DQI model theoretically justifie-IDF: TF-IDF is the integral
over the DQI model.

Secondly, we introduced an important aspect of this thgsishabilistic logical modelling”.
We illustrated how to build retrieval models with the probistic standard query language and
relational algebra, namely PSQL and PRA. We demonstrateditterent ways of probability ag-
gregation with the TF-IDF model, we also demonstrated tiferént probabilistic assumptions

in the modelling can result in the same model having differesults. For non-probabilistic
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operations, we presented alternative ways, some of whignowed retrieval performance. In
this thesis, we implemented a classical probabilistic &R model, language modelling, a
non-probabilistic model TF-IDF, and a precision- and rebaked evaluation.

Thirdly, we proposed context-specific frequencies for pimlity estimation and term
weighting in structured document retrieval. These freqiesiwere based on the ranking re-
quirement that the parent element should be ranked highmodt of its children contain the
query term, or ranked lower if very few of its children comahe query term. The context-
specific IDF helps to meet such a requirement when it is defisezigeneralised inverse element
frequency. The element retrieval with context-specifiqérencies did not meet our original
expectations. However, context-specific frequencies skdgevomising results in our mock dis-
tributed retrieval in the hierarchically structured caliens, where each sub-collection did not
have a common subject. In such an environment, documergvatwith context-specific fre-
quencies showed similar performance to the retrieval uglobal information. This discovery
has a practical implication to distributed retrieval.

Finally, we presented a method how to choose a query a ratmesdel that is likely to per-
form well, based on the correlation of statistical querytdiees and model performance. This
study was motivated by the observation that there is not@esirtrieval model which can out-
perform all other models on all queries. For some queries, randel performs better and for
another set of queries, a different model is superior. Thiseovation suggested that retrieval
performance could be improved by choosing an appropridteval model for each query rather
than elaborating a single model for all of the queries. Basethis postulation, we chose TF-
IDF and LM as our candidate retrieval models. Then, we exaththe ranking correlation of the
two models and the correlation between the retrieval perémrce and TF related statistical query
features. Unfortunately, it remained difficult to find a ghénreshold with single feature which
would group the queries for a specific retrieval model. Nthedess, the retrieval result from the
model selection framework can behave differently when #agure space and candidate models

are extended to a larger scale.

7.2 Contribution and Future Work

In this section, we outline the contribution of and futurerkvior each aspect of this thesis:

e The strictly parallel investigation of BIR model, Poissondel and LM clarifies the event
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spaces, the ranking rationales and the relevance assursitiothe aforementioned mod-
els. Moreover, the derivation demonstrates that the Poissodel can be viewed as a
bridge (Poisson bridge) connecting BIR and LM. Thereford& Bnd LM can be used in a
dual way to represent TF-IDF. Further study of the LM-likecdmposition ofP(d|q) for
independent terms yields a TF-IDF interpretation whiclelated to the probabilistic odds
O(r|d,q). On the other hand, the decompositiorPg§|d) based on disjoint terms leads to
a document and query independence(DQI) model which cadditedeo TF-IDF by using

the integral.

In the future, the retrieval quality of the DQI model can beestigated. As this model
shows similar formulation to mutual information, we are tged to explain the DQI model
as the mutual information between a query and a documens, Tinther investigation on

the DQI model with mutual information theory is worthwhile.

Probabilistic relational modelling enables both probgbiestimation and quality mea-
surement to be integrated into the retrieval model. Such@harésm gives the modelling
greater flexibility, allowing probability estimation to ®nducted during retrieval time
without instantiated probability representation beinguieed. Moreover, probabilistic re-
lational modelling facilitates implementing retrieval deds in a compact and flexible way
in order to meet customised user information needs. Suctactaistics are useful and
desirable in order to support the development of rankingtagies beyond the classical

document retrieval.

In the future, how to incorporate complex probability esition needs to be investigated
in order to be able to implement more ranking models. Furntfoee, the probabilistic
relational modelling can be applied to other searching @@ pather than just document-

based corpora, e.g. web-mining or product recommendation.

The context-specific frequencies can bring document andegié retrieval into a gener-
alised retrieval model, even the collection selection. t€xirspecific discriminativeness
can be understood as choosing the right discriminativesigase for different retrieval ob-
jects. Our experiments show that context-specific fregiesncan help to effectively rank
documents in a structured document collection, despitdattiethat they do not perform

well with element ranking. The results indicate that cotyspecific frequencies can bring
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scalability and flexibility to retrieval management. Apiply the context-specific frequen-
cies to the distributed retrieval environment avoids bo#intaining centralised statistical

information and using global information to rank documents

Additional tests regarding context-specific frequenciascollections without a general
topic would be helpful to further validate the effectivesed context-specific frequencies.
Since the context-specific discriminativeness from a simgintext does not achieve good
retrieval performance in element retrieval, combiningrdrequencies in a certain con-
text with frequencies in the parental context for term wéiggn should be considered for

element retrieval in the future.

e The study of model selection contributes a methodology kecs¢he appropriate model
based on both the ranking correlation of retrieval modeis, the correlation of statistical

query features with model performance.

In future model selection work, the correlation coefficiean be incorporated into a per-
formance predicting function to deal with the fact that tlerelations of statistical query
features and query performance vary according the callectiMachine learning tech-
niques such as maximum entropy or Bayesian neural netwankse applied for query
classification. When a single feature is insufficient for mlagklection, multiple features
can be applied. Therefore, more query features are needealitientified and the model

selection should have access to a large number of models.
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