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Abstract

After the introduction, this thesis comprises three chapters that examine

the monetary policy transmission channels in the European Union. The chap-

ters focus on two channels of monetary policy transmission: credit supply and

expectation channels including periods of unconventional monetary policy.

Chapter 2 analyses the effects of a monetary policy shock on the euro area

with a focus on disaggregated inflation expectations. The key finding is that

the responses of inflation expectations in the euro area have become weaker

in magnitude and less dispersed over time. There is evidence of convergence

among consumer expectations after 2012 during the zero lower bound period.

The responses of inflation expectations after 2012 take more time to react (more

than six quarters compared with the four quarters before 2008) and are weaker,

on average, in the long run than the responses before 2008. The heterogeneity in

the responses of EA countries and various demographic groups is substantially

reduced after 2012 following the implementation of unconventional monetary

policy. The determinants of the heterogeneity among countries are partly ex-

plained by the share of manufacturing and degree of unemployment protection.

Chapter 3 finds a positive effect of the PSPP, a leading component of the

ECB’s monetary policy, on the volume of small loans received by SMEs, espe-

cially the smallest category of below 0.25 million euros, and small changes in the

costs of borrowing. There is a corresponding change in SMEs’ cost of borrowing

perception estimated from the survey data. Using the fixed effects model and

a panel of EU countries, I find that an increase in the PSPP’s monthly net

purchases of 1% of GDP is associated with the volume of loans rising by 47

million for loans below 0.25 million euros, with the cost of borrowing falling by

174 basis points.

Chapter 4 forecasts MFVAR, which has a lower root mean squared forecast

error than a random walk forecast. This study extends the mixed frequency

methodology into a new domain of survey variables and argues for their im-

portance in tracking monetary policy transmission through the credit channel.

In addition to short-term forecasts, I produce monthly estimates of the percep-

tion of economic activity obtained from the bank lending survey. The resulting

monthly series for the survey variables capture the perceptions of economic ac-

tivity from the perspective of bank managers. These forecasts of bank lending

conditions can thus capture the drastic changes in lending conditions amid the

sovereign debt crisis in the euro area ahead of the official quarterly release.
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Two survey measures, one of consumers and one of senior loan officers, cap-

ture the perception of economic agents and highlight differences among EA

countries. The literature has not thus far assessed a particular monetary pol-

icy (MP) channel using these surveys. Yet, the tools for such an analysis are

well developed and can provide new insights. The following chapters bridge

this gap. The remainder of this section briefly outlines the latest developments

and challenges in the MP literature and positions this thesis chapter with their

corresponding contributions to this strand of the literature.

The global financial crisis of 2007 forced central banks to engage in UMP

when interest rates reached their zero lower bound (ZLB). As a result, the

European Central Bank (ECB) implemented a number of unconventional tools,

which were followed by theoretical and empirical studies that aimed to analyse

their effectiveness.

The ZLB should be expected to last long into the future, which emphasises

the importance of a ZLB MP investigation (Kocherlakota, 2019). There are two

reasons for a prolonged ZLB period. First, empirical estimates of the natural

real interest rate have been decreasing over the past decade. This smaller buffer

makes an economy more vulnerable to even small shocks and thus pushes rates

towards the ZLB. Second, in the event of another financial crisis, as interest

rates fall, there will be no room for central banks to protect the economy from

adverse shocks, which might reduce aggregate output and further deepen the

recession.

Unconventional tools can be broadly separated into forward guidance and

large-scale asset purchases (LSAPs). Forward guidance refers to communication

by MP authorities that aims to form public beliefs about central bank policy

(Rossi, 2019, p. 2). For instance, announcements that interest rates are being

kept lower for longer would change the market’s belief about the future path of

interest rates. The mechanism of announcement effects is described by Eggerts-

son et al. (2003, p. 44). Quantitative easing (QE) summarises changes in both

the size and the composition of a central bank’s balance sheet.

The main challenge faced by the researcher was the identification of the

unconventional policy rates, as standard methods did not apply or described

the data poorly Wright (2012). Five approaches have been used in the litera-

ture to identify unconventional policy Rossi (2019): the shadow rate approach,

heteroscedasticity-based identification, high frequency identification, use of ex-

ternal instruments, and use of functional vector autoregression (VAR).

To place the following chapters in the context of the literature, chapter 2 uses

the shadow rate approach to find the heterogeneous effects of UMP on inflation

expectations in the EA. Chapter 3 discusses an alternative approach that uses

large panel data to analyse the Public Sector Purchase Programme (PSPP),
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which lowers the agreed interest rates for loans under 0.25 million euros and

reduces the perceived credit constraints for small and medium-sized enterprises

(SMEs). Finally, Chapter 4 shows the importance of the bank lending survey

(BLS) for the EA and conducts a forecasting exercise that produces monthly

values for the survey outcomes as well as one-step ahead forecasts that perform

better then naive forecasts.

1.0.1 European Monetary Union (EMU)

To discuss the motivation for these chapters, it is important to highlight the

goals of the EMU. The Treaty creating the monetary union put price stability

as a primary objective of MP in the EA (Article 127). The European Economic

and Monetary Union is a historic project that first aimed to unite 11 economies

(now 19 at the time of writing). These are diverse countries that possess the

additional challenge of assessing MP in the form of the potential heterogeneity

of causal relationships. There is evidence that the underlying fundamentals for

their business cycles are not synchronised (Granville and Hussain, 2017; Bagnai

et al., 2017).

The two main challenges in the initial stage of the monetary union were to

establish the credibility of the institution and set up a consistent approach to

conduct MP. These challenges re-emerge at the time of crisis and are still worthy

of further scrutiny. A number of tools have been used to deal with the above

challenges. Most importantly, price stability has become the main measurement

of a bank’s accountability. From the very beginning, the ECB emphasised the

importance of communicating policy and the economic reasoning behind its

actions. The main publicity event has become the press conference held by

the president and vice-president immediately right after the governing council

meeting.

The underlying premise for the forthcoming chapters is the ECB’s primary

mandate, namely medium price stability for the EA, which is implied to be

2–5 years according to Trichet (2003): ‘monetary policy needs to focus on the

period covering the whole transmission process’. The price stability mandate

was further reinforced by the ECB introducing an explicit forward guidance on

the future paths of interest rates in July 2013.

The price stability target is applied to a collection of historically different

countries, which motivates these chapters to investigate whether the MP trans-

mission channel has the same effects across Europe and over time.

14



Chapter 2

Effects of unconventional

monetary policy (UMP) on

disaggregated consumers’

inflation expectations in the

euro area (EA)
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Since 1999, the ECB has overseen the implementation of the EMU, which

is composed of a group of economies that are culturally, historically, and demo-

graphically heterogeneous. This study analyses one of the channels of MP trans-

mission, which runs through forming consumer expectations of future prices.

The ability of EA member countries to withstand negative macroeconomic

shocks such as the global financial crisis in 2007 and European sovereign debt

crisis was identified as a major barrier to the success of the monetary union from

its initiation. In particular, the responses of inflation expectations are relevant

to changing the real interest rate during the ZLB period.

The inflation expectation transmission channel is particularly relevant during

periods of UMP. For instance, as shown by D’Acunto et al. (2017), inflation

expectations are closely linked to willingness to spend; yet, they substantially

vary across demographics. Furthermore, the seminal study by Mankiw and Reis

(2002) highlighted the uneven information dissemination across the population.

Inattentive consumers explain the sluggishness in the responses of consumption

to an income shock (Reis, 2006).

Central banks’ communication has changed dramatically in the past two

decades (Gürkaynak et al., 2005; Haldane and McMahon, 2018). Therefore,

studying consumers’ inflation expectations is necessary for understanding the

propagation of MP shocks to consumption, especially during a period of UMP.

Moreover, Koop et al. (2009) found evidence that the MP transmission channel

changes over time—even during periods of conventional MP.

The contribution of this study is twofold: it finds declining heterogeneity in

the responses of consumers’ inflation expectations in the EA and it includes the

period of the financial crisis in the sample to assess the effectiveness of UMP

in the post-2012 period. Additionally, this study focuses on disaggregated con-

sumer expectations, as opposed to market-derived expectations or professional

forecasts.

Consumer expectations are preferred to the alternatives for three reasons.

First, consumers’ inflation expectations have less incentive to provide disingen-

uous information about their opinions, which are correlated with their finan-

cial decisions (Arnold et al., 2014; Armantier, Bruine de Bruin, Topa, van der

Klaauw, and Zafar, Armantier et al.; Coibion et al., 2017). Second, consumer

forecasts fit the Phillips curve better, as found by Coibion and Gorodnichenko

(2015). Third, inflation expectation data are segmented into age categories

only at the level of consumer surveys, which allows me to analyse different

demographics. For the remainder of the thesis, inflation expectations refer to

consumers’ inflation expectations.

This study bridges a gap in the literature by exploring how the formation

of inflation expectations has evolved over time at the country level and by de-
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mographic group. I investigate the MP transmission channels using consumers’

inflation expectations and their variation across various demographics for 10 EA

countries. Figures A.2 and A.3 illustrate the diversity of inflation expectations

disaggregated by age group and country. While the inflation expectations series

remained relatively stable, the inflation index, overall, dropped from 2.3 to 1.4

percent and its standard deviation rose from 0.3938 to 1.0896.

Following this introduction, Section 2 presents the methodology and covers

the latest developments in incorporating inflation expectations into structural

models. Section 3 describes the data and empirical analysis. Section 4 concludes

and highlights the limitations and areas for further research.

2.1 Methodology

Traditionally, small VARs have been used to analyse MP (see, for instance,

Christiano et al. (1999)). However, this methodology has two limitations. First,

it incorporates only a small selection of macroeconomic variables. Second, omit-

ted variables can lead to bias. Bernanke et al. (2005) (BBE) outlined the issue

of econometricians using a smaller dataset than the one used by MP authorities.

BBE argued that this may lead to structural shocks being misspecified because

MP reacts to variables that are omitted from small models. Benati and Surico

(2009) made a case for MP’s contribution to the period of the Great Moderation

and concluded that omitted variable bias may be present in the VAR estimates

of the impact of an MP shock.

The problem with omitted variable bias, also noted in the literature as ‘non-

fundamentalness’ Sargent and Hansen (1981); Lippi and Reichlin (1994); Canova

and Hamidi Sahneh (2017), is particularly acute in the context of estimating

the effects of a structural MP shock on inflation expectations. This is because

the adopted methodology should be able to accommodate the key macroeco-

nomic variables as well as variables representing inflation expectations. Section

2.3.3 demonstrates the failure of small VARs with zero restrictions and sign

restrictions to identify shocks precisely. Therefore, an empirical model should

be able to fulfil two requirements. First, as numerous variables are necessary

to estimate a disaggregated series of inflation expectations, researchers can stay

doubtful about the formation of inflation expectations. Second, the empirical

model should be able to capture the time variation of inflation expectations to

test the hypothesis that the formation of inflation expectations has changed in

the past two decades.

It is difficult to justify a constant relationship between inflation expectations

and inflation given that the sample from 1990Q1 to 2017Q4 includes the global

financial and sovereign debt crises. Factor-augmented VAR (FAVAR) with time-
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varying coefficients and stochastic volatility meets the above criteria because it

can address both issues, namely the number of variables and changing inflation

expectations. Furthermore, this methodology can estimate disaggregated series

in a unified framework.

In the seminal paper that outlined the limitations of small VARs, BBE

introduced a FAVAR model that summarises the dynamics of a large dataset into

a smaller number of common factors. Building on BBE, Baumeister et al. (2013)

(BLM) proposed a time-varying version of the FAVAR model that incorporates

all the necessary components for estimating the MP transmission channels. This

model can handle large numbers of variables, includes observed factors, and

allows the coefficients to vary over time.

Since the introduction of methodologies that can handle large datasets, the

literature on MP transmission channels has used them to include disaggregated

series. For example, in the case of inflation, researchers have included break-

downs of the widest available Consumer Price Index (CPI) data. In this vein,

Altissimo et al. (2009) used a dynamic factor model to examine the period from

1985 to 2005 with 404 CPI indices in the United States.

BLM estimated the effects of MP on disaggregated price dynamics using the

FAVAR model, taking 138 US series from 1975Q1 to 2008Q1. They reported the

price puzzle to be present only for some of the series, diminishing gradually after

the 1980s. BLM’s findings coincide with those of the decline of the real effects

of MP surprises at the aggregate level. Studies adopting FAVAR methodologies

mostly concentrate on US data, such as Bernanke et al. (2005); Favero et al.

(2005); Stock and Watson (2005). Among those studies focusing on European

data are McCallum and Smets (2007); Eickmeier (2009); Galariotis et al. (2018).

Bils and Klenow (2004) also found that the frequency of price changes varies

significantly across different type of goods. They compared data with the results

of sticky price models to find that actual inflation rates are more volatile and

short-lived. Balke and Wynne (2007) estimated the disaggregated producer

price index (PPI) response to an MP shock, which has a significant relative price

response. Similarly, Clark (2006) found the average persistence of disaggregated

prices to be lower than the persistence of aggregate inflation in the United States

for 1984-2002.

Altissimo et al. (2009) aggregated 404 sub-indices of inflation in the EA to

examine the dynamics of inflation persistence. They found that idiosyncratic

shocks explain most of the variance of sectoral prices. However, one common

factor was found to be the main driver of aggregate dynamics. Additionally,

they found that the slow propagation of MP shocks on the prices of services

explains persistence in aggregate series. Boivin et al. (2009) found that dis-

aggregated prices respond quickly to sector-specific shocks, whereas aggregate
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shocks produce effects only in the medium to long run. Boivin et al. (2008) es-

timated an EA-wide structural model. Lastrapes (2006) and Balke and Wynne

(2007) demonstrated that money supply shocks have long-run effects on the

commodity price distribution.

De Graeve and Walentin (2015) considered sectoral pricing behaviour and

estimated a dynamic factor model to find that both the variance and the persis-

tence of inflation are driven by aggregate and sector-specific shocks. Bianchi and

Civelli (2015) investigated the globalisation hypothesis, pinning down inflation

stability using a time-varying parameter VAR. They found that the contribu-

tion of the global effect has increased over time in some countries’ inflation, but

that this cannot explain recent inflation dynamics.

There are, however, some criticisms of the FAVAR methodology. Boivin

and Ng (2006) criticised rich data models and showed that including too many

variables in a factor model can distort the factor estimates. The justification for

a large model in this study is based on the assumption that consumers form their

inflation expectations by observing the policy rate and extracting information

from a number of key published macroeconomic and financial variables. Boivin

and Ng (2006) developed a test for the identification of a number of factors,

which I discuss further in the empirical application.

Most studies adopting this methodology rely on US data (Bernanke et al.,

2005; Favero et al., 2005; Boivin et al., 2009). The literature on the implemen-

tation of FAVAR models in the European Union (EU) is scarcer than in the

United States. For instance, Galariotis et al. (2018) estimated the effects of

conventional MP and UMP using FAVAR and two alternative models. They

found a weaker effect of both MPs on peripheral EA countries compared with

the core group. This chapter also incorporates time variation into the model to

account for the ZLB period and possible structural change in the MP transmis-

sion channel.

The recent literature has also taken advantage of time-varying models. Vari-

ation over time is used both in time-varying factor loadings and in time-varying

factor dynamics. Del Negro and Otrok (2008) introduced a model incorporat-

ing time-varying factor loadings and stochastic volatility. Mumtaz and Surico

(2012) estimated time-varying factor dynamics to analyse changes in the com-

mon components of inflation in the industrialised world. Baumeister et al.

(2013) provided another example of the implementation of time-varying factor

dynamics into a model.
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2.1.1 A time-varying FAVAR model with stochastic volatil-

ity

The model is estimated using Bayesian methods. Appendix A.1.1 describes the

estimation and demonstrates the numerical methods. In this section, I highlight

a few of these details.

FAVAR models incorporate extra information into traditional VAR models

by assuming that a number of factors (fewer than the number of variables)

capture most of the co-movement of the series. Furthermore, recent extensions

of these models incorporate time variation within the coefficients and stochas-

tic volatility. Baumeister et al. (2013) and Ellis et al. (2014) described the

methodology of time-varying parameter FAVAR with stochastic volatility. The

considered model has the following form:

Xi,t = ΓiZt + ei,t (2.1)

Zt = φ1,tZt−1 + φ2,tZt−2 + ...+ φL,tZt−L + vt (2.2)

whereXi,t is a panel ofN variables over the T time horizon; Zt = F 1
t , ..., F

j
t , Rt

is a matrix that includes j latent factors that summarise the co-movement of the

variables of interest and an observed factor Rt; ei,t are idiosyncratic components

with variance/covariance diagonal matrix E[e
′

i,tei,t] = Σ; and Γi is a vector of

the factor loadings. A model that incorporates a large amount of information

is less likely to suffer from omitted variable bias.

Since this study focuses on examining the impulse responses of consumer

expectations over time, the model is extended using time-varying coefficients

and stochastic volatility. Time variation allows for changes in the dynamics

of shock propagation coming from changes in consumer behaviour. Stochastic

volatility incorporates the variation in the volatility of the underlying series.

In the recent literature, time variation has been applied to both factor load-

ings and factor dynamics. Del Negro and Otrok (2008) studied changes in the

international business cycle and were the first to incorporate time-varying fac-

tor loadings and stochastic volatility. They found a decline in volatility in 19

countries. Mumtaz and Surico (2012) applied a dynamic factor model with time

variation in the dynamics of the factors to study the evolution of common and

country-specific inflation components. The time-varying FAVAR model esti-

mated in this work is closely related to that of Del Negro and Otrok (2008),

Mumtaz and Surico (2012) and Baumeister et al. (2013). Equation (2.1) of the
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time-varying FAVAR model can be written as follows:
X1,t

...

XN,t

Rt

 =


Λ11 · · · Λ1j Ψ11

... · · ·
...

...

ΛN1 · · · ΛNj ΨN1

0 · · · 0 1




F1,t

...

FN,t

Rt

+


e1,t

...

eN,t

0

 (2.3)

where Λ are the factor loadings and Ψ are the loadings on the observed variable.

The structure of the loadings matrix allows for observed variables to be loaded,

and Equation (2.2) then has the following form:

Zt =

L∑
l=1

φl,tZt−l + vt (2.4)

where Zt is F 1
t , F

2
t , ..., F

j
t , Rt and L is the lag length. I adopt the number

of lags L = 2 following the works of Cogley and Sargent (2005) and Primiceri

(2005). The law of motion for φt = φt−1 + ηt and innovation for V AR(vt) ≡
Ωt = A−1t Ht(A

−1
t )′, where Ht and At evolve as random walks.

Two alternative specifications can be used to implement time variation.

Del Negro and Otrok (2008) allowed for time variation in factor loadings Γ

and Φ. Alternatively, time variation was implemented by Mumtaz and Surico

(2012) and Baumeister et al. (2013) to allow for the changing dynamic of the

transition equation. This study follows the latter approach. Time-varying fac-

tor loadings imply time-invariant coefficients in the transition equation, which

determines the dynamics between the state of the economy and policy rate.

This assumption would be highly implausible with the sample that covers the

2007–08 crisis and sovereign debt crisis. On the contrary, the time-varying dy-

namics of the factors have the flexibility to allow for structural breaks in the

factor dynamics.

MCMC methods

I estimate the joint posterior density of the parameters of interest by sam-

pling iteratively from the conditional densities using the Markov chain Monte

Carlo (MCMC) method. The model is estimated using Bayesian methods (see

Appendix A.1.1 for the details on the algorithms). After discarding the first

100,000 iterations, the results presented in Figure 8 are based on 1000 itera-

tions of Gibbs’ sampling algorithm. Evidence of convergence is presented in the

Appendix Figure (A.1). The model is estimated using the Bayesian methods

described in Kim and Nelson (1999).

The MCMC algorithm has the following steps:

21



1. Set the priors and starting values (described in Appendix A.1.1).

2. Conditional on the factors, Z and observed variables, X, sample the factor

loadings Γ.

3. Conditional on the factors, Z and factor loadings, Γ, sample the variance

of the error terms of the observation equation, Σ from the IW distribution.

4. Conditional on the factors, Z and error covariance, obtain the VAR coef-

ficients in the transition equation using the Carter-Kohn algorithm φ.

5. Conditional on the factors, Z and VAR coefficients, φ, sample the error

covariance following Cogley and Sargent (2005): the diagonal elements of

the VAR covariance matrix are sampled using the methods described in

Jacquier et al. (2002).

6. Given the factor loadings, Γ, error covariance matrix in observation equa-

tion, Σ, VAR coefficients in the transition equation, and error covariance

matrix in the transition equation, Ω, obtain the factors using the Carter–

Kohn algorithm. Given Γ and Zt, draw R.

Iterate steps 2 to 6 M times. When M and M0 are sufficiently large but M >

M0, the marginal posterior distribution of each parameter can be approximately

obtained from the last (M −M0) iterations.

2.1.2 Identification

Following the methodology proposed by Uhlig (2005), restrictions are imposed

on the contemporaneous response of the three observed variables following Ellis

et al. (2014). Tightening MP is identified as an increase in the interest rate, but

a decrease in output and inflation:

(IRF )Y(t,h=0) < 0

(IRF )π(t,h=0) < 0

(IRF )MPR
(t,h=0) > 0

I calculate the impulse responses of factors Γi to monetary shock Rt. The

normalisation of the shock implies a change in the shadow rate by 100 basis

points. As a robustness check, this study also follows the recursive identifica-

tion of Bernanke and Blinder (1992); Bernanke et al. (2005); Baumeister et al.

(2013), with the MP variable ordered last. The Cholesky identification achieves

similar structural responses in inflation expectations, yet is more sensitive to

the selection of lags and factors.
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Following BBE, the factors are identified by fixing a K ×K block of ∆f as

an identity matrix, and the upper K × 1 block of ΨR is zero.

The impulse responses are calculated according to Koop et al. (1996, p. 122)

and Fry and Pagan (2011, p. 950):

(IRF )Zt,h = E[Zt+h|ωt, Zt−1, µMP ]− E[Zt+h|ωt, Zt−1] (2.5)

where ωt represent all the parameters in the model and µMP is the MP shock.

This approach is aimed at obtaining a single value θ, which denotes a single IRF

and minimises the criterion in Fry et al. (2005). The procedure, also known as

median target method (MT), chooses such θ(k) that the impulse response is

closest to the median response. The algorithm proceeds as follows:

• Obtain impulse response function for a set of models (100) that satisfies

sign restrictions. Obtain this for each time period in the case of the time-

varying model.

• The standardised impulse responses are stored in a vector φ(l) for each

value θ(l).

• Choose l such that MT = φ(l)
′
φ(l) and use that l to calculate the impulse

responses.

2.2 Data and Empirical Analysis

2.2.1 Data

To have a balanced panel, I restrict the sample of inflation expectations to 10

EA countries (Belgium, Germany, Greece, Spain, France, Italy, the Netherlands,

Austria, Portugal, and Finland). Following Bańbura et al. (2015), I extend the

dataset using the Area Wide Model dataset for the EA (Fagan et al., 2005).

These extensions allow me to use the period from 1990q1 to 2000q1 as a training

sample to set up the priors, as in Baumeister et al. (2013) and Ellis et al. (2014).

Table A.1 in the Appendix lists the macroeconomic variables. The results of the

alternative specification that follows the dataset of BBE, with a shorter sample

from 2000Q1 and 148 variables, are comparable to the baseline results presented

in the next section.

Following Galariotis et al. (2018), I use the shadow rate of Wu and Xia

(2017) for Europe (see also the shadow rate for the United States Wu and Xia

(2016)) as a proxy for the MP stance. The data span from 1990q1 to 2017Q4.

This period was chosen to maximise the number of observations for the selected
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countries. Several countries were not included because of a large number of

missing observations. Note that the shadow rate of Wu and Xia (2017) for Euro

Area is constructed based on a term structure model, exploiting the non-binding

zero lower bound for the long term bonds. This methodology might not continue

to be an effective policy rate tool when the term structure flattens further.

2.2.2 Quantifying survey data on inflation expectations

The data on consumer surveys in the EA are provided by the European Com-

mission (EC). Unlike data from the Survey of Professional Forecasters, EC data

do not contain point estimates and only present the proportions of the respon-

dents making an open interval statement (prices would: increase more rapidly,

increase at the same rate, increase at a slower rate, stay about the same, or

fall).

There are ways to quantify the qualitative data from surveys on inflation ex-

pectations. The main two methodologies, which provide the point estimates of

expected inflation, are the probability (Carlson and Parkin, 1975) and regres-

sion approaches (Pesaran, 1985, 1987). Furthermore, there extensions to the

above approaches, notably, the correlation approach was proposed by Batchelor

(1982). For the literature review of the above methodologies see Smith and

McAleer (1995) and Batchelor (2009). Based on the forecast root mean square

error, they concluded that a regression approach is preferable for all variables,

except for prices for which the probability approach was superior. However,

the results of the above approaches require strong assumptions about perceived

inflation (i.e. what inflation consumers have observed in the past 12 months)

to answer the survey question. Therefore, in this article I consider the simpli-

fied balance statistic to avoid making additional assumptions while maintaining

interpretability of the inflation expectations measure.

To avoid making these assumptions, I consider the balance statistic presented

in the EC dataset:

Balance = PP + P/2−M/2−MM

where PP , P , M , and MM are the answers regarding inflation increasing more

rapidly, increasing at the same rate, staying about the same, and falling, respec-

tively. Additionally, I derive a simplified balance, which is the sum between the

proportions of consumers expecting prices to rise:

InflationExpectations = PP + P

This simplification allows the impulse responses of this variable to be interpreted
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more easily. For instance, a positive (negative) value of 10 would imply that an

additional 10% of consumers expect prices to rise (fall) in the next 12 months.

Here, I follow the balance statistic in the EC survey to interpret the ‘stay the

same’ answer with a negative connotation.

For a further discussion, it is useful to distinguish two terms: price perception

and price expectations. The former is understood as being backward-looking

and underlines the ability to see past price changes effectively, while the latter

are forward-looking, describing consumers’ predictions of price level changes

(Fuhrer and Moore, 1995; Malmendier and Nagel, 2015). This provides evidence

that forming inflation expectations depends on the inflation the individual has

observed in his/her lifetime. Malmendier and Nagel (2011) similarly found a link

between observed stock market performance during the lifetime of the individual

and his/her risk-taking activity.

However, these expectations are not always rational; beliefs may deviate

from rationality, as shown by Fuster et al. (2010). These authors introduced

the notion of natural expectations, which are defined as the weighted average

of rational and intuitive expectations. Survey experiments suggest that rational

inattention may be an important source of information frictions (Cavallo et al.,

2017). They also show that even in the presence of accurate information, agents

place significant weight on inaccurate sources of information. In addition, in-

flation expectations seem to vary by demographic group and education level

(Inoue, Kilian, and Kiraz, Inoue et al.; Madeira and Zafar, 2015).

Figure A.3 illustrates the simplified balance statistic for the group of 10

EA countries. For the remainder of the thesis, I adopt a simplified balance to

measure inflation expectations, hereafter referred to as balance or inflation ex-

pectations. This figure illustrates the heterogeneity among the four age groups,

which dips, to some degree, during the financial crisis and returns to the pre-

2008 level after 2012.

Table 2.1: Summary statistics of consumers’ inflation expectations

DE ES FR IT

Mean s.d. Mean s.d. Mean s.d. Mean s.d.

Pre-EMU 71 4.6 63.1 4.1 38.1 3.1 43.6 7.4
Post-EMU 58.9 7.7 62.1 4.3 59.8 6.2 41.4 8.9
Post-crisis 48.4 6.3 42.7 4.7 56.7 5.6 27.8 3.7

Note: Pre-EMU sample 1993q1–1998q4; Post-EMU sample 2002q1–2008q2 following
(Ehrmann et al., 2011); Post-sovereign debt crisis sample 2012q2–2017q4 following
(Lane, 2012).

There is suggestive evidence that personal experiences determine the dynam-

ics of inflation expectations. The literature provides two major explanations.
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First, studies address inflation expectations based on the inflation individuals

have observed throughout their lifetime. Second, the literature sees media cov-

erage as the source of imperfect inflation expectation updating. However, it has

been unable to distinguish between the two. Lamla and Lein (2014) showed

empirically that the amount and tone of media coverage affect inflation expec-

tations. Badarinza and Buchmann (2009) assessed the degree of heterogeneity

of consumers’ inflation perceptions and expectations in the EA. Coibion et al.

(2017) presented evidence that firms update their inflation expectations in a

Bayesian manner.

2.3 Empirical Results

2.3.1 Aggregate responses to an MP shock

Before moving to the inflation expectations by demographic group, it is infor-

mative to examine the aggregate responses of EA macroeconomic variables to

an MP shock. The responses of gross domestic product (GDP), inflation, and

unemployment have received the most attention in previous studies and are

useful to compare the performance of the model.

Figure 2.1 displays the estimated impulse responses of the level of aggregate

real activity measures, consumer prices, number of unemployed, and inflation

expectations to an MP contraction. The left panels of the figure show the

median responses in each quarter over 2000Q1–2017Q4. The two middle panels

compare the responses at the beginning and end of the sample, as representative

dates. The last column considers the relative importance of time variation in

the impulse responses following the approach proposed by Cogley et al. (2010)

and Baumeister et al. (2013).

The last panel plots the joint posterior distribution of the accumulated re-

sponses at the one-year horizon with the values for 2000Q1 plotted on the x-axis

and those for 2017Q4 on the y-axis. Shifts in the distribution relative to the

horizontal line indicate a systematic change over time Baumeister et al. (2013).

Figure A.4 displays the impulse response functions (IRFs) with no accumulation

over time.

Figure 2.1 shows that a 100 basis points increase in the EA shadow rate

reduces the growth rate of GDP at market prices by around 1.2% at a horizon

of two years in more recent times, which is about half the magnitude relative

to the first half of the sample (2%). The second row of Figure 3 displays the

responses of consumer prices. After an unexpected positive MP shock, the price

level falls by around 1.7% in the long run during the 2000s, while it currently

levels off at 1.1% below the baseline. The evolution of the unemployment rate
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Figure 2.1: Accumulated impulse responses of GDP, inflation, unemployment,
and inflation expectations.
Note: Time-varying median IRFs of selected aggregate variables at each point in time
(first column) and in 2000Q1 and 2017Q4 (second and third columns) with the 16th
and 84th percentiles (shaded areas) to a 100 basis point shock to a shadow rate and
joint distribution of the accumulated responses one year after the MP shock in 2000Q1
and 2017Q4 (fourth column). IRF horizon in quarters (x-axis); Time period (y-axis);
Percentage point (z-axis).

responses shows time variation too, decreasing from 0.7% to 0.4%. Inflation

expectations exhibit a similar shift after 2010, dropping from 5% decrease in

respondents expecting a higher inflation in the next 12 months, to a drop of

3%. The difference in responses is more striking at a three-year horizon, with a

drop from 10.8% to 3.4% throughout the sample.

The last column of Figure 2.1 indicates that the milder reaction of real

GDP, unemployment, and inflation expectations in more recent times is a non-

negligible feature at the four-quarter horizon since at least 75% of the joint

distribution lies above the 45-degree line for all measures (except for the un-

employment, which lies below because of the positive response to MP shock).
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Owing to the large uncertainty around the median estimates, evidence of time

variation is less clear-cut for the longer horizon.

The alternative specification with the Cholesky identification of the shocks

supports the analysis of Castelnuovo and Surico (2010), who argued that the

price puzzle in structural VARs may be a symptom of omitted variable bias that

may arise when the Taylor principle is violated. In particular, they showed that

when the economy is operating under indeterminacy, an additional unobserved

variable characterises the dynamics of the economy. The factors included in our

model summarise a large amount of information that may proxy for this latent

variable. The fact that the price puzzle is absent from the alternative Cholesky

identification throughout the sample lends support to this idea (Bernanke et al.,

2005).

2.3.2 Disaggregated responses to an MP shock

Figure 2.2 demonstrates the accumulated responses of inflation expectations

disaggregated by demographic group. The first row depicts the responses of the

four age groups regarding their inflation expectations. The responses are not re-

stricted by the identification strategy. The specification with the disaggregated

age groups exhibits similar behaviour to a price puzzle, with an initial increase

in the level of consumers that expect prices to rise, levelling off after the one-

year horizon. The median responses retain the same order as the corresponding

age groups, with younger demographics showing the weakest response.

The median impulse responses in the second row of Figure 2.2 capture the

individual components of inflation expectations by income group after a con-

tractionary MP shock of 100 basis points at our two representative points in

time: 2000Q1 and 2017Q4. The behaviour of these responses is in line with

the aggregate measure of inflation expectations from Figure 2.1. The long-run

response is lower in 2017q4 and the order of the income quartiles is maintained

in the level of responses: the lowest quartile income group exhibiting the low-

est updating of inflation expectations. The last row in Figure 2.2 captures a

similar dynamic within the education groups, with the lowest education group

having the lowest level of inflation expectation updating. To test the signifi-

cance of the differences of inflation expectations across groups, I augment the

MCMC algorithm to record these differences at each of 1000 iteration after the

discarding the first 100, 000. The credible sets of IRFs of the differences across

demographic groups always include zero.

While the disaggregated series for inflation expectations do not exhibit clear-

cut heterogeneity within the demographic groups, the time variation of IRFs
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Figure 2.2: Accumulated impulse responses of inflation expectations by demo-
graphic group.
Note: Accumulated IRFs at the disaggregated level. The first row contains the speci-
fications with expectations by age group (16–29, 30–49, 50–64, and 65+ years, respec-
tively). The second row contains the specifications with expectations by income group
(first, second, third, and fourth quartiles, respectively). The third row contains the
specifications with expectations by education group (primary, secondary, and further
education, respectively).

shows a consolidating trend among all the specifications. There is a general

trend among the sampled countries of the increasing persistence of inflation

expectation responses from 2012. This outcome is in line with Coibion and

Gorodnichenko’s (2015) earlier findings, who argued that the relative stability

of inflation expectations has kept inflation stable since 2012.

The procedure that finds IRFs is aimed at obtaining the responses of vari-

ables caused by an unanticipated monetary policy shock. The distinction should

be made between this theoretically unanticipated shock and shocks due to an-

nouncements or unanticipated implementation changes. In order to empirically

separate the effects of different kinds of shocks, further research might consider

different identification strategy (i.e. proxy identification).
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2.3.3 VAR performance

The literature on the MP transmission channel often relies on the VAR method-

ology. Therefore, it is instructive to demonstrate the performance of VAR using

the EA sample with popular identifications. Figure 2.3 presents the results for

the VAR estimation with [Yt, πt, It] identified with the recursive scheme, the

augmented recursive scheme with the inflation expectations variable, following

the order Castelnuovo and Surico (2010) with [E[πt+1], Yt, πt, It], and the sign

restrictions in the third column. The contemporaneous zero restriction pre-
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Figure 2.3: IRFs from the VARs with zero and sign restrictions.
Note: The first column contains the IRF from the VAR with four lags and three
variables with the Cholesky identification, ordered GDP, CPI, and interest rate; the
second column contains the IRF from the VAR with four lags and four variables with
the Cholesky identification, ordered inflation expectations, GDP, CPI, and interest
rate; and the third column contains the IRF from the VAR with four lags and three
variables with the contemporaneous sign restrictions, GDP (-), CPI (-), and interest
rate (+).

sented in the first column exhibits a price puzzle, as in much of the literature.

The second column presents similar results to those in the first column, and the

forward-looking inflation expectations variable does not change the responses,

as in Castelnuovo and Surico (2010). Finally, the last column shows that the

IRFs with sign restrictions exhibit the correct responses despite them being

endogenously imposed.
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2.3.4 Determinants of cross-country asymmetries in MP

transmission

Following Carlino and DeFina (1999), this section tests whether the empirical

findings of the asymmetric responses among EA members (Figure A.11) could

be explained by the variables capturing industry structure and labor market

rigidities. To account for the fact that the dependent variable is an estimated

value itself, I follow the procedure suggested by Hong and Li (2017, p. 161) and

use Ordinary Least Squares with heteroskedasticity robust standard errors to

estimate the following regression:

Îh=8
i,t =α+ γ1 ∗manufacturingi,t + γ2 ∗ protectioni,t (2.6)

+ γ3 ∗ unioni,t + FEtime + εi,t

Recent discussions of MP propagation in the EA has used the industry struc-

ture, labour, and wage rigidities to explain the variation in the output responses

to a monetary shock Georgiadis (2015). These analyses broadly conclude that

the lower share of manufacturing, higher level of unemployment protection, and

lower level of unionisation somewhat mitigate the responses of output. The vari-

ables capturing manufacturing share and the number of small firms are mea-

sured based on the number of employees, as opposed to total value-added or

gross product as in Carlino and DeFina (1999); Georgiadis (2015), because the

dependent variable in this analysis is inflation expectations and it is measured

by the ratio of consumer expecting inflation to go up.

Figure 2.4 presents the structure of industries in terms of firm size (measured

by the number of employees). There is a high proportion of small firms (i.e.

those with fewer than nine employees). Notably, the construction sector, which

is largely represented by smaller firms, is argued to be sensitive to the credit

channel of MP.

The regression results of Equation (2.6) in Table 2.2 suggest that more than

40% of the variation in inflation expectation responses could be explained by the

industry and labour market composition of EA countries. The key determinants

are the share of manufacturing and level of unemployment protection. The signs

of the estimated coefficients go in line with the findings in the literature Carlino

and DeFina (1999); Georgiadis (2014, 2015).

Recall that the responses of inflation expectations are negative to a positive

MP shock, with the negative value for manufacturing suggesting a stronger

response to such a shock. Similarly, in Table 2.2 columns 1 and 2 unemployment

protection and union density have a significant positive sign, which impedes the
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response of inflation expectations in line with earlier findings (Georgiadis, 2015).

Following Carlino and DeFina (1999), columns 3 and 4 test whether the number

of small firms has explanatory power over the variation in responses of inflation

expectations. Evidence concerning the number of small firms being a significant

factor is very limited.
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Figure 2.4: Value added by industry and number of employees.
Note: Number of employees is defined as the total number of people who work in the
observation unit. Value added at factor costs is gross income from operating activities
after adjusting for operating subsidies and indirect taxes. Source: Eurostat.

2.4 Conclusions

This study investigated the MP transmission channel using consumers’ inflation

expectations and how it varies across four demographic groups (16–29, 30–49,

50–64, and 65+ years) and 10 EA countries. This research thus bridges a gap

in the literature by exploring how the formation of inflation expectations has

evolved over time at both the aggregate level and by demographic group.

I find heterogeneity in the responses of disaggregated consumers’ inflation

expectations in the EA based on a time-varying FAVAR model. The results

indicate some heterogeneity in the responses of different age groups to an EA-

wide MP shock, although not significant for most of the countries. Younger

agents (16–29 years) exhibit a higher level of updating inflation expectations
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Table 2.2: Regression results for the determinants of the MP transmission.

Inflation expectation responses at h=8 (2 years)
Specification (1) (2) (3) (4)

manufacturing -0.125* -0.114**
(0.0668) (0.0568)

protection 1.112** 1.337***
(0.560) (0.471)

union 0.119*** 0.121***
(0.0153) (0.0138)

smallfirms 0.0998 0.101*
(0.0626) (0.0589)

Constant -5.420* -7.327*** -11.32* -10.27*
(3.232) (1.742) (5.879) (5.429)

Observations 139 139 39 39
R-squared 0.453 0.402 0.091 0.045
Time FE YES NO YES NO

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
The results are based on annual data from 1999 to 2018, using a sample of eight
countries: Belgium, France, Germany, Greece, Italy, the Netherlands, Portugal, and
Spain. Manufacturing is presented as the ratios of total employment in each country.
Protection is an index of unemployment protection recorded by the OECD. Union is
the percentage of unionisation recorded by the OECD.

than older groups. Similarly, a larger share of consumers with a higher education

level and higher income would update their inflation expectations. This finding

concurs with those in the literature.

The key finding is that the responses of inflation expectations have weakened

over time. Inflation responses after 2010, during the ZLB period, take more time

to react, making them weaker on average than the responses before 2008. The

dynamics of inflation expectations could therefore be a possible cause of inflation

persistence in the EA.

One of the questions with which economists are concerned is the particu-

larly subdued behaviour of inflation in the past decade in the EA Miles et al.

(2017). Only a few explanations of why inflation remains anchored in a post-

2010 period have been proposed. One of the explanations was proposed by

Blanchard et al. (2015). They explored two issues regarding the financial crisis.

First, they observed that output in advanced countries is below pre-crisis levels,

which they explained with the hysteresis hypothesis. Second, they captured a

flatter Phillips curve in the post-2008 period. These two facts suggest that the

economies of advanced countries are not yet in a recovery regime.

Coibion and Gorodnichenko (2015) argued that the relative stability of in-
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flation expectations has kept inflation stable since 2010. This study expands on

the point of inflation expectations playing a key role in inflation dynamics in the

past decade. For monetary authorities, it is crucial to know the effects of their

interventions on inflation expectations. Coibion et al. (2017) further highlighted

the importance of expectations by stating that ‘first and most practically, we

lack direct empirical evidence on the real-time beliefs of firms, those agents

whose expectations play a central role in price-setting, hiring, and investment

decisions’.

The determinants of the heterogeneity in the responses of inflation expecta-

tions suggest that industry structure and labour market rigidities play a signif-

icant role in the propagation mechanism of MP. The results also go in line with

earlier findings suggesting that a lower share of manufacturing and higher un-

employment protection and union share mitigate the effects of credit channels,

which calls for further investigation.

There are a number of dimensions upon which further research can improve.

First, several novel identification strategies could help pin down MP shocks

more precisely. Second, there is concern over the rather small sample for the

EU to estimate a model with a large number of parameters. Third, introduc-

ing a panel structure, for instance by estimating dynamic factor models with

restricted factor loadings for countries, is an interesting possibility. Fourth,

estimating individual countries with a smaller VAR to analyse the historical

decomposition of inflation expectations might reveal which variables contribute

to the formation of inflation expectations.
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Chapter 3

The effect of the ECB’s

PSPP on the cost and

perception of credit

availability for SMEs
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This chapter examines the MP transmission mechanism for SMEs. The

analysis estimates the effect of the public sector purchase programme (PSPP),

a leading instrument of the ECB’s MP, on SMEs’ access to credit and their

perception of credit availability. The latter is assessed using the survey on

the access to finance of enterprises (SAFE). The survey variables are useful to

analyse the policy propagation mechanism as well as heterogeneity of policy

effects (Jappelli and Pistaferri, 2014, p. 109).

The PSPP was introduced on 22 January 2015 and conducted between 9

March 2015 and 19 December 2018 to complement the EA asset purchase pro-

gramme (APP), by improving borrowing conditions for households and non-

financial corporations (Part 4 ECB decision 2015/774) (Andrade et al., 2016).

The PSPP has by far the largest volume of assets purchased, peaking at 79

billion euros of monthly purchases (May 2016) compared with the next largest

monthly purchase of 12 billion euros (March 2015) associated with the third

covered bond purchase programme (CBPP3).

Given that the PSPP aims to ease borrowing conditions for non-financial cor-

porations and households, I focus on SMEs, which account for a large proportion

of employment and output in the EA, representing 99.8% of EA enterprises, 60%

of turnover, and 70% of employment (ECB, 2015, p. 44).

This chapter investigates whether the restoration of liquidity in the inter-

bank market led to an expansion in credit supply for SMEs by examining the

effectiveness of the PSPP and its impact on the cost of borrowing. The APPs

of the Euro system include not only the PSPP and CBPP, but also the asset-

backed securities purchase programme (ABSPP) and corporate sector purchase

programme (CSPP). These differ substantially in their implementation of other

countries’ UMP, with the exception of the PSPP. The PSPP resembles the UMP

of most other countries, as it directly affects long-term borrowing costs by pur-

chasing sovereign bonds (Andrade et al., 2016).

The contribution of this chapter is twofold. First, it presents evidence of

the effect of the PSPP on lending volumes and interest rates for households

and non-financial enterprises. Second, it uncovers the positive effect on the

perceptions of SMEs, which evaluate the PSPP with regard to credit standards

and the availability of credit.

I first discuss whether the PSPP affects the cost and volume of borrowing

for households and non-financial enterprises. I then investigate whether SMEs’

perceptions of these effects are accurate by analysing the SAFE. This survey

is conducted semi-annually across EU SMEs to assess various aspects of credit

availability, interest rates, and economic outlook. Firm-level data from the

SAFE allow me to identify the loan supply effects on these enterprises.

I find a positive effect of the PSPP on the volume of small loans received by
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SMEs, especially the smallest category of below 0.25 million euros, and small

changes in the costs of borrowing. I estimate a fixed effects model with a panel of

EU countries and obtain the following result: an increase in the PSPP’s monthly

net purchases of 1% of GDP of the corresponding country is associated with the

volume of loans rising by 47 million for loans below 0.25 million euros and the

cost of borrowing falling by 174 basis points. Evidence from the estimation

with the survey variables also shows the positive effect of the PSPP for small

enterprises. There is a 2.12% increase in respondents who record an interest

rate decrease after a 1% of GDP increase in the PSPP’s net purchases.

SMEs are particularly vulnerable to credit supply shocks (Ferrando et al.,

2015). Carbo-Valverde et al. (2016) assessed the credit constraints that SMEs

experienced during the credit crunch and highlighted the importance for them

to access credit.

To distinguish conventional MP and UMP, this chapter adopts the following

definition for the latter: UMP directly affects long-term borrowing costs by

purchasing sovereign bonds (Andrade et al., 2016). This definition captures the

latest monetary interventions by the Bank of England (BoE), ECB and Federal

Reserve (Fed), and Bank of Japan (BoJ) since the early 2000s.

The EU was exposed to a crisis of comparable magnitude to that in the

United States because of the large holdings of US asset-backed securities and

dependence on the dollar supply (Lane, 2012, p. 52). The EU’s position was

worsened by its own credit and housing bubbles, most prominently developed

in Greece, Ireland, and Spain (Lane, 2012, p. 54). These events led to shortages

of liquidity and loan losses (Lane, 2012, p. 55).

Jäger and Grigoriadis (2017, p. 4) argued that three main reasons drove the

high debt levels in the EU. The first was its premature assumption of the conver-

gence of all Eurozone countries towards Germany (Arghyrou and Kontonikas,

2012, p. 670), which translated into sovereign bond spreads becoming relatively

similar across EU members (Mody and Sandri, 2012, p. 2012). The second was

that the adoption of a single currency focused the responsibility of anticyclical

policies on national fiscal authorities (Lane, 2012, p. 54). The third was that

southern European countries experienced relatively low interest rates before the

crisis and became excessive net borrowers (Lane, 2012, p. 54). The original

design of European treaties was supposed to mitigate excessive imbalances by

establishing the Stability and Growth Pact and the ‘no bailout’ clause, which,

consequently, proved to be insufficient (Lane, 2012, p. 49).

During the crisis, the ECB first lowered interest rates through conventional

measures (Lenza et al., 2010, p. 16). It then engaged in less conventional mea-

sures, which changed the composition (qualitative easing) and size (QE) of the

balance sheet (Lenza et al., 2010, p. 18). The predominant part of those uncon-
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ventional measures was aimed at banks, because they are the key institutions in

the credit creation process, specifically private credit (Lenza et al., 2010, p. 28).

The effect of UMP on the economic sentiment of US investors was highlighted

by Lutz (2015). Similarly, one can argue that firms’ investment decisions are

guided by their perceptions of credit availability. For instance, Cingano et al.

(2016) found evidence of the real effects of bank lending channels on Italian

banks during the liquidity shortage in 2007. Banks’ exposure to interbank mar-

kets explains the 40% investment decrease after 2007. Their findings suggest

pre-crisis exposure to interbank markets and predict banks’ subsequent credit

supply. In turn, the lack of liquidity in banks is passed on to reduce lending

to businesses. Ryan et al. (2014, p. 497) provided empirical evidence that the

financing constraints of small enterprises explain most of the variation in the

employment dynamic during the Great Recession. They also provided a link

between a fall in the supply of credit and timing of UMP interventions.

Joyce et al. (2012) noted that the ECB balance sheet expansion came largely

from an increase in the provision of loans, which were provided in exchange for

collateral (mostly bank loans, not government bonds) contrary to the Fed, BoE,

and BoJ. The PSPP thus resembles QE programmes in that it expands the

balance sheet to stimulate and stabilise credit.

A body of the literature analyses other APPs in the EU. For instance, Eser

and Schwaab (2016, p. 16) analysed the strong effects of purchases on the yields

of the securities market program (SMP) and attributed them to reduced default

risk premia, a lower liquidity risk premium, and local supply effects. Other

studies such as Haitsma et al. (2016, p. 106) also find that the ECB’s UMP

had a significantly negative effect on the German–Italian yield spread as well as

elevating returns from the EURO STOXX 50 index.

Gibson et al. (2016) analysed the SMP and CBPPs by estimating the effects

on bond spreads using a fixed effects regression controlling for time and country,

similar to the methodology presented in this chapter. Their results indicated

that these two APPs reduced sovereign spreads and raised covered bond prices.

Finally, a large strand of the literature analyses the effects of long-term

refinancing operations (LTROs). For example Crosignani et al. (2019, p. 19)

concentrated on three-year LTROs and showed their significant role in alleviat-

ing liquidity and funding risks in the banking sector, which in return stimulated

the economy. Moreover, LTROs appear to support the financing of the economy

through QE rather than lowering the cost of financing.

Following this introduction, Section 2 describes the methodology and data

on the PSPP, cost of borrowing, and perception of the availability of credit.

Section 3 provides the empirical results and relevant discussions. Section 4

presents concluding remarks and the limitations of this research.
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3.1 Credit Channel of Monetary Transmission

MP uses its influence over short-term interest rates to change the cost of capital.

In turn, spending on durable goods such as fixed investment, housing, and

inventories is affected. These changes in aggregate demand then affect the level

of production. Bernanke and Gertler (1995, p. 2) argued that this ‘textbook’ role

of the MP credit channel is incomplete, as neoclassical models have difficulty

pinning down the effect of the cost of capital on aggregate spending because

most explanatory power rests within the lagged values of output, sales, and

cash flow.

Unanticipated MP tightening typically has only transitory effects on interest

rates and is followed by a sustained decline in real GDP and prices (Bernanke

and Gertler, 1995, p. 4). Final demand absorbs the initial impact of the MP

contraction, falling relatively quickly after the change. The earliest and sharpest

declines in final demand are related to residential investments, followed by con-

sumer goods. Fixed business investment declines with a delay, lagging behind

housing and consumer spending.

The impact of conventional MP on credit volume has been studied exten-

sively, with notable research by Bernanke and Blinder (1992); Gertler and

Gilchrist (1994); Kashyap and Stein (2000); Jiménez et al. (2012). MP rate

changes may affect the credit quality of the pool of borrowers through the

interest rate channel and the firm balance sheet channel of MP by changing

firm investment opportunities, net worth, and collateral Bernanke and Gertler

(1995). Moreover, MP, by affecting bank liquidity, may influence the volume of

credit supplied through the bank balance sheet channel of MP (Kashyap and

Stein, 2000, p. 420).

In early 2009 in the United States, the supply of credit in industrialized

countries appeared to be tightening substantially Diamond and Rajan (2009).

For example, about 65% of US banks reported having tightened lending stan-

dards on commercial and industrial loans to large and middle-market firms over

the past three months, a continuation of a pattern seen in the previous quarter.

This percentage was above the previous peaks reported in 1990 and 2001.

Ivashina and Scharfstein (2010, p. 320) found that new loans to large borrow-

ers fell by 47% in the last quarter of 2008. They also showed that term lending

fell by considerably more than lending to revolving credit facilities (67% vs.

27%). The use of a three-month interest rate is in line with many studies such

as Angeloni and Ehrmann (2003) that also use European data.

This chapter is related to the growing literature that studies the EA econ-

omy. However, to the best of my knowledge, this is the first work to examine

the PSPP and a broad set of interest rates (as well as senior loan managers’
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perceptions of them). Peersman and Straub (2009) also examined aspects of

financial intermediation in the EA to assess the role of credit shocks but did not

distinguish pre- and post-crisis developments. Other researchers have studied

the monetary transmission mechanism using EA data before the crisis. In par-

ticular, the ECB promoted a set of studies providing many interesting results

(see the collection of studies in Angeloni and Ehrmann (2003)).

3.2 Data

I use two datasets. The first dataset comprises the interest rates applied by mon-

etary financial institutions (MFIs) to households and non-financial institutions.

The second dataset is a survey of the availability of finance for SMEs.

3.2.1 Borrowing costs and volumes

The MFI dataset was created as a result of the ECB’s regulation in 2001 and it

contains interest rate data from MFIs to non-financial organisations and house-

holds. MFIs belong to the following sectors of activity: central banks, credit

institutions, deposit-taking corporations, and money market funds.

The statistics on interest rates are presented as ‘agreed rates’, which corre-

spond to the interest rate agreed between an MFI and its customer, averaged

across the period and converted into an annualised rate. The statistic for the

volume of loans is presented as loans other than revolving loans and overdrafts

in millions of euros. The dataset starts in 2003m1. I estimate the effects of

the PSPP from 2015m1 to 2017m3, from the beginning of its intervention to

the latest available data point. More detailed data have been collected since

2010m6, which allowed me to distinguish two more sizes of loans: below 0.25

million and between 0.25 and 1 million euros.

Figure 3.1 displays the monthly business volumes of loans from 2003m1 to

2017m3. The volumes of below 0.25 million euros and between 0.25 and 1 million

euros diverge from 2015. The increase in lending activity after 2007 is mainly

attributed to loans larger than 1 million euros. Loans below 1 million euros

remained at about the same level (below 100 billion every month). As a further

analysis, I assume that loans below 1 million euros are issued to SMEs and test

this assumption in Section 3.4.

Statistics on interest rates are divided into fixed and floating rates, a period

of fixed interest rates, and the presence of collateral. Figure 3.2 presents the

interest rate on a loan with fixed interest rates for more than one year. Other

interest rates exhibit similar behaviour (see Figure A.12 in the Appendix).

The interest rates in Figure 3.2 exhibit similar behaviour to the volume of
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Figure 3.1: Bank business volumes: Loans to corporations of various sizes (new
business).
Note: Business volume (outstanding amount/new business), Credit and other institu-
tions (MFIs except money market funds and central banks) reporting sector - Loans
other than revolving loans and overdrafts, convenience and extended credit card debt,
Total initial rate fixation, New business coverage, EA (changing composition), Non-
financial corporations sector, denominated in euros. The data for the 0.25 m euro
breakdown are only available from 2010m6. The shaded area is the OECD-based
recession indicators for Germany following the peak through the trough.

credit. The spike in 2008 is a risk premium after the financial crisis unfolded.

The following fall in interest rates, until the beginning of 2010, coincides with

the increased activity of open market operations.

3.2.2 Description of the survey and interventions

The SAFE is a survey of EU companies conducted by the EC and ECB every

six months from June 2009 (which investigated from January to June 2009).

The dataset is a pooled cross-section based on the first 15 waves of the survey.

It focuses on autonomous profit-oriented enterprises capable of independent fi-

nancial decisions, which represent 84.2% of the dataset. Based on the number of

employees, the EC’s website classifies SMEs into three groups: micro, small, and

medium-sized that have fewer than 10, between 10 and 50, and between 50 and

250 employees, respectively. The SAFE dataset has an almost equal represen-

tation of each group, namely micro (35.2%), small (31.1%), and medium-sized

(25.7%), with the remaining 8.5% attributed to larger firms. To differentiate
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Figure 3.2: Interest rate on loans with an IRF period greater than one year.
Note: Statistics Bulletin, MFI. The shaded area is the OECD-based recession indica-
tors for Germany following the peak through the trough.

respondents by annual turnover, the survey sets up thresholds of 2, 10, and

50 million euros. Four sectors are presented in the survey: industry (24.1%),

construction (11.4%), trade (27.4%), and services (37.1%). The majority of

enterprises are older than 10 years (78%).

The survey includes a number of questions, which can be used to evaluate

and capture changes in the availability of finance to SMEs before and after the

start of asset purchases. Participants (SMEs) were asked to assess the forms

of financing available to them, interest rates at which funds could be acquired,

and other credit lines available to them.

As demonstrated in Figure 3.3, the first asset purchases started under the

CBPP in the first quarter of 2009, which coincides with the start of the SAFE.

Another pivotal point is the first quarter of 2015, which marks the official start

of the QE programme.

There are 16 waves in the survey, each corresponding to a six-month period

(see Table A.5). The 16th wave was released in May 2017 and is the latest

included in my empirical analysis. The survey timing allows for investigating

11 periods before the PSPP’s intervention and five periods while it unfolded.

The PSPP started in January 2015, which falls in the middle of the 12th

wave’s reference period. According to the survey, in this period SMEs considered

access to finance to be the least worrying problem, with only 11% mentioning it
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Figure 3.3: Purchases under the PSPP (flow).
Note: Fitted lines are third-order polynomials. Shaded area is OECD-based recession
indicators for Germany following the peak through the trough.

as such, down from 13% in the previous period. However, 3% reported the need

to access bank loans, which was a threefold increase from previous periods. This

is the first time since 2009 when, on balance, an improvement in the availability

of bank loans was recorded. Similarly, there was a record of perceived lower

interest rates and an increase in the available size and maturity of loans.

For the empirical analysis, the survey questions were converted into dummy

variables. Table A.9 describes the dummy variables and the corresponding

survey questions and programme responses. Figure 3.4 presents the summary

statistics for the key dummy variables, which are used as dependent variables.

3.3 Methodology

I estimate the model using a panel dataset comprising two sets of countries,

namely those affected and those not affected by the PSPP (i.e. EA and non-EA

countries). The panel data model is based on a two fixed effects framework

(country and time fixed effects). This approach accounts for unobserved time-

invariant variables, which could lead to misleading inferences about unconven-

tional interventions. I estimate the following linear regression with the country

and time fixed effects:

43



2016 2017 2018 2019 2020
-4

-3

-2

-1

0

1

2

3

Austria

Belgium

Cyprus

Germany

Estonia

Spain

Finland

France

Ireland

Italy

Lithuania

Luxembourg

Latvia

Malta

the Netherlands

Portugal

Slovenia

Slovakia
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Note: The shaded area is the OECD-based recession indicators for Germany following
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Yit = βXi,t + αi + γt + ei,t

where Yit is the interest rate for SMEs in the first specification (Table 3.1)

and a dummy variable constructed from the SAFE (Table 3.2) dataset for each

country i and time period t. The survey wave spans six months, and for the last

two specifications it is the cost of borrowing loans under 1 million euros. Xit

is a variable indicating the ratio of net semi-annual purchases under the PSPP

over semi-annual GDP (2009 base year) for country i and time t. Finally, the

variables αi and γt correspond to the country and time fixed effects, respectively.

3.4 Empirical Results

I present two sets of results for the PSPP’s effects: the effects on the actual

volume and agreed interest rates for loans of different sizes and the effects on

the perceptions of SMEs on the availability of credit.

Table 3.1 presents the results of the estimation of borrowing costs and inter-
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est rate perception. These specifications use the interest rate as the dependent

variable. The results are significant for loans under 0.25 and under 1 million

euros as well as for the 0.25–1 million euro category but with the opposite sign.

Similarly to the results with loan volumes, the smallest loans are affected the

most, with a drop of 174 basis points after a 1% of GDP increase in the PSPP’s

net purchases. Loans below 1 million euros decreased by 47 basis points and

loans between 0.25 and 1 million euros actually rose by 71 basis points.

The monetary policy transmission channel to SMEs was studied by Berger

and Udell (2006). One possible explanation of the difference in signs obtained

in Table 3.1 could be the asymmetry in the interest rate pass-through mecha-

nism in the Euro Area. For instance, Sander and Kleimeier (2004) show that

there are significant differences in pass-through mechanisms to corporate loans

and current account. A monetary stimulus might shift the loan supply curve.

The adjustment in the lending rates then depends on the elasticity of the loan

demand curve and degree of lending rate stickiness or credit rationing (Sander

and Kleimeier, 2004, p. 486). The less competitive the credit market, and less

elastic the demand for loans (fewer alternatives available), the larger is the de-

crease in the lending rates. Additionally, Sander and Kleimeier (2004) show

that market imperfections in the Euro Area, such as credit rationing play an

important role in the interest rate pass-through mechanism. This mechanism

contains a partial explanation of the asymmetries presented in Table 3.1, with

interest rates for loans above 1m seeing an increase in the interest rate. Berger

and Udell (2006) suggests identification of the monetary transmission channels

in order to single out the effects for particular loan sizes, which would require a

more detailed dataset on loan issuance.

Table A.3 presents the specifications that use loan volume as the dependent

variable for different loan sizes. The smallest loan sizes have significant results.

Note that the data on loans below 0.25 million euros start in 2010m6 and have

fewer observations. An increase in the PSPP’s monthly net purchases of 1% of

each country’s GDP is associated with the volume of loans rising by 52 million

euros for loans below 1 million euros. The main driver of this increase in loans

below 0.25 million euros, which increase by 47 million. This result indicates a

positive effect of the PSPP on volumes of small loans, especially the smallest

category of below 0.25 million euros. By contrast, the coefficients of larger loans

are not significant. While the aggregated results contain clear effects of PSPP on

the interest rates and volumes of loans, the differences between PSPP effects on

the groups of countries (i.e. troubled vs non-troubled) are not significant. This

result goes in line with earlier findings of Hristov et al. (2014) and confirmed

with exercise in Section 4.5.

My last finding is the effect of the PSPP on the survey variables (interest)
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Table 3.1: PSPP’s effects on interest rates

Interest rates on loans
with an IRF period of >1 year

(1) (2) (3) (4)
Variable Below Above Below Between

1 m euros 1 m euros 0.25 m euros 0.25–1 m euros

PSPP/GDP (c) -0.0482* 0.0149 -0.174*** 0.0718**
0.0285 0.0566 0.0428 0.03

Constant 3.029*** 2.621*** 3.412*** 2.820***
0.135 0.211 0.152 0.174

Observations 307 265 252 246
R-squared 0.858 0.559 0.786 0.749
Country FE YES YES YES YES
Time FE YES YES YES YES

Note: Interest rates on loans with an IRF period of greater than one year ac-
quired from the MFI Interest Rate Statistics, measured in percent (mean=3.74) (c)
PSPP/GDP is the percentage of the PSPP’s net monthly purchases over average
monthly GDP for 2009q1 (mean=10.70). Robust standard errors in parentheses. ***
p < 0.01, ** p < 0.05, * p < 0.1.

for small, medium-sized, and large firms estimated separately (Table 3.2). The

results show the positive effect of the PSPP for small enterprises. The negative

coefficient in column 1 indicates that 2.12% more respondents acknowledge an

interest rate decrease after a 1% of GDP increase in the PSPP’s net purchases.

On the contrary, for enterprises with more than 250 employees (column 3), there

is a 3.48% increase in respondents recording an interest rate rise.

Table A.4 presents the estimation results for the perception of finance avail-

ability from the SAFE dataset. The singled out dependent variables are the

percentage of SMEs that acknowledged an interest rate increase (Specifications

1 and 2) and the percentage of SMEs that acknowledged a financial cost increase

(Specifications 3 and 4). The results are significant for Specifications 2 and 4,

namely those without time fixed effects and those with country fixed effects,

respectively.

These findings concur with the effects of the PSPP on the cost of borrowing

in Table 3.1. One possible interpretation of these effects is that small enter-

prises take out loans below 0.25 million euros. This finding also suggests that

the assumption of a link between loans below 0.25 million euros and SMEs is

reasonable in the setup of this chapter. The credit channel in the conventional
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Table 3.2: PSPP’s effects on interest rates by firm size

(1) (2) (3) (4)

Variable Small Medium Large All

PSPP/GDP(b) -0.0212*** 0.0104 0.0348*** 0.00812
0.00638 0.00711 0.0105 0.00529

Constant 0.363*** 0.603*** 0.593*** 0.527***
0.0814 0.0924 0.0585 0.0636

Observations 16,986 9,839 3,629 30,454
R-squared 0.259 0.319 0.295 0.286
Country FE YES YES YES YES
Time FE YES YES YES YES

Note: Dependent variable ‘interest’ is a dummy variable for the percentage of re-
spondents who perceive the interest rate to have increased; (b) ‘PSPP/GDP’ is the
change in the share of purchases under the PSPP over a half year (wave) and the
GDP of the corresponding country over half a year (wave) with 2009 as the base year.
‘Small’, ‘Medium’, and ‘Large’ refer to enterprises with 0–50, 50-250, and more than
250 employees, respectively. Robust standard errors in parentheses. *** p < 0.01, **
p < 0.05, * p < 0.1.

MP setting is described by Bernanke and Blinder (1992).

3.5 Conclusions

This chapter evaluated the effects of UMP in the EA. I focused on the PSPP,

which has conducted asset purchases since the first quarter of 2015. I estimated

the effects of the PSPP on the availability of finance for SMEs, both in per-

ceived and in actual terms. Since the PSPP started in 2015, it provides few

observations to estimate its effects with time series. The panel setup allows me

to overcome this limitation.

Two datasets were merged for this analysis: a survey on the availability of

finance, which provided the percentage of SMEs that perceive interest rates as

rising, and the MFI dataset on borrowing costs for non-financial organisations

and households. The latter dataset provided borrowing costs by country for

loans below 1 million euros.

My findings can be summarised as follows. There is a positive effect of the

PSPP on the volume of small loans, especially the smallest category of below

0.25 million euros, and small changes in the costs of borrowing. For a 1% of

GDP increase in monthly net purchases under the PSPP, the volume of loans

rises by 47 million, whereas the cost of borrowing falls by 174 basis points for

loans below 0.25 million euros.
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In addition, for the reasons discussed in this chapter, there is a corresponding

effect of the PSPP on the survey variables. For a 1% of GDP increase in monthly

net purchases under the PSPP, there is a 2.12% increase in enterprises with

fewer than 50 employees that perceive interest rates as decreasing. There are at

least two interpretations of these findings. First, the MP information channel is

functioning effectively. Second, which was also an initial assumption, enterprises

with few employees mostly take out loans below 0.25 million euros.

Further research could account for countries’ heterogeneity, as UMP affected

EU countries to different degrees. A different dataset could be used to anal-

yse the link between SMEs and their typical size of loans by adopting a bank

level MIR dataset. Further events of potential interest are when the ECB an-

nounced 36-month LTROs in December 2011 and when a new programme for

buying sovereign debt, namely outright monetary transactions, was announced

in September 2012. As the number of observations for the PSPP grows, it may

also be possible to estimate the time series for individual EA countries.
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Chapter 4

Forecasting the BLS

outcomes using mixed

frequency VAR (MFVAR).
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4.1 Forecasting the BLS Outcomes

This chapter applies MFVAR to forecast BLS outcomes. The BLS captures

the perceptions and expectations of bank managers about economic activity

and credit supply. I provide evidence in favour of bivariate MFVAR over a

benchmark naive forecast of expecting the last observed value.

The BLS, which is released quarterly, provides valuable information to poli-

cymakers. Decision making is a function of agents’ perceptions and expectations

Coibion et al. (2017, p. 7). Therefore, survey data are useful to assess whether

contractionary MP and adverse economic conditions reduce the supply of bank

loans (Bernanke and Gertler, 1995, p. 40) or whether business cycle fluctuations

and MP stance affect the credit spread (Gilchrist and Zakraǰsek, 2012, p. 1714).

These questions are crucial not only for macroeconomics in general but also for

policymaking, especially when dealing with crisis periods.

This study is motivated by the need for policy authorities to have real-

time information on the credit supply channel of MP transmission (Jiménez

et al., 2012, p. 2324). Additionally, there is evidence that interest rate pass-

through (IP) at the level of bank lending changed during the crisis: Von Borstel

et al. (2016); Hristov et al. (2014). The BLS captures the last stage of the IP

mechanism, which is argued to drive the shift in IP during the financial crisis.

To analyse the MP propagation mechanism and track economic indicators in

general, studies have developed various models, including those for short-term

forecasting. Previous work emphasises the importance of building indicators to

track the economy more frequently Stock and Watson (1988); Giannone et al.

(2008); Mariano and Murasawa (2010). However, while these studies have de-

veloped powerful methodologies, indicators of real activity have received most

research attention, leaving a gap in producing real-time indicators at interme-

diate stages between changes in MP and credit supply.

This study bridges that gap by estimating commercial banks’ perceptions

of economic activity in real-time. This is motivated by Coibion et al. (2017),

who stated the following: ‘First and most practically, we lack direct empirical

evidence on the real-time beliefs of firms, those agents whose expectations play

a central role in price-setting, hiring, and investment decisions’. This allows me

to track MP propagation through the lending channel to enterprises.

The contribution of this study is twofold. The first contribution is the ap-

plication of a bivariate version of MFVAR, which can produce monthly series

and forecasts of commercial banks’ perceptions of economic activity from 2008.

Second, the article compares the forecasting performance of MFVAR with the

random walk benchmark. The lack of long-time series for commercial banks’

perceptions motivates the choice of the model (i.e. MFVAR), which relies on
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more frequently published monthly series. In general, VARs are useful fore-

casting tools. In particular, Bayesian VARs allow for a natural estimation of

conditional and unconditional forecasts as well as credible sets around the fore-

casted series. For instance, Schorfheide and Song (2015) focused on the Bayesian

estimation of a state-space model to produce multivariate predictive distribu-

tions.

The rest of the article is structured as follows. Section 4.2 describes the

data and presents the empirical results. Section 4.3 contains the estimation

methodology. Section 4.5 discusses the empirical implications of the estimated

monthly BLS outcomes.

4.2 Data

For all data except BLS the frequency is monthly and the sample period is

2000M1 to 2018M5. Figure 4.1 illustrates the commonly used macroeconomic

variables for estimating monthly economic activity indexes and the survey vari-

able of interest (i.e. the BLS). The survey variable corresponds to a question

that evaluates economic activity and has similar trends to common macroeco-

nomic variables. Their frequency, however, does not allow MP authorities to

track the transmission of policy changes to understand commercial bank man-

agers’ perceptions on a monthly basis.

4.2.1 Selection of indicators

The primary focus here is placed on forecasting the BLS, which reflects bank

managers’ perceptions of economic activity. Since this variable is highly cor-

related with other measures of activity and more frequent survey variables of

economic activity, I narrow the data to the variables presented in Table 4.1.

Figure 4.1 presents evidence of the co-movement between the variable of in-

terest and other economic indicators. The dataset resembles the one used by

Camacho and Perez-Quiros (2010, p. 667), who estimated a single-factor model

for a real-time short-term indicator of EA growth.

To have a parsimonious model, I use bivariate MFVAR. As a robustness

check, I also apply MFVAR that includes more variables but the RMSE is

larger for those models. Equivalently, the multivariate specification does not

improve the forecasts. A large number of indicators is thought to add more

noise and cross-correlation of the idiosyncratic shocks (Boivin and Ng, 2006,

p. 188). Evidence in Figure (4.2) and Figure (A.19) suggests a wider credible

set for multivariate MFVAR. Moreover in a multivariate model RMSE is higher

(5.63) than for a bivariate model (3.39) (see Figures (4.3) and (A.20)).
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Figure 4.1: Economic indicators for the EA and economic perception indicator
Note: ‘BLS’ is a variable from the EA BLS, which evaluates credit standards (eased=1,
tightened=0); ‘income’ is the real growth in actual final consumption per capita in
the EA; ‘ifo’ is a time series for the economic climate in the EA; ‘esi’ is the EA
economic sentiment indicator; ‘bci’ is the EA business climate indicator; ‘sales’ is
retail sales volume (annual growth rate); ‘ino’ is industrial new orders; and ‘empl’ is
the unemployment rate, divided into total (all ages) and total (male and female). The
shaded area is the OECD-based recession indicators for Germany. All variables are
standardised. The unemployment rate was inverted with the opposite sign.

European institutions collect a number of soft indicators with monthly, quar-

terly, and semi-annual frequencies. Table 4.1 presents the time series chosen for

empirical analysis.

A bank’s ability to access market financing is an indicator of the BLS that

is collected quarterly and that captures credit availability from the supply-side

point of view. It is thus the first indicator that shows the resurgence of credit

in the EA in the first quarter of 2010.

Table 4.2 shows a typical problem of information availability, namely that

the release date for the key variables is usually delayed. For instance, the release

of the BLS quarterly series is delayed by one or two months. For instance, the

2012q1 value for the BLS was published on 25 April 2012. This lag in the

publication is taken into account when estimating the forecast.

4.3 Econometric Approach

4.3.1 Mixed frequency models

In this section, I describe a model that addresses mixed frequency data and

missing observations. The estimation focuses on forecasting the BLS variable,
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Table 4.1: Data sources

ID Source Description Type

Quarterly

BLS EA BLS. Credit standards (eased +, tight-
ened −).

Soft

Monthly

IFO Germany IFO Business
Climate Index

Long time series for the Eco-
nomic Climate for the EA

Soft

Bnb Belgium Overall Business
Indicator

Belgium Overall Business Indica-
tor

Soft

Esi EC. Business and con-
sumer surveys

EA Economic Sentiment Indica-
tor

Soft

Bci EC. Business and con-
sumer surveys

EA Business Climate Indicator Soft

Sales Eurostat Retail Sales Volume, Annual
Growth Rate

Hard

Ino Eurostat Industrial New Orders Hard
Ipi Eurostat Industrial Production Index Hard
Empl Eurostat Unemployment Rate, Total Hard

which is released at a quarterly frequency. The remaining variables have a

monthly frequency. There are a number of alternatives to the MFVAR. Most

notably MIDAS approach by Ghysels et al. (2004) and Ghysels et al. (2007),

which was proven to be useful for various forecasting purposes. MIDAS is a

time series regression tool that permits different frequencies for model variables.

(Bai et al., 2013, p. 801) compare the forecasting performance of MIDAS and

state-space models applied to a mixed –frequency data and concluded Kalman

filter forecast to perform slightly better. (Kuzin et al., 2011, p. 536) compare

the performance of AR-MIDAS against MFVAR by evaluating Euro Area GDP

forecasts. Their conclusion suggests the outperforming methodology is unclear

and the results depend on predictors and forecast horizon.

While the literature does not provide evidence of clear outperforming fore-

casting methodology the MFVAR has another important result. The state-

space models allow the estimation of the missing high-frequency data by using

the Kalman Filter (Foroni and Marcellino, 2013, p. 25), which in this paper is

considered to be a useful object.

This chapter thus builds on the literature on economic indicators estimated

using mixed frequency models. The need to provide short-term forecasting of

the key macroeconomic indicators has motivated the development of a num-

ber of methodologies such as state-space models, mixed data sampling models,

and bridge equations. Foroni and Marcellino (2013) reviewed the literature dis-
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Table 4.2: Stylised information sets of the soft indicators

Information available in 2012m1 (January 1)

Year Quarter Month bls esi bci sales ino ipi empl
2011 Q4 M12 x x x x x x
2012 Q1 M1
2012 Q1 M2
2012 Q1 M3
2012 Q2 M4

Information available in 2012m2 (February 1)

Year Quarter Month bls esi bci sales ino ipi empl
2011 Q4 M12 x x x x x x
2012 Q1 M1 x x x x x x
2012 Q1 M2
2012 Q1 M3
2012 Q2 M4

Information available in 2012m3 (March 1)

Year Quarter Month bls esi bci sales ino ipi empl
2011 Q4 M12 x x x x x x x
2012 Q1 M1 x x x x x x
2012 Q1 M2 x x x x x x
2012 Q1 M3
2012 Q2 M4

Note: ‘safe’ corresponds to Q11 in the EA Survey on the access to finance of enter-
prises, which evaluates the general economic outlook, insofar as it affects the availabil-
ity of external financing; ‘income’ is the real growth in actual final consumption per
capita in the EA.
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cussing bridge equations, mixed data sampling models, mixed frequency factor

models, and, most recently, MFVARs Schorfheide and Song (2015). The latter

methodology is extended for the structural analysis Schorfheide et al. (2018).

4.3.2 State space representation

The model is closely related to that of Schorfheide and Song (2015). The state

space representation of the model has the following form:

yt = Hβt + εt (4.1)

The transition equation is

βt = Hβt−1 + εt (4.2)

εt ∼ iidN(0,Ωε)

εt ∼ iidN(0,Ωε)

When the variable Y is observed, Equation (1) has the following form:



0 x1

0 x2

y3 x3

0 x4

0 x5

y6 x6
...

...

yT xT


=

(
1
3 0 1

3 0 1
3 0

0 1 0 0 0 0

)
×



ŷt

xt

ŷt−1

xt−1

ŷt−2

xt−2


(4.3)

which implies that the quarterly data can be represented as an average of

the monthly variables:

Y3 = (1/3Y )t + (1/3Y )t−1 + (1/3Y )t−2
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When the observation is unavailable, Equation (1) takes the following form:



0 x1

0 x2

y3 x3

0 x4

0 x5

y6 x6
...

...

yT xT


=

(
0 0 0 0 0 0

0 1 0 0 0 0

)
×



ŷt

xt

ŷt−1

xt−1

ŷt−2

xt−2


+

(
εt

0

)
(4.4)

When observations are missing, the row in matrix H means that the vari-

able is zero and an error term is a large number. From the point of view of

the Kalman filter, these observations would be ignored when calculating a new

estimated value of Ŷ . The transition equation has the following form:

ŷt

xt

ŷt−1

xt−1

ŷt−2

xt−2


=



c1

c2

0

0

0

0


+



b1 b2 b3 b4 b5 b6

d1 d2 d3 d4 d5 d6

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0


×



ŷt−1

xt−1

ŷt−2

xt−2

ŷt−3

xt−3


+



v1

v2

0

0

0

0


(4.5)

The variance of the error term is

Q =



q11 q12 0 0 0 0

q21 q22 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(4.6)

The question of how many variables should be chosen in zt raises various

issues, as it is assumed that a better specification is obtained when a large

number of variables is present Giannone et al. (2008). However, the risk of using

a large number of variables is that this may violate the weak cross-correlation

hypothesis and increase noise. Boivin and Ng (2005) argued that the selection of

variables with statistical criteria generates biased estimates. Another concern

with the model estimation is the feasibility of a large number of time series

included. While the model can be extended to include a large number of series,

I follow Camacho and Quiros (2011), who argued that small models are relatively
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easier to test for assumptions in an empirical setup. Figure 1 shows that the

variables of interest have visually similar dynamics to the monthly series in the

model, whereas such a visual inspection would not be feasible in a larger setup.

An important task in a VAR estimation is to cope with the high dimen-

sionality of β. The MFVAR in this article is equipped with Minnesota prior

and estimated with Bayesian methods. The Minnesota prior is based on Sims

and Zha (1998), applied in Bańbura et al. (2010) and Giannone et al. (2015).

The implementation follows a textbook chapter of Del Negro and Eusepi (2011,

p. 12) and Blake et al. (2012, p. 31). The main notion of the Minnesota prior

is to centre the distribution of β around the value that entails random walk

behaviour of variables in the model. The version of Minnesota prior used in this

article is proper and belongs to a family of multivariate Normal inverse Wishart

distributions. I implement the Minnesota prior using the dummy variables ap-

proach Blake et al. (2012), which in turn is based on Bańbura et al. (2010). The

artificial observations used in a dummy variable approach are a computationally

more convenient way to implement priors.

4.4 Empirical Results

To respond to the ever-increasing need for the monetary authorities to timely

respond to shocks in an informed manner, MFVAR produces monthly estimates

of the survey variables, which are available at a quarterly frequency from the

EC website.

This section conducts the following forecasting exercise. For each period

t, where the BLS variable is available, the model produces a one-step-ahead

forecast given the information available at t−1, replicating the real-time dataset

available to a forecaster at the time the forecast is made. The forecast estimation

follows the work of Schorfheide and Song (2015), who used another iteration of

the prediction step of the Kalman filter to obtain the one-step-ahead forecast. I

evaluate the forecasting performance of MFVAR against the benchmark of the

random walk process as follows:

yt = yt−1 + εt

I compare the forecast from the model with a benchmark, which expects the

same value for the BLS variable as in the previously published quarter:

RMSE =

T∑
t=1

E(BLSt|Ωt−1)−BLSt

where RMSE is the root mean squared error (RMSE), BLSt is the realised
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value of the survey variable, E(BLSt) is the expected value of the survey vari-

able, Ωt−1 is the information set available at time t− 1, and the mean squared

errors are 3.39 and 10.75, respectively. Figure 4.3 illustrates the performance of

MFVAR forecast throughout the sample.

The result is a one-step-ahead forecast and a confidence interval for the per-

ceptions of economic activity estimated using pseudo samples. The forecast is

based only on the information available at the time of the forecast. The impor-

tance of the forecasts is highlighted when the BLS variables change drastically

(e.g. during the sovereign default crisis in the EU). The value of 2011q4 is

−12.1, followed by a deterioration of the economic outlook to −41.3.

Lane (2012, p. 50) outlined three major problematic periods during the

sovereign default crisis: the divergence of Greek yields in 2010, Irish and Por-

tuguese yield co-movement in 2010 and first two quarters of 2011, and the

spreads of Italy and Spain against Germany rising above 300 basis points in

2011m7 and staying at a heightened level thereafter. During that period, the

BLS reported sharp credit tightening in 2012q1. The three outlined events are

the periods when MFVAR outperformed naive forecasting by a large margin (see

Figure 4.3). The proposed model could capture this drop from 2012m1. Fig-

ure 4.2 illustrates the performance of the forecasts compared with the quarterly

observed series.

4.5 Structural Analysis of IP

This section shows that the BLS variable plays an important role in the IP

mechanism. I provide evidence that the BLS can explain the variation in the

interest rates and the responses of interest rates to an MP shock across countries.

The forecasting exercise produced monthly observations for the BLS variable.

However, the produced time-series might not be useful in economic modelling

and does not contain information about the monetary policy transmission chan-

nel. The regression exercise’s aim is to test this hypothesis whether the BLS

variable from the forecasting exercise has significant explanatory power over the

various interest rates in the Euro Area. This exercise estimates the following

regression:

it = αt + φBLSt + εt (4.7)

Where it is a matrix containing interest rates (Table 4.3) and a matrix of IRFs

of interest rates (Table 4.4), BLSt is a monthly variable of Bank lending survey

responses estimated in the previous section. The second part of the exercise

provides evidence that the BLS variable contains information that could explain

the variation in the responses of the interest rates. Von Borstel et al. (2016)
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Figure 4.2: Perceptions of economic activity, one-step ahead forecast
Note: The ‘BLS’ variable is the survey question on credit standards (eased=positive,
tightened=negative). The credible set is 68%.

showed that the response of bank lending rates did not significantly change

between the pre-2007 crisis period and the sovereign debt crisis (January 2010

to December 2013), except for one component of IP, the bank lending margin.

Therefore, the survey variable might contribute to explain the last step of the

IP mechanism.

Table 4.3 highlights the relationships among the interest rates on loans to

corporations and households, long-term debt securities, and BLS outcomes. The

results indicate that an increase in BLS variable, which corresponds to a per-

ceived improvement of economic activity, is negatively related to the interest

rates on loans to corporations and long term debt securities. For a 10% of BLS

increase, there is a 39 basis points decrease in interest rates on loans to corpora-

tions and 40 basis points decrease in interest rates for long term debt securities.

The results for loans to households are less significant and have a positive re-

lationship. One of the reasons for the difference in signs of the relationship

between loans to corporations and households might be the asymmetries in the

IP channel discussed in Section 3.4.

The second part of the regression exercise estimates IRFs of interest rates on
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Figure 4.3: Forecast error comparison: MFVAR and random walk
Note: Error is calculated as the difference between the realised value and median
forecast produced by MFVAR using the pseudo sample. RMSE for bivariate MFVAR
is 3.39 and for naive forecast 10.75.

loans to corporations and households, long-term debt securities as a dependent

variable. The IRFs are obtained from the FAVAR estimation with a recursive

identification and are presented in Appendix Figures A.13, A.14, and A.15. I

extend the FAVAR model of Von Borstel et al. (2016) using time-varying co-

efficients and stochastic volatility, as described in Chapter 2. I keep the same

recursive identification scheme (Von Borstel et al., 2016, p. 390). Table 4.4

presents the results of the second part of the regression exercise. The significant

relationship between the BLS variable and responses of interest rates on loans

to corporations in column 1, suggests that an improvement in economic outlook

(increase in the BLS variable) is associated with the amplified response of inter-

est rates to a monetary policy shock. The opposite holds true for the responses

of interest rates on loans to households. Overall, I find that the variation in the

interest rate responses could be explained by the BLS variable, which captures

the perception of MP changes at the level of senior loan officers. It highlights

the importance of the information contained in the BLS outcomes.
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Table 4.3: Regression results for the BLS and interest rates

(1) (2) (3)
Business Household Government

BLS -0.00392*** 0.00178* -0.00402***
(0.00132) (0.00108) (0.00109)

Constant 3.262*** 4.221*** 2.570***
(0.235) (0.256) (0.127)

Observations 301 301 301
R-squared 0.807 0.907 0.831

Note: The panel includes Austria, Belgium, Germany, Spain, Greece, Italy, and Por-
tugal. ‘Business’ means the annualised agreed rate for deposits from corporations with
an agreed maturity of up to one year; ‘Household’ refers to the annualised agreed rate
for deposits from households with an agreed maturity of up to one year; ‘Government’
refers to a long-term interest rate for convergence purposes (10-year maturity). All
specifications include the country and time fixed effects. Robust standard errors in
parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

4.6 Conclusion

Owing to the lack of real-time indicators for the survey values, this study esti-

mates a monthly series for banks’ perceptions of economic activity in the EA

between 2008 and 2018, producing one-step-ahead forecasts based on the avail-

able data at each point in time. The forecasting performance of MFVAR is

able to beat a random walk benchmark. However, the gains in the RMSE come

from periods of drastic changes in the BLS indicator during the financial crisis.

These gains are captured by the availability of monthly series within the mixed

frequency model.

The importance of the information contained in the BLS outcomes is demon-

strated by two examples. The first piece of evidence comes from a panel esti-

mation of business, household, and government borrowing rates and the BLS

variable highlighting its significance. The second piece of evidence comes from

the extension of the FAVAR methodology of Von Borstel et al. (2016) with time

variation and stochastic volatility. This extension produces time-varying im-

pulse responses for eight EA countries. The variation over time and between

countries is also explained by the BLS outcomes. While the above articles eval-

uated the effects of the ECB’s monetary policy, the analysis did not consider

the spillover effects of other CBs.
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Table 4.4: Regression results with the BLS and estimated responses of the
interest rates

(1) (2) (3)
Variable Business Household Government

BLS -0.0172*** 0.00845*** 0.00388
(0.00332) (0.00261) (0.00269)

Constant -1.797*** -5.663*** -7.189***
(0.553) (0.452) (0.403)

Observations 301 301 301
R-squared 0.070 0.045 0.031

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: The panel includes Austria, Belgium, Germany, Spain, Greece, Italy, and
Portugal. The dependent variable is the accumulated impulse response at the 24-
month horizon. All specifications include the time fixed effects. Robust standard
errors in parentheses.
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Chapter 5

Conclusions
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This thesis analyses the two channels of MP transmission: credit supply

and expectation channels including the periods of UMP. In the second chapter,

I find heterogeneity in the responses of disaggregated consumers’ inflation ex-

pectations in the EA based on time-varying FAVAR. The results indicate some

heterogeneity in the responses of different age groups to an EA-wide monetary

policy shock, although these are not significant for most countries. Younger

demographics (16–29 years) exhibit a higher level of updating inflation expec-

tations than older groups. Similarly, a larger share of consumers with a higher

education level and higher income would update their inflation expectations.

This finding concurs with those in the literature.

The key finding is that the responses of inflation expectations have weakened

over time. The responses of inflation expectations after 2010, during the ZLB

period, take more time to react, making them weaker on average than the

responses before 2008. The dynamics of inflation expectations could therefore

be a possible cause of inflation persistence in the EA.

The determinants of the heterogeneity in the responses of inflation expecta-

tions suggest that industry structure and labour market rigidities play a signif-

icant role in the propagation mechanism of MP. The results also go in line with

earlier findings suggesting that a lower share of manufacturing and higher un-

employment protection and union share mitigate the effects of credit channels.

The third chapter finds a positive effect of the PSPP on the volume of small

loans, especially the smallest category of below 0.25 m euros, and small changes

in the costs of borrowing. For a 1% of GDP increase in monthly net purchases

under the PSPP, the volume of loans rises by 47 million, whereas for loans below

0.25 million euros, the cost of borrowing falls by 174 basis points.

Owing to the lack of real-time indicators for the survey values, the fourth

chapter estimates a monthly series for banks’ perceptions of economic activity in

the EA between 2008 and 2018, producing one-step ahead forecasts based on the

available data at each point in time. The forecasting performance of MFVAR

is able to beat a random walk benchmark. However, the gains in the RMSE

come from periods of drastic changes in the BLS indicator during. These gains

are captured by the availability of monthly series within the mixed frequency

model.

A potential interest for future research is to improve the identification strat-

egy of the monetary policy shocks to evaluate not only unanticipated shocks but

also the effects of the announcements and unannounced changes in the imple-

mentation of unconventional policies. Furthermore, it might be useful to include

the MP shocks from Japan, USA, Canada, Sweden and Switzerland to evaluate

and compare their contributions to the effects found in the chapters above.
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Appendix A

Appendix

A.1 Appendix Chapter 2
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A.1.1 Estimation steps

1. Set the priors and starting values.

2. Conditional on the factors and observed variables, sample the factor load-

ings.

3. Conditional on the factors and factor loadings, sample the variance of the

error terms of the observation equation from the IG distribution.

4. Conditional on the factors and error covariance, obtain the VAR coeffi-

cients in the transition equation using the Carter-Kohn algorithm.

5. Conditional on the factors and VAR coefficients, sample the error covari-

ance from the IW distribution.

6. Given the factor loadings, error covariance matrix observation equation,

VAR coefficients in the transition equation, and error covariance matrix

in the transition equation, obtain the factors using the Carter–Kohn al-

gorithm.

Similarly, the above could be expressed using the following notation:

• Γ (Factors loadings)

• R (Covariance matrix X)

• {βt}Tt=1 (VAR coefficients in the transition equation)

• Q (Covariance matrix for βt)

• {aij,t}Tt−1 (Off diagonal elements of At)

• D covariance matrix for A

• Diagonal elements of Ht

• Variance of ln(hi,t)

• {F jt }Tt−1 Factors

Steps:

1. Set the priors and initial values for the model parameters: parameters

in the transition equation, parameters in the random walk process for

{aij,t}, parameters in the observation equation, and parameters in the

random walk process for ln(hi,t).

2. Given R, draw Γ.
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3. Given Γ and Zt, draw R.

4. Given Zt, Q, {aij,t}, and hi,t, draw βt.

5. Given βt, draw Q.

6. Given Zt, βt, hi,t, and D, draw aij,t.

7. Given aij,t, draw D.

8. Given Zt, βt, and gi, draw hi,t.

9. Given hi,t, draw gi.

10. Given Γ, R, βt, aij,t, and hi,t, draw Ft.

11. Iterate steps 2 to 10 M times. When M and M0 are sufficiently large but

M > M0, the marginal posterior distribution of each parameter can be

approximately obtained from the last (M −M0) iterations.

Priors and Convergence

Time-varying parameter models, namely time-varying parameter FAVAR SV,

are not parsimonious and contain a large number of coefficients. (Koop et al.,

2010, p. 5) argued that without informative priors, precisely estimating coeffi-

cients might be challenging. Following Primiceri (2005), this problem could be

mitigated using the first 10 years of data as a training sample.

In Chapter 2, the first 10 years (40 observations, from 1999:I to 1999:IV) are

used to calibrate the prior distributions.

Following Baumeister et al. (2013) to assess convergence of the Markov

Chain, Figure A.1 illustrates the recursive mean across the retained draws of

key model parameters and shows that the means are relatively stable.

Calculating IRFs (Fry and Pagan, 2011)

This section describes the steps for obtaining IRFs according to Fry and Pagan

(2011). This approach is aimed at obtaining a single value θ, which denotes

a single IRF and minimises the criterion in Fry et al. (2005). The procedure,

also known as median target method (MT), chooses such θ(k) that the impulse

response is closest to the median response. The algorithm proceeds as follows:

• Obtain impulse response function for a set of models (100) that satisfies

sign restrictions. Obtain this for each time period in the case of time

varying model.
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Figure A.1: Recursive means of key model parameters to assess convergence of
the Markov chain to the ergodic distribution.

• The standardised impulse responses are stored in a vector φ(l) for each

value θ(l).

• Choose l such that MT = φ(l)
′
φ(l) and use that l to calculate the impulse

responses.

Algorithms

The algorithms described below closely follow Blake et al. (2012); Kim and

Nelson (1999); Koop (2003).

Sampling from the normal distribution

To obtain sample x with the dimensions k × 1 from a normal distribution

N(m, v), generate the k × 1 vector z from the standard normal distribution.

Then, transform vector z by adding mean m and scaling by variance v with the

following formula:

x = m+ z × v1/2
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Sampling from the inverse Gamma

To obtain a sample x with the dimensions k× 1 from an inverse Gamma distri-

bution Γ−1(S/2, T/2), where S/2 and T/2 are the degrees of freedom and scale

parameters, respectively, generate the k × 1 vector z from the standard normal

distribution. Then, find x = D/([z0]
′
z0).

Sampling from the inverse Wishart

See the description in (Zellner, 1971, p. 389).

Sampling from the lognormal

To sample from the lognormal distribution z ∼ log − normal(µ, σ), sample z0

from the normal density N(µ, σ) and then transform z = exp(n).

Gibbs sampling

Suppose the researcher is given a joint density f(x, y1, y2, ...yn) and he/she is

interested in obtaining the characteristics of marginal density

f(x) =

∫
...

∫
f(x, y1, y2, ...yn)dy1...dyn

In other words, he/she wants to integrate out all the y variables. The most

straightforward approach would be to calculate f(x) and use it to obtain the

desired statistics. Yet, the integration of the expression above is often extremely

difficult to perform either analytically or numerically.

In Monte Carlo integration, the algorithm takes random draws from p(θ|y)

and finds an average to estimate E[g(θ|y)] for any function of interest g(θ). In

many models, it is not easy/feasible to draw from p(θ|y). However, it is easy to

draw from

p(θ(1)|y, θ(2), θ(3), ..., θ(B)),

p(θ(2)|y, θ(1), θ(3), ..., θ(B)), ...

p(θ(B)|y, θ(1), θ(2), ..., θ(B−1))

Suppose f(x1, x2, ..., xk) is a joint distribution of k variables. The interest

of a researcher is f(xi), i = 1...k. However, a standard procedure of integrating

a joint distribution might be unfeasible. Assume that conditional distribution

f(xi|xj) for i 6= j is known; then, Gibbs sampling is a way to approach an

approximation of the marginal distribution.
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Gibbs sampling is an MCMC algorithm, a numerical method that approx-

imates the joint and marginal distributions by drawing from the conditional

distributions. Suppose there is a distribution with K variables, and the re-

searcher is interested in finding the joint and marginal distributions, given that

we know the functional form and moments of all the conditional distributions.

Randomly draw x1 from its conditional distribution holding all other xs

constant at their starting value. In the first iteration of Gibbs sampling, we

draw a random sample of parameters for x1 to xp; as the number of iterations

goes to infinity, the joint and marginal distributions converge. The second

iteration is (x21, x
2
2...x

2
p).

As the number of draws rises, the samples from the conditional distributions

converge towards the joint and marginal distributions of xt at an exponential

rate (Casella and George, 1992, p. 170). In other words, if one runs Gibbs

sampling for M iterations and considers the last H number of iterations, the

researcher would obtain H values for x1, x2, ..., xk. The histogram of these

H draws is an approximation of the marginal density of x1, x2, ..., xk. Conse-

quently, the estimate of the mean of the marginal posterior distribution is a

sample mean of the H retained draws from Gibbs sampling.

Metropolis–Hastings

This algorithm follows Koop (2003) and Blake et al. (2012) closely. Let y be a

matrix of observations and Φ be a vector of parameters. Then, p(y|Φ), p(Φ),

and p(Φ|y) are the likelihood, prior, and posterior, respectively. Let Φ∗ denote a

draw from a density, called candidate generating density. Candidate generating

density is denoted as q = (Φ(s−1); Φ), where Φ is a random variable and its

density depends on Φ(s−1). The Metropolis -Hastings algorithm is an MCMC

algorithm, which draws values Φs for s = 1...S.

In Metropolis–Hastings, the draws are weighted equally; however, not all

draws are accepted. Consider a function of interest π(Φ) and the estimate of this

function E(π(Φ)|y), and denote this by (π)(Φ). Then, π(Φ) = 1/S
∑S
s=1 π(Φ).

Considering the above, Metropolis–Hastings contains the following steps:

• Chose starting value Φ0

• Take candidate draw Φ∗ from candidate density q = (Φs−1; Φ).

• Calculate the probability of the acceptance of draw α = (Φs−1; Φ∗).

• Change Φs to Φ∗ with probability α(Φs−1; Φ∗) and set Φs = Φs−1 with

probability 1− α(Φs−1; Φ∗).

• Repeat steps 1-3 S times, and calculate the average of the S draws π(Φ1), ..., π(ΦS).
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• The acceptance probability has the following form: Matrix σ determines

how the exploration of the distribution is conducted. If it is too low, then

it does not explore the distribution sufficiently; on the contrary, if it is

too high, then it would sample a considerable amount from the tails of

the distributions. Choose σ that such the acceptance rate is between 20%

and 40%.

Kalman filter

Consider a general state space model (with the notation following Hamilton

(1994)):

yt
r×1

= A′
n×k
× xt
k×1

+ H ′
n×r
× ξ
r×1

+ wt
n×1

(A.1)

ξt+1
r×1

= µ
1×1

+ F
r×r
× ξt
r×1

+ vt+1
r×1

(A.2)

where E[vtv
′
t] = Q and zero otherwise; E[wtw

′
t] = R and zero otherwise.

Assume that Y and X are observed. For simplicity, assume that the values

F,Q,H,H,R are also known with certainty. This assumption is relaxed later.

The following algorithm calculates the linear least squares forecasts of the state

vector:

ξ̂t+1|t = E(ξt+1|Yt) (A.3)

where E(ξt+1|Yt) is a linear projection of ξt+1 on Yt and a constant. The

Kalman filter produces these projections recursively for each time period. The

mean squared error associated with each forecast is calculated as follows:

Pt+1|t ≡ E[(ξt+1 − ξt+1|t)(ξt+1 − ξt+1|t)
′] (A.4)

If the eigenvalues of F are all inside the unit circle, the state process (transi-

tion equation) is covariance-stationary. Then, unconditional moments are given

by ξ0|0 = (Ir−F )−1µ and vec(P0|0) = (I−F⊗F )−1vec(Q)). If the state process

is not stationary and the eigenvalues of F lay outside the unit circle, no uncon-

ditional moments exist; hence, the starting value for the mean is arbitrary and

the variance is a diagonal matrix with large entries to reflect the uncertainty.

Given the starting values for the state and its variance, we forecast the
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state, variance, and observed variable. We assume that the exogenous variables

x contain no information about the state beyond the already realised observed

variables:

ξt|t−1 = µ+ Fξt−|t−1 (A.5)

Pt|t−1 = FPt|t−1F
′ +Q (A.6)

ηt|t−1 = yt −A′xt|t−1 +H ′ξt|t−1 (A.7)

ft|t−1 = H ′Pt|t−1H +R (A.8)

Equation (A.21) updates the state according to the transition equation;

Equation (A.22) updates the state variance (which includes the error value from

the transition equation); Equation (A.23) calculates the forecast error (i.e. the

difference between the forecasted ŷ and its realised counterpart); and Equation

(A.24) calculates the forecast error variance (which includes the error value from

the observation equation).

The next step is updating the inference about the state (finding ξ̂t|t):

ξ̂t|t = ξ̂t|t−1︸ ︷︷ ︸
old forecast

+ Pt|t−1︸ ︷︷ ︸
old variance

H(H ′Pt|t−1H +R)−1︸ ︷︷ ︸
ft|t−1

(yt −A′xt|t−1 +H ′ξt|t−1)︸ ︷︷ ︸
ηt|t−1

(A.9)

Alternatively, combining the old variance with the forecast error variance,

the updating equation could be expressed using the Kalman gain expression:

ξ̂t|t = ξ̂t|t−1︸ ︷︷ ︸
old forecast

+Pt|t−1H
′f−1t|t−1︸ ︷︷ ︸

kalman gain

ηt|t−1︸ ︷︷ ︸
forecast error

(A.10)

Similarly, for the variance of the state,

Pt|t = Pt|t−1︸ ︷︷ ︸
old variance

− K︸︷︷︸
kalman gain

HPt|t−1 (A.11)

The forecasts of the state and observed variables (ξ̂t|t−1 and ŷt|t−1) are opti-

mal within the set of forecasts that are linear in xt, Xt−1, Yt−1 (Hamilton, 1994,

p. 385). If the initial state and innovations are multivariate Gaussian, the fore-

casts are optimal among any functions of xt, Xt−1, Yt−1. Furthermore, if the

initial state and innovations are Gaussian, the distribution of yt conditional on
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xt and Xt−1, Yt−1 is also Gaussian: /

yt|xt, Xt−1, Yt−1 ∼ N((A′xt +H ′ξ̂t|t−1), (H ′Pt|t−1H +R)) (A.12)

Then, the sample log likelihood is the sum of the log likelihoods for each time

period, consisting of the values from the Kalman filter algorithm:

T∑
t=1

logfyt|Xt−1,Yt−1
(yt|Xt−1, Yt−1) (A.13)

where

fYt|Xt−1,Yt−1
(Yt|Xt−1, Yt−1) =

2

π

∣∣H ′Pt|t−1H +R
∣∣− 1

2×exp(1

2
(A′Xt+H

′ξ̂t|t−1)′(H ′Pt|t−1H+R)−1)×exp(A′Xt+H
′ξ̂t|t−1)

Carter–Kohn algorithm

The algorithm developed by Carter and Kohn (1994) considers the factorisation

of the joint density H(βT |YT ):

H(βT |YT ) = H(βT |YT )×H(βT−1|βT , YT )

H(βT |YT ) = H(βT |YT )×H(βT−1|βT , YT )

×H(βT−2|βT , βT−1, YT )

Then,

H(βT |YT ) = H(βT |YT )×H(βT−1|βT , YT )×H(βT−2|βT , βT−1, YT )

×H(βT−3|βT , βT−1, βT−2, YT )

Finally,

H(βT |YT ) = H(βT |YT )×H(βT−1|βT , YT )×H(βT−2|βT , βT−1, YT )

×H(βT−3|βT , βT−1, βT−2, YT )× ...×H(β1|βT , βT−1, βT−2, βT−3,..., β2, YT )

Or, more concisely,

H(βT |YT ) = H(βT |YT )× ...×H(β1|βT , βT−1, βT−2, βT−3,..., β2, YT )

Following (Kim and Nelson, 1999, p. 191), Expression (1) can be simplified

because βT is an AR or Markov process. Then, βT does not contain additional
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information on β](T − 2), which is already included in β(T − 1). Expression (1)

can thus be rewritten in the following way:

H(βT |YT ) = H(βT |YT )×H(βT−1|βT , YT−1)

×H(βT−2|βT−1, YT−2)×H(βT−3|βT−2, YT−3)× ...×H(β1|β2, Y1)

Or, more compactly,

(H(βT |YT ) = H(βT |YT )

T−1∏
t=1

[H(βT |βt+1, Yt)]) (A.14)

Stochastic volatility

Consider the following model Jacquier et al. (2002):

yt = εt
√

(exp(ln(ht))

where ht is a state variable and a time-varying variance. Since it can-

not be estimated using the Carter–Kohn algorithm, we use the independent

Metropolis–Hastings algorithm. Obtain a starting value for ht, t = 0, ..., T and

set the priors µ and σ (e.g. µ could be the log of the ordinary least squares

estimate of the variance of εt and σ could be set to a large number to reflect the

uncertainty around the initial value). At t = 0, sample the initial value of h0

from the log-normal density f(h0|h1) = h−1exp(−(ln(h0)− µ0)2/(2σ0)), where

µ0 = σ0(µ/σ + ln(h1)/g) and σ0 = (σg)/(σ + g) Jacquier et al. (2002, p. 11).

For t = 1...T − 1 for each t, draw a new value for ht from the candidate

density and call the draw h(t, new): q(ΦG+1) = h−1exp(−(ln(ht)− µ)2/(2σh))

where µ = ln[ht+1 + ln[ht−1]]/2 and σ = g/2. The acceptance probability is

then derived as

α = min[((h−0.5t,newexp(−(y2t )/(2ht,new)))/(h−0.5t,oldexp(−(y2t )/(2ht,old))), 1)]

(A.15)

Draw u ∼ U(0, 1). If u < α, set ht = ht,new; otherwise, retain the old draw.

For the last time period T , compute µ = ln[ht−1] and σh = g and draw

h(t, new) from the candidate density

q(ΦG+1) = h−1exp(−(ln(ht)− µ)2/(2σh))

and the acceptance probability
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α = min[((h−0.5t,newexp(−(y2t )/(2ht,new)))/(h−0.5t,oldexp(−(y2t )/(2ht,old))), 1)]

(A.16)

Draw u ∼ U(0, 1). If u < α, set ht = ht,new; otherwise, retain the old draw.

Given the draw for ht, compute the residuals of the transition equation

[v]t = ln[ht]− ln[ht−1].

Draw g from the inverse Gamma distribution with scale parameter (v
′

tvt +

g0)/2 and degrees of freedom (T + v0)/2. This is a combination of the Gibbs

and Hastings–Metropolis algorithms.

Repeat steps 2 and 3. The last L draws of ht and g approximate the marginal

posterior distributions.

A.1.2 Data

Details of the survey data

The Joint Harmonised EU Programme of Business and Consumer Surveys was

introduced in 1961 and extended to the consumer sector in 1972. The survey is

conducted each month. As of May 2016, the programme included 28 member

states, of which 10 are of interest in this study: Belgium, Germany, Greece,

Spain, France, Italy, the Netherlands, Austria, Portugal, and Finland. The

questions of interest from the consumer survey include: Q5. How do you think

consumer prices have developed over the last 12 months? They have:

• ++ risen a lot

• + risen moderately

• = risen slightly

• − stayed about the same

• −− fallen

• N don’t know.

Q6 By comparison with the past 12 months, how do you expect consumer prices

to develop in the next 12 months? They will:

• ++ increase more rapidly

• + increase at the same rate

• = increase at a slower rate

• − stay about the same
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• −− fall

• N don’t know.
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A.1.3 Tables

Table A.1: Area Wide Model: List of the variables.

Variable Area Wide Model index T F

GDP at Market Prices YER 6 0
Individual Consumption Expenditure PCR 6 0
General Government Final Consumption Expenditure GCR 6 0
Gross Fixed Capital Formation ITR 6 0
Exports of Goods and Services XTR 6 0
Imports of Goods and Services MTR 6 0
GDP, Income Side YIN 6 0
Net Factor Income from Abroad as a Share of GDP NFN YEN 4 0
Unemployment Rate URX 4 0
Nominal Short-Term Interest Rate 3 STN 4 1
Nominal Long-Term Interest Rate 10 LTN 4 1
Commodity Prices COMPR 6 1
Non-oil Commodity Prices PCOMU 6 1
World GDP YWR 6 0
Nominal Effective Exchange Rate EEN 4 1
EURUSD EXR 4 1

Note: Column T denotes transformation: 6 = log − difference,4 − difference; Col-
umn F denotes fast moving variables (BBE): 1 = fast,0 = slow (for the Cholesky
identification only).
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A.1.4 Figures
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Figure A.2: Disaggregated inflation expectations by category.
Note: The solid line denotes overall inflation expectations. The dotted lines denote
inflation expectations by age, gender, education, and income. The Values are calcu-
lated as the sum of the proportions of the populations reporting a price increase and
price stability in the next 12 months. The shaded area is the OECD-based recession
indicators for Germany following the peak through the trough.
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Figure A.3: Disaggregated inflation expectations by country.
Note: The solid line denotes overall inflation expectations. The values are calcu-
lated as the sum of the proportions of the populations reporting a price increase and
price stability in the next 12 months. The shaded area is the OECD-based recession
indicators for Germany following the peak through the trough.
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Figure A.4: Responses of GDP, inflation, unemployment, and inflation expec-
tations to a contractionary MP shock.
Note: Time-varying median IRFs of the shadow rate (MP instrument). Identified with
sign restrictions (see Section 2.1.2).
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Figure A.5: Accumulated responses of GDP, inflation, unemployment, and in-
flation expectations to a contractionary MP shock.
Note: Time-varying median IRFs of the shadow rate (MP instrument). Identified with
sign restrictions (see Section 2.1.2).
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Figure A.6: Shadow rate response
Note: Time-varying median IRFs of the shadow rate (MP instrument). Identified with
sign restrictions (see Section 2.1.2).
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Figure A.7: Accumulated responses of the Area Wide Model variables (Fagan
et al., 2005): Part 1.
Note: Time-varying median IRFs of the shadow rate (MP instrument). Identified with
sign restrictions (see Section 2.1.2).
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Figure A.8: Accumulated responses of the Area Wide Model variables (Fagan
et al., 2005): Part 2.
Note: Time-varying median IRFs of the shadow rate (MP instrument). Identified with
sign restrictions (see Section 2.1.2).
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Note: Data from the Area Wide Model (Fagan et al., 2005).
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A.2 Appendix Chapter 3
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A.2.1 Tables

Table A.2: PSPP announcement and extensions

Wave Reference period PSPP An-
nouncement

Duration Size

1 January–June 2009
11 April–September 2014
12 October 2014–March 2015 22-Jan-15 March–end of

September 2016
Monthly
purchases
of EUR 60
billion

13 April–September 2015
14 October 2015–March 2016 03-Dec-15 Until the end of

March 2017
Unchanged

15 April–September 2016
16 October 2016–March 2017 08-Jun-17 Until the end of De-

cember 2017
Unchanged

Note: Data from the SAFE.

Table A.3: PSPP’s effects on the volume of loans

Loan volumes (a)

(1) (2) (3) (4)

Variable
Below
1 m euros

Above
1 m euros

Below
0.25 m euros

Between
0.25-1 m euros

PSPP/GDP (c) 52.46** -81.73 47.36*** 21.38
(21.56) (69.49) (15.88) (13.06)

Constant 1,025*** 7,549*** 146.5 872.7***
(205.5) (700.2) (110.1) (132.5)

Observations 352 337 319 317
R-squared 0.985 0.970 0.989 0.978
Country FE YES YES YES YES
Time FE YES YES YES YES

Note: Data from the SAFE.
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Table A.4: PSPP’s effects on the survey variables

(1) (2) (3) (4)

Variable Interest (a) Interest Financial
cost (b)

Financial
cost

PSPP/GDP(c) 0.00812 -0.0761*** -0.00497 -0.0377***
-0.00529 -0.0044 -0.00594 -0.00416

Constant 0.527*** 0.574*** 0.760*** 0.851***
-0.0636 -0.00254 -0.0911 -0.00237

Observations 30,454 30,454 25,581 25,581
R-squared 0.286 0.052 0.107 0.022
Country FE YES NO YES NO
Time FE YES NO YES NO
Individual FE NO YES NO YES
Number of respondents 22,592 19,312

Note: Data from the SAFE.
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A.2.2 Figures

Figure A.12: Interest rate on loans with an IRF period of more than one year.
Note: Statistics Bulletin, MFI. The shaded area is the OECD-based recession indica-
tors for Germany following the peak through the trough.
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Table A.6: Description of interest rates

Code for the series Description

A2A.A.B. Bank business volumes - loans to corporations of up
to 0.25 m euros (new business)

A2A.A.R. Bank interest rates - loans to corporations of up to
0.25 m euros (new business)

A2A.F.R. Bank interest rates - loans to corporations of up to
0.25 m euros with a floating rate and an IRF period
of up to one year (new business)

A2A.K.R. Bank interest rates - loans to corporations of up to
0.25 m euros with an IRF period of over one year
(new business)

A2A.Q.R. Bank interest rates - loans to corporations of up to
0.25 m euros with an IRF period of over three months
& up to one year (new business)

A2A.Y.R. Bank interest rates - loans to corporations of up to
0.25 m euros with an IRF period of up to one year
& original maturity of over one year (new business)

A2AC.A.R. Bank interest rates - loans to corporations with col-
lateral of up to 0.25 m euros (new business)

A2AC.F.R. Bank interest rates - loans to corporations with col-
lateral of up to 0.25 m euros with a floating rate and
an IRF period of up to one year (new business)

A2AC.Y.R. Bank interest rates - loans to corporations with col-
lateral of up to 0.25 m euros with an IRF period of
up to one year & original maturity of over one year
(new business)

Note: Data from the SAFE.

Table A.7: Difference-in-difference results with the survey outcomes

(1) (2) (3 (4)

Variable Interest Interest Financial cost Financial cost

Treatment*Post(c) -0.194*** -0.250*** -0.109*** -0.116***
-0.0246 -0.0125 -0.0272 -0.0121

Constant 0.426*** 0.587*** 0.716*** 0.855***
-0.0665 -0.0028 -0.0887 -0.00268

Observations 30,454 30,454 25,581 25,581
R-squared 0.289 0.062 0.108 0.024
Country FE YES NO YES NO
Time FE YES NO YES NO
Individual FE NO YES NO YES
Number of respondents 22,592 19,312

Note: Data from the SAFE.
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Table A.8: Difference-in-difference results with the survey outcomes by firm size

(1) (2) (3) (4)

Variable Small Medium Large All

Treatment*Post (b) -0.268*** -0.174*** -0.101* -0.194***
-0.0303 -0.0361 -0.0518 -0.0246

Constant 0.259*** 0.529*** 0.587*** 0.426***
-0.084 -0.103 -0.0586 -0.0665

Observations 16,986 9,839 3,629 30,454
R-squared 0.265 0.322 0.294 0.289
Country FE YES YES YES YES
Time FE YES YES YES YES
Individual FE NO NO NO NO

Note: Data from the SAFE.
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Table A.9: Description of the survey questions.

Type of question Question
number in
the survey

Description Dummy Dummy=1

For each of the following actors,
would you say that they have
improved, remained unchanged,
or deteriorated over the past six
months?

Q11 a General economic outlook,
insofar as it affects the avail-
ability of external financing

outlook improved

Q11 b Access to public financial
support, including guarantees

pubfin improved

Q11 f Willingness of banks to pro-
vide credit to your enterprise

bankcredit improved

Q11 h Willingness of investors to in-
vest

invest improved

For each of the following types
of financing, would you say that
their availability has improved,
remained unchanged, or deterio-
rated for your enterprise over the
past six months?

Q9 a Bank loans loans improved

Q9 f Credit line and overdrafts overdraft improved
We will turn now to the terms
and conditions of bank financing,
such as bank loans, overdrafts,
and credit lines. Please indicate
whether the following items in-
creased, remained unchanged, or
decreased in the past six months.

Q10 a level of interest rates interest Was decreased by
the bank

Q10 b cost of financing fcost Was decreased by
the bank

Q10 c size of loan credit loansize Was increased by
the bank

If you applied and tried to ne-
gotiate for this type of financing
over the past six months, what
was the outcome? Please provide
a separate answer in each case.

Q7B a bank loan received yesloan received everything
and received 75%
and above

Have you applied for the follow-
ing types of financing in the past
six months?

Q7A a bank loan applied for yesapplied applied

What is the size of the last
bank loan that your enterprise
obtained or renegotiated in the
past six months?

Q8 a Size of bank loan sloan Small (under 25k
euros)

What is the approximate number
of employees?

D1 rec number of employees smallfirm Under 50 employees

Indicate if your needs increased,
remained unchanged, or de-
creased over the past six months.

Q5 a Need for a bank loan needloan need of loan in-
creased

d1 rec Number of employees

Note: Data from the SAFE.
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A.3 Appendix Chapter 4
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A.3.1 Kalman filter

Consider a general state space model (with the notation following Hamilton

(1994)):

yt
r×1

= A′
n×k
× xt
k×1

+ H ′
n×r
× ξ
r×1

+ wt
n×1

(A.17)

ξt+1
r×1

= µ
1×1

+ F
r×r
× ξt
r×1

+ vt+1
r×1

(A.18)

where E[vtv
′
t] = Q and zero otherwise; E[wtw

′
t] = R and zero otherwise.

Assume that Y and X are observed. For simplicity, assume that the values

F,Q,H,H,R are also known with certainty. This assumption is relaxed later.

The following algorithm calculates the linear least squares forecasts of the state

vector:

ξ̂t+1|t = E(ξt+1|Yt) (A.19)

where E(ξt+1|Yt) is a linear projection of ξt+1 on Yt and a constant. The

Kalman filter produces these projections recursively for each time period. The

mean squared error associated with each forecast is calculated as follows:

Pt+1|t ≡ E[(ξt+1 − ξt+1|t)(ξt+1 − ξt+1|t)
′] (A.20)

If the eigenvalues of F are all inside the unit circle, the state process (transi-

tion equation) is covariance-stationary. Then, unconditional moments are given

by ξ0|0 = (Ir−F )−1µ and vec(P0|0) = (I−F⊗F )−1vec(Q)). If the state process

is not stationary and the eigenvalues of F lay outside unit circle, no uncondi-

tional moments exist; hence, the starting value for the mean is arbitrary and

the variance is a diagonal matrix with large entries to reflect the uncertainty.

Given the starting values for the state and its variance, we forecast the

state, variance, and observed variable. We assume that the exogenous variables

x contain no information about the state beyond the already realised observed
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variables:

ξt|t−1 = µ+ Fξt−|t−1 (A.21)

Pt|t−1 = FPt−|t−1F
′ +Q (A.22)

ηt|t−1 = yt −A′xt|t−1 +H ′ξt|t−1 (A.23)

ft|t−1 = H ′Pt|t−1H +R (A.24)

Equation (A.21) updates the state according to the transition equation;

Equation (A.22) updates the state variance (which includes the error value from

the transition equation); Equation (A.23) calculates the forecast error (i.e. the

difference between the forecasted ŷ and its realised counterpart); and Equation

(A.24) calculates the forecast error variance (which includes the error value from

the observation equation).

The next step is updating the inference about the state (finding ξ̂t|t):

ξ̂t|t = ξ̂t|t−1︸ ︷︷ ︸
old forecast

+ Pt|t−1︸ ︷︷ ︸
old variance

H(H ′Pt|t−1H +R)−1︸ ︷︷ ︸
ft|t−1

(yt −A′xt|t−1 +H ′ξt|t−1)︸ ︷︷ ︸
ηt|t−1

(A.25)

Alternatively, combining the old variance with the forecast error variance,

the updating equation could be expressed using the Kalman gain expression:

ξ̂t|t = ξ̂t|t−1︸ ︷︷ ︸
old forecast

+Pt|t−1H
′f−1t|t−1︸ ︷︷ ︸

kalman gain

ηt|t−1︸ ︷︷ ︸
forecast error

(A.26)

Similarly, for the variance of the state,

Pt|t = Pt|t−1︸ ︷︷ ︸
old variance

− K︸︷︷︸
kalman gain

HPt|t−1 (A.27)

The forecasts of the state and observed variables (ξ̂t|t−1 and ŷt|t−1) are opti-

mal within the set of forecasts that are linear in xt, Xt−1, Yt−1 (Hamilton, 1994,

p. 385). If the initial state and innovations are multivariate Gaussian, the fore-

casts are optimal among any functions of xt, Xt−1, Yt−1. Furthermore, if the

initial state and innovations are Gaussian, the distribution of yt conditional on

xt and Xt−1, Yt−1 is also Gaussian:
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yt|xt, Xt−1, Yt−1 ∼ N((A′xt +H ′ξ̂t|t−1), (H ′Pt|t−1H +R)) (A.28)

Then, the sample log likelihood is the sum of the log likelihoods for each time

period, consisting of the values from the Kalman filter algorithm:

T∑
t=1

logfyt|Xt−1,Yt−1
(yt|Xt−1, Yt−1) (A.29)

where

fYt|Xt−1,Yt−1
(Yt|Xt−1, Yt−1) =

2

π

∣∣H ′Pt|t−1H +R
∣∣− 1

2×exp(1

2
(A′Xt+H

′ξ̂t|t−1)′(H ′Pt|t−1H+R)−1)×exp(A′Xt+H
′ξ̂t|t−1)

A.3.2 Figures
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Figure A.13: Business lending rates: Accumulated responses from FAVAR with
the recursive identification
Note: The solid lines are the median responses to a shock normalised to lower the
EONIA by 1 percentage point on impact; the dotted lines are the 68% credible set.
Black: pre-2007 crisis, Grey: sovereign debt crisis (January 2010 to December 2013).
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Figure A.14: Household lending rates: Accumulated responses from FAVAR
with the recursive identification.
Note: The solid lines are the median responses to a shock normalised to lower the
EONIA by 1 percentage point on impact; the dotted lines are the 68% credible set.
Black: pre-2007 crisis, Grey: sovereign debt crisis (January 2010 to December 2013).
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Figure A.15: Long-term lending rates: Accumulated responses from FAVAR
with the recursive identification.
Note: The solid lines are the median responses to a shock normalised to lower the
EONIA by 1 percentage point on impact; the dotted lines are the 68% credible set.
Black: pre-2007 crisis, Grey: sovereign debt crisis (January 2010 to December 2013).
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Figure A.16: Long-term lending rates: Accumulated responses from time-
varying parameter FAVAR SV with the recursive identification.
Note: Time-varying median impulse response to a shock normalised to lower the
EONIA by 1 percentage point on impact.
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Figure A.17: Household lending rates: Accumulated responses from time-
varying parameter FAVAR SV with the recursive identification.
Note: Time-varying median impulse response to a shock normalised to lower the
EONIA by 1 percentage point on impact.
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Figure A.18: Business lending rates: Accumulated responses from time-varying
parameter FAVAR SV with the recursive identification.
Note: Time-varying median impulse response to a shock normalised to lower the
EONIA by 1 percentage point on impact.
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Figure A.19: Perceptions of economic activity, one-step ahead forecast. Multi-
variate MFVAR.
Note: The ‘BLS’ variable is the survey question on credit standards (eased=positive,
tightened=negative). The credible set is 68%.
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Figure A.20: Forecast error comparison: multivariate MFVAR and random walk
Note: Error is calculated as the difference between the realised value and median fore-
cast produced by MFVAR using the pseudo sample. RMSE for multivariate MFVAR
is 5.63 and for naive forecast 10.75.
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