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Abstract

In this paper we propose a Dirichlet process mixture model for censored survival
data with covariates. This model is suitable in two scenarios. First, this method can
be used to identify clusters determined by both the censored survival data and the
predictors. Second, this method is suitable for highly correlated predictors, in cases
when the usual survival models cannot be implemented because they would be unstable
due to multicollinearity. The Dirichlet process mixture model links a response vector to
covariate data through cluster membership and in this paper this model is extended for
mixtures of Weibull distributions, which can be used to model survival times and also
allow for censoring. We propose two variants of this model, one with a shape parameter
common to all clusters (referred to as a global parameter) for the Weibull distributions
and one with a cluster-specific shape parameter. The first satisfies the proportional
hazard assumption, while the latter is very flexible, as it has the advantage of allowing
estimation of the survival curve whether or not the proportional hazards assumption
is satisfied. We present a simulation study and, to demonstrate the applicability of
the method in practice, a real application to sleep surveys in older women from The
Australian Longitudinal Study on Women’s Health. The method developed in the
paper is available in the R package PReMiuM.
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1 Introduction

We propose a Dirichlet process mixture model for censored survival data with covariates.
This model is most useful in two situations.

First of all, this method can be used to identify clusters determined by censored survival
data and explanatory variables. The idea of linking a response vector to covariate data
through cluster membership was proposed initially by several authors including Dunson
et al. (2008), Bigelow and Dunson (2009), Molitor et al. (2010), Papathomas et al. (2011),
and Molitor et al. (2011). We will focus on the latter of these articles, which refers to
this idea as profile regression, where a Dirichlet mixture model is used for inference on the
clusters. This model was implemented in an R package by Liverani et al. (2015) and it has
been employed in a variety of fields (Molitor et al., 2014), including genetics (Papathomas
et al., 2012), environmental epidemiology (Papathomas et al., 2011; Pirani et al., 2015; Coker
et al., 2016; Liverani et al., 2016) and occupational epidemiology (Hastie et al., 2013; Mattei
et al., 2016). In this paper we extend this model to survival outcomes with censoring.

Second, the proposed method is suitable when the explanatory variables are multi-
collinear. Multicollinearity, or collinearity, is the existence of near-linear relationships among
the explanatory variables. The high correlation between explanatory variables can create
inaccurate, or unstable, estimates of the regression coefficients, inflate the standard errors,
deflate the partial t-tests, give false, nonsignificant, p-values, and degrade the predictability
of the model. Hence, one of the first steps in a regression analysis is to determine if mul-
ticollinearity is present. Our proposed method is stable when highly correlated predictors
are included in the model, making it a powerful tool to explore survival datasets with highly
correlated predictors.

The model that we propose is essentially a mixture of Weibull distributions and distribu-
tions suitable for the covariates, non-parametrically linking the response and the predictors
through cluster membership. Modelling independently the response and the covariates is the
idea underpinning profile regression as an exploratory method in the presence of collinearity
in the covariates. This modelling choice allows the exploration of the complex relationship
between the response and the covariates. Although the response and the covariates are mod-
elled independently, this clustering method can uncover linear and non-linear relationships
between covariates and response.

This model includes some cluster specific parameters, which characterise the clusters,
and some global parameters, which are shared by all clusters. The Weibull distributions,
with cluster-specific scale parameters, can be used to model survival times and also allow
for censoring. We propose two models with Weibull distributions for the response, one with
a global shape parameter for the Weibull distributions and one with a cluster-specific shape
parameter. The first model satisfies the proportional hazard assumption, which allows for
comparisons between clusters. On the other hand, the latter model has the advantage of
allowing the estimation of the survival curve without having to satisfy the proportional
hazards assumption. Therefore, it is a very flexible model. Suitable distributions for the
covariates are the Normal distribution in the case of continuous explanatory variables and
the multinomial distribution in the case of categorical explanatory variables.
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Kottas (2006) did important early work on the Weibull Dirichlet process mixture model
for unknown survival distributions, although their model was limited to estimating the sur-
vival distribution component only and did not extend to regression. In contrast, our proposed
method links the survival outcome to a multivariate profile, and estimates hazard ratios (in
the case where a proportional hazards assumption is satisfied) and median survival times.
Moreover, the Weibull Dirichlet process mixture by Kottas (2006) involves mixing on both
the shape and scale parameters of the Weibull kernel, while we also propose and discuss the
reduced model satisfying the desirable assumption of proportional hazards. Another contri-
bution of our paper is the computation of the posterior predictive distribution of survival
time to provide interpretable results. Finally, our methods are readily available in the R
package PReMiuM using advanced state-of-the-art MCMC algorithms.

In this paper, we apply our model to the analysis of sleep data based on a unique cohort
of very old women from The Australian Longitudinal Study on Women’s Health (ALSWH).
We are interested in learning about the relationship between sleep difficulty and survival in
an Australian cohort of old women (Leigh et al., 2016b). Due to the fact that difficulty in
sleeping may be related to additional factors which also affect survival (for example, Body
Mass Index (BMI), comorbidity, sleep medication use, physical functioning and vitality,
mental health), it is also of interest to model the joint effects of sleep difficulty and these
additional covariates on survival, via profile regression. Previous analyses (Leigh et al., 2015,
2016a) utilised latent class analysis (LCA) to identify longitudinal patterns (profiles) of sleep
difficulty, and then utilised these classes to predict survival, adjusted for various other factors,
as well as the interaction between the sleep classes and disease count. In the present paper,
profiles are based on the additional covariates as well as sleep difficulty, and thus may better
capture the complex interactions between all covariates of interest. Moreover, only a single
model fit is required rather than a procedure in steps, which might be unable to model
appropriately certain features of the data.

In Section 2 we introduce the formulation of the Dirichlet process mixture model and
profile regression. In Sections 3 and 4 we propose the two new models for censored survival
data with global and cluster-specific shape parameters. In Section 5 we provide a method
for the computation of hazard ratios, expected survival time and predictions. In Section 6
we report the results on simulated data and in Section 7 the results on the ALSWH dataset.
Some concluding remarks are given in Section 8.

2 Profile Regression

Profile regression is a Dirichlet process mixture model where the response variable and the
covariates are modelled jointly (Molitor et al., 2010; Liverani et al., 2015).

The Dirichlet process (DP) is a stochastic process used in Bayesian nonparametric models,
particularly in Dirichlet process mixture models. It is a distribution over distributions, so
each draw from a Dirichlet process is itself a distribution. For a random distribution G to
be distributed according to a DP, its marginal distributions have to be Dirichlet distributed,
which is the reason for the name Dirichlet of this process. Specifically, let H be a distribution
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over Θ and α be a positive real number. Then for any finite measurable partition A1, . . . , Ar
of Θ, the vector (G(A1), . . . , G(Ar)) is random since G is random. We say G is Dirichlet
process distributed with base distribution H and concentration parameter α, written G ∼
DP (α,H), if

(G(A1), . . . , G(Ar)) ∼ Dir(αH(A1), . . . , αH(Ar))

for every finite measurable partition A1, . . . , Ar of Θ. The draws from a DP satisfy a dis-
creteness property which also implies a clustering property. The discreteness and clustering
properties of the DP play crucial roles in the use of DPs for clustering via DP mixture mod-
els, as described in Teh (2011). The nonparametric nature of the Dirichlet process translates
to mixture models with a countably infinite number of components. We model a set of
observations {y1, . . . , yn} using a set of latent parameters {θ1, . . . , θn}. Each θi is drawn
independently and identically from G, while each yi has distribution F (θi). Because G is
discrete, multiple θi’s can take on the same value simultaneously, and the above model can
be seen as a mixture model, where yi’s with the same value of θi belong to the same cluster.

Profile regression is a generalisation of the DP mixture model, where the induced mixture
model is a mixture of two distributions, one for the response vector y and one for the
covariate data x. In particular, we define response data yi and covariate data xi for each
individual i with i = 1, . . . , n. There is also the possibility to include additional data, wi

for each individual, which we will refer to as fixed effects. The fixed effects are constrained
to only have a global (i.e., non-cluster specific) effect on the response yi and the functional
relationship between the response and the fixed effects is discussed below for specific response
models. The mixture model is then given by

f(xi, yi|φ,θ,ψ,β, z,wi) =
∞∑
c=1

ψcfx(xi|zi = c,φc)fy(yi|zi = c, θc,λ,wi) (1)

where xi = (xi1, . . . , xiP ) is the P -dimensional covariate profile and z = (z1, . . . , zn) with
zi = c is the allocation variable indicating the cluster to which individual i belongs. The
parameter vectors φ and θ are the cluster specific parameters and are defined in more detail
below. The parameter vector ψ = (ψ1, ψ2, . . .) are the cluster weights and λ are the global
parameters linking the fixed effects to the response variable. An active cluster is a cluster
which contains at least one observation. There are an infinite number of clusters in this
model, though a finite data set only exhibits a finite number of active clusters, which are
inferred from the data.

The likelihoods fy and fx depend upon the choice of response and covariate model,
respectively. The covariate model is different depending on the data. For continuous data,
we assume a mixture of Gaussian distributions. Under this setting for each cluster c, the
cluster specific parameters are given by φc = (µc,Σc), where µc is a mean vector and Σc is
a covariance matrix. Under this setting, it follows that

fx(xi|zi = c,φc) = (2π)−
J
2 |Σc|−

1
2 exp

{
−1

2
(xi − µc)>Σ−1

c (xi − µc)
}
. (2)
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For discrete variables, where for each individual i, xi is a vector of J locally independent
discrete categorical random variables, where the number of categories for covariate j is
Kj, for j = 1, 2, . . . , J . Then we can write φc = Φc = (Φc,1,Φc,2 . . . ,Φc,J) with Φc,j =
(φc,j,1, φc,j,2, . . . , φc,j,Kj) and

fx(xi|zi = c,Φc) =
J∏
j=1

φc,j,xi,j . (3)

Similarly, for the response model we implement models which are suitable for the data
under study. One simple case is a continuous response variable, in which case the likelihood
for the response model is given by

fy(yi|zi = c, θc,λ,wi) =
1√

2πσ2
y

exp

{
− 1

2σ2
y

(Yi − µi)2

}
, (4)

where µi = θc + β>wi and λ = (β, σ2
y). For both fy and fx we can also make other

modelling choices, like a binary response model, a categorical response model, Poisson or
Binomial mixtures for count data. Liverani et al. (2016) also propose an extension of this
response model to account for spatial correlation. In this paper we propose a new response
model, for censored survival data.

Profile regression as described above is implemented in the R package PReMiuM (Liverani
et al., 2015), along with a range of prior distributions. Inference is made in a Bayesian
framework using Markov chain Monte Carlo (MCMC) methods. Hastie et al. (2015) provide
details on assessing lack of convergence for these models. Additional features are available in
the R package, such as two methods for variable selection, which allow us to determine which
covariates actively drive the mixture components, and which share characteristics common to
all components. One of these variable selection methods is based on the work by Chung and
Dunson (2009), a cluster-specific selection approach which is also applied on the ALSWH
sleep data in Section 7. Each cluster c has an associated vector ξc = (ξc,1, ξc,2, . . . , ξc,J),
where ξc,j is a binary random variable that determines whether covariate j is important to
cluster c. For discrete covariates, we can then define the new composite parameters,

φ∗c,j,k := ξc,jφc,j,k + (1− ξc,j)φ0,j,k = (φc,j,k)
ξc,j (φ0,j,k)

(1−ξc,j) (5)

which replace the cluster specific parameters for discrete covariates defined above. We
assume that, given ρj, the ξc,j, c = 1, . . . , C, are independent Bernoulli variables with
ξc,j ∼ Bernoulli(ρj). To induce variable selection, we consider a sparsity inducing prior
for ρj with an atom at zero, so that

ρj ∼ 1{wj=0}δ0(ρj) + 1{wj=1}Beta(αρ, βρ), (6)

where wj ∼ Bernoulli(pw). By examining the posterior distribution of ρj we can ascertain
the extent of the contribution of variable j to the clustering: if it has mostly mass around
zero, it is unlikely to be contributing significantly to the clustering.
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The MCMC produces a rich posterior output, with a partition of the observations pro-
vided at each iteration. It is therefore necessary to infer a representative partition, as an
effective way to convey the output of the clustering algorithm. It is also of interest to as-
sess the uncertainty associated with subgroups of this best partition. Moreover, due to the
problem of ‘label switching’, i.e the labels associated with each cluster change during the
MCMC iterations, we can not simply assign each observation to the cluster that maximizes
the average posterior probability. One solution which has proved useful is to summarise the
MCMC output in a dissimilarity matrix, where at each iteration of the sample, we record
pairwise cluster membership and construct a score matrix. Averaging these matrices over
the whole MCMC run leads to a similarity matrix S, which can then be used to identify
an optimal partition. Post-processing methods are also available in the R package PRe-
MiuM and discussed in detail by Liverani et al. (2015). Molitor et al. (2010) include further
discussion on the motivation and justification of profile regression models.

3 Survival response Weibull with global shape param-

eter

We extend the profile regression model described in Section 2 for survival data with censoring,
using a mixture of Weibull distributions. In this section, we develop the model with a global
shape parameter for the Weibull distribution.

For survival data, with a survival or censoring time and a censoring indicator, we have

fy(yi|zi = c, θc,λ,wi) = h(yi|zi = c, θc, ν,β,wi)
diS(yi|zi = c, θc, ν,β,Wi) (7)

where h is the hazard function, S is the survival function, λ = (ν,β) are the global pa-
rameters and y is the lifetime of an individual. The censoring indicator di is defined as
follows.

di =

{
0 if the individual is censored or
1 if the individual experiences the event of interest

(8)

with d =
∑n

i=1 di. Survival time has a Weibull distribution if its survival distribution is given
by

S(yi|zi = c, θc, ν,β,wi) = f(y > yi|θzi , ν,β,wi) = exp (−γziyνi ) (9)

and its hazard function is given by

h(yi|zi = c, θc, ν,β,wi) = νγziy
ν−1
i (10)

with link function γzi = exp
(
θzi + βTwi

)
. For this model the baseline risk is constant.

When ν > 1 the hazard rate increases as time increases, it is constant for ν = 1 and the
hazard rate decreases for ν < 1.
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The likelihood is given by

fy(y|.) =
n∏
i=1

h(yi|zi = c, θc, ν,β,wi)
diS(yi|zi = c, θc, ν,β,Wi) (11)

= νd

(
n∏
i=1

γdizi

)
exp

(
−

n∑
i=1

γziy
ν
i

)
n∏
i=1

(
yν−1
i

)di . (12)

Therefore, the conditional distribution of ν is given by

f(ν|.) ∝
n∏
i=1

h(yi|zi = c, θc, ν,β,wi)
diS(yi|zi = c, θc, ν,β,Wi)πν(ν) (13)

∝ νd exp

(
−

n∑
i=1

γziy
ν
i

)
n∏
i=1

(
yν−1
i

)di πν(ν) (14)

where πν(ν) is the log-concave prior distribution of ν. It can be shown that

∂2 log f(ν|.)
∂ν2

< 0

which is satisfied if and only if f(ν|.) is log-concave (Borzadaran and Borzadaran, 2011).
Given the log concavity of f(ν|.), we can use an adaptive rejection sampling algorithm
to sample from the posterior distribution of ν (Gilks and Wild, 1992). We set the prior
distribution for ν, πν(ν), to be a Gamma distribution with parameters aν and bν , so we
require that aν ≥ 1 to ensure the log-concavity of πν(ν).

To implement the adaptive rejection sampler (Gilks and Wild, 1992), we require the
logarithm of a function proportional to the distribution of interest and its derivative. This
function and its derivative are given by the following,

log f(ν|.) ∝ d log ν −
n∑
i=1

γziy
ν
i + ν

n∑
i=1

di log yi + (aν − 1) log ν − bνν (15)

and

∂ log f(ν|.)
∂ν

∝ d

ν
−

n∑
i=1

γziy
ν
i log yi +

n∑
i=1

di log yi +
aν − 1

ν
− bν . (16)

The model developed in this section has a global shape parameter for each Weibull distri-
bution in the mixture. The advantage of this model is that the assumption of proportional
hazards holds and we can compute hazard ratios between different clusters. However, for the
cases where the assumption of proportional hazards is untenable, we develop a more flexible
model, in the Section 4, with cluster-specific shape parameters.
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4 Survival response Weibull with cluster-specific shape

parameter

Here we propose a mixture of Weibull distributions with cluster-specific scale and shape
parameters. This model is more flexible than the model proposed in Section 3 because it
does not require the assumption of proportional hazards to hold. In this model the shape
parameters of the Weibull distributions are now a vector ν = (ν1, ν2, . . .) of cluster-specific
shape parameters. Therefore, the components of the mixture of Weibull distributions take
the following form,

fy(yi|zi = c, θc, νc,λ,wi) = h(yi|zi = c, θc, νc,β,wi)
diS(yi|zi = c, θc, νc,β,Wi) (17)

where h is the hazard function, S is the survival function, λ = β are the global parameters,
θc, νc and φc are the cluster-specific parameters and yi is the lifetime of an individual. It
follows that the survival time Y has a Weibull distribution if its survival distribution is now
given by

S(yi|zi = c, θc, νzi ,β,wi) = f(y > yi|θzi , νzi ,β,wi) = exp
(
−γziy

νzi
i

)
(18)

and its hazard function is as follows

h(yi|zi = c, θc, νzi ,β,wi) = νziγziy
νzi−1

i (19)

with link function γzi = exp
(
θzi + βTwi

)
. For this model the baseline risk is constant. The

loglikelihood is given by

log fy(y|.) =
n∑
i=1

log

((
νziγziy

νzi−1

i

)di
exp (−γziyνi )

)
(20)

=
n∑
i=1

(di (log νzi + log γzi + (νzi − 1) log yi)− γziyνi ) . (21)

The conditional distribution of νc depends only on the data in cluster c. We define the
indicator dlc for the censored data in cluster c.

dlc =

{
0 if the individual l in cluster c is censored
1 if the individual l in cluster c experiences the event.

(22)

with dc =
∑nc

l=1 dlc and
∑C

c=1 nc = n. It follows that the conditional distribution of νc, for
zi = c , is given by

log f(νc|.) ∝
nc∑
l=1

(dlc (log νc + log γzl + (νc − 1) log yl)− γzly
νc
i ) + log πνc(νc) (23)

∝ (log νc + log γzl) dc + (νc − 1)
nc∑
l=1

dlc log yl −
nc∑
l=1

γzly
νc
i + log πνc(νc) (24)
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where πν(νc) is the log-concave prior distribution of νc. It can be easily shown that

∂2 log f(ν|.)
∂ν2

< 0

which, as before, is satisfied if and only if f(ν|.) is log-concave. Given the log concavity of
f(ν|.), as for the case of the global shape parameter, it follows that we can use an adaptive
rejection sampling algorithm for ν. We set the prior distribution for each shape parameter νc
to be a Gamma distribution with parameter aν and bν , and require that aν ≥ 1 to ensure the
log-concavity of πν(νc). As before, to implement the adaptive rejection sampler, we require
the logarithm of a function proportional to the distribution of interest and its derivative,
which are given by

log f(νc|.) ∝ dc log νc + νc

nc∑
l=1

dlc log yl −
nc∑
l=1

γzly
νc
l + (aν − 1) log νc − bννc (25)

and

∂ log f(νc|.)
∂νc

∝ dc
νc
−

nc∑
l=1

dlc log yl +
nc∑
l=1

γzly
νc
l log yl +

aν − 1

νc
− bν . (26)

This mixture model with cluster-specific shape parameters can fit the data well in each
cluster, but the assumption of proportional hazards does not hold. The additional challenge
is how to compare observations in different clusters informatively. A proposal for this is
given in the following section.

5 Computing and interpreting the hazard ratios and

the expected survival time

The main inferential objective is to compare the clusters identified by profile regression.
This is straightforward when the shape parameter is global, but cluster comparisons require
careful consideration when the shape parameter is cluster specific. An alternative approach
is to compare the clusters using the predicted survival time for individuals that belong to
different clusters.

When there is a global shape parameter ν we can easily compute hazard ratios. The
ratio of the hazard functions of two different clusters, with all fixed effects wi constant, is
given by

h(yi|c1)

h(yi|c2)
=
νγc1y

ν−1
i

νγc2y
ν−1
i

=
ν exp(θc1 + βTwi)y

ν−1
i

ν exp(θc2 + βTwi)y
ν−1
i

=
exp(θc1)

exp(θc2)
= exp(θc1 − θc2). (27)

Moreover, we can compute the hazard ratios for the fixed effects. The ratio of the hazard
functions of two different values of wj in cluster ck is given by

h(yi|ck, wj = x1)

h(yi|ck, wj = x2)
=
ν exp(θck + β1w1 + . . .+ βpwp)y

ν−1
i

ν exp(θck + β1w1 + . . .+ βpwp)y
ν−1
i

= exp(βj(x1 − x2)). (28)

9



The fixed effects βj are global parameters, so they take the same value within each cluster.
Therefore, we can write

h(yi|ck, wj = x1)

h(yi|ck, wj = x2)
=
h(y′i|cl, wj = x1)

h(y′i|cl, wj = x2)
= exp(βj(x1 − x2)) (29)

for any l and k. These ratios are constant proportions that depend only on the covariate wj
and not on time. If x1 = x2 + 1 then the hazard ratio simplifies to exp(βj).

In the case of cluster-specific shape parameter ν, first we check whether we can assume
proportional hazards. The assumption that the proportional hazards stay constant over
time can be inspected by looking at a graph of the logarithm of the estimated cumulative
hazard function. This plot is also known as a log-log survival plot. The proportional hazard
assumption is evidenced by the difference between the logarithms of the hazards for any
two clusters not changing over time, or equally by the difference between the logarithms
of the cumulative hazard functions being constant. If proportional hazards are a sensible
assumption, we can compute the hazards as above. If the hypothesis of proportional hazards
is not tenable, we can interpret the results by computing the mean survival time. The mean
survival time for cluster c is given by

E(Y ) = γ−1/νc
c Γ(1 + 1/νc) (30)

where Γ(.) represents the Gamma function.

5.1 Predictions

Posterior predictive distributions are computed for the survival time and the hazard ratios.
At each sweep, the allocation of a predictive profile to a cluster c is sampled from the
mixture weights, according to the covariates xpred of the predictive profile. These draws give

us a posterior predictive distribution for the θ̂s, which is the predicted value of θzs for the
predictive profile s at the r-th iteration of the MCMC.

We can then compute the predicted hazard ratios for each iteration r of the MCMC as

exp(θ̂rs)

exp(θ̂r1)
(31)

where θ̂1 is the baseline hazard function, for example chosen as corresponding to the lowest
values of all risk factors.

We can also compute the posterior predictive distribution of survival time as the expec-
tation of the Weibull distribution, which is given by

ŷpred = min(γ̂−1/ν̄c
c,r Γ(1 + 1/ν̄c), T

∗)

where T ∗ is the maximum observed survival time before censoring, ν̄ is the posterior mean

of νc and γ̂c,r = exp(θ̂rs + β̂
T
w) with β̂ the posterior mean of β.
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6 Application to simulated data

First we demonstrate the proposed method on two simulated datasets and then compare the
results to ridge regression, a commonly used method to deal with collinearity.

6.1 Clustering censored survival data

We demonstrate the proposed method on two datasets, each with three clusters of 250
observations. We simulated the response variables y from a Weibull distribution and five
covariates x1, x2, . . . , x5 are drawn from multinomial distributions with 2, 2, 3, 3, and 4
categories respectively. There are no fixed effects. The values of the parameters θ and φ for
each cluster c are given in Table 1. The shape parameter for the first dataset is νc = 2 for
all clusters c = 1, 2, 3. The second dataset has cluster-specific shape parameters, so ν1 = 2,
ν2 = 1 and ν3 = 3. There are no missing values but all observations are censored at y = 50
if the event has not happened yet.

Table 1: Values of the parameter θ and φ for each cluster.
Cluster θc x1 x2 x3 x4 x5

1 -6.5 0.8, 0.2 0.2, 0.8 0.1, 0.1, 0.8 0.1, 0.8, 0.1 0.25, 0.25, 0.25, 0.25
2 -4 0.2, 0.8 0.2, 0.8 0.1, 0.1, 0.8 0.1, 0.8, 0.1 0.1, 0.1, 0.1, 0.7
3 -2 0.8, 0.2 0.8, 0.2 0.8, 0.1, 0.1 0.8, 0.1, 0.1 0.25, 0.25, 0.25, 0.25

We analyse the datasets using the proposed survival profile regression, implemented in
the R package PReMiuM (Liverani et al., 2015) with 2,000 iterations of burn in period
and 2,000 iterations after burn in. Good convergence (and mixing) of MCMC output was
achieved within a few hundred iterations (based on visual diagnosis of MCMC output for
model parameters, not shown).

The first dataset was analysed using the model with global shape parameter, while the
second was analysed using a cluster-specific shape parameter. The posterior distributions
are consistent with the generating values provided in Table 1 and they are shown in the
Appendix. We show here the posterior distribution of ν for the first dataset and the posterior
distribution of ν for the second dataset in Figure 2. The survival probability over time for
the three clusters is given in Figure 1.

As discussed, we could compute hazard ratios for the first dataset as we have assumed
a global shape parameter. However, for the second dataset, generated with cluster-specific
parameters, the analysis has allowed the shape parameter to be cluster specific and found
that it was different for the three clusters. The log cumulative hazard function, shown in
Figure 3, shows that the assumption of proportional hazards does not hold, and therefore
we cannot compute hazard ratios meaningfully. Instead, for example, we can compare the
clusters and interpret the results using the posterior survival time.
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Figure 1: Survival probability for the two simulated datasets. Each survival function corre-
sponds to a different cluster.
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Figure 2: The posterior distribution of ν for the first dataset (left hand side) and ν for the
second dataset (right hand side).
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Figure 3: Log cumulative hazard for the three clusters of the second dataset.

6.2 Comparison with Ridge Regression

We compare our clustering method to ridge regression (Gray, 1992; Xue et al., 2007),
a method suitable for collinear survival data. We generated 50 datasets with three 2-
dimensional clusters, where the two variables are highly correlated within each cluster. The
three clusters, of 300, 400 and 500 observations each, are generated from a bivariate Normal
distribution with correlation of 0.95. The survival time is also generated from a Normal
distribution. A censoring variable is generated from a Binomial distribution with p = 0.9,
so only about 10% of the variables are censored. We apply profile regression and compare
the results to those obtained carrying out ridge regression.

As a measure of accuracy for profile regression and ridge regression, we compare their
predictive power using the root mean square error (RMSE) of the predicted values with
respect to the observed outcome. This measure of goodness of fit is given by

RMSE =

√∑n
i=1 (yi − ŷi)2

n
(32)

where ŷi denotes the mean of the posterior predictive distribution for the survival time for
observation i. Table 2 shows the mean and the standard deviation of the RMSE for the 50
simulated datasets. The precision of the in-sample predicted survival times obtained with
profile regression was higher than the one obtained with ridge regression.
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Table 2: Mean and standard deviation of the RMSE of the predicted values with respect to
the observed outcome when using profile regression and ridge regression.

mean(RMSE) sd(RMSE)
Profile regression 1.91 0.09
Ridge regression 7.43 0.01

7 Application to the ALSWH sleep data

We apply our two methods to The Australian Longitudinal Study on Women’s Health (AL-
SWH), a longitudinal study of over 40,000 women, consisting of three cohorts. The women
were randomly selected from the Australian national health insurance database (Medicare),
with oversampling of women from rural and remote areas to allow adequate numbers for
statistical comparisons to be made. At baseline, in 1996, the cohorts, known according to
the year the women were born as ‘1973-78’, ‘1946-51’, and ‘1921-26’, were aged 18-23, 45-50,
and 70-75. Follow-up omnibus style surveys were mailed out every three years. The ALSWH
explores factors that influence health among women who are broadly representative of the
entire Australian population, and is the largest project of its kind ever conducted in Aus-
tralia. The current analysis focuses on data from the oldest cohort, born between 1921-26,
who completed the baseline survey in 1996, and who first completed the sleep questionnaire
3 years later at Survey 2 (N = 10076).

Figure 4: Log cumulative hazard function for the clusters.

We carried out the analysis of the data using the proposed survival profile regression.
The response variable of interest is survival, measured in years from Survey 2. Deaths were
ascertained from the National Death Index (Powers et al., 2000). The data cover 16 years
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Table 3: Cluster sizes and posterior means for the cluster specific parameters θ and φ.
Cluster 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Size 106 1332 455 752 236 128 1356 1125 1182 223 887 1811 124 816 227
θc 13.99 15.31 16.61 17.15 18.54 18.83 19.26 19.55 20.1 20.19 20.65 20.74 20.78 21.57 22.05
early 0 0.64 0.56 0.31 0.54 0.44 0.53 0.56 0.67 0.49 0.27 0.53 0.73 0.66 0.59 0.4

1 0.36 0.44 0.69 0.46 0.56 0.47 0.44 0.33 0.51 0.73 0.47 0.27 0.34 0.41 0.6
lying 0 0.92 0.86 0.36 0.91 0.74 0.84 0.96 0.97 0.86 0.36 0.94 0.98 0.85 0.94 0.48

1 0.08 0.14 0.64 0.09 0.26 0.16 0.04 0.03 0.14 0.64 0.06 0.02 0.15 0.06 0.52
long 0 0.8 0.68 0.28 0.79 0.48 0.67 0.84 0.84 0.67 0.24 0.78 0.88 0.38 0.79 0.41

1 0.2 0.32 0.72 0.21 0.52 0.33 0.16 0.16 0.33 0.76 0.22 0.12 0.62 0.21 0.59
bad 0 0.86 0.73 0.26 0.82 0.54 0.6 0.87 0.91 0.71 0.22 0.81 0.93 0.77 0.86 0.42

1 0.14 0.27 0.74 0.18 0.46 0.4 0.13 0.09 0.29 0.78 0.19 0.07 0.23 0.14 0.58
comorb 0 0.15 0.05 0.06 0.06 0.08 0.24 0.16 0.18 0.12 0.13 0.24 0.37 0.17 0.3 0.2

1 0.49 0.43 0.4 0.54 0.45 0.56 0.62 0.65 0.62 0.6 0.63 0.56 0.54 0.6 0.58
2 0.36 0.52 0.54 0.4 0.47 0.18 0.22 0.17 0.26 0.27 0.13 0.07 0.28 0.1 0.2

ms 1 0.23 0.22 0.22 0.23 0.23 0.22 0.23 0.23 0.22 0.23 0.23 0.22 0.23 0.23 0.21
2 0.24 0.22 0.22 0.22 0.23 0.24 0.23 0.23 0.22 0.22 0.23 0.22 0.23 0.23 0.22
3 0.23 0.22 0.21 0.23 0.23 0.22 0.22 0.24 0.22 0.22 0.23 0.22 0.24 0.23 0.23
4 0.24 0.22 0.23 0.24 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.22 0.23 0.23 0.23

area 1 0.23 0.22 0.22 0.22 0.23 0.23 0.23 0.23 0.23 0.22 0.23 0.23 0.24 0.23 0.22
2 0.23 0.21 0.22 0.23 0.23 0.23 0.23 0.23 0.22 0.23 0.23 0.22 0.25 0.23 0.23
3 0.24 0.22 0.23 0.23 0.23 0.22 0.23 0.22 0.23 0.23 0.23 0.22 0.23 0.22 0.23
4 0.24 0.22 0.22 0.23 0.23 0.22 0.24 0.23 0.22 0.21 0.23 0.22 0.23 0.23 0.21

edu 1 0.26 0.39 0.45 0.27 0.25 0.23 0.23 0.22 0.24 0.25 0.22 0.24 0.23 0.22 0.23
2 0.27 0.42 0.39 0.27 0.25 0.27 0.26 0.3 0.26 0.25 0.45 0.5 0.27 0.28 0.26
3 0.21 0.12 0.1 0.2 0.22 0.21 0.22 0.21 0.21 0.21 0.19 0.16 0.22 0.21 0.21
4 0.2 0.06 0.05 0.18 0.21 0.21 0.21 0.18 0.2 0.2 0.13 0.09 0.21 0.19 0.2

srgood 1 0.51 0.78 0.77 0.43 0.33 0.1 0.15 0.05 0.34 0.26 0.03 0.01 0.16 0.07 0.06
2 0.49 0.22 0.23 0.57 0.67 0.9 0.85 0.95 0.66 0.74 0.97 0.99 0.84 0.93 0.94

meds 1 0.82 0.73 0.57 0.85 0.65 0.47 0.91 0.92 0.76 0.68 0.84 0.94 0.56 0.9 0.75
2 0.18 0.27 0.43 0.15 0.35 0.53 0.09 0.08 0.24 0.32 0.16 0.06 0.44 0.1 0.25

pfq 1 0.3 0.72 0.66 0.57 0.21 0.09 0.15 0.1 0.27 0.26 0.04 0.02 0.11 0.06 0.08
2 0.32 0.2 0.22 0.27 0.43 0.17 0.33 0.24 0.36 0.35 0.13 0.06 0.37 0.16 0.18
3 0.23 0.07 0.08 0.12 0.28 0.21 0.36 0.36 0.25 0.24 0.34 0.22 0.36 0.3 0.34
4 0.15 0.02 0.04 0.03 0.07 0.53 0.16 0.31 0.12 0.14 0.49 0.69 0.15 0.48 0.41

mhq 1 0.19 0.5 0.63 0.16 0.16 0.37 0.13 0.05 0.49 0.39 0.07 0.03 0.19 0.24 0.09
2 0.29 0.24 0.21 0.24 0.26 0.34 0.25 0.1 0.28 0.28 0.18 0.08 0.2 0.31 0.15
3 0.29 0.18 0.12 0.39 0.43 0.17 0.42 0.31 0.17 0.24 0.45 0.3 0.4 0.35 0.39
4 0.23 0.07 0.04 0.22 0.15 0.12 0.21 0.54 0.05 0.09 0.29 0.59 0.21 0.11 0.37

vtq 1 0.27 0.71 0.71 0.33 0.22 0.1 0.12 0.03 0.5 0.34 0.03 0.01 0.14 0.09 0.05
2 0.37 0.23 0.23 0.38 0.43 0.37 0.38 0.13 0.36 0.39 0.17 0.05 0.35 0.36 0.15
3 0.18 0.04 0.04 0.19 0.22 0.28 0.31 0.23 0.1 0.16 0.29 0.12 0.25 0.33 0.26
4 0.17 0.02 0.01 0.1 0.12 0.25 0.19 0.61 0.04 0.1 0.51 0.82 0.24 0.22 0.54

bmi 1 0.2 0.06 0.04 0.06 0.16 0.07 0.14 0.04 0.17 0.11 0.06 0.04 0.16 0.06 0.11
2 0.49 0.34 0.35 0.27 0.28 0.63 0.33 0.38 0.28 0.36 0.61 0.61 0.32 0.59 0.37
3 0.18 0.34 0.38 0.35 0.27 0.24 0.26 0.38 0.23 0.34 0.26 0.29 0.26 0.26 0.3
4 0.12 0.26 0.23 0.31 0.21 0.06 0.18 0.17 0.2 0.16 0.07 0.06 0.19 0.07 0.15

after the survey and there is significant censoring: 97 women were not followed up in any
survey and 5,144 were still alive at the last survey. Sleep difficulty was measured using items
from the NHP (Nottingham Health Profile) Sleep subscale (Hunt et al., 1981), as follows:

1. Do you wake in the early hours of the morning? (early)

2. Do you lie awake most of the night? (lying)

3. Do you take a long time to get to sleep? (long)

4. Do you sleep badly at night? (bad)

We will refer to these sleep items using the words provided in the parenthesis next to each
item. The answers to these questions were coded as no = 0 and yes = 1. We also surveyed
use of sleep medication (meds), first measured at Survey 2 (referred to as ’baseline’ sleep
difficulty). Other covariates of interest, measured at baseline, included comorbidity count
(comorb, classified as 0, 1-2, and 3 or more1), marital status (ms, classified as married/de

1Women were questioned about diagnosed medical conditions, including diabetes, arthritis, heart disease,
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Figure 5: Survival probability for the first 5 clusters and the last cluster. The gray area
highlights the span of the survival probability for all clusters.

facto, separated/divorced, widowed, never married), area of residence (area, classified as Ma-
jor Cities of Australia, Inner Regional Australia, Outer Regional Australia, Remote/Very
Remote Australia) (Department of Health and Aged Care, 2001), highest obtained educa-
tional status (edu, classified as none, school/higher school certificate, trade/diploma, higher
education), self-rated health (srgood, classified as excellent/very good/good or fair/poor),
Short Form Health Survey (SF36) (Ware et al., 1994) measures of physical functioning (pfq),
mental health (mhq) and vitality (vtq, classified on its quartiles), and the body mass index
(bmi, classified as underweight, normal weight, overweight or obese). Age (years) at baseline
was also included as a fixed effect. Due to the fact that the survival profile regression and
sleep/disease profiles are estimated simultaneously in the current analysis, we restricted the
profiles to baseline data only (as opposed to longitudinal), to avoid the situation where miss-
ing data due to death at later surveys might dominate the resultant profiles. However, prior
work (Leigh et al., 2015) investigating longitudinal patterns of sleep difficulty has shown
that sleep difficulty patterns remain stable over time, and thus the baseline values are fairly
representative of the women’s sleep patterns over time.

We obtained fifteen clusters. The credible interval for β is (0.14,0.18). Figure 4 shows
that the log cumulative hazard function does not support the assumption of proportional

hypertension, asthma, bronchitis/emphysema, stroke, osteoporosis and cancer. The total number of reported
diseases at baseline was categorised as none, 1-2, or 3 or more. These three categories were utilised to reflect
the varying severity of disease and comorbid conditions (no disease, disease with no or only a single comorbid
condition, and multiple comorbid conditions).
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Figure 6: Survival probability for all clusters except the first five. The gray area highlights
the span of the survival probability for all clusters.

hazards and thus a cluster-specific shape parameter was used in the modelling. Therefore we
do not compute hazard ratios but analyse the data using survival times. The cluster sizes
and the posterior means of the parameters θ and φ are given in Table 3, with the clusters
ordered according to their estimated mean survival time. Figures 5 and 6 show the posterior
survival probabilities for the clusters. It can be seen that the survival functions for the first
five clusters are distinct, while they are clustered together and overlapping for the remaining
clusters.

Figure 7 shows the boxplots for the posterior survival time for the fifteen clusters. The
overall median is also shown in the plot, allowing a comparison with the deviation from the
median of the posterior survival time for each cluster.

We also carried out variable selection. Values of ρ close to 1 indicate the variable is
significant for the clustering, while values close to zero indicate it is not. The posterior
distribution for ρ showed that two of the covariates, ms and area, were not relevant for the
clustering model, since the posterior distribution of ρ for these two variables was heavily
distributed close to zero. This is demonstrated in Figure 8, which shows the posterior
distribution of ρ for marital status and area, as well as example distributions of ρ for variables
which are important for the model (early and lying). The distribution of ρ for these latter
two variables is distributed closer to 1.

We propose the use of a heatmap as the most immediate way to visualise the clustering
and associated covariate patterns. Figure 9 shows a summary table of the survival time and
the posterior distribution of the covariates in each cluster. Each row represents a cluster. The
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Figure 7: Posterior distribution of the survival time since Survey 2 for each cluster. The
dashed horizontal line is the overall median survival time.

columns represents, respectively, the mean survival time and each covariate included in the
analysis. The colour of each cell in the matrix corresponds to a quintile of the distribution for
that variable (ie. by column). The clusters are ordered as in Table 3 by survival time, from
the shortest to the longest. Note that the colours in the matrix do not become darker (or
lighter) in a smooth manner, suggesting a complex relationship between survival time and
the covariates considered. For example, we can see that higher levels of physical functioning
and vitality are generally associated with longer average survival times. However, there are
several exceptions to this, and we can see complex non-linear relationships between survival
time and the other covariates.

We then exclude the covariates which are not driving the clustering process, as identified
by looking at the posterior distribution of ρ. Each value in the heatmap gives the quintiles
of the distribution, therefore summarising the clusters. It can be noted how the relation-
ships between the covariates are complex and could not have been easily learnt using other
methods. We can see that there are three clusters (3, 10 and 15) with overall poor sleep
difficulty patterns. Of these clusters, two (10 and 15) correspond to long median survival
times, while one of them (3) corresponds to a shorter median survival time. Three other
clusters had individuals with greater sleep difficulty patterns in just some of the domains
(clusters 5, 9 and 13). Moreover, we can see how these clusters are also associated with
other covariates such as medication, high BMI or low levels of vitality and physical activity.
The cluster with the lowest survival had a high probability of comorbidities, but reported
no sleep difficulty. Cluster 3, which reported sleep difficulty and the 3rd shortest median
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Figure 8: Posterior distribution of the parameter ρ for four covariates: early, lying, ms and
area.

survival, did not exhibit high probability of comorbidities, however they scored low on all
QoL covariates, and were likely to have higher BMIs. The two other clusters with greatest
sleep difficulty, 10 and 15, exhibited good self-rated health, low to moderate likelihood of
using sleep meds, cluster 10 did not score high on all quality of life (QoL) items but cluster
15 did, and neither exhibited high BMIs. Cluster 13 endorsed ’taking a long time to get to
sleep’, and also were likely to use meds, have high QoL, and good self-rated health. Cluster
9 endorsed ’early waking’, had good self-rated health but moderate QoL measures. Many
clusters were characterised by low probability of sleep difficulty across all items.

We can thus learn and visualise how the posterior distribution of median survival time
changes depending on the values of different covariates. For example, Figure 10 shows
the posterior predictive distributions for three profiles of women who answer yes to the
question ‘Do you wake in the early hours of the morning?’ (early=1 ). For the first profile
the individual is healthy and their sleep patterns are good based on their answers (no)
to the other items of the Nottingham Health Profile (lying=0, long=0, bad=0). For the
second profile, they did not answer the other sleep questions (lying=NA, long=NA, bad=NA)
but they are healthy. For the third profile, we only know that they wake up early. The
posterior predictive distributions of these three profiles allow us to make inference on the
median survival times for specific individuals, or groups of individuals, and shed light on the
potentially complex true relationsips between covariates and survival, as highlighted by the
multimodality of the posterior predictive distributions shown in Figure 10.
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8 Discussion

We have proposed a mixture model for the survival response and covariates, where the
response variable has a Weibull distribution and it allows for censoring. In the model we allow
for the shape parameter of the Weibull distribution to be shared by all clusters (therefore
satisfying the condition of proportional hazards) but also proposed a more general model with
cluster-specific shape parameters. Moreover, we have discussed the challenges of predictive
profiles in the context of survival modelling and we have made these methods easily available
in the R package PReMiuM.

We have used the latter model to analyse data from The Australian Longitudinal Study
on Women’s Health and have demonstrated how useful inference can be drawn using our
proposed models. A previous analysis (Leigh et al., 2015), which clustered the women based
only on the sleep difficulty questions, found four clusters, corresponding to no sleep difficulty
(answered no to all questions on sleep), trouble sleeping (answered yes to all questions on
sleep), early wakers, and trouble falling asleep. The current clustering also identified clusters
characterised by low sleep difficulty, trouble sleeping, and a cluster defined by taking a long
time to get to sleep (those who answered yes to whether they take a long time to get to
sleep). In the current analysis, many more clusters were identified as additional covariate
data was also allowed to inform the clustering.

Leigh et al. (2016a,b) found that, unadjusted for covariates, those with mild sleep diffi-
culty had lower hazard of death than those without sleep difficulty, while the most troubled
sleepers had higher hazard of death. After adjusting for covariates, the troubled sleepers
did not have greater hazard of death, and those with mild sleep difficulty (early wakers and
trouble falling asleep) still had lower hazard of death. Also significant in the models were
disease count, BMI, education, physical functioning, self-rated health, marital status and
area. The effect of those covariates, in conjunction with sleep, led to many more clusters
being identified in the current analysis. We observe that greater sleep difficulty can be re-
lated to both longer and shorter survival, with different patterns in the covariates. This may
be attributable to the difference in the effect of trouble sleeping with and without covariate
adjustment in the previous models. Furthermore, a previous analysis (Leigh et al., 2015)
could not account for the interaction between sleep and each covariate of interest. The cur-
rent analysis however takes into account the multivariate relationships between all variables,
and leads to interesting insights. For example, previous work Leigh et al. (2016b) found
that BMI was significant for survival when modelling as a predictor along side sleep, with
underweight related to greater hazard of death, overweight greater hazard of death, and non
significant results for obese women. However, BMI may also be interrelated with sleep, for
instance obesity is related to sleep apnoea, which can cause sleep disturbance. While we see
one class with high BMI and poor sleep and shorter survival (cluster 3), the other clusters
with the greatest sleep difficulty do not have higher BMIs, and also have longer survival.
It is possible that the relationship between greater sleep difficulty and survival in cluster 3
is explained by the high BMI, whereas the relationship between sleep difficulty and lower
hazard of death in clusters 10 and 15 is explained by healthier BMI (and better self-rated
health etc.).
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Moreover, in previous work clustering was conducted prior to regression on the survival
outcome, and thus missing covariate data patterns related to survival may have influenced
class membership. Thus, the clusters themselves may have also included information about
the survival outcome, and thus possibly biased the subsequent regression results. The current
analysis used only baseline data, thus the clusters themselves are not dominated by missing
data.

A limitation of our model is that in its present formulation does not incorporate covariate
information collected after the baseline, which is the objective for our future work.
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Figure 9: Heatmap summary table of the clusters. Each row represents a cluster. The
columns represents, respectively, the mean survival time and each covariate included in the
analysis. The colour of each cell in the matrix corresponds to a quintile of the distribution
for that variable (ie. by column). The clusters are ordered as in Table 3 by survival time,
from the shortest to the longest.
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Figure 10: Posterior predictive distributions for three profiles of interest. The three profiles
show the posterior distribution for predictive profiles for individuals who replied yes to the
question ’Do you wake in the early hours of the morning?’. For the first profile on the left
hand side we also know that the individual is healthy and their sleep patterns are good
otherwise (lying=no, long=no, bad=no). For the second profile, we have no knowledge of
how they answered the other sleep questions (lying=NA, long=NA, bad=NA) but know that
they are healthy. For the third profile, we have no knowledge about the individual apart
from the fact that they wake up early.
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Appendix: Additional results from the simulation study

In this Appendix we provide additional plots showing the posterior distribution for some of
the parameters for the simulated data in Section 6.
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Figure 11: The posterior distribution of θ and the posterior distribution of the survival time
for the first simulated dataset.

We also show in Figure 13 the posterior predictive distribution for four predictive pro-
files. These are combinations of values of the covariates for which we compute the posterior
predictive distribution of θc or the survival time.
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Table 4: Posterior mean of the probabilities of φ for the first simulated dataset.
Covariate Category Cluster 1 Cluster 2 Cluster 3
x1 0 0.73 0.77 0.26

1 0.27 0.23 0.74
x2 0 0.22 0.78 0.20

1 0.78 0.22 0.80
x3 0 0.12 0.79 0.15

1 0.09 0.08 0.09
2 0.78 0.13 0.76

x4 0 0.12 0.78 0.10
1 0.81 0.10 0.82
2 0.07 0.12 0.08

x5 0 0.21 0.20 0.14
1 0.27 0.24 0.09
2 0.22 0.29 0.14
3 0.31 0.27 0.63
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Figure 12: Posterior distribution of θ and the posterior distribution of the survival time for
the second simulated dataset.
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Figure 13: Violin plot of the posterior predictive distribution for four predictive profiles:
(0,0,0,0,0), (0,0,0,0,1), (0,1,2,2,0) and (1,1,1,1,3) for the second simulated dataset.
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