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Abstract—Once considered a luxury, Home Security Cameras
(HSCs) are now commonplace and constitute a growing part
of the wider online video ecosystem. This paper argues that
their expanding coverage and close integration with daily life
may result in not only unique behavioral patterns, but also
key privacy concerns. This motivates us to perform a detailed
measurement study of a major HSC provider, covering 15.4M
streams and 211K users. Our study takes two perspectives:
(i) we explore the per-user behaviour, identifying core clusters of
users; and (ii) we build on this analysis to extract and predict
privacy-compromising insight. Key observations include a highly
asymmetrical traffic distribution, distinct usage patterns, wasted
resources and fixed viewing locations. Furthermore, we identify
three privacy risks and explore them in detail. We find that paid
users are more likely to be exposed to attacks due to their heavier
usage patterns. We conclude by proposing simple mitigations that
can alleviate these risks.

Index Terms—Home security camera; Privacy; IoT; Usage
pattern;

I. INTRODUCTION

The majority of Internet traffic is now video, dominated by
the likes of Netflix [21] (entertainment content), YouTube [22]
(user generated uploads), Periscope [27] (personal social
streaming) and Twitch [24] (live e-sports). However, the
advent of low-cost Internet-enabled cameras has resulted in the
arrival of a new, rather different, type of video streaming ser-
vice. IoT Home Security Cameras (HSCs) are a growing area
of online video, with players such as 360 [2], Nest [9], Netgear
[10], Hikvision [6] and XiaoMi [12] dominating the market.
Although a few years ago these were considered a luxury, they
have since entered the mainstream and, with that, we have
witnessed emerging privacy and security concerns [33], [16],
[1]. Their growth should not be underestimated: The global
HSC market is expected to reach $1.3 billion by 2023 [7].

These HSC services differ from traditional video streaming
platforms in several ways. First, HSCs are standalone Internet-
connected devices, without the need for an attached computer.
Their content is streamed directly to a cloud platform, and
consequently all content is made remotely accessible, often
without any local storage. Second, HSCs are unicast in nature,
where content is only available to the owner of the camera.
By definition, the content is therefore private and past research
into delivery optimization of public content (i.e., caching) may
therefore be ineffective. Third, HSCs follow an on-demand
model, where video is only streamed when a user requests it,
or when motion is observed. This, we argue, may constitute a
privacy leak in itself, particularly as HSCs are often installed

in intimate locations. For example, an attacker with access
to passive network data may be able to infer the camera
owner’s household activity by inspecting HSC traffic [29],
[19]. For most people it is difficult to verify if protections are
in place, and therefore this offers strong motivation to study
the behaviors of cameras in-the-wild [38].

Thus, we argue that these novel characteristics warrant
further investigation. Interesting questions include: (i) What
are the usage patterns of HSCs? (ii) How often do motion-
triggered cameras upload videos, and what percentage of them
will be watched? (iii) How predictable are motion-triggered
uploads, and user access patterns? (iv) Are there any privacy
risks, and could a tractable adversary exploit them? (v) What
mitigation would address these privacy concerns?

To answer these questions, we perform the first empirical
study of a mainstream HSC system in China. We have obtained
a unique dataset from a major HSC provider for a week
period. It covers 15.4M streams from 211K active users (§II).
This data contains a mix of free and premium (paid) users,
allowing us to explore a wide diversity of HSC behaviors.
We begin by exploring the behaviors of these user types,
and perform fitting to identify core user archetypes (§III).
We observe a platform dominated by uploads, with motion-
triggered cameras streaming a large volume of unwatched
content. We then explore a set of intuitive privacy attacks
and characterize their efficacy (§IV), discovering a subset of
highly regular users for whom we can effectively predict their
activities. To briefly summarise, key findings include:

1) Premium users constitute just 59% of all accounts, yet
contribute more than 95% of total traffic, dominated by
motion-triggered on-demand uploads. Despite this, 60%
of these videos go unwatched. This waste is largely
attributed to a handful of very heavy premium users
(∼1/4).

2) As well as dominating upload traffic, premium users
are more active than “normal” free users in viewing.
About 10% of users appear to utilize the HSCs as a
regular surveillance service and generate a huge amount
of viewing traffic. Such users tend to view their HSC
streams from 1 or 2 key (network) locations, and often
these are at a different location to the camera.

3) We identify three major privacy risks based on traffic
monitoring: (i) the traffic surge risk, (ii) traffic regularity
risk, and (iii) traffic rate change risk. While the first
risk has been examined in previous studies [19], the



last two are newly explored in this work. These allow
us to predict the daily patterns of the camera uploads,
and even identify activities on the camera feed. We
propose methodologies to infer privacy-compromising
information, and explore the risks with both controlled
experiments and our dataset.

4) We find that premium users are more vulnerable to
privacy risks due to their heavier usage and the exclusive
availability of the motion detection mode (this is not
available for normal users). The accuracy of predicting
the patterns of premium users’ upload streams is as high
as 0.75 (3× the accuracy for live streams by non-premium
users). We propose counter measures to mitigate the risks.

II. BACKGROUND & DATASET

A. Primer on Home Security Cameras

We first briefly explain the operating procedures of typical
HSC services. Upon purchase, the owner of a HSC first binds
the camera to their account. The camera receives commands
from the servers that are hosted in a cloud operated by the
HSC provider. After setup, the user can remotely request a
live stream or an archived replay via the cloud servers. It is
worth noting that users never connect directly to the camera
— all video traffic is forwarded via the servers.

Most HSC cameras support two modes of streaming. These
two modes are common in major HSC providers, including
Nest, Netgear, Hikvision, and 360:

• Live streaming mode: The user is able to login and initiate
a live stream from the camera in realtime, via the cloud
server as an intermediary. The video will not be stored
anywhere by default.

• Motion detection mode: When a motion is detected, an app
notification is sent, and the user is then given the option
of viewing the stream in real time. Again, nothing will be
stored by default.

As the above modes may be inconvenient for users who
cannot immediately view streams in realtime, some HSC
services offer a third feature for premium users (who pay a
fee). This motion detection mode automatically uploads and
stores motion-triggered streams to the cloud servers hosted
by the HSC provider. These streams contain video footage
from a few seconds before the motion begins, until a few
seconds after. Users can then replay the video at any time,
and a video will be saved for at least 7 days. We term this
replay mode. Note that other platforms offer 24/7 recording
functions too; for example, Nest offers this for premium users
(via Nest Aware [8]).

B. Dataset Description

Our work relies on a 7 day dataset of log entries (from April
2018) shared by a major Chinese HSC service. The anonymous
HSC provider serves hundreds of thousands of users per day
and supports all the above features. Note that there were no
national holidays or unusual events during the data collection
period, giving us confidence that this is representative of

a ‘typical’ week. The dataset covers all cameras that were
connected to the Internet via a major ISP in China. Every
individual log related to these cameras is included in our
dataset.1

Within the logs, one video view or upload corresponds
to one stream. A service log is generated for every 30-
second segment for each stream, so it is reasonable for 1
stream to be related to more than 1 log. In total, we obtain
96,515,229 logs of 15,432,950 streams from 211,806 unique
active users who have uploaded at least once (either live
stream or replay videos). Of these users, 124,985 (124K)
are premium, accounting for 59% of all active users. The
remaining non-premium users are referred to as normal users
throughout this paper.

Each log entry, which corresponds to a 30-second segment,
includes three main categories of information:
1) User-specific information: the anonymized user ID that

is uniquely bound to a registered account, as well as
this user’s camera(s); the IP address (anonymized using
Crypto-PAn[3]); the anonymized BGP prefix of the IP
address, which is obtained by querying Team Cymru
[11].

2) Stream-specific information: the anonymized stream ID;
stream type (up for video uploading, down for video
viewing).

3) Segment-specific information: the average bit rate of this
segment (kbps); data volume (KB); and timestamps that
mark the start and end of the segment.

Alongside our partner HSC service, we have inspected
two other popular HSC providers: Nest (popular in western
countries) and XiaoMi (popular in China). We confirm that
they offer similar services and that they all rely on Variable Bit
Rate (VBR) encoding (which is one of the reasons contributing
to the privacy issue discussed in §IV).

Ethical issues: We took a number of steps to ensure ethical
use of the data shared with us. We have no access to the
content of video streams, and can only observe metadata
(e.g. stream duration). The logs used are routinely gathered
for operational purposes, and no extra data collection was
triggered. All user information, including user ID, IP address,
BGP prefix and even the stream ID, is fully anonymized.
We are unable, and not allowed, to link logs to users. Later
on (§IV-D), we also leverage volunteers for controlled ex-
periments. The volunteers were aware that we only collect
traffic rate information. In addition, the cameras were placed
at working areas (rather than homes). Finally, we have reported
all potential privacy risks to the service provider, and assisted
them in implementing fixes.

III. EXPLORING USER BEHAVIOR

Before investigating privacy issues, it is first necessary to
understand user behavior. Here, we present a characterization
of typical usage patterns in the examined HSC service.

1This includes cases where a user is viewing the camera feed from a
different ISP.



A. Basic Characterisation

TABLE I: Data volume distribution.

Normal user Premium user
live stream live stream replay All

Up 1.37% 12.96% 65.89% 80.22%
Down 1.36% 12.77% 5.65% 19.78%
All 2.73% 25.73% 71.54% 100%

We first inspect the data volumes uploaded/downloaded by
each user and traffic type. Note that all upload (up) streams
are initiated by a camera uploading data to the server, whereas
all download (down) streams are initiated by a user viewing
the video. Recall that the replay mode is only available to
premium users: the replay-up streams are exclusively triggered
by motion seen by the camera, while the replay-down streams
are triggered by premium users watching the relayed videos.

Table I summarizes the results. The platform is dominated
by traffic generated by services supported for premium users.
These premium accounts tend to be heavy users: they generate
97% of the traffic. This is caused by the dominance of motion-
triggered automatic uploads — replay-up streams contribute
over 2/3 of the total workload. As a striking contrast, only
∼5% of download streams come from this source (replay).
In fact, we see that a remarkable 60.24% of video uploaded
is never downloaded, suggesting a significant waste in both
network and storage resources. This is particularly as replay-
up streams, on average, last longer and have larger volumes
(median around 4MB). In contrast, the replay-down streams
are shorter and with smaller sizes (0.65MB). This drives the
asymmetry of the workload in Table I.

B. Characterising Live Stream Mode

We next inspect the generation and consumption of live
content by users. Note that these include both normal users
and those with premium accounts.

Overview of Live Users: We first count the number (termed
frequency hereafter) and the total duration of the live-down
streams generated per user.2 As expected, premium users are
more active than normal ones: the median frequency of streams
is 7 for premium users vs. 2 for normal users. This observation
is also mirrored when inspecting duration: the median total
duration of normal users and premium users are 90 seconds
and 435 seconds respectively. Nevertheless, some normal users
generate over 100 streams and watch over 5 hours during the
observation period.

Clustering Live Stream Users: The above suggests a diversity
of users groups. Thus, we proceed to identify core behavioral
types within the user population. To this end, we fit the
frequency and total duration statistics of all users to a 3-
component Gaussian Mixed Model (GMM) [5].

We experimented with a number of configurations from
2 to 5 GMM components, and selected 3 based on the
balance between relatively small AIC (Akaike Information

2Note that upload and download streams are approximately symmetrical in
terms of frequency and duration in the case of live streaming.

TABLE II: User clustering for live streaming.

no. freq. dura.(s) α feature
#1 1.5 41.7 0.49 Light

Normal #2 4.8 287.1 0.42 Medium
#3 16.9 3,719.1 0.09 Heavy
#1 3.4 129.5 0.45 Light

Premium #2 18.4 1,422.8 0.44 Medium
#3 64.6 22,217.2 0.11 Heavy

Criterion) and not too small components (α < 0.001). Table II
presents the clusters identified, alongside their fitting results.
The results expose three main sub-populations, shared across
both normal and premium users. We term these light (L),
medium (M) and heavy (H). Light users use the live streaming
service rarely. In contrast, medium users tend to check their
camera feeds daily. The heavy users deviate significantly from
the average, with extremely regular viewing patterns. It seems
likely that heavy users use HSCs as a (potentially commercial)
surveillance camera service, and the cameras likely cover high
value regions (e.g. in a shop).

C. Characterising Replay Mode

We next inspect users of the video replay service. This is
only available to premium users (59% of population). When
activated, the replay mode automatically uploads all motion-
triggered content to the cloud for later on-demand access.
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Fig. 1: Per-user characteristics of replay mode.

Overview of Replay Users: Figure 1(a) presents the number of
replay streams per user. It shows that viewing replay content is
significantly more frequent (per-user) than uploading. This was
surprising as Table I found that the majority of data is gener-
ated by replay uploads. However, the reason is clear: whereas,
by volume, the majority of data uploaded is replay traffic, this
is driven by a small subset of streams. A remarkable 40%
of (premium) users never upload a video for replay during
the week, leaving a small subset of users with exceedingly
high upload rates — 97% of the total replay upload traffic is
generated by the top 5% of premium users. This indicates a
mix of camera installations, with many fitted in locations with
very limited motion and others in high activity zones.

This disparity raises the question of whether users actually
view the videos uploaded. To measure this, we define the
Watching Proportion as the ratio of a user’s total replay-



10s 2m 10m 1h 1d
User Total Replay-up Duration

10 5

10 3

10 1

101

103

W
at

ch
in

g 
Pr

op
or

tio
n

100.0

100.5

101.0

101.5

102.0

102.5

# 
of

 u
se

rs

Fig. 2: Distribution of premium users, based on their watching
proportion and total replay-up duration. The scales of axes and
color bar are logarithmic.

down duration to total replay-up duration.3 Figure 1(b) depicts
the distribution of watching proportions. While the median is
around 1, it is less than 10−2 for 13.8% of users, meaning that
they watch far less than their cameras upload. Nevertheless, a
number of users have a watching proportion in excess of 1,
indicating that they repeatedly watch the same streams.

Figure 2 further examines the correlation between the up-
loaded volume and the watching proportion. We can observe
two typical patterns. Most users are within the first group
(upper left), where the total uploaded duration is relatively
low, yet the watching proportion is relatively high (around
1). The remaining users are within the second group (lower
right), where the total replay-up duration is relatively high, but
the watching proportion is relatively low. The actions of these
users result in over 60% of network and storage resources
being wasted, which creates strong motivation for a more
informed upload strategy that moves beyond motion triggered
uploads alone.

Clustering Replay Users: The above shows a wide range of
behavioral types. Thus, we repeat our earlier user clustering
process. Here, we use total replay-up duration and watching
proportion of active premium users to fit a 3-component
GMM.4 The fitting result is shown in Table III. This exposes
three broad categories of users, which we index as light (L),
medium (M) and heavy (H) for watchers (W) or uploaders (U),
respectively. Thus, each user cluster is tagged with both the
watching and upload behaviours.

TABLE III: Clustering active premium users.

no. up dura.(s) watch. prop. α feature
#1 46.8 20.6 0.11 LU-HW
#2 298.7 1.4 0.65 MU-MW
#3 94,823.3 0.5 0.24 HU-LW

The majority (around 2/3) of premium users fall into the
Medium Uploader and Medium Watcher category (MU-MW).
They keep the best balance between upload and watching

3We only include premium users who have uploaded replay video for at
least 10 seconds.

4We decided the component number here using the same approach as
mentioned in §III-B.

rates. The next most populated group are those who are
Heavy Uploaders but Light Watchers (HU-LW). Such users
are most costly to the system, as they consume large amounts
of network and storage, yet do not benefit from them. At the
opposite extreme, the smallest group are those that have a low
rate of uploads, but a high rate of watching (LU-HW).

D. Characterising Viewing Locality

We next proceed to explore where streams are uploaded
and consumed from. This is particularly important for QoE
improvement, e.g. via caching or pre-fetching.

On-site vs. Off-site Access: Since we are interested in the
network footprint of users, we use the BGP prefix of the
user’s IP address to represent the user’s location. We represent
proximity as a binary metric where we test if the camera and
viewer are located within the same prefix. We refer to accesses
that occur from the same prefix as the camera as on-site, and
similarly, we denote accesses that occur from a different prefix
as the camera as off-site.
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Fig. 3: The proportion of users who have watched a video from
the same BGP prefix as the camera for none, all or some of
the views in each user component.

To inspect the locality patterns of the different user groups,
we take the premium user categories from Table III, as well
as the normal user categories from Table II. We exclude any
users who have fewer than 3 views in the observation period,
to avoid bias caused by the sparse sampling of irregular users.
Figure 3 presents the breakdown of on-site vs. off-site views
for each group of users. None indicates that no view come
from the same prefix; some indicates that a fraction (> 0) of
views come from the same prefix; and all indicates that all
user views emanate from the same prefix as the camera.

Users exhibit similar behaviors across all usage groups.
About 30% of examined users consume no streams on-site.
This is rational, as there is perhaps little sense in accessing
camera feeds from the same site in many cases. The remaining
users may experience local access under several situations
where a single site covers a large area (e.g. factory) or
where users employ cameras for monitoring local activities
(e.g. sleeping children).

User Mobility: We finally inspect how mobile users are, i.e.,
whether users always view from the same location. To this
end, we compute for each user the proportion of views that
happened at the top k locations,where k ∈ {1, 2, 3}. Users are
again grouped based on the earlier clustering results.
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Fig. 4: The proportion of views that happened at the top k
locations for each user, where k ∈ {1, 2, 3}.

Figure 4 presents the fraction of views from the top k
locations per-user as a box plot. The majority of users view
primarily from their top 1 or 2 locations. The median fraction
of views in the top 1 location and top 2 locations for premium
users is about 0.7 and 0.95, respectively. Although normal
users tend not to watch the live streams on-site (see Figure 3),
they are more likely to view the content at a single location
than premium users: over 40% of normal users watch all
streams at the top locations, while this number for premium
users is only about 30%. This indicates that users may not
move often (e.g. staying at their office). These observations
imply the possibility of predicting users’ next viewing location
and perform pre-loading of material for improved QoE.

E. Takehome Messages

We make three notable observations: (i) Wasted re-
sources: premium users generate the majority of the workload
(97.27%), largely due to the exclusive availability of replay
mode. This results in 60% of the uploaded videos going un-
watched. The waste is attributed to a handful (∼1/4) of heavy
premium users, who have cameras with high levels of motion
triggered uploads (see Table III). (ii) Distinct usage patterns:
premium users are more active than normal ones; these account
types have a mix of access patterns. (iii) Watching locality:
users tend to view streams from 1 or 2 key locations, with
a sizeable portion of users watching streams from individual
remote sites, suggesting a surveillance use case.

The above indicates that a set of simple innovations could
streamline HSC operations. Most notably, HSC services could
benefit from on-demand (rather than real time) uploads for the
replay mode. This is because the majority of motion triggered
uploads go unwatched, and therefore local recording (with
on-demand uploads) could offload a significant volume of
unwatched uploads from the network. There are a number of
ways this could be implemented without negatively impacting
customer experience. For example, HSCs could upload the first
1 minute of a stream by default, allowing users to ’preview’
the content. If a user wishes to continue viewing (this applies
to less than 20% of streams), the remaining video can be
requested from the HSC. This could also be mixed with
more sophisticated methods of delivery, whereby only users
predicted to consume content have their previews uploaded.
The predictability of where users view content from means
these videos could even be pre-fetched (e.g. to the top 1 or 2

locations). This will reduce the startup delay, and thus improve
the QoE.

IV. EXPLORING PRIVACY RISKS

HSCs are always-on sensors designed to actively detect
movements in private places. This differs substantially from
other traffic-inference attacks (e.g. monitoring a user’s Netflix
usage) as variations in the camera feed (e.g. bit rate changes)
can expose specifics about behavior, such as exposing Activi-
ties of Daily Living (ADL). In this section, we study potential
privacy risks and solutions.

A. Adversary Model

We adopt a similar attack model to [19], where the attacker
has similar capabilities to an ISP. Our adversary is able to
monitor all network traffic in and out of home gateway routers
(e.g. via WiFi sniffing). The attacker can utilize metadata
including IP packet headers and traffic rate, which are rou-
tinely gathered by major ISPs for operational purpose. Due to
encryption, the payload data is unavailable though. Note that
this adversary model is quite feasible: Identifying HSC traffic
from bulk traffic flowing through the home gateway router is
well studied [19], [26], [15], [31]. Based on our adversary
model, we identify 3 major privacy risks:

1) Traffic surge risk: If the traffic rate of a camera surges
from its base rate, this indicates that the video is being
uploaded. In the case of motion detection mode, this
indicates activity near the camera zone.

2) Traffic regularity risk: After a period of observing surges,
an attacker may be able to infer a user’s daily patterns.
For example, a camera consistently uploading motion-
triggered video at 18:00 might indicate that family mem-
bers arrive home at that time.

3) Rate change risk: The different activity patterns of the
photographed subject will result in different HSC traffic
rates. Based on these rate variations, an attacker may be
able to infer the intensity of activity being undertaken,
and even the types of activity.

We also assume a targeted attacker, who has an approximate
understanding of the camera’s context (e.g. if it is mounted
in a house), and who owns it. Although the examined HSC
is based in China, we note that these attacks are equally
applicable to other cameras that use Variable Bit Rate (VBR)
encoding, including Nest [19].

B. Traffic Surge Risk

A traffic surge is a point in time where the bitrate of a
camera’s feed increases dramatically. This creates a privacy
risk that is inherently part of the transmission schemes of HSC
services (since the camera only uploads when some certain
functions are activated and stays idle the rest of time). This
constitutes the foundation stone of all subsequent attacks.

Methodology: A traffic surge may be triggered by one of
two events: (i) a user viewing the stream live; or (ii) the
motion capture triggering an upload for later replay (in the
case of premium users). In both cases, once an upload is
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Fig. 5: Normalized traffic rates for the examined HSC and Nest HSC in live streaming mode and motion detection mode.

triggered, a significant surge in traffic is observed. Trivial peak
identification across the bit rate time series can therefore be
used to verify if the camera is recording.

It is noteworthy that motion-triggered uploads correspond
to the real time movements in private places, while live
uploads may be triggered by the viewing requests of users.
As such, an attacker who can differentiate between live and
motion triggered uploads is threatening. Inspection of the
traffic reveals that it is possible to differentiate between
live and motion triggered uploads. This is because motion
triggered uploads always start with an initial peak, due to
the uploading of a motionless video at the beginning of the
transmission. We can identify peaks from the traffic rate time
series, S = {s1, s2, ..., sn}, where si represents the bit rate
observed at the time point i. The maximum value within S is
denoted as p. We assume the traffic rates follow a Gaussian
distribution, then we construct a second set with p removed,
S′ = {s|s ∈ S, s 6= p}. We calculate the standard deviation
(σ) and the average of S′ (i.e., S̄′). Values less than 1.96σ+S̄′

occupy approximately 95% of the probability space [14]. If the
maximum value within S is greater than 1.96σ+ S̄′, this time
series indicates a replay upload. Otherwise, it indicates a live
stream. We have also verified the presence of this traffic surge
risk in two other HSCs: XiaoMi and Nest.

Risk Exploration: To measure the efficacy of this risk, we
connect the examined HSC and a Nest HSC via a WiFi access
point, and perform packet capture. We leave the cameras
dormant before starting to view the stream after 25 seconds.
Figure 5(a) and Figure 5(c) present the time series of the
normalised bit rate for the examined HSC and Nest HSC
respectively. When we start to watch a live stream, both
cameras switch from motion detection mode (white) to live
streaming mode (green): this is shown by the sudden spike in
bitrate. When we finish watching, both cameras switch back to
motion detection mode and stop the transmission. We obtained
similar results for XiaoMi HSC.

To confirm our ability to differentiate live and motion-
triggered uploads, we repeat the above setup with premium
user accounts and periodically simulate motion in front of
the cameras. Figure 5(b) presents the result for the examined
HSC, confirming that motion triggers an immediate upload.
For the Nest HSC in Figure 5(d), we can also observe clear
traffic spikes when the motions were triggered. Importantly,
the traffic peaks at the beginning of transmissions are notable
and trivial to detect using our methodology (i.e., we obtain

100% accuracy).

C. Traffic Regularity Risk

The above shows that a passive attacker can infer (i) if a
camera is uploading; and (ii) if that content is being streamed
for motion capture replay. We next explore if this can be
exploited to identify regular patterns in a user’s behavior. For
example, if a camera in a house regularly initiates a motion-
triggered stream at 7AM, an attacker could infer that this is
the time the owner awakes. Such information could be used
to enable physical attacks, e.g. burglary.

Methodology: To test if such regularity can be inferred from
network traffic, for each user, we define the Regularity Value
(RV) as follows. We first count the upload duration per hour
across the observed period. This yields one 24-element vector
per day. We then filter out the days without any uploading. For
each of the remaining vectors, we compute the moving average
with a window size of 3 hours, in order to compensate for
variations in a user’s daily activity (e.g. viewing a stream at
10:03 rather than 9:59). We then calculate the pairwise Pearson
Correlation Coefficient between all possible pairs of a user’s
daily vectors; we refer to the final per-user average as the
regularity value.

The regularity value ranges from from -1 to 1. If the value
is positive, the upload patterns of the user are regular (the
closer to 1, the stronger the regularity). This indicates the daily
patterns of the user can be inferred. Note that the regularity
value is not an attack in itself — it quantifies how susceptible
users in our dataset are to this type of analysis by an attacker.
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Fig. 6: Distr. of regularity value of different clusters of users.

Risk Exploration: We next test the regularity of users in our
dataset. We only inspect those users who have uploaded for at
least 2 days within the observed week. This includes the 67%
of all users who have performed live uploads, and the 51%



of premium users who have motion-triggered replay uploads.
Figure 6 presents the distribution of regularity values across
normal and premium users. Again, we separate these users into
their categories as identified via our earlier GMM clustering.

Figure 6(a) reveals significant diversity across the different
clusters for motion-triggered replay predictability. The ma-
jority of LU-HW users and MU-MW users show little-to-
no regularity. Their median regularity is near to 0, indicating
that their daily patterns are difficult to predict. This is partly
driven by their very nature, which consists of limited usage.
In stark contrast, HU-LW users show stronger regularity, with
the 75-th percentile as high as 0.69. In the case of live videos
(Figure 6(b)), in all clusters, the regularity of premium users
is higher than that of normal users. Furthermore, as the usage
frequency becomes higher (for both premium and normal
users), the regularity becomes higher. This intuitive finding
indicates that heavier users are easier to predict.

To find a reasonable threshold (thresh) for what might
be considered strongly predictable, we use the approach sug-
gested in [28]. We fit all positive user regularity values into
a 2-component GMM, and we define the intersection of the
2 resulting components as the threshold. The resulting value
of thresh is 0.34 in both the cases of normal and premium
live uploading, and 0.35 in the case of replay uploading.
Consequently, 17.4% of replay-up premium users, 18.7% of
live-up premium users and 11.5% live-up normal users can be
considered as strongly predictable.
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Fig. 7: Distribution of accuracy of upload behavior prediction
(hit rate) for users of different ranges of regularity value.

Predicting Activity: We next confirm that this regularity can
be exploited to predict upload patterns. We extract all users
who have uploaded video data on all 7 days: 9,912 (8%)
premium users for replay-up and 14,826 (7%) users for live-up.
We then use their first four days to fit a Holt-Winters model [4]
to predict the following three days time series (seasonal period
was set to 24). Note that the time series are binary (0 for
no upload in hour, 1 otherwise). We compute the prediction
accuracy as hit rate = 1/n ∗

∑n
i=1 hri, where hri is 1 if the

prediction for the i-th time slot is correct (0 otherwise), and
n is the number of hours under prediction (i.e., 3 ∗ 24).

Figure 7 presents the distribution of hit rates across all
users. We perform separate predictions for replay, premium
live and normal live streams. We then split these users into
the two categories of regularity: 0 < RV ≤ thresh and
RV > thresh. Unsurprisingly, the more regularly the user
uploads, the higher the hit rate is. The predictions are most

accurate for replay video uploading, where the hit rates are as
high as 0.75 (3x the accuracy in the cases of live uploads).
This is likely because it depends solely on motion, rather
than user behavior. This confirms that, particularly for heavy
users, motion-triggered uploads do have the capacity to allow
attackers to predict future activity. This could be an effective
tool for identifying the best time for physical attacks, e.g.
burglary.

D. Rate change risk

Finally, we explore the potential to identify activity changes
on a camera feed via bit rate monitoring, e.g. identifying a
person shifting from sitting to walking.

Methodology: We take inspiration from Li et al. [29], who
proved it possible to identify activities by monitoring the
bitrate feed from a video stream. Their approach involves first
identifying video segments (via change points), and extracting
key features. By manually labelling each segment with their
associated activities (e.g. eating, dressing, styling hair), they
then train classifiers to identify activities in other feeds. With
these results in mind, we next test the number of potential
activity segments that can be extracted from the video streams
in our dataset (1 segment maps to one activity [29]). Although
we cannot associate these segments with their respective
labels (e.g. eating), this does offer an upper-bound on how
many activities could be extracted. To do this, we convert all
streams into a bit rate time series, and then utilize Bayesian
Online Change Point Detection (BOCPD) [13] to identify each
segment in a camera’s feed.

BOCPD assumes that a sequence of observations
(x1, x2, ..., xt) contain several non-overlapping partitions ρ
[20]. For a given time series, BOCPD computes the run
length, which represents the number of time steps since
the last detected change point (denoted as rt at time t).
The probability distribution of rt can be computed using a
recursive algorithm as follow:

P (rt|x1:t) =

∑
rt−1

P (rt|rt−1)P (xt|rt−1, x
(r)
t )P (rt−1, x1:t−1)∑

rt

P (rt, x1:t)
(1)

where x
(r)
t indicates the set of observations associated with

the run rt. P (rt|rt−1), P (xt|rt−1, x(r)t ) and P (rt−1, x1:t−1)
are prior, likelihood, and recursive components of the above
formulation. The conditional prior has non zero mass under
only 2 circumstances:

P (rt|rt−1) =

 H(rt−1 + 1) if rt = 0
1−H(rt−1 + 1) if rt = rt−1 + 1

0 otherwise
(2)

H(τ) =
Pgap(g = τ)∑∞
t=τ Pgap(g = t)

(3)

In the above, H(τ) is the hazard function [25]. The likeli-
hood term P (xt|rt−1, x(r)t ) therefore represents the probability
that the most recent datum belongs to the current run.
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Figure 12: Traffic rate changes of cameras when GIF’s
shifting period changes.

activity pattern changing. GT: I think the above
needs a bit of a rewrite (i.e. make more for-
mal rather than verbose). Also, it is not clear
why this is a good metric. JY: Now this bit is
named Risk Verification, but actually, we cannot
verify the risk as you said. What we can do and
what we are doing here is we assume the risk ex-
ists and measure the magnitude of the potential
privacy risk. To measure the magnitude of the
risk (namely, the number of changepoints), two
factors should be taken into consideration: the
duration of uploading and the changepoint ratio
(# of changepoints = duration ∗ changepoint ratio).
So I thought we should study both factors. How-
ever, considering the page limit and the con-
clusion about the duration-changepoint-number
relationship is quite intuitive, we can only talk
about the changepoint ratio.
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Figure 13: Distribution of users’ change point point
ratio.

Consider the impact of usage pattern variation, we

break all premium users and normal users into groups
according to the GMM models in Table3 and Table 2,
respectively. After that, we calculate change point ratio
for users in each groups. The resulting statistics is ex-
hibited in Figure 13. As we can see in Figure 13(a), the
change point ratio distribution of the 3 groups of pre-
mium users is quite close. The most noteworthy is that
less than 1% of HU-LW users have never had a change
point, and this proportion is about 10% in the other
two relatively inactive uploading premium user groups.
Compared with premium users, normal users which are
presented in 13(b) are less active, having shorter up-
loading duration. From previous experiments, we know
that less active uploading (short duration) user have
fewer change points, but from Figure 13(b), the median
change point ratio in L group which consists of least
active users is 0.5, which is the greatest change point
ratio among all 6 groups of users. However, at the same
time, the proportion of users in L group with a 0 change
point ratio is also the largest, exceeding 40%, indicat-
ing that for users who upload inactively, the observed
activity pattern is probably shifting in a irregular way
since the uploading is short.

JY: This is the conclusion part. Now we only
analysis the changepoint ratio. If we decide not
to analysis from the duration perspective, we
should remove it. From the duration perspective:
The longer the uploading duration is, the more activ-
ities will be observed. While, from the perspective of
user habits: for users who regularly upload, the prob-
ability of doing only one thing for a long time is very
small. Therefore, studies on above two factors can actu-
ally draw one conclusion jointly: The longer and more
regular the user uploads, the more user activity will be
exposed to the attacker, creating a serious privacy risk.

GT: I think the above is a bit risky. We’re
basically jumping to the conclusion that longer
duration streams expose more information. But
we don’t really have any evidence to say these
segments are really exposing anything for real
(we are just assuming they are). I fear this
will get attacked by reviewers. Would you be
okay with me condensing this analysis (maybe
even removing some of the graphs)? JY: Yes,
we only assume that the segmentation can be
mapped to activity. Actually, if m changepoints
are detected in one of our traffic rate timeserie,
there will be m + 1 activities at most. But m,
the number of changepoints, can still represents
the number of activities to some extent. I agree
with you that too strong assertion will probably
be attacked. Please feel free to edit on.

Activity switch pattern. Apart from the mag-
nitude of the rate change risk, we are also interested
in user’s activity switch pattern since people often do

12

(b) Change points detection

Fig. 8: Traffic rate changes of camera when GIFs shifting
period changes and corresponding probability of run length.

Adams and MacKay [13] do not specify an exact method
to identify change points after calculating the run length
distributions. Thus, we propose a statistical way to identify
change points: after obtaining all the run length distributions,
we fit all probability values P (rt = 0), t ∈ N into a Gaussian
distribution. Since for all Gaussian distributions, 95% of the
area is within 1.96 standard deviations (σ) plus the mean
(µ) [14], we label any time step t as a change point when
P (rt = 0) > µ+ 1.96σ holds. Another benefit of BOCPD is
that it is effective in cases where an attacker only has access to
periodic (smoothed) bit rate samples (e.g. every 30 seconds).
In such cases, each sample x can be expanded across the time
period by a Poisson distribution of λ = x, namely P (λ = x).

For context, Figure 8 highlights the outcome of this process:
we placed an examined HSC in live streaming mode, and
presented it with an animated GIF that flickers between all
black and all white at different intervals (still, 800ms, 400ms
and 200ms). Figure 8(a) highlights the bit rate, whereas
Figure 8(b) confirms the correct calculation of the run length.
Note that it is out-of-scope to perform the mapping between
these runs and their underlying activities, as it is necessary
for an attacker to first collect ground truth mapping data for
training purposes [29]. Thus, we emphasize such an attack
could only be realised by a highly equipped adversary with
the ability to contextualize the segments.

Risk Exploration: To gain an idea of the number of potential
activities that can be extracted from a camera feed, we measure
the number of BOCPD segments in each camera’s stream. To
measure this, we define the Change Point Ratio for a stream
as Ru = 1

n

∑n
i=0

Ci

Pi
, where Pi and Ci are the number of

data points and the number of identified change points in
stream i’s rate timeserie respectively; n is the number of up-
streams generated by user u.

We report the distribution of change point ratios for each
users in Figure 9, where we again separate users into their
categories as identified via our earlier GMM clustering. The
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Fig. 9: Distribution of users’ change point ratio.

change point ratio distribution of the 3 groups of premium
users is quite close. The most noteworthy is that under 1% of
HU-LW users have never had a change point (this is about 10%
in the other two relatively inactive uploading premium user
groups). This indicates that the remaining majority of users
do have activity changes within the streams. Compared with
premium users, more normal users have a zero change point
ratio (40% medium normal users and 20% high normal users),
implying very few activity changes in their streams. This
distinct behavior is partly because only live streaming mode is
available for normal users, which results in less regular activity
than motion-triggered capture. Nevertheless, with appropriate
training data, this implies that the attack detailed in Li et
al. [29] would have widespread applicability.

Activity Switch Patterns: We are also interested in users’
activity switch patterns, since people often do things in a
certain logical order (e.g. washing their hands before dinner).
These sequences could therefore add context to any inferences
performed by an attacker. We use the difference between
average traffic rates of adjacent activities to empirically inspect
users’ activity switch patterns. Here, we separate activities
using BOCPD as discussed above, and take the average bit
rate from each segment.
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Fig. 10: Distribution of traffic rate difference between adjacent
activities. The x-axis is in log scale.

Figure 10 presents the distribution of bit rate changes
between consecutive activity segments. As we can see for both
replay and live stream types, 4 peaks exist (35kbps, 180kbps,
500kbps and 1,000kbps), which seemingly indicates 4 major
activity switch patterns. The four peaks are more pronounced
in live streams, whereas there are two more prominent peaks
(35kbps and 180kbps) for the replay uploads. Inspired by [29],
we conduct a series of short controlled experiments to make



the first attempt to explore the potential corresponding switch
patterns of each peak. The experiments were carried out in two
illumination environments (natural light and lamplight) by 2
volunteers (1 female and 1 male) from different distances from
the HSC (1m, 2m, and 3m). The volunteers performed 3 kinds
of activities: (i) gentle: reading, sitting; (ii) medium: dressing
and stretching; and (iii) dramatic: walking, exercising. Each
activity was repeated for 5 times and lasted 30 seconds. We
asked the volunteers to move between each activity, and, in
total, the experiments are repeated over 500 times.

We observe that slight activity changes (e.g. standing up)
will result in a 35kbps peak, while a 180kbps peak often
happens in the case of distance changes (e.g. walking away
from the HSC), or relatively dramatic activity switches (e.g.
getting up from a chair and walking). Finally, 500kbps and
1,000 kbps peaks only happen in extreme cases of motion,
e.g. somebody suddenly running into an empty room. Al-
though, we cannot link these activities into the bitrate changes
observed in our dataset, our controlled experiments do show
the possibility of linking the changes to users’ activities, and
shed light for future work. Furthermore, it is clear that this
approximate taxonomy could be used by attackers to infer a
general category of activity taking place on a camera feed.

E. Counter Defences

The root cause of the three risks is that there is a corre-
spondence between the traffic rate and the working state of
the camera. Our results show that premium users are most at
risk, due to their heavier usage pattern and the motion triggered
replay feature available to them. It is therefore necessary to
mitigate this correspondence. In the simplest case, this could
be done by artificially triggering camera activity to introduce
noise to any inferences, for example, by the user directly
placing a moving object (e.g. clock) in front of the camera for
motion triggered recording. This, however, is undesirable for
several reasons, not least because it would waste resources:
in our controlled experiments, a moving clock generates over
50MB of wasted traffic per hour. Thus, a superior option
would be for each HSC to randomly generate streams, thereby
undermining the attacks. Such streams could be tagged in
order to inform the server to discard them. Notably, the times,
duration and traffic rate pattern must be random. HSCs could
also perform traffic shaping to flatten spikes in the bit rate [17],
[37]. Note that half of the users wait at least 10 minutes before
viewing newly uploaded replay videos, suggesting that such
traffic shaping could be easily performed without an adverse
impact on user experience.

V. RELATED WORK

Privacy Leakages from IoT Traffic: In spite of encryption
in IoT, several recent studies have shown the possibility of
privacy leakages from application traffic [33]. Li et al. [29]
showed the possibility of inferring Activities of Daily Living
from encrypted surveillance video traffic. Apthorpe et al. [19]
made similar observations for several IoT devices that include
Nest HSC. Wood et al. [35] investigated medical IoT devices

that may reveal sensitive medical conditions and behaviors.
Copos et al. [23] presented a scheme that could infer whether
a home is occupied by parsing characteristics of the network
traffic from smart thermostats. These studies mainly rely on
active measurements with a few IoT devices, whereas our work
leverages the logs of over 200K home security cameras.

To address the possible privacy leakages in IoT applications,
several countermeasures have been proposed. Apthorpe et
al. [18][17] proposed strategies to protect IoT device con-
sumers from side-channel traffic rate privacy threats, including
traffic shaping and tunneling. Zhang et al. [37] proposed
to reshape packet features through dynamically scheduling
packets over multiple virtual MAC interfaces, in order to
obscure the features of the original traffic. Some of these
solutions, like traffic shaping, can also be applied to HSCs
to preserve privacy.

User Behavior Inspection: Xu et al. [36] investigated IP
cameras without password protection to examine their usage
patterns and vulnerabilities. Our results also have similarities
with mobile personal livecast systems [30], [32], [34], which
also exhibit small streams. Like us, [32] found that many
broadcasts also go un-watched, resulting in resource waste.

VI. CONCLUSION

This paper has presented a large-scale study of a major
HSC system, highlighting several key findings. Around 95%
of replay upload traffic is generated by the top 5% of cameras
(largely motion-triggered uploads). This workload results in a
significant portion of content going unwatched and therefore
wasting resources. These previously unknown patterns con-
tribute to the growing body of work focused on optimizing
home IoT devices. We also inspected the privacy implications
of using HSCs, driven by the close alignment between real-
world activities and subsequent network traffic. We confirmed
a range of inferences, and have offered an upper bound for the
predictability of user patterns. The susceptibilities of users to
these threats differ, and we identified a subset of heavy users
who are most at risk. Although we have only empirically tested
these concepts on the examined HSC, we note that our privacy
attacks are equally applicable to most other HSC services, due
to their use of Variable Bit Rate encoding.

In our future work, we will explore how user trends gener-
alize and evolve over a longer duration, and we will expand
our controlled experiments (§IV-D) to better understand the
inferences that rate changes may enable. We are also working
with the service team of the examined HSC to explore the
discussed implications. We conclude by stating that HSCs have
become a commodity which will likely increase in usage. As
they are often placed in intimate locations, it is important we
continue to investigate their activities and potential risks.
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