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Abstract6

We present a framework for symbolically executing and model checking higher-order programs with7

external (open) methods. We focus on the client-library paradigm and in particular we aim to check8

libraries with respect to any definable client. We combine traditional symbolic execution techniques9

with operational game semantics to build a symbolic execution semantics that captures arbitrary10

external behaviour. We prove the symbolic semantics to be sound and complete. This yields a11

bounded technique by imposing bounds on the depth of recursion and callbacks. We provide an12

implementation of our technique in the K framework and showcase its performance on a custom13

benchmark based on higher-order coding errors such as reentrancy bugs.14

2012 ACM Subject Classification Theory of computation → Semantics and reasoning15

Keywords and phrases game semantics, symbolic execution, higher-order open programs16

Digital Object Identifier 10.4230/LIPIcs.FSCD.2020.2817

Funding Research funded by EPSRC (EP/P004172/1).18

Acknowledgements We would like to thank members of the K framework for their consistent support19

with K, and anonymous reviewers for their insightful reviews.20

1 Introduction21

Two important challenges in program verification are state-space explosion and the environ-22

ment problem. The former refers to the need to investigate infeasibly many states, while the23

latter concerns cases where the code depends on an environment that is not available for24

analysis. State-space explosion has been approached with a range of techniques, which have25

led to verification tools being nowadays routinely used on industrial-scale code (e.g. [10, 5, 7]).26

The environment problem, however, remains largely unanswered: verification techniques27

often require the whole code to be present for the analysis and, in particular, cannot analyse28

components like libraries where parts of the code are missing (e.g. the client using the library).29

This problem is particularly acute in higher-order programs, where the interaction between a30

program and its environment can be intricate and e.g. involve callbacks or reentrant calls. In31

this paper we address this latter problem by combining game semantics, a semantics theory32

for higher-order programs, with symbolic execution, a technique that uses symbolic values to33

explore multiple execution paths of a program.34

To showcase the importance and challenges of the environment problem, following is a35

1 import send:(int → unit)

2 int balance := 100;

3

4 public withdraw (m:int) :(unit) =

5 if (not (! balance < m)) then

6 send(m);

7 balance := !balance - m;

8 assert(not(! balance < 0))

9 else ();

simple example of a library written in a sug-36

ared version of HOLi, the vehicle language37

of this paper. The example is a simpli-38

fied implementation of “The DAO” smart39

contract, a failed decentralised autonomous40

organisation on the Ethereum blockchain41

platform [12]. As with libraries, the chal-42

lenge in analysing smart contracts is that43

the client code is not available. We must44
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28:2 Symbolic Execution Game Semantics

thus generate all possible contexts in which the contract can be called. In this case, the error45

is caused by a reentrant call from the send() method, which is provided by the environment.46

When this method is called, the environment takes control and is allowed to call any method47

in the library. If a client were to call withdraw() within its send() method, the recursive48

call would drain all the funds available, which is simulated in this example by a negative49

balance. This happens because the method is manipulating a global state, and is updating50

it after the external call. We can see that an analysis capturing this error would need to51

be able to predict an intricate environment behaviour. Moreover, such an analysis should52

ideally only predict realisable environment behaviours.53

Symbolic execution [34, 13, 19] explores all paths of a program using symbolic values54

instead of concrete input values. Each symbolic path holds a path condition (a SAT formula)55

that is satisfiable if and only if the path can be concretely executed. While the resulting56

analysis is unbounded in general, by restricting our focus to bounded paths we can soundly57

catch errors, or affirm the absence thereof up to the used bound. Game semantics [2, 14],58

on the other hand, models higher-order program phrases in isolation as 2-player games:59

sequences of computational moves (method calls and returns) between the program and60

its hypothetical environment. The power of the technique lies in its use of combinatorial61

conditions to precisely allow those game plays that can be realised by including the program62

in an actual environment. Moreover, the theory can be formulated operationally in terms63

of a trace semantics for open terms [18, 21, 16] which, in turn, lends itself to a symbolic64

representation. The latter yields a symbolic execution technique that is sound and complete65

in the following sense: given an open program, its symbolic traces match its concrete traces,66

which match its realisable traces in some environment.67

Returning to the DAO example, we can model the ensuing interaction as a sequence of68

moves, alternating between the environment and the library. Any finite sequence of moves69

(that leads to an assertion violation) is a trace defining a counterexample. Running the70

example in HOLiK, our implementation of the symbolic semantics in the K Framework [33],71

the following minimal symbolic trace is automatically found:72

73 call〈withdraw, x1〉 · call〈send, x1〉 · call〈withdraw, x2〉74

· call〈send, x2〉 · ret〈send, ()〉 · ret〈withdraw, ()〉 · ret〈send, ()〉7576
77

where x1 is the original call parameter, and x2 is the parameter for the reentrant call,78

satisfiable with values x1 = 100 and x2 = 1. A fix would be to swap line 6 and 7, to update79

internal state before passing control.80

In Appendix A we look at a few more examples of libraries that exhibit errors due to81

high-order behaviours. We provide three examples: a file lock example, a double deallocation82

example, and an unsafe implementation of flat-combining.83

Overall, this paper contributes a novel symbolic execution technique based on game84

semantics to precisely model the behaviour of higher-order stateful programs. Specifically:85

We present a symbolic trace semantics for higher-order libraries that captures the behaviour86

of an unknown environment, and prove it sound and complete: i.e. it produces no spurious87

error traces, and is able to produce the complete execution tree of any library. By88

bounding the depth of nested calls and the insistence of the environment in calling library89

methods, we derive a sound and bounded-complete technique to check higher-order libraries90

for errors. We implement the latter in the K semantical framework [33] to produce a91

sound and bounded-complete tool for higher-order libraries as a proof of concept. We test92

our implementation with benchmarks adapted from the literature. Some material has been93

delegated to an Appendix. Full proofs can be found in an extended version of the paper [22].94
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Libraries L ::= B | abstract m;L
Blocks B ::= ε | public m = λx.M ;B

| m = λx.M ;B | global r := i;B
| global r := λx.M ;B

Clients C ::= L; main = M

Terms M ::= m | i | () | x | λx.M | r := M | !r
|M ⊕M | 〈M,M〉 | π1M | π2M

|MM | if M then M else M
| letrec x = λx.M in M
| let x = M in M | assert(M)

() : unit i : int
x ∈ Varsθ
x : θ

m ∈ Methsθ,θ′

m : θ → θ′
M,M ′ : int
M ⊕M ′ : int

M : int M1,M0 : θ
if M then M1 else M0 : θ

M : θ1 M ′ : θ2

〈M,M ′〉 : θ1 × θ2

〈M,M ′〉 : θ1 × θ2

πi〈M,M ′〉 : θi
r ∈ Refsθ

!r : θ
r ∈ Refsθ M : θ
r := M : unit

M ′ : θ → θ′ M : θ
M ′ M : θ′

M : θ′ x : θ
λx.M : θ → θ′

x,M : θ M ′ : θ′

let x = M in M ′ : θ′
x, λy.M : θ → θ′′ M ′ : θ′

letrec x = λy.M in M ′ : θ′
M : int

assert(M) : unit

Figure 1 Syntax and typing rules of HOLi.

2 A Language for Higher-Order Libraries: HOLi95

We introduce HOLi, a language for higher-order libraries which define methods to be used96

by an external client, and in turn require external methods (provided by the client). We97

give in HOLi an operational semantics for terms that integrates a counter for the depth of98

nested calls that a program phrase can make. We then extend this counting semantics to99

open terms by means of a trace semantics. We show that the trace semantics of libraries is100

sound and complete for reachability of errors under any external client.101

2.1 Syntax and operational semantics102

A library in HOLi is a collection of typed higher-order methods. A client is simply a library103

with a main body. Types are given by the grammar:104

θ ::= unit | int | θ × θ | θ → θ105

We use countably infinite sets Meths, Refs and Vars for method, global reference and106

variable names, ranged over by m, r and x respectively, and variants thereof; while i is for107

ranging over the integers. We use ⊕ to range over a set of binary integer operations, which108

we leave unspecified. Each set of names is typed, that is, it can be expressed as a disjoint109

union as follows: Meths =
⊎
θ,θ′ Methsθ,θ′ , Refs =

⊎
θ 6=θ1×θ2

Refsθ, Vars =
⊎
θ Varsθ.110

The full syntax and typing rules are given in Figure 1. Thus, a library consists of111

abstract method declarations, followed by blocks of public and private method and reference112

definitions. A method is considered private unless it is declared public. Each public/private113

method and reference is defined once. Abstract methods are not given definitions: these114

methods are external to the library. Public, private and abstract methods are all disjoint.115

Libraries are well typed if all their method and reference definitions are well typed (e.g.116

public m = λx.M is well typed if m : θ and λx.M : θ are both valid for the same type θ)117

and only mention methods and references that are defined or abstract. A client L; main = M118

is well typed if M : unit is valid and L; m = λx.M is well typed for some fresh x,m. A119

library/client is open if it contains abstract methods. This is different to open/closed terms:120

we call a term open if it contains free variables.121

I Remark 1. By typing variable, reference and method names, we do not need to provide a122

context in typing judgements. Note that the references we use are of non-product type and,123

F S C D 2 0 2 0
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(E[let x = v in M ], R, S, k)→ (E[M{v/x}], R, S, k) (E[πj〈v1, v2〉], R, S, k)→ (E[vj ], R, S, k)
(E[r := v], R, S, k)→ (E[()], R, S[r 7→ v], k) (E[!r], R, S, k)→ (E[S(r)], R, S, k)
(E[if i then M1 else M0], R, S, k)→ (E[Mj ], R, S, k) (1) (E[i1 ⊕ i2], R, S, k)→ (E[i], R, S, k) (2)
(E[λx.M ], R, S, k)→ (E[m], R ] {m 7→ λx.M}, S, k) (E[assert(i)], R, S, k)→ (E[()], R, S, k) (3)
(E[mv], R, S, k)→ (E[LM{v/x}M], R, S, k + 1) (4) (E[LvM], R, S, k + 1)→ (E[v], R, S, k)
(E[letrec f = λx.M in M ′], R, S, k)→ (E[M ′{m/f}], R ] {m 7→ λx.M{m/f}}, S, k)
Conditions: (1) : j = 1 iff i 6= 0, (2) : i = i1 ⊕ i2, (3) : i 6= 0, (4) : R(m) = λx.M.

Values v ::= m | i | () | 〈v, v〉 Terms (extended) M ::= · · · | LMM

Eval.Contexts E ::= • | assert(E) | r := E | E ⊕M | v ⊕ E | 〈E,M〉 | 〈v,E〉 | πjE
EM | mE | let x = E in M | if E then M else M | LEM

(abstract m;L,R, S,P,A) bld−−→ (L,R, S,P,A ] {m})
(public m = λx.M ;B,R, S,P,A) bld−−→ (B,R ] {m 7→ λx.M}, S,P ] {m},A)

(m = λx.M ;B,R, S,P,A) bld−−→ (B,R ] {m 7→ λx.M}, S,P,A)
(global r := i;B,R, S,P,A) bld−−→ (B,R, S ] {r 7→ i},P,A)

(global r := λx.M ;B,R, S,P,A) bld−−→ (B,R ] {m 7→ λx.M}, S ] {r 7→ m},P,A)

Figure 2 Operational semantics (top); values and evaluation contexts (mid); library build (bottom).

more importantly, global to the library: a term can use references but not create them locally124

or pass them as arguments (we discuss how to include such references in Appendix C).125

I Example 2. The DAO-attack example from the Introduction can be written in HOLi as:126

abstract send; global bal := 100;127

public wdraw =128

λx. if !bal ≥ x then (send(x); bal := !bal − x; assert(!bal ≥ 0)) else ()129
130

where send,wdraw ∈ Methsint,unit, bal ∈ Refsint, and M ;M ′ stands for let = M in M ′.131

A library contains public methods that can be called by a client. On the other hand,132

a client contains a main body that can be executed. These two scenarios constitute the133

operational semantics of HOLi. Both are based on evaluating (closed) terms, which we134

define next. Term evaluation requires: the closed term being evaluated; method definitions,135

provided by a method repository; reference values, provided by a store; and a call-depth136

counter (a natural number). Since method application is the only source of infinite behaviour137

in HOLi, bounding the depth of nested calls is enough to guarantee termination in program138

analysis. Hence we provide a mechanism to keep track of call depth.139

The operational semantics is given in Figure 2. The evaluation of terms (top part) involves140

configurations of the form (M,R, S, k), where:141

M is a closed term which may contain evaluation boxes, i.e. points inside a term where142

a method call has been made and has not yet returned, and is taken from the syntax143

extending the one of Figure 1 with the rule: M ::= · · · | LMM144

R is a method repository, i.e. a partial map from method names to their bodies145

S is a store, i.e. a partial map from reference names to their stored values146

k is a counter, i.e. a natural number.147
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Most of the rules are standard, but it is worth noting that lambdas are not values themselves148

but, rather, evaluate to method names that are freshly stored in the repository. Moreover,149

evaluation boxes interplay with the counter k in the semantics: they mark places where the150

depth has increased because of a nested call. The penultimate line of rules in the operational151

semantics keeps track of call depth, and illustrates the utility of evaluation boxes: making152

a call increases the counter and leaves behind an evaluation box; returning form the call153

removes the box and decreases the counter again.154

A library L builds into a configuration of the form (ε,R, S,P,A), which includes its155

public methods according to the rules in Figure 2 (bottom). More precisely, R and S are as156

above, while P,A ⊆ Meths are (disjoint) sets of public and abstract method names. We say157

that (a well typed) L builds to (ε,R, S,P,A) if (L, ∅, ∅, ∅, ∅) bld−−→
∗

(ε,R, S,P,A). If L builds158

to (ε,R, S,P,A) then the client L; main = M builds to (M,R, S,P,A). Moreover, we can159

link libraries to clients and evaluate them, as in the following definition.160

I Definition 3. 1. Library L and client C are compiatible if L builds to some (ε,R, S,P,A)161

and C builds to some (M,R′, S′,P ′,A′) such that: P ⊇ A′ and A ⊇ P ′ ( complementation);162

dom(S)∩dom(S′) = ∅ ( disjoint state); and dom(R)∩dom(R′) = ∅ ( method ownership).163

2. For a library L, we let L̂ be L with all its abstract method declarations and public164

keywords removed; and similarly for Ĉ. Given compatible library L and client C, we let165

their composition be the client: L;C = L̂; Ĉ.166

3. Given compatible L,C, the semantics of L;C is:167

JL;CK = {ρ | L;C builds to (M,R, S, ∅, ∅) ∧ (M,R, S, 0)→∗ ρ}168

We say that JL;CK fails if it contains some (E[assert(0)], · · · ).169

I Example 4. To illustrate how libraries and clients are used, consider the DAO example170

again as a library LDAO. We can define a client Catk:171

abstract wdraw; global wlet := 0;172

public send = λx.wlet := !wlet+ x; if !wlet < 100 then wdraw(x) else ();173

main = wdraw(1)174
175

to produce the following linked client LDAO;Catk (modulo re-ordering):176

global bal := 100; global wlet := 0;177

wdraw = λx. if !bal ≥ x then (send(x); bal := !bal − x; assert(!bal > 0)) else ();178

public send = λx.wlet := !wlet+ x; if !wlet < 100 then wdraw(x) else ();179

main = wdraw(1)180
181

We can see how LDAO is vulnerable to an attacker such as Catk after linking them. The aim is182

thus to use bounded analysis to find counterexamples that define clients such as this one.183

2.2 Trace Semantics184

The semantics we defined only allows us to evaluate terms, and only so long as their method185

applications only involve methods that can be found in the repository R. We next extend186

this semantics to encompass libraries and terms that can also call abstract methods. The187

approach we follow is based on operational game semantics [18, 21, 16] and in particular the188

semantics is given by means of traces of method calls and returns (called moves in game189

F S C D 2 0 2 0
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(INT)
(M,R, S, k)→ (M ′, R′, S′, k′)

(E ,M,R, S,P,A, k)p → (E ,M ′, R′, S′,P,A, k′)p

(PQ) (E , E[mv], R, S,P,A, k)p
call(m,v)−−−−−−→ ((m,E) :: E , 0, R, S,P ′,A, k)o

(OQ) (E , l, R, S,P,A, k)o
call(m,v)−−−−−−→ ((m, l + 1) :: E ,mv,R, S,P,A′, k)p if R(m) = λx.M

(PA) ((m, l) :: E , v, R, S,P,A, k)p
ret(m,v)−−−−−→ (E , l, R, S,P ′,A, k)o

(OA) ((m,E) :: E , l, R, S,P,A, k)o
ret(m,v)−−−−−→ (E , E[v], R,P,A′, k)p

(PC) : m ∈ A∧P ′ = P ∪ (Meths(v) ∩ dom(R)), (OC) : m ∈ P ∧A′ = A∪ (Meths(v) \ dom(R)).

Figure 3 Trace semantics rules. Rules (PQ), (PA) assume the condition (PC), and similarly for

(OQ),(OA) and (OC). Meths(v) contains all method names appearing in v. INT stands for internal

transition; PQ for P -question (i.e. call); PA for P -answer (i.e. return). Similarly for OQ and OA.

semantics jargon), between the library and its client. In between such moves, the semantics190

evolves as the operational semantics we already saw.191

To maintain a terminating analysis, we need to keep track of an added source of infinite192

execution, namely endless consecutive calls from an external component: a library will never193

terminate if its client keeps calling its methods. This leads us to a semantics with two194

counters, k and l, where k keeps track of internal nested method calls and l records the195

number of consecutive calls made from the external component. This counter l is orthogonal196

to k and is refreshed at every call to the external context.197

When computing the semantics of a library, the library and its methods are the Player (P)198

of the computation game, while the (intended) client is the Opponent (O). As the semantics199

is given in absence of an actual client, O actually represents every possible client. When200

computing the semantics of a client, the roles are reversed. In both cases, though, the same201

sets of rules is used and there is no need to specify who is P and O in the semantics.202

The trace semantics uses game configurations, which are divided into P -configurations203

and O-configurations given respectively as:204

(E ,M,R, S,P,A, k)p and (E , l, R, S,P,A, k)o .205

In a P -configuration, a term M is being evaluated – this is P ’s role. In an O-configuration,206

an external call has been made and the semantics waits for O to either return that call, or207

reply itself with another call. The components M,R, S,P,A, k, l are as above, while E is an208

evaluation stack :209

E ::= ε | (m,E) :: E | (m, l) :: E210

which keeps track of the computations that are on hold due to external calls. The trace211

semantics is generated by the rules given in Figure 3.212

The formulation follows closely the operational game semantics technique. For example,213

from a P -configuration (E ,M,R, S,P,A, k)p, there are 3 options:214

1. If M can make an internal reduction, i.e. in the operational semantics in context (R,S, k),215

then (E ,M,R, S,P,A, k)p performs this reduction (via (INT)).216

2. If M is stuck at a method application for a method that is not in the repository R, then217

that method must be abstract (i.e. external) and needs to be called externally. This is218

achieved be issuing a call move and moving to an O-configuration (via (PQ)). The current219

evaluation context and the called method name are stored, in order to resume once the220

call is returned (via (OA)).221
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3. If M is a value and the evaluation stack is non-empty, then P has completed a method222

call that was issued by O (via (OQ)) and can now return (via (PA)).223

On the other hand, from an O-configuration (E , l, R, S,P,A, k)o, there are 2 options:224

1. either return the last open method call (made by P ) via (OA), or225

2. call one of the public methods (from P) using (OQ).226

The role of conditions (PC) and (OC) is to ensure that each player calls the methods227

owned by the other, or returns their own, and update the sets of public and abstract names228

according to the method names passed inside v.229

I Remark 5. The novelty of Figure 3 with respect to previous work on trace semantics for230

open libraries (e.g. [26]) lies in the use of l in order to bound the ability of O to ask repeated231

questions for finite analysis. The way rules (OQ) and (PA) are designed is such that any232

sequence of consecutive O-calls and P -returns has maximum length 2n if we bound l to n233

(i.e. l ≤ n), as each such pair of moves increases l by 1. On the other hand, each P -call234

supplies to O a fresh counter (l = 0) to be used in contiguous (OQ)-(PA)’s. Thus, l can be235

seen as keeping track of the insistence of O in calling.236

Finally, we can define the trace semantics of libraries.237

I Definition 6. Let L be a library. The semantics of L is :238

JLK = {(τ, ρ) | (L, ∅, ∅, ∅, ∅) bld−−→∗ (ε,R, S,P,A) ∧ (ε, 0, R, S,P,A, 0)o
τ−→ ρ}239

240

We say that JLK fails if it contains some (τ, (E , E[assert(0)], · · · )).241

I Example 7. Consider the DAO example as library LDAO once again. Evaluating the game242

semantics we know the following sequence is in JLDAOK. For economy, we hide R,P,A and243

show only the top of the stack in the configurations. We also use m(v)? and m(v)! for calls244

and returns. We write Si for the store [bal 7→ i].245

(ε, 0, S100, 0)o
wdraw(42)?−−−−−−−→ ((wdraw, 1), wdraw(42), S100, 0)p246

−→∗ ((wdraw, 1), E[send(42)], S100, 1)p
send(42)?−−−−−−→ ((send,E), 2, S100, 1)o247

wdraw(100)?−−−−−−−−→ ((wdraw, 1), wdraw(100), S100, 1)p248

−→∗ ((wdraw, 1), E′[send(100)], S100, 2)p
send(100)?−−−−−−−→ ((send,E), 2, S100, 2)o249

send(())!−−−−−−→ ((wdraw, 1), E′[()], S100, 2)p −→∗ ((wdraw, 1), (), S0, 2)p250

wdraw(())!−−−−−−−→ ((send,E), 1, S0, 2)o
send(())!−−−−−−→ ((wdraw, 1), E[()], S0, 1)p251

−→∗ ((wdraw, 1), E[assert(−42 ≥ 0)], S−42, 1)p252
253

This transition sequence is an instance of the symbolic trace provided in the Introduction.254

Here, a call is made with parameter 42, and a reentrant call with 100, which leads to the255

assertion violation assert(−42 ≥ 0). Note that a bound of k ≤ 2 is sufficient to find this256

assertion violation.257

We next establish two focal properties of the trace semantics: bounding k and l ensures258

termination (Theorem 8), and that it is sound and complete with respect to library errors259

(Theorem 9). Notice Theorem 9 captures both soundness and completeness as it states that260

the game semantics eventually reaches every error that is concretely reachable for any client261

while finding only errors that can be reached concretely by a definable client.262

F S C D 2 0 2 0
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I Theorem 8 (Boundedness). For any game configuration ρ, provided an upper bound k0263

and l0 for call counters k and l, the labelled transition system starting from ρ is strongly264

normalising.265

Proof. For any transition sequence ρ = ρ0 → · · · → ρi → . . . and each i > 0, we set the266

following two classes of configurations:267

(A) = {ρi | |ρi| < |ρi−1|} (B) = {ρi | ∃j < i− 1. |ρi| < |ρj |}268

where |ρ| = (k0 − k, |M |, l0 − l) is the size of ρ, and |ρ| < |ρ′| is defined by the lexicographic269

ordering of the triple (k0 − k, |M |, l0 − l), with bounds k0 and l0 such that k ≤ k0 and l ≤ l0270

for semantic transitions to be applicable. If not present in the configuration, we look at271

the evaluation stack E to find the top-most missing component. In other words, opponent272

configurations will have size (k0 − k, |E|, l0 − l) where E is the top-most one in E , whereas273

proponent configurations will have size (k0 − k, |M |, l0 − l) where l is the top-most one in E .274

We approach the proof in two steps: (1) we show that, for any transition sequence out of275

ρ, each reachable configuration belongs to (at least) one of the above classes; and (2) prove276

that the classes form a terminating sequence. For (1), considering all moves available to ρ,277

we have the following cases.278

1. If ρ→ ρ′ is an (Int) move, we have two possibilities.279

a. For a transition (E[LvM], R, S, k)→ (E[v], R, S, k+1), where k+1 ≤ k0, we have a class280

(B) configuration since there must be a (E[mv], R, S, k) such that (E[mv], R, S, k)→∗281

(E[v], R, S, k) which is lexicographically ordered since |v| < |mv|.282

b. Every other transition sequence is class (A) since they reduce the size of the term.283

2. If ρ→ ρ′ is a (Pq) move, we have that ρ′ is a class (A) configuration since (k, |E|, l0) <284

(k, |E[mv]|, l0 − l) by lexicographic ordering.285

3. If ρ→ ρ′ is an (Oa) move, we have a transition286

((m,E) :: E , l, . . . , k)o
ret(m,v)−−−−−→ (E , E[v], . . . , k)p287

which must be a result of the prior proponent question, meaning E holds an l′ on top.288

We thus have the following sequence289

(E , E[mv], . . . , k)p →∗ (E , E[v], . . . , k)o290

where (k, |E[v]|, l) < (k, |E[mv]|, l′), so ρ′ is a class (B) configuration.291

4. If ρ→ ρ′ is an (Oq) move, we have the transition292

(E , l, . . . , k)o
call(m,v)−−−−−−→ ((m, l + 1) :: E ,mv, . . . , k)p293

→ ((m, l + 1) :: E , LM{v/x}M, . . . , k + 1)294
295

Simplifying the transition, we remove the configuration in between and take296

(E , l, R, S,P,A, k)o
call(m,v)−−−−−−→ ((m, l + 1) :: E , LM{v/x}M, R, S,P,A, k + 1)p297

to be our new equivalent transition. We thus have that ρ′ is a class (A) configuration since298

(k0 − (k + 1), |LM{v/x}M|, l0 − (l + 1)) < (k0 − k, |E|, l0 − l) by lexicographic ordering.299
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5. If ρ→ ρ′ is a (Pa) move, we have the transition300

((m, l) :: E , v, . . . , k)p
ret(m,v)−−−−−→ (E , l, . . . , k)o301

which must be the result of a prior opponent question302

(E , l + 1, . . . , k)o
call(m,v)−−−−−−→ ((m, l) :: E , LM{v/x}M, . . . , k + 1)p303

→∗ ((m, l) :: E ,LvM, . . . , k + 1)p → ((m, l) :: E , v, . . . , k)p
ret(m,v)−−−−−→ (E , l, . . . , k)o304

305

where E′ is the topmost evaluation context in E . We thus have that (k0 − k,E′, l0 − l) <306

(k0 − k,E′, l0 − (l + 1)), so ρ′ is a class (B) configuration.307

For (2), let us assume there is an infinite sequence308

ρ0 → · · · → ρj → · · · → ρi → . . .309

Since all reachable configurations fall into either (A) or (B) class, we know that the sequence310

must comprise only (A) and (B) configurations. In this infinite sequence, we know that all311

sequences of (A) configurations are in descending size, so (A) sequences cannot be infinite.312

We also observe that (B) configurations are padded with (A) sequences. For instance, if313

ρi is a (B) configuration, and ρj is its matching configuration, there may exist nested (B)314

configurations between ρj and ρi, as well as (A) sequences padding these.315

Additionally, these (B) configurations can only occur as a return to a call, so we know316

they only occur together with the introduction of evaluation boxes L•M. Since these brackets317

occur in pairs and are introduced in a nested fashion, we know E can only contain evaluation318

contexts with well-bracketed evaluation boxes, meaning that there cannot be interleaved319

sequences of (B) configurations where their target configurations intersect. More specifically,320

the sequence321

ρ0 → · · · → ρj → · · · → ρ′j → · · · → ρi → · · · → ρ′i → . . .322

where ρ′i matches ρ′j and ρi matches ρj is not possible.323

Now, ignoring all (A) and nested (B) sequences, we are left with an infinite stream of324

top-level (B) sequences which are also in descending order. Since starting size is finite, we325

cannot have an infinite stream of (B) sequences. Thus, the assumption that the sequence is326

infinite does not hold, meaning our semantics is strongly normalising. J327

I Theorem 9 (S and C). We call a client good if it contains no assertions. For any library328

L, the following are equivalent:329

1. JLK fails (reaches an assertion violation)330

2. there exists a good client C such that JL;CK fails331

Proof. 1 to 2: Suppose now that (τ, ρ) ∈ JLK for some trace τ and failed ρ. By Theorem 11,332

we have that there is a good client C realising the trace τ . So then, by Lemma 10, we have333

that JL;CK fails.334

2 to 1: Suppose JL;CK fails for some good client C. Then, by Lemma 10, there are τ, ρ, ρ′335

such that (τ, ρ) ∈ JLK, (τ, ρ′) ∈ JCK, and ρ is failed (i.e. is of the shape (E , E[assert(0)], · · · )).336

J337

The latter relies on an auxiliary lemma (well-composing of libraries and clients, see [22]),338

and a definability result akin to game semantics definability arguments (see Appendix D).339
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I Lemma 10 (L-C Compositionality). For any library L and compatible good client C, JL;CK340

fails if and only if there exist (τ1, ρ1) ∈ JLK and (τ2, ρ2) ∈ JCK such that τ1 = τ2 and341

ρ1 = (E , E[assert(0)], · · · ).342

I Theorem 11 (Definability). Let L be a library and (τ, ρ) ∈ JLK. There is a good client C343

compatible with L such that (τ, ρ′) ∈ JCK for some ρ′.344

3 Symbolic Semantics345

Checking libraries for errors using the semantics of the previous section is infeasible, even when346

the traces are bounded in length, as ground values are concretely represented. In particular,347

integer values provided by O as arguments to calls or return values range over all integers.348

The typical way to mitigate this limitation is to execute the semantics symbolically, using349

symbolic variables for integers and path conditions to bind these variables to plausible values.350

We use this technique to devise a symbolic version of the trace semantics, corresponding to a351

symbolic execution which will enable us in the next sections to introduce a practical method352

and implementation for checking libraries for errors. The symbolic semantics is fully formal,353

closely following the developments of the previous section, and allows us to prove a strong354

form of correspondence between concrete and symbolic semantics (a bisimulation).355

Apart from integers, another class of concrete values provided by O are method names.356

For them, the semantics we defined is symbolic by design: all method names played by O are357

going to be fresh and therefore picking just one of those fresh choices is sufficient (formally358

speaking, the semantics lives in nominal sets [32]). The reason why using fresh names for359

methods played by O is sound is that the effect of O calling a higher-order public method360

with an argument m (where m is another public method), and with λx.mx, is equivalent as361

far as reachability of an error is concerned. In the latter case, the client semantics would362

create a fresh name m′, bind it to λx.mx, and pass m′ as an argument. We therefore just363

focus on this latter case.364

The symbolic semantics involves terms that may contain symbolic values for integers. We365

therefore extend the syntax for values and terms to include such values, and abuse notation366

by continuing to use M to range over them. We let SInts be a set of symbolic integers367

ranged over by κ and variants, and define:368

Sym.Values ṽ ::= m | i | () | κ | ṽ ⊕ ṽ | 〈ṽ, ṽ〉369

Sym.Terms M ::= · · · | κ370
371

where, in ṽ ⊕ ṽ, not both ṽ can be integers. We moreover use a symbolic environment to372

store symbolic values for references, but also to keep track of arithmetic performed with373

symbolic integers. More precisely, we let σ be a finite partial map from the set SInts ∪ Refs374

to symbolic values. Finally, we use pc to range over program conditions, which will be375

quantifier-free first-order formulas with variables taken from SInts, and with >,⊥ denoting376

true and false respectively.377

The semantics for closed symbolic terms involves configurations of the form (M,R, σ, pc, k).378

Its rules include copies of those from Figure 2 (top) where the pc and σ are simply carried379

over. For example:380

(E[λx.M ], R, σ, pc, k)→s (E[m], R ] {m 7→ λx.M}, σ, pc, k)381

where m is fresh. On the other hand, the following rules directly involve symbolic reasoning:382

(E[assert(κ)], R, σ, pc, k)→s (E[assert(0)], σ, pc ∧ (κ = 0), k)383
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(ĨNT)
(M,R, σ, pc, k)→s (M ′, R′, σ, pc′, k′)

(E ,M,R,P,A, σ, pc, k)p →s (E ,M ′, R′,P,A, σ′, pc′, k′)p

(P̃Q) (E , E[mṽ], R,P,A, σ, pc, k)p
call(m,ṽ)−−−−−−→s ((m,E) :: E , 0, R,P ′,A, σ, k)o

(ÕQ) (E , l, R,P,A, σ, pc, k)o
call(m,ṽ)−−−−−−→s ((m, l + 1) :: E ,mṽ, R,P,A′, σ, pc, k)p

(P̃A) ((m, l) :: E , ṽ, R,P,A, σ, pc, k)p
ret(m,ṽ)−−−−−→s (E , l, R,P ′,A, σ, pc, k)o

(ÕA) ((m,E) :: E , l, R,P,A, σ, pc, k)o
ret(m,ṽ)−−−−−→s (E , E[ṽ], R,P,A′, σ, pc, k)p

(P̃C) m ∈ A and P ′ = P ∪ (Meths(ṽ) ∩ dom(R)).

(ÕC) m ∈ P and (ṽ′,A′) ∈ symval(θ,A) where θ is the expected type of ṽ. Moreover:

symval(θ,A) =



{((),A)} if θ = unit

{(κ,A ] {κ}) | κ is fresh in dom(σ) ] A} if θ = int

{(m,A ] {m}) | m is fresh in dom(R) ] A} if θ = θ1 → θ2

{(〈ṽ1, ṽ2〉,A2) | (ṽ1,A1) ∈ symval(θ1,A) if θ = θ1 × θ2

(ṽ2,A2) ∈ symval(θ2,A1)}
Figure 4 Symbolic trace semantics rules. Rules (P̃Q), (P̃A) assume the condition (P̃C), and

similarly for (ÕQ),(ÕA) and (ÕC). Note that (ÕQ),(ÕA) are non-deterministic as they introduce ṽ.

(E[assert(κ)], R, σ, pc, k)→s (E[()], R, σ, pc ∧ (κ 6= 0), k)384

(E[!r], R, σ, pc, k)→s (E[σ(r)], R, σ, pc, k)385

(E[r := ṽ], R, σ, pc, k)→s (E[()], R, σ[r 7→ ṽ], pc, k)386

(E[ṽ1 ⊕ ṽ2], R, σ, pc, k)→s (E[κ], R, σ ] {κ 7→ ṽ1 ⊕ ṽ2}, pc, k) where κ is fresh387

(E[if κ then M1 else M0], R, σ, pc, k)→s (E[M0], R, σ, pc ∧ (κ = 0), k)388

(E[if κ then M1 else M0], R, σ, pc, k)→s (E[M1], R, σ, pc ∧ (κ 6= 0), k)389
390

and where ṽ1 ⊕ ṽ2 is a symbolic value (for ii ⊕ i2 the rule from Figure 1 applies).391

We now extend the symbolic setting to the trace semantics. We define symbolic configu-392

rations for P and O respectively as:393

(E ,M,R,P,A, σ, pc, k)p (E , l, R,P,A, σ, pc, k)o394

with evaluation stack E , proponent term M , counters k, l ∈ N, method repository R, public395

method name set P, σ and pc as previously. The abstract name set A is now a finite subset396

of Meths ∪ SInts, as we also need to keep track of the symbolic integers introduced by397

O (in order to be able to introduce fresh such names). The rules for the symbolic trace398

semantics are given in Figure 4. Note that O always refreshes names it passes. This is a399

sound overapproximation of all names passed for the sake of analysis.400

Similarly to Definition 6, we can define the symbolic semantics of libraries.401

I Definition 12. Given library L, the symbolic semantics of L is:402

JLKs = {(τ, ρ) |(L, ∅, ∅, ∅, ∅) bld−−→∗ (ε,R, S,P,A)403

∧ (ε, 0, R,P,A, S,>, 0)o
τ−→s ρ ∧ ∃M.M � ρ(σ)◦ ∧ ρ(pc)}404

405

where ρ(χ) is component χ in configuration ρ, and M is a model as defined in the next406

section. We say that JLKs fails if it contains some (τ, (E , E[assert(0)], · · · )).407

The symbolic rules follow those of the concrete semantics, the biggest change being the408

treatment of symbolic values played by O. Condition (ÕC) stipulates that O plays distinct409
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fresh symbolic integers as well as fresh method names, in each appropriate position in ṽ, and410

all these names are included in the set A.411

I Example 13. As with Example 7, we consider the DAO attack. Running the symbolic412

semantics, we find the following minimal class of errors. We write σṽ for a symbolic413

environment [bal 7→ ṽ].414

(ε, 2, σ100, k0)o
wdraw(κ1)?−−−−−−−−→ ((wdraw, 1), wdraw(κ1), σ100, 2)p415

−→∗ ((wdraw, 1), E[send(κ1)], σ100, 1)p
send(κ1)?−−−−−−→ ((send,E), 2, σ100, 1)o416

wdraw(κ2)?−−−−−−−−→ ((wdraw, 1), wdraw(κ2), σ100, 1)p417

−→∗ ((wdraw, 1), E′[send(κ2)], σ100, 0)p
send(κ2)?−−−−−−→ ((send,E), 2, σ100, 0)o418

send(())!−−−−−−→ ((wdraw, 1), E′[()], σ100, 0)p419

−→∗ ((wdraw, 1), (), σ100−κ2 , 0)p
wdraw(())!−−−−−−−→ ((send,E), 1, σ100−κ2 , 0)o420

send(())!−−−−−−→ ((wdraw, 1), E[()], σ100−κ2 , 1)p421

−→∗ ((wdraw, 1), E[assert(!bal ≥ 0)], σ100−κ2−κ1 , 1)p422
423

For this to be a valid error, we require (κ1, κ2 ≤ 100) ∧ (100− κ2 − κ1 < 0) to be satisfiable.424

Taking assignment {κ1 7→ 100, κ2 7→ 1}, we show the path is valid.425

3.1 Soundness426

The main result of this section is establishing the soundness of the symbolic semantics: a427

trace and a specific configuration can be achieved symbolically iff they can be achieved428

concretely as well. In fact, we will need to quantify this statement as, by construction, the429

symbolic semantics requires O to always place fresh method names, whereas in the concrete430

semantics O is given the freedom to play old names as well. What we show is that the431

symbolic semantics corresponds (via bisimilarity) to a restriction of the concrete semantics432

where O plays fresh names only. This restriction is sound, in the sense that it is sufficient for433

identifying when a configuration can fail. We make this precise below.434

A model M is a finite partial map from symbolic integers to concrete integers. Given435

such anM and a formula φ, we defineM |= φ using a standard first-order logic interpretation436

with integers and arithmetic operators (in particular, we require that all symbolic integers in437

φ are in the domain of M). Moreover, for any symbolic term M (or trace, move, etc.), we438

denote by M{M} the concrete term we obtain by substituting any symbolic integer κ of M439

with its corresponding concrete integer M(κ). Finally, given a symbolic environment σ, we440

define its formula representation σ◦ recursively by:441

∅◦ = >, (σ ] {r 7→ v})◦ = σ◦, (σ ] {κ 7→ v})◦ = σ◦ ∧ (κ = v).442

We now define notions for equivalence between symbolic and concrete configurations.443

Let M be a model. For any concrete configuration ρ = (E , χ,R, S,P,A, k) and symbolic444

configuration ρs = (E ′, χ′, R′,P ′,A′, σ, pc, k′), we say they are equivalent in M, written445

ρ =M ρs, if:446

(E , χ,R) = (E ′, χ′, R′){M},P = P ′,A = A′ ∩ Meths and S = (σ � Refs){M};447

dom(M) = (A′ ∪ dom(σ)) ∩ SInts and M � pc ∧ σ◦.448
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The notion of equivalence we require between concrete configurations and their symbolic449

counterparts is behavioural equivalence, modulo O playing fresh names.450

More precisely, a transition ρ
χ−→ ρ′ is called O-refreshing if, when ρ is an O-configuration451

and χ = call/ret(m, v) then all names in v are fresh and distinct. A set R with elements452

of the form (ρ,M, ρs) is a bisimulation if, whenever (ρ,M, ρs) ∈ R, written ρRM ρs then453

ρ =M ρs and, using χ to range over moves and ε (i.e. no move):454

if ρ
χ−→ ρ′ is O-refreshing then there exists M′ ⊇ M such that ρs

χs−→s ρ
′
s, with χ =455

χs{M′}, and ρ′RM′ρ′s;456

if ρs
χ−→s ρ

′
s then there exists M′ ⊇M such that ρ

χ{M′}−−−−→G ρ′ and ρ′RM′ρ′s.457

We let ∼ be the largest bisimulation relation: ρ ∼M ρs iff there is bisimulation R such that458

ρRMρs.459

We can show that concrete and symbolic configurations are bisimilar.460

I Lemma 14. Given ρ, ρs a concrete and symbolic configuration respectively, andM a model461

such that ρ =M (ρ′), we have ρ ∼M ρs.462

Proof (sketch). We show that {(ρ,M, ρ′) | ρ =M ρ′} is a bisimulation. J463

Next, we argue that O-refreshing transitions suffice for examining failure of concrete464

configurations. Indeed, suppose τ is a trace leading to fail, and where O plays an old name465

m in argument position in a given move. Then, τ can be simulated by a trace τ ′ that uses466

a fresh m′ in place of m. If m is an O-name, we obtain τ ′ from τ by following exactly the467

same transitions, only that some P -calls to m are replaced by calls to m′ (and accordingly468

for returns). If, on the other hand, m is a P -name, then the simulation performed by τ ′469

is somewhat more elaborate: some internal calls to m will be replaced by P -calls to m′,470

immediately followed by the required calls to m (and dually for returns).471

I Lemma 15 (O-Refreshing). Let ρ be a concrete configuration. Then, ρ fails iff it fails using472

only O-refreshing transitions.473

With the above, we can prove soundness.474

I Theorem 16 (Soundness). For any L, JLK fails iff JLKs fails.475

Proof. Lemma 14 implies that JLKs fails iff JLK fails with O-refreshing transitions, which in476

turns occurs iff JLK fails, by Lemma 15. J477

3.2 Bounded Analysis for Libraries478

Definition 12 states how the symbolic trace semantics can be used to independently check479

libraries for errors. As with the trace semantics in Definition 6, this is strongly normalising480

when given an upper limit to the call counters. As such, JLKs with counter bounds k0, l0 ∈ N,481

for k, l respectively, defines a finite set (modulo selecting of fresh names) of reachable valid482

configurations within k ≤ k0, l ≤ l0, where validity is defined by the satisfiability of the483

symbolic environment σ and the path condition pc of the configuration reached. By virtue of484

Theorems 9 and 16, every valid reachable configuration that is failed (evaluates an invalid485

assertion) is realisable by some client. And viceversa.486

Given a library L, taking FJLKs to be all reachable final configurations, we have the487

exhaustive set of paths L can reach. In FJLKs, every failed configuration (τ, ρ), i.e. such488

that ρ holds a term E[assert(0)], defines a reachable assertion violation, where τ is a true489
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l ≤ 1 l ≤ 2 l ≤ 3

k ≤ 2 226/70/45 (555s) 5708/60/44 (4710s) 9656/3/23 (12471s)

k ≤ 3 1254/67/51 (1475s) 4092/27/18 (13482s) 4187/17/12 (16649s)

k ≤ 4 3392/63/48 (3180s) 3069/19/14 (15903s) 1335/12/10 (17765s)

k ≤ 5 3659/57/45 (4787s) 895/15/10 (16757s) 215/11/9 (17796s)

a/b/c (d) for a traces found in b successful runs taking d seconds in total

where c out of 59 unsafe files were found to have bugs, per bound.

59 of 59 unsafe files found to have bugs over the various bounds checked

Table 1 Table recording performance of HOLiK on our benchmarks

counterexample. Hence, to check L for assertion violations it suffices to produce a finite490

representation of the set FJLKs. One approach is to bound the depth of analysis by setting an491

upper bound to the call counters, using a name generator to make deterministic the creation492

of fresh names, and then exhaustively search all final configurations for failed elements. In493

the following section we implement this routine and test it.494

4 Implementation and Experiments495

We implemented the syntax and symbolic trace semantics (symbolic games) for HOLi in496

the K semantic framework [33] as a proof of concept, and tested it on 70 sample libraries.1497

Using K’s option to exhaustively expand all transitions, K is able to build a closure of all498

applicable rules. By providing a bound on the call counters, we produce a finite set of all499

reachable valid symbolic configurations up to the given depth (equivalent to finding every500

valid ρ ∈ FJLKs) which thus implements our bounded symbolic execution.501

We wrote and adapted examples of coding errors into a set of 70 sample libraries written502

in HOLi, totalling 6,510 lines of code (LoC). Examples adapted from literature include:503

reentrancy bugs from smart contracts [3, 24]; variations of the “awkward example” [31];504

various programs from the MoCHi benchmark [36]; and simple implementations related to505

concurrent programming (e.g. flat combining and race conditions) where errors may occur506

in a single thread due to higher-order behaviour. We also combined several libraries, by507

concatenating refactored method and reference definitions, to generate larger libraries that508

are harder to solve. Combined files range from 150 to 520 LoC.509

We ran HOLiK on all sample libraries, lexicographically increasing the bounds from510

k ≤ 2, l ≤ 1 to k ≤ 5, l ≤ 3 (totalling 78,120 LoC checked), with a timeout set to five minutes511

per library. We start from k ≤ 2 because it provides the minimum nesting needed to observe512

higher-order semantics. All experiments ran on an Ubuntu 19.04 machine with 16GB RAM,513

Intel Core i7 3.40GHz CPU, with intermediate calls to Z3 to prune invalid configurations. Per514

bound, the number of counterexamples found, the time taken in seconds, and the execution515

status, i.e. whether it terminated or not, are recorded in Table 1.516

We can observe that independently increasing the bounds for k and l causes exponential517

growth in the total time taken, which is expected from symbolic execution. Note that the518

time tends towards 21000 seconds because of the timeout set to 5 minutes for 70 programs. In519

particular, while the number of errors found grows exponentially with respect to the increase520

1 The tool and its benchmarks can be found at: https://github.com/LaifsV1/HOLiK.

https://github.com/LaifsV1/HOLiK
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in bounds – which is due to the exponential growth in paths – this trend does not continue521

indefinitely because programs start timing out without reporting any errors as the bounds522

grow. With bounds k ≤ 2 and l ≤ 1, all 70 programs in our benchmark were successfully523

analysed, though not all minimal errors were found until the bounds were increased further.524

Cumulatively, all unsafe programs in our benchmark were correctly identified.525

While the table may suggest that increasing bound for l is more beneficial than that526

for k, the number of errors reported does not imply every trace is useful. For instance,527

increasing the bound for l can lead to errors re-merging in a higher-order version, which528

suggests potential gain from a partial order reduction. Overall, the k and l counters are529

incomparable as they keep track of different behaviours. Finally, since HOLiK was able530

to handle every file and correctly identified all unsafe files in the benchmark, we conclude531

that HOLiK, as a proof of concept, captures the full range of behaviours in higher-order532

libraries. Results suggest that the tool scales up to at least medium-sized programs (<1000533

LoC), which is promising because real-world medium-size higher-order programs have been534

proven infeasible to check with standard techniques (e.g. the DAO withdraw contract was535

approximately 100 LoC).536

5 Related Work537

Game semantics techniques have been applied to program equivalence verification by reducing538

program equivalence to language equivalence in a decidable automata class [15, 1]. Equivalence539

tools can be used for reachability but, as they perform full verification, they can only cover540

lower-order recursion-free language fragments. For example, the Coneqct [25] tool can verify541

the simplified DAO attack, but cannot check higher-order or recursive functions (e.g. the542

“file lock” and “flat combiner” examples), and operates on integers concretely. Close to our543

approach is also Symbolic GameChecker [11], which performs symbolic model checking by544

using a representation of games based on symbolic finite-state automata. The tool works545

on recursion-free Idealized Algol with first-order functions, which supports only integer546

references. On the other hand, it is complete (not bounded) on the fragment that it covers.547

Besides games techniques, a recent line of work on verification of contracts in Racket548

[28, 27] is the work closest to ours. Racket contracts exist in a higher-order setting similar549

to ours, and generalise higher-order pre and post conditions, and thus specify safety. To550

verify these, [28] defines a symbolic execution based on what they call “demonic context” in551

prior work [39]. This either returns a symbolic value to a call, or performs a call to a known552

method within some unknown context, thus approximating all the possible higher-order553

behaviours, and is equivalent to the role the opponent plays in our games. In [27], the554

technique is extended to handle state, and finitised for total verification. The approaches555

are notionally similar to ours, since both amount to Symbolic Execution for an unknown556

environment. In substance, the techniques are very different and in particular ours is based557

on a semantics theory which allows us to obtain compositionality and definability results,558

which are not proven for [27] and proven for [28] only in a stateless setting. On the other559

hand, Racket contracts can be used for richer verification questions than assertion violations.560

In terms of tool performance, we provide a comparison of the techniques in Appendix B.561

Another relevant line of work is that of verifying programs in the Ethereum Platform.562

Smart contracts call for techniques that handle the environment, with a focus on reentrancy.563

Tools like Oyente [24] and Majan [29] use pre-defined patterns to find bugs in the transaction564

order, but are not sound or complete. ReGuard [23] finds sound reentrancy bugs using a565

fuzzing engine to generate random transactions to check with a reentrancy automaton. In566
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principle, it may detect reentrancy faster than symbolic execution (native execution is faster567

[41]), but, is incomplete even in a bounded setting. More closely related to our approach,568

[17] considers the possibility of an unknown contract c? calling a known contract c∗ at each569

higher call level. This can be generalised in our game semantics as abstract and public names570

calling each other, but their focus is on modelling reentrancy, while we handle the full range571

of higher-order behaviours.572

Like KLEE [4] and jCUTE [37], our implementation is a symbolic execution tool. These573

are generally able to find first-order counterexamples, but are unable to produce higher-order574

traces involving unknown code. Particularly, KLEE and jCUTE only handle symbolic calls575

provided these can be concretised. This partially models the environment, but calls are often576

impossible to concretise with libraries. The CBMC [6, 20] bounded model checking approach,577

which also bounds function application to a fixed depth, partially handle calls to unknown578

code by returning a non-deterministic value to such calls. This is equivalent to a game where579

only move available to the opponent is to answer questions. This restriction allows CBMC580

to find some bugs caused by interaction with the environment, but misses errors that arise581

from transferring flow of control (e.g. reentrancy). The typical BMC approach also misses582

bugs involving disclosure of names.583

Higher-order model checking tools like MoCHi [36] are also related. MoCHi model checks584

a pure subset of OCaml and is based on predicate abstraction and CEGAR and higher-order585

recursion scheme model checkers. The modular approach [35] further extends this idea586

with modular analysis that guesses refinement intersection types for each top-level function.587

Although generally incomparable, HOLiK covers program features that MoCHi does not:588

MoCHi does not handle references and support for open code is limited (from experiments,589

and private communication with the authors).590

6 Future Directions591

Observing errors resurface deeper in the trace suggests the possibility of defining a partial592

order for our semantics to obtain equivalence classes for configurations and thus eliminate593

paths that involve known errors [30, 40]. Additionally, while k and l successfully bound594

infinite behaviour, a notion of bounding can be arbitrarily chosen. In fact, while we chose to595

directly bound the sources of infinite behaviour in method calls for simplicity of proofs and596

implementation, the theory does not prevent the generalisation of k and l as a monotonic597

cost function that bounds the semantics. It may also be worth considering the elimination of598

bounds entirely for the sake of unbounded verification. For this, one direction is abstract599

interpretation [9, 8], which amounts to defining overapproximations for values in our language600

to then attempt to compute a fixpoint for the range of values that assertions may take.601

However, defining and using abstract domains that maintain enough precision to check higher-602

order behaviours, such as reentrancy, is not a simple extension of the theory. Another direction,603

similar to Coneqct [25], is to define a push-down system for our semantics. Particularly,604

the approach in [25] is based on the decidability of reachability in fresh-register pushdown605

automata, and would require overapproximations for methods and integers. As with abstract606

interpretation, this would require defining abstract domains for methods and integers. While607

methods could be approximated using a finite set of names, as with k-CFA [38], an extension608

using integer abstract domains would need refinement to tackle reentrancy attacks. Finally,609

MoCHi [36] shows that it is possible to use CEGAR and higher-order recursion schemes610

for unbounded verification of higher-order programs. However, an extension of the MoCHi611

approach to include references and open code is not obvious.612
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29 Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor. Finding the717

greedy, prodigal, and suicidal contracts at scale. In Proceedings of the 34th Annual Computer718

Security Applications Conference, ACSAC ’18, pages 653–663, New York, NY, USA, 2018.719

ACM. doi:10.1145/3274694.3274743.720

30 Doron A. Peled. All from one, one for all: on model checking using representatives. In Costas721

Courcoubetis, editor, Computer Aided Verification, 5th International Conference, CAV ’93,722

Elounda, Greece, June 28 - July 1, 1993, Proceedings, volume 697 of Lecture Notes in Computer723

Science, pages 409–423. Springer, 1993. doi:10.1007/3-540-56922-7\_34.724

31 Andrew Pitts and Ian Stark. Operational reasoning for functions with local state. In Higher725

Order Operational Techniques in Semantics, pages 227–273. Cambridge University Press, 1998.726

32 Andrew M. Pitts. Nominal Sets: Names and Symmetry in Computer Science. Cambridge727

University Press, New York, NY, USA, 2013.728
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A Motivating examples760

Our file lock example provides a scenario where the library makes it possible for the client to761

update a file without first reacquiring the lock for it. The library contains an empty private762

method updateFile that simulates file access. The library also provides a public method763

openFile, which locks the file, allows the user to update the file indirectly, and then releases764

the lock.765

766

1 import userExec :(( unit → unit) → unit)767

2 int lock := 0;768

3 private updateFile(x:unit) :(unit) = { () };769

4 public openFile (u:unit) :(unit) = {770

5 if (!lock) then ()771

6 else (lock := 1;772

7 let write = fun(x:unit ):( unit) → (assert (!lock); updateFile ())773

8 in userExec(write); lock := 0) };774
775

The bug here is that openFile creates a write method, which it then passes to the client,776

via userExec(write), to use whenever they want. This provides the client indirect access to777

the private method updateFile, which it can call without first acquiring the lock. Running778

this example in HOLiK we obtain the following minimal trace:779

call〈openFile, ()〉 · call〈userExec,m2〉 · ret〈userExec, ()〉780

· ret〈openFile, ()〉 · call〈m2, ()〉781
782

where m2 is the method name generated by the library and bound to the variable write.783

This example serves as a representative of a class of bugs caused by revealing methods to784

the environment, a higher-order problem, in this case involving the second-order method785

userExec revealing m2.786

Next, we simulate double deallocation using a global reference addr as the memory787

address. The library defines private methods alloc and free to simulate allocation and788

freeing. The empty private method doSthing serves as a placeholder for internal computation789

that does not free memory.790

791

1 import getInput :(unit → int)792

2 int addr := 0; // 0 means address is free793

3 private alloc (u:unit) :(unit) = {794

4 if not(!addr) then addr := 1 else () };795

5 private free (u:unit) :(unit) = {796

6 assert (!addr); addr := 0 };797

7 private doSthing (i:int) :(unit) = { () };798

8 public run (u:unit) :(unit) = {799

9 alloc (); doSthing(getInput ()); free() };800
801

The error occurs in line 9, which calls the client method getInput. This passes control to802

the client, who can now call run again, thus causing free to be called twice. Executing the803

example on HOLiK, we obtain the following trace:804

call〈run, ()〉 · call〈getInput, ()〉 · call〈run, ()〉 · call〈getInput, ()〉805

· ret〈getInput, x1〉 · ret〈run, ()〉 · ret〈getInput, x2〉806
807

As with the DAO attack, this is a reentrancy bug.808

Finally, we have an unsafe implementation of a flat combiner. The library defines two809

public methods: enlist, which allows the client to add procedures to be executed by the810
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library, and run, which lets the client run all procedures added so far. The higher-order811

global reference list implements a list of methods.812

813

1 private empty(x:int) : (unit) = { () };814

2 fun list := empty;815

3 int cnt := 0; int running := 0;816

4 public enlist(f:(unit → unit)) :(unit) = {817

5 if (! running) then ()818

6 else819

7 cnt := !cnt + 1;820

8 (let c = !cnt in let l = !list in821

9 list := (fun(z:int):( unit) → if (z == c) then f() else l(z)))};822

10 public run(x:unit) :(unit) = {823

11 running := 1;824

12 if (0 < !cnt) then825

13 (!list )(!cnt);826

14 cnt := !cnt - 1; assert(not (!cnt < 0)); run()827

15 else (list := empty; running := 0) };828
829

The bug here is also due to a reentrant call in line 13. However, this is a much tougher830

example as it involves a higher-order reference list, a recursive method run, and a second-831

order method enlist that reveals client names to the library. With HOLiK, we obtain the832

following minimal counterexample:833

call〈enlist,m1〉 · ret〈enlist, ()〉 · call〈run, ()〉 · call〈m1, ()〉834

· call〈run, ()〉 · call〈m1, ()〉 · ret〈m1, ()〉 · ret〈run, ()〉 · ret〈m1, ()〉835
836

where m1 is a client name revealed to the library. In the trace above, enlist reveals the837

method m1 to the library. This name is then added to the list of procedures to execute. In838

run, the library passes control to the client by calling m1. At this point, the client is allowed839

to call run again before the list is updated.840

B Comparison with Racket Contract Verification841

We shall consider the latest version of the tool [27] since it handles state, which we refer to as842

SCV (Software Contract Verifier). A small benchmark (19 programs) based on HOLiK and843

SCV benchmarks was used for testing. Programs were manually translated between HOLi and844

Racket. Care was taken to translate programs whilst maintaining their semantics: contracts845

enforcing an input-output relation were translated into HOLi using wrapper functions that846

define the relation through an if statement. In the other direction, since contracts do not847

directly access references inside a term, stateful functions were translated from HOLi to848

return any references we wish to reason about.849

Table 2 records the comparison. On one hand, HOLiK only found real errors, whereas850

SCV reported several spurious errors–a third of all errors were spurious. On the other851

hand, SCV was able to prove total correctness of 3 of the 7 safe files present. SCV also852

scales much better than HOLiK with respect to program size, which is in exchange of853

precision. The difference in time for small programs is mainly due to initialisation time.854

Subtle differences in the nature of each tool can also be observed. e.g., HOLiK reports 1 real855

error for ack-simple-e, whereas SCV reports 2 errors. The difference is because SCV takes856

into account constraints for integers (e.g. > 0 and = 0). More interestingly, for various,857

HOLiK reports 19 ways to reach assertion violations, whereas SCV reports only 6 real ways858

to violate contracts. The difference is because HOLiK reports paths through the execution859

F S C D 2 0 2 0



28:22 Symbolic Execution Game Semantics

Program LoC Traces Time (s) LoC Errors Time (s) False Errors

ack 17 0 6.0 9 N/A 2.4 N/A

ack-simple 13 0 6.5 9 0 2.4 0

ack-simple-e 13 1 6.5 9 2 2.5 0

dao 10 0 5.0 15 1 2.6 1

dao-e 16 1 5.5 15 1 2.7 0

dao-various 85 5 22.5 122 10 3.0 5

dao2-e 85 10 23.5 122 10 2.9 0

escape 9 0 5.0 9 0 2.6 0

escape-e 9 2 5.0 10 1 2.7 0

escape2-e 10 14 6.0 10 1 2.7 0

factorial 10 0 5.0 9 0 2.2 0

mc91 12 0 5.0 9 1 2.2 1

mc91-e 12 1 5.0 8 1 2.4 0

mult 14 0 5.0 11 2 2.7 2

mult-e 14 1 5.0 11 2 2.4 0

succ 7 0 5.0 7 1 2.5 1

succ-e 7 1 5.0 7 1 2.8 0

various 116 19 14.0 108 11 6.2 5

total 459 55 140.5 500 45 49.8 15

Table 2 Comparison of HOLiK (left) and SCV (right). N/A is recorded for ack as in our attempts

SCV crashed due to unknown reasons.

tree that reach errors, whereas SCV reports a set of terms that may violate the contracts. For860

instance, independently safe methods A and B that may call an unsafe method C would be,861

from testing, reported as three valid traces (call〈A〉 · call〈C〉, call〈B〉 · call〈C〉 and call〈C〉)862

by HOLiK. In contrast, SCV reports a single contract violation blaming C. Finally, ack863

failed to run on SCV due to unknown errors; Racket reported an error internal to the tool.864

Further testing proved the file is a valid Racket program that can be executed manually.865

C ML-like References866

HOLi has global higher-order references. These are enough for coding all of our examples867

and, moreover, allow us to prove completeness (every error has a realising client). We here868

present a sketch of how games can be extended with (locally created, scope extruding)869

ML-like references, following e.g. [21, 16]. First, the following extension to types and terms870

are required.871

θ ::= · · · | ref θ M ::= · · · | !M | ref M |M = M v ::= · · · | r872
873

The term !M allows dereferencing terms M which evaluate to references, while ref v creates874

dynamically a fresh name r ∈ Refsθ (if v : θ), and the semantic purpose is to update the875

store S ] {r 7→ v} when evaluating ref v. Note that this allows us to store references to876

references, etc. Finally, the construct M = M is for comparing references for name equality.877

With terms handling general references concretely and symbolically, we extend game878

configurations with sets Lp,Lo ⊆ Refs that keep track of reference names disclosed by the879

proponent and opponent respectively. References being passed as values means that the880

client can update the references belonging to the client, and viceversa. When making a move,881

for each reference r they own that is passed, the proponent adds r to Lp. Passing of names in882

a move can be done either by method argument and return value, but also via the common883



Lin et al. 28:23

1 g l o b a l cnt := 0

2 g l o b a l meth := 0

3 g l o b a l r e f i := mi # for each mi ∈ P
4 g l o b a l r e f i := d e f v a l # for each mi ∈ P ′

5 g l o b a l va l θ := d e f v a l # for each θ ∈ Θv

6 pub l i c mi = λx . # for each mi ∈ A
7 cnt++; meth:= i ; va l θ1 :=x ; o r a c l e ( )

8 mi = λx . # for each mi ∈ A′

9 cnt++; meth:= i ; va l θ1 :=x ; o r a c l e ( )

10 o r a c l e = λ ( ) .

11 match ( ! cnt ) with # number of P-moves played so far (max |τ |/2)

12 | i →
13 # if i > 0 and i-th P-move of τ is crmj(v), with mj : θ1 → θ2, then

14 # - if cr = ret then d = 0 and θ = θ2

15 # - if cr = call then d = j and θ = θ1

16 # diverge if the last P-move played is different from crmj(v)
17 i f not ( ! meth = d and ! va l θ

∧=θ v ) then d ive rge

18 e l s e f o r mi i n fresh ( ! va l θ ) do r e f i := mi

19 # if (i+ 1)-th O-move of τ is cr′ mk(u), with mk : θ1 → θ2, then

20 # - if cr′ = ret then c = 0
21 # - if cr′ = call then c = k

22 i f c then l e t x = ( ! r e f k )u i n # call mk(u)
23 cnt++; meth :=0; va l θ2 :=x ; o r a c l e ( ) ; ! va l θ2

24 e l s e va l θ2 :=u # return u

25 main = o r a c l e ( )

Figure 5 The client Cτ,P,A.

part of the store (i.e. via the references known to both players). Similarly, opponent passes884

names in their moves, which are added to Lo. Concretely, when the opponent passes control,885

all references in Lp are updated with opponent values. Symbolically, the references r are886

updated with distinct fresh symbolic integers κ if r ∈ RefsInt, distinct fresh method names887

if r ∈ Refsθ1→θ2 , or to arbitrary reference names if r ∈ RefsRefsθ .888

D Definability889

In this section we show that every trace τ in the semantics of a library L has a corresponding890

good client that realises the same trace in its semantics.891

Let L be a library with public names P and abstract names A. Given a trace τ produced892

by L, with P ′ and A′ respectively the public and abstract names introduced in τ , we set:893

N = P ∪ P ′ ∪ A ∪A′894

Θv = {θ | ∃m ∈ N . m : θ′ ∧ θ a syntactic subtype of θ′}895

Θm = {θ ∈ Θ | θ a method type}896
897

Note that the above sets are finite, since τ,P,A are finite. We assume a fixed enumeration of898

N = {m1,m2, · · · ,mn}. Moreover, for each type θ, we let defvalθ be a default value, and899

divergeθ a term that on evaluation diverges by infinite recursion. We then construct a client900

Cτ,P,A as in Figure 5.901

The code is structured as follows.902

F S C D 2 0 2 0



28:24 Symbolic Execution Game Semantics

1. We start off by defining global references:903

cnt counts the number of P (Library) moves played so far;904

meth stores an index that records the move made by P: if the move was a return then905

meth stores 0; if it was call to mi then meth stores i;906

each refi will store the method mi ∈ P ∪ P ′, either since the beginning (if mi ∈ P),907

or once P plays it (if mi ∈ P ′);908

each valθ will be used for storing the value played by P in their last move.909

In the latter case above, there is a light abuse of syntax as θ can be a product type, of910

which HOLi does not have references. But we can in fact simulate references of arbitrary911

type by several HOLi references.912

2. For each mi : θ1 → θ2 ∈ A, we define a public method mi that simulates the behaviour913

of O whenever mi is called in τ :914

it starts by increasing cnt, as a call to mi corresponds to a P-move being played;915

it continues by storing i and x in meth and valθ1 respectively;916

it calls the private method oracle, which is tasked with simulating the rest of τ and917

storing the value that mi will return in valθ2 ;918

it returns the value in valθ2 .919

3. For each mi : θ1 → θ2 ∈ A′ we produce a method just like above, but keep it private (for920

the time being).921

4. The method oracle performs the bulk of the computations, by checking that the last922

move played by P was the expected one and selecting the next move to play (and playing923

it if is a call).924

The oracle is called after each P-move is played, so it starts with increasing cnt.925

It then performs a case analysis on the value of cnt, which above we denote collectively926

by assuming the value is i – this notation hides the fact that we have one case for each927

of the finitely many values of i.928

For each such i, the oracle first checks if the previous P-move (if there was one), was929

the expected one. If the move was a call, it checks whether the called method was930

the expected one (via an appropriate value of d), and also whether the value was the931

expected one. Value comparisons (
∧=θ) only compare the integer components of θ, since932

we cannot compare method names. If this check is successful, the oracle extracts from933

u any method names played fresh by P and stores them in the corresponding refi.934

Next, the oracle prepares the next move. If, for the given i, the next move is a call,935

then the oracle issues the call, stores the return value of that call, increases cnt and936

recurs to itself – when the issued call returns, it would be through a P-move. If, on the937

other hand, the next move is a return, the oracle simply stores the value to be returned938

in the respective val reference – this would allow to the respective mi to return that939

value.940

5. The main method simply calls the oracle.941

We can then show the following (proof provided in full version [22]). For any library L942

and (τ, ρ) ∈ JLK, Cτ is such that (τ, ρ′) ∈ JCτ K for some ρ′.943
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