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SeqSleepNet: End-to-End Hierarchical Recurrent
Neural Network for Sequence-to-Sequence

Automatic Sleep Staging
Huy Phan∗, Fernando Andreotti, Navin Cooray, Oliver Y. Chén, and Maarten De Vos

Abstract—Automatic sleep staging has been often treated as a
simple classification problem that aims at determining the label
of individual target polysomnography (PSG) epochs one at a
time. In this work, we tackle the task as a sequence-to-sequence
classification problem that receives a sequence of multiple epochs
as input and classifies all of their labels at once. For this
purpose, we propose a hierarchical recurrent neural network
named SeqSleepNet1. At the epoch processing level, the network
consists of a filterbank layer tailored to learn frequency-domain
filters for preprocessing and an attention-based recurrent layer
designed for short-term sequential modelling. At the sequence
processing level, a recurrent layer placed on top of the learned
epoch-wise features for long-term modelling of sequential epochs.
The classification is then carried out on the output vectors at
every time step of the top recurrent layer to produce the sequence
of output labels. Despite being hierarchical, we present a strategy
to train the network in an end-to-end fashion. We show that
the proposed network outperforms state-of-the-art approaches,
achieving an overall accuracy, macro F1-score, and Cohen’s
kappa of 87.1%, 83.3%, and 0.815 on a publicly available dataset
with 200 subjects.

Index Terms—automatic sleep staging, hierarchical recurrent
neural networks, end-to-end, sequence-to-sequence.

I. INTRODUCTION

Humans spend around one-third of their lives sleeping,
this process is crucial to protect the mental and physical
health of an individual [1]. Sleep disorders are becoming
an alarmingly common health problem, affecting millions of
people worldwide. A survey conducted in the US between
1999 and 2004 reveals that 50-70 million adults suffer from
over 70 different sleep disorders and 60 percent of adults report
having sleep problems a few nights a week or more [2], [3].

Sleep scoring [4], [5] is a fundamental step in sleep
assessment and diagnosis and requires the analysis of 30-
second polysomnography (PSG) epochs to determine their
sleep stages. In clinical environments, sleep staging is mainly
performed manually by human experts following developed
guidelines [4], [5]. The scoring procedure is labor-intensive,
time-consuming, costly, and prone to human errors. Therefore,
a large body of work aims to automate this task [6]–[15].
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Furthermore, there is an growing need of home-based sleep
monitoring [16]–[19] to provide scalable monitoring solutions
that would benefit a greater population and provide a platform
for epidemiological studies. In order to achieve this two pri-
mary ingredients are needed. First, user-friendly, comfortable,
long-term capable, clinical-grade wearable Electroencephalog-
raphy (EEG) devices are required. A number of such devices
were developed and validated, such as in-ear EEG [18]–[20]
and around-the-ear EEG [16], [21]. Second, reliable automatic
sleep staging methods are equally indispensable.

In the last few years, the research community has wit-
nessed an influx of deep learning methods used for automatic
sleep staging in replacement of conventional feature-based
machine learning approaches. Deep learning methods offer
several advantages over the conventional ones and have been
successful in numerous other domains. First, since public
sleep data are rapidly growing (i.e. hundreds to thousands of
subjects are becoming a norm), deep networks are efficient in
handling a large amount of data by repeatedly learning from
small batches of data to converge to the final model. Second,
their power in learning features automatically from low-level
signals makes hand-crafting several intricate features no longer
necessary. Several types of deep network architectures exist
and have been proposed for automatic sleep scoring: Convo-
lutional Neural Networks (CNNs) [8], [10], [11], [13]–[15],
Deep Belief Networks (DBNs) [22], Auto-encoder [23], Deep
Neural Networks (DNNs), and Recurrent Neural Networks
(RNNs) [24]. Combinations of different architectures, such
as DNN+RNN [25] and CNN+RNN [9], [12] have also been
exploited. With the deep learning methods evolving, automatic
sleep staging performance has been boosted considerably as
state-of-the-art results have been reported on several datasets
[8], [9], [12], [13].

There are many ways to characterize existing works in
automatic sleep staging, such as single-channel versus multi-
channel and shallow learning vs deep learning. Here, we
pursuit an approach that categorizes them into classification
schemes based on the number of input epochs and output
labels during classification. To this end, prior works can be
grouped into one-to-one, many-to-one, one-to-many schemes
as illustrated in Figure 1 (a)-(c), respectively. Following the
one-to-one scheme, a classification model receives a single
PSG epoch as input at a time and produces a single corre-
sponding output label [14], [15], [24], [26]. Although being
straightforward, this classification scheme cannot take into
account the existing dependency between PSG epochs [4], [8],
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Figure 1: Illustration of the classification schemes used for automatic sleep staging. (a) one-to-one, (b) many-to-one, (c)
one-to-many, and (d) the proposed many-to-many.

[27], [28]. As an extension of the one-to-one, the many-to-
one scheme augments the classification of a target epoch by
additionally combining it with its surrounding epochs to make
a contextual input. This scheme has been the most widely used
in prior works, not only those relying on more conventional
methods [29], [30] but also modern deep neural networks [9]–
[11], [13], [23], [25]. The work in [8] showed that while
the contextual input does not always lead to performance
improvement regardless of the choice of classification model,
it also suffers from the modelling ambiguity and high com-
putational overhead. The one-to-many scheme is orthogonal
to the many-to-one scheme and was recently proposed in [8]
with the concept of contextual output. Under this scheme, a
multitask model receives a single target epoch as input and
jointly determines both the target label and the labels of its
neighboring epochs in the contextual output. This scheme
is still able to leverage the inter-epoch dependency while
avoiding the limitations of the contextual input in the many-
to-one-scheme. More importantly, the underlying multitask
model has the capability to produce an ensemble of decisions
on a certain epoch which can be then aggregated to yield a
more reliable final decision [8]. However, a common drawback
of both many-to-one and one-to-many schemes is that they
cannot accommodate a long context, e.g. tens of epochs.

In this work, we seek to overcome this major limitation
and unify all aforementioned classification schemes with the
proposed many-to-many approach illustrated in Figure 1(d).
Our goal is to map an input sequence of multiple epochs
to the sequence of all target labels at once. Therefore, the
automatic sleep staging task is framed as a sequence-to-
sequence classification problem. With this generalized scheme,
we can circumvent disadvantages of other schemes (i.e. short
context, modelling ambiguity, and computational overhead)
while maintaining the one-to-many’s advantage regarding the
availability of decision ensemble. It should be stressed that
the sequence-to-sequence problem formulated here does not
simply imply a set of one-to-one mappings between one epoch
in the input sequence and its corresponding label in the output
sequence. In contrast, due to the inter-epoch dependency, a
label in the output sequence may inherently interact with all
epochs in the input sequence via some intricate relationship

that need to be modelled. To accomplish sequence-to-sequence
classification we present SeqSleepNet, a hierarchical recur-
rent neural network architecture. SeqSleepNet is composed
of three main components: (1) parallel filterbank layers for
preprocessing, (2) an epoch-level bidirectional RNN coupled
with the attention mechanism for short-term (i.e. intra-epoch)
sequential modelling, and (3) a sequence-level bidirectional
RNN for long-term (i.e. inter-epoch) sequential modelling.
The network is trained in an end-to-end manner. End-to-end
network training is desirable in deep learning as an end-to-
end network learns the global solution directly in contrast
to multiple-stage training that estimates local solutions in
separate stages. The power of end-to-end learning has been
proven many times in various domains [31]–[36]. Moreover,
end-to-end training is more convenient and elegant.

Our proposed method bears resemblance to some existing
works. Learning data-driven filters with a filterbank layer
has been shown to be efficient in our previous works [8],
[24], [26]. However, instead of training a filterbank layer
separately with a DNN, here multiple filterbank layers for
multichannel input are parts of the classification network and
are trained end-to-end. There also exists a few multiple-output
network architectures proposed for automatic sleep staging,
nevertheless, they are either limited to accommodate a long-
term context [8] or need to be trained in multiple stages
rather than end-to-end [9], [25]. In addition, these works
used CNNs or DNNs for epoch-wise feature learning while,
in the proposed SeqSleepNet, we employ a recurrent layer
coupled with the attention mechanism for this purpose. Given
the sequential nature of sleep data, the sequential modelling
capability of RNNs [37], [38] make them potential candidates
for this purpose but have been left uncharted. On one hand,
we demonstrate that the sequential features learned with the
attention-based recurrent layer result in a better performance
than the convolutional ones. On the other hand, using our
end-to-end training strategy, we also build end-to-end variants
of these multiple-output networks as baselines and show
that the proposed DeepSleepNet significantly outperforms all
these baselines and set state-of-the-art performance on the
experimental dataset.
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II. MONTREAL ARCHIVE OF SLEEP STUDIES (MASS)
DATASET

The public dataset Montreal Archive of Sleep Studies
(MASS) [39] was used for evaluation. MASS is a considerably
large open-source dataset which were pooled from different
hospital-based sleep laboratories. It consists of whole-night
recordings from 200 subjects aged between 18-76 years (97
males and 103 females), divided into five subsets (SS1 - SS5).
Each epoch of the recordings was manually labelled by experts
according to the AASM standard [4] (SS1 and SS3) or the
R&K standard [5] (SS2, SS4, and SS5). We converted different
annotations into five sleep stages {W, N1, N2, N3, and REM}
as suggested in [40], [41]. Furthermore, those recordings with
20-second epochs were converted into 30-second ones by
including 5-second segments before and after each epoch. In
our analysis, we used the entire dataset (i.e. all five subsets),
following the experimental setup suggested in [8]. Apart from
an EEG channel, an EOG and EMG channel were included to
complement the EEG as they have been shown to be valuable
addition sources for automatic sleep staging [8], [11]–[14],
[42], [43]. We adopted and studied combinations of the C4-
A1 EEG, an average EOG (ROC-LOC), and an average EMG
(CHIN1-CHIN2) channels in our experiments. The signals,
originally sampled at 256 Hz, were downsampled to 100 Hz.

III. SEQSLEEPNET: END-TO-END HIERARCHICAL
RECURRENT NEURAL NETWORK

The proposed SeqSleepNet for sequence-to-sequence sleep
staging is illustrated in Figure 2. Formally, given a
sequence of PSG epochs of length L represented by
(S1,S2, . . . ,SL), the goal is to compute a sequence of outputs
(y1,y2, . . . ,yL) that maximizes the conditional probability
p(S1,S2, . . . ,SL |y1,y2, . . . ,yL).

An epoch in the input sequence consisting of C channels
(i.e. EEG, EOG, and EMG in this work), are firstly trans-
formed into a time-frequency image S of C image chan-
nels. Parallel filterbank layers [24], [26] are tailored to learn
channel-specific frequency-domain filterbanks to preprocess
the input image for frequency smoothing and dimension
reduction. Furthermore, after channel-specific preprocessing,
all image channels are concatenated in the frequency direction
to form an image X. The image X itself can be interpreted as
a sequence of feature vectors which correspond to the image
columns. The epoch-level attention-based bidirectional RNN
is then used to encode the feature vector sequence of the epoch
into a fixed attentional feature vector ā. Finally, the sequence
of attentional feature vectors Ā = (ā1, ā2, . . . , āL) obtained
from the input epoch sequence are modelled by the sequence-
level bidirectional RNN situating on top of the network hier-
archy to compute the output sequence Ŷ = (ŷ1, ŷ2, . . . , ŷL).

It should be noted that, in the SeqSleepNet, the filterbank
layers are tied (i.e. shared parameters) between all epochs’
local features (i.e. spectral image columns) and the epoch-level
attention-based bidirectional RNN layer are tied between all
epochs in the input sequence.

A. Time-Frequency Image Representation

The constituent signals of a 30-second PSG epoch (i.e. EEG,
EOG, and EMG) are transformed into power spectra via short-
time Fourier transform (STFT) with a window size of two
seconds and 50% overlap. Hamming window and 256-point
Fast Fourier Transform (FFT) are used. Logarithm scaling is
then applied to the spectra to convert them into log-power
spectra. As a result, a multi-channel image S ∈ RF×T×C is
obtained where F = 129, T = 29, and C = 3 denote the
number of frequency bins, the number of spectral columns
(i.e. time indices), and the number of channels.

B. Filterbank Layers

We tailor a filterbank layer for learning frequency-domain
filterbanks as in our previous works [24], [26]. The learned
filterbank is expected to emphasize the subbands that are
more important for the task at hand and attenuate those less
important. However, instead of training a separate DNN for
this purpose, the filterbank layers are parts of the classification
network SeqSleepNet and are learned end-to-end. Moreover,
due to the different signal characteristics of EEG, EOG, and
EMG, it is reasonable to learn C channel-specific filterbanks
with C separate filterbank layers.

Considering the c-th filterbank layer with respect to the c-th
image channel Sc ∈ RF×T where 1 ≤ c ≤ C and assuming
that we want to learn a frequency-domain filertbank of M
filters where M < F , the filterbank layer in principle is a
fully-connected layer of M hidden units. The weight matrix
Wc ∈ RF×M of this layer plays the role of the filterbank’s
weight matrix. Since a filterbank has characteristics of being
non-negative, band-limited, and ordered in frequency, it is
necessary to enforce the following constraints [44] for the
learned filterbank to have these characteristics:

Wc
fb = f+(W)�T. (1)

Here, f+ denotes a non-negative function to make the elements
of W non-negative, in this study the sigmoid function is
adopted. T ∈ RF×M

+ is the constant non-negative matrix to
enforce the filters to have limited band, regulated shape and
ordered by frequency. Similar to [26], we employ a linear-
frequency triangular filterbank matrix for T. The � operator
denotes the element-wise multiplication.

Presenting the image Sc to the filterbank layer, we obtained
an output image Xc ∈ RM×T given by

Xc = Wc
fb
TSc. (2)

All together, filtering the C-channel input image
S ∈ RF×T×C in frequency direction with C filterbank
layers results in the C-channel output image X ∈ RM×T×C

which has smaller size in frequency dimension. Eventually,
we concatenate the image channels of X in frequency
direction to make X a single-channel image of size MC×T .

C. Short-term Sequential Modelling

Many approaches to extract features that represent an epoch
exist. Apart from a large body of hand-crafted features [29],
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Figure 2: Illustration of SeqSleepNet, the proposed end-to-end hierarchical RNN for sequence-to-sequence sleep staging.

automatic feature learning with deep learning approaches
are becoming more common [9]–[12], [14], [22]–[26], [45]–
[47]. Here, we employ a bidirectional RNN coupled with the
attention mechanism [48], [49] to learn sequential features for
epoch representation. Due to the RNN’s sequential modelling
capability, it is expected to capture temporal dynamics of input
signals to produce good features [24].

For convenience, we interpret the image X after the fil-
terbank layers as a sequence of T feature vectors X ≡
(x1,x2, . . . ,xT ) where each xt ∈ RMC , 1 ≤ t ≤ T , is
the image column at time index t. We then aim to read the
sequence of feature vectors into a single feature vector using
the attention-based bidirectional RNN.

The forward and backward recurrent layers of the RNN
iterate over individual feature vectors of the sequence in
opposite directions and compute forward and backward se-
quences of hidden state vectors Hf = (hf

1,h
f
2, . . . ,h

f
T ) and

Hb = (hb
1,h

b
2, . . . ,h

b
T ), respectively, where

hf
t = H(xt ,hf

t−1), (3)

hb
t = H(xt ,hb

t+1), 1 ≤ t ≤ T. (4)

In (3) and (4), H denotes the hidden layer function. Long
Short-Term Memory (LSTM) [37] and Gated Recurrent Unit
(GRU) cell [38] are most commonly used for H. LSTM
cell and GRU cell have been shown to perform comparably
on many machine learning tasks, however, the latter has
less parameters and is therefore more computational-efficient
than the former [50]. Here, we employ the latter which is

implemented by the following functions:

rt = sigm (Wsrst + Whrht−1 + br) , (5)
zt = sigm (Wszst + Whzht−1 + bz) , (6)
h̄t = tanh (Wshst + Whh (rt � ht−1) + bh) , (7)
ht = zt � ht−1 + (1− zt)� h̄t, (8)

where the W variables denote the weight matrices and the b
variables are the biases. The r, z, and h̄ variables represent the
reset gate vector, the update gate vector, and the new hidden
state vector candidate, respectively.

The RNN produces the sequence of output vectors A =
(a1,a2, . . . ,aT ) where at is computed as

at = Wha[h
b
t ⊕ hf

t] + ba, (9)

where ⊕ represents vector concatenation.
The attention layer [48], [49] is then used to learn a

weighting vector to combine these output vectors at different
time steps into a single feature vector. The rationale is that
those parts of the sequence which are more informative should
be associated with strong weights and vice versa. Formally, the
attention weight αt at the time index t is computed as

αt =
exp (f(at))∑T
i=1 exp (f(ai))

. (10)

Here, f denotes the scoring function of the attention layer and
is given by

f(a) = aTWatt, (11)
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where Watt is the trainable weight matrix. The attentional
feature vector ā is obtained as a weighting combination of
the recurrent output vectors:

ā =

T∑
t=1

αiat. (12)

The attentional feature vector ā is used as the representation
of the PSG epoch in the next sequence-level modelling.

D. Long-term Sequential Modelling

Processing the input sequence (S1,S2, . . . ,SL) with the
filterbank layers in Section III-B and the attention-based
bidirectional RNN layer in Section III-C results in a sequence
of attentional feature vectors Ā = (ā1, ā2, . . . , āL) where āl,
1 ≤ l ≤ L, is given in (12). The sequence-level bidirectional
RNN is then used to model the sequence of epoch-wise feature
vectors to encode long-term sequential information across
epochs. Similar to the bidirectional RNN used for short-term
sequential modelling in Section III-C, its forward and back-
ward sequences of hidden state vectors H̃f = (h̃f

1, h̃
f
2, . . . , h̃

f
L)

and H̃b = (h̃b
1, h̃

b
2, . . . , h̃

b
L) are computed using (3) and (4)

with Ā = (ā1, ā2, . . . , āL) now playing the role of the input
sequence. Again, GRU cells [38] are used for its forward and
backward recurrent layers.

The sequence of output vectors O = (o1,o2, . . . ,oL) is
then obtained where ol, 1 ≤ l ≤ L, is computed as

ol = W̃ho[h̃
b
l ⊕ h̃f

l] + b̃o. (13)

Each output vector ol is presented to a softmax layer for
classification to produce the sequence of classification outputs
Ŷ = (ŷ1, ŷ2, . . . , ŷL), where ŷl is a output probability
distribution over all sleep stages.

E. Sequence Loss

In the proposed sequence-to-sequence setting, we want
to penalize the network for misclassification of any el-
ement of an input sequence. Given the input sequence
(S1,S2, . . . ,SL) with the ground-truth one-hot encoding vec-
tors (y1,y2, . . . ,yL) and the corresponding sequence of clas-
sification outputs (ŷ1, ŷ2, . . . , ŷL), the sequence loss reads as
follows (note that the sequence loss Es is normalized by the
sequence length L):

Es(θ) = − 1

L

L∑
l=1

yl log (ŷl (θ)) . (14)

The network is trained to minimize the sequence loss over
N training sequences in the training data:

E(θ) = − 1

N

N∑
n=1

Esn(θ) +
λ

2
‖θ‖22, (15)

where Esn is given in (14). Here, λ denotes the hyper-
parameter that trades off the error terms and the `2-norm
regularization term.

F. End-to-End Training Details

In the proposed SeqSleepNet, the input unit of a filterbank
layer is a spectral column of an epoch’s time-frequency image,
that of the epoch-level attention-based bidirectional RNN is
such an entire image, and that of the top sequence-level
RNN is a sequence of attentional feature vectors encoding
the input epoch sequence. In order to train the network end-
to-end, we adaptively manipulate the input data, i.e. folding
and unfolding, at different levels of the network hierarchy.

For simplicity, let us assume the single-channel input, and
therefore, the network has only one filterbank layer. Since the
network, in practice, is trained with a mini batch of data at
a time, assume that at each training iteration we use a mini-
batch of S sequences, each consists of L epochs. For a recall,
each epoch itself is represented by an time-frequency image
of size T ×F (cf. Section III-A) which will be interpreted as
a sequence of T image columns when necessary. We firstly
unfold the S input sequences to make a set of S × L × T
image columns, each of size F , to present to the filterbank
layer. After the filterbank layer, we obtain a set of S × L ×
T image columns but now each has a size of M . This set
of image columns are then folded to form a set of S × L
images, each of size T × M , to feed into the epoch-level
attention-based bidirectional RNN. This layer encodes each
image into an attentional feature vector, resulting in a set of
S × L such feature vectors. Eventually, this set of feature
vectors are folded into a set of S sequences, each consists of
L attentional feature vectors, to present to the sequence-level
bidirectional RNN for sequence-to-sequence classification.

IV. ENSEMBLE OF DECISIONS AND PROBABILISTIC
AGGREGATION

Since SeqSleepNet is a multiple-output network, advancing
the input sequence of size L by one epoch when evaluating it
on a test recording will result in an ensemble of L decisions at
every epoch (except those at the recording’s ends). Fusing this
decision ensemble leads to a final decision which are usually
better than individual ones [8].

We use the multiplicative aggregation scheme which are
shown in [8] to be efficient for this purpose. The final posterior
probability of a sleep stage yt ∈ L = {W,N1,N2,N3,REM}
at a time index t is given by

P (yt) =
1

L

t∏
i=t−L+1

P (yt | Si). (16)

where Si = (Si,Si+1, . . . ,SL−1) is the epoch sequence
starting at i. In order to avoid possible numerical problems
when the ensemble size is large, it is necessary to carry out
the aggregation in the logarithm domain. The equation (16) is
then re-written as

logP (yt) =
1

L

t∑
i=t−L+1

logP (yt | Si). (17)

Eventually, the predicted label ŷt is determined by likeli-
hood maximization:

ŷt = argmax
yt

logP (yt) for yt ∈ L. (18)
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Table I: Parameters of the proposed network.

Parameter Value
Sequence length L {10, 20, 30}
Number of filters M 32
Size of hidden state vector 64
Size of the attention weights 64
Dropout rate 0.25

Regularization parameter λ 10−3

V. EXPERIMENTS

A. Experimental Setup

We conducted 20-fold cross validation on the MASS
dataset. At each iteration, 200 subjects were split into training,
validation, and test set with 180, 10, and 10 subjects, respec-
tively. During training, we evaluated the network after every
100 training steps and the one yielded the best overall accuracy
on the validation set was retained for evaluation. The outputs
of 20 cross-validation folds were pooled and considered as a
whole for computing the sleep staging performance.

B. Network Parameters

The network was implemented using TensorFlow v1.3.0
framework [51]. The network parameters are shown in Table I.
Particularly, we experimented with different sequence length
of {10, 20, 30} epochs, which is equivalent to {5, 10, 15}
minutes, to study its influence. The network was trained for 10
epochs with a minibatch size of 32 sequences. The sequences
were sampled from the PSG recordings with a maximum
overlapping (i.e. L − 1 epochs), in this way, we generated
all possible epoch sequences from the training data.

Beside `2-norm regularization in (15), dropout [52] was
employed for further regularization. Recurrent batch normal-
ization [53] was also integrated to the GRU cell to improve
its convergence. The network training was performed using
Adam optimizer [54] with a learning rate of 10−4.

C. Baseline Networks

In order to assess the efficiency of the proposed SeqSleep-
Net, apart from existing works, we developed three novel end-
to-end baseline networks2 for comparison:

End-to-end ARNN (E2E-ARNN): As illustrated in Figure
3a, E2E-ARNN is the combination of the filterbank layers
and the epoch-level attention-based bidirectional RNN of the
proposed SeqSleepNet, and therefore, is purposed for short-
term sequential modelling. The objective is to assess the effi-
cacy of the attention-based bidirectional RNN in epoch-wise
feature learning. This baseline follows the standard one-to-one
classification scheme, receiving a single epoch as input and
outputting the corresponding sleep stage. The classification is
accomplished by presenting the attentional output to a softmax
layer. The network was trained with the standard cross-entropy
loss. A similar attention-based bidirectional RNN was demon-
strated to achieve good performance on a single-channel EEG
setting in our previous work [26]. However, here the filterbank

2Source code is available at http://github.com/pquochuy/SeqSleepNet

learning and the sleep stage classification are jointly learned
in an end-to-end manner. We used similar parameters as the
SeqSleepNet’s epoch-level processing block, except for the
size of the attention weights which was set to 32. In addition,
the network was trained for 20 epochs and was validated every
500 steps during training.

Multitask E2E-ARNN: Inspired by multitask networks for
sleep staging in [8], this multitask network extends the E2E-
ARNN baseline above to jointly determine the label of the
input epoch and to predict the labels of its neighboring epochs.
Therefore, this multiple-output baseline offers ensemble of
decisions which was aggregated using the method described
in Section IV. We used a context output size of 3 as in [8].

End-to-end DeepSleepNet (E2E-DeepSleepNet): Supratak
et al. [9] recently proposed DeepSleepNet and reported good
performance on the MASS’s subset SS3 with 62 subjects.
This network comprises a deep CNN for epoch-wise feature
learning topped up with a deep bidirectional RNN for cap-
turing stage transitions. As described in [9], these two parts
were trained in two separate stages to yield good performance.
Here, we developed an end-to-end variant of DeepSleepNet,
illustrated in Figure 3b, and trained the model end-to-end using
a similar strategy described in Section III-F. We will show that
E2E-DeepSleepNet achieves a comparable performance (if not
better) as that reported in [9]. The network parameters were
kept as in the original version [9], however, we experimented
with a sequence length of {10, 20, 30} epochs to have a
comprehensive comparison with the proposed SeqSleepNet.

D. Experimental Results

1) Sleep stage classification performance: We show in
Table II a comprehensive performance comparison of the
proposed SeqSleepNet, the developed baselines, as well as
published results on the MASS dataset. We report performance
of a system using overall metrics, including accuracy, macro
F1-score (MF1), Cohen’s kappa (κ), sensitivity, and specificity.
Performance on individual sleep stages are also assessed via
class-wise sensitivity and selectivity as recommended in [40].
The systems are grouped into single-output or multiple-output
to ease the interpretation.

Impact of short-term sequential modelling. The efficiency
of short-term sequential modelling is highlighted by the supe-
rior performance of the E2E-ARNN baseline over those of
the single-output systems. Compared to the best single-output
CNN opponent (i.e. 1-max CNN [8]) on the entire MASS
dataset, the E2E-ARNN baseline yields improvements of 0.9%
on overall accuracy. It also largely outperforms other single-
output CNN architectures by 2.9% to 5.7%. Performance gains
can also be consistently seen on other metrics. It should be
highlighted that the E2E-ARNN baseline adheres to the very
standard one-to-one classification setup and does not make
use of contextual input with multiple epochs as in many other
CNN opponents, such as those proposed by Chambon et al.
[13] and Tsinalis et al. [10].

Single output vs multiple output. Comparing the multi-
output systems, the proposed SeqSleepNet outperforms other
systems and set state-of-the-art performance on the MASS
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Figure 3: Illustration of the developed baselines. In (b), conv. (n,w,s) denotes a convolutional layer with n 1-D filters of size
w and stride s. max pool. (w,s) denotes a 1-D max pooling layer with kernel size w and stride s. fc (n) represents a fully
connected layer with n hidden units. Finally, bi-LSTM (n,m) represents a bidirectional LSTM cell with size of its forward and
backward hidden state vectors of n and m, respectively. Further details of these parameters can be found in [9].

Table II: Performance obtained by the proposed SeqSleepNet, the developed baselines, and existing works on the MASS
dataset. We mark the proposed SeqSleepNet in bold, the developed baselines in italic, and existing works in normal font.
SeqSleepNet-L indicates a SeqSleepNet with sequence length of L, a similar notation is used for E2E-DeepSleepNet baseline.

Method Feature
type

Num. of
subjects

Overall metrics Class-wise sensitivity Class-wise selectivity

Acc. κ MF1 Sens. Spec. W N1 N2 N3 REM W N1 N2 N3 REM

M
ul

ti-
ou

tp
ut

Sy
st

em
s SeqSleepNet-30 ARNN + RNN learned 200 87.1 0.815 83.3 82.7 96.2 89.0 59.7 90.9 80.2 93.5 90.7 65.1 88.9 84.2 90.7

SeqSleepNet-20 ARNN + RNN learned 200 87.0 0.815 83.3 82.8 96.3 89.4 60.8 90.7 80.3 92.9 90.0 65.1 89.1 84.0 90.8

SeqSleepNet-10 ARNN + RNN learned 200 87.0 0.814 83.2 82.4 96.2 88.6 59.9 91.2 79.4 93.0 91.3 64.9 88.6 85.1 90.2

E2E-DeepSleepNet-30 CNN + RNN learned 200 86.4 0.805 82.2 81.8 96.1 89.2 55.8 90.5 83.1 90.3 88.8 62.6 88.8 82.0 91.1

E2E-DeepSleepNet-20 CNN + RNN learned 200 86.2 0.804 82.2 82.0 96.1 88.4 57.0 89.9 84.1 90.4 89.0 62.1 89.0 81.1 91.2

E2E-DeepSleepNet-10 CNN + RNN learned 200 86.3 0.804 82.0 81.6 96.1 88.4 55.6 90.3 83.4 90.6 88.8 62.0 89.0 82.3 90.2

M-E2E-ARNN ARNN learned 200 83.8 0.767 77.7 77.0 95.3 85.0 37.4 89.2 79.2 94.2 86.5 61.4 86.5 82.6 81.9

Multitask 1-max CNN [8] CNN learned 200 83.6 0.766 77.9 77.4 95.3 84.6 41.1 88.5 79.7 93.3 86.3 55.2 86.9 83.0 83.3

DeepSleepNet2 [9] CNN + RNN learned 62 (SS3) 86.2 0.800 81.7 - - - - - - - - - - - -
Dong et al. [25] DNN + RNN learned 62 (SS3) 85.9 - 80.5 - - - - - - - - - - - -

Si
ng

le
-o

ut
pu

t
Sy

st
em

s E2E-ARNN ARNN learned 200 83.6 0.766 78.4 78.0 95.3 86.6 43.7 87.8 80.9 91.2 86.3 57.6 87.2 82.3 82.4

1-max CNN [8] CNN learned 200 82.7 0.754 77.6 77.8 95.1 84.8 46.8 86.4 82.0 88.6 86.2 49.8 87.4 80.2 84.2

Chambon et al. [13] CNN learned 200 79.9 0.726 76.7 80.0 95.0 81.1 64.2 76.2 89.6 89.0 86.7 41.0 92.4 73.1 82.6

DeepSleepNet1 [9] CNN (only) learned 200 80.7 0.725 75.8 75.5 94.5 80.0 51.9 85.5 69.0 91.1 87.5 46.2 85.3 84.9 79.7

Tsinalis et al. [10] CNN learned 200 77.9 0.680 70.4 69.4 93.5 82.3 30.5 86.8 61.7 85.8 77.5 44.7 80.6 80.0 80.0

Chambon et al. [13] CNN learned 61 (SS3) 83.0 - - - - - - - - - - - - - -
DeepSleepNet1 [9] CNN (only) learned 62 (SS3) 81.5 - - - - - - - - - - - - - -
Dong et al. [25] DNN (only) learned 62 (SS3) 81.4 - 77.2 - - - - - - - - - - - -
Dong et al. [25] RF hand-crafted 62 (SS3) 81.7 - 72.4 - - - - - - - - - - - -
Dong et al. [25] SVM hand-crafted 62 (SS3) 79.7 - 75.0 - - - - - - - - - - - -

dataset with an overall accuracy, MF1, and κ of 87.1%,
83.3%, and 0.815, respectively. On the entire MASS dataset,
it leads to an accuracy gain of 0.7% absolute over the E2E-
DeepSleepNet baseline which is the best competitor. Given
that the top recurrent layers behave similarly on two net-
works (although SeqSleepNet has only one recurrent layer

on the sequence level as well as smaller size of hidden
state vectors), the improvement is likely due to the good
epoch-wise sequential features learned by the epoch-level
processing block of SeqSleepNet. On individual sleep stages,
SeqSleepNet and the E2E-DeepSleepNet are comparable for
Wake and N2 while the former shows its prominence on N1
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Figure 4: (a) The confusion matrix of SeqSleepNet-20 (C1), (b) the confusion matrix of the E2E-ARNN baseline (C2), and
(c) the difference of two confusion matrices C1 − C2.

which is usually very challenging to be recognized due to its
similar characteristics to other stages and its low prevalence.
Interestingly, in REM, SeqSleepNet is superior on sensitivity
but inferior on selectivity compared to E2E-DeepSleepNet.
This result suggests that SeqSleepNet is less conservative than
E2E-DeepSleepNet on recognizing REM, i.e. it recognizes
more but slightly lower-fidelity REM epochs. The opposite is
observed on N3. Regarding the family of multitask networks,
although the advantage of contextual output [8] is reflected
by the improvement of these networks, i.e. the multitask
CNN and the M-E2E-ARNN baseline, over their single-output
peers, the limit of the contextual output size [8] makes their
performance incomparable to those of the SeqSleepNet and the
E2E-DeepSleepNet both of which can accommodate a much
longer context, thanks to the capability of their sequence-level
recurrent layers.

Benefits of long-term sequential modelling. The perfor-
mance boost made by the proposed SeqSleepNet and the E2E-
DeepSleepNet over their single-output counterparts also shed
light into the power of long-term sequential modelling for
automatic sleep staging. Averaged over all experimented se-
quence lengths, an accuracy gain of 3.4% absolute is obtained
by SeqSleepNet over the E2E-ARNN baseline. Likewise,
an average accuracy improvement of 5.6% yielded by the
E2E-DeepSleepNet baseline over its bare CNN version (i.e.
DeepSleepNet1 [8]) can also be seen. Previous works, e.g.
Supratak et al. [9] and Dong et al. [25] also presented a
similar finding on the MASS subset SS3. However, the state-
of-the-art performance of the proposed SeqSleepNet and the
developed E2E-DeepSleepNet are obtained with end-to-end
training, implying the unnecessity of multi-stage training [9],
[25].

In order to reveal the cause of improvement made by long-
term sequential modelling, we further examine its effects on
performances of individual classes. To this end, we computed
the confusion matrix of the proposed SeqSleepNet with the
sequence length of L = 20 (denoted as C1), the confusion
matrix of the E2E-ARNN baseline (denoted as C2), and
inspect the difference between them, i.e. C1−C2. In C1−C2,
both positive diagonal entries and negative off-diagonal entries
indicate improvements of SeqSleepNet over the E2E-ARNN
baseline. It turns out that, long-term sequential modelling
results in significant improvement on N1 with its accuracy

boosted by 17.2% while subtle influence is seen on other
sleep stages. This achieved accuracy on the challenging N1
stage is also better than those reported in previous works [8],
[9], [13], [25]. These results suggests that long-term sequential
modelling is more important than specific changes in the sleep
stages.

2) Hypnogram: Figure 5 further shows the output hypno-
gram and the posterior probability distribution per stage of
sleep of a subject of the MASS dataset (subject 22 of subset
SS1). It can be seen that the output hypnogram aligns very well
with the corresponding ground truth. Often, the network makes
errors at the short stage transition epochs. More specifically,
on the entire MASS dataset, out of misclassified epochs
made by SeqSleepNet-20, 44.0% are transitioning and the rest
56.0% are non-transitioning. However, when we inspected the
transitioning set (constituting 16.6% of the data) and the non-
transitioning set (constituting 83.4% of the data) seperately, an
error rate of 34.5% is seen on the former whereas that of the
latter is four times lower, only 8.7%. This result suggests that
the transitioning epochs are much harder to correctly classified
compared to the non-transitioning ones. The rationale is that
the transitioning epochs often contain information of two or
three sleep stages, not to mention that the way we converted
20-second epochs to 30-second ones (cf. Section II) makes
the stage overlap even worse. As a result, these present stages
are active as indicated in the probability distribution in Figure
5, however, we had to pick one of them as the final discrete
output label for the sleep staging task.

3) Influence of the sequence length and the network’s depth:
It can be seen from the results in Table II that the sequence
length equal or greater than 10 has minimal impact on the
network performance. This observation is generalized for both
SeqSleepNet and the E2E-DeepSleepNet as their accuracies
vary in a negligible margin of 0.1% when L = {10, 20, 30}.

We carried out an additional experiment to study the in-

Table III: Influence of SeqSleepNet’s recurrent depth on the
overall accuracy.

Recurrent depth Sequence length

L = 10 L = 20 L = 30

1 87.0 87.0 87.1

2 86.8 87.0 87.1
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Figure 5: Output hypnogram (a) produced by the proposed SeqSleepNet (L = 20) for subject 22 of the MASS dataset compared
to the ground-truth (b). The errors are marked by the × symbol. The posterior probability distribution over different sleep
stages is shown in (c).

fluence of the deepness of SeqSleepNet’s recurrent layers.
We constructed the SeqSleepNet with two layers for both its
epoch-level and sequence-level recurrent layers. A deep RNN
was formed by stacking the GRU cells one on another as in
[24], [55]. The overall accuracy of this network is shown
in Table III alongside that of the SeqSleepNet which has
recurrent depth of 1. The results reveal that increasing the
number of recurrent layers does not change the network’s
accuracy when the sequence length is sufficiently large, i.e.
L = 20, 30. With L = 10, an accuracy drop of 0.2% is
noticeable. A possible explanation is that, with short sequence
length, the stronger network with the recurrent depth of 2
is more prone to overfitting than the simpler one with the
recurrent depth of 1. This effect is not observed with larger
sequence lengths as heavier multitasking helps to regularize
the networks better.

4) Visualization of the learned attention weights: To shed
light on how the SeqSleepNet has picked up features to
distinguish one sleep stage from others, Figure 6 shows the
attention weights for five specific epochs of different sleep
stages. As expected, for the Wake epoch, the attention weights
are particularly large in the region of high brain activities and
muscle tone which are common characteristics discriminating
Wake against other sleep stages. Similarly, for the REM epoch,
more attention weights are put on ocular activities which are
REM representative. Interestingly, attention layers also capture
typical features of the N2 and N3 epoch as stronger weights
are seen with occurrences of K-complex and slow brain waves,
respectively.

VI. DISCUSSION

With the good performance demonstrated, the proposed
SeqSleepNet has the potential to automate and replace manual

sleep scoring [4], [5]. Although SeqSleepNet’s overall perfor-
mance is just approximately 1% better than that of the runner-
up DeepSleepNet, it is worth noticing that this improvement
is not evenly distributed over all sleep stages (cf. Table II).
While the networks perform more or less comparably on
some stages (e.g. N2 and Wake), SeqSleepNet significantly
outperforms DeepSleepNet on other stages (e.g. N1 and REM).
This result might also be clinically meaningful as performing
well on N1 and REM sleep makes SeqSleepNet potentially
useful for diagnosis and assessments of many types of sleep
disorders, such as narcolepsy [56] and REM-Sleep Behavior
Disorder (RBD) [57]. It is unlikely that SeqSleepNet trained
on the MASS dataset, a cohort of healthy subjects, would
directly work well on subjects with sleep disorders due to
their different sleep architectures and characteristics compared
to the healthy controls. However, a SeqSleepNet pre-trained
with a large healthy cohort like the MASS dataset could serve
as a starting point to be finetuned for another cohort of sleep
pathologies, especially when the target cohort is of small size.

SeqSleepNet also comes with some disadvantages. First, as
a sequence-to-sequence model, the network needs to access
entire sequences of multiple epochs to perform classification.
This could delay online and realtime applications, such as
sleep monitoring [16], [17]. Second, the class-wise results in
Table II show opposite behaviors of SeqSleepNet and Deep-
SleepNet on N3 and REM. This suggests that DeepSleepNet
could compensate SeqSleepNet to improve performance on
these two stages. It is therefore worth exploring their possible
combinations to leverage their respective advantages.

VII. CONCLUSIONS

We proposed to treat automatic sleep staging as a sequence-
to-sequence classification problem to jointly classify a se-
quence of multiple epochs at once. We then introduced a
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Figure 6: Attention weight learned by SeqSleepNet (L = 20) for specific epochs of different sleep stages. Note that we
generated the spectrograms with finer temporal resolution (2-second window with 90% overlap) for visualization purpose.

hierarchical recurrent neural network, i.e. SeqSleepNet, run-
ning on multichannel time-frequency image input to tackle
this problem. The network is composed of parallel filter-
bank layers for preprocessing the image input, an epoch-
level attention-based bidirectional RNN layer to encode se-
quential information of individual epochs, and a sequence-
level bidirectional RNN layer to model inter-epoch sequential
information. The network was trained end-to-end via dynamic
folding and unfolding the input sequence at different levels
of network hierarchy. We show that while sequential features
learned for individual epochs by the epoch-level attention-
based bidirectional RNN are more favourable than those
learned by different CNN opponents, further capturing the
long-term dependency between epochs by the top RNN layer
leads to significant performance improvement. The proposed
SeqSleepNet outperforms not only existing works but also the
strong baselines developed for comparison, setting state-of-
the-art performance on the entire MASS dataset.
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