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Abstract
Dimensionality reduction is a compelling alternative for high-dimensional data visualization. This method provides
insight into high-dimensional feature spaces by mapping relationships between observations (high-dimensional vectors)
to low (two or three) dimensional spaces. These low-dimensional representations support tasks such as outlier and
group detection based on direct visualization. Supervised learning, a subfield of machine learning, is also concerned
with observations. A key task in supervised learning consists in assigning class labels to observations based on
generalization from previous experience. Effective development of such classification systems depends on many
choices, including features descriptors, learning algorithms, and hyperparameters. These choices are not trivial, and
there is no simple recipe to improve classification systems that perform poorly. In this context, we first propose the use of
visual representations based on dimensionality reduction (projections) for predictive feedback on classification efficacy.
Secondly, we propose a projection-based visual analytics methodology, and supportive tooling, that can be used to
improve classification systems through feature selection. We evaluate our proposal through experiments involving four
datasets and three representative learning algorithms.
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Introduction

In supervised learning, a subfield of machine learning,
the important task of pattern classification consists on
assigning a class label to a high-dimensional vector based
on generalization from previous examples1. In broad terms,
this task is typically solved by finding parameters for a
classification model that maximize a measure of efficacy. In
this context, efficacy refers to desirable characteristics that
a classification system should possess to be efficient and
effective. These characteristics include quantitative metrics
capturing the classification accuracy (which captures the
effectiveness aspect), but also the use of a limited set of so-
called features to describe the input space (which captures
the efficiency aspect).

Pattern classification is a challenging task, partly due to its
extremely large design space. For our purposes, this task can
be divided into representation and learning, as follows.

Representation is concerned with how objects of interest
are modeled as high-dimensional vectors. Elements of these
vectors usually correspond to measurable characteristics
(features) of the objects. Many different features can be
considered, and it is generally unclear which of them
are valuable for generalization. For example, in image
classification, a wide variety of color, texture, shape,
and local features can be extracted from images2. Using
too few features can lead to poor generalization, thereby
reducing classification effectiveness; and using too many
features can be prohibitively expensive to obtain or compute,
thereby reducing efficiency, or even introduce confounding
information into the training data3;4. Deep neural networks

recently became able to bypass feature design by dealing
directly with raw images5;6. Yet, such networks require
very large amounts of labeled (training) data, which are not
always available, and pose additional design challenges of
their own7. Hence, feature selection for classification system
design still is a very important open problem.
Learning algorithms have to be selected, fine-tuned, and
tested once a representation is available. A huge number
of such algorithms exists, based on a wide variety of
principles, and no single algorithm is the best for every
situation8. Practitioners usually compare algorithms and
hyperparameter choices using cross-validation1. However,
this approach is bounded by the limited feedback that
numerical (classification) accuracy measures can provide.
As a consequence, when suboptimal results are obtained,
designers are often left unaware of which aspects limit
classification system accuracy, and what can be done to
improve such systems. This and other issues have been
referred to as the “black art” of machine learning 9, and
motivate our interest in using interactive techniques to assist
the design of classification systems.
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Dimensionality reduction (DR) techniques are a highly
scalable alternative for high-dimensional data visualization
and exploration10. Given a dataset composed of high-
dimensional vectors (also called observations or data points),
DR techniques find corresponding low-dimensional vectors
that attempt to preserve the so-called data structure. This
structure is characterized by distances between observations,
presence of clusters, and overall spatial data distribution11;12.
In this text, we refer to the representation obtained by
DR by the term projection. For visualization purposes, DR
techniques typically reduce the number of dimensions to
two or three. The resulting projections are typically depicted
by scatterplots, and enable insight into the structure of the
original data13.

Visual exploration of high-dimensional datasets via
projections has been widely applied to many data types,
such as text documents14, multimedia collections15, gene
expressions16, and networks17. However, projections are
rarely used for the task of classification system design.
Considering the aforementioned difficulties in designing
such systems, we propose a visual analytics approach
based on dimensionality reduction that supports two (highly
interrelated) tasks:

T1: predicting classification system efficacy, and
T2: improving classification systems.

With respect to task T1, we show how the presence of visual
outliers, overall visual separation between observations in
distinct classes, and visual distribution of observations of
a given class are reflected in classification results. More
specifically, we show that the structure of a projection is
often a good predictor of the accuracy that a classifier can
deliver on the original data, both in the case of using a
predefined feature set, and in the case of performing feature
selection; that confusion zones, containing misclassification
results, can be often spotted using projections; and that
projections can help the guided pruning of a complex dataset
to increase classification accuracy.

Concerning task T2, we propose a combination between
the aforementioned projections and visualizations called
feature projections, which present correlations between
features and information derived from traditional feature
scoring techniques to help designers select important
features for classification systems. Overall, our contributions
show that projections are valuable tools for various aspects
of classification system design, especially in cases where
traditional aggregate accuracy metrics do not provide
sufficient insights.

We illustrate our approach through use cases involving
both real and synthetic challenging datasets and representa-
tive learning algorithms.

This paper is organized as follows. Section Preliminaries
presents our notation and definitions. Section Related
work places our effort in the contexts of information
visualization and machine learning. Section Proposed
approach summarizes our approach and compares it to
related work. Section T1: Predicting system efficacy details
our first contribution – showing how projections can be
used as insightful predictors of classification system efficacy.
Section T2: Improving system efficacy details our second
contribution – showing how the visual feedback given

by projections can be integrated into an interactive and
iterative workflow for improving system efficacy through
qualitative and quantitative data exploration. This workflow
is summarized in Section Proposed workflow. Section
Discussion provides a critical analysis of the experiments,
limitations, and weaknesses of our proposals. Importantly,
it outlines cases where projections are known to fail as
predictors of classification system efficacy, and why such
cases do not contradict our proposal. Finally, Section
Conclusion summarizes the paper and presents directions for
future work.

Preliminaries
The following is a summary of the definitions and notation
employed in this text.

A (supervised) dataset D is a sequence D =
(x1, y1), . . . , (xN , yN ). Every pair (xi, yi) ∈ D is
composed of an observation xi ∈ RD, and a class label
yi ∈ {1, . . . , C}, where C is the number of classes. As
an example, observations may correspond to images of
animals, and the classes to the C distinct species present in
the images. The j-th element of xi corresponds to feature
j, and is typically measured from an object of interest.
Considering the previous example, a feature may represent
the redness of an image.

We denote the set of all features under consideration by
F = {1, . . . , D}. For any F ′ ⊆ F , having D′ ≤ D features,
we denote by DF ′ the dataset corresponding to D with
features restricted to F ′.

A learning algorithm finds a function, called classifier,
that maps observations to classes based on generalization
from a training (data)set D. Generalization is usually
evaluated by cross-validation, which consists on partitioning
the available data into a set for model learning and a set for
model evaluation. Feature selection aims at finding a small
feature subset F ′ ⊆ F such that the restricted training set
DF ′ is sufficient for generalization.

Dimensionality reduction (DR) finds a projection P =
p1, . . . ,pN , where pi ∈ Rd, that attempts to preserve
the structure of an original (unsupervised) dataset D =
x1, . . . ,xN , considering that each observation xi corre-
sponds to point pi. For the purposes of visualization, d is
usually 2 or 3. DR is related to the feature selection task,
discussed in the next section. However, there are important
differences, especially in our context: firstly, feature selec-
tion can be seen as a specific type of DR, where the d
dimensions of the resulting projection are chosen from the
D dimensions (features) of the input data; in contrast, DR
methods used in data visualization typically synthesize d
new dimensions from the original D, as to better preserve
the data structure. All state-of-the-art DR methods, such as
the ones used in our work, are of this type. Secondly, DR
(used for visualization) has a 2D or 3D target space, whereas
feature selection typically yields higher-dimensional spaces
(d > 3). Thirdly, and most importantly, feature selection, as
used in our context, aims to reduce the dimensionality of
an input space for increasing the efficacy of a classification
system; in contrast, DR (again, as used in our context) aims
to create visualizations that help designers understand this
input space.
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Related work

High-dimensional data visualization is a challenging and
important task in many scientific and business applications.
For an extensive overview of the field, we refer to the
recent survey by Liu et al.18. There are many alternatives
for visual exploration of high-dimensional data, such as
parallel coordinate plots19, radial plots20, star plots21, star
coordinates22, table lenses23, and scatterplot matrices24.
A common challenge for these methods is scalability to
datasets with relatively modest numbers of observations
and dimensions. Dimensionality reduction (DR) techniques
effectively address these scalability issues by finding a low-
dimensional representation of the data that retains structure,
which is defined by relationships between points, presence
of clusters, or overall spatial data distribution 11–13;18. The
resulting projections can be represented as scatterplots,
which allow reasoning about clusters, outliers, and trends by
direct visual exploration. These and other tasks addressed by
DR-based visualizations are detailed by Brehmer et al.10.

DR techniques are typically divided into linear (e.g.,
PCA, LDA, MDS) and non-linear (e.g., Isomap, LLE, t-
SNE)12;13. Although many traditional DR techniques are
computationally expensive, highly scalable techniques have
also been proposed (e.g., LSP14, LAMP25, LoCH26). These
techniques are currently capable of dealing with hundreds of
thousands of observations (or more) – although visual clutter
eventually becomes a problem. Guidelines for choosing
suitable DR methods for a particular task are outlined by
Sedlmair et al.27.

More related to our work, several visualization techniques
have been proposed to help the interactive exploration of
projections. Most notably, Tatu et al.28 propose a process
for finding interesting subsets of features, and displaying
the results of dimensionality reduction restricted to these
features, with the goal of aiding qualitative exploration. Yuan
et al.29 present an interactive tool to visualize projections
of observations restricted to selected subsets of features.
Additionally, in their tool, features are placed in a scatterplot
based on pairwise similarities. This is analogous to the
representation we propose in Section T2: Improving system
efficacy. However, differences exist – Yuan et al. 29 aim at
subspace cluster exploration, while our goal is to provide
support for classification system design. This difference is
manifested by our additional mechanisms, which include
feedback from automatic feature scoring techniques and
classification results. The work of Turkay et al.30 also
combines scatterplots of observations and features for high-
dimensional data exploration, and is also concerned with
tasks that are unrelated to classification system design.
Pattern classification is one of the most widely studied
problems in machine learning. Learning algorithms such as
k-nearest neighbors, naive Bayes, support vector machines
(SVMs), decision trees, artificial neural networks, and their
ensembles, have been applied in a wide variety of practical
problems1. Since the objective of pattern classifiers is to
generalize from previous experience, hyperparameter search
and efficacy estimation are usually performed using cross-
validation31. Diagnosing the cause of poor generalization
in classification systems is a hard problem. Options include
using cross-validation to compute efficacy indicators (e.g.,

accuracy, precision and recall, area under the ROC curve),
and learning curves, which show generalization performance
for an increasing training set. In multi-class problems,
confusion matrices can also be used to diagnose mistakes
between classes32.

In the context of visualization, Talbot et al.33 propose
the visual comparison of confusion matrices to help users
understand the relative merits of various classifiers, with
the goal of combining them into better ensemble classifiers.
In contrast to their work, we offer finer-grained insight
into a single classification system by using projections as
a visualization technique. Other visualization systems also
aim at integrating human knowledge into the classification
system design process. Decision trees are particularly
suitable for this goal, as they are one of the few easily
interpretable classification models34. Schulz et al.35 propose
a framework that can be used to visualize (in a projection)
the decision boundary of a support vector machine, a model
which is usually hard to interpret. Projections have also
been used specifically for visualizing internal activations of
artificial neural networks 36. More related to our work, other
works also propose visualizations that consider classification
systems as black-boxes. They usually study the behavior
of such systems under different combinations of data and
parameterizations. In this context, Paiva et al.37 present
a visualization methodology that supports tasks related
to classification based on similarity trees. Similarly to
projections, similarity trees are a high-dimensional data
visualization technique that maps observations to points in a
2D space, but connects them by edges to represent similarity
relationships. In contrast to our methodology for system
improvement, their methodology focuses on visualization of
classification results and observation labeling. At a higher-
level of abstraction, the use of visualization techniques to
“open the black box” of general algorithm design, including
(but not limited to) classification systems, is also advocated
by Mühlbacher et al.38.

Active learning refers to a process where the learning
algorithm iteratively suggests informative observations for
labeling. The objective of this process is to minimize the
effort in labeling a dataset. Because this is an iterative
and interactive process, visualization systems have been
proposed to aid in the task, and sometimes include
a representation of the data based on projections39;40.
However, in these examples, projections do not have a role
in improving classification system efficacy.

Feature selection is another widely researched problem
in machine learning, because the success of supervised
learning is highly dependent on the predictive power of
features3;4. Feature selection techniques are usually divided
into wrappers, which base their selection on learning
algorithms, and filters, which rely on simpler metrics derived
from the relationships between features and class labels4.
The work of Krause et al.41 is an example of visualization
system that aids feature selection tasks by displaying
aggregated feature relevance information, which is computed
based on feature selection algorithms and classifiers. Their
glyph-based visualizations are completely different from
the projection-based integrated visualizations that implement
our methodology, which are outlined in the next section.
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Proposed approach
Our visualization approach aims to support two tasks (T1
and T2), which we introduce in the following sections.

Predicting system efficacy (T1)
Consider the works presented in Sec. Related work that
use projections to represent observations in classification
tasks (e.g.,39;40), or the projections of traditional pattern
classification datasets (e.g.,13). If a projection shows good
visual separation between the classes in the training data,
and if this is expected to generalize to test data, it is natural
to suppose that building a good classifier will be easier than
when such separation is absent.

On the other hand, there is little evidence in the
literature to defend the use of projections as predictors of
classification system efficacy. As a consequence, it is unclear
whether and, even more importantly, how insights given by
projections complement existing methods of prognosticating
and diagnosing issues in the classification pipeline. In
Section T1: Predicting system efficacy, we present a study
that focuses precisely on these questions. It is important to
emphasize the term predictor: we aim at obtaining insights
on the ease of building a good classification system by using
projections before actually building the entire system.

In summary, the study presented in Section T1: Predicting
system efficacy consists on the following. Considering a
particular classification dataset split into training and test
data, a projection of each of these sets is computed. Some
claims are made about the classification problem based on
the visual feedback provided by the training set projection,
and are followed by evidence that supports its predictive
feedback. In many cases, some aspect of the problem is
altered (e.g. features or observations under consideration),
and the visual feedback is again evaluated.

We are aware of a single previous work that studies how
projections relate to classifier efficacy42, which provides
evidence that projections showing well-separated classes (as
measured by the so-called silhouette coefficient) correlate
with higher classification accuracies. However, that study
has significant limitations. Firstly, characterizing a projection
by a single numerical value (the silhouette coefficient) is
coarse and uninsightful. To support understanding how a
classification system relates to what a projection shows on
a finer scale, we perform and present our analyses at the
observation level. Secondly, the silhouette coefficient used
by Brandoli et al.42 can be severely misleading, since it may
be poor (low) even when good visual separation between
classes exists. This happens, for instance, when the same
class is spread over several compact groups in a projection.
Thirdly, we present a concrete projection-based methodology
to improve classification system (T2), whereas Brandoli et
al.42 only conjecture this possibility.

Consider simple alternatives to visualize classification
system issues, such as confusion matrices 32, or listing
misclassified observations together with their k-nearest
neighbors. While simple to use, these mechanisms have
significant limitations: confusion matrices become hard to
inspect for a moderate number of classes, while listing does
not scale well to hundreds (or even tens) of observations.
Most importantly, these alternatives do not encode spatial

information about observations in confusion zones, which we
define in Sec. T1: Predicting system efficacy.

Improving system efficacy (T2)
In Section T2: Improving system efficacy, we propose a
projection-based methodology for interactive feature space
exploration that allows selecting features to improve the
efficacy of a classification system (T2). This methodology
is highly dependent on the use of projections as predictors
of classification system efficacy (T1). As such, we describe
next our methodology that jointly addresses the two tasks.

We implement this methodology in a visual analytics tool
that links views of projections, representations of feature
relationships, feature scoring, and classifier evaluation, in
an attempt to provide a cost-effective and easy-to-use
way to select features for arbitrary (“black-box”) learning
algorithms.

The visual analytics workflow supported by our system,
detailed in Sec. T2: Improving system efficacy, is illustrated
by Fig. 1. This figure shows how our visual tools interact
to support T1 and T2 for the overall goal of building better
classification systems. The process can be summarized by
a simplified 10-step flowchart. We start by partitioning a
collection of objects of interest (images, in this example)
into training and validation sets. Next, we extract a number
of features from the training images, transforming them
into observations (1). These observations are mapped into
a projection (2). Optionally, to assure that the projection
has a high quality, we may evaluate the various projection
error metrics proposed in43;44, and fine-tune the DR
algorithm parameters accordingly. Assuming the projection
has sufficient quality, we study the visual separation between
the classes using our proposed visual tools. If the separation
is poor (4), we use our iterative feature exploration/selection
tools (T2) to prune the feature set under consideration (5),
and repeat the DR step until we obtain a good separation
or decide that such separation is too difficult. If good
separation is obtained (3), we proceed in building, training,
and evaluating a classifier in the validation set, using the
traditional machine learning protocol (6). If the evaluation
shows good performance (7), the workflow ends with a
good classification system that may be used in production.
If the evaluation reveals poor performance (8), we use again
our visual exploration tools to study what has gone wrong
in the validation set. For instance, we may find that some
types (i.e., subsets of classes) of observations are consistently
misclassified. In this case, and depending on the importance
of these observations, we can choose to filter them out,
simplifying the classification problem for the purposes of
designing the system (9). Alternatively, we may find that
such filtering is not possible, due to the relevance of the
misclassified observations. In that case, we decide that we
need to design new features, possibly using insights obtained
through visual feedback (10).

The added value of our visual tools, which are represented
in Figure 1, is twofold.

Firstly, the tools provide evidence about potential flaws in
a classifier before it is built (T1). This is supported by Section
T1: Predicting system efficacy, which shows how qualitative
feedback obtained from projections relates to classification
system efficacy in (unseen) test data.
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Secondly, our tools provide a (partially guided) way to
iteratively improve the overall classification system. This is
supported by Section T2: Improving system efficacy, which
shows how their visual feedback can be used to improve
classification system efficacy in (unseen) test data through
feature selection.

T1: Predicting system efficacy
As outlined in Sec. Proposed approach, this Section is
concerned with how projections can be used to predict
classification system efficacy (T1). The main role of this
Section is to support the actual interactive projection-based
system for classification system improvement presented in
Sec. T2: Improving system efficacy.

For this purpose, we conducted experiments on several
datasets, which are presented in Secs. Madelon dataset,
Melanoma dataset, Corel dataset, and Parasites dataset.
Section Experimental protocol details the aspects of the
experimental protocol that hold for every dataset under
consideration.

Experimental protocol
The first step in our protocol is to randomly partition a dataset
into training and test sets (one third of the observations).
Following good practice in machine learning, the partitioning
is stratified45, i.e., the ratio of observations belonging to each
class is preserved in the test set.
Projections can be created independently for the training
and for the test data. These projections can be represented
by scatterplots, where each point is colored according to its
class label. When displaying classification results for a test
set in a scatterplot, we will use triangular glyphs to represent
misclassified observations, colored based on their (incorrect)
classifications, and rendered slightly darker (for emphasis).

In addition to showing these scatterplots, we also display a
metric called neighborhood hit (NH)14. For a given number
of neighbors k (in our experiments, k = 6), the NH for a
point pi ∈ P is defined as the ratio of its k-nearest neighbors
(except pi itself) that belong to the same class as the
corresponding observation xi. The NH for a projection is
defined as the average NH over all its points. Intuitively, a
high NH corresponds to a projection where the real classes
(ground truth) are visually well separated. Therefore, the NH
metric is a good quantitative characterization of a projection
for our purposes.

The DR technique that we use in this work is a fast
implementation of t-distributed Stochastic Neighbor Embed-
ding (t-SNE)46, using default parameters and Euclidean
distance. We chose t-SNE due to its widespread popularity,
and demonstrated capacity to preserve neighborhoods in
projections13. However, our proposal does not depend on this
particular technique, and other DR techniques can be used
with no additional burden. For instance, we employed LSP14

in our early work, but decided in favor of t-SNE due to its
ability to preserve clusters in projections.

Our workflow requires a projection that preserves well
neighborhoods from RD in R2. This may be assessed
through the projection quality metrics described in43;44. If a
projection shows poor quality, it should be discarded (Fig.
1, step 2) and not used further in the workflow. Instead,

the measures outlined in43;44 should be used to improve
projection quality. Conversely, if a projection shows good
quality, it becomes an excellent candidate for assessing the
visual separation between groups, an can be used further in
the workflow (steps 3 and 4).

Feature selection will be performed in many of our
experiments. We will select a subset of features F ′ ⊆ F
to investigate the effect of restricting the input of the DR
technique to these features – that is, we will compare
the projections of both D and DF ′ . We perform feature
selection/scoring using extremely randomized trees47, with
1000 trees in the ensemble. Scores are assigned to features
based on their power to discriminate between two given
sets of observations. As will become clear in the next
sections, the choice of feature selection technique does not
affect our proposal. Feature selection is always performed
considering only the training set, as this allows assessing the
generalization of the selection to the test set.

Learning algorithms will be used to evaluate whether
good projections (with respect to perceived class separation)
correspond to good classification systems. We consider
three distinct algorithms: k-nearest neighbors (KNN, using
Euclidean distances), support vector machines (SVM,
using radial basis function kernel)48, and random forest
classifiers (RFC)49. These techniques were chosen for being
both widely used in machine learning and representative
of distinct classes of algorithms. Note that any other
classification technique can be used together with our
approach, since the techniques are treated as black-boxes,
i.e., we assume no knowledge of their inner workings.

Hyperparameter search is conducted by grid search on
a subset of the hyperparameter space for each learning
algorithm. Concretely, we choose the hyperparameters with
highest average accuracy on 5-fold cross-validation on the
training set. For KNNs, the hyperparameter is the number
of neighbors k (from 1 to 21, in steps of 2). For SVMs, the
hyperparameters are C and γ (both from 10−10 to 1010, in
multiplicative steps of 10). For RFCs, the hyperparameters
are the number of estimators (10 to 500, in steps of 50)
and maximum tree-depth (from 1 to 21, in steps of 5).
In the next sections, we use the term classifier to refer
exclusively to a particular combination of learning algorithm
and hyperparameters trained on the entire training set. The
hyperparameters are always found by the procedure outlined
in the previous paragraph. In summary, following good
machine learning practice, the test set does not affect the
choice of hyperparameters.

Classification results are always quantified, in this paper, by
the accuracy (AC, ratio between correct classifications and
number of observations) on the test set.

Presentation of experiments is uniform across datasets. For
each experiment, a high-level claim is first stated. This
claim is followed by supportive images, showing projections
and classification results. In several cases, some aspect of
the problem is altered (e.g., features or observations under
consideration), and we show how our projections reflect the
expected outcome.

Limitations of our study are discussed in Section
Discussion.
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Figure 1. Visual analytics workflow for classification system design proposed in this paper (see Sec. Proposed approach).

Madelon dataset
Data: Madelon is a synthetic dataset created by Guyon
et al.50, which contains 500 features and 2 class labels.
We split the Madelon training set into training (1332
observations) and test (668 observations) sets, following
our experimental protocol. The number of observations in
each class is balanced. This artificial dataset was created
specifically for the NIPS 2003 feature selection challenge.
Only 20 of the 500 features are informative, i.e., useful
for predicting the class label. According to its authors, this
dataset was designed to evaluate feature selection techniques
when features are informative only when considered in
groups50.
Goal 1: Our first goal is to show that, for this dataset, poor
separation between classes in the projection corresponds to
poor classification accuracy. While this correspondence may
appear obvious, it is easy to show that it does not always hold
(see Sec. Discussion). Therefore, analyzing the link between
visual separation and classification accuracy is worthwhile.

Consider the projection of the training data shown in Fig.
2a. The two class labels, represented by distinct colors, are
not visually separated in the projection, as also shown by the
low neighborhood hit of 53.9%.

If our projection is representative of the distances in the
high-dimensional space, it is natural to interpret Fig. 2a as
evidence that the classification problem is hard, at least if the
learning algorithm being used is based on distances. We will
show that, for this example, this observation holds even for
learning algorithms that do not directly work with distances
in the high-dimensional space. This characteristic is crucial
if we want to use projections as visual feedback about the
efficacy of classification systems that use such algorithms.

Figure 2b shows the projection of the test data, which
also has a low neighborhood hit (NH) and poor separation.
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(c) good separation, improved NH vs (a) (d) good separation, improved NH vs (b)

Figure 2. Madelon dataset. (a) Training set (NH: 53.9%). (b)
Test set (NH: 50.97%). (c) Training set, feature subset (NH:
83.56%). (d) Test set, feature subset (NH: 74.15%).

Following the experimental protocol outlined in the previous
section for hyperparameter search, consider the best (in
terms of average cross-validation accuracy) classifier for
each learning algorithm. If the hypothesis about the difficulty
of this classification task is true, the expected result would be
a low accuracy on the test data.
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Figures 3a and 3b show the classification results for KNN
(54.94% accuracy) and RFC (66.17%). The SVM classifier
achieved 55.84% accuracy, and is not shown due to space
constraints. Triangles in the scatterplots show misclassified
observations, colored based on their misclassification. The
accuracies on the test set are considerably low, and both
KNN and SVM perform close to random guessing.

KNN classifier RFC classifier
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Figure 3. Madelon classification. (a) KNN (AC: 54.94%). (b)
RFC (AC: 66.17%). (c) KNN, feature subset (AC: 88.62%). (d)
RFC, feature subset (AC: 88.92%).

Goal 2: Although these results show that the poor visual
separation is correlated to a low classification accuracy,
nothing we have shown so far tells that good separation
relates to high accuracy. Let us investigate this next,
specifically showing how we can select an appropriate subset
of features to get a good class separation.

Using extremely randomized trees as a feature scoring
technique, consider a subset containing 20 of the original 500
features, chosen based on their discriminative power in the
training set. In other words, we chose the best features F ′ ⊆
F to separate the two classes in the high-dimensional space.
Figure 2c shows the projection of the training set restricted
to these features. Compared to the previous projection of the
training set (Figure 2a), the NH has improved considerably,
and the visual separation has also improved. This visual
feedback gives evidence that the classification task may
become easier using a feature subset.

Figure 2d shows that feature selection also enhances
the visual separation of the test set. Therefore, the visual
separation after feature selection generalizes well to the test
data.

The final question is whether the good visual separation
corresponds to higher accuracy in the test set. Figures 3c
and 3d confirm this hypothesis. Notice that, after feature
selection, both learning algorithms have greatly improved
their results on the test set, with an increase of nearly 34%
for KNN and 22% for RFC. In comparison, the neighborhood
hit increased by almost 24% for the test set, and by almost
30% for the training set. A similar increase happens in
the case of the SVM, which goes from 55.84% to 86.68%

test accuracy after feature selection. In other words, as
could be expected, removing irrelevant features considerably
enhances the generalization capacity of the learned model.

Even more interestingly, after feature selection, we see
that the misclassified observations in the test set are
often surrounded by points belonging to a different class
(see triangular glyphs in Figs. 3c and 3d). Thus, these
observations could be interpreted as outliers according to
the projection. Such feedback is hard to obtain from a
traditional machine learning pipeline, and is valuable for
understanding classification system malfunction. Manually
inspecting misclassified observations and their neighbors
without the help of visualization would be very time-
consuming, and would not convey nearly as much insight
about the structure of the data. Alternatives such as
confusion matrices, for example, are difficult to interpret
even for a modest number of classes (a confusion matrix for
a 10-class problem has 45 independent values). The feedback
presented by projections can, for example, prompt the users
to consider special cases in their feature extraction pipeline.
Findings: In summary, the use case presented in this section
shows how projections can predict classification system
efficacy. In this use case, poor visual separation matches low
classification accuracy, and good visual separation matches
high classification accuracy. Furthermore, points that appear
as outliers in a projection are often difficult to classify
correctly. As we already mentioned in Section Proposed
approach, previous studies showing these insights at an
observation level are missing from the literature, making
it unclear exactly whether and how insights provided by
projections are useful. Such study is crucial to establish
projections as an appropriate vehicle for visual feedback,
which is basis of the interactive approach proposed in Sec.
T2: Improving system efficacy.

Melanoma dataset
Data: The melanoma dataset contains 369 features extracted
from 753 skin lesion images, which are part of the EDRA
atlas of dermoscopy51, using the feature extraction methods
described in52. Class labels correspond to benign skin lesions
(485 images) and malignant skin lesions (268 images). Note
the considerable class imbalance in favor of the benign
lesions.
Goals: The main goal of the experiments performed using
this real-world dataset is to show the type of feedback that
can be obtained through projections when the classification
problem is difficult and the visual class separation is poor.

Figure 4a shows the projection of the training data. We
see that the separation between classes is poor, which is
confirmed by a low NH. Consider the set of 20 best features
to discriminate between the two groups in the training set,
according to extremely randomized trees. The corresponding
projection of the training data restricted to these features
is shown in Fig. 4c. Arguably, the separation is slightly
improved, which is confirmed by a higher NH value.

Figures 4b and 4d show the projections of the test data
before and after feature selection, respectively. The poor
separation is confirmed in the test data. More importantly,
the separation does not seem to be better in the test set after
feature selection. In other words, feature selection does not
appear to have generalized particularly well to the unseen

Prepared using sagej.cls



8 Information Visualization XX(X)

training set test set
a

ll
 f

e
a

tu
re

s
 (

3
6

9
)

fe
a

tu
re

 s
u

b
s

e
t 

(2
0

)

(a) poor class separation (b) poor class separation

(c) slightly improved class separation vs (a) (d) poor class separation is maintained vs (b)

Figure 4. Melanoma dataset. (a) Training set (NH: 64.87%). (b)
Test set (NH: 62.35%). (c) Training set, feature subset (NH:
72.38%). (d) Test set, feature subset (NH: 62.55%)

(test) data. From this evidence, we naturally suspect that
classification accuracy is poor, and that feature selection will
not enhance accuracy. Our next experiments confirm this
suspicion.

Figure 5a displays the classification results on the test set
obtained by the most effective learning algorithm (SVM,
according to our protocol), using all the features. The class
unbalance of the data places the expected accuracy of always
guessing the most frequent class at 64%. Hence, an accuracy
of 77.69% is not quite satisfactory. KNN also performs
poorly, achieving only 73.71% accuracy (Fig. 5b). This is
evidence that the classification task is hard.

SVM classifier KNN classifier
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Figure 5. Melanoma classification. (a) SVM (AC: 77.69%). (b)
KNN (AC: 73.71%). (c) SVM, feature subset (AC: 74.9%). (d)
KNN, feature subset (AC: 77.69%). The uniformity of blue
classifications in the center of the projections shown in (c) and
(d) confirms that distances in the projection are good indicators
of classifier behavior.

Figures 5c and 5d show the classification results obtained
after feature selection. As we see, feature selection improved

the efficacy of the KNN classifier (from 73.71% to 77.69%)
to the same level as an SVM using all features. On the other
hand, the SVM results deteriorated after feature selection.

Furthermore, notice the uniformity of blue classifications
in the center of the projections shown in Figs. 5c and
5d. This confirms that distances in the projection are good
indicators of classifier behavior in this case, even when the
learning algorithm does not directly use distances in the high-
dimensional feature space (Fig. 5c).

As anticipated by the projection, feature selection did
not improve generalization efficacy. Even so, reducing
the number of features to approximately 5% of the
original has benefits in computational efficiency and
knowledge discovery. The reduced set of features contains
valuable information to the system designer, and indicates
characteristics of the problem where designers may decide
to focus their efforts. In other words, the use of feature
selection, while not directly improving classification system
accuracy, added value by reducing costs through data
reduction.

Corel dataset
Data: The Corel dataset contains 150 SIFT features
extracted from 1000 images by Li et al.53. Class labels
correspond to 10 image types: Africa, beach, buildings,
buses, dinosaurs, elephants, flowers, horses, mountains, and
food. The dataset is perfectly balanced between classes.
Goals: This experiment shows that projections can give
insight into class-specific behavior, and also provides more
evidence that projections can predict classification accuracy.

Figures 6a and 6b show projections of the training and
test data, respectively. Except for a confusion zone between
the classes marked as green, orange, yellow and brown, both
projections show well-separated clusters. This separation is
confirmed by a high NH value in both cases.
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(c) good separation of class 4 (d) good separation of class 4
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yellow, orange, 
brown classes
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Figure 6. Corel dataset. (a) Training set (NH: 85.7%). (b) Test
set (NH: 82.73%). (c) Training set, feature subset (NH: 28.68%,
4 vs rest NH: 100%). (d) Test set, feature subset (NH: 22.18%, 4
vs rest NH: 99.34%). Consult text on Fig. 6d misclassification.

These projections can be interpreted as evidence that the
classification task is easy. Confirming this hypothesis, Fig.
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7a shows the classification results for the best classifier
(RFC). As expected, the accuracy obtained is very high
(91.81%), considering that this is a balanced 10-class
problem. More interesting, however, is the fact that many
classification errors occur in the confusion zone observed
in the projection of the test set. Thus, conclusions drawn
from the visual feedback about confusion zones in this
training set do generalize to unseen (test) data. Notice that
the concept of confusion zone is only possible because
the data are spatially represented. It is, to our knowledge,
not possible to depict a confusion zone otherwise. This is
another valuable characteristic of our proposed projection-
based representation.

all features (150) feature subset (10)

class 4

(a) good class separation, good accuracy (b) poor class separation, poor accuracy

(except for class 4 vs rest)

class 4

Figure 7. Corel classification. (a) RFC (AC: 91.81%). (b) RFC,
feature subset (AC: 34.55%, 4 vs rest AC: 99.7%).

We also use this dataset to consider an alternative
scenario for predicting system efficacy. This scenario
shows, again, that projections may be reliable predictors of
classification system behavior. Consider the best 10 features
to discriminate class 4 (purple) from other classes, according
to extremely randomized trees. The projection of the data
restricted to this set of features is shown in Fig. 6c. As
expected, note how class 4 is very well separated (center
left), while observations in the other classes are poorly
separated from each other. This is confirmed by low NH
values (28.68%) and perfect binary NH values, when class
4 is considered against the rest. Figure 6d confirms that this
characterization generalizes to the test data.

The poor separation between classes other than 4 leads
us to expect poor accuracy results. Figure 7b shows the
classification results using the features selected to separate
class 4 from the rest, in the multi-class problem, which
confirm this expectation. In contrast, the binary classification
accuracy is almost perfect (99.7%, image omitted for
brevity). There is a single mistake in the binary classification,
which is placed in the top left corner of the projection (top
left of Fig. 6d). The projection was also able to predict the
existence of this outlier.

Parasites dataset
Data: The parasites dataset contains 9568 observations
and 260 traditional image features extracted from (pre-
segmented) objects in microscopy images of fecal samples54.
We restricted ourselves to a subset of the original data
that contains only the protozoan parasites (divided into

six classes) and impurities (objects that should be ignored
during analysis). Almost sixty percent of the observations
correspond to impurities, which gives a significant class
imbalance.
Goal: We present here one last example of the predictive
power of projections, using a medium-sized realistic dataset.
In this case, the projection reveals the presence of a large
number of confounding observations that, when removed,
increase classification accuracy.

Figure 8a displays the projection of the training set. We
immediately see that impurities (marked pink) spread over
almost the entire projection space. This is also seen in the
projection of the test set (Fig. 8b). In other words, we have
weak evidence that the impurities may be confounded with
almost every other class.
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Figure 8. Parasites dataset. (a) Training set (NH: 74.35%). (b)
Test set (NH: 68.49%). (c) Training set, observation subset (NH:
87.22%). (d) Test set, observation subset (NH: 82.31%).

Can the other classes be reasonably well separated from
each other when impurities are ignored? Figures 8c and
8d show the projections of the training and test data,
respectively, when the impurities are removed from the data.
Therefore, our question is answered positively.

Considering again all observations, Figure 9a shows
classification results for the best classifier (SVM, according
to our protocol). Given the perceived poor visual separation,
this result may be considered surprisingly good, which
shows that perceived confusion is not definitive evidence. In
Section Discussion, we will show an extreme example of this
behavior. In a number of cases, however, we have seen that
the evidence is much stronger in the other direction: when the
perceived visual separation between classes in a projection is
good, the classification results are also good.

Consider next our dataset restricted to all the classes
except impurities. Figure 9d shows KNN classification
results, which are improved from 82.29% to 89.49%
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Figure 9. Parasites classification. (a) SVM (AC: 92.7%). (b)
KNN (AC: 82.29%). (c) SVM, observation subset (AC: 94.55%).
(d) KNN, observation subset (AC: 89.49%).

accuracy. However, SVM results are not significantly
improved in this restricted task (approximately 2% accuracy
increase). Once again, note how the confusion zones contain
the majority of misclassifications. Apparently, the SVM
learning algorithm is able to deal better with the confusion
between impurities and parasites. In this case, the projection
was better to anticipate the behavior of the distance-based
learning algorithm.

This is the largest dataset considered in our experiments.
Note that the projections of the training and test sets are
somewhat similar (e.g., Figs. 8c and 8d). This highlights
the importance of using representative datasets to study a
problem using projections.

The difficulty of separating impurities from other classes
could also be diagnosed from a confusion matrix. In practice,
this insight could be used by the designer to study the
classification of impurities as a separate problem. However,
projections provide a more compelling visual representation
of the same phenomenon, allowing the designer to inspect the
observations in confusion zones. Such spatial information
about relationships is lost in a confusion matrix.

As a last example for this section, we now show how
additional visual feedback may be encoded into a projection.

Consider the aggregate projection error, a per-point
metric of distance preservation after DR43. Intuitively, a
point has a high aggregate error when its corresponding
high-dimensional distances to the other observations are
poorly represented by the low-dimensional distances in
the projection. This feedback about the quality of a given
projection is also important to our methodology.

Figure 10a shows the aggregate error for the parasites
test set restricted to non-impurities (higher errors in darker

colors). We see a point near the center of the projection with
a relatively high aggregate error (square in Fig. 10a). As
colors map relative errors, this does not necessarily mean
that the absolute aggregate error is high. Yet, this point is
clearly an outlier in aggregate error when compared to its
low-dimensional neighbors. In Fig. 10b, we see that the
point is surrounded by points belonging to other classes.
By our definition, this point is an outlier with respect to its
positioning given its class label. Note that the aggregate error
is computed without any information about class labels, and
also draws attention to this particular observation.

One possible explanation for a high aggregate error is
that the projection placed a point in a poor manner. In fact,
the point is correctly classified by RFC and SVM, which
weakly supports this hypothesis. However, KNN classified
the point incorrectly (see inset in Fig. 10b). Therefore, it is
still unclear whether this point is a true outlier in the feature
space. However, the error visualization was successful in
focusing attention into an interesting observation, which
warrants further inspection of its characteristics and features.
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Figure 10. Parasites test set, observation subset. (a)
Aggregate error. (b) Original classes, inset showing KNN
classification.

Several other error metrics and visual depictions of
projection quality could be employed to enable similar
feedback and help interpreting projections (e.g.,43;55).

Task 1: Conclusions
The experiments performed for the four datasets in this
section support our claim that projections can provide
useful visual feedback about the ease of designing a good
classification system. This visual feedback helps finding
outliers, overall separation between observations in distinct
classes, distribution of observations of a given class in
the feature space, and presence of neighborhoods with
mixed class labels (confusion zones). Arguably, the first
two tasks have the most well-developed traditional feedback
mechanisms: outlier detection, manual misclassification
inspection, efficacy measures, and confusion matrices. The
qualitative nature of the last two tasks makes them more
difficult. This makes a strong case for the use of projections,
even if there is no hard guarantee that the visual feedback
offered by projections is definitely helpful for a given dataset.
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In section Discussion, we present an extreme example of this
issue.

T2: Improving system efficacy
The previous section showed how projections can be useful
for predicting classification system behavior. If a particular
system performs well, there is no further effort required
from the system designer. Instead, consider a classification
system that generalizes poorly to unseen data. Because the
design space (feature descriptors, learning algorithms and
hyperparameters) is immense, designers can benefit from
insightful feedback about their choices. In that case, we have
already shown that qualitative feedback from projections can
be highly valuable.

Building on the use of projections for the first task
(T1), this section focuses on the use of projections for the
task of improving classification system efficacy (T2). In
section Proposed methodology and tooling, we present our
significant extension of the visual feedback methodology
proposed in56, which enables T2. In Sections Madelon: rela-
tionship between relevant features, Melanoma: alternative
feature scores, and Corel: class-specific relevant features, we
describe use cases that employ this methodology.

Proposed methodology and tooling
Our methodology for classification system improvement
through interactive projections is implemented into a tool∗

composed of six linked views (Fig. 11), as follows.

observation view
feature view

observation projection view feature projection view
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Figure 11. Feature exploration tool, showing the Corel dataset.
Shows the observation view, feature view, group view,
observation projection view (lensing observations, colored by
classification; yellow observations are selected), feature scoring
chart (showing best features to discriminate yellow class vs
rest), and feature projection view (showing best features to
discriminate yellow class vs rest, using a heat colormap).

The observation view shows the image associated to each
observation x in the dataset D, if any, which are optionally
sorted by a feature of choice. This provides an easy way to
verify if a feature corresponds to user expectations.

The feature view shows all features F , optionally
organized as a hierarchy based on semantic relationships.

Within this view, users can select a feature subset F ′ ⊆ F
to further explore.

The group view allows the creation and management
of arbitrary observation groups by direct selection in the
observation view or in the observation projection view
(discussed next). Initially, groups correspond to classes.

The observation projection view shows a scatterplot
of the projection of DF ′ , the dataset composed of all
observations restricted to the currently selected feature
subset F ′. Points can be colored by a user-selected
characteristic (such as class label or feature value), and are
highlighted to show the selected set of observations.

Figure 11 also illustrates lensing, which optionally
displays secondary characteristics on a neighborhood. In this
particular case, the secondary characteristic is classification
outcome (correct classifications in blue, incorrect in red).

The feature scoring chart ranks the features in
F ′ by a relevance metric chosen by the user. We
provide a variety of feature selection techniques, including
extremely randomized trees (which we employed in Section
T1: Predicting system efficacy)47, randomized logistic
regression57, recursive feature elimination58, and others. The
feature scoring view also allows the user to select a subset of
F ′ through interactive rubber-banding.

The feature projection view is a new addition to the
tool presented in56. Each point in this view corresponds to
a feature in F . Features are placed in 2D by a technique that
tries to preserve the structural similarity between features.
For our purposes, we define the dissimilarity di,j between
features i and j as di,j = 1− |ri,j |, where ri,j is the
(empirical) Pearson correlation coefficient between features
i and j. This dissimilarity metric captures both positive
and negative linear correlations between pairs of features.
The dissimilarity matrix, which contains the dissimilarity
between all pairs of features, can be represented in two
dimensions by a projection, which is analogous to the
projection of observations. As already mentioned in Sec.
Related work, similar visualizations already exist in the
literature29;30. However, we combine the feature projection
view with task-specific information in a novel manner, as
shown in the next sections.

We chose (absolute metric) multidimensional scaling59

to compute feature projections. According to preliminary
experiments, MDS presents more coherent relationships
between features and classes than t-SNE, which is important
in the next sections. This is probably due to the difference
in goals between the two techniques: absolute metric MDS
attempts to preserve (global) pairwise dissimilarities59,
while t-SNE is particularly concerned with preserving
(local) neighborhoods13. Alternative (dis)similarity metrics
between features are also available in the tool, including
mutual information, distance correlation and Spearman’s
correlation coefficient. The feature projection view provides
a counterpart to the observation projection view, and enables
several interactions that will be detailed in the next sections.

∗Available at http://www.cs.rug.nl/svcg/People/PauloEduardoRauber-
featured.
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Our visual analysis tool is implemented in Python, and
uses numpy 60, scipy 61, pyqt, matplotlib 62, skimage 63,
sklearn 64, pyqtgraph, and mlpy 65.

The next sections describe how our tool can be used
to support the task of classification system improvement
based on visual feedback obtained from both observation
and feature projections. For an overview of tool usage, see
Section Proposed workflow.

Madelon: relationship between relevant features
Goal: In this section, we illustrate how the feature
projection view can be used to select features by
considering relationships between relevant features. As
already mentioned, feature selection is a major challenge in
classification system design. In particular, insight into the
feature space can be very valuable when hand-engineered
(off-the-shelf) features are used.

Consider a selection of the 20 best features to discriminate
between the two classes of the Madelon dataset (Sec.
Madelon dataset) , performed using the feature scoring chart
based on extremely randomized trees. The corresponding
projections of observations and features are shown,
respectively, in Figs. 12a and 12b. Each feature in the
feature projection view is colored according to its relevance
score (darker colors represent higher relevance according
to extremely randomized trees). The 20 selected features
are outlined in black. Note that the most relevant selected
features (darker colors) are placed near the center of the
feature projection, except for the least relevant one. This
finding is notable, since the feature projection is created
without any information about feature scores. This shows
that relevant features are related (according to the feature
dissimilarity and relevance scoring metrics) in this dataset.
Note that, in general, relevant features are not necessarily
related3. For instance, a feature can simply complement the
discriminative role of other features.

Showing the relationships between feature scoring and
feature similarity is a main asset of the feature projection
view. Figures 12c and 12d show how such insight can be
used: by removing the outlier feature (i.e., the feature that
is apparently unrelated to the rest of the selection), visual
separation is preserved. In other words, the feature projection
view let us prune the feature space while maintaining the
desired visual separation (and NH), thereby reducing the size
of the data that needs to be considered next.
Improvement: Table 1 presents the results of each
learning algorithm on the Madelon test set, following the
protocol described in Sec. Experimental protocol, before
and after removing the outlier feature mentioned above.
As conveniently anticipated by the observation projection
of the training set (Fig. 12c), the classification efficacy is
maintained (and perhaps slightly improved). In summary, the
feature removal suggested by the feature projection view has
reduced the data size, but maintained classification accuracy.

Table 1. Madelon test set accuracies, feature selection
according to Fig 12.

Features/Algorithm KNN RFC SVM
20 features 88.62% 88.92% 86.68%
19 features 88.92% 88.92% 89.22%
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Figure 12. Madelon training set. (a,b) Observation and feature
projections, 20 features selected (NH: 83.56%). (c,d)
Observation and features projections, one less feature (NH:
84.55%).

Corel: class-specific relevant features
Goal: This section shows how the feature projection view
can be used together with the observation projection view to
find class-specific relevant features, using the Corel dataset
(Sec. Corel dataset) as an example. When improving system
efficacy, such information is useful both for feature selection
and for understanding classification system behavior.

We already showed (Sec. Corel dataset) that we can
choose features that are good to discriminate one of the
classes in the Corel dataset (class 4, which corresponds to
dinosaur drawings), while making discrimination between
the other classes very difficult. Figures 13a and 13b show
the corresponding observation and feature projections. Once
again, we see that the discriminative features are highly
related.

Consider an analogous feature selection aimed to
discriminate class 3 (bus pictures) from the other classes.
Figures 13c and 13d show the corresponding projections.
Comparing the feature views (Figs. 13b and 13d), we easily
see that the sets of powerful discriminative features for the
two classes are disjoint. This information could not be easily
obtained from the feature scoring bar chart mentioned in
Section Proposed methodology and tooling, since features
are generally difficult to locate in that visualization. As
inspecting the precise ranking of each feature is easier in
the bar chart, the two views are complementary. These
interactions require very little effort from the user, who can
inspect several feature combinations in a few minutes.

If the user is interested in a rough estimate of classification
efficacy, our tool can also compute and display classification
results (for a chosen learning algorithm) based on k-fold
cross-validation. This process partitions the current data
into k disjoint validation sets, and a classifier trained on
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Figure 13. Corel training set. (a,b) Observation and feature
projections, feature subset (4 vs rest, Binary NH: 99.73%). (c,d)
Observation and feature projections, feature subset (3 vs rest,
Binary NH: 99.25%).

the rest of the data is used to classify each validation
set. Classification results for the distinct validation sets are
aggregated and displayed, leading to images similar to Fig.
7. These representations do not replace proper evaluation in
a held-out test set (as in Sec. T1: Predicting system efficacy
or the following paragraph), but are useful feedback sources
during the interactive feature analysis process.

Improvement: Table 2 presents the result of each learning
algorithm on the Corel test set, following the protocol in
Sec. Experimental protocol, for the task of discriminating
classes 3 and 4 from the rest (i.e., classes 3 and 4 are
treated as a single class in a binary classification task), for all
features and the subset of 26 features that were considered
(separately) relevant for classes 3 and 4. As predicted by the
observation projections of the training set shown in Figs. 13a
and 13c, the classification efficacy is preserved. In summary,
our visual analysis allowed us to prune the feature space from
150 to only 26 features, and construct a binary classifier for
classes 3 and 4 vs rest that has the same quality as a classifier
that uses all features.

Table 2. Corel test set accuracies, classes 3 and 4 vs rest,
relevant features according to Fig. 13.

Features/Algorithm KNN RFC SVM
All (150) features 98.18% 98.79% 98.48%
26 features 98.48% 98.79% 98.79%

Melanoma: alternative feature scores
Goal: The joint display of feature similarity and relevance is
useful in other ways, as shown next. Here, our representation
enables comparing the results of different feature scoring
techniques. Since the techniques are based on distinct
principles, comparing their results to find features that
are consistently considered effective is a valuable task for
improving system efficacy.

Consider the feature projection view of the melanoma
training set (Sec. Melanoma dataset) shown in Fig. 14a.
As usual, colors represent the relevance of each feature
to discriminate between the two classes present in the
dataset (according to extremely randomized trees). We see
a concentration of relevant features between the center and
the bottom right. Again, the feature placement reinforces the
feature scoring information. The presence of zones of highly
relevant features is highly suggestive for the exploration of
the feature space, as shown in Sec. Madelon: relationship
between relevant features.

feature projection

(randomized decision trees)

feature projection

(randomized logistic regression)

mostly relevant features mostly irrelevant features
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Figure 14. Feature projection for melanoma training set. (a)
Feature scoring by randomized decision trees. (b) Feature
scoring by randomized logistic regression

Consider an alternative feature (relevance) scoring
obtained by another technique – in this case, randomized
logistic regression57 – shown in Fig. 14b. We see that the
distribution of relevancies is very different according to the
second technique, which places higher cumulative relevance
into fewer features. However, note that the two techniques
agree on the irrelevance of the features in the bottom right
and top left. This visual metaphor, where similar features
are placed near each other, is a natural way to display such
information.

The image features in this dataset have meaningful names,
which can be inspected by hovering over the points. Using
this mechanism, we find that the irrelevant peripheral points
correspond mostly to histogram bins that have little (or even
zero) variance across all images in our dataset. As expected,
these features have almost no predictive power.
Improvement: Table 3 presents the result of each learning
algorithm on the Melanoma test set, following the protocol
in Sec. Experimental protocol, for all 369 features and the
58 (mostly) relevant features shown in Fig. 14a and 14b.
Although the KNN and SVM results deteriorated slightly,
the RFC result improved. Also, our analysis allowed us to
discard a significant number of hand-engineered features.
Besides saving significant time in feature extraction, the
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insight provided by our visual analysis of the feature space
helps in deciding which types of features are most relevant
for classification.

Table 3. Melanoma test set accuracies, relevant features
according to Fig. 14

Features/Algorithm KNN RFC SVM
All (369) features 73.71% 76.49% 77.69%
58 features 73.31% 77.29% 76.10%

Proposed workflow
We now summarize the value added by the insights
described in Sections T1: Predicting system efficacy and
T2: Improving system efficacy by revisiting the high-level
workflow outlined in Fig. 1.

Our workflow begins when the user loads the data into
our analysis tool and considers the observation projection.
If the perceived class separation in this projection is good,
the classification task is likely quite simple (as discussed in
Sec. T1: Predicting system efficacy). As an extreme example,
consider the projection of the Corel dataset, where even
a 1-nearest neighbor algorithm in the 2D projection space
would achieve good results. In such cases, the user can
follow the traditional machine learning pipeline, with a high
expectation that the system will perform well.

A more interesting scenario occurs when the perceived
class separation in the projection is poor. In this case, the
next step is to use the mechanisms provided by our tool
to find a feature subset that brings separation. This may
require several iterations of feature scoring, analysis, and
backtracking. If no separation improvement can be found,
there are two possible scenarios: classification efficacy is
satisfactory (the projection is misleading with respect to
classifier behavior) or unsatisfactory. The first case is easy to
diagnose, and consists on conducting experiments following
the traditional machine learning pipeline. The second case
is the most complicated. In this case, we have shown that
the qualitative aspects of our proposed visualizations are
crucial in enabling the designer to diagnose the system.
For this purpose, our tool provides mechanisms to detect
the presence of outliers and confusion zones, and also to
inspect classification results based on a visual metaphor that
represents observations in a consistent way. By inspecting
the observation projection, the designer receives visual
feedback about which features are important to eliminate
confusion between classes. Furthermore, using the feature
projection view and feature scoring methods, the designer
can reason about the discriminative power of features,
and focus effort on related (or complementary) feature
descriptors. The new alternatives devised during this analytic
process can be fed back into the tool, closing the cycle.

Discussion
This section discusses several important aspects of our
proposed methodology and experiments.
Coverage: As any experimental study, many conclusions
are limited to the datasets that we presented. The particular
random choice of training and test data also affects

the results, although the amount of data we considered
diminishes this concern. Importantly, the extent of our
validation (i.e., experimental protocol, number of datasets
and learning algorithms) is in line with most similar papers
in visual analytics and machine learning.

While we have conducted experiments in additional
datasets (not presented for the sake of space, considering
our focus in qualitative aspects), the four datasets discussed
in the text illustrate well all types of feedback that can
be obtained from projections. We also experimented with
other dimensionality reduction techniques (namely,14;25),
but obtained the best predictive feedback from t-SNE46.
Although the success of our methodology is dependent on
choosing an appropriate dimensionality reduction technique,
a comparative analysis between such techniques was
considered beyond the scope of our work. Instead, we simply
aim to show how a particular technique can be successfully
combined with our methodology.

Our choice of learning algorithms for validation (KNN,
RFC, SVM) considers their widespread popularity, and aims
to make our approach appealing to a large number of
practitioners. The positive results obtained with these highly
distinct algorithms suggest that our approach is valuable for
other learning algorithms.
Limitations: It is easy and instructive to construct a synthetic
example where projections do not provide valuable visual
feedback for classification system design, This is described
next. Consider the task of classifying observations sampled
from two 10-dimensional parallel (affine) hyperplanes
that correspond to distinct classes. Consider also that
the distance between these hyperplanes is small when
compared to the expected distance between any pair of
neighboring sample elements from the same hyperplane. By
construction, this classification task is very easy for a linear
SVM, which consistently obtains 100% accuracy following
the experimental protocol detailed in Sec. Experimental
protocol. At the same time, a DR technique that tries to
preserve the original distances in the high-dimensional space
will not show a clear separation between the two classes,
as shown in Fig. 15. In simple terms, the visual feedback is
misleading, because the classification task is easy, but there is
no apparent visual separation between classes. It is important
to note that other learning algorithms did not perform well
on this test set (KNN: 51.20%, RFC: 54.94%). However, we
believe it is also possible to construct examples where the
visual feedback is unhelpful for those algorithms.

Figure 15. Planes classification, Linear SVM (AC: 100%).

Despite this worst case behavior, we argue that the
results presented in Secs. T1: Predicting system efficacy
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and T2: Improving system efficacy support our claims
that our proposed approach is highly valuable, particularly
considering the very low investment necessary to explore
data by our proposed methodology and tooling.
Scalability: Our feature space exploration approach benefits
from the visual scalability of projections to hundreds of
thousands of high-dimensional observations and hundreds of
dimensions, although visual clutter eventually becomes an
issue for the quality of the visual feedback.

Even in cases where features are difficult to interpret, we
have shown that our methods can be used to effectively
support the tasks T1 and T2. However, more study is
needed to assess how suitable our methods are for datasets
containing thousands of features.

The computational scalability limits are imposed by the
requirement of near-interactive response times. For instance,
considering a dataset (Madelon) composed of N = 2000
observations and D = 500 dimensions, the tool employed
in our experiments requires approximately 20s to compute
both observation and feature projections and present them for
exploration using a typical desktop computer (3.5 GHz Linux
PC, 16GB RAM). Clearly, the main bottleneck consists
on recomputing such projections for different subsets of
features. For some DR techniques13, this issue becomes
significant in datasets containing more than a few thousands
of observations, while others are able to deal with hundreds
of thousands of observations at interactive rates14;25.

Conclusion

In this paper, we have shown that projections are useful
tools for predicting classification system efficacy in several
real and synthetic datasets. The visual feedback given
by projections is especially helpful in qualitative tasks.
These tasks include inspecting the presence of outliers,
overall separation between observations in distinct classes,
distribution of observations of a given class in the feature
space, and presence of neighborhoods with mixed class
labels.

We also introduced a methodology that uses projections as
a basis for an interactive system designed to give insight into
the feature space. This methodology, and associated tooling,
can aid a designer in improving classification systems, either
directly (by suggesting features that should be eliminated
from consideration) or indirectly (by providing feedback
about which types of features are most important and
for which observations). In particular, we showed how a
projection representing observations can be integrated with
an interactive representation of feature similarity to aid in
this task.

As future work, we will consider studying further
the connection between the observation and feature
projections. We will also consider specific features of some
dimensionality reduction techniques, such as control point
positioning, which may be valuable for our methodology.
Furthermore, we intend on providing visual support to semi-
supervised learning tasks, such as active learning. Other
important direction for future work consists on designing
inverse mappings from the 2D observation projection to the
feature space to allow users to synthesize improved features

by interactively moving misclassified observations to their
desired neighborhoods.
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