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Abstract—LoRa has been recognized as one of the most
promising low-power wide-area (LPWA) techniques. Since LoRa
devices are usually powered by batteries, energy efficiency
(EE) is an essential consideration. In this paper, we investigate
the energy efficient resource allocation in LoRa networks to
maximize the system EE (SEE) and the minimal EE (MEE)
of LoRa users, respectively. Specifically, our objective is to
maximize the corresponding EE by jointly exploiting user
scheduling, spreading factor (SF) assignment, and transmit
power allocations. To solve them efficiently, we first propose
a suboptimal algorithm, including the low-complexity user
scheduling scheme based on matching theory and the heuristic
SF assignment approach for LoRa users scheduled on the same
channel. Then, to deal with the power allocation, an optimal
algorithm is proposed to maximize the SEE. To maximize
the MEE of LoRa users assigned to the same channel, an
iterative power allocation algorithm based on the generalized
fractional programming and sequential convex programming
is proposed. Numerical results show that the proposed user
scheduling algorithm achieves near-optimal EE performance,
and the proposed power allocation algorithms outperform the
benchmarks.

Index Terms: energy efficiency, LoRa, low-power wide-area,
matching theory.

I. INTRODUCTION

Driven by the massive connectivity, low data rate, and low
power consumption requirements in the Internet of Things
(IoT) networks, low-power wide-area (LPWA) networks have
emerged as a potential solution to enable long-distance power
efficient wireless communications [2], [3]. Compared with
traditional technologies prevalent in IoT networks, such as
Bluetooth, Wi-Fi, and Long-Term Evolution (LTE), LPWA
techniques achieve better tradeoffs of coverage range, data
rates, and power consumption. Among the emerging LPWA
technologies, Long Range (LoRa) [4], which operates in the
unlicensed bands, has attracted extensive attention.

LoRa network is composed of LoRa users, LoRa gateways,
and the network server. It adopts typical star topology, in
which the data and/or requests of LoRa end devices are
collected by the LoRa gateway and then it forwards them
to the LoRa network server [5]. The core of LoRa lies in the
adopted chirp spread spectrum (CSS) technique and multiple
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orthogonal spreading factors (SFs). The system throughput
is enhanced as multiple LoRa end devices can transmit at
the same time and frequency slot in one channel, but with
different SFs. Different SFs result in diverse signal to noise
ratio (SNR) sensitives, which leads to different transmission
rates and coverage ranges. So far, extensive research has
been carried out to investigate the impact of perfect and
imperfect SF orthogonality. For instance, the authors in [6]
have adopted the stochastic geometry tool to analyze the co-
channel interference caused by LoRa users using the same
SF over the same channel. Besides, the influence of imperfect
SF orthogonality on the system throughput has been analyzed
in [7] to provide insights on the SF assignment design of
uplink LoRa networks. The packet loss caused by inter-SF
collisions has been numerically analyzed and then validated
with experiments based on commercial devices in [8]. The
joint SF assignment and transmit power allocation algorithm
has been investigated in [9] to improve throughput fairness by
considering both co-SF and inter-SF interferences.

Typically, adaptive data rate (ADR) mechanism can be
enabled in the LoRaWAN to adjust the SF assignment and
transmit power, based on the messages obtained from previous
uplink measurements [10]. The ADR mechanism has been
presented in [11] from the perspective of the average coverage
time. The near-far problem and fair data rate deployment
ratios have been addressed in [12] to achieve the data rate
fairness among LoRa nodes based on LoRaWAN. By taking
the uplink throughput and data transmission times of a single
end device as the performance metrics, the authors in [13]
have analyzed the capacity and scalability performance for
uplink LoRaWAN. However, the centralized ADR scheme is
inefficient as it requests a number of uplink and downlink in-
formation exchanges to update the transmit power and SF step
by step. Moreover, ADR is unable to deal with user collisions,
which boosts the need to design efficient user scheduling and
power allocation schemes. Besides, the performance of a LoRa
network has been investigated in [14] to guarantee the fairness
among LoRa users, with particular focus on the effects of
interference caused by LoRa users using the same SF. By
adopting an interference-based simulation model, the authors
in [15] have analyzed the LoRa scalability, i.e., the number of
end devices that can be served per LoRa gateway. It is worth
noting that all the above studies mainly focus on the system
capacity, scalability, and interference management for uplink
LoRa networks.

Moreover, energy efficiency (EE) is considered as an es-
sential measurement metric in communication system design
from the perspective of both operators and users [16]–[20].



2

Thus far, extensive works have been conducted to realize
energy efficient communications for various networks. For
example, the joint time allocation and power control scheme
has been investigated in [21] to improve the EE of the wireless
powered communication networks. The energy efficient beam-
forming design has been studied in [22] to maximize the EE
for multiple-input single-output (MISO) NOMA systems. The
polynomial-time algorithm has been proposed in [23] to tack-
le the EE maximization problem for orthogonal frequency-
division multiple access (OFDMA) networks with base station
coordination. To guarantee fairness among users, the joint sub-
carrier assignment and power allocations have been exploited
in [24] to maximize the worst-link EE of OFDMA systems.
Particularly, energy consumption becomes a key point in IoT
networks [25], since most IoT applications are deployed on
battery-powered end devices that require a long lifetime, i.e.,
over 10 years. In [26], a novel deployment scheme based
on clustering topology has been proposed to realize the
energy efficient IoT networks. However, different from the
above networks, the energy efficient design in LoRa involves
not only user scheduling and power allocation, but also SF
assignment. Therefore, the existing EE methods cannot be
straightforwardly applied in LoRa networks.

Furthermore, LoRa networks feature low power operation
to enable long lifetime and high maintenance costs of massive
nodes, hence EE is more critical to be considered compared
with cellular networks. In practice, different communication
system requirements result in diverse EE design models. On
the one hand, to reduce the energy consumption of the entire
system, it is desired to maximize the system EE (SEE) [21],
[23], [27]. SEE design allocates more resources to users with
better channel conditions, hence the performance improve-
ment is achieved at the cost of LoRa users experiencing worse
channel conditions, which arises unfairness issues among
LoRa users. To guarantee the EE fairness, the problem can
be formulated into the format of max-min EE (MEE) [24].
Both EE models provide imperative and normative references
for energy efficient LoRa design.

To the best of our knowledge, the EE aspect of resource
allocation has not been well studied for LoRa networks, from
the perspective of SEE and MEE. Motivated by the above
observations and the fact that uplink communication is highly
favored, we investigate energy efficient transmission design
for uplink LoRa networks in this paper.

The main contributions of this paper are summarized as
follows:

1) To thoroughly emphasize the EE issues in the uplink
transmission of LoRa networks, we formulate the op-
timization problems in terms of SEE and MEE, re-
spectively. Then we decompose the original nonconvex
problems into three sub-problems correspondingly by
investigating the joint optimization problem of user
scheduling, SF assignment, and power allocations.

2) For the formulated problems, we first propose a dis-
tributed scheme by formulating user scheduling as a
two-sided matching problem, which facilitates LoRa
users to realize self-matching with proper channels. For
LoRa users matched into the same channel, we propose

a low-complexity heuristic SF assignment algorithm to
provide better coverage.

3) Within each channel, the LoRa gateway performs cen-
tralized algorithms to optimize power for LoRa users.
Specifically, to maximize SEE, the objective is first ap-
proximated by its lower bound, then an optimal transmit
power allocation algorithm is further proposed. For the
case of MEE, we first transform it into a more tractable
form based on the generalized fractional programming
method. Then the iterative power allocation problem is
reformulated as the difference of convex (DC) functions,
which is efficiently solved via sequential convex pro-
gramming.

The remainder of this paper is organized as follows. In
Section II, we present the system model of the uplink LoRa
networks and formulate two EE optimization problems. The
low-complexity energy efficient user scheduling and heuristic
SF assignment schemes are developed in Section III. In
Section IV, the power allocation algorithms for both problems
are provided. Simulation results are presented in Section V
and finally the paper is concluded in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Considering the uplink transmission in LoRa networks,
N active LoRa users communicate with one LoRa gateway
through M channels, which is shown in Fig. 1. LoRa users
located within the same channel share the same time and
frequency slots by adopting different SFs. Both the LoRa
gateway and LoRa users are equipped with the single antenna.
Denote M = {1, ...M} and N = {1, ...N} to be the channels
set and users set, respectively. Bm Hz is the bandwidth of the
m-th channel, SCm. The number of LoRa users scheduled

on SCm is labelled as Sm, i.e., Sm =
N∑
l=1

sm,l, where

sm,l ∈ {0, 1} is used to indicate whether an arbitrary user, Ul,
is allocated to SCm. If sm,l = 1, it indicates that Ul occupies
SCm, and sm,l = 0 if otherwise. Let S = {sm,l|m ∈ M , l ∈
N} denote the set of user clustering. It is worth mentioning
that Sm should be no more than 6 as the available SFs range
from 7 to 12 [28], which limits the maximum number of
active LoRa users that can be served simultaneously in one
channel. Let pm,l be the power allocated to Ul using SCm

and P = {pm,l|m ∈ M , l ∈ N} represent the set of power
allocation coefficients. It is assumed that perfect channel state
information (CSI) is known at the LoRa gateway by containing
the CSI feedbacks in the uplink message.

Assuming that Sm users are allocated within SCm, the
signal received at the LoRa gateway through SCm can be
expressed as

ym =

Sm∑
l=1

sm,l
√
pm,lhm,l + zm, (1)

where hm,l = gm,lςmd
−a
l indicates the channel coefficient

between Ul and the LoRa gateway occupying SCm, gm,l

represents the Rayleigh fading channel gain, dl denotes the
distance from Ul to the LoRa gateway, a is the channel path
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Fig. 1. System model of resource allocation in LoRa networks.

loss exponent, and ςm is a constant depending on path loss
of SCm. Denote zm ∈ CN(0, σ2

m) as the additive white
Gaussian noise (AWGN) with noise variance σ2

m.
The signal-to-interference-plus-noise ratio (SINR) of Ul,

received at the gateway over SCm is characterized as

SINRm,l(S,P ) =
sm,lpm,l|hm,l|2

ISF + σ2
m

, (2)

where ISF =
Sm∑

k=1,k ̸=l

pm,k|hm,k|2ψ(l, k) represents the inter-

ference caused by LoRa users adopting different SFs in the
same channel, and ψ ∈ [0, 1] represents the cross correlation
factors between the coded LoRa waveforms with different SFs.
Note that the interference is introduced due to imperfect SF
orthogonality.

Similar to [29], we assume that a transmission rate of
Shannon’s upper bound can be achieved by perfect coding, and
Shannon rate is adopted to model the LoRa-specific rates for
mathematical tractability. Note that due to the limited coding
rates in LoRa, the adopted Shannon rate serves as an upper
bound for the energy efficient LoRa design. The achievable
data rate and the overall power consumption for the l-th LoRa
user over SCm can be denoted as follows{

Rm,l (S,P ) = Bmlog2 (1 + SINRm,l) ,
Pm,l (S,P ) = ζm,lpm,l + P l

c ,
(3)

where ζm,l ≥ 1 is a constant denoting the power inefficiency,
P l
c represents the additional circuit power consumption of Ul

owing to inevitable electronic operations [23].
Therefore, the achievable sum rate and the total power

consumption of the system can be expressed as
R (S,P ) =

M∑
m=1

Sm∑
l=1

Rm,l (S,P ) ,

P (S,P ) =
M∑

m=1

Sm∑
l=1

Pm,l (S,P ) .

(4)

For energy efficient uplink transmissions in LoRa networks,
the goal is to maximize SEE, which is defined as information
bits within a unit energy. Therefore, SEE is formulated as a
ratio of the system sum rate to the total power consumption,
which can be characterized as

η =
R (S,P )

P (S,P )
. (5)

Moreover, MEE is defined as the ratio of individual LoRa
user rate to the corresponding consumed power, which can be
given as

ηm,l =
Rm,l (S,P )

Pm,l (S,P )
. (6)

B. Problem Formulations

To acquire an energy efficient resource allocation design for
the considered LoRa networks, we formulate the EE optimiza-
tion problems based on two major performance measurement
criteria in terms of SEE and MEE, respectively.

1) SEE: The SEE maximization problem is formulated as
follows

(P1) max
S,P ,τSF

η, (7a)

s.t. 0 ≤ pm,l ≤ pmax, (7b)
sm,l ∈ {0, 1} , ∀ m, l, (7c)
M∑

m=1

sm,l ≤ 1, ∀ l, (7d)

N∑
l=1

sm,l ≤ Λmax, ∀ m, (7e)

pm,l|hm,l|2

σ2
m

≥ τSF , ∀ m, l. (7f)

In (P1), (7a) represents the formulated problem to maxi-
mize SEE. Constraint (7b) limits the transmit power of each
LoRa user. In (7c), the value of the user cluster indicator
sm,l is either 0 or 1. Constraint (7d) indicates that each LoRa
user can access at most one channel. Due to the maximum
number of available SF and interference control, it is assumed
that at most Λmax users can be assigned to the same channel,
which is guaranteed by (7e). It is worth noting that the desired
LoRa user adopting a given SF can be detected successfully
only if the received SNR is no less than the threshold τSF ,
which is guaranteed by constraint (7f). Table I [6] shows the
relationship between the required SNR and SF.

2) MEE: The MEE optimization problem is given by

(P1
′
) max

S,P ,τSF

min
m,l

ηm,l, (8a)

s.t. (7b)− (7f), (8b)

where (8a) denotes the objective to maximize MEE.

Theorem 1. The formulated problems of both P1 and P1
′

are
NP-hard.

Proof : The proof is provided in Appendix A.
Since the formulated problems are nonconvex and NP-hard,

it is challenging and intractable to solve (P1) and (P1
′
) within

polynomial time.
Furthermore, the current ADR mechanism adopted in Lo-

RaWAN fails to perform the channel selection effectively, a
more efficient distributed user scheduling scheme needs to be
designed. Besides, the ADR scheme optimizes the transmit
power and SF based on some previous uplink messages, which
achieves low resource efficiency. Therefore, the optimal trans-
mit power allocation scheme that can be easily implemented
at the LoRa gateway is required. Moreover, as can be observed
from the expression of the objective functions and constraint
(7f), the channel and power allocations are coupled with each
other for both MEE and SEE. As the formulated problem is
NP-hard, to avoid the considerable complexity of the global
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TABLE I: Relationship between distance range and spreading
factors [14].

Spreading factor (SF) 7 8 9 10 11 12
Distance Range (km) 2 4 6 8 10 12
Required SNR (dB) -7.5 -10 -12.5 -15 -17.5 -20

optimum solution, we will exploit user scheduling, SF assign-
ment, and power allocation schemes separately. Specifically,
LoRa users first perform self-matching to match with the
corresponding channels. Since SF is only constrained by the
linear inequality (7f), for a user satisfying the SNR threshold
with a given SF may use any higher SF, as shown in Table
I. In this case, if there are multiple users satisfying the same
SNR threshold at the same time, the optimal channel, power
and SF allocation can only be achieved by the exhaustive
search method. To reduce the complexity, a suboptimal SF
assignment algorithm is proposed to be operated at the LoRa
gateway. Finally, the LoRa gateway allocates power for LoRa
users sharing the same channel, on the basis of the proposed
optimal power allocation algorithms. The details are described
in the next two sections.

III. ENERGY-EFFICIENT USER SCHEDULING

In this section, for the two formulated problems, energy ef-
ficient user scheduling scheme is firstly proposed to maximize
the corresponding EE. For LoRa users scheduled on the same
channel, a heuristic distance-based SF assignment scheme is
then proposed.

A. User Scheduling

In this section, we provide a matching theory based user
scheduling scheme with low complexity. Firstly, by assuming
that each user is allocated with the maximum power and a
given SF, (P1) and (P1

′
) can be reformulated as

(P2) max
S

η, (9a)

or max
S

min
m,l

ηm,l, (9a
′
)

s.t. sm,l ∈ {0, 1} , (9b)
M∑

m=1

sm,l ≤ 1, ∀ l, (9c)

N∑
l=1

sm,l ≤ Λmax, ∀ m. (9d)

It is noted that (P2) is a many-to-one matching problem for
both SEE and MEE, as at most one channel can be allocated
to a LoRa user while a subset of LoRa users can be assigned
into the same channel. Moreover, due to the interference term
in (2), each user’s preference on the channel is not only
influenced by the channel conditions, but also impacted by
the other LoRa users sharing the same channel. Similarly, each
channel not only cares for which LoRa users to match with,
but also concerns the co-channel interference introduced by
the other subset of LoRa users with different SFs. Hence, this
is a many-to-one matching game with peer effects [30].

To better illustrate the matching model with peer effects,
we firstly introduce a preference ordering for LoRa users, in

which for any given user Ul ∈ N , any two channels SCm,
SCm′ ∈ M , any two matchings φ and φ′ are defined as

(SCm, φ) ≻Ul
(SCm′ , φ′) ⇔ Rm,l(φ) > Rm,l(φ

′), (10)

which means that LoRa user Ul prefers channel SCm in
φ rather than SCm′ in φ′ only if Ul achieves higher rate
over channel SCm than over SCm′ . It is worth mentioning
that the preference order is based on achievable rates. The
reason is that, with given transmit power allocation, the power
consumption in the denominator of the objective is a fixed
value, the EE objectives are equivalent to the corresponding
rates optimization problems.

By defining channel SCm’s preference value on the user set
as RSEE

m =
∑N

l=1Rm,l and RMEE
m = minRm,l, ∀l ∈ SCm

for SEE and MEE, respectively, the preference ordering for
channel SCm can be obtained similarly.

Due to the existence of peer effects, stable matching is
not straightforwardly guaranteed. Therefore, the two-sided
exchange stability has been introduced to depict the impact
of peer effects on the matching game [30]. Firstly, a swap
matching and swap blocking pair are defined as follows:

Definition 1. A swap matching behaviour φj
l =

φ\{(Ul, SCm), (Uj , SCn)} ∪ {(Uj , SCm), (Ul, SCn)}
is defined as φ(Ul) = SCm and φ(Uj) = SCn.

Note that a swap matching is realized by performing a swap
operation, which motivates us to introduce swap-blocking pair.

Definition 2. Given a matching φ with a pair (Ul, Uj), if
there exists φ(Ul) = SCm and φ(Uj) = SCn such that
1) ∀q ∈ {Ul, Uj , SCm, SCn}, φj

l (q) ≥q φ(q);
2) ∃q ∈ {Ul, Uj , SCm, SCn}, φj

l (q) ≻q φ(q),
which means the swap matching φj

l is approved, and we call
(Ul, Uj) as a swap-blocking pair in φ.

The definition demonstrates that the achievable data rates of
any player, i.e., Ul and SCm, will not decrease by employing
a swap matching, and the data rates of at least one player
will increase. Then a stable matching status can be achieved
through a set of swap matching operations, known as a two-
sided exchange stable matching that is described in Definition
3.

Definition 3. A two-sided exchange stable (2ES) matching φ
can be achieved if it is not blocked by any swap-blocking pair.

Based on the above definition, the proposed user scheduling
algorithm is described as Algorithm 1, which consists of
initialization step and swap matching step. The initialization
step is a deferred acceptance algorithm [31], which aims
to generate the initial matching. Specifically, the CSI-based
preference list is constructed for each LoRa user, i.e.,
j∗ = argmax

j∈M
|hj,i|2 is the most preferred channel for

LoRa user Ui. For the LoRa gateway, it constructs the
distance-based preference list, i.e., the highest preference is
the closest LoRa user, due to the fact that LoRa provides
long-range communications. Each LoRa user proposes to
the highest preference channel, and each channel picks at
most Λmax users based on its preference list. Then the
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remaining LoRa users propose to their second preference,
and the process stops until no unmatched users exist. In the
swap matching step, each LoRa user keeps searching for
swap-blocking pairs to perform swap matching operation if
approved. The searching terminates until no swap-blocking
pairs can be formed, and the final stable matching is returned.

Theorem 2. The proposed user scheduling Algorithm 1 con-
verges to a 2ES matching φ∗ within a finite number of swap
operations.

Proof : The proof is provided in Appendix B.

Theorem 3. The computational complexity of Algorithm 1 is
O(MN + 1

2IΛmaxN(M − 1)) at worst, where I denotes the
number of iterations for swap matching step.

Proof : The proof is provided in Appendix C.

B. SF Assignment

As can be seen from the structure of the formulated prob-
lems, i.e., (P1) and (P1

′
), the SF is only related to the linear

inequality constraint, i.e., the SNR threshold requirement.
With given power allocation and user scheduling scheme,
we need to check whether the SF constraint is satisfied. By
applying the proposed user scheduling scheme, LoRa users
are allocated into the corresponding channels. For a given
channel, the distance of each scheduled LoRa user is easily
obtained at the LoRa gateway. Since LoRa network aims to
realize long-range communications up to 40 km, the large-
scale fading becomes the main effect for the channel gain.
Therefore, a heuristic distance-based SF assignment scheme is
proposed, which is summarized as Algorithm 2. Specifically,
in each channel, a predefined SF is assigned to each LoRa user
according to the relationship between the distance range and
corresponding SF based on Table I. Then the LoRa gateway
keeps searching for the SF assigned to more than one LoRa
user. For LoRa users sharing the same SF, a higher available
SF in the network is reassigned to the one with a longer
distance to the LoRa gateway. The searching iteration stops
until all LoRa users accessing the same channel occupy a
unique SF.

IV. ENERGY-EFFICIENT POWER ALLOCATION
ALGORITHMS

In this section, we focus on the optimal power allocations
to maximize SEE and MEE, respectively, with the obtained
user scheduling and SF assignment schemes given in the last
section. It is worth mentioning that though the proposed power
allocation algorithms are centralized approaches, it is easy
to be implemented at the LoRa gateway. The reason is that,
the LoRa gateway can easily obtain the CSI of LoRa users
assigned within each channel, due to the fact that the number
of LoRa users sharing the same channel is limited after user
scheduling. Moreover, as the LoRa gateway is more powerful
than LoRa users, the centralized power allocation algorithms
implemented at the LoRa gateway help LoRa users avoid
energy consumption for power allocation.

Algorithm 1 User Scheduling Algorithm for LoRa Networks
Based on Matching Theory

Initialization step
While there exists unmatched users and channels
1) j∗ = argmax

j∈M
|hj,i|2.

2) LoRa user Ui matches with its most preferred channels
that it has not been rejected before.
3) Remove Ui from N .
Swap matching step
Repeat
1) For user Ui ∈ N , it searches N\Uj .
2) if Ui and Uj is swap-blocking pair, then

Ui exchanges its matching with Uj and set φ = φj
i .

3) else
4) keep the current matching.
5) end if
Until no swap-blocking pair can be formed for all users.
Return the stable matching φ

Algorithm 2 Distance-based SF Assignment Algorithm for
LoRa Networks

1: Initialization: Distance-based SFs are assigned to LoRa
users scheduled within one channel according to Table I.

2: Initialize the set of SFk to record users who has been
allocated with SF of k

3: while {SFk ≥ 2} do
4: For LoRa users j1,...jn sharing the same SF, sort the

distance as dj1 < ... < djn .
5: Assign SF of k to LoRa user j1.
6: Increase SF by one in sequence for LoRa user j2,...jn.
7: end while
8: Until all users in one channel occupy different SFs.

A. Energy-Efficient Power Allocation for SEE

With given user scheduling and SF assignment schemes, we
consider the power allocation problem (P1) with constraints
(7b) and (7f). The difficulty lies in the nonconvex objective
function as all the constraints are linear inequalities. We first
approximate the objective with the lower bound by using the
following inequality [32]

ln(1 + γ) ≥ αlnγ + β (11)

where

α =
γ̃

1 + γ̃
, (12a)

β = ln(1 + γ̃)− γ̃

1 + γ̃
ln(γ̃). (12b)

The approximation is tight when γ = γ̃. The proof can be
easily acquired by substituting γ = γ̃ into the right side of
inequality (11).
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With inequality (11), we get a lower bound for the achiev-
able data rate of Ul accessing SCm as follows

Rm,l ≥ R̃m,l =
Bm

ln2
(αm,lln(SINRm,l) + βm,l) (13)

=
Bm

ln2

(
αm,lln

(
pm,l|hm,l|2∑Sm

k=1,k ̸=l pm,k|hm,k|2 + σ2
m

)
+ βm,l

)
.

However, R̃m,l is still nonconvex. To convert it into a
concave expression, we introduce a variable transformation
as xm,l = ln(pm,l). Then we have

ln(SINRm,l) = ln(|hm,l|2) + xm,l

−ln(

Sm∑
k=1,k ̸=l

exm,k |hm,k|2 + σ2
m), (14)

which is concave over x = {xm,l|m ∈ M , l ∈
N} since the log-sum-exp function is convex. Through
the above transformation, the original objective can then
be approximated by its lower bound function, i.e.,

η ≥ η̃ =

M∑
m=1

Sm∑
l=1

Bm
ln2 (αm,lln(SINRm,l)+βm,l)

M∑
m=1

Sm∑
l=1

(ζm,lpm,l+P l
c)

. The lower

bound approximation is a concave-convex fractional func-
tion as it consists of a concave numerator f(pm,l) =
M∑

m=1

Sm∑
l=1

Bm

ln2 (αm,lln(SINRm,l) + βm,l), and an affine denom-

inator g(pm,l) =
M∑

m=1

Sm∑
l=1

(ζm,lpm,l+P
l
c). The concave-convex

fractional problem can be efficiently solved with the Charnes-
Cooper transformation [33], which is given as follows:

Lemma 1. A concave-convex fractional problem, max f(x)
g(x) ,

where f is concave and g is convex, can be reformulated as a
concave problem

max ϕf(
y

ϕ
) (15a)

s.t. ϕg(
y

ϕ
) ≤ 1, (15b)

with the Charnes-Cooper transformation y = x
g(x) , ϕ = 1

g(x)
and ϕ > 0.

As a result, the original problem is recast as the following
equivalent convex optimization problem

(P3) max
x̃m,l

ϕ

M∑
m=1

Sm∑
l=1

R̃m,l

(
x̃m,l

ϕ

)
(16a)

s.t. ϕ(
M∑

m=1

Sm∑
l=1

e
x̃m,l

ϕ + Pc) ≤ 1, (16b)

ϕe
x̃m,l

ϕ ≥ 0, (16c)

ϕ(e
x̃m,l

ϕ − pmax) ≤ 0, ∀ m, l, (16d)

ϕ(σ2
mτSF − e

x̃m,l
ϕ |hm,l|2) ≤ 0, ∀ m, l,

(16e)
ϕ > 0, (16f)

Algorithm 3 Optimal Power Allocation for Solving (P3)

Initialize feasible power allocation variables P 1.
Set t = 1. The value of (16a) is calculated with P 1, denoted
as η0.
while ηt−ηt−1

ηt−1 > ϵ, where ϵ is a given constant.
Set t = t+ 1.
Update x̃tm,l and ϕt by solving (P3).

Update power allocation variables P t by ptm,l = e
x̃t
m,l

ϕt .
Update the objective value ηt.

end while
Output the optimal P ∗.

where

R̃m,l(
x̃m,l

ϕ
) =

Bm

ln2

(
αm,lln( ˜SINRm,l) + βm,l

)
, (17a)

ln( ˜SINRm,l) = ln

 e
x̃m,l

ϕ |hm,l|2∑Sm

k=1,k ̸=l e
x̃m,k

ϕ |hm,k|2 + σ2
m

 .

(17b)

The equivalence between (14) and (17b) is guaranteed
with the aid of Charnes-Cooper transformation introduced by
Lemma 1. It is noted that (P3) is a convex problem, which
can be efficiently solved with standard convex solvers [34].
The corresponding procedure is outlined in Algorithm 3.

To prove the convergence of the proposed Algorithm 3, we
provide the following proposition.

Proposition 1. The value of η is improved continuously in
each iteration of Algorithm 3, and finally Algorithm 3 con-
verges to a Karush-Kuhn-Tucker (KKT) point of the original
problem.

Proof : The proof is provided in Appendix D.

B. Energy-Efficient Power Allocation for MEE

For the case of MEE, given user scheduling and SF assign-
ment, denote ηoptMEE and P opt as the optimal solution to MEE
and power allocation coefficients, the following results hold

ηoptMEE = max
P

min
m,l

Rm,l (P )

Pm,l (P )
= min

m,l

Rm,l (P
opt)

Pm,l (P opt)
. (18)

Then we have Theorem 4 as below:

Theorem 4. The optimal solution ηoptMEE is obtained on
condition that

max
P

min
m,l

[Rm,l (P )− ηoptMEEPm,l (P )]

=min
m,l

[Rm,l

(
P opt

)
− ηoptMEEPm,l

(
P opt

)
] = 0. (19)

Proof : The proof is provided in Appendix E.
Theorem 4 indicates that the optimal solutions of the

original problem can be obtained by equivalently solving (19).
As the value of ηoptMEE is unknown in advance, the properties
of (19) need to be further revealed.
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Denote that π(ηm,l) = max
P

min
m,l

[Rm,l (P )−ηm,lPm,l (P )],

we have the following theorem:

Theorem 5. i) π(ηm,l) strictly decreases with ηm,l.
ii) With ηm,l > 0, we obtain that

π(ηm,l) =


> 0 if ηm,l < ηoptMEE ,

= 0 if ηm,l = ηoptMEE ,

< 0 if ηm,l > ηoptMEE ,

(20)

Proof : The proof is provided in Appendix F.
Therefore, based on the properties of π(ηm,l), we can apply

the bisection method to solve it. The initial lower and upper
bounds can be set as ηmin

m,l = 0 and ηmax
m,l , where ηmax

m,l is a
relatively large constant. Given ηmin

m,l and ηmax
m,l , the algorithm

based on the bisection method is summarized as Algorithm 4.
For the i-th iteration with a given ηim,l at line 4 of Algorithm

4, to update the power allocation coefficients, we need to deal
with the following optimization problem:

(P4) max
P

min
m,l

Rm,l (P )− ηim,lPm,l (P ), (21a)

s.t. 0 ≤ pm,l ≤ pmax, (21b)

pm,l|hm,l|2

σ2
m

≥ τSF , ∀ m, l. (21c)

All the constraints in (P4) are convex, the difficulty lies
in the nonconvex objective. To deal with it, an auxiliary
variable µ is introduced to denote that min

m,l
Rm,l (P ) −

ηim,lPm,l (P ) ≥ µ. Due to the minimization operator,
Rm,l (P ) − ηim,lPm,l (P ) ≥ µ can be satisfied for all LoRa
users. For a given ηim,l, the problem is reformulated as

(P5) max
P

µ (22a)

s.t. Rm,l (P )− ηim,lPm,l (P ) ≥ µ, (22b)

0 ≤ pm,l ≤ pmax, (22c)

pm,l|hm,l|2

σ2
m

≥ τSF , ∀ m, l. (22d)

where the difficulty only lies in the nonconvex constraint
(22b).

The left side of constraint (22b) can be further denoted as
fi(P )− zi(P ), where fi(P ) and zi(P ) are defined as

fi(P ) = Bmlog2

(
Sm∑
k=1

pm,k|hm,k|2 + σ2
m

)
− ηim,lPm,l (P ) ,

(23a)

zi(P ) = Bmlog2(

Sm∑
k=1,k ̸=l

pm,k|hm,k|2 + σ2
m). (23b)

Constraint (22b) is equivalent to that

fi(P )− zi(P ) ≥ µ. (24)

Moreover, we can find that fi(P ) and zi(P ) are both
concave functions with respect to P , thus inequality (24) is
a DC programming function [35]. Due to the concave feature

Algorithm 4 The Bisection Method to Solve MEE

1: Given ηmin
m,l and ηmax

m,l , the tolerance ϵ = 10−3, and
iteration index i = 0.

2: while 1 do
3: ηim,l =

ηmin
m,l +ηmax

m,l

2 .
4: update P i by solving (21);
5: if |s| = |min

m,l
Rm,l

(
P i
)
− ηim,lPm,l

(
P i
)
| < ϵ

6: P opt = P i, ηoptMEE = min
m,l

Rm,l(P i)
Pm,l(P i) .

7: break.
8: else if s < 0 ηmax

m,l = ηim,l.
9: else if s > 0 ηmin

m,l = ηim,l.
10: end if
11: i = i+ 1.
12: end while.

Algorithm 5 DC-based Power Allocation Method for MEE

Initialize P 0, set n = 0, q0 = 0, q1 = 1, and the tolerance
ϵ = 10−3.
while |qn+1 − qn| ≥ ϵ

Update P n by solving (P6).
Update qn = min

m,l
[fi(P

n)− zi(P
n)] .

Update n = n+ 1.
end while
Output the optimal power allocation coefficients P opt =
P n.

of zi(P ), we can further approximate it by its upper bound
with the first-Taylor expansion as follows:

zi(P ) ≤ zi(P
n) +∇ziT (P n)(P − P n), (25)

where P n is the value of P at the n-th iteration, ∇ziT (P )
represents the gradient of zi(P ), which can be denoted as

∇zi(P ) =
νm,k

Sm∑
k=1,k ̸=l

pm,k|hm,k|2 + σ2
m

. (26)

Specifically, νm,k is a Sm-dimensional vector that can be
given as

νm,k =

{
0 if k = l,

Bm|hm,k|2
ln2 if k ̸= l.

(27)

As a result, the original problem has been converted into
the convex form, and during the n-th iteration, we need to
tackle the following convex problem

(P6) max
P

µ (28a)

s.t. fi(P )−
(
zi(P

n) +∇ziT (P n)(P − P n)
)
≥ µ,

(28b)
0 ≤ pm,l ≤ pmax, (28c)

pm,l|hm,l|2

σ2
m

≥ τSF , ∀ m, l. (28d)
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Therefore, the detailed process of the DC programming
approach to solve power allocations for MEE is outlined as
Algorithm 5.

To prove the convergence of the proposed Algorithm 5, we
have the following proposition.

Proposition 2. The proposed Algorithm 5 continuously con-
verges to a stationary point of (P4) with given ηim,l.

Proof : The proof is provided in Appendix G.

C. Complexity Analysis

For the energy efficient power allocation for SEE, denote
L
(1)
max as the maximum iteration number of Algorithm 3,

whereas the computational time to solve (P3) by interior point
method is proportional to O(r3.5δ) [36], where r denotes the
number of variables, and δ is the number of bits needed to
represent the entries in the optimization problem. Therefore,
the whole complexity to solve SEE is O(L

(1)
max(N+1)3.5δ(1)).

Concerning MEE, the computational complexity comes
from Algorithm 4 and Algorithm 5. Note that by appropriately
setting the initial values as ηmin

m,l ≤ ηoptMEE ≤ ηmax
m,l , with a giv-

en accuracy ϵ, the complexity of the bisection method to solve
Algorithm 4 is log2(ϵ

−1(ηmax
m,l −ηmin

m,l )). For Algorithm 5, de-
note the maximum iteration number as L(2)

max, while the com-
plexity of the interior point method to solve (P6) is proportion-
al to O(N3.5δ(2)). In conclusion, the computational complex-
ity of MEE is O

(
log2(ϵ

−1(ηmax
m,l − ηmin

m,l ))L
(2)
max(N3.5δ(2))

)
.

V. NUMERICAL RESULTS

In this section, numerical results are provided to evaluate
the performance of the proposed algorithms. In the simu-
lations, the simulation parameters are set following LoRa
specifications [4]. It is assumed that the LoRa gateway located
in the cell center and all the LoRa users are uniformly
distributed in a circular range with the radius of 12 km, which
is consistent with LoRa characteristics to enable long-range
transmission. The number of channels is set to be M = 3
working at 868 MHz. The bandwidth of each channel is
set to be Bm = 125 kHz. We set the path loss factor to
be α = 3.5. Moreover, the duty cycle is set as 1% by
following the LoRaWAN specification. The noise is defined
as σ2 = −174+10log10Bm dBm. Without loss of generality,
we assume that P 1

c = · · · = PN
c = Pc, which indicates the

same circuit power consumption is adopted for all LoRa users.
Besides, the cross correlation factor ψ is a random variable
between 0 and 1, which keeps the same for different SFs
within a given channel realization, and ψ varies for different
channel realizations.

Fig. 2 illustrates the effectiveness of the proposed user
scheduling scheme versus the number of LoRa users with
pmax=20 dBm for both SEE and MEE. The results of the
exhaustive search approach and random matching method
are provided for comparison. In the ”random matching”
scheme, the LoRa user randomly chooses a channel among
M , whereas adopting the proposed SF assignment and power
allocation schemes. We observe that the system EE increases

monotonically with the number of LoRa users for all the
presented methods in the figure, while the max-min EE shows
the inverse trend. It is noted that the performance of the
proposed low-complexity user scheduling algorithm is very
close to that of the exhaustive search method for both cases.
Furthermore, the proposed matching algorithm yields much
better performance than the random matching scheme. In ad-
dition, the gap between the proposed matching algorithm and
random matching increases with the larger number of active
LoRa users. The reason is that, when the number of active
LoRa users increases, the intra-channel interference caused
by LoRa users with different SFs can be well controlled
by the proposed user scheduling scheme, whereas it cannot
be suppressed by random user scheduling. Besides, random
user scheduling scheme will schedule channels with poor
conditions, which decreases the EE in terms of both SEE and
MEE. Furthermore, the proposed matching algorithm plays a
more important role in MEE design due to the fact that the
max-min EE can be more easily affected by the interference.

In Fig. 3, the performance of the energy efficient power
allocation schemes for SEE are evaluated with the active
LoRa users ranges from 6 to 16 for pmax=20 dBm. The
proposed resource allocation algorithm for SEE is denoted as
”Matching+CC”, for simplification. To provide a fair com-
parison, the proposed user scheduling and SF assignment
algorithms are adopted for all the three methods presented
in the figure. As can be observed from Fig. 3, for SEE,
the system EE performs increasing trends with the number
of active LoRa users for all three schemes, and especially,
the proposed ’matching+CC’ algorithm produces the best
performance among all three schemes. For instance, when
the number of LoRa users is 12, the available system EE for
matching+CC is 8.1×105 bits/Joule, while for matching+fixed
power and matching+random power are 4.9 × 105 bits/Joule
and 3.1×105 bits/Joule, respectively. Moreover, the advantage
of the proposed scheme is more obvious when there are more
LoRa users since the gap becomes larger. The reason is that,
the intra-channel interference for LoRa users with different
SFs cannot be effectively suppressed for random and fixed
power allocation.

In Fig. 4, we provide the performance of the proposed
power allocation scheme named as ”Matching+DC”, with
the different number of LoRa users for MEE. It shows
that the trend for three curves is similar, and the proposed
”Matching+DC” scheme yields the best system performance
among all three schemes. It is noted that the max-min EE
descends with the increasing number of available users, due to
the fact that increasing the number of active LoRa users results
in more users scheduled in one channel, which increases
interference caused by LoRa users allocated in one channel.
As a result, the max-min EE declines. In addition, the benefit
of the proposed power allocation scheme becomes more
obvious with the increasing number of active LoRa users as
the gap becomes larger, which is the same as that of Fig. 3.

The system EE performance comparison between SEE and
MEE is illustrated in Fig. 5, based on the same random
channel realization. We plot the relationship between system
EE and the maximum transmit power for both SEE and MEE.
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Fig. 2. Energy efficiency versus number of active LoRa users, N.
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Fig. 3. System energy efficiency comparison of the proposed
power allocation schemes versus number of active LoRa users,
N.
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Fig. 4. Max-min energy efficiency comparison of the proposed
power allocation schemes versus number of active LoRa users,
N.

We can see that the SEE design achieves significantly higher
system EE compared with MEE design. The system EE gap
between Pc = 0.01 W and Pc = 0.05 W decreases with pmax

for both SEE and MEE design. This is because the proportion
of circuit power consumption decreases with the increasing
pmax, and the effect of circuit power consumption is more
obvious in the low power regime. Moreover, when Pc = 0.01
W, the system EE firstly increases with pmax and reaches the
peak at 22 dBm, and then it decreases.
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Fig. 5. System energy efficiency comparison between SEE and
MEE versus pmax.
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Fig. 6. Max-min energy efficiency comparison between SEE
and MEE versus pmax.

Fig. 6 is plotted to compare the max-min EE performance
for SEE and MEE with the given random channel, which
indicates that the max-min EE for MEE slightly improves with
the increasing pmax. However, for SEE, the max-min EE firstly
keeps constant, and then decreases. The reason is that, when
pmax becomes larger, more resources will be allocated to users
with bad channel conditions, which guarantees fairness among
users for MEE design. On the other hand, to improve system
performance, SEE will schedule more power to users in good
channel conditions and sacrifice the benefit of bad users,
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and the corresponding max-min EE decreases. Moreover, for
MEE, the gap between Pc = 0.01 W and Pc = 0.05 W
becomes smaller with pmax, due to the reason that pmax

dominates Pc in the high power regime. Combining Fig. 5
and Fig. 6, it can be seen that SEE and MEE have completely
different preferences in EE design, and the network can
adopt the corresponding strategies according to the system
requirement.

VI. CONCLUSION

In this paper, we have investigated the uplink LoRa net-
works to maximize the EE of the whole network and the
minimal EE of LoRa users, named as SEE and MEE, re-
spectively. Particularly, we decompose the formulated prob-
lems into three sub-problems, including user scheduling, SF
assignment, and power allocation. Moreover, we have pro-
posed a low-complexity user scheduling scheme to solve the
channel assignment problem by formulating it as a many-to-
one two-sided matching problem with peer effects. The SF
is assigned to LoRa users scheduled on the same channel
based on the distance between LoRa user and gateway, which
is obtained from the stable matching. Moreover, for energy
efficient power allocation to maximize SEE, we approximate
the fractional nonconvex function by its lower bound, which
can be further transformed into convex approximations with
Charnes-Cooper transformation. While to maximize MEE, an
iterative method based on generalized fractional programming
and DC programming has been proposed. Numerical results
have shown that the proposed matching algorithms and power
allocation schemes outperform the existing schemes in terms
of both SEE and MEE.

APPENDIX A
PROOF OF THEOREM 1

Take SEE as an example, Theorem 1 can be proved by
considering two cases, i.e, Λmax = 1 and Λmax > 1.

• When Λmax = 1, the original SEE reduces to the joint
channel and power allocations for system EE maximiza-
tion problem in an OFDMA system, the NP-harness has
already been proved in [37].

• For the case of Λmax > 1, we prove that SEE is NP-
hard even without considering power allocations. We
construct a case of SEE with given power allocation
coefficients and the NP-hardness can be proved by estab-
lishing the equivalence between the constructed instance
and 3-dimensional matching problem, which is known
to be NP-hard. The instance with N LoRa users, M
channels, and Λmax = 2 is considered. Let X and Y
be two different sets with |X| = |Y| = N

2 and V
be a subset of M × X × Y. Assuming that any tripe
Vi = (mi, xi, yi) ∈ V , which means LoRa users xi ∈ X,
yi ∈ Y are selected on channel mi ∈ M . With given
power allocation coefficients, denote the maximized sum
rate with any given Vi as RVi . Hence, we just need to
verify the 3-dimensional problem if there exists V

′ ⊂ V ,
satisfying that 1) m1 ̸= m2, x1 ̸= x2, and y1 ̸= y2 for

any two triples (m1, x1, y1) ∈ V
′

and (m2, x2, y2) ∈ V
′
.

2)V
′
=min{M, N2 }.

According to the definition, if the feasibility problem is NP-
hard, the original problem is also NP-hard [38]. Therefore,
denote the sum rate for any triple as RV

′
i

, given the power
allocations, the sum rate feasibility problem can be expressed
as
∑i=V

′

i=1 RV
′
i

≤ ϵ, where ϵ is a given constant. When
ϵ becomes positive infinity, an instance of the feasibility
problem corresponds to a 3-dimensional matching problem,
then a special case of the original SEE is NP-harness, which
proves the original SEE is NP-hard. The proof for MEE is
similar and omitted here. The proof is completed.

APPENDIX B
PROOF OF THEOREM 2

Theorem 2 is proved from two aspects. Firstly, the number
of possible swap matching operations is finite since only a
limited number of LoRa users can occupy the same channel.
In addition, Due to the feature of swap matching given by
Definition 2, if a swap-matching is approved, the achievable
data rates of any player, i.e., Ul and SCm, will not decrease by
employing a swap matching, and the data rates of at least one
player will increase. Therefore, the corresponding objectives,
i.e., (7a) and (8a), will increase after each swap matching
operation. The spectrum resources are limited, which restricts
the upper bound of energy efficiency. Hence, there is a swap
matching after which no further energy efficiency is improved
and Algorithm 1 converges to a 2ES matching. The proof is
completed.

APPENDIX C
PROOF OF THEOREM 3

The initialization step is a deferred acceptance algorithm,
the complexity depends on the process of user proposing,
which is up to O(MN) in the worst case. Besides, the
computational complexity of the swap matching step lies in
the number of iterations and swap operations. In each iteration,
for any channel SCm, the maximum assigned users is Λmax.
For user Uj , there exists (M − 1) possible swap-blocking
pairs in φj

l . The potential combinations for φj
l with j fixed is

Λmax(M−1). Since there are N LoRa users, we can conclude
that the number of swap matchings is ΛmaxN(M −1) during
each iteration. Considering the number of iterations, the
total complexity of swap matching is O( 12IΛmaxN(M − 1)).
Combining the above two phases, the complexity of Algorithm
1 is O(MN+ 1

2IΛmaxN(M−1)) in the worst case. The proof
is completed.

APPENDIX D
PROOF OF PROPOSITION 1

With inequality (11) and equation (14), the original SEE
has been transformed into a concave-convex problem, which
implies that KKT conditions are sufficient and any local
maximum is the global maximum [39]. Besides, a feasible
point set {x̃tm,l} and {ϕt} at iteration t can be obtained by
solving (P3), the power allocated to each user is calculated
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as pm,l
t = e

x̃t
m,l

ϕt . The system EE ηt can be further obtained
according to (7a). Moreover, (P3) is concave in (x̃, ϕ), with
the interior point method, we can derive that ηt ≤ ηt+1 which
means the Algorithm 3 converges. The proof is completed.

APPENDIX E
PROOF OF THEOREM 4

The proof can be proved from two aspects. We first prove
the necessity of Theorem 4. From equation (19), we can
deduce that

ηoptMEE = min
m,l

Rm,l (P
opt)

Pm,l (P opt)
≥ min

m,l

Rm,l (P )

Pm,l (P )
, (E.1)

which is equivalent to the following

min
m,l

[Rm,l (P )− ηoptMEEPm,l (P )] ≤ 0, (E.2a)

min
m,l

[Rm,l

(
P opt

)
− ηoptMEEPm,l

(
P opt

)
] = 0. (E.2b)

Therefore, the maximum value for the left side of (E.2a)
can be achieved if and only if P = P opt, which completes
the necessity proof.

The we prove the sufficiency of Theorem 4. Assuming P
′

as the optimal power allocation to (19), then for any feasible
power allocation coefficient P , we have the following function

min
m,l

[Rm,l (P )− ηoptMEEPm,l (P )] ≤

min
m,l

[Rm,l

(
P

′
)
− ηoptMEEPm,l

(
P

′
)
] = 0. (E.3)

As a result, we can obtain that

ηoptMEE = min
m,l

Rm,l

(
P

′
)

Pm,l (P
′)
, (E.4)

which means P
′

is the optimal power allocation of the original
problem. The proof is completed.

APPENDIX F
PROOF OF THEOREM 5

Let us assume that P 1 and P 2 be the optimal power
solution corresponding to given max-min EE η1m,l and η2m,l,
with the condition η1m,l > η2m,l, then we can deduce the
following

π(η1m,l) = max
P

min
m,l

[Rm,l (P )− η1m,lPm,l (P )] (F.1a)

= min
m,l

[Rm,l

(
P 1
)
− η1m,lPm,l

(
P 1
)
] (F.1b)

< min
m,l

[Rm,l

(
P 1
)
− η2m,lPm,l

(
P 1
)
] (F.1c)

≤ min
m,l

[Rm,l

(
P 2
)
− η2m,lPm,l

(
P 2
)
] = π(η2m,l),

(F.1d)

where inequality (F.1c) is derived from the condition that
η1m,l > η2m,l, (F.1d) is obtained due to the fact P 2 is the
optimal solution to η2m,l. Hence, π(ηm,l) is monotonically
decreasing with ηm,l. In addition, incorporating the conclusion
gained from Theorem 4, we can easily derive the property ii)
of Theorem 5. The proof is completed.

APPENDIX G
PROOF OF PROPOSITION 2

To prove the convergence of Algorithm 5, we need to
confirm that the optimal solution to problem (P6) at n-th
iteration is also a feasible point of the iteration n+1. From the
characteristic of inequality (28b), denote P ∗ as the optimal
solution to (P6) at iteration n, the following result can be
obtained:

u ≤ qn (G.1a)

= min
m,l

fi(P
∗)−

(
zi(P

n) +∇ziT (P n)(P ∗ − P n)
)
(G.1b)

= min
m,l

fi(P
n+1)−

(
zi(P

n) +∇ziT (P n)(P n+1 − P n)
)

(G.1c)

≤ min
m,l

[fi(P
n+1)− zi(P

n+1)] = qn+1, (G.1d)

where the equality (G.1c) holds as P n+1 is the optimal solu-
tion of n-th iteration. Besides, inequality (G.1d) can be derived
with inequality (25), since the first-Taylor approximation is an
upper bound of zi(P ).

In conclusion, we can obtain that the objective value at the
iteration n + 1 is larger or equal to that achieved from the
n-th iteration, which proves the convergence of Algorithm 5.

Moreover, denote constraint (28b) as ς(P ) = fi(P ) −(
zi(P

n) +∇ziT (P n)(P − P n)
)
. Since Algorithm 5 con-

verges, then P n = P n+1 when n → ∞. The first-order
optimality condition [40] can be written as

∇ςT (P n)(P − P n) = (∇fTi (P n)−∇zTi (P n))(P − P n)
(G.2a)

= ∇ςT (P n+1)(P − P n+1) (G.2b)
≤ 0. (G.2c)

where equality (G.2a) holds since ς(P ) has the same gradient
value as fi(P )− zi(P ) at the point P n. (G.2b) is derived by
replacing P n with P n+1, and (G.2c) is gained for P = P n.

Consequently, the first-order optimality condition of prob-
lem (P4) is confirmed. According to [41, Proposition 3],
we can conclude that the result obtained from Algorithm 5
satisfies KKT conditions and is a stationary point of (P4).
The proof is completed.
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