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Abstract 
Methane and CO2 emissions from the natural gas supply chain have been shown to vary widely but 

there is little understanding about the distribution of emissions across supply chain routes, 

processes, regions and operational practises. This study defines the distribution of total methane 

and CO2 emissions from the natural gas supply chain, identifying the contribution from each stage 

and quantifying the effect of key parameters on emissions. The study uses recent high-resolution 

emissions measurements with estimates of parameter distributions to build a probabilistic emissions 

model for a variety of technological supply chain scenarios. The distribution of emissions resembles 

a log-log-logistic distribution for most supply chain scenarios, indicating an extremely heavy tailed 

skew: median estimates which represent typical facilities are modest at 18 – 24 g CO2 eq./ MJ HHV, 

but mean estimates which account for the heavy tail are 22 – 107 g CO2 eq./ MJ HHV. To place these 

values into context, emissions associated with natural gas combustion (e.g. for heat) are 

approximately 55 g CO2/ MJ HHV. Thus, some supply chain scenarios are major contributors to total 

greenhouse gas emissions from natural gas. For methane-only emissions, median estimates are 0.8 – 

2.2% of total methane production, with mean emissions of 1.6 - 5.5%. The heavy tail distribution is 

the signature of the disproportionately large emitting equipment known as super-emitters, which 

appear at all stages of the supply chain. The study analyses the impact of different technological 

options and identifies a set of best technological option (BTO) scenarios. This suggests that 

emissions-minimising technology can reduce supply chain emissions significantly, with this study 

estimating median emissions of 0.9% of production. However, even with the emissions-minimising 

technologies, evidence suggests that the influence of the super-emitters remains. Therefore, 

emissions-minimising technology is only part of the solution: reducing the impact of super emitters 

requires more effective detection and rectification, as well as pre-emptive maintenance processes. 

Keywords 
Natural gas; supply chain; greenhouse gas emissions; methane emissions; super emitters; heavy tail 

distribution 

1. Introduction 
As the drive to reduce climate change to 1.5 to 2 °C gathers pace, the production of natural gas is 

increasing and is considered to be the lowest carbon fossil fuel (IEA, 2014; UNFCCC, 2015). However, 

whilst CO2 emissions from combustion are lower than those from coal or oil, emissions of CO2 and 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Page 2 of 25 

 

methane across the gas supply chain have been shown to be significant and vary widely, often by 

several orders of magnitude (Balcombe et al., 2017). The natural gas supply chain includes all 

processes and equipment from pre-production drilling through to delivery to the consumer. Given 

the projected increases in natural gas production, the impact of supply chain emissions becomes 

even more important. In particular emissions of methane, which is the main constituent of natural 

gas and a very strong greenhouse gas (GHG) over short timescales, are highly variable (Allen, 2016; 

Alvarez et al., 2012; Brandt et al., 2014).  

Many factors affect supply chain emissions of methane and carbon dioxide, such as the reservoir 

type, supply chain route, equipment and operational practises, or regional regulation. There also 

exists a small proportion of equipment and facilities all across the supply chain that contribute 

disproportionately highly to supply chain emitters, known as super emitters (Brandt et al., 2014). 

Additionally, different estimates from industry, academia and government are affected by their 

methods of estimation, assessment boundaries and assumptions (Balcombe et al., 2017). 

All these factors combine to result in large variations in emissions estimates, but there remains a 

lack of understanding of the contribution of each factor (Balcombe et al., 2015). The extremely large 

range and the multitude of dependent factors make the prediction of emissions from different 

regions or in different scenarios very difficult. An understanding of the distribution of supply chain 

emissions would greatly help to predict the impact of abatement technologies and guide emissions-

monitoring regulation (Brandt et al., 2016). A number of studies have attempted to define 

distributions of certain portions of the gas supply chain, e.g. from gathering and processing plants 

(Marchese et al., 2015), distribution metering stations and pipeline leaks (Lamb et al., 2015). 

However, none have determined the distributions of both methane and carbon dioxide and none 

have done so for whole supply chains. A raft of new emissions measurements data and estimates 

(Allen et al., 2014a; Allen et al., 2014b; Brantley et al., 2014; Lamb et al., 2015; Lyon et al., 2015; 

Marchese et al., 2015; McKain et al., 2015; Mitchell et al., 2015; Rella et al., 2015; Subramanian et 

al., 2015; Townsend-Small et al., 2015; Yacovitch et al., 2015; Zimmerle et al., 2015) provides a 

unique opportunity for such a comprehensive analysis in this study.   

This paper synthesises and analyses the recent series of emissions data aggregated in two recent 

studies (Balcombe et al., 2015, 2017) to define the distribution of methane and CO2 emissions from 

each stage of the supply chain. The key questions addressed within this study are the following: 

• What is the distribution of methane and carbon dioxide emissions from the natural gas 

supply chain and what is the contribution from each stage? 

• How is the distribution affected by factors such as reservoir type and size, equipment, or 

operational practises? 

• By how much could the magnitude and distribution of these emissions be minimised by the 

use of different equipment or processes? 

The work consists of the characterisation of emissions from each supply chain stage and emission 

source, an emissions and mass balance, and a Monte Carlo simulation of a variety of supply chain 

scenarios. This probabilistic assessment quantifies the variation in emissions and the causes of these 

variations, as well as the impact of emissions-reducing equipment and monitoring.  

This greater understanding of natural gas emissions profiles is important in informing engineering 

and investment decisions in the gas supply chain, and policy decisions regarding the best ways to 

reduce and/or regulate supply chain emissions. The results could be used to provide detailed and 

up-to-date inventories for environmental life cycle assessments. Defining the difference in emissions 
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across different gas assets could also help to inform industrial investment decisions under higher 

carbon price scenarios.  

2. Methodology 
The goal of the study is to determine the distribution profile of methane and carbon dioxide 

emissions from the natural gas supply chain and the key factors that govern the distributions. The 

scope includes the whole supply chain from pre-production, production from conventional, shale or 

tight reservoirs, to gathering and processing, transmission, storage and distribution ending at the 

customer meter. Only direct methane and carbon dioxide emissions are included, e.g. vents, leaks, 

fuel usage and flaring.  

Exclusions from the study are emissions from offshore gas production, due to the relative lack of 

transparent and granular data. The study also excludes emissions from end-use combustion, as well 

as those associated with abandoned wells. It is acknowledged that emissions from a small number of 

abandoned wells may be significant but generally represent less than 1% of supply chain emissions 

(Boothroyd et al., 2016; Kang et al., 2014; Townsend-Small et al., 2016; Vielstädte et al., 2015). 

The study uses emissions estimates from across the globe, but there has not been enough similar or 

transparent data to make direct comparison between geographical regions. Thus, whilst it is 

recognised that there are likely to be large regional variations, this is not included here. However, 

the causes of regional variation are in part due to differences in reservoir type, equipment and 

operational practises, which are investigated.  

This paper expresses emissions estimates in two functional units: methane-only emissions are 

expressed as a percentage of total production from a well, or estimated ultimate recovery (EUR); 

total GHG emissions are expressed as grams of CO2 equivalent per MJ of energy delivered on a 

higher heating value (HHV) basis. This allows a comparison of emissions from methane and carbon 

dioxide using a global warming potential (GWP), which compares the relative potency of different 

greenhouse gases in terms of climate forcing. It is defined as the average relative climate forcing of a 

pulse emission over a certain time period, compared to a similar emission of CO2. This study adopts 

the 100 year time horizon value of 34 g CO2 eq./ g CH4 for methane, but also investigates the impact 

of using different climate characterisation factors on the total emissions result. Note that GHG 

emissions other than methane and CO2 (e.g. N2O) are excluded from this study as they are typically 

considered to contribute a very small part of supply chain emissions {Zammerilli, 2014 #424}. The 

methodology of this study splits into three stages, which are described below. 

1. Building the emissions inventory 

2. Formulating the supply chain emissions model 

3. Applying the model in Monte Carlo simulations to produce distribution curves 

2.1 Emissions and parameter inventory 

A summary of the sources of direct emissions from each supply chain stage is given in Table 1, 

including whether there is an associated CO2 or methane (CH4) emission and how it is included 

within this inventory. For each emissions source listed in Table 1, datasets were created using the 

reviews by Balcombe et al. (Balcombe et al., 2015, 2017). Datasets for each emission source were 

further split into subsets where there were discernible differences between categorical factors such 

as reservoir type, material of construction, or equipment type. Table 2 lists these categorical factors 

used within the model alongside their associated emission source.  
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Table 1. List of emission sources by supply chain stage, with an indication of the inclusion within the emissions model. 

Stage Source CO2 CH4 

1 Pre-production 1.1 Site preparation  � � 

1.2 Drilling  � � 

1.3 Hydraulic fracturing � � 

1.4 Well completion  � � 

2 Extraction 2.1 Fugitives  Total vents  

and leaks 
2.2 Pneumatics venting 

2.3 Liquid tank venting 

2.4 Flared gas �  

2.5 Liquids unloading � � 

2.6 Workovers  Same as 

completions 

2.7 Abandoned well leakage � � 

3 Gathering 3.1 Compressor station venting and leaks � � 

3.2 Compressor fuel � � 

4 Processing 4.1 Compressor venting and leaks  Total vents  

and leaks 
4.2 Pneumatics venting 

4.3 Vented gas 

4.4 Fuel 

 Processing fuel  

usage 

i. Compression 

ii. H2S scrubbing  

iii. CO2 scrubbing 

iv. Dehydration  

v. Hydrocarbon liquids separation 

4.5 Vented CO2 � � 

4.6 Flared gas � � 

5 Transmission and 

Storage 

5.1 Compressor fuel � � 

5.2 Compressor venting and leaks  Transmission and 

storage vents and 

leaks 
5.3 Pipework leaks 

5.4 Storage site venting and leaks 

6 Distribution 6.1 Pipework leaks � � 

6.2 Metering and regulating station leaks and vents � � 

6.3 Customer meter leaks and vents � � 
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Table 2. Summary of discrete categories used within the emissions model alongside respective emission sources. RECs = 

Reduced emissions completions. 

Emission source Parameter Categories 

Well completions Well type (2) Conventional; Tight; Shale 

Well completions Equipment (2) RECs; NonRECs 

Well completions Vent or flare (2) Vent; Flare 

Liquids unloading Equipment (4) Blowdown; Manual plunger; Automated plunger; No unloading 

Distribution pipeline leaks Material (4) Cast iron; Bare steel; Protected steel; Plastic 

Total scenarios*  (2 x 2 x 2 + 2) x 4 x 4 = 160 

* Conventional wells do not typically require completion flowback equipment, so there is no ‘Conventional with RECs/NonRECs’ 

combinations.  

Different combinations of these factors result in a set of distinct supply chain route scenarios, for 

which the model estimates a distinct emissions profile. The total number of theoretical supply chain 

route scenarios that result from the combination of factors shown in Table 2 is 160. For example, 

one supply chain route may be the gas production from a tight gas well, using reduced emissions 

completions (RECs) but venting residual emissions, requiring no liquids unloading and distribution via 

plastic pipework. 

2.2 Emissions model 

The inventories provide the input data for the emissions model, which is formulated in Matlab and 

provides a mass and emissions balance accounting for venting, flaring, fugitives and fuel 

requirements. Note, it is assumed that flaring and fuel combustion are 100% efficient and thus do 

not emit methane. 

The mass and emissions balance is created by synthesising the parameters for each dataset. The 

units of measurement are different for different parameters, as shown in Table 3: for discrete event 

emissions, these are typically measured as a mass emission per event, combined with an event 

frequency. Both are assigned distribution curves. Continuous emissions are typically measured as a 

percentage of throughput. The emissions from each source may be correlated with one or more 

parameters. Where these parameters are numerical variables, probabilistic distributions were 

assigned. For each emission dataset, histograms and Kernel Density plots were generated to 

investigate the appropriate probabilistic distribution curve. Different distribution curve types were 

tested for each dataset within Matlab, such as normal, log-normal, logistic, log-logistic, Weibull and 

gamma distributions. The most appropriate distribution type was selected based on both the 

quantification of best fit (i.e. the maximum log-likelihood) as well as visualisation of the fit using 

probability plots. These are summarised in the Supplementary Information Table SI-2. 
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Table 3. Emissions and parameter inventory for the model. Each emission source is listed, with affecting parameters and key statistics: mean values, number of data points and distribution 

information. 

StageStageStageStage    Emission sourceEmission sourceEmission sourceEmission source    ParamParamParamParameter eter eter eter 1111    ParamParamParamParameter eter eter eter 2222    MeanMeanMeanMean    UnitsUnitsUnitsUnits    
Data Data Data Data 

pointspointspointspoints    

DistributionDistributionDistributionDistribution    

TypeTypeTypeType    MeanMeanMeanMean    
Standard Standard Standard Standard 

deviationdeviationdeviationdeviation    

EUR - - - 184.9 Mm
3
 gas 53 Log-logistic 4.03 0.69 

Pre-production Site preparation - - 390.6 t CO2/ well 10 Log-normal 5.73 0.72 

Drilling - - 511.2 t CO2/ well 13 Weibull 501.55 0.96 

Hydraulic fracturing - - 514.1 t CO2/ well 11 Log-normal 6.10 0.54 

Well completion: Conventional  
Conventional non-

fracked wells 

Vent 0.8 t CH4/ well 887 Log-normal -2.62 -1.98 

Flare 0.7 t CH4/ well 20 Log-normal -3.66 -0.09 

Well completion: Shale 

REC 
Vent 5.8 t CH4/ well 86 Log-normal -0.02 -0.84 

Flare 12.3 t CH4/ well 231 Log-normal -0.15 -0.72 

NonREC 
Vent 157.1 t CH4/ well 164 Log-normal 2.49 -0.61 

Flare 5.4 t CH4/ well 117 Log-normal -0.21 -0.95 

Well completion: Tight 

REC 
Vent 17.6 t CH4/ well 86 Log-normal 1.32 -1.00 

Flare 3.0 t CH4/ well 82 Log-normal -0.91 -0.86 

NonREC 
Vent 75.2 t CH4/ well 174 Log-normal 2.24 -0.81 

Flare 5.5 t CH4/ well 48 Log-normal -0.65 -0.72 

Production Equipment and well head fugitive 

and vented  
- - 0.18% of throughput 

 
Log-logistic -7.88 1.03 

Flared - - 0.94% of throughput 2 Flat - - 

Liquids unloading per event 

No plunger - 1,286.3 
m

3
 CH4/ 

event 
289 Weibull 428.42 0.43 

Plunger 

Auto 34.4 
m

3
 CH4/ 

event 
25 Log-normal 2.55 1.45 

Manual 274.2 
m

3
 CH4/ 

event 
49 Weibull 276.15 1.01 

Liquids unloading events/yr 

No plunger - 117.3 event/yr 289 Log-normal 1.91 2.10 

Plunger 
Auto 2,444.9 event/yr 25 Weibull 2650.36 1.29 

Manual 13.2 event/yr 49 Log-normal 1.96 1.18 

Workovers - - 0.2 event/yr 10 Log-normal -3.18 1.68 
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StageStageStageStage    Emission sourceEmission sourceEmission sourceEmission source    ParamParamParamParameter eter eter eter 1111    ParamParamParamParameter eter eter eter 2222    MeanMeanMeanMean    UnitsUnitsUnitsUnits    
Data Data Data Data 

pointspointspointspoints    

DistributionDistributionDistributionDistribution    

TypeTypeTypeType    MeanMeanMeanMean    
Standard Standard Standard Standard 

deviationdeviationdeviationdeviation    

Gathering Fugitive and vented - - 1.9% of throughput 105 Log-normal -6.70 1.29 

Processing Fugitive and vented - - 0.136% of throughput 16 Weibull 0.00075 1.08 

Flaring (CO2) - - 0.91% of throughput 7 Log-normal -5.22 1.17 

Fuel (CO2) - - 3.73% of throughput 9 Log-normal -3.63 0.96 

Vented and separated CO2 Composition - 4% of throughput - - - - 

Transmission Fugitive and vented - - 0.63% of throughput 19 Log-normal -5.49 1.11 

Fuel CO2 - - 2.61% of throughput 10 Log-normal -4.10 1.04 

Storage - - - 0.10% of throughput 1 - - - 

Distribution 

Pipeline vents and leaks 

Cast iron 
- 0.062 m

3
 CH4/ hr 16 Log-normal -0.80 

1.92 

- 4.4E-06 leaks/m
3
 - - - - 

Unprotected steel 
- 0.058 m

3
 CH4/ hr 94 Log-normal -1.24 1.64 

- 3.5E-06 leaks/m
3
 - - - - 

Protected steel 
- 0.075 m

3
 CH4/ hr 44 Log-normal -1.33 1.93 

- 2E-07 leaks/m
3
 - - - - 

Plastic 
- 0.015 m

3
 CH4/ hr 62 Log-normal -1.65 1.68 

- 9.2E-08 leaks/m
3
 - - - - 

M+R station (HP) >300 psi - - 0.008% of throughput 25 Log-normal -11.26 2.04 

M+R station (MP) 100 - 300 psi - - 0.001% of throughput 10 Log-normal -13.78 3.32 

M+R station (LP) <100 psi - - 0.001% of throughput 10 Log-normal -13.78 3.32 

Customer meter - - 0.025% of throughput - - - - 
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Most emission sources were logarithmically distributed, as shown in Table 3. A summary of each 

emission source parameter and its fitted distribution curve is given in the inventory in Table 3 and a 

description of the derivation and data sources for each emission source is detailed in the remainder 

of the methodology section.  

The total production from a well, the estimated ultimate recovery (EUR), was given a log-logistic 

distribution, with a mean of 185 Mm3 and a median of 57 Mm3 (Bond et al., 2014; Burnham et al., 

2012; Cooper et al., 2014; Dale et al., 2013; Heath et al., 2014; Jiang et al., 2011; MacKay and Stone, 

2013; O'Donoughue et al., 2014; Santoro et al., 2011; Shahriar et al., 2014; Skone et al., 2014; 

Stamford and Azapagic, 2014; Stephenson et al., 2011; Weber and Clavin, 2012). It is likely that EUR 

is different across reservoir types (e.g. conventional onshore, shale, tight) and whilst we investigate 

the impact of varying EUR, the correlation between EUR and well type is not included within this 

model. The raw gas composition was assumed to be 80% vol/vol methane and 5% vol/vol CO2, based 

on typical compositions (Ferrera and Zandiri, 2010). Processed gas methane content is assumed to 

be 95% vol/vol. Gas composition is likely to have a significant impact on processing CO2 emissions 

from fuel duty, but this is outside of the scope of this study. The impact of natural gas composition 

on supply chain emissions should be the subject of further research. 

2.2.1 Pre-production 

Emissions associated with site preparation (Bond et al., 2014; Jiang et al., 2011; MacKay and Stone, 

2013; Santoro et al., 2011; Weber and Clavin, 2012), drilling (Broderick et al., 2011; Chang et al., 

2014; Jiang et al., 2011; MacKay and Stone, 2013; Santoro et al., 2011; Weber and Clavin, 2012) and 

hydraulic fracturing (Broderick et al., 2011; Jiang et al., 2011; MacKay and Stone, 2013; Weber and 

Clavin, 2012) are generally CO2 emissions from equipment fuel usage, based on engineering 

calculations. The distributions for site preparation, drilling and hydraulic fracturing were estimated 

as log-normal, log-normal and Weibull, respectively.  

Well completions are a collection of activities carried out after the well has been drilled but prior to 

production. Such activities are inserting, cementing and perforating the well casing, as well as 

hydraulic fracturing, where flowback of the fracturing fluid is the main source of gas emissions. Well 

completions emissions estimates (Allen et al., 2013; EPA, 2016; Harrison, 2012) are highly variable 

and have been categorised to reflect the variation, depending on: well type (conventional, shale or 

tight); completion equipment (using reduced emissions completions (RECs) or not); and whether any 

emissions are vented or flared. Methane emissions from each category followed a skewed 

distribution, some log-normal, log-logistic and Weibull. For this category, a log-normal distribution 

was selected for all based on the fit associated with the heavy tail portion of the distribution: a 

Weibull in particular appeared to underestimate. There was no data that correlated the completion 

emissions with the EUR or initial production rate, thus it was assumed to be independent. Carbon 

dioxide emissions estimates were available from the US EPA Greenhouse Gas Reporting Program 

data (EPA, 2016) and were highly correlated with methane emissions but the correlation varies by 

category (i.e. the use of equipment and whether the emissions were flared). A log-log regression of 

CO2 emissions against methane emissions yielded an R2 between 0.3 and 0.99 for the different 

categories (i.e. well-type or equipment categories). Whilst some correlations were poor, the residual 

variation between the modelled results and the data was also incorporated into the estimate by 

using a random draw from a normal distribution with a mean of zero. The following equation was 

used to estimate CO2 emissions: 

ln����� = 	. ln����� − � + 	��0, �� 
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where CO2 is the mass of CO2 emissions in t/ event, CH4 is the mass of methane emissions in t CO2 

eq./ event (where the data source used a Global Warming Potential of 25 g CO2/ g CH4), β and c are 

regression coefficient and constants respectively, and ε is the random draw from a normal 

distribution with a mean of zero and a standard deviation of γ. Values for β, c and γ are given in 

Table 4 for each completion category. 

 

Table 4. Correlation characteristics between the natural logarithms of CO2 and methane emissions. R
2
 is the measurement 

of goodness of fit, β is the proportional coefficient, c is the intercept coefficient and γ is the standard deviation of the error term. 

Well type RECs Vent/flare R
2
 β c γ 

Conventional NA Vent 0.38 0.52 4.8 1.4 

Conventional NA Flare 0.99 1.0 2.0 0.21 

Shale RECs Vent 0.28 0.51 -3.8 1.4 

Shale RECs Flare 0.98 0.99 2.1 0.32 

Shale NonRECs Vent 0.47 0.63 -3.9 1.4 

Shale NonRECs Flare 0.92 0.98 2.1 0.67 

Tight RECs Vent 0.66 1.1 -7.1 0.99 

Tight RECs Flare 0.78 1.00 1.9 1.3 

Tight NonRECs Vent 0.69 0.94 -5.9 1.1 

Tight NonRECs Flare 0.99 1.0 2.0 0.26 

 

2.2.2 Production  

Well-head production-phase vents and leaks (Allen et al., 2014a; Omara et al., 2016; Rella et al., 

2015) and flaring emissions (Burnham et al., 2012) were estimated as a percentage of throughput. 

Vents and leaks from Omara et al. (Omara et al., 2016) were again highly distributed and fit a log-

logistic distribution. The emissions were shown to be highly correlated with the station throughput, 

with larger producers exhibiting far lower emissions. This study normalised the emissions 

distribution on facility throughput data, to base emissions on gas throughput rather than station 

count. This prevents an unfair weighting of several very small but highly emitting stations. Only two 

estimates for flaring emissions were found, consequently the model only accounted for a flat 

distribution between the two estimates.  

Liquids unloading is a process by which liquids are removed from more mature wells in order to 

maintain gas flow and can be carried out using various types of equipment. Liquids unloading 

emissions (Allen et al., 2014b; Allen et al., 2013; EPA, 2016) were shown to vary depending on the 

equipment used. This study categorises these by the use of blowdowns, manual plunger lifts and 

automated plunger lifts. For each equipment type, the model uses a distribution for the emissions 

per event and the event frequency. Weibull distributions are attributed to blowdowns and manual 

plunger lifts, whereas a log-normal distribution was fitted to auto plunger lifts, due to the much 

heavier tail (Allen et al., 2014b). An additional scenario is used where no unloading emissions occur, 

as it is recognised that many, or even most, supply chain routes do not exhibit liquids unloading 

emissions (Shires and Lev-On, 2012). No data was found on the distribution of years that wells 

require unloading, so a flat distribution between zero and 10 years was assumed. CO2 emissions 

from liquids unloading were highly correlated with methane emissions from analysis of the GHGRP 

data. A log-log regression of methane emissions on CO2 emissions give an R2 of 0.51. The model 

consequently estimated the CO2 emissions based on the methane emissions, accounting for the poor 

correlation/ high variability as per the following equation: 
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ln����� = 0.9651. ln����� − 2.576 + 	��0, 2.21�  

Workovers are a set of maintenance activities that may occur during a well’s lifetime, where gas 

production is typically halted and operations similar to those associated with well completions are 

carried out. Workovers (Bond et al., 2014; EPA, 2014; Heath et al., 2014; Shires and Lev-On, 2012; 

Skone, 2011; Venkatesh et al., 2011) were assumed to exhibit the same event emissions as for well 

completions, but estimates for the number of workovers required in a well lifetime were log-

normally distributed. 

2.2.3 Gathering and processing 

The gathering stage is where flows from a number of wells are gathered together to be sent to a 

processing plant. Compression is often necessary, as well as dehydration units. One recent study 

(Mitchell et al., 2015) estimated methane emissions from 115 gathering stations, again exhibiting a 

log-normal distribution. The high-resolution of information given in the study allowed a throughput 

normalisation of the emission rates, as described in Section 2.2.2 for production venting and leaks. 

Equipment fuel emissions will also occur at this stage, but was not included within the model 

because no data was found. 

Processing methane vents and leaks were typically estimated to be small (Clearstone Engineering 

Ltd, 2002; Mitchell et al., 2015; NGML, 2006) and this study estimates a Weibull distribution from 

the study by Mitchell et al. (Mitchell et al., 2015), again throughput normalised. CO2 emissions 

estimates from flared gas (Sevenster and Croezen, 2006; Skone et al., 2014; Weber and Clavin, 2012) 

and fuel for the processing equipment (Sevenster and Croezen, 2006; Skone et al., 2014; Weber and 

Clavin, 2012) were taken from a variety of primary and secondary data sources, due to the relative 

lack of granularity, where log-normal distributions fit the data. Emissions associated with venting the 

separated CO2 were estimated based on the difference in CO2 concentration between the extracted 

and delivered gas. 

2.2.4 Transmission, storage and distribution 

Transmission stage vents and leaks from compressor stations and pipework (Bouman et al., 2015; 

Ishkov et al., 2011; Lechtenboehmer and Dienst, 2010; Leliveld et al., 2005; Logan et al., 2012; 

Skone, 2011; Stephenson et al., 2011; Weber and Clavin, 2012; Weisser, 2007; Zimmerle et al., 

2015), and fuel emissions (Lechtenboehmer and Dienst, 2010; Logan et al., 2012; Skone, 2011; 

Stephenson et al., 2011; Weber and Clavin, 2012; Weisser, 2007) are both log-normally distributed 

and are taken from a selection of primary and secondary sources. Very little data is available on 

storage emissions. Methane loss was estimated from two studies (Lechtenboehmer and Dienst, 

2010; Zimmerle et al., 2015) to be approximately 0.1% of throughput, which is assumed here but 

with no distribution due to the lack of data.  

Distribution  emissions arise from a number of sources and were characterised in this paper as: 

pipeline leaks; metering and regulating (M+R) station vents and leaks, including high (>300 psi), 

medium (100 - 300 psi) and low pressure (<100 psi) stations; and customer meter leaks (Lamb et al., 

2015). Pipeline leak data were taken from the most comprehensive recent measurement campaign 

of 13 distribution systems  across the US, published by Lamb et al. (Lamb et al., 2015). Significantly 

different distributions were noted for different pipeline materials and were categorised into cast 

iron, bare steel, protected steel and plastic. The study presents emissions as a volume per leak, using 

the number of equivalent leaks per year and the volumetric throughput to estimate a normalised 

emissions rate. 
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It was assumed that the supply chain includes flow through a high, medium and low pressure M+R 

station, as well as a customer meter. Low pressure stations were assumed to exhibit the same 

emissions profile as medium pressure stations, due to the lack of alternative data. M+R station 

emissions were also estimated from Lamb et al. (Lamb et al., 2015), where measurements were 

expressed as a volumetric annual emission for each site studied. These measurements were 

normalised by an average US throughput per station: 2,119,700 Mcf/yr for high pressure stations; 

and 686,809 Mcf/yr for medium pressure stations. This represents a significant assumption, as it is 

likely that normalised emissions are correlated with throughput (larger stations are likely to emit 

proportionally less). However, not enough data was available to further analyse this and this was 

considered to be a conservative assumption.  

2.3 Monte Carlo simulation 

The emissions model and supply chain mass balance was then used to perform a Monte Carlo 

simulation (Rubinstein and Kroese, 2011). For each of the 160 supply chain scenarios, total emissions 

were estimated 10,000 times with random draws from the distributions classified in the previous 

section. The 10,000 estimates were then used to generate the distributions of methane, CO2 and 

total GHG emissions for the 160 different supply chain scenarios, as well as the contributions from 

both CO2 and methane. 

3. Results 

3.1 Total supply chain emissions 

The cumulative distribution of total combined levelised GHG emissions across the 160 scenarios are 

shown in Figure 1, where median emissions are 18.2 - 24.5 g CO2 eq./ MJ HHV, with a 5th percentile 

range of 10.0 - 12.2 g CO2 eq./ MJ HHV and a 95th percentile range of 40.4 - 181.3 g CO2 eq./ MJ HHV. 

Each curve describes the cumulative distribution of emissions for a single theoretical supply chain 

scenario as detailed in the methodological section 2.1. Whilst each curve cannot be distinguished 

within this graph, the range of estimates and averages are indicated. Further information and results 

for each individual supply chain scenario is given in Supplementary Information Table SI-1. These 

results are broadly in line with other estimates of total supply chain emissions, typically 2 - 42 g CO2 

eq./ MJ HHV (Balcombe et al., 2015), although clearly the highest emitters are not accounted for. 

Overall, the results showed an extremely wide variation in distributions, as expected considering 

that many of the distributions of individual parameters were log-normal in shape. The distributions 

shown in Figure 1 most closely resemble log-log-logistic distributions, resulting from the high degree 

of skew. 
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Figure 1. Cumulative distribution of total supply chain greenhouse gas emissions for each scenario. The range of 5th, 50th 

and 95th percentile estimates are also shown as dotted black lines.  

Another demonstration of the degree of skew within the distributions is the ratio between the mean 

and median estimates from each scenario. A highly right-skewed distribution will result in higher 

estimates of mean compared to median. Mean estimates are from 21.6 - 107 g CO2 eq./ MJ and the 

ratios of mean:median are 1.2 - 4.6 across scenarios, with an average of 2.3. A mean estimate that is 

2.3 times greater than the median indicates that the higher emitters have a large impact on total 

GHG emissions. This is discussed further in Section 3.5. 

The cumulative distribution of methane-only emissions is shown in Figure 2 for each scenario as a 

percentage of total produced methane. Median estimates of total supply chain emissions ranged 

from 0.8% to 2.2% across the scenarios, which is in line with other literature estimates (Balcombe et 

al., 2015). Whilst the low and median estimates were relatively constrained, the highest estimates 

varied widely: the 5th percentile emissions were between 0.3% and 0.6%, whereas the 95th percentile 

emissions ranged from 3.0% to 22.3% across all scenarios. To compare with the total greenhouse 

emissions described above, these emissions are equivalent to a 5th percentile estimate of 1.6 - 3.2 g 

CO2 eq./ MJ HHV, a median estimate of 4.3 - 11.9 g CO2 eq./ MJ HHV, and a 95th percentile estimate 

of 16.2 - 120.2 g CO2 eq./ MJ HHV, using a global warming potential (GWP) of 34 g CO2/ g CH4. 
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Figure 2. Cumulative distribution of total supply chain methane emissions for the 160 scenarios described in the 

methodology, expressed as a percentage of total methane production. The range of 5th, 50th and 95th percentile estimates 

are also shown as dotted black lines. 

Carbon dioxide emissions from the supply chain are also variable, although the difference across 

scenarios is much less than seen for methane emissions. Figure 3 shows the cumulative distribution 

of supply chain emissions, showing a 5th percentile estimate of 6 - 6.7 g CO2 / MJ HHV, a median 

range of 10 - 12.2 g CO2 / MJ HHV, and a 95th percentile estimate of 24.5 - 66.7 g CO2 / MJ HHV. 

 

Figure 3. Cumulative distribution of total supply chain carbon dioxide emissions for the 160 scenarios described in the 

methodology, expressed per MJ of energy delivered on a higher heating value basis. The range of 5th, 50th and 95th 

percentile estimates are also shown as dotted black lines. 
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3.2 Contributions from supply chain stages 

The contribution of methane emissions to total GHG emissions is generally lower than CO2, with 

median estimates ranging between 29% and 54% of total GHG emissions using a GWP of 34 (CO2 

makes up the remainder). Figure 4 shows the contribution of each supply chain stage to methane 

(4a) and CO2 (4b) emissions. In terms of methane emissions, it is notable that emissions from the 

production, gathering and processing phases are generally very low (less than 0.1%) but with 

extremely high variances. Dominant emissions are from the transmission and storage phases 

(median of 0.4%), albeit with a significantly lower variation than the aforementioned stages. In terms 

of CO2 emissions, the largest contributor by far is processing fuel requirement (a median estimate of 

7 g CO2 eq./ MJ HHV), typically representing over half (57%) CO2 emissions. 

 

 

 

Figure 4a and b. Distribution of methane (a) and carbon dioxide (b) emissions associated with each supply chain stage. 

Shaded regions describe percentile estimates as shown in the legend. 
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3.3 The impact of well-type and technologies 

Overall, lower GHG emissions are exhibited by: conventional wells or unconventional wells using 

RECs equipment and flaring residual emissions; wells with no liquids unloading emissions or 

manually unloaded via a plunger lift; and supply chain routes using plastic distribution pipework. 

These supply chain route scenarios are referred to in this study as the best technological option 

(BTO) in the further analysis. For those scenarios with lower average emissions, processing fuel and 

venting CO2 emissions dominate, contributing between 31 and 36% of total supply chain emissions 

for the 10 lowest-emitting scenarios. The second highest contributor for lower emitting scenarios is 

transmission methane emissions, resulting from fugitives and vents from compressor stations, as 

well as pipeline leakage. 

Scenarios with higher total GHG emissions become dominated by methane emissions, in particular 

from the event emissions such as well completions, liquids unloading and workovers. Specifically, 

high emissions are seen for scenarios with: liquids unloading with automated plunger lifts; 

completions and workovers that do not utilise RECs equipment; or even higher emissions associated 

with nonREC vented (as opposed to flared) scenarios. 

To assess the contribution of parameter considered (well type; well completion type; liquids 

unloading equipment; distribution pipework), average 5th, 50th and 95th percentiles were estimated 

for each parameter across the supply chain scenarios. The results given in Table 5 show that 

individually, the different technological parameters exhibit a modest variation. The 5th percentile 

estimates do not vary more than 10% across categories, the median estimates by approximately 

20%, whereas the 95th percentile estimates vary by around 100%. The largest variation in emissions 

was seen when comparing completion equipment options and liquids unloading equipment.  

Table 5. Average total greenhouse gas supply chain emissions for various parameter categories, given in g CO2 eq./ MJ HHV. 

Parameters 5th percentile Median 95th percentile 

Well type 
   

 
Conv 11.3 21.0 60.4 

 
Shale 11.6 22.3 97.8 

 
Tight 11.7 22.7 100.1 

Well completions 
   

 
Conv flare 11.2 20.8 61.4 

 
Conv vent 11.4 21.1 59.4 

 
REC flare 11.7 23.1 114.1 

 
REC vent 11.4 21.6 70.1 

 
NonREC flare 11.4 21.6 71.4 

 
NonREC vent 11.8 23.8 140.2 

Liquids unloading 
   

 
No unload 11.2 20.9 72.4 

 
Man plunger 11.4 21.2 74.2 

 
Auto plunger 12.1 24.5 122.4 

 
No plunger 11.5 22.2 95.9 

Distribution pipework 
  

 
Plastic 11.3 21.7 89.9 

 
Protected steel 11.3 21.8 90.0 

 
Bare steel 11.6 22.2 90.7 

 
cast iron 11.9 23.1 94.4 

 

However, when the different combinations of parameters are assessed in aggregate, the difference 

is stark. Figure 5 shows the same methane emissions distributions as in Figure 2 but highlights the 

options which indicate the best technological option (BTO) from the categories considered: 
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completions using RECs and flaring any residual vents; liquids unloading using manual plunger lifts 

where required; plastic distribution pipework composition. Whereas the median estimates were 

between 0.8% and 2% emission, the best technological option indicates a median of 0.8% - 1%, with 

a 95th percentile range of 3% - 3.3%. This is discussed further in Section 4. 

 

Figure 5. Cumulative distribution of methane emissions, with the best technological scenarios highlighted. 5
th

, 50
th

 and 95
th

 

percentile ranges are given for these scenarios. 

3.4 The impact of global warming potential 

As has been previously noted, the assumption regarding the global warming potential (GWP) of 

methane has a significant impact on the estimation of combined greenhouse gas emissions. This is 

shown clearly in Figure 6a and b, showing the average percentile estimates of total greenhouse gas 

emissions for two supply chain scenarios using different GWP values from zero to 120. The two 

scenarios considered are: a conventional BTO scenario (ID 152 from Table SI-1); and an 

unconventional non-BTO scenario (ID 18 from Table SI-1). The effect of changing GWP is to 

proportionally change the methane contribution, with the median estimate ranging from 11 - 34.8 g 

CO2 eq./ MJ HHV and 12.5 - 53.3 g CO2 eq./ MJ HHV when GWP is changed from zero to 120 g CO2/ 

g CH4. The graph also indicates the mean emissions, which accounts for the heavy tail emissions. For 

the BTO scenario (Figure 6a), mean emissions rise from 15 to 56 g CO2 eq./ MJ across the GWP 

values, but the second scenario (Figure 6b) exhibits mean estimates from 23 to 130.6 g CO2 eq./ MJ. 

Given that emissions arising from combustion of gas and coal are approximately 50 and 90 g CO2/ MJ 

HHV respectively, the graph indicates that the supply chain is a major contributor to total emissions 

under certain scenarios. 
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Figure 6a and b. The impact of methane global warming potential characterisation factor on total greenhouse gas 

emissions for two supply chain scenarios: a) conventional well, not requiring unloading, with plastic distribution pipework, 

and b) tight gas well, using RECs and flaring residual emissions, using an automated plunger lift and with cast iron 

distribution pipework. Dotted lines represent 100 and 20 year GWP characterisation factors, as well as an approximate 

value of gas combustion emissions. 

3.5 The impact of EUR 

The impact of the well size on levelised emissions has been discussed previously (Balcombe et al., 

2015; Stamford and Azapagic, 2014) and is shown in relation to this model in Figure 7. An extremely 

low EUR tends to result in higher emissions as the relative impact of the intermittent events such as 

liquids unloading or workovers is higher. Previously it had been noted that the EUR had a 

significantly large and inversely proportional impact on emissions (Balcombe et al., 2015; Stamford 

and Azapagic, 2014). As total GHG emissions are levelised, i.e. divided by total production, an 

increased EUR reduces emissions on this basis. However, many continuous emissions are directly 

correlated to throughput, eliminating the impact of EUR. This study suggests the impact of EUR is 

very low for all well-sites besides the smallest. An inverse proportional relationship may be true at 

lower EUR values (up to approximately 30 Mm3) but as EUR increases single ‘event’ emissions play a 

smaller role than the continuous throughput-normalised emissions.  
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Figure 7. Percentile estimates of total GHG emissions for different estimates of estimated ultimate recovery (EUR). Different 

percentiles are averaged across all scenarios for the purpose of illustrating the impact of EUR. 

4. Discussion 
The study demonstrates that emissions from the supply chain are significant in magnitude. Median 

emissions which represent typical facilities are relatively modest at 18.2 - 24.5 g CO2 eq./ MJ HHV, 

but mean estimates which account for the heavy tail range from 22 – 107 g CO2 eq./ MJ HHV. To 

place these values into context, emissions associated with natural gas combustion (e.g. for heat) are 

approximately 55 g CO2/ MJ HHV (assuming 100% efficiency). Thus, some supply chain scenarios are 

certainly significant in terms of the overall GHG emissions of natural gas.  

Overall GHG emissions demonstrate a highly-skewed distribution, even more than log-normal. This 

corroborates recent analysis by Brandt et al. (Brandt et al., 2016), who warn that attributing log-

normal distributions to methane emissions underestimates the contribution from the heavy tail. The 

shape of the heavy tail is different for each supply chain scenario detailed in this study. 

The theoretical supply chain scenarios in this study demonstrate the effects of different technologies 

and routes on total emissions, but the emissions associated with specific regions, for example in the 

UK or the US, must be determined based on their specific emissions profiles, supply chain routes and 

processes. This is the subject of further work, to apply this model to specific case study regions. 

There are several opportunities for emissions reduction. Firstly, technological improvement will 

deliver reduced emissions, as per the options investigated across the different technological supply 

chain scenarios (see Table 2). This study identifies certain supply chain routes that utilise the best 

technological option (BTO) and their improvement in terms of emissions reduction are indicated in 

Table 6. Notably, median estimates of emissions are reduced significantly, from 0.8 – 2.2% to 0.8 – 

0.9% in terms of methane emissions. However, whilst median estimates may represent a supply 

chain with typical facility emissions, mean estimates account for the heavy tail. Whilst mean 

emissions are significantly lower, 1.7% from 2.7%, there is still a significantly heavy tail associated 

with the BTO scenarios, as indicated by the average skew of 1.9 (ratio of mean to median estimate). 
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Table 6. A comparison of emission statistics across all scenarios compared to scenarios representing the best technological 

option (BTO). Minimum, average and maximum figures for emissions are given for both groups, listing the median, mean 

and skew (ratio of mean to median estimate) for methane-only emissions and total GHG emissions. 

  

Methane only  

(% of EUR) 

Total GHG emissions  

(g CO2 eq./ MJ HHV) 

  

Mean Median  

Skew (mean/ 

median) Mean  Median  

Skew (mean/ 

median) 

All scenarios 

      

 

Min 1.63% 0.82% 1.7 21.6 18.2 1.2 

 

Mean 2.65% 1.23% 2.1 48.0 20.2 2.3 

 

Max 5.49% 2.24% 3.1 106.9 24.5 4.6 

BTO 

       

 

Min 1.63% 0.82% 1.8 23.5 18.2 1.3 

 

Mean 1.67% 0.88% 1.9 41.8 18.8 2.2 

 

Max 1.73% 0.91% 2.0 60.2 20.1 3.0 

 

Those scenarios utilising a BTO exhibit the smallest heavy tail but they are still significantly skewed. 

This demonstrates both the potential and the limits of relying on technology in decreasing overall 

emissions. A decrease in average methane emissions by 1% of EUR, such as the Table 6 figures show, 

represents a large climate and economic benefit.  

For example, a GHG emissions reduction from 48 to 41 g CO2 eq./ MJ HHV (as per the mean GHG 

figures from all scenarios and from the BTO scenarios, respectively) would result in avoided carbon 

cost and increased product revenue (an additional 1% of methane product). With carbon prices of 30 

- 120$/ t CO2, the avoided cost is 0.02 – 0.08 cents/ MJ, equivalent to 7% - 30% of the Henry Hub gas 

spot price of 0.28 cents/ MJ as at August 2016. Note, this assumes that methane emissions are 

incorporated into carbon pricing, which is typically not the case. 

Even so, much greater emissions reduction could be achieved by tackling the heavy tail which 

prevails regardless of supply chain route (Brandt et al., 2016). The heavy tail is typically caused by 

equipment and facilities known as super-emitters, those that produce disproportionately high 

emissions. A number of quantitative definitions have been suggested (Brandt et al., 2016; Zavala-

Araiza et al., 2015), but it is the authors’ opinion that there should be no quantitative definition with 

respect to emissions as the population of super-emitters is continually changing, dependent on 

maintenance, operational and detection procedures. Super-emitters may arise for several reasons, 

be it equipment failure due to abnormal process conditions, age or improper maintenance, and/or 

operational error (Allen et al., 2014b; Zavala-Araiza et al., 2017). Such is the case with any chemical 

process plant, vents and leaks occur and once detected are addressed within a timeframe. Thus, 

super-emitters are not a discrete set of faulty equipment, but a continually changing set. A piece of 

equipment is only a super-emitter until the issue is addressed. Consequently, the identification and 

rectification processes and timelines are critical in minimising the impact of super-emitters. 

This study estimates that the top 5th percentile of the supply chain population typically contributes 

between 40% and 60% of total emissions (with an average of 49%). It must be recognised that super-

emitters cannot be simply eliminated. However, a reduction in prevalence by pre-emptive 

maintenance, or a reduction in the lifespan of each super-emitter by effective leak detection and 

repair (LDAR) processes is certainly achievable. The costs of such measures are likely to be 

significant, but the potential emissions reductions are also large. As a simple example, consider a 

theoretical measure that reduced super-emitter emissions by half (either by prevention or quicker 

rectification). If these super emitters were the top 5% mentioned above, this would reduce total 

emissions by 24% (9 - 37% across all scenarios). The significant cost benefit lies in improved 

economic return and reduction of environmental costs. 
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5. Limitations of the study: data and distributions 
A number of limitations associated with the supply chain emissions model should be highlighted, 

relating to the data resolution and availability, as well as the distribution curve-fitting. Firstly, input 

datasets are taken from multiple sources, where data is either in the form of detailed measurement 

campaigns, or average figures. Aggregation of average emission factors to form a distribution will 

inherently underestimate the spread of emission data, given that the data is an average in the first 

instance. For those supply chain stages where this is applicable (e.g. transmission fugitives and vents, 

flaring from production, fuel use during processing), it is likely that there is greater variation that 

attributed here. Greater detail clearly adds to defining the distribution, but it must be acknowledged 

that datasets are region-specific and there are likely to be significant differences across different 

regions. Most of the detailed measurement campaigns have been conducted in a variety of regions 

across the US, implying that this study is most reflective of the US case. More high-resolution 

measurement data across different regions will shed further light on the variation across the globe 

and will help to further parameterise regional differences. 

The method of fitting the distributions to the data is another source of uncertainty within the model. 

As described in the methodology, fitting distributions to the data was based on both quantitative 

and qualitative assessment, and summarised in the Supplementary Information Table SI-2 which 

includes an indication of the goodness of fit. Thus, the judgement from the authors plays a role in 

the selection of the distribution types and it has been shown that in other studies, different 

distribution types are selected (Brandt et al., 2016; Marchese et al., 2015; Zavala-Araiza et al., 2015). 

Given that the impact of the heavy tails is so significant, particular consideration was given to 

appropriately fitting the right-hand side of the distributions. 

The availability of data for certain supply chain stages and sources has been described in Section 2.2, 

but it should be noted that there are gaps in data with respect to storage facilities, offshore gas sites 

and transmission pipeline leaks. Additionally, there are still very few high-resolution data sources for 

supply chains outside of the US. Key regions must face further transparent scrutiny in order to 

understand global natural gas impacts and the embodied emissions associated with production, 

processing and transport from regions such as Russia, Qatar, Australia, UK and Europe. 

6. Conclusions 
This study describes a new probabilistic model of methane and carbon dioxide emissions from the 

natural gas supply chain, using recent detailed measurement campaigns and data. A variety of 

theoretical supply chain route technological scenarios were created from the data to assess the 

differences across well-types and technologies. The study provides insight for industry and academia 

in identifying the opportunities for engineering development and emission reduction, as well as for 

regulators and policy-makers in illustrating the potential benefits in effectively tackling the heavy tail 

super-emitters.  

Firstly, the distribution of GHG emissions (measured in g CO2 eq./ MJ HHV) resemble a log-log-

logistic distribution for most technological scenarios, indicating an extremely heavy tailed skew. 

Across all supply chain scenarios, median estimates were 18 – 24 g CO2 eq./ MJ HHV, 5th percentile 

estimates were 10.0 - 12.2 g CO2 eq./ MJ HHV and 95th percentile estimates were 40.4 - 181.3 g CO2 

eq./ MJ HHV. Methane-only estimates are expressed as a percentage of the total production, with 

median estimates of 0.8 – 2.2%, 5th percentile estimates of 0.3 – 0.6% and 95th percentile estimates 

of 3.0 – 22.3% across all scenarios. Whilst emissions from carbon dioxide are reasonably constrained 

within the literature, venting and fugitive methane emissions varied widely. 
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Given the large distributions associated with many of the individual emission sources, there are 

many potential emissions ‘hotspots’ across the supply chain. Typically, processing CO2 emissions 

from fuel usage and transmission methane emissions from vents and leaks from compressor stations 

and pipelines are major contributors for all scenarios, in particular those with lower total emissions. 

However, scenarios with large total emissions are dominated by emissions associated with 

completions, liquids unloading and workovers.  

Whilst the majority of the emissions are relatively low, as indicated by the median estimates, total 

emissions are heavily affected by the large heavy tail: arithmetic mean emissions were typically a 

factor of 1.5 – 5 times larger than the median estimates. The heavy tail emissions distribution is the 

signature of the disproportionately large emitting equipment known as super-emitters. It is widely 

acknowledged that super-emitters appear at each stage of the natural gas supply chain and may 

arise for a number of reasons, such equipment failure due to abnormal process conditions, age or 

improper maintenance, or be it operational error. 

The study analyses the impact of different technological options across the supply chain and 

identifies a series of options as best technological option (BTO) scenarios. The analysis suggests that 

technology can reduce emissions significantly: 5th, median and 95th percentile estimates of methane 

emissions are 0.3%, 0.8 - 1% and 3.3 - 3.6% respectively. Median GHG emissions are 18 - 20 g CO2 

eq./ MJ HHV, with 5th and 95th percentile estimates of 10 and 40 - 90 g CO2 eq./ MJ HHV. However, 

the skewed heavy tail emissions distribution still prevails: mean estimates were approximately 2 

times higher than the median emissions due to the influence of the super-emitters. The BTO supply 

chain scenarios considered in this study reduce supply chain emissions by approximately 20%, but it 

is clear that a higher reduction would be achieved by reducing the heavy tail.  

Pre-emptive maintenance and a faster response to high-emission detection are methods for 

reducing the impact of super-emitters. Identifying a cost-effective solution is imperative and much 

attention is being given to developing lower cost emission monitoring and detection equipment. As 

Brandt et al. (Brandt et al., 2016) point out, identifying larger leaks from the highest emitters may be 

carried out using less sensitive, and consequently cheaper, detectors in areas at the highest risk.  

Further work associated with this model will be to adapt the theoretical supply chain route 

emissions profiles to a series of case study regions, to determine the variability and uncertainty 

associated with specific countries and to determine the most environmentally and cost effective 

routes to minimise supply chain impacts.  
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Highlights 
• Probabilistic model of methane and CO2 emissions from the natural gas supply chain 

• Distribution of emissions is greater than log-log-logistic indicating a heavy tail 

• Median methane emissions are 0.8 - 2.2% of total production 

• Technologies can reduce emissions significantly but do not eliminate super emitters 

• Preventative maintenance and effective detection will reduce super emitters 

 


