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ABSTRACT

We analyze how patent thickets affect entry into patenting. A model of entry into patenting that
allows for variation in technological opportunity, technological complexity and the extent of
patent thickets is developed and analyzed. Using UK data we then show that patent thickets are
associated with a reduction of first time patenting in a technology controlling for the level of
technological complexity and opportunity. Technologies characterized by more technological
complexity and opportunity attract more entry into patenting. Our evidence indicates that patent
thickets raise entry costs, which leads to less entry into technologies regardless of a firm’s size.
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1 Introduction

The past two decades have seen an enormous increase in patent filings worldwide (Fink, Khan,
and Zhou, 2016). There are signs that the high level of patenting may be reducing innovation
in certain technologies (FTC, 2003, Jaffe and Lerner, 2004, Bessen and Meurer, 2008, FTC,
2011, Schankerman and Schuett, 2016). Companies drawing on these technologies face ele-
vated legal costs of commercializing innovative products when patents that contain overlapping
claims form so-called ‘patent thickets’ (Shapiro, 2001). Patent thickets arise where products
draw on technology protected by hundreds or even thousands of patents and these patents have
fuzzy boundaries. The precision with which patent claims are formulated varies across tech-
nologies. Paradoxically claim language is quite loose in some high technology fields in which
the volume of applications has been high.1 In addition, resource constraints at patent offices
have contributed to a flow of poorly delineated patents (Lei and Wright, 2017). Patents in
thickets belong to many competing firms. This complicates licensing negotiations, raises the
incidence of litigation, and creates incentives to add more, often weak patents to the patent
system (Allison, Lemley, and Schwartz, 2015). The increased transaction costs associated with
patent thickets reduce profits from commercialization of innovation, and ultimately may reduce
incentives to innovate.

Empirical research on patent thickets has been largely concerned with showing that they
exist and measuring their density (Ziedonis, 2004, Graevenitz, Wagner, and Harhoff, 2011).
There is less evidence on the effects patent thickets have on firms’ objectives. Cockburn and
MacGarvie (2011) demonstrate that patenting levels affect product market entry in the soft-
ware industry. This result echoes earlier findings by Lerner (1995) who showed that first-time
patenting in a given technology is affected by the presence of other companies’ patents in a
small sample of U.S. biotech companies. Both papers use patent counts in narrow technolog-
ical fields to measure thickets. In this paper we use a network measure of patent overlap by
technology area as a proxy for thickets. The measure is correlated with increased patenting
(Graevenitz, Wagner, and Harhoff, 2013), increased acquisition of patents by Non-Practicing
Entitites (NPEs) (Fischer and Henkel, 2012) and a lower likelihood of patent opposition pro-
ceedings (Harhoff, von Graevenitz, and Wagner, 2016).

Bessen and Meurer (2013) argue that patent thickets will lead to increased litigation due
to hold-up. They use the term to describe a situation where an alleged infringer faces the
threat of an injunction or high licensing costs after she has sunk investment.2 Patent thickets

1Allison, Lemley, and Schwartz (2015) document that for the population of patents for which litigation was
initiated in 2008 and 2009 in the U.S., none or very few failed due to indefiniteness in Mechanical Engineering,
Biotechnology or Chemistry, whereas this was true for nearly a third of cases in Electronics and a quarter in
Software. Bessen and Meurer (2008) argue that language used to specify patent boundaries in Chemistry and
Biology is more scientific than that used for software patents. Allison and Ouellette (2015) study all cases since
1982 in the U.S. decided on basis of claim indefiniteness. They find that patents from the Computer/Electronics
industry failed on the basis of enablement more frequently than other industries. Enablement is the requirement
that a patent must ‘teach one skilled in the art to make and use’ an invention (Burk and Lemley, 2008).

2‘High licensing costs’ refers to costs that are higher than those that would have been negotiated ex ante in the
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have remained a concern of antitrust agencies and regulators in the U.S. for over a decade
(FTC, 2003, USDoJ and FTC, 2007, FTC, 2011). Reforms that address some of the factors
contributing to the growth of patent thickets have recently been introduced in the U.S. (America
Invents Act of 2011) and by the European Patent Office (EPO).

Another perspective is provided by authors who argue that patent thickets are a feature
of rapidly developing technologies in which technological opportunities abound (Teece, 2018).
Here thickets are a reflection of fast technological progress that is paired with increased techno-
logical complexity (Lewis and Mott, 2013). Increased transaction costs associated with patent
thickets and the benefits of technological complexity and opportunity often coincide. There
may be a trade-off between technological opportunity and growth on the one hand and increased
transaction costs due to the emergence of patent thickets on the other - if the transaction costs
of patenting in complex technologies are not avoidable. The challenge in assessing technolo-
gies with high levels of patenting is to develop a framework that captures the main factors that
incentivize patenting and the costs and benefits thereof.

This paper focuses on entry into patenting across a wide range of industries. This is a focal
outcome that has been analysed in specific industries (Lerner, 1995, Cockburn and MacGarvie,
2011). We make two contributions to this literature: first, we introduce a model to show how
patent thickets, technological opportunity and complexity interact to determine levels of entry
and second, we test predictions derived from the model using firm-level data on entry into
patenting by firms in the United Kingdom.

We model how entry decisions are affected by technological opportunity and legal uncer-
tainty over patent boundaries building on previous work by Graevenitz, Wagner, and Harhoff
(2013). The model focuses on the interaction between firms through two channels: (i) legal
costs associated with patent enforcement and (ii) incumbency advantages in R&D fixed costs.
In contrast to Graevenitz, Wagner, and Harhoff (2013), we distinguish between technological
complexity per se, which is a feature of some technologies, and patent thicket density, which
arises from poor drafting of patents in a complex technology. Poor drafting increases transac-
tion costs for firms. Specifically, transaction costs may rise due to actual hold-up, or through
higher costs of licensing and greater complexity of clearing products when patent breadth is
uncertain. We refer to all three as hold-up potential. Our model shows that patent thickets
reduce entry into patenting.3 The model also shows that higher complexity and opportunity
are associated with increased entry into patenting, because competition for each innovation is
reduced and the probability that entrants can establish themselves in a technology is increased.
Where incumbency implies lower costs of R&D, incumbents patent more than entrants.

These predictions are tested empirically using data from the UK. We quantify of the impor-
tance of technological opportunity, complexity, and patent thickets on entry into patenting. To

presence of possible ‘invent around’ before the alleged infringer sank her investment. This possibility can arise
because of either prohibitive search costs or fuzzy patent boundaries or both (Mulligan and Lee, 2012).

3The model generates the same comparative statics for patent application levels as Graevenitz, Wagner, and
Harhoff (2013).
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do this, separate measures of technological opportunity, technological complexity, and hold-up
potential due to thickets are constructed and validated. Separating technological complex-
ity and hold-up potential in patent thickets empirically is an important improvement over the
analysis in Graevenitz, Wagner, and Harhoff (2013), who conflated complexity and hold-up
potential arising from existing patent portfolios. We introduce a new measure of technological
complexity that relies on U.S. patent data to mitigate endogeneity concerns and we sharpen the
definition of the network measure of patent overlap as a proxy for hold-up potential.4

The analysis of entry in this paper confirms that greater technological opportunity and com-
plexity increase entry and that hold-up potential reduces entry substantially. We show that these
findings are robust to various assumptions underlying our empirical approach. While we cannot
quantify the overall net welfare effect, our results indicate that patent thickets raise entry costs
for large and small firms alike. This is true regardless of any positive effects that arise from
greater technological opportunity and complexity. To the extent that more original and radical,
rather than incremental ideas come from new entrants rather than incumbents (Tushman and
Anderson, 1986, Henderson, 1993), reduced entry is likely to have negative long-run conse-
quences on innovation and product market competition. In combination with earlier results by
Graevenitz, Wagner, and Harhoff (2013), who point to a positive correlation between patenting
levels and the presence of thickets, our results suggest that any increases in transaction costs
due to thickets can potentially have important dynamic effects on innovation.

The remainder of this paper is organized as follows. Section 2 presents a model of entry
into patenting in a technology area and derives several testable predictions. Section 3 describes
the data, and the empirical measurement of the key concepts in the model. Section 4 discusses
our results and Section 5 provides concluding remarks.

2 Theoretical Model

This section summarizes results of a model of entry into patenting.5 We show how firms’
decisions to enter into patenting depend on (i) complexity of a technology, (ii) technological
opportunity and (iii) the potential for hold-up in patent thickets. The model has two stages: en-
try and patenting. The patenting stage generalizes analysis in Graevenitz, Wagner, and Harhoff
(2013).6 Here we focus on novel predictions derived from free entry that are then tested in
Section 4. We solve the model by backward induction. Main results on entry into patenting
are that greater technological opportunity and complexity increase entry, while the threat of

4To further validate our approach, we verify the effect of distinguishing between technological complexity and
hold-up in the data used by Graevenitz, Wagner, and Harhoff (2013) for their analysis. The results, which are
reported in Appendix D, are consistent with our interpretation of the patents thickets measure as a measure of
hold-up potential, and of the citation network density as a measure of complexity.

5Details are relegated to Appendices A and B.
6We generalize their model to allow analysis of entry. Their main findings on patenting levels still hold. For

sake of brevity we relegate analysis on levels of patenting to the appendix.
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increased legal costs in patent thickets reduces entry.
In the model a technology consists of a set of opportunities, each of which consists of

a number of patentable ‘facets’. Opportunities within a technology share the same number of
facets, while complexity of the technology is determined by the count of facets per opportunity.
More opportunity within a technology attracts entrants as more avenues arise to earn a profit
through application of the technology. Greater complexity of a technology also attracts entrants,
because entrants are more likely to gain a share of profits flowing from opportunities. Where
multiple firms hold patents on the same opportunity, licensing negotiations or litigation ensue
as firms divide the profits flowing from the opportunity. We assume that holding a larger share
of patents on an opportunity is beneficial for firms in terms of licensing or litigation, but less
so when thickets arise from poorly delineated patents that provide increased options to litigate.
This captures the costs imposed by thickets on patentees.

2.1 Notation and Assumptions

The key variables of the model are the complexity of a technology k, measured by Fk (Fk∈ R+
0 ),

the degree of technological opportunity, measured by Ok (Ok∈ R+
0 ), and hold-up potential hk.

The value of all F̃k patents granted in an opportunity is Vk. In the simplest discrete setting this
is the value of the one patent (facet) that covers each technological opportunity. In complex
technologies this is the value of owning rights to use all patents (facets) granted for a techno-
logical opportunity. Firms (indexed by i) choose the number of opportunities oi to invest in and
the number of facets fi per opportunity to seek to patent.

In equilibrium only F̃k = (1 − (1 − f̂k/Fk)
No+1) facets are patented,7 where f̂k is the

equilibrium number of facets chosen by applicants and NO is the number of firms that applied
for patents on a specific opportunity.8 As F̃k may be smaller than Fk the total value of patenting
in a technology is Vk(F̃k) ≤ Vk(Fk).

To simplify the modeling of simultaneous patenting of facets on multiple opportunities we
assume that firms choose how many opportunities oi and facets fi to invest in. Which subset of
facets per opportunity each firm invests in is random. The allocation of a facet among the firms
seeking to patent it is also random. Then probability pi that a facet is allocated to firm i is:9

pi(f 6i, Fk, NO(Ok,o 6i, N)) =

NO∑
j=0

1

j + 1

(
NO

j

)NO−j∏
l=0

(
1− fl

Fk

) NO∏
m=NO−j

fm
Fk

. (1)

where f6i,o 6i are vectors containing the choices of the number of facets and the number of op-
portunities to invest in, made by all rival firms j. The expected number of patents a firm owns
when it applyies for fi facets is γi ≡ pifi.

7See Appendix A.3 for more details.
8The properties of N0 are summarized in Appendix A.2.
9See Appendix A.1.
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Profits of firm i patenting technology k, πik, increase in the share of patents the firm owns
per opportunity sik, where sik ≡ pifi/F̃k. Profits are concave in this share through ∆(sik),
capturing the decreasing marginal benefit of patent portfolio size in complex technologies.

In sum, the assumptions we make on the value function and portfolio size benefits are:

(VF): Vk(0) = 0,
∂Vk

∂F̃k
> 0; (2)

(PB): ∆(0) = 0,
d∆(sik)

dsik
> 0 and

d2∆(sik)

d2sik
< 0 . (3)

The model contains three types of patenting costs:

• R&D costs per opportunity, a function of total R&D activity per opportunity: Co(
∑No

j oj);

• maintaining each granted patent in force: Ca;

• coordinating R&D on different technological opportunities Cc(oi), where ∂Cc
∂oi

> 0.

These assumptions imply that R&D costs are fixed costs.10 We allow for the endogenous
determination of the level of R&D fixed costs, which rise as more opportunities are researched
simultaneously by rival firms. This reflects competition for inputs into R&D, e.g. scientists and
engineers that are in fixed supply in the short run (Goolsbee, 1998).

Where multiple firms own facets on an opportunity, their legal costs L(γi, sik, hk) depend on
the absolute number of patented facets γi, on the share of patents per opportunity that a firm
holds sik, and on the extent to which they face hold-up hk. The first two channels capture the
costs of defending a patent portfolio as the number of patents increases, while leaving scope for
effects on bargaining costs that derive from the share of patents owned: The hold-up parameter
captures contexts in which several firms’ core technologies become extremely closely inter-
twined. Then each firm has to simultaneously negotiate with many others to commercialize its
products, which significantly raises transaction costs.

(LC): L(γi, sik, hk), where
∂L

∂γi
> 0,

∂2L

∂γi2
≥ 0,

∂L

∂sik
≤ 0,

∂2L

∂sik2
≥ 0, (4)

∂L

∂hk
> 0,

∂2L

∂γi∂hk
> 0,

∂2L

∂sik∂hk
> 0 .

All remaining cross partial derivatives of the legal costs function are zero.
In what follows, we use the following definitions:

ωik ≡
oi
Ok

, φik ≡
fi
Fk
, µk ≡

F̃k

Vk(F̃k)

∂Vk(F̃k)

∂F̃k
, ξik ≡

sik
∆(sik)

∂∆(sik)

∂sik
, ηik ≡

fi

F̃k

∂F̃k
∂fi

.

(5)

10It also implies that there is no technological uncertainty. Introducing technological uncertainty into the model
does not change the main comparative statics results.
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Here ωik is the share of opportunities each firm chooses to pursue, φik is the share of facets
each firm seeks to patent per opportunity, µk is the elasticity of the value function with respect
to the level of complexity, ξik is the elasticity of the benefits function ∆ with respect to the
share of patents each firm is granted and ηik is the elasticity of the number of covered facets
with respect to the number of patent applications of each firm.

2.2 Patenting and Entry

Firm i’s profits in technology k, πik(oi, fi, Fk, Ok, Nk, hk), are a function of the number of
opportunities oi which the firm invests in, the number of facets per opportunity fi the firm seeks
to patent, the total number of patentable facets per opportunity Fk, the number of technological
opportunities a technology offers Ok, the number of firms entering the technology Nk, and the
degree of hold-up in that technology hk.

In this section we analyze the following two-stage game G*:

Stage 1: Firms enter until πik(oi, fi, Fk, Ok, Nk, hk) = 0;11

Stage 2: Firms simultaneously choose the number of opportunities, oi, to invest in and the
number of facets per opportunity fi to patent in order to maximize profits πik.

We solve the game by backward induction and derive local comparative statics results for
the symmetric extremal equilibria of the second stage game. For the subsequent analysis it is
important to note that all equilibria of this second stage game are symmetric. In case that the
second stage game has multiple equilibria we focus on the properties of the extremal equilibria
when providing comparative statics results (Milgrom and Roberts, 1994, Amir and Lambson,
2000, Vives, 2005).

At stage two of the game each firm maximizes the following objective function:

πik(oi, fi) = oi

(
Vk(F̃k)∆(sik)− L(γi, sik, hk)− Co(

No∑
j

oj)− fipiCa

)
− Cc(oi) . (6)

This expression shows that per opportunity k, the firm derives profits from its share sik of
patented facets, while facing legal costs L to appropriate those profits, as well as costs of R&D
C0, costs of maintaining its patent portfolio Ca, and coordination costs across opportunities Cc.

This objective function generalizes that analyzed by Graevenitz, Wagner, and Harhoff (2013).
They assume that the value of patenting increases linearly in the share of patents the firm owns
per opportunity (∆(sik) = sik) and do not allow for a direct effect of hold-up (hk) on legal costs.
Under free entry the model in Graevenitz, Wagner, and Harhoff (2013) does not have a solu-
tion, while the model developed here does. Generalizing the objective function also has direct

11Nk is the superset of all firms applying for patents within all opportunities of technology k. We treat Nk and
the NO as a continuous variables to simplify analysis of the model.
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implications for an empirical test of the theory: separate measures of complexity and hold-up
are required. The measures we employ in our empirical analysis are discussed in Section 3.

2.3 Simultaneous Entry with Multiple Facets

In Appendix B we show that the results derived by Graevenitz, Wagner, and Harhoff (2013) for
patenting hold in our generalized model. This section summarizes new results on entry.

Comparative statics of entry

In Appendix B.4 we show that there is a free entry equilibrium. In this equilibrium the follow-
ing propositions hold:

Proposition 1
Under free entry greater complexity of a technology increases entry.

Complexity has countervailing effects: first, it increases profits, because it is less likely that du-
plicative R&D arises making each opportunity more valuable; this clearly increases incentives
to enter. Next, given the level of patent applications f̂k, complexity reduces the probability
that each facet is patented, which reduces profits and entry incentives. Finally, complexity re-
duces competition for each facet, which increases the probability of patenting and increases
innovation incentives. It is shown that the positive effects outweigh the negative effects.

First, consider how equilibrium profits are affected by the complexity of the technology Fk,
the degree of technological opportunity Ok, and the potential for hold-up hk:12

∂π̂k(ôk, f̂k)

∂Fk
= ôk

ŝk
Fk

(ε̂F̃k,Fk − ε̂pk,Fk η̂k)
Λ︷ ︸︸ ︷[

Vk

(
ˆ̃F k

) 4 (ŝk)

ŝk

(
µ̂k − ξ̂k

)
+
∂L

∂ŝk

] > 0 (7)

∂π̂k(ôk, f̂k)

∂Ok

= ôk
∂N̂O

∂Ok

ŝk

N̂O

((
ε̂F̃k,NO − ε̂pk,NO η̂k

)
Λ− ∂Co

∂N̂Oô

N̂Oô

ŝk

)
> 0 (8)

∂π̂k(ôk, f̂k)

∂hk
= −ôk

∂L

∂hk
< 0 (9)

Proposition 3 follows from the Implicit Function theorem once we know the sign of the
derivative of profits with respect to Fk. Under free entry firms’ profits decrease with entry:

∂Nk

∂Fk
= −

∂π̂k
∂Fk
∂π̂k
∂Nk

(10)

12Equilibrium values of the firms’ choices are denoted by a hat (ˆ) and we drop firm specific subscripts, e.g. φ̂k.
We define Λ ≡

[
Vk

(
ˆ̃F k

)
4(ŝk)
ŝk

(
µ̂k − ξ̂k

)
+ ∂L

∂ŝk

]
to simplify expressions.
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and the sign of the effect of complexity Fk on entry depends on the sign of the effect of com-
plexity on profits.

Equation (7) shows that the effect of complexity on profits depends on the difference be-
tween the elasticities ε̂F̃k,Fk and ε̂pk,Fk η̂k, which are derived in Appendices A.1 and A.3. Specif-
ically, ε̂pk,Fk is shown to be:

ε̂pk,Fk = N̂2
O

φ̂k − 1
2

(
1 + 1

N̂O

)
1− φ̂k

(11)

This elasticity is negative for φ̂k < 1
2
, which is also a precondition for supermodularity of

game G*. We find that both terms in brackets in Equation (7) are positive, when game G* is
supermodular. This implies that greater complexity raises profits and this induces entry.13

Proposition 2
Under free entry greater technological opportunity increases entry.

For any given number of entrants an increase in technological opportunity reduces competition
between firms for patents. This increases firms’ expected profits and increases entry.

Continuing from the proof of Proposition 1 above, by the Implicit Function theorem the
sign of the derivative of profits with respect to technological opportunity determines the effect
of technological opportunity on entry:

∂Nk

∂Ok

= −
∂π̂k
∂Ok
∂π̂k
∂Nk

(12)

An increase in technological opportunity increases profits and entry. In Appendix B.4 we
show that the term in brackets in Equation (8) is negative under free entry and that ∂NO

∂Ok
< 0.

Profits increase as technological opportunity increases, as entry per opportunity falls.

Proposition 3
Under free entry the potential for hold-up reduces entry.

An increase in the potential for hold-up raises firms’ expected legal costs. This reduces ex-
pected profits and lowers potential for entry. To derive this prediction, note that by the Implicit
Function theorem the sign of the derivative of profits with respect to the level of hold-up in a
technology area determines the effect of hold-up on entry:

∂Nk

∂hk
= −

∂π̂k
∂hk
∂π̂k
∂Nk

(13)

13When φ̂k ≥ 1
2 game G* is no longer supermodular. This situation corresponds to the case where one firm

has more than half the patents in a particular technology opportunity within a technology area. Thus our results
may not hold when a specific opportunity is highly concentrated. In general this will not be the case, especially at
our level of empirical analysis, but it would be interesting to explore this possibility in future work.
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Hence, Equation (9) shows that the effect of hold-up on entry derives from the increased legal
costs that the possibility of hold-up imposes on affected firms.

2.4 Entry and Incumbency

In our model firms’ decisions on entry are simultaneous, which is motivated by a focus on first-
order effects as in the literature on excess entry (Mankiw and Whinston, 1986, Suzumura and
Kiyono, 1987). Our purpose is to make predictions across a wide range of patenting industries,
which we can do without recourse to data on product market outcomes. While this means that
we cannot analyze dynamic evolution of patent thickets or sequential entry, we can allow for
asymmetries between firms.

In Appendix B.6 we extend the model to asymmetric equilibria, in which some firms (in-
cumbents), face lower costs (CO − Ψ, where Ψ > 0) of entering opportunities. This way we
model observable heterogeneity in the experience of doing R&D in a technology area. The
main results derived above are robust to this variant of the model. In addition, we show that
more experienced incumbents enter more opportunities, crowding out new entrants.

2.5 Predictions of the Model

Here we summarize the predictions of the model that we test empirically:14

Prediction 1: The probability of entry increases in technological opportunity.

Greater technological opportunity reduces competition for facets per opportunity, which raises
expected profits and thereby attracts entry.

Prediction 2: The probability of entry increases in complexity of a technology.

Greater complexity has countervailing effects: it reduces competition per facet as well as du-
plicative R&D, attracting entry. It also increases the likelihood that some of a technology
remains unpatented, reducing its overall value and entry. Our model shows that overall com-
plexity increases entry.

Prediction 3: The probability of entry falls in the potential for hold-up.

Hold-up potential increases expected costs of entry, thereby reducing it.

Prediction 4: More experienced incumbents are more likely to enter technological opportuni-

ties new to them.

We show that incumbency advantage raises the number of opportunities that incumbents enter.
This implies that they also enter new opportunities, which they have not previously been active
in. This expansion of activity by incumbents crowds out entry by new firms.

14Note that Graevenitz, Wagner, and Harhoff (2013) test predictions from a more restrictive version of the
model on the level of patent applications using data from the EPO. We replicate their analysis in Appendix D
using additonal variables suggested by the generalized model we present here.
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3 Data and Empirical Model

Our empirical model is a hazard rate model of firm entry into patenting in a technology area
as a function of the technological opportunity, technological complexity, and hold-up potential
that characterize a technology area. Additional firm level covariates include the age, size, and
prior patenting history, and the concentration of their 4-digit industry. The models we estimate
are stratified at both the firm and industry level. That is, the unit of observation for each
entry hazard is a firm-technology area, but the hazard shapes and levels are allowed to vary
either by firm or by the industry containing the firm. This approach recognizes that patenting
propensities vary across firms and industries for reasons that may not be technological (e.g.,
strategic reasons, or reasons arising from the historical development of the sector).

We use firm-level data for the entire population of UK firms registered with Companies
House and data on patenting at the EPO and at the UK Intellectual Property Office (UKIPO).
The firm data come from the data held at Companies House provided by Bureau van Dijk in
their FAME database. The patent data were linked to firm register data by matching applicant
names in patent documents and firm names in firm registers (see Appendix C for details).

Economic studies of entry are frequently hampered by the problem of identifying the correct
set of potential entrants (Bresnahan and Reiss, 1991, Berry, 1992). In our case this problem
is slightly mitigated by the fact that one set of potential entrants into patenting in a specific
technology area consists of those firms that currently patent in other technology areas. We
complement this group of firms with a set of comparable firms from the population of UK
firms that had not patented previously.

To construct the sample we deleted all firms from the data for which we have no size
measure because of missing data on assets. We select previously non-patenting firms from
the population of all UK firms in two steps: 1) we delete all firms in industrial sectors with
little patenting (amounting to less than 2% of all patenting); and 2) we choose a sample of
non-patenting firms that matches our sample of patenting firms by industry, size class, and
age class. This approach results in an endogenous (choice-based) sample at the firm level.
The focus of our work is on industry and technology area level effects rather than firm-level
effects. Therefore we do not expect this sampling approach to introduce systematic biases
into the estimates we report. We provide a number of robustness checks, including aggregate
instrumental variable regressions.

All estimates are based on data weighted by the probability that a firm is in our sample.15

The sample that results from our selection criteria is a set of firms with non-missing assets in
manufacturing, oil and gas extraction and quarrying, construction, utilities, trade, and selected
business services including financial services that includes all (approximately 11,000) firms
applying for a patent at the EPO or UKIPO during the 2001-2009 period and another 11,000

15To check this, we estimated the model with and without weights based on our sampling methodology and find
little difference in the results.
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firms that did not apply for a patent.
The definition of technology areas that we use is based on the 2008 version of the ISI-

OST-INPI technology classification, denoted TF34 classes (Schmoch, 2008). The list is shown
in Table C-1 in the appendix, along with the number of EPO and UKIPO patents that were
matched to UK firms with priority dates between 2002 and 2009. A comparison of the fre-
quency distribution of patenting across technology areas from the two patent offices shows that
firms are more likely to apply for patents in Chemicals at the EPO, while Electrical and Me-
chanical Engineering predominate in the UK patent data (see the bottom panel in Table C-1).

We treat entry into each technology area as a separate decision made by firms. More than
half of firms we observe patent in more than one area and 10% patent in more than four.
From the 22,000 firms observed, each of which can potentially enter into each one of the 34
technology areas, we obtain about 550,000 observations at risk.

We cluster the standard errors by firm, so our models are effectively firm random effects
models for entry into 34 technology areas. Allowing firm choices to vary by technology area is
sensible under the assumption that firms’ patenting strategies are contingent upon technology
and industry level factors and are not homogeneous across technology areas.16

There are some technology-industry combinations that do not occur, e.g. audio-visual tech-
nology and the paper industry, telecommunications technology and the pharmaceutical indus-
try. In order to reduce the size of the sample, we drop all technology-industry combinations
for which Lybbert and Zolas (2014) find no patenting in their data and for which there was no
patenting by any UK firm from the relevant industry in the corresponding technology category.
This removes about 30% of observations from the data. We provide a robustness check for this
procedure in Table E-2 in the Appendix.

3.1 Variables

Dependent Variable - Entry The dependent variable is a dichotomous variable taking the
value one if a firm has entered a technology area k at time t and otherwise the value zero. Entry
into a technology area is measured by the first time a firm applies for a patent that is classified
in that technology area, dated by the priority year of the patent.

Technological opportunity Our first prediction from the theoretical model is that there will
be more entry in technology areas with greater technological opportunity.

Opportunity to generate inventions can arise from the recombination of conventional knowl-
edge, or it can arise from a mixture of conventional and atypical knowledge (Uzzi et al., 2013).
We use two measures of opportunity, the first to capture opportunity arising from conventional
knowledge and the second, to capture opportunity arising from the introduction of atypical
knowledge:

16We confirmed the validity of this assumption through interviews with leading UK patent attorneys.
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1. Opportunity for recombination of conventional knowledge is measured through the log-
arithm of the aggregate EPO patent applications in the technology sector in a given year.

2. Opportunity from the introduction of atypical knowledge is measured through the past
5-year growth rate in the non-patent (scientific publication) references cited in patents in
a technology class at the EPO.17

Given the difficulty of measuring technological opportunity we note that the growth rate in non-
patent references is a better predictor of entry than the level of non-patent references, which
has been used previously to measure technological opportunity. Presumably the growth rate is
a better predictor because it captures new or expanded technological opportunity coming from
recent scientific work.

The first measure of opportunity is quite broad and may be correlated with other influences
on entry. Our model of patenting predicts that aggregate patenting and entry are functions of
technological opportunity, complexity and patent thickets. We control for the effect of com-
plexity, patent thickets and science derived opportunity, so that the coefficient on aggregate
patenting will reflect primarily variation in the remaining, conventional knowledge dimension
of opportunity.

Technological complexity The second prediction of the theoretical model is that technologi-
cal complexity increases entry, other things equal. Technology is complex when there are many
ways to combine inventions in a particular field to obtain novel applications of these inventions.
The opposite, a discrete technology is characterized by a series of fairly isolated inventions that
do not connect to each other. To construct a measure of complexity, we use the concept of
network density applied to all citations among patents that issued in the particular technology
area during the decade prior to the date of potential entry. We use citations at the U.S. patent
office, because these are richer (averaging 7 cites per patent during this period versus 3 for the
EPO) and to minimize correlation with the thickets measure, which is based on EPO data.18

The network density measure is computed as follows: in any year t, there are Nkt patents that
have been applied for in technology area k between years t-10 and t. Each of these patents can
cite any of the patents that were applied for earlier, which implies that the maximum number
of citations within the technology area is given by Nkt(Nkt-1)/2. We count the actual number
of citations made and normalize them by this quantity, scaling the measure by one million for
visibility, given its small size.

In any given cohort of new patents this measure captures how intensively innovations in-
troduced by the new patents are linked to preceding innovations. The measure contains no
information about whether these links indicate overlap in the innovations claimed by patent

17See Graevenitz, Wagner, and Harhoff (2013) for a more extensive discussion of this variable in the literature.
18It is important to emphasize that citations listed on U.S. patents are largely proposed by the applicant, whilst

the citations listed on EPO and UKIPO patents are inserted by the examiner. This explains why the two measures
are not highly correlated.
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holders or not. This additional information is contained in the EPO classification of citations
and is exploited in the patent thicket measure we discuss next.

Patent thickets The third prediction of the model is that greater potential for hold-up reduces
entry. We measure the potential for hold-up in patent thickets using the total triples count
per technology area, as previously used by Harhoff, von Graevenitz, and Wagner (2016). The
triples count is the number of fully connected triads on the set of firms’ critical patent refer-
ences. At time t a unidirectional link between two firms A and B corresponds to one or more
critical references to firm A’s patents in the set of patents applied for by firm B in the years t,

t-1 and t-2. These critical references, so-called X- and Y-references, are obtained from exam-
iner search reports issued by the EPO and represent prior art that calls into question novelty
and/or the inventive step of the patent application under examination. Triples are then formed
by groups of three firms where each firm has at least one patent that is cited as critical prior
research for at least one patent held by each of the other two firms. That is, in a triple, each firm
holds patents that potentially block the other firms’ patents creating mutually blocking triads.
This indicator captures instances in which European patent examiners have identified poorly
drafted claims that indicate each firm in the triple is claiming technology already claimed by
the other firms in the triple. In the instances in which the examiners identify overly expansive
claims, these can be re-drafted. But examiners are unlikely to spot overlapping claims in all
patent applications in a technology area due to constraints on their time and ability to search
for prior art. Moreover, the re-drafting of claims flagged by examiners, which often involves
adding specific language to narrow the scope of claims, is unlikely to eliminate all potential
overlap between the relevant patents. Therefore a higher triples count in a technology area
indicates the existence of overlapping technologies and the patents that cover them, and hence
an increase in hold-up potential in this technology area.19

The citation data used to construct this measure is extracted from PATSTAT (October 2011
edition).20 We normalize the count of triples by aggregate EP patenting in the same technology
class and year, so that the triples variable represents the intensity with which firms potentially
hold blocking patents on each other relative to aggregate patenting activity in the technology.21

By adding a measure of technological complexity to our model we can interpret the triples
count more narrowly than Graevenitz, Wagner, and Harhoff (2013), who used it as a proxy
for complexity and hold-up potential together.22 In contrast, our model separates the effect of

19Note that Fischer and Henkel (2012) find that NPEs are more likely to acquire patents in fields with higher
triple count, providing additional support for the notion that the measure captures patent overlap and hold-up
potential.

20Triples data was kindly provided by Harhoff, von Graevenitz, and Wagner (2016).
21As a robustness check, we have also explored the use of duples, i.e. the count of mutual blocking relation-

ships, to measure hold-up potential. Combining both measures in one regression leads to thorny problems of
interpretation. Taken alone the measure has similar effects as the triples measure in this context.

22In Appendix D, we show that this confounded the separate effects of complexity and hold-up. Including the
measures of complexity and hold-up potential proposed here in their empirical model, we find that the effects on
patenting incentives predicted by our theoretical model for complexity (positive) and hold-up potential (negative)
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previously existing patent thickets on entry from that of technological complexity. The triples
measure is more likely to be elevated in complex technologies, but complexity alone does not
lead to an elevated hold-up potential. Hence we use separate measures of complexity and hold-
up potential.

Covariates It is well known that firm size and industry are important predictors of whether a
firm patents at all (see Bound et al., 1984, for U.S. data). Hall et al. (2013) show this for UK
patenting during the period studied here. Therefore, in all of our regressions we control for firm
size, industrial sector, and year of observation. We include the logarithm of the firm’s reported
assets and a set of year dummies in all the regressions.23 To control for industrial sector, we
stratify by industry, which effectively means that each industry has its own hazard function,
which is shifted up or down by the other regressors.

We also expect the likelihood that a firm will enter a particular technology area to depend
on its prior patenting experience, as well as its age. Long-established firms are less likely to be
exploring new technology areas in which to compete. Thus we include the logarithm of firm
age and the logarithm of the stock of prior patents applied for in any technology by the firm,
lagged one year to avoid any endogeneity concerns.24 The variables on firm size and patent
stock also allow us to test Prediction 4 about the effect of incumbency advantage on entry.

Finally, to check that our technology entry results are not driven by concentration in the
firm’s industrial sector, we compute the Herfindahl-Hirschman index (HHI) for each 4-digit
sector using all the firms (about 3 million) on the Companies House FAME files and include
that variable in our regressions. Because broad industrial sectors are being controlled for via
stratification, the HHI variable only measures variations within those sectors.

3.2 Descriptive Statistics

Our estimation sample contains about 22,000 firms and 550,000 firm-TF34 sector combina-
tions. During the 2002-2009 period there are about 14,000 entries into patenting for the first
time in a technology area by these firms. Table C-2 in the appendix shows the distribution of
the number of entries per firm: 3,110 enter one class, and the rest enter more than one. Table
C-3 shows the population of UK firms obtained from FAME in our industries, together with the
shares in each industry that have applied for a UK or European patent during the 2001-2009
period. These shares range from over 10% in Pharmaceuticals and R&D Services to less than
0.2% in Construction, Transportation, and Financial Services. Table C-4 shows the number of
entrants and their share among all patentees by technology area. It shows that there is a sub-

apply in their data.
23The choice of assets as a size measure reflects the fact that it is the only size variable available for the majority

of the firms in the FAME dataset.
24We compute the past stock of patents using a declining balance formula with a 15% depreciation rate, in order

to reduce the impact of very old patents.
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stantial amount of entry but it also varies significantly across technologies. Finally, Table C-5
shows our different measures for technological opportunity, complexity, and patent thickets by
TF34 technology class and Table C-6 shows descriptive statistics for the key technology class
and firm level variables.

3.3 Empirical Model

We use hazard models to estimate the probability of entry into a technology area. The models
express the probability that a firm enters into patenting in a certain area conditional on not
having entered yet as a function of the firm’s characteristics and the time since the firm was ‘at
risk,’ which is the time since the founding of the firm. In some cases, our data do not go back
as far as the founding date of the firm, and in these cases the data are left-censored. When we
do not observe the entry of the firm into a particular technology sector by the last year (2009),
the data is referred to as right-censored.

We estimate two classes of failure or survival models:25 1) proportional hazard, where the
hazard of failure over time has the same shape for all firms, but the overall level is proportional
to an index that depends on firm characteristics; and 2) accelerated failure time (AFT), where
the survival rate is accelerated or decelerated by the characteristics of the firm. In the body of
the paper we present results using the well-known Cox proportional hazards model stratified by
industry. The effect of the stratification is that we allow firms in each of the industries to have
a different distribution of the time until entry into patenting conditional on the regressors. That
is, each industry has its own ‘failure’ time distribution, where failure is defined as entry into
patenting in a technology area, but the level of this distribution is also modified by the firm’s
size, aggregate patenting in the technology, network density, and the triples density. To check
for omitted firm specific effects, we also estimate hazard models stratified by firms, where each
firm has its own failure time distribution.

Appendix Table E-1 shows exploratory regressions made using various survival models.
The accelerated failure time estimates are not well identified and typically have larger coeffi-
cients with larger standard errors than the other two, but of the same sign. Unlike the Weibull
model, these models allow for a baseline hazard that may first increase and then decrease,
which is difficult to identify in our relatively short time period.

Our data for estimation are for the 2002-2009 period, but many firms have been at risk of
patenting for many years prior to that. The oldest firm in our dataset was founded in 1856 and
the average founding year was 1992. Because the EPO was only founded in 1978, we chose
to use that year as the earliest date any of our firms is at risk of entering into patenting. That
is, we defined the initial year as the maximum of the founding year and 1978. Table E-2 in
the appendix presents estimates of our model using 1900 instead of 1978 as the earliest at risk

25In Appendix E, we discuss the choice of the survival models that we use for analysis, how to interpret the
results, and present some robustness checks.
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year and finds little difference in the estimates.26 We conclude that the precise assumption
of the initial period is innocuous. Our assumption amounts to assuming that the shape of the
hazard for firms founded between 1856 and 1978 but otherwise identical is the same during the
2002-2009 period.

4 Results

4.1 Main results

Our estimates of the model for entry into patenting are shown in Table 1. All regressions
control for size, age, and industry. Both size and age are strongly positively associated with
entry into patenting in a new technological area. Our indicator of technological opportunity
and technology class size, the log of current patent applications in the technology class, is also
positively associated with entry into that class, as predicted by our model.

Column 2 of Table 1 contains the basic result from our data and estimation, which is fully
consistent with the predictions of our theoretical model: greater complexity as measured by
citation network density increases the probability of entry into a technology area (Prediction 2),
as does technological opportunity (Prediction 1), measured both as prior patenting in the class
and as growth in the relevant science literature. Controlling for both technological opportunity
and complexity, firms are discouraged from entry into areas with a greater density of triple
relationships among existing firms (Prediction 3). We interpret this latter result as an indicator
of the discouraging effect of hold-up possibilities or the legal costs associated with negotiation
of rights or defense in the case of litigation.

We were concerned that our network density (complexity) and triples density (hold-up po-
tential) measures might be too closely related to convey separate information, but we found
that the raw correlation between these two variables was -0.001. To check for the impact of
potential correlation conditional on year, industry, and the other variables, in column 1 of Table
1 we included the measure of thickets without that for network density and found that although
the coefficient was very slightly lower in absolute value, the result still hold.27

As we show in Appendix E, the estimated coefficients in the table are estimates of the
elasticity of the yearly hazard rate with respect to the variable, and do not depend on the industry
specific proportional hazard. A one standard deviation increase in the log of network density
is associated with a 7% increase in the hazard of entry (0.112×0.59), while a one standard
deviation in the log of triples density is associated with a 23% decrease in the hazard of entry
(-0.150×1.56). Thus the differences across these technology areas in the willingness of firms

26The main difference is in the firm age coefficient. Because the models are nonlinear, this coefficient is
identified even in the presence of year dummies and vintage/cohort (which is implied by the survival model
formulation). However it will be highly sensitive to the assumptions about vintage due to the age-year-cohort
identity.

27In results not shown, we also included the network density variable separately, with similar effect.
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to enter them is substantial, bearing in mind that the average probability of entry is only about
1% in this sample.

There are fixed costs to patenting, and a firm may be more likely to enter into patenting in
a new area if it already patents in another area. To test this idea, in the third column of Table
1, we add the logarithm of past patenting by the firm. In line with Prediction 4, firms with a
greater prior patenting history are indeed more likely to enter a new technology area doubling a
firm’s past patents leads to an almost 100% higher hazard of entry. Accounting for differences
across firms in patenting propensity also changes the sign of the non-patent references coeffi-
cient, which we are using as one of the proxies for technological opportunity in the technology
sector. Apparently firms with strong patenting histories are not more likely to enter sectors
with recent growth in scientific input.28 Controlling for past patenting also weakens the triples
coefficient somewhat, which is consistent with the idea that patenting strength renders a firm
less vulnerable to hold-up possibilities.

Industry concentration may also affect a firm’s willingness to enter new technology areas.
Recall that we already control for the level of entry by two-digit industry via stratified hazard
rate model estimation. In the next column, we add the Herfindahl for the firm’s 4-digit industry
and find that within two-digit industry, variations in four-digit concentration impact entry pos-
itively, but the effect is unrelated to any of the other variables, especially those describing the
technological context. That is, entry into new technology areas is more likely in concentrated
industries, but the impact of complexity, potential hold-up, and technological opportunity is the
same regardless of the firms industry concentration.

In the last column we interact the log of assets with the log of patents, the log of network
density, the growth of non-patent literature, and the log of triples density to see whether these
effects vary by firm size. The results show that the technological opportunity effect declines
slightly with firm size. The triples density effect shows a small decrease with size, suggest-
ing that hold-up concerns affect larger firms somewhat less than smaller firms. We show this
graphically in Figure 1, which overlays the coefficients as a function of firm size on the actual
size distribution of our firms. From the graph one can see that the impact of aggregate patent-
ing in a sector is higher and more variable than the impact of hold-up potential, and that both
fall to zero for the largest firms. Growth in non-patent literature is positively associated with
technology entry for small firms, but negatively for large firms, suggesting the role played by
the smaller firms in newer technologies based on science. Large firms seem not to be as active
in these areas.

28The negative sign of the non-patent references coefficient appears to be driven by firms in the pharmaceutical
industry. When we exclude firms in the pharmaceutical industry and the relevant technology categories organic
fine chemistry, biotechnology, and pharmaceuticals, the coefficient on the non-patent references is close to zero
and statistically not different from zero (results not reported here).
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Table 1: Hazard of entry into patenting in a TF34 Class

Variable Cox Proportional Hazard Model

(1) (2) (3) (4) (5)
Log (network density) 0.112*** 0.118*** 0.116*** 0.117***

(0.022) (0.021) (0.021) (0.021)
Log (triples density -0.147*** -0.150*** -0.111*** -0.112*** -0.117***
in class) (0.010) (0.009) (0.008) (0.009) (0.009)
Log (patents in class) 0.558*** 0.598*** 0.573*** 0.573*** 0.605***

(0.027) (0.026) (0.024) (0.024) (0.025)
5-year growth of non- 0.122*** 0.096*** -0.126*** -0.125*** -0.094***
patent refs in class (0.033) (0.034) (0.031) (0.031) (0.031)
Log assets 0.288*** 0.287*** 0.200*** 0.200*** 0.676***

(0.011) (0.011) (0.013) (0.013) (0.084)
Log firm age in years 1.203*** 1.205*** 1.178*** 1.169*** 1.203***

(0.093) (0.093) (0.103) (0.103) (0.103)
Log (pats applied for 1.074*** 1.071*** 1.071***
by firm previously) (0.038) (0.039) (0.038)
Herfindahl for firm’s 0.442**
4-digit industry (0.217)
Log (network density) 0.000
× Log assets (0.006)
Log (triples density) 0.008***
× Log assets (0.003)
Log (patents in class) -0.056***
× Log assets (0.008)
Log (average NPL refs) -0.067***
× Log assets (0.010)
Log likelihood -84.40 -84.38 -77.24 -76.34 -77.20
Degrees of freedom 13 14 15 16 19
Chi-squared 2450.7 2583.5 3520.8 3408.5 3452.9

551,981 firm-TF34 observations with 14,709 entries (22,316 firms)

Notes: The sample is matched on size class, sector, and age class. Estimates are weighted by sampling probability. Time period is 2002-2009
and minimum entry year is 1978. Sample is UK firms with nonmissing assets, all patenting firms and a matched sample of non-patenting
firms. A complete set of year dummies is included in the hazard function. Method of estimation is Cox proportional hazard. Coefficients for
the hazard of entry into a patenting class are shown. Estimates are stratified by industry - that is, each 2-digit industry has its own baseline
hazard. Standard errors are clustered on firm. *** (**) denote significance at the 1% (5%) level. The degrees of freedom are those for the
chi-squared test versus a model with hazard rate only. Source: Authors’ calculations.
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4.2 Firm effects

In the previous regressions we controlled for firm size, age, industry and past patenting be-
havior. But obviously firms can differ in other unobservable ways and it would be desirable
to control for these left out variables. Because firms in our data can enter into any one of 34
technology areas, this turns out to be straightforward, as we have variability across technol-
ogy as well as years to provide identification. The cost is that we can no longer identify the
coefficients of the firm-level variables.

Table 2 displays the results of estimating proportional hazard models on our data stratified
by firm rather than industry, with standard errors also clustered by firm. The results are similar
but differ in places from those using industry stratification. Complexity of a sector has a much
weaker impact but the impact of the thickets or hold-up variable is strengthened, implying that
firms avoid those sectors with a high potential for hold-up.

With the exception of past non-patent literature growth, the interaction coefficients (which
are identified even though the simple log assets coefficient is not) all suggest weakened impacts
for larger firms. The impact of growth in the past non-patent literature used by patents in the
class is negative within firm and even more negative for larger firms. Looking at the raw data in
the appendices, it appears that organic fine chemistry, biotechnology, and pharmaceuticals have
both the lowest first time entry rates and the highest growth in the use of non-patent literature.
In these technologies, it appears that other forces beyond thickets discourage entry.

Figure 1: Firm size and the effects of technological opportunity, complexity, and patent thickets
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Table 2: Hazard of entry into patenting in a TF34 Class – Firm Effects

Variable Cox Proportional Hazard Model

(1) (2) (3) (4)
Log (network density) 0.000 0.036** 0.041**

(0.017) (0.017) (0.017)
Log (triples density -0.206*** -0.207*** -0.212***
in class) (0.008) (0.008) (0.008)
Log (patents in class) 0.361*** 0.735*** 0.752*** 0.782***

(0.018) (0.022) (0.023) (0.024)
5-year growth of non- -0.574*** -0.636*** -0.644*** -0.634***
patent refs in class (0.026) (0.026) (0.026) (0.026)
Log (network density) -0.022***
× Log assets (0.006)
Log (triples density) 0.011***
× Log assets (0.002)
Log (patents in class) -0.071***
× Log assets (0.008)
Log (average NPL refs) -0.025***
× Log assets (0.009)
Log likelihood 43.45 43.87 43.87 43.92
Degrees of freedom 3 3 4 8
Chi-squared 964.9 1468.3 1478.5 1565.2

551,981 firm-TF34 observations with 14,709 entries (22,316 firms)

Notes: The sample is matched on size class, sector, and age class. Estimates are weighted by sampling probability. Time period is 2002-2009
and minimum entry year is 1978. Sample is UK firms with nonmissing assets, all patenting firms and a matched sample of non-patenting
firms. Method of estimation is Cox proportional hazard. Coefficients for the hazard of entry into a patenting class are shown. Estimates are
stratified by firm - that is, each firm has its own baseline hazard. Standard errors are clustered on firm. *** (**) denote significance at the 1%
(5%) level. The degrees of freedom are those for the chi-squared test versus a model with hazard rate only. Source: Authors’ calculations.
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4.3 Robustness

One concern we may have with the relationship between entry and the triples variable is si-
multaneity. That is, technology areas with lots of entry may also be prone to a higher triples
density, just because of the entries. To address this possibility, we use the aggregate form of
our entry regression. For each year we regress the log of the number of first time entries in each
technology-industry sector combination on the characteristics of the technology class together
with industry and year dummies. As instruments for the triples density, we use the median
examination lag in the technology for patents applied for 5 and 6 years prior to the current year,
which is long enough so that most of them will have been granted, rejected, or withdrawn. The
idea is that classes with long examination lags may also be those where it is more difficult to
assess patentability, leading to the hold-up potential captured by the triples proxy variable. We
find that the instrumental variables regression easily passes the specification tests for under-,
weak and over-identification, justifying our choice of instruments.

Table 3: Aggregate regressions for entry into patenting classes 2001-2009

Variable Log number of first time entries
by a firm into class by sector

OLS IV†

Coef. s.e.‡ Coef. s.e.‡

(1) (2)
Log (US network density) 0.034 0.030 0.054 0.031 *
Log (triples density) -0.099 0.011 *** -0.214 0.033 ***
Log (patent apps in class) 0.318 0.033 *** 0.484 0.058 ***
Past 5 year growth in NPL refs -0.303 0.032 *** -0.297 0.035 ***
Log (number firms in class) 0.719 0.017 *** 0.664 0.020 ***
Average 4-digit HHI in sector -0.179 0.148 -0.198 0.146
R-squared 0.625 0.600
Standard error 0.581 0.598

9 years×34 tech classes×25 sectors = 7,650 observations

Notes: ‡ Standard errors are clustered on tech class-industrial sector (which allows free correlation over time). *** (*) denote significance
at the 1% (10%) level. † Instruments are lag 5 and 6 median exam duration for patents in the class. Tests for under-identification and weak
identification pass easily. Hansen J-stat for over-identification has a p-value of 0.826. Log of triples density is treated as endogenous in the IV
estimates. Source: Authors’ calculations.

Table 3 shows the results, both ordinary least squares and instrumental variables.29 We in-
clude all the technology area variables, a count of the number of firms in the tech class-industry
sector-year cell, and the average HHI for the industry of those firms. Note that we do not expect
results to be identical when comparing the aggregate regressions to individual firm-level hazard
rate estimations, as the functional forms and aggregation level of the models differ. However,

29We also estimated this model by LIML and GMM, with almost no change in the resulting coefficients (not
shown).
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the results are similar in sign to those in column 4 of Table 1, with the exception of the HHI
coefficient, which is insignificant. For our purposes, interest centers on the coefficient of triples
density. The least squares estimate of the elasticity is negative and implies a 15% reduction
in entry per year when the triples density increases by one standard deviation. Instrumenting
this variable doubles its coefficient, which suggests that our hazard rate estimates may be an
underestimate of the true impact of potential hold-up on entry.

Table E-2 in the appendix explores some variations of the sample used for estimation in
Table 1. Column 1 of Table E-2 is the same as column 3 of Table 1 for comparison. The first
change (column 2) was to add back all the technology-industry combinations where Lybbert
and Zolas (2014) find no patenting in their data and where there was no entry by any UK firm
from the relevant industry into that technology category. These observations are about 20% of
the sample. The impact of network density on entry is considerably weaker, but the impacts
of triples density and the technology class size are considerably stronger. The growth in non-
patent references in the class is again negative, contrary to our prediction. This may be because
the sector-class combinations added were weighted towards chemicals and pharmaceuticals,
where non-patent references are much more important, and where we have already seen that
entry is low.

Next we explored the differences across firm size, first removing all the firms with assets
greater than 12.5 million pounds and then keeping only the firms with more than one billion
pounds in assets.30 The former restriction removed only 2% of the 20,000 firms, while the latter
left only 273 firms. Column 3 of Table E-2 shows that the results for the SMEs do not change
a great deal, although they are somewhat stronger, and the growth in non-patent literature is no
longer significant. The coefficients for the giant firms appear different, but they have very large
standard errors. So our results do not appear to be dominated by a particular size class of firms.

In column 5, we removed the telecommunications technology sector from the estimation,
because it is such a large triples outlier. Once again, there was little change to the estimates.
The last column of Table E-2 shows the results of defining the minimum entry year as 1900.
With the exception of firm age, the coefficients are nearly identical to those in column 1 of
the table. Age is nearly collinear with firm entry dates so changes in that coefficient are to be
expected when we redefine the entry year.

5 Conclusion

Patent thickets arise for a multitude of reasons; they are mainly driven by an increase in the
number of patent filings and concomitant reductions in patent quality (that is, the extent to

3012.5 million pounds is a cutoff based on the definition of Small and Medium-sized Enterprises (SMEs) as
firms with fewer than 250 employees. We do not have employment for all our firms, so we assume that assets
are approximately 50 thousand pounds per employee in order to compute this measure. For small firms only, this
yields an assets cutoff of 2.5 million pounds.
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which the patent satisfies the requirements of patentability) as well as increased technologi-
cal complexity and interdependence of technological components. The theoretical analysis of
patent thickets (Shapiro, 2001) and the qualitative evidence provided by the FTC in a number
of reports (FTC, 2003, 2011) suggest that thickets can impose significant costs on some firms.
The subsequent literature has focused on the measurement of thickets (e.g. Ziedonis, 2004,
Graevenitz, Wagner, and Harhoff, 2011) and has linked thickets to changes in firms’ intellec-
tual property strategies in a number of dimensions. There is still a lack of evidence on the effect
of patent thickets as well as their welfare implications at the aggregate level.

The empirical analysis of the effects of patent thickets must contend with two challenges:
first, patent thickets have to be measured and secondly, effects of thickets must be separated
from effects of other factors that are correlated with the growth of thickets, in particular tech-
nological complexity.

This paper confronts both challenges. We show that our empirical measure for the density
of thickets captures effects of patent thickets predicted by theory. We separate the impact of
patent thickets on entry from effects of technological opportunity and complexity and show that
thickets reduce entry into patenting. Controlling for technological opportunity and complexity
is important because both are correlated with entry into patenting and the presence of thickets.
It is also worth emphasizing that our measure of thickets is purged of effects that are driven
by patenting trends in particular technologies. That is, our results are not due to the level of
invention and technological progress within a technology field.

Our results demonstrate that patent thickets significantly reduce entry into those technology
areas in which growing complexity and growing opportunity increase the underlying demand
for patent protection. These are the technology areas, which are associated most with produc-
tivity growth in the knowledge economy. However, the welfare consequences of our finding are
not so clear. Reduced entry into new technology areas could be welfare-enhancing: Entry into
a market may be excessive if entry creates negative externalities for active firms, for instance
due to business stealing (Mankiw and Whinston, 1986, Suzumura and Kiyono, 1987). This is
likely to be true of patenting too. Furthermore, Arora, Ceccagnoli, and Cohen (2008) show
that the patent premium does not cover the costs of patenting for the average patent (except
for pharmaceuticals). These and related facts might lead one to conclude that lower entry into
patenting is likely to increase welfare and that thickets raise welfare by reducing entry.

In contrast, reduced entry into patenting in new technology areas may also be welfare-
reducing, for at least two reasons. First, there is the obvious argument that the benefits from
more innovation may exceed any business stealing costs (as has been shown empirically in the
past by others, e.g., Bloom, Schankerman, and Van Reenen, 2013), so that some desirable
innovation may be deterred by high entry costs. Even if this were not true, there is no reason
to believe that firms that do not enter into patenting due to thickets are those we wish to deter.
Given the incumbency advantage, it is likely that the failure to enter into patenting in these
areas reflects less innovation by those who bring the most original ideas, that is, by those who
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are inventing ‘outside the box.’
The view that firms generally identify and preempt the emergence of patent thickets through

private contractual arrangements sounds optimistic in this light (Barnett, 2018). While firms
have the ability to privately contract around blocking patents, transaction costs associated with
contracts of this nature may be sufficiently important to deter some firms, specifically smaller
ones, from doing so. Our evidence also casts doubt on the suggestion that in response to a
thicket, firms will simply resort to unlicensed use of patented technology (Teece, 2018). This is
much more likely to be a response adopted by large corporations with strong patent portfolios,
as is apparent in the many patent cases brought by smartphone vendors after 2011 (Paik and
Zhu, 2016). The key question for public policy in this context is whether or not to employ more
resources to change incentives for patentees to submit clearly delineated patent claims and to
strengthen the examination of patents such that patent notice is strengthened. Menell (2019)
discusses a range of approaches that could be taken in this regard. Our analysis suggests that
these measures might primarily benefit smaller patent applicants.

Supplementary material

Supplementary material is available on the OUP website. These are the data and replication
files and the online appendix. Some of the data used in this paper are available from Bureau
van Dijk’s FAME database.
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ONLINE APPENDIX

Technology Entry in the Presence of Patent Thickets
Bronwyn H. Hall Georg von Graevenitz Christian Helmers

A Results from Prior Work

This appendix summarizes a number of results derived by Graevenitz, Wagner, and Harhoff
(2013) as well as some additional results that are useful for understanding our theoretical re-
sults.

A.1 The Probability of Patenting a Facet

The probability pi that firm i obtains a patent on a facet is:

pi(f6k, F,NO(O,o6k, N)) =

NO∑
j=0

1

j + 1

(
NO

j

)NO−j∏
l=0

(
1− fl

Fk

) NO∏
m=NO−j

fm
Fk

. (A.1)

where f6i,o 6i are vectors containing the choices of the number of facets and the number of op-
portunities to invest in, made by all rival firms j.

For the comparative statics of entry stage it is useful to know that the elasticity of pi with
respect to Fk is negative if φ̂k < 1

2
:

∂pi
∂Fk

=

NO∑
i=0

1

i+ 1

(
NO

i

)
(1− φ̂k)NO−iφ̂ik(−1)

(
NO

Fk
− NO − i
Fk − f̂k

)
(A.2)

Then the elasticity εpi,Fk is:

εpi,Fk =N2
O

(
φ̂k − 1

2
(1 + 1

NO
)
)

1− φ̂k
(A.3)

A.2 The Expected Number of Rival Investors

The expected number of rival firms NO that undertake R&D on the same technology opportu-
nity as firm i can be expressed as a sum of products:

NO =

Nk∑
j=0

j

(
Nk

j

)Nk−j∏
l=0

(1− ωlk)
Nk∏

m=Nk−i

ωmk. (A.4)
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In the second stage equilibrium NO can be rewritten as:

NO =
N∑
j=0

j

(
N

j

)
(1− ω̂k)(N−j)ω̂jk. (A.5)

Incumbency Advantage

In the case in which there are incumbents and entrants the expected number of rival firms NO

has to rewritten slightly. To do this define:

ωIik ≡ oIi
/
Ok ωEik ≡ oEi

/
Ok (A.6)

We assume that in a previous period Np firms entered and of these a fraction λ are still ac-
tive. Then the expected number of rival firms ÑO that undertake R&D on the same technology
opportunity as firm i is:

ÑO =
λNP∑
j=0

j

(
λNP

j

)
(1− ω̂Ik)(NP−j)(ω̂Ik)

j +
N∑
j=0

j

(
N

j

)
(1− ω̂Ek )(N−j)(ω̂Ek )j. (A.7)

A.3 The Expected Number of Facets Covered

In the second stage equilibrium the expected number of facets covered through the joint efforts
of all firms investing in a technological opportunity is:

F̃k = Fk

[
1− (1− φ̂k)(NO+1)

]
(A.8)

The derivative of this expression with respect to Fk is positive:

∂F̃k
∂Fk

= 1−
(

1− φ̂k
)NO (

1 + φ̂kNO

)
≥ 0 . (A.9)

The elasticities of F̃k with respect to fk and F are:

η̂k =
φ̂k(1− φ̂k)NO

1− (1− φ̂k)(NO+1)
(A.10)

ε̂F̃k,Fk =
1− (1− φ̂k)(NO)(1 + φ̂jNO)

1− (1− φ̂k)(NO+1)
. (A.11)

which shows that 1 ≥ εF̃kFk ≥ 0 as the denominator in the fraction is always greater than the
numerator. It is useful to observe that the upper bound of the elasticity η̂k is decreasing in NO.
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To see this note that the elasticity can be expressed as:

η̂k =
(1− φ̂k)NO

(No + 1)
(

1− φ̂k No2!
+ φ̂2

k
No(NO−1)

3!
...
) . (A.12)

This shows that the upper bound of the elasticity decreases inNO: limφ̂k→0 ηk = 1
/

(NO+1) ≤
1. Here we use the binomial expansion of (1 − φ̂k)No+1. The expression also shows that the
lower bound of ηk|φ̂k=1 is zero.

B Results

This appendix contains results on patenting for Stage 2 of game G∗ and derivations of all
propositions.

B.1 Stage 2: Comparative statics of patenting

The second stage of game G∗ is smooth supermodular, as shown in Section B.2.

Proposition 4
The second stage patenting game, defined in particular by assumptions (VF, (2)), (PB, (3)) and
(LC, (4)) is smooth supermodular if µ̂k > ξ̂k and if ownership of the technology is expected to
be fragmented.

This result generalizes Proposition 1 in Graevenitz, Wagner, and Harhoff (2013).31

Further, we show that:

Proposition 5
The potential for hold-up in complex technologies reduces patenting incentives.

In Appendix B.3 we show that the expected legal costs of hold-up reduce the number of op-
portunities that firms invest in. In addition, firms with larger portfolios are more exposed to
hold-up and benefit less from the share of patents they have patented per opportunity. Both
effects combine to reduce the number of facets each firm applies for.

B.2 Supermodularity of the Second Stage Game

This section sets out the main results needed to show that the second stage of game G∗ is
supermodular.

Consider the first order conditions that determine the equilibrium number of facets f̂ and
technological opportunities ô:

31Here it is no longer the case that the value function has to be increasing in the number of patented facets for
supermodularity of the patenting game. We relegate further discussion of this result to Appendix B.2.
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∂πik
∂oi

= Vk(F̃k)∆(sik)− L(γi, sik, hk)− Co(ΣNo
j=1oj)− γiCa −

∂Cc
∂oi

= 0 , (B.1)

∂πik
∂fi

=
oipi

F̃k

([
Vk(F̃k)µkηik

∆(sik)

sik
− F̃k

(
∂L

∂γi
+ Ca

)]
+
[
Vk(F̃k)

d∆

dsik
− ∂L

∂sik

]
(1− ηik)

)
= 0 .

(B.2)

Now, consider the cross-partial derivatives which must be positive, if the second stage game is
supermodular. First, we derive the cross partial derivative with respect to firms’ own actions:

∂2πik
∂oi∂fi

=
pi

F̃k

([
Vk(F̃k)µkηik

∆(sik)

sik
− F̃k

(
∂L

∂γi
+ Ca

)]
+
[
Vk(F̃k)

d∆

dsik
− ∂L

∂sik

]
(1− ηik)

)
= 0 .

(B.3)

This expression corresponds to the first order condition (B.2) for the optimal number of facets.
Now consider effects of rivals’ actions on firms’ own actions:

∂2πik
∂oi∂om

=
∂F̃k
∂om

sik

F̃k

[
Vk(F̃k)

∆

sik
(µk − ξik) +

∂L

∂sik

]
+
∂pi
∂om

fi

F̃k

[(
Vk(F̃k)

d∆

dsik
− ∂L

∂sik

)
− F̃k

(
∂L

∂γi
+ Ca

)]
(B.4)

− ∂Co

∂ΣNo
j=1oj

,

∂2πik
∂oi∂fm

=
∂F̃k
∂fm

sik

F̃k

[
Vk(F̃k)

∆

sik
(µk − ξik) +

∂L

∂sik

]
+
∂pi
∂fm

fi

F̃k
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Vk(F̃k)
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− ∂L
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)
− F̃k

(
∂L
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(B.5)
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∂om
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]
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)
− ∂pi
∂om

[
∂2L
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, (B.6)

∂2πik
∂fi∂fm

=
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∂fm
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∂Vk

∂F̃k

∆

sik
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)
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2 F̃kηik
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∂ηik
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(
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∆

sik
(µk − ξik) +

∂L

∂sik
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− ∂pi
∂fm

[
∂2L

∂γi2
fi +
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∂sik2

fi
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(1− ηik)
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(B.7)

The second stage game is supermodular, if the equations (B.4)-(B.7) are non-negative. The
following results show that the conditions discussed in Section 2 must hold simultaneously if
game G* is supermodular.

Using the first order condition (B.2), which will hold for any interior equilibrium, it can be
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shown that:[(
Vk(F̃k)

d∆

dsik
− ∂L

∂sik

)
− F̃k

(
∂L

∂γi
+ Ca

)]
= −ηik

(
Vk(F̃k)

∆

sik
(µk − ξik) +

∂L

∂sik

)
.

(B.8)

If
(
Vk(F̃k)

∆
sik

(µk − ξik) + ∂L
∂sik

)
> 0, then the second term in the cross-partial derivatives

(B.4) and (B.5) is the product of two negative expressions, and then Equation (B.5) is positive.
Equation (B.4) can be rewritten as follows:

∂2πik
∂oi∂om

=
∂NO

∂om

sik
NO

[
εF̃k,NO − εpk,NOηik

][
Vk(F̃k)

∆

sik
(µk − ξik) +

∂L

∂sik

]
− ∂Co

∂ΣNo
j=1oj

.

(B.9)

Graevenitz, Wagner, and Harhoff (2013) show that as rival firms choose more opportunities to
invest in the number of firms seeking to patent within each opportunity increases. It can also be
shown that the first term in square brackets in Equation (B.9) is positive: εF̃k,NO > 0, εpi,NO <

0, ηik ≥ 0. Therefore, this cross-partial introduces a restriction on the costs of doing R&D per
opportunity: these should not increase too steeply with respect to each rival firm’s choice of
total opportunities to invest in. As more firms become active in a technology the marginal effect
of an additional entrant will diminish, so that this requirement is not very strong in a crowded
technology area. We return to this requirement further below when considering free entry.

Turning to equations (B.6) and (B.7) we can show that:

∂ηik
∂om

=
∂2F̃k
∂fi∂om

fi

F̃k
− ∂F̃k
∂fi

∂F̃k
∂om

fi

F̃k
2 = −F̃k

−1 ∂F̃k
∂om

(
φk

1− φk
+ ηik

)
(B.10)

∂ηik
∂fm

=
∂2F̃k
∂fi∂fm

fi

F̃k
− ∂F̃k
∂fi

∂F̃k
∂fm

fi

F̃k
2 = −F̃k

−1 ∂F̃k
∂fm

(
φk

1− φk
+ ηik

)
(B.11)

This result allows us to rewrite equations (B.6) and (B.7) as follows:

∂2πk
∂fi∂om

=
1

F̃k

∂F̃k
∂om

[(
V

∆

sik
(µk − ξik) +

∂L

∂sik

)(
1− 2ηik −

φ

1− φ

)
+
∂2V

∂F̃k
2 F̃kηik +

∂2L

∂sik2

sik

F̃k
(1− ηik)

]

− ∂pi
∂om

[
∂2L

∂γi2
fi +

∂2L

∂sik2

fi
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(1− ηik)

]
, (B.12)

∂2πk
∂fi∂fm

=
1

F̃k

∂F̃k
∂fm

[(
V

∆

sik
(µk − ξik) +

∂L

∂sik

)(
1− 2ηik −

φ

1− φ

)
+
∂2V

∂F̃k
2 F̃kηik +

∂2L

∂sik2

sik

F̃k
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− ∂pi
∂fm

[
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fi +
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fi
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]
. (B.13)
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Given assumptions (VF) and (LC) shown in the main text, these two equations will be positive
if
(
V ∆
sik

(µk − ξik) + ∂L
∂sik

)
> 0 and

(
1− 2ηik − φ

1−φ

)
> 0. We analyze each condition in more

detail next:

1. Given our assumptions on the legal cost function (LC, eq. 4) the condition
(
V ∆(ŝk)

ŝk
(µ̂k−

ξ̂k + ∂L
∂ŝk

)
> 0 ⇔ V ∆(ŝk)

ŝk
(µ̂k − ξ̂k > − ∂L

∂ŝk
implies that µ̂k > ξ̂k. The elasticity of

the value function with respect to additional covered patents must exceed the elasticity
of the portfolio benefits function with respect to the share of patents held by the firm.
This condition is less restrictive than the assumption in Graevenitz, Wagner, and Harhoff
(2013) that µ̂k > 1, since we are assuming that ξ̂k < 1.

2. (1− 2η̂k)− φ̂k
1−φ̂k

> 0⇔ (1− 2φ̂) > (1− φ̂)(N̂O+1). This holds for any φ̂k < 1
2

and N̂o

sufficiently large. These restrictions imply a setting in which the ownership of patents
belonging to each opportunity is fragmented amongst many firms. It is more likely to
arise if the technology is highly complex, otherwise the condition that φ̂k < 1

2
is less

likely to hold.

In Appendix B.5 we derive the conditions under which the equilibrium of game G∗ is
unique. If there is a unique solution to the optimization problem of the firm at which prof-
its are maximized, then this requires that ∂2πk/∂f̂

2 < 0. The restrictions that i) µ̂k < 1 and
ii) the share of overall profits which the firm obtains is decreasing at the margin in the share
of patents the firm holds (∂2∆/∂ŝ2

k < 0) ensure that there is always such a unique interior
solution.

In this game G∗ the comparative statics of patenting are the same as in the main model ana-
lyzed in Graevenitz, Wagner, and Harhoff (2013). Specifically we can show that the following
effects hold in this game:

∂2π

∂oi∂Fk
> 0,

∂2π

∂fi∂Fk
> 0,

∂2π

∂oi∂Ok

< 0,
∂2π

∂fi∂Ok

< 0 (B.14)

This implies that complexity of the technology increases firms’ patent applications while in-
creased technological opportunity reduces firms’ patenting applications.

B.3 Effect of Hold-up on Patenting

Here we show that Proposition 2 holds. Consider the following cross-partial derivatives for the
effects of higher legal costs L due to hold-up:

∂2πk
∂ô∂hk

= −∂L(γ̂k, ŝk, hk)

∂hk
< 0 , (B.15)

∂2πk

∂f̂∂hk
= − ôp̂k

F̃k

(
F̃k

(
∂2L

∂γ̂k∂hk

)
+

∂2L

∂ŝk∂hk
(1− η̂k)

)
< 0 . (B.16)
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The first of these conditions shows that the expected legal costs of hold-up reduce the number
of opportunities a firm invests in, in equilibrium. The second condition shows that firms with
larger portfolios will be more exposed to hold up and will benefit less from the share of patents
they have patented per opportunity. Both of these effects reduce the number of facets each firm
applies for.

B.4 Free Entry Equilibirum
Lemma 1
There is a free entry equilibrium at which the marginal entrant can just break even, if R&D
fixed costs per opportunity (Co) increase in the number of entrants.

In a free entry equilibrium it must be the case that the following conditions hold:

πk(ôk, f̂k, N̂k) > 0 ∧ πk(ôk, f̂k, N̂k + 1) < 0 . (B.17)

The effect of entry on profits at the first stage of game G∗ can be shown to be:

∂π(ôk, f̂k)

∂N̂k

= ô
∂N̂O

∂N̂k

(
ŝk
ˆ̃Fk

∂ ˆ̃Fk

∂N̂O

[
V̂k(

ˆ̃Fk)µ̂
∆(ŝk)

ŝk
−
(
V̂ ( ˆ̃Fk)

∂∆

∂ŝk
− ∂L

∂ŝk

)]

+
∂p̂k

∂N̂O

f̂

ˆ̃Fk

[(
V̂ ( ˆ̃Fk)

d∆

dŝk
− ∂L

∂ŝk

)
− ˆ̃Fk

(
∂L

∂γ̂k
+ Ca

)]
− ∂Co

∂N̂oô
ô

)
. (B.18)

This expression is very similar to the first cross-partial (B.9). Simplifying further as above we
obtain:

∂π(ô, f̂)

∂N̂k

= ô
∂N̂O

∂N̂k

(
ŝk

N̂O

[
ε̂F̃k,No − ε̂pi,No η̂k

][
V̂

∆(ŝk)

ŝk

(
µ̂k − ξ̂k

)
+
∂L

∂ŝk

]
− ∂Co

∂N̂oô
ô

)
.

(B.19)

This expression must be negative in a free entry equilibrium, otherwise profits would increase
with additional entrants. Note that there are two main differences with respect to Equation
(B.9):

i) the positive term is multiplied with ∂N̂O
∂om

in Equation (B.9) and

ii) the cost function is multiplied with ô here.

Graevenitz, Wagner, and Harhoff (2013) show that:

∂N̂O

∂wm
= Nkω

N−1
l +

N−1∑
i−0

(
N − 1

i

)
(1− ωl)(N−1−i)ωil > 0 . (B.20)
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Note that:

∂N̂O

∂om
=
∂N̂O

∂ωm

1

Ok

. (B.21)

It can be demonstrated that for arbitrary values of ω the derivative of NO with respect to om
is significantly larger than 1. This implies that there is always a region of parameter values
for Fk, Ok, hk, Ca in which the supermodular game G* is in equilibrium and Nk, NO are deter-
mined by the free entry condition.

B.5 Uniqueness of the second stage equilibrium

We show above that stage 2 of game G∗ is supermodular. This implies that there exists at least
one equilibrium of the stage game. An alternative way of deriving existence of the second
stage equilibrium for game G∗ is to analyze the conditions under which the Hessian of second
derivatives of the profit function Hπ is negative semidefinite. This matrix consists of four
derivatives of which only one leads to additional restrictions on the model.

It is easy to see that ∂2π
∂oi2

< 0 due to the coordination costs Cc(oi) and the restrictions we
impose with assumption (FVC). The two cross-partial derivatives are both zero in equilibrium
- refer to equation B.3.

Therefore, the only expression that remains to analyze is ∂2π
∂fi

2 .

∂2π

∂fi
2 =

oipi

F̃k

[
∂2V

∂F̃k
2

(
∂F̃k
∂fi

)2
∆F̃k
pi

+ 2
∂V

∂F̃k

∂F̃k
∂fi

d∆

dsik
(1− ηik) + V

d2∆

s2
ik

pi

F̃k
(1− ηik)2

− ∂2L

∂γi2
p2
i −

∂2L

∂sik2

(
∂sik
∂fi

)2

− 2

(
V
d∆

dsik
− ∂L

∂sik

)
(1− ηik) ηik

fi

]
.

This can be further simplified:

∂2π

∂fi
2 =

oipi

F̃k

[
∂2V

∂F̃k
2

(
∂F̃k
∂fi

)2
∆F̃k
pi

+ V
d2∆

s2
ik

pi

F̃k
(1− ηik)2 − ∂2L

∂γi2
p2
i

− ∂2L

∂sik2

pi

F̃k
(1− ηik)2 − 2

(
V

∆

sik
ξik(1− µk)−

∂L

∂sik

)
(1− ηik) ηik

fi

]
. (B.22)

If we impose the restriction that the second derivative of the value function is negative and
that the elasticity of the value function, µk < 1, then the first and the last terms in the above
expression are negative. The sign of the second term in the expression depends on sign{ ∂2∆

∂sik2
},

which we will assume is negative. The third and fourth terms in the above expression are
negative given the conditions imposed on the legal cost function above.
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B.6 Entry and Incumbency

In this section we analyze a game in which incumbents have lower costs of entry and demon-
strate that our main predictions are robust.

We assume that a fraction λ (0 < λ < 1) of the previously active NP firms remain as
incumbents. The firms enter until the marginal profit from entry is reduced to zero.

Objective Functions

First, consider the objective functions of incumbents and entrants and the patenting game they
are involved in. We analyze this game and show when it is supermodular.

Given symmetry of technological opportunities (Assumption S) the expected value of patent-
ing for entrant and incumbent firm’s in a technology area k is:

πIik(o
I
i , f

I
i ) =oIi

V (F̃k)∆(sIik)− L(γIik, s
I
ik)−

Co(NPλ−1+NE∑
j=1

oj)−Ψ

− f Ii pkCa
− Cc(oIi ) .

(B.23)

πEik(o
E
i , f

E
i ) =oEi

V (F̃k)∆(sEik)− L(γEik, s
E
ik)− Co(

NPλ+NE−1∑
j=1

oj)− fEi pkCa

− Cc(oEi ) .

(B.24)

Define a game GE in which:

• There are NPλ incumbent firms and the number of entrants, NE , is determined by free
entry.

• Entrants and incumbents simultaneously choose the number of technological opportu-
nities oIi , o

E
i ∈ [0, On] and the number of facets applied for per opportunity f Ii , f

E
i ∈

[0, F n]. Firms’ strategy sets Sn are elements of R4.

• Firms’ payoff functions πik, defined at (B.23,B.24), are twice continuously differentiable
and depend only on rivals’ aggregate strategies.

• Assumptions (VF) and (LC) describe how the expected value and the expected cost of
patenting depend on the number of facets owned per opportunity.

Firms’ payoffs depend on their rivals’ aggregate strategies because the probability of ob-
taining a patent on a given facet is a function of all rivals’ patent applications. Note that the
game is symmetric within the two groups of firms as it is exchangeable in permutations of the
players. This implies that symmetric equilibria exist, if the game can be shown to be super-
modular (Vives, 2005).32

32Note also that only symmetric equilibria exist as the strategy spaces of players are completely ordered.
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First order conditions for game GE:

∂πIik
∂oIi

= V∆(sik)− L(γi, sik)−

Co(NPλ−1+NE∑
j=1

oj)−Ψ

− γiCa − ∂Cc
∂oIi

= 0 , (B.25)

∂πIik
∂f Ii

=
oIi pi

F̃k

([
V µεF̃kfi

∆(sik)

sik
− F̃k

(
∂L

∂γi
+ Ca

)]
+
[
V
d∆(sik)

dsik
− ∂L

∂sik

]
(1− ηik)

)
= 0 ,

(B.26)

∂πEik
∂oEi

= V∆(sik)− L(γi, sik)− Co(
NPλ+NE−1∑

j=1

oj)− γiCa −
∂Cc
∂oEi

= 0 , (B.27)

∂πEik
∂fEi

=
oEi pi

F̃k

([
V µεF̃kfi

∆(sik)

sik
− F̃k

(
∂L

∂γi
+ Ca

)]
+
[
V
d∆(sik)

dsik
− ∂L

∂sik

]
(1− ηik)

)
= 0 .

(B.28)

Proposition 6
In game GE the equilibrium number of facets chosen by incumbents and entrants is the same:
f̂ I = f̂E .

We show in Appendix A.2 that in the game with incumbents the number of rivals per op-
portunity ÑO becomes a function of both ôI , ôE . The first order conditions determining f̂ I , f̂E

both depend on the total number of entrants per technological opportunity ÑO and so both on
ôI , ôE . This is the only way in which rivals’ choices of the number of opportunities to pursue
enter these first order conditions33. Therefore the two conditions are identical and Proposition
6 holds.

Proposition 7
The second stage of game GE is smooth supermodular under the same conditions as game G∗.
Comparative statics results for game G∗ also apply to game GE .

The first order conditions characterizing the game with incumbents and entrants are identical
to those for the game without incumbents as long as Ψ = 0. As this variable is a constant it
does not enter into the second order conditions which we analyze to establish supermodularity
and which underpin the comparative statics predictions in Propositions 3-5.

Proposition 8
In the second stage of game GE incumbents enter more technological opportunities, if they
have a cost advantage in undertaking R&D (Ψ > 0).

The first order conditions determining the equilibrium number of opportunities chosen by in-
cumbents and entrants are identical if firms R&D fixed costs per opportunity are the same
(Ψ = 0). Therefore ôI|Ψ=0 = ôE . As the cost advantage of incumbents in undertaking R&D

33Clearly the factors outside the brackets in equations (B.26), (B.28) also depend on these variables, but these
do not affect the equilibrium values of fEi , f

I
j .
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grows this increases the number of opportunities chosen by incumbents:

∂2πIik
∂oI∂Ψ

= 1 > 0 . (B.29)

Proposition 9
In the second stage of game GE the number of entrants decreases as the cost advantage of
incumbents increases.

Due to the supermodularity of the second stage game, increases in incumbents’ choices of
the number of opportunities to invest in will raise the number of opportunities entrants invest
in as well as the numbers of facets entrants and incumbents seek to patent in equilibrium. The
increases in ôI and ôE will raise the fixed costs of entry into new opportunities, Co, which then
reduces entry.

C Data

Our analysis relies on an updated version of the Oxford-Firm-Level-Database, which combines
information on patents (UK and EPO) with firm-level information obtained from Bureau van
Dijks Financial Analysis Made Easy (FAME) database (for more details see Helmers, Rogers,
and Schautschick (2011) from which the data description in this section draws).

The database consists of two components: a firm-level data set and intellectual property (IP)
data. The firm-level data is the FAME database that covers the entire population of registered
UK firms. The original version of the database, which formed the basis for the update carried
out by the UKIPO, relied on two versions of the FAME database: FAME October 2005 and
March 2009. The main motivation for using two different versions of FAME is that FAME
keeps details of inactive firms (see below) for a period of four years. If only the 2009 version
of FAME were used, IP could not be allocated to any firm that has exited the market before
2005, which would bias the matching results. FAME is available since 2000, which defines
the earliest year for which the integrated data set can be constructed consistently. The update
undertaken by the UKIPO used the April 2011 version of FAME. However, since there are
significant reporting delays by companies, even using the FAME 2011 version means that the
latest year for which firm-level data can be used reliably is 2009.

FAME contains basic information on all firms, such as name, registered address, firm type,
industry code, as well as entry and exit dates. Availability of financial information varies sub-
stantially across firms. In the UK, the smallest firms are legally required to report only very
basic balance sheet information (shareholders’ funds and total assets). The largest firms pro-
vide a much broader range of profit and loss information, as well as detailed balance sheet data
including overseas turnover. Lack of these kinds of data for small and medium-sized firms
means that our study focuses on total assets as a measure of firm size and growth.
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Table C-1: Patenting by FAME firms on Patstat (priority years 2002-2009)

Weighted by #owners & #classes∗ Sector shares

Technology areas GB pats EP pats Total GB pats EP pats
Electrical machinery, apparatus, energy 1,321 1,101 2,422 6.1% 4.4%
Audio-visual technology 633 549 1,182 2.9% 2.2%
Telecommunications 1,181 1,206 2,386 5.5% 4.8%
Digital communication 590 732 1,323 2.7% 2.9%
Basic communication processes 302 146 447 1.4% 0.6%
Computer technology 1,481 1,302 2,783 6.8% 5.2%
IT methods for management 256 224 480 1.2% 0.9%
Semiconductors 269 248 518 1.2% 1.0%
Optics 392 481 873 1.8% 1.9%
Measurement 1,216 1,458 2,674 5.6% 5.8%
Analysis of biological materials 132 426 557 0.6% 1.7%
Control 592 542 1,134 2.7% 2.2%
Medical technology 996 1,561 2,558 4.6% 6.3%
Organic fine chemistry 182 1,538 1,720 0.8% 6.2%
Biotechnology 193 950 1,143 0.9% 3.8%
Pharmaceuticals 277 1,876 2,153 1.3% 7.5%
Macromolecular chemistry, polymers 114 280 394 0.5% 1.1%
Food chemistry 88 458 547 0.4% 1.8%
Basic materials chemistry 314 1,050 1,363 1.5% 4.2%
Materials, metallurgy 161 318 479 0.7% 1.3%
Surface technology, coating 287 284 571 1.3% 1.1%
Chemical engineering 507 724 1,231 2.3% 2.9%
Environmental technology 296 344 640 1.4% 1.4%
Handling 996 813 1,809 4.6% 3.3%
Machine tools 428 356 784 2.0% 1.4%
Engines, pumps, turbines 887 942 1,829 4.1% 3.8%
Textile and paper machines 235 304 539 1.1% 1.2%
Other special machines 742 623 1,365 3.4% 2.5%
Thermal processes and apparatus 410 261 671 1.9% 1.0%
Mechanical elements 1,149 854 2,002 5.3% 3.4%
Transport 1,063 930 1,993 4.9% 3.7%
Furniture, games 1,064 612 1,675 4.9% 2.5%
Other consumer goods 630 507 1,137 2.9% 2.0%
Civil engineering 2,237 960 3,196 10.3% 3.8%
Total 21,619 24,959 46,578
Electrical engineering 6,032 5,508 11,540 27.9% 22.1%
Instruments 3,328 4,468 7,796 15.4% 17.9%
Chemistry 2,418 7,822 10,240 11.2% 31.3%
Mechanical engineering 5,910 5,083 10,993 27.3% 20.4%
Other Fields 3,930 2,079 6,009 18.2% 8.3%

Notes: ∗Weighting by owners does not affect the numbers, since they all get added back into the same cell. Weighting by classes means that
a patent in multiple TF34 sectors is downweighted in each of the sectors.
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The patent data come from the EPO Worldwide Patent Statistical Database (PATSTAT).
Data on UK and EPO patent publications by British entities were downloaded from PATSTAT
version April 2011. Due to the average 18 months delay between the filing and publication
date of a patent, using the April 2011 version means that the patent data are presumably only
complete up to the third quarter in 2009. This effectively means that we can use the patent data
only up to 2009 under the caveat that it might be somewhat incomplete for 2009. Patent data
are allocated to firms by the year in which a firm applied for the patent.

Since patent records do not include any kind of registered number of a company, it is not
possible to merge data sets using a unique firm identifier; instead, applicant names in the IP
documents and firm names in FAME have to be matched. Both a firm’s current and previous
name(s) were used for matching in order to account for changes in firm names. Matching on
the basis of company names required names in both data sets to be ‘standardized’ prior to the
matching process. For more details on the matching see Helmers, Rogers, and Schautschick
(2011).

Table C-2: Number of TF34 classes entered between 2002 and 2009

Number of classes Number of firms Number of entries
1 3,110 3,110
2 1,696 3,392
3 765 2,295
4 384 1,536
5 215 1,075
6 115 690
7 68 476
8 57 456
9 44 396
10 33 330
11 16 176
12 11 132
13 5 65
14 9 126
15 or more 26 454
Total 6,554 14,709
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Table C-3: Sample population of UK firms, by industry

Industry Number of Number of Share Number of
firms patenters patenting patents

2001-2009
1 Basic metals 2,992 71 2.37% 659
2 Chemicals 4,140 312 7.54% 3002
3 Electrical machinery 4,242 371 8.75% 2071
4 Electronics & instruments 9,173 745 8.12% 6161
5 Fabricated metals 25,963 778 3.00% 3082
6 Food, beverage, & tobacco 10026 129 1.29% 526
7 Machinery 10,823 824 7.61% 5749
8 Mining, oil&gas 49,548 152 0.31% 1218
9 Motor vehicles 2,569 137 5.33% 1190
10 Other manufacturing 66,321 1831 2.76% 8341
11 Pharmaceuticals 1,122 132 11.76% 2180
12 Rubber & plastics 6,798 514 7.56% 2081
13 Construction 315426 563 0.18% 1638
14 Other transport 3,501 126 3.60% 1319
15 Repairs & retail trade 142,934 374 0.26% 1724
16 Telecommunications 16,305 188 1.15% 3115
17 Transportation 65,906 104 0.16% 424
18 Utilities 14,789 128 0.87% 396
19 Wholesale trade 148,511 986 0.66% 3639
20 Business services 782,561 2660 0.34% 17795
21 Computer services 199,364 1070 0.54% 4272
22 Financial services 225,434 281 0.12% 1559
23 Medicalservices 42,542 167 0.39% 902
24 Personal services 102,986 321 0.31% 1079
25 R&D services 8,693 1173 13.49% 9186

Total 2,262,669 14,137 0.62% 83,308
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Table C-4: Entry into techology area 2002-2009

Technology Numbers Shares

Total patenting First time Patented Total entry First time Patented
in tech class patenter previously in rate patenter previously in
by GB firms another tech another tech

Electrical machinery, apparatus, energy 3,584 416 197 17.1% 11.6% 5.5%
Audio-visual technology 2,138 326 160 22.7% 15.2% 7.5%
Telecommunications 3,817 321 137 12.0% 8.4% 3.6%
Digital communication 2,205 209 118 14.8% 9.5% 5.4%
Basic communication processes 748 72 65 18.3% 9.6% 8.7%
Computer technology 4,181 519 165 16.4% 12.4% 3.9%
IT methods for management 923 291 128 45.4% 31.5% 13.9%
Semiconductors 898 113 105 24.3% 12.6% 11.7%
Optics 1,393 154 117 19.5% 11.1% 8.4%
Measurement 4,160 478 188 16.0% 11.5% 4.5%
Analysis of biological materials 1,125 143 95 21.2% 12.7% 8.4%
Control 1,993 367 195 28.2% 18.4% 9.8%
Medical technology 3,766 393 159 14.7% 10.4% 4.2%
Organic fine chemistry 3,495 110 77 5.4% 3.1% 2.2%
Biotechnology 2,005 119 78 9.8% 5.9% 3.9%
Pharmaceuticals 4,072 143 66 5.1% 3.5% 1.6%
Macromolecular chemistry, polymers 825 90 88 21.6% 10.9% 10.7%
Food chemistry 902 97 77 19.3% 10.8% 8.5%
Basic materials chemistry 2,480 205 118 13.0% 8.3% 4.8%
Materials, metallurgy 914 176 92 29.3% 19.3% 10.1%
Surface technology, coating 1,250 214 161 30.0% 17.1% 12.9%
Chemical engineering 2,498 345 147 19.7% 13.8% 5.9%
Environmental technology 1,184 261 111 31.4% 22.0% 9.4%
Handling 2,805 528 215 26.5% 18.8% 7.7%
Machine tools 1,237 226 163 31.4% 18.3% 13.2%
Engines, pumps, turbines 2,430 206 157 14.9% 8.5% 6.5%
Textile and paper machines 997 183 104 28.8% 18.4% 10.4%
Other special machines 2,273 396 183 25.5% 17.4% 8.1%
Thermal processes and apparatus 1,074 216 123 31.6% 20.1% 11.5%
Mechanical elements 3,155 528 231 24.1% 16.7% 7.3%
Transport 2,919 462 189 22.3% 15.8% 6.5%
Furniture, games 2,451 514 169 27.9% 21.0% 6.9%
Other consumer goods 1,916 366 188 28.9% 19.1% 9.8%
Civil engineering 4,357 763 193 21.9% 17.5% 4.4%
Total 76,170 9,950 4,759 19.3% 13.1% 6.2%
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Table C-5: UKIPO and EPO patents: numbers, triples and network density 2002-2009

Technology categories Aggregate Number of Triples per US Citation references Growth in Industries w/
EPO patents EPO triples‡ 1000 patents network density† references non-pat refs no patents∗

Electrical machinery, apparatus, energy 56,652 7751 136.8 39.3 0.300 -0.182 2
Audio-visual technology 34,753 13268 381.8 63.5 0.332 -0.300 0
Telecommunications 62,485 27049 432.9 78.5 0.886 0.355 5
Digital communication 36,837 16529 448.7 179.1 1.137 0.501 8
Basic communication processes 10,167 2289 225.1 110.7 1.022 0.012 10
Computer technology 60,755 21956 361.4 54.2 1.164 0.338 2
IT methods for management 9,436 34 3.6 141.5 0.507 0.177 7
Semiconductors 24,511 9974 406.9 94.2 0.904 -0.041 4
Optics 28,676 7767 270.9 58.0 0.672 -0.228 5
Measurement 44,304 2503 56.5 45.7 0.883 0.257 3
Analysis of biological materials 11,742 26 2.2 320.4 9.981 0.425 25
Control 17,617 308 17.5 111.9 0.328 0.007 3
Medical technology 65,903 4411 66.9 206.1 0.491 0.491 4
Organic fine chemistry 40,937 3993 97.5 33.1 3.926 0.542 8
Biotechnology 33,008 365 11.1 88.4 15.716 0.688 8
Pharmaceuticals 52,619 11222 213.3 76.9 8.171 0.603 9
Macromolecular chemistry, polymers 21,129 3722 176.2 92.2 0.957 0.262 7
Food chemistry 10,190 140 13.7 328.0 4.901 0.592 8
Basic materials chemistry 27,422 1929 70.3 84.6 1.531 0.485 5
Materials, metallurgy 16,868 405 24.0 90.4 0.821 0.020 4
Surface technology, coating 17,512 363 20.7 59.5 0.728 0.087 0
Chemical engineering 24,568 443 18.0 66.1 0.632 0.169 2
Environmental technology 12,656 858 67.8 208.7 0.396 0.094 3
Handling 30,340 252 8.3 67.2 0.049 -0.308 1
Machine tools 24,045 508 21.1 64.1 0.090 -0.496 3
Engines, pumps, turbines 32,508 6678 205.4 86.5 0.113 -0.401 2
Textile and paper machines 23,266 2640 113.5 85.2 0.256 -0.236 5
Other special machines 29,903 319 10.7 65.7 0.543 -0.168 1
Thermal processes and apparatus 15,237 335 22.0 146.1 0.096 -0.345 5
Mechanical elements 32,822 1301 39.6 57.3 0.053 -0.447 1
Transport 48,904 10929 223.5 68.2 0.067 -0.381 1
Furniture, games 19,758 206 10.4 108.3 0.050 -0.074 0
Other consumer goods 19,736 301 15.3 106.4 0.099 -0.016 1
Civil engineering 28,826 171 5.9 117.5 0.061 -0.201 0
Total 1,026,089 160,945 156.9 100.3
Electrical engineering 295,596 98,850 334.4 60.3 0.791 0.107
Instruments 168,242 15,015 89.2 96.3 1.270 0.191
Chemistry 256,907 23,440 91.2 71.1 4.938 0.354
Mechanical engineering 237,025 22,962 96.9 70.2 0.152 -0.348
Other Fields 68,320 678 9.9 111.4

Notes: ‡ Triples based on all EPO patenting, priority years 2002-2009 (see text for definition and further explanation). † Network density
is 1,000,000 times the number of within technology citations between 1976 and the current year divided by the potential number of such
citations. ∗ Number of industries with no patenting in this technology class.
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Table C-6: Descriptive statistics 2002-2009

Geom. Mean Median Std. dev.‡ q25 q75 Minimum Maximum
Class variables (34 tech classes for 8 years = 272 observations)

Network density 64.36 58.40 0.59 43.20 87.64 16.72 301.18
Triples density in class 0.047 0.054 1.56 0.013 0.209 0.001 0.533
Patents in class 3,256.13 3,367.14 0.54 2,220 4,695 995 9,515
Average non-patent refs in class 0.86 0.87 1.52 0 1 0 19
5-year growth of average non-patent refs in class -0.08 -0.03 0.42 -0.23 0.18 -1.34 0.79

Firm variables (22,316 firms for 8 years, unbalanced = 160,211 observations)
Assets (millions GBP) 1.18 1.39 2.73 0.21 6.08 0.001 2,053,036
Age of firm in years 15 16 0.89 8 27 1 146
Firm patent stock to date 1.27 1.00 0.72 1.00 1.02 1.00 3,214

Notes: ‡ Standard deviation of the log for all variables except the growth rate in NPL refs. The firm’s patent stock is computed using a
declining balance formula with 15% depreciation rate.

D Robustness Tests on Network Density and Triples

This section examines how the addition of the network density measure to the analysis under-
taken in Graevenitz, Wagner, and Harhoff (2013) changes the coefficient and sign of the triples
measure reported there. They examine how complexity, technological opportunity and other
variables affect the number of patents firms apply for. Graevenitz, Wagner, and Harhoff (2013)
do not distinguish between hold-up and complexity in their model and use the triples measure
to capture complexity. The model presented in this paper separates the effects of hold-up and
complexity and predicts that hold-up will reduce firms’ patenting incentives, while complexity
raises these. In this paper, the network density measure is introduced as a measure of techno-
logical complexity, while we argue that the triples measure captures hold-up.

The exercise undertaken in this appendix is a validation of these two measures in light of
the updated model we present in this paper. The evidence provided is based on two data sets:
first we report regression results obtained by adding the network density measure to the data
used by Graevenitz, Wagner, and Harhoff (2013), second we report results obtained from a new
dataset. This dataset covers the same period as that used by Graevenitz, Wagner, and Harhoff
(2013), but it is based on the same more recent technology area classification as that used in
this paper. Furthermore, it is based on the same measure of triples as that used in this paper.

The models presented below are system GMM models which include a lagged dependent
variable. We demonstrate that regardless of how the data are constructed the triples measure
reduces patenting while the network density measure increases patenting efforts in our data.
This supports our view that the triples measure is a measure of hold-up.

In the results presented below we instrument potentially endogenous variables using lagged
values. Exogeneity of the instruments is tested using difference-in Hansen tests. We instrument
the lagged dependent variable and its interaction with fourth order lags. All other variables
are instrumented with third order lags or higher. We include only year and area dummies in
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the levels equations as it is likely that the fixed effects are correlated with differences in the
remaining explanatory variables.

Instrument sets are collapsed in order to reduce the number of instruments used. Through-
out we rely on the Hansen test to determine whether instruments are exogenous. Where the
statistic indicated that this was not the case we rejected the models. We report only those mod-
els that were not rejected by the test for which the lagged dependent variable was within the
range one would expect from estimation of OLS models with the same specification.

D.1 Sample and Definition of Variables

The sample used for both tables below consists of all firms that have at least one hundred
patent applications at the EPO across all technology areas between 1987 and 2002 and who
have applied for patents in at least three years in the sample period in a technology area.

The two tables below include a number of variables that we do not use in this paper other
than here. We briefly discuss these variables next:

Dependent variable In both tables below the dependent variable is the logarithm of the num-
ber of patents each firm has applied for in a technology area and year. To deal with missing
values arising from firms not having patent applications in some years we add one to all patent
counts before taking the logarithm.

Triples count In Table D-1 below we use the triples count employed by Graevenitz, Wagner,
and Harhoff (2013). They count how often firm triples arise, such that each firm in a triple
holds patents that are cited as limiting one or more patent applications submitted by each of the
other two firms. Their measure of triples is constructed using only the ten most frequently cited
firms in each applicant’s patent portfolio in any area and year. In Table D-2 we use the same
triples count as in this paper, i.e. the restriction to the most frequently cited firms is removed.

Fragmentation The fragmentation measure used here is based on Ziedonis (2004). The mea-
sure is based only on critical references and captures the concentration of prior art cited in the
patent portfolio of a firm in a year and area.

Large / Relative Size In Table D-1 below we use a dummy variable that is one for all firms
above the median firm by size of patent portfolio in each area and year. In Table D-2 we
capture relative size by measuring the size of each firm’s patent portfolio by area up to a given
year relative to the total number of all firms’ patent applications in that area and year.
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Table D-1: GMM models for patent applications - Old data
Variable SGMM E SGMM K SGMM L SGMM M
log Patentcountt−1 0.749∗∗∗ 0.879∗∗∗ 1.020∗∗∗ 0.976∗∗∗

(0.093) (0.099) (0.113) (0.106)

log Patentcountt−1× Triples −0.017∗∗∗ −0.017∗∗∗ −0.013∗∗∗ −0.012∗∗∗

(0.003) (0.002) (0.002) (0.002)

Non Patent References (NPR) 1.553∗∗∗ 1.863∗∗∗ 1.648∗∗∗ 1.389∗∗∗

(0.254) (0.252) (0.240) (0.183)

NPR × Triples −0.036∗∗∗ −0.038∗∗∗ −0.033∗∗∗ −0.028∗∗∗

(0.006) (0.005) (0.005) (0.004)

NPR × Triples × Large 0.007∗∗∗ 0.006∗∗∗ 0.005∗∗∗ 0.005∗∗∗

(0.002) (0.001) (0.001) (0.001)

NPR × Large −0.366∗∗∗ −0.386∗∗∗ −0.339∗∗∗ −0.340∗∗∗

(0.081) (0.062) (0.051) (0.043)

Fragmentation −0.474∗∗ −0.521∗∗ −0.543∗∗ −0.490∗∗∗

(0.170) (0.182) (0.174) (0.129)

Fragmentation × Triples 0.006 0.009∗ 0.005 0.004

(0.006) (0.004) (0.004) (0.004)

Triples 0.055∗∗∗ 0.052∗∗∗ 0.046∗∗∗ 0.039∗∗∗

(0.010) (0.007) (0.007) (0.005)

Areas 0.096∗∗∗ 0.084∗∗∗ 0.049∗∗ 0.050∗∗

(0.012) (0.010) (0.017) (0.016)

Large 0.342∗∗ 0.476∗∗∗ 0.427∗∗∗ 0.424∗∗∗

(0.117) (0.105) (0.091) (0.072)

Network Density 0.002∗∗ 0.002∗∗

(0.001) (0.001)

Year dummies YES YES YES YES
Primary area dummies YES YES YES YES
Constant −1.443∗∗∗ −1.846∗∗∗ −2.017∗∗∗ −1.772∗∗∗

(0.319) (0.267) (0.270) (0.237)

N 173448 173448 173448 173448

m1 −10.860 −10.470 −9.318 −9.634

m2 4.739 6.307 6.2 6.305

m3 .896 .509 −.071 −.302

Hansen 10.988 2.017 4.454 12.506

p-value .052 .569 .216 .052

Degrees of freedom 5 3 3 6
∗ p<0.05, ∗∗ p<0.01, ∗∗∗ p<0.001

1. Asymptotic standard errors, asymptotically robust to heteroskedasticity are reported in parentheses
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2. m1-m3 are tests for first- to third-order serial correlation in the first differenced residuals.

3. Hansen is a test of overidentifying restrictions. It is distributed as χ2 under the null of instrument

validity, with degrees of freedom reported below.

4. In all cases GMM instrument sets were collapsed and lags were limited.

D.2 Data used by Graevenitz, Wagner, and Harhoff (2013)

The results presented here are based on adding the network density measure of complexity
constructed for this paper from US patent data to the data used by Graevenitz, Wagner, and
Harhoff (2013). They study the determinants of the level of patent applications at the EPO.

Column E in Table D-1 above is reported by Graevenitz, Wagner, and Harhoff (2013) and
is presented here as a reference point. Models K,L,M contain new results. Model K replicates
model E closely, differences are likely due to updates to the code used to estimate these models.
Model L is like model K with the network density measure added. In model M we adjust the set
of instruments to obtain a model with a lagged dependent variable that is significantly below 1
at the 5% level at the mean of the triples variable.

These results show that adding the network density measure to the data does not change the
sign or significance of the other variables reported in Table D-1. Network density itself has a
positive and significant effect on patenting in models L and M. We would expect to see this, if
this measure captures complexity.

Adding network density does have an important and not immediately obvious effect. The
range of values of non-patent references for which an increase in the hold-up measure (triples)
reduces patenting incentives is larger in model M than model E at the mean of the patent count:
in model E non-patent references must lie beyond 1.22 for an increase in triples to have a
negative effect on patenting incentives, while in model M non-patent references beyond 1.1
have the same effect. Similarly the range of values of the patent count for which an increase in
the hold-up measure (triples) reduces patenting incentives is larger in model M than model E
at the mean of non patent references. This shows that the triples measure contained in this data
has a negative effect on patenting incentives in sufficiently complex technologies. We would
expect to see this, if triples is a measure of hold-up.

D.3 New Data at 34 Area Level

Here we present results based on an updated dataset of patenting in Europe that is based on PAT-
STAT, October 2014, but covers the same range of years (1987-2002), for better comparability
with the data presented in the previous section.

The main difference between the data used here and the older data used by Graevenitz,
Wagner, and Harhoff (2013) is that we now rely on a more recent, slightly finer specification
of the number of technology areas: the current classification contains 34 rather than 30 areas.
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In addition, the triples measure we use now captures all triples and not just those affecting
each firm and its ten closest technology rivals as in the earlier data. Due to the larger number
of areas we now exclude slightly more patentees when applying the criterion that a firm must
have at least one hundred patents in a technology area and must have at least three years of
patent activity in an area to be included in the analysis.

Table D-2 demonstrates that the predicted negative effects of triples and non-patent refer-
ences are present in all specifications we report. We also show that network density is either not
significant or positive and significant. The model in which the measure is positive and signifi-
cant is our prefered model, due to the low instrument count and the better test of overidentifying
restrictions.

Table D-2: GMM models for patent applications - New data
Variable SGMM E SGMM K SGMM L

log Patentcountt−1 0.454∗∗∗ 0.799∗∗∗ 0.808∗∗∗

(0.111) (0.080) (0.082)

Non Patent References (NPR) −0.014∗∗∗ −0.014∗∗∗ −0.014∗∗∗

(0.001) (0.001) (0.001)

Triples −0.091∗∗∗ −0.100∗∗∗ −0.117∗∗∗

(0.016) (0.011) (0.012)

Network Density −0.216 0.195 0.217∗
(0.129) (0.101) (0.107)

Fragmentation 0.899∗∗∗ 0.658∗∗∗ 0.804∗∗∗

(0.155) (0.093) (0.085)

Areas 0.020∗ 0.016∗∗ −0.001

(0.009) (0.006) (0.006)

Relative Size −0.010∗∗∗ 0.000 −0.000

(0.003) (0.003) (0.002)

Constant −0.033 −0.208∗∗∗ −0.149∗∗

(0.045) (0.052) (0.046)

N 168066 168066 168066

m1 −7.598 −12.948 −13.08

m2 3.871 9.964 9.896

m3 −1.450 .538 .055

Hansen 3.49 3.79 2.1

p-value .48 .29 .55

Degrees of freedom 4 3 3
∗ p<0.05, ∗∗ p<0.01, ∗∗∗ p<0.001
1. Asymptotic standard errors, asymptotically robust to heteroskedasticity are reported in parentheses

2. m1-m3 are tests for first- to third-order serial correlation in the first differenced residuals.
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3. Hansen is a test of overidentifying restrictions. It is distributed as χ2 under the null of instrument

validity, with degrees of freedom reported below.

4. In all cases GMM instrument sets were collapsed and lags were limited.

Overall, both sets of models demonstrate that an interpretation of the triples measure as a
measure of hold-up only, and of the network density as a measure of complexity, is consistent
with the effects we observe in the data on patent applications presented here.

E Estimating Survival Models

This appendix gives some further information about the various survival models we estimated
and the robustness checks that were performed. We estimated two general classes of failure
or survival models: 1) proportional hazard, where the hazard of failure over time has the same
shape for all firms, but the overall level is proportional to an index that depends on firm char-
acteristics; and 2) accelerated failure time, where the survival rate is accelerated or decelerated
by the characteristics of the firm. We transform (2) to a hazard rate model for comparison with
(1), using the usual identity between the probability of survival to time t and the probability of
failure at t given survival to t− 1. The first model has the following form:

Pr (i first patents in j at t | i has no patents in j ∀s < t,Xi)

h(Xi, t) = h(t) exp (Xi, β)

where i denotes a firm, j denotes a technology sector, and t denotes the time since entry
into the sample. h(t) is the baseline hazard, which is either a non-parametric or a parametric
function of time since entry into the sample. The impact of any characteristic x on the hazard
can be computed as follows:

∂h(Xi, t)

∂xi
= h(t) exp (Xi, β)β or

∂h(Xi, t)

∂xi

1

Xi, t
= β (E.1)

Thus if x is measured in logs, β measures the elasticity of the hazard rate with respect
to x. Note that this quantity does not depend on the baseline hazard h(t), but is the same
for any t. We use two choices for h(t): the semi-parametric Cox estimate and the Weibull
distribution ptp−1. By allowing the Cox h(t) or p to vary freely across the industrial sectors, we
can allow the shape of the hazard function to be different for different industries while retaining
the proportionality assumption.

In order to allow even more flexibility across the different industrial sectors, we also use
two accelerated failure time models, the log-normal model and the log-logistic model. These
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have the following basic form:

Log-normal :S(t) = 1− Φ

{
ln (t)− µ

σ

}
(E.2)

Log-logistic :S(t) =
1

1 + (λt)
1
γ )

(E.3)

where S(t) is the survival function and λi = exp (Xiβ). We allow the parameters σ (log-
normal) or γ (log-logistic) to vary freely across industries (j). That is, for these models, both
the mean and the variance of the survival distribution are specific to the 2-digit industry. In the
case of these two models, the elasticity of the hazard with respect to a characteristic x depends
on time and on the industry-specific parameter (σ or γ), yielding a more flexible model. For
example, the hazard rate for the log-logistic model is given by the following expression:

h(t) =
−d logS(t)

dt
=

λ
1
γ t

1
γ
−1

γ
(

1 + (λt)
1
γ )
) (E.4)

From this we can derive the elasticity of the hazard rate with respect to a regressor x:34

∂ log hij(t)

∂xi
=

−β(
1 + (λt)

1
γ

) (E.5)

One implication of this model is therefore that both the hazard and the elasticity of the haz-
ard with respect to the regressors depend on t, the time since the firm was at risk of patenting.
We sample the firms during a single decade, the 2000s, but some of the firms have been in
existence since the 19th century. This fact creates a bit of a problem for estimation, because
there is no reason to think that the patenting environment has remained stable during that period.
We explored variations in the assumed first date at risk in Tables E-1 (1978) and E-2 (1900),
finding that the choice made little difference. Accordingly, we have used a minimum at risk
year of 1978 for estimation in the main table in the text.

34We assume that x is in logarithms, as is true for our key variables, so this can be interpreted as an elasticity.
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Table E-1: Hazard of entry into patenting in a TF34 Class – Comparing models

Variable Proportional hazard AFT

Cox PH Weibull Log logistic Log normal
Log (network density) 0.119*** 0.118*** -0.306*** -0.217***

(0.021) (0.021) (0.072) (0.036)
Log (triples density -0.111*** -0.108*** 0.534*** 0.252***
in class) (0.008) (0.009) (0.046) (0.027)
Log (patents in class) 0.573*** 0.579*** -2.224*** -1.030***

(0.024) (0.024) (0.177) (0.107)
5-year growth of non- -0.122*** -0.160*** 0.504*** 0.205***
patent refs in class) (0.031) (0.030) (0.110) (0.049)
Log assets 0.200*** 0.195*** -0.419*** -0.206***

(0.013) (0.013) (0.037) (0.023)
Log firm age in years 1.178*** -0.189* -1.409*** 0.170*

(0.103) (0.106) (0.181) (0.093)
Log (pats applied for 1.074*** 1.105*** -10.433*** -6.411***
by firm previously) (0.038) (0.037) (1.158) (0.803)
Log likelihood -77.3 -132,032.1 -154,859.4 -153,780.3
Degrees of freedom 15 39 39 39
Chi-squared 3522.6 4322.7 364.4 607.9

551,981 firm-TF34 observations with 14,709 entries (22,316 firms)

Notes: All estimates are weighted estimates, weighted by sampling probability, and stratified by 2-digit industry. For the Cox and Weibull
models, coefficients shown are elasticities of the hazard w.r.t. the variable. For the log-logistic and lognormal AFT models, estimates will be
opposite in sign to the proportional hazard estimates. AFT - Accelerated Failure Time models. Time period is 2002-2009 and minimum entry
year is 1978. Calendar dummies included in all estimations. Sample is UK firms with nonmissing assets, all patenting firms and a matched
sample of non-patenting firms. See text for precise sample definition. *** (**) denote significance at the 1% (5%) level. The degrees of
freedom are those for the Chi-squared test versus a model with no covariates.
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Table E-2: Hazard of entry into patenting in a TF34 Class - Robustness

Variable (1) (2) (3) (4) (5) (6)
Table 1 Include zeros SMEs Giants No Telecomm Entry 1900

Log (network density) 0.119*** 0.041** 0.124*** 0.062 0.114*** 0.106***
(0.021) (0.018) (0.023) (0.125) (0.020) (0.021)

Log (triples density -0.111*** -0.202*** -0.134*** -0.051 -0.112*** -0.111***
in class) (0.008) (0.007) (0.010) (0.047) (0.008) (0.008)
Log (patents in class) 0.573*** 0.739*** 0.659*** 0.111 0.575*** 0.575***

(0.024) (0.023) (0.029) (0.127) (0.024) (0.025)
5-year growth of non- -0.122*** -0.582*** -0.039 -0.323 -0.113*** -0.171***
patent refs in class) (0.031) (0.025) (0.037) (0.196) (0.031) (0.031)
Log assets 0.200*** 0.195*** 0.177*** 0.517** 0.199*** 0.192***

(0.013) (0.012) (0.019) (0.214) (0.013) (0.013)
Log firm age in years 1.178*** 0.988*** 0.413*** 0.382 1.205*** -0.551***

(0.103) (0.117) (0.138) (0.949) (0.102) (0.181)
Log (lagged firm-level 1.074*** 1.273*** 1.119*** 1.071*** 1.080*** 1.125***
patent stock) (0.038) (0.033) (0.064) (0.170) (0.038) (0.041)
Observations 551,981 702,982 484,725 8,258 536,634 551,981
Firms 22,316 22,316 19,902 273 22,316 22,316
Entries 14,709 14,709 11,000 351 14,251 14,709
Entry rate 2.66% 2.09% 1.96% 4.25% 2.66% 2.66%
Log likelihood -77.27 -72.54 -53.31 -0.27 -74.92 -70.66
Degrees of freedom 15 15 15 15 15 15
Chi-squared 3522.6 5134.0 1968.5 233.1 3512.0 2879.5

Notes: All estimates are weighted estimates, weighted by sampling probability. Larger coefficients indicate increases in entry probability. ***
(**) denote significance at the 1% (5%) level. The degrees of freedom are those for the Chi-squared test versus a model with no covariates.
Sample is UK firms with nonmissing assets, all patenting firms and a matched sample of non-patenting firms. Time period is 2002-2009
and minimum entry year is 1978, with the exception of column (6). Calendar year dummies in all models. Cox proportional hazard model
stratified by industry. (1) Estimates from Table 1, for comparison. (2) Observations for tech sectors of firms whose industry has no such
patenting (Lybbert-Kolas) and where there is no entry by any UK firm in that industry are included. (3) SMEs: firms with assets¡12.5 million
GBP. (4) Firms with assets¿100 million GPB. (5) The Telecom tech sector is removed. (6) The minimum founding year is 1900 instead of
1978.
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