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Abstract. Network topology is a flourishing interdisciplinary subject that is relevant

for different disciplines including quantum gravity and brain research. The discrete

topological objects that are investigated in network topology are simplicial complexes.

Simplicial complexes generalize networks by not only taking pairwise interactions into

account, but also taking into account many-body interactions between more than two

nodes. Higher-order Laplacians are topological operators that describe higher-order

diffusion on simplicial complexes and constitute the natural mathematical objects that

capture the interplay between network topology and dynamics. We show that higher-

order up and down Laplacians can have a finite spectral dimension, characterizing the

long time behaviour of the diffusion process on simplicial complexes that depends on

their order m. We provide a renormalization group theory for the calculation of the

higher-order spectral dimension of two deterministic models of simplicial complexes:

the Apollonian and the pseudo-fractal simplicial complexes. We show that the RG flow

is affected by the fixed point at zero mass, which determines the higher-order spectral

dimension dS of the up-Laplacians of order m with m ≥ 0.

1. Introduction

Simplicial complexes [1–6] are generalized network structures that capture many-body

interactions. They are not just formed by nodes and links like networks but they also

include simplices of higher dimensions such as triangles, tetrahedra and so on. Being

build by these topological building blocks, simplicial complexes are the ideal discrete

structures to investigate emergent geometry [7–11] and can be described by discrete

algebraic and combinatorial topology. Topology is a traditional tool of high-energy
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physics and quantum gravity and recently it has also become increasingly popular

to investigate complex systems [12]. In fact topological methods have been shown

to be very powerful to analyse datasets, including brain networks and collaboration

networks [2,13–15]. Finally there is an increasing interest in revealing the role that the

higher-order interactions of simplicial complexes have on their dynamics [16,17,19–22].

The network Laplacian [23–26] is fundamental to understand the interplay between

topology and dynamics and its spectral properties are known to affect diffusion and

synchronization on network structures. In particular the spectral dimension [27–36]

characterizes the spectral properties of networks with distinct geometrical features and

determines the late time behavior of diffusion and more general dynamical processes on

networks [37–41]. The spectral dimension can also be defined on simplicial complexes

[28] by focusing on their skeleton (the network obtained from a simplicial complex by

retaining only its nodes and links). Thus, the spectral dimension is also considered a key

mathematical object for investigating the effective dimension of a simplicial quantum

geometry as felt by diffusion processes. More in general in quantum gravity the spectral

dimension is used for probing the geometry of the simplicial spacetimes [42–44] described

by different theoretical approaches including Causal-Dynamical-Triangulations (CDT)

[45].

Here we focus on two models of pure d-dimensional simplicial complexes called

Apollonian simplicial complexes, [46–48] and pseudo-fractal simplicial complexes [49].

The Apollonian simplicial complexes [46–48] are deterministic hyperbolic d-dimensional

manifolds that are obtained by an iterative process, whose limit converges to an infinite

hyperbolic lattice. The Apollonian simplicial complex in d-dimensions is dominated by

the boundary and is closely related to the melonic graphs of tensor networks [50, 51],

because melonic graphs can be understood as the merging of two identical Apollonian

simplicial complexs upon identification of the all their faces at the boundary. The

pseudo-fractal simplicial complexes [49], generalise the Apollonian simplicial complexes

to simplicial complexes that are not manifolds. These deterministic simplicial complexes

have a skeleton which is non-amenable, i.e. they have an infinite isoperimetric dimension

and simultaneously have a very small Cheeger constant [52, 53]. Additionally, they are

small world and scale-free.

While the Apollonian and the pseudo-fractal simplicial complexes are generated

iteratively by a deterministic algorithm, most of the real networks are the outcome

of a stochastic process. In is therefore important to note that the two classes of

simplicial complexes considered here constitute the backbone of the more general

simplicial complex model called “Network Geometry with Flavor” [8,9,11]. This model

generates random simplicial complexes whose structure evolves according to a stochastic

process, where the set of possible simplices is restricted to be a depending on the model

parameters either a subset of the faces of the Apollonian simplicial complex or a subset

of the pseudo-fractal simplicial complexes.

Given the fact that Apollonian and pseudo-fractal simplicial complexes are highly

geometrical, deterministic and hierarchical, these structures and their generalizations
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[55, 56] are very suitable for conducting renormalization group (RG) calculations

analytically. Examples of dynamical processes already studied with the RG in related

simplicial complex models include percolation [57–62], spin models [63] and Gaussian

models [28–30].

In this paper we investigate the properties of higher-order Laplacians [17, 52, 53,

64–66] on the considered simplicial complexes. The higher-order Laplacians describe

diffusion processes occurring on higher-order simplices [17,64] and are key mathematical

objects to define the higher-order Kuramoto model [18]. Higher order Laplacians

are also closely related to approximate Killing vector fields, which are currently

being investigated on quantum geometries in CDT [67]. It has been recently shown

numerically [17], that the higher-order up-Laplacian and down-Laplacian can display a

finite spectral dimension. Here we use renormalization group (RG) theory [28–30] to

analytically calculate the spectral dimension of higher-order up-Laplacians of Apollonian

and pseudo-fractal simplicial complexes. We find that each simplicial complex belonging

to the considered class of models, is characterized by a set of analytically predicted

spectral dimensions. Each spectral dimension corresponds to the spectrum of a higher-

order up-Laplacian of different order m. The values of the predicted spectral dimensions

are compared to direct numerical results for d = 3 and d = 4 simplicial complexes.

The paper is structured as follows: in Sec. II we introduce simplicial complexes and

their higher-order Laplacians, in Sec.III we present the hyperbolic and non-amenable

simplicial complex models considered in this work; in Sec. III we give the necessary

background for deriving the higher-order spectrum of the Apollonian and pseudo-fractal

simplicial complexes using the RG approach; In Sec. IV and in Sec. V we derive the

RG equations and the RG flow for the Apollonian simplicial complexes; In Sec. VI and

Sec. VII we derive the RG equations and the RG flow for the pseudo-fractal simplicial

complexes. In Sec. VIII we summarize the main analytical results and we will compare

with numerical results on all the considered simplicial complex models. Finally, in Sec.

IX we will provide the conclusions.

2. Simplicial complexes and higher-order Laplacians

2.1. Simplicial complexes

A m-dimensional simplex r (also indicated as m-simplex) includes m + 1 nodes and it

can be indicated as

r = [v0, v1, . . . , vm]. (1)

Therefore, a 0-simplex is a node, a 1-simplex is a link, a 2-simplex a triangle, a 3-simplex

a tetrahedron and so on. A m′-dimensional face q of a m-dimensional simplicial complex

r is a m′ < m simplex formed by a subset of m′ + 1 nodes belonging to the simplex r.

In topology, simplices also have an orientation. Two m-simplices differing only by

the order in which their nodes are listed are therefore related by

[v0, v1, . . . , vm] = (−1)σ(π)[vπ(0), vπ(1), . . . , vπ(m)], (2)
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where σ(π) indicates the parity of the permutation π of the m+ 1 indices of the nodes.

A simplicial complex is formed by a set of simplices with the property that the

simplicial complex is closed under inclusion of the faces of any of its simplices.

A d-dimensional simplicial complex is a simplicial complex for which the maximum

dimension of its simplices is d. Here we are exclusively interested in pure d-dimensional

simplicial complexes, which are formed by a set of d-dimensional simplices and all their

faces. The skeleton of a simplicial complex is the network formed by the set of all the

nodes and links of the simplicial complex. Given a d-dimensional simplex, we indicate

the number of its m-simplices with N [m] with 0 ≤ m ≤ d.

2.2. Boundary map and incidence matrices

Given a simplicial complex, a m-chain consists of the elements of a free abelian group

Cm with basis formed by the set of all m-simplices of the simplicial complex. Therefore

every element a ∈ Cm can be uniquely expressed as a linear combination of basis elements

with coefficients given cr ∈ Z2, i.e.

a =
∑
r∈Q[m]

cr

[
v

(r)
0 , v

(r)
1 , . . . , v(r)

m

]
(3)

where cr ∈ {1,−1}. Here Q[m] indicates the set of all m-simplices of the simplicial

complex and each m-simplex r ∈ Q[m] of the simplicial complex is indicated by

r = [v
(r)
0 , v

(r)
1 , . . . , v

(r)
m ].

The boundary map ∂m is a linear operator ∂m : Cm → Cm−1 whose action is

determined by the action on each m-simplex of the simplicial complex. In particular

the boundary map ∂m applied to the m simplex r = [v0, v1, . . . , vm] gives

∂m[v0, v1 . . . , vm] =
m∑
j=0

(−1)j[v0, v1, . . . , vj−1, vj+1, . . . , vm]. (4)

In words, the boundary map applied to a m-simplex gives a linear combinations of its

(m− 1)-dimensional faces.

We say that two m-faces r and q of a simplicial complex are upper adjacent if there

is a (m+ 1)-simplex τ of which both r and q are faces. The m-faces r and q are upper

adjacent with similar orientation if the simplicial complex contains a (m+1)-dimensional

simplex τ such that

〈r, ∂m+1τ〉 = 〈q, ∂m+1τ〉, (5)

where 〈a, b〉 indicates the inner product on Cm. Conversely, they are upper adjacent with

opposite orientation if the simplicial complex contains a (m+ 1)-dimensional simplex τ

such that

〈r, ∂m+1τ〉 = −〈q, ∂m+1τ〉. (6)

From the definition of the boundary map ∂m given by Eq. (4), it follows immediately

that for every m-dimensional simplex r

∂m−1∂mr = 0, (7)
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which is an important topological property that can be expressed in words with the

sentence “the boundary of a boundary is null”.

Given a simplicial complex with N [m] m-dimensional simplices we can choose a base

for Cm by taking an ordered list of its m simplices. If we fix both the base of Cm and Cm−1

we can represent the boundary operator ∂m by a N [m−1] ×N [m] incidence matrix B[m].

In Figure 1 we show an example of a simplicial complex. We choose as bases for C0, C1

and C2 the ordered list of nodes {[1], [2], [3], [4]}, links {[1, 2], [1, 3], [2, 3], [3, 4], [2, 4]} and

triangles {[123], [234]}. With this choice of bases, the boundary maps ∂1 and ∂2 can be

represented by the incidence matrices B[1] and B[2] with,

B[1] =


−1 −1 0 0 0

1 0 −1 0 −1

0 1 1 −1 0

0 0 0 1 1

 , B[2] =


1 0

−1 0

1 1

0 1

0 −1

 . (8)

Figure 1. An example of a small simplicial complex with the orientation of the

simplices induced by the labelling of the nodes.

2.3. Higher order Laplacian matrices of simplicial complexes

The graph Laplacian or 0-Laplacian describes the diffusion process over a network and

it is an extensively studied topological operator in graph theory [23]. The 0-Laplacian

can be also defined for a simplicial complex and describes the diffusion process that goes

from a node to another node across shared links. In fact the 0-Laplacian is a N [0]×N [0]

matrix and can be expressed in terms of the incidence matrix B[1],

L[0] = B[1]B
>
[1]. (9)
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While on networks only the graph Laplacian and its normalized versions can be

defined, in simplicial complexes it is possible to define higher-order Laplacians describing

diffusion taking place between higher-order simplices. The higher-order Laplacian L[m]

with m > 0 (also called combinatorial Laplacians) can be represented as a N [m] ×N [m]

matrix given by

L[m] = Ldown
[m] + Lup

[m], (10)

(11)

where Ldown
[m] and Lup

[m] are the down-Laplacian and the up-Laplacian of order m and are

defined as

Ldown
[m] = B>[m]B[m],

Lup
[m] = B[m+1]B

>
[m+1]. (12)

The down-Laplacian Ldown
[m] of order m, describes diffusion process taking place among m

simplices across (m− 1) shared simplices. For instance, the down-Laplacian of order 1

describe diffusion from link to link across shared nodes. The up-Laplacian Lup
[m] of order

m describes diffusion processes taking place among m simplices across shared (m + 1)

simplices. The up-Laplacian of order 1 for example, describes the diffusion from link to

link across shared triangles.

Interestingly the spectral properties of the higher-order Laplacians can be proven to

be independent on the orientation of the simplices as long as the orientation is induced

by a labelling of the nodes.

One of the main results of Hodge theory [16,17,65] is that the degeneracy of the zero

eigenvalues of the m- Laplacian L[m] is equal to the Betti number βm. The corresponding

eigenvectors localize around the corresponding m-dimensional cavity of the simplicial

complex. It follows that if the simplicial complex has trivial topology, i.e. it is formed

by a single connected component, β0 = 1 and the simplicial complex has no higher-order

cavities, (i.e. βm = 0 for all m > 0) then the 0-Laplacian L[0] has a zero eigenvalue that

is not degenerate while all the higher-order Laplacians L[m] with m > 0 do not admit

any zero eigenvalue.

Let us observe here that Eq. (7) can be expressed in terms of the incidence matrices

as

B[m−1]B[m] = 0,

B>[m]B
>
[m−1] = 0. (13)

From these relations it can be easily shown that the eigenvectors associated to the non-

null eigenvalues of Lup
[m] = B[m+1]B

>
[m+1] are orthogonal to the eigenvectors associated

with the non-null eigenvalues of Ldown
[m] = B>[m]B[m]. Hodge theory therefore demonstrates

(see for instance [16] for a gentle introduction) that the spectrum of the m-Laplacian

includes all the non-null eigenvalues of the m-up-Laplacian and all the non-null

eigenvalues of the m-down Laplacian. The other eigenvalues of the m-Laplacian can

only be zero and their degeneracy is given by the Betti number βm. Therefore the
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spectrum of the m-Laplacian is completely determined once the spectra of both the

m-up-Laplacian and the m-down-Laplacian are known.

Finally we observe that the up-Laplacians and the down-Laplacians are related by

transposition

Lup
[m] = [Ldown

[m+1]]
>. (14)

Therefore the spectrum of the m-up Laplacian is equal to the spectrum of the (m+ 1)-

down Laplacian.

Taking all these consideration together it follows that in order to know the spectrum

of all higher-order Laplacians of a simplicial complex it is sufficient to know the spectrum

of all its higher-order up-Laplacians.

Therefore in this work, without loss of generality we will focus on the spectral

properties of m-up-Laplacians of pure d-dimensional simplicial complexes with order

0 ≤ m < d− 1.

2.4. Up-Laplacians and their spectral dimension

For a simplicial complex of dimension d > m it is possible to define both a normalized

and an un-normalized higher-order up m-Laplacian. The un-normalized higher order

up-Laplacian Lup
[m] = B[m+1]B

>
[m+1] has elements

[Lup[m]]rq = k[m]
r δr,q −

(
a

[m]
↑↓

)
rq

+
(
a

[m]
�

)
rq
, (15)

where δx,y indicates the Kronecker delta. In Eq. (15) we have used the oriented upper

incidence matrices a
[m]
↑↓ and a

[m]
� defined as follows: (a

[m]
� )rq = 1 if the two m-dimensional

faces r and q are upper adjacent (they are both incident to a (m+1)-dimensional simplex)

and have similar orientation, otherwise (a
[m]
� )rq = 0; similarly (a

[m]
↑↓ )rq = 1, if the two

m-dimensional faces r and q are upper adjacent (they are both incident to a (m + 1)-

dimensional simplex) and have dissimilar orientation, otherwise (a
[m]
↑↓ )rq = 0. Finally kr

indicates the number of (m + 1)-dimensional simplices incident to the m-dimensional

simplex r.

The up-Laplacian can be used to characterize diffusion occurring among higher-

order simplicies. In particular the spectral properties of up-Laplacians can affect the

relaxation time of the diffusion process as discussed in Ref. [17] for the simplicial complex

model called “Network Geometry with Flavor”.

Let us define the N [m] × N [m] matrix K[m] as the diagonal matrix with diagonal

elements [K[m]]rr = [Lup[m]]rr. The normalized m-up-Laplacian L̂up
[m] can be defined as

L̂up
[m] = K

−1/2
[m] Lup

[m]K
−1/2
[m] , (16)

where we note that in this expression we use the convention 0/0 = 0. The normalized

m-up-Laplacian L̂up
[m] has elements

[L̂up[m]]rq = δr,q −
1√

k
[m]
r k

[m]
q

(
a

[m]
↑↓

)
rq

+
1√

k
[m]
r k

[m]
q

(
a

[m]
�

)
rq
. (17)
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In this work we will focus on the spectral properties of the normalized up-Laplacians.

The spectrum of the normalized and un-normalized m-up-Laplacians is in general

distinct for simplicial complexes in which kr is dependent on r. However, we anticipate

that when they both display a spectral dimension, their spectral dimension is the

same [31].

The density of eigenvalues ρ̄(µ) of the normalized m-up-Laplacian has a density of

eigenvalues that includes a singular part formed by a delta function at µ = 0 and a

regular part ρ(µ), i.e.

ρ̄(µ) = ρ̄(0)δ̂(µ) + ρ(µ), (18)

where we use δ̂(x) to denote the delta function. The emergence of the delta peak at

µ = 0 can be easily explained. First let us observe that Eq. (16) implies that the

number of zero eigenvalues of the normalized and un-normalized m-up-Laplacians is the

same. Secondly let us note that the spectrum of the m-up-Laplacian Lup
[m] can contain

a highly degenerate zero eigenvalue. In fact, given the definition of the m-up-Laplacian

Lup
[m] = B[m+1]B

>
[m+1] it follows that the eigenvalues of the m-up-Laplacian are the square

of the singular values of the incidence matrix B[m+1]. Since the incidence matrix B[m+1]

is a rectangular N [m] × N [m+1] matrix, the non-zero singular values cannot be more

than min(N [m], N [m+1]). In particular for simplicial complexes with trivial topology, the

Hodge decomposition [16] implies that the number of non-zero eigenvalues of the m-up-

Laplacian with m > 0 are given by N̂ [m] = min(N [m], N [m+1]). It follows that all the

other eigenvalues are zero. Therefore for m > 0 the degeneracy of the zero eigenvalue

can be extensive, while for m = 0 the degeneracy of the zero eigenvalue is given by the

Betti number β0, where β0 = 1 for a trivial topology. For a trivial topology the density

of eigenvalues at µ = 0 of the graph Laplacian (m-up-Laplacian with m = 0) is zero in

the large network limit, while it can be greater than zero for m > 0.

The normalized m-up Laplacian displays a finite spectral dimension dS when the

regular part of its density of eigenvalues ρ̄(µ) obeys the asymptotic behaviour

ρ(µ) ∼= CµdS/2−1, (19)

where µ� 1 and C is independent of µ.

From this scaling it directly follows that the cumulative distribution ρc(µ) of the

regular part of the density of eigenvalues ρ(µ), which is the integral of the density of

eigenvalues 0 < µ′ ≤ µ, follows the scaling

ρc(µ) ∼= C̃µdS/2, (20)

for µ � 1. This relation will prove useful in the following, when we will numerically

compare the predicted spectral dimension with the numerical results.
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3. Simplicial complexes under consideration

3.1. Apollonian simplicial complexes of any dimension

A d-dimensional Apollonian simplicial complex [46, 47] (with d ≥ 2) is generated

iteratively by starting from a single d-simplex at generation n = 0 and adding a d-

simplex at each generation n > 0 to every (d − 1)-dimensional face introduced at the

previous generation. In Figure 2a we show a d = 2 dimensional Apollonian simplicial

complex at iteration n = 2.

Figure 2. The d = 2 dimensional Apollonian (panel (a)) and pseudo-fractal (panel

(b)) simplicial complexes are shown at iteration n = 2. The triangles added at iteration

n = 0, 1, 2 are shown in color blue, red and cyan respectively.

3.2. Higher order Laplacian matrices of simplicial complexes

At generation n = 0 there are N
[m]
0 m-dimensional simplices in the simplicial complex

with

N
[m]
0 =

(
d+ 1

m+ 1

)
. (21)

The number N [m]
n of m-dimensional faces at generation n is given by

N [m]
n = (d+ 1)dn−1

(
d

m

)
(22)

In these Apollonian simplicial complexes, there are N
[m]
n m-dimensional simplicial

complexes at generation n with

N [m]
n = N

[m]
0 +

n∑
n′=1

N [m]
n′ = (d+ 1)

[
dn − 1

d− 1
+

1

m− 1

](
d

m

)
, (23)

Finally we note here that in the following we will used the notation Q[m] to indicate the

set of m-simplices of the Apollonian simplicial complex.

The Apollonian simplicial complex are small-world, i.e. their skeleton has an infinite

Hausdorff dimension,

dH =∞, (24)
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therefore at each generation their diameter grows logarithmically with the total number

of nodes of the network. Moreover, the Apollonian simplicial complex of dimension d are

manifolds that define discrete hyperbolic lattices including for d = 2 the Farey graph.

Let us add here a pair of additional combinatorial properties of Apollonian simplicial

complex that will be useful later. At each generation n we call simplices of type ` the

simplices added at generation n′ = n− `. At generation n, the number of d-simplices of

generation n attached to simplices of dimension m (with m < d) of type ` > 0 is given

by

w
[m]
` = (d−m)(d−m− 1)`−1. (25)

Moreover, we observe that the number of (m + 1)-dimensional simplices of generation

n incident to m-simplices added at generation n′ = n− ` is given by w
[m]
` for ` > 0 and

w
[m]
` = d−m for ` = 0.

3.3. Pseudo-fractal simplicial complexes of any dimension

A pseudo-fractal simplicial complex [49] of dimension d with d ≥ 2 is constructed

iteratively. At generation n = 0 the simplicial complex is formed by a single d-simplex

(with d ≥ 2). At each generation n > 0 we glue a d-simplex to every (d−1)-dimensional

face introduced at generation n ≥ 0. In Figure 2b we show a of d = 2 dimensional

pseudo-fractal simplicial complex at iteration n = 2. At generation n = 0 the number

of m-dimensional simplices N
[m]
0 is given by

N
[m]
0 =

(
d+ 1

m+ 1

)
. (26)

The number N [m]
n of m-dimensional faces added at generation n > 0 is given by

N [m]
n = (d+ 1)n

(
d

m

)
. (27)

The number m-dimensional faces N
[m]
n at generation n is

N [m]
n = N

[m]
0 +

n∑
n′=1

N [m]
n′

= (d+ 1)

[
(d+ 1)n − 1

d
+

1

m+ 1

](
d

m

)
. (28)

The pseudo-fractal simplicial complexes differs from Apollonian simplicial complexes

significantly as they are not discrete manifolds. However both simplicial complexes

have an underlying non-amenable network structure and are characterized by having a

small Cheeger constant.

Moreover the pseudo-fractal simplicial complexes, as the Apollonian simplicial

complexes, have a small-world skeleton, i.e. their underlying networks have an infinite

Hausdorff dimension

dH =∞. (29)
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For pseudo-fractal simplicial complexes we use the same notation as for Apollonian

simplicial complex and we indicate Q[m] the set of m-simplices of the pseudo-fractal

simplicial complex. Additionally we indicate as simplices of type ` the simplices added at

generation n′ = n− `, in the pseudo-fractal simplicial complex evolved up to generation

n. We make the following useful remark: at generation n the number of d-simplices of

generation n attached to m-simplices (with m < d) of type ` > 0 is given by

ŵ
[m]
` = (d−m)

∑̀
`′=0

(d−m− 1)`
′−1. (30)

Finally the number of (m + 1)-simplices of generation n added to m-simplices of

generation n′ = n− ` is given by ŵ
[m]
` for ` > 0 and ŵ

[m]
0 = (d−m) for ` = 0.

4. Gaussian model and the RG approach

4.1. The ensemble of weighted normalized Laplacians

In this section our goal is to define the theoretical framework of a real space RG

approach to calculate the spectrum of the normalized m-dimensional up-Laplacian

of the Apollonian and the pseudo-fractal simplicial complexes. The renormalization

group acts on a weighted simplicial complex in which we attribute a weight pτ to each

(m+1)-dimensional simplex τ while the topology of the simplicial complex remains fixed.

Therefore in the RG approach we investigate the RG flow defined over the ensemble of

weighted normalized up-Laplacian matrices L̂up
[m] of elements

[L̂up[m]]rq = δr,q −
1√

s
[m]
r s

[m]
q

pτ(r,q)

(
a

[m]
↑↓

)
rq

+
1√

s
[m]
r s

[m]
q

pτ(r,q)

(
a

[m]
�

)
rq
, (31)

where pτ(qr) indicates the weight of the (m+ 1)-dimensional simplex τ incident to both

r and q and sr indicates the strength of the simplex r, i.e. sr =
∑N

[m+1]
n

τ⊃r pτ . From

here on, we will focus on finding the density of eigenvalues of the up-Laplacian of order

m. In the following sections we will therefore adopt a simplified notation, dropping the

indication ”up” and the index [m] in most of the relevant mathematical quantities. We

will therefore indicate L̂up
[m] simply as L̂, N

[m]
n as Nn, a

[m]
↑↓ as a↑↓, a

[m]
� as a� and so on.

4.2. Gaussian models and Laplacian spectrum

The density of eigenvalues of a symmetric matrix can be derived analytically using

the properties of the Gaussian model following a standard procedure of statistical

mechanics [29] quite common in Random Matrix Theory [68, 69]. Therefore if we want

to derive the density of eigenvalues of the m-dimensional up-Laplacian L̂ which for

generation n will be a Nn × Nn symmetric matrix we should consider the Gaussian

model whose partition function reads

Z(µ) =

∫
Dψ exp

[
iµ
∑
r

ψ2
r − i

∑
rq

L̂rqψrψq

]
=

(iπ)Nn/2√∏
r(µ− µr)

, (32)
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where µr are the eigenvalues of the normalized up-Laplacian matrix L̂ and the differential

Dψ stands for

Dψ =
Nn∏
r=1

(
dψr√

2π

)
. (33)

By changing variables and putting φ = ψ/
√
sr the partition function can be

rewritten as

Z(µ) =
Nn∏
r=1

√
sr

∫
DφeiH({φ}), (34)

with

H({φ}) =
∑

τ∈Q[m+1]

pτ

−(1− µ)
∑
r⊂τ

φ2
r + 2

∑
r<q|r,q⊂t

(a↑↓rq − a�rq)φrφq

 , (35)

where r, q are both m-simplices, i.e. r, q ∈ Q[m]. The spectral density ρ̄(µ) of the

normalized Laplacian matrix can be found using the relation

ρ̄(µ) = − 2

π
Im
∂f

∂µ
, (36)

where f is the free-energy density defined as

f = − lim
n→∞

1

Nn

lnZ(µ). (37)

In fact, inserting Eq. (32) in the Eq. (37) we obtain

f = − lim
n→∞

[
1

Nn

N∑
r=1

1

2
ln(µ− µr)

]
− 1

2
ln(iπ). (38)

Therefore we can show that Eq. (36) is correct by plugging the final expression for f in

Eq.(36),

ρ̄(µ) = − 2

π
Im
∂f

∂µ
=

1

π
lim
n→∞

1

Nn

Im
Nn∑
r=1

1

µ− µr
= lim

n→∞

1

Nn

Nn∑
r=1

δ̂(µ− µr). (39)

4.3. The general RG approach

As was the case in Ref. [28], where the spectrum of the 0-Laplacian was derived using

the RG flow, the parameters p and µ are renormalized differently for faces of different

type ` when we study the spectrum of the m-dimensional up-Laplacian. The partition

function Zn(ω) corresponding to the Gaussian model of the simplicial complex evolved

up to generation n is a function of the parameters ω = ({µ`}, {p`}), and can be expressed

as

Zn(ω) =

∫
DφeiH({φ}), (40)

where

H({φ}) =
n∑
`=0

∑
τ∈Q[m+1]

n (`)

−i(1− µ`)p`∑
r⊂τ

φ2
r + 2ip`

∑
r<q|r⊂τ,q⊂τ

(a↑↓rq − a�rq)φrφq

 , (41)
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with Q
[m+1]
n (`) indicating the set of (m+1)-dimensional simplices of type ` in a simplicial

complex evolved up to generation n and with r, q ∈ Q[m]. The Gibbs measure of this

Gaussian model is given in terms of the Hamiltonian H({φ}) defined in Eq. (41) as

Pn({φ}) =
1

Z(ω)
eiH({φ}). (42)

In order to calculate the partition function Zn(ω) we adopt a real space renormalization

group approach. We will first integrate the Gaussian fields corresponding to the Nn
m-dimensional simplices added to the simplicial complex at generation n and then

iteratively integrate over the simplices added at generation n − 1 and so forth, until

all the integrals in the definition of the partition function Zn(ω) are performed. More

specifically we consider the following real space renormalization group procedure. We

start with initial conditions µ` = µ and p` = 1 for all values of ` > 0. At each RG

iteration, we integrate over the Gaussian variables φr̄ associated to simplices r̄ ∈ Nn
and we rescale the remaining Gaussian variables in order to obtain the renormalized

Gibbs measure P ({φ′}) of the same type as Eq. (42) but with rescaled parameters

({µ′`}, {p′`}), i.e.

Pn−1({φ′}) =

∫
Dφ(n)Pn({φ})

∣∣∣∣
φ′=F({φ})

, (43)

where

Dφ(n) =
∏
r∈Nn

(
dφr√

2π

)
. (44)

The fields are rescaled in a way that keeps p1 = 1 at each iteration of the RG flow, i.e.

the weight of the (m + 1)-dimensional faces of type ` = 1 is always fixed to one. It

follows that at each step of the RG transformation we have

H({φ})→ H ′({φ′}), (45)

where,

H ′({φ}) =
n−1∑
`=1

∑
τ∈Q[m+1]

n−1 (`)

−(1− µ′`)p′`
∑
r⊂τ

(φ′r)
2 + 2p′`

∑
r<q|r,q⊂τ

[a↑↓rq − a�rq]φ′rφq

 . (46)

This procedure allows us to determine the renormalization group transformation R

acting on the model parameters ω = ({µ`}, {p`}),

ω′ = Rω. (47)

Under the renormalization group flow, the partition function transforms according to

Zn(ω) = e−Nng(ω)Zn−1(ω′). (48)

By using Eq. (22) and Eq. (27), the free energy density at generation n

f = − lim
n→∞

1

Nn

lnZn(ω) (49)
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can be approximated as

f '
∞∑
τ=0

g(R(τ)ω)

dτ
, (50)

for the Apollonian simplicial complexes, and as

f '
∞∑
τ=0

g(R(τ)ω)

(d+ 1)τ
, (51)

for the pseudo-fractal simplicial complexes.

We will show in the next section that the RG flow for this Gaussian model is

determined by the fixed point at µ? = 0. This implies that the spectral dimension

of higher-order up-Laplacians is universal [31], i.e. it is the same for normalized and

un-normalized up-Laplacians.

5. General RG equations for the Apollonian simplicial complex

5.1. The integral

To derive the renormalization group equations for the Apollonian simplicial complex we

need to perform the integration over the Gaussian fields associated to the m-simplices

added at generation n. In the Apollonian simplicial complex, any d-simplex of gen-

eration n is only incident to d-simplices added at previous generations. Specifically,

every new d-simplex contains a single new node and shares exactly one of its (d − 1)-

faces with the Apollonian simplicial complex at the previous iteration. Therefore the

integrations over all m-simplices added at iteration n can be performed independently

by separately considering the Gaussian fields corresponding to m-simplices belonging

to different d-simplices added at iteration n. Consequently in this paragraph we only

focus on the integration over the Gaussian fields associated to m-simplices belonging to

a single d-simplex of generation n.

In order to perform this integral let us define some notation. Given the generic

d-simplex r̄ added at iteration n, i.e. r̄ ∈ Nn, we indicate with j its most recent node,

i.e the single node j ⊂ r̄ of type ` = 0. Each d-simplex r̄ added at generation n contains(
d
m

)
new m-simplices added at generation n. All these simplices include the node j and

m other nodes out of the d nodes of type ` > 0 belonging to r̄. We will denote the set of

these m-simplices byMn and the Gaussian fields associated to the m-simplices q ∈Mn

by ψ̄q. Additionally, the simplex r̄ contains
(

d
m+1

)
m-faces formed exclusively by nodes

of type ` > 0. We will denote the set of these simplices by Rn and the Gaussian fields

associated to the m-simplices q ∈ Rn by φq. Finally, let us define Q[m+1] to be the set of

all (m+ 1)-dimensional faces of the simplex r̄ added at iteration n. With this notation,

the integral over the fields {ψ̄r̄} reads,

Im =

∫
Dψ̄ exp

{
i
[
H0({ψ̄}, {φ}) +H1({ψ̄}, {φ})

]}
, (52)
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where H0({ψ̄}, {φ}) is given by

H0({ψ̄}, {φ}) = − (1− µ1)

[
(d−m)

∑
q∈Mn

ψ̄2
q +

∑
q∈Rn

φ2
q

]
, (53)

and H1({ψ̄}, {φ}) is given by

H1({ψ̄}, ({φ}) = 2
∑

τ∈Q[m+1]

 ∑
r<q|r⊂τ,q⊂τ

Arqψ̄rψ̄q +
∑

r,q|r⊂τ,q⊂τ

Arqψ̄rφq

 . (54)

Here Arq is given by

Arq = a↑↓rq − a�rq, (55)

and Dψ̄ is defined by

Dψ̄ =
∏
q∈Mn

(
dψ̄q√

2π

)
. (56)

The integral Im is given by

Im = exp

{
−i(1− µ1)

∑
r∈Mn

φ2
r +

i

d− (d−m)µ1

[
(m+ 1)

∑
r∈Mn

φ2
r + 2

∑
r<q

Arqφrφq)

]}
× (−i)(

d
m)/2(−1)−( d−1

m−1)/2π( d
m)/2(d−m)(

d−1
m−1)G(µ1)−1/2, (57)

where

G(µ1) = [d− (d−m)µ1](
d−1
m )µ

( d−1
m−1)

1 . (58)

We note that for m = d − 1, the cardinality of the set Mn equals one. Therefore the

integral Id−1 simplifies to

Id−1 = exp

{
i

[
−(1− µ1) +

d

d− µ1

] ∑
r∈Mn

φ2
r

}
(−iπ)d/2(i)−(d−1)G(µ1)−1/2, (59)

and G(µ1) given by Eq.(58) simplifies to

G(µ1) = (d− µ1)µd−1
1 . (60)

Given the different structure of the integral Im for m ≤ d − 2 and for m = d − 1, we

will treat the case m ≤ d − 2 and the case m = d − 1 separately in the subsequent

paragraphs.

5.2. The RG equations for m ≤ d− 2

In this section we will show that the RG equations

ω′ = Rω. (61)



The higher-order spectrum of simplicial complexes: a RG approach 16

for the Apollonian simplicial complex for m ≤ d− 2 have the explicit expression,

(1− µ′`)p′` =

(
(1− µ1)(d−m− 2)`−1 + (1− µ`+1)p`+1 −

(m+ 1)(d−m− 2)`−1

d− (d−m)µ1

)
×
[
p2 +

(d−m− 1)

d− (d−m)µ1)

]−1

,

p′` =

[
p`+1 +

(d−m− 1)

d− (d−m)µ1

(d−m− 2)`−1

] [
p2 +

(d−m− 1)

d− (d−m)µ1

]−1

, (62)

for all ` ≥ 1. The initial conditions for all ` ≥ 1 are (µ`, p`) = (µ, 1) with µ � 1. This

result generalizes the RG equations that were found in Ref. [28] and can be derived

using a similar procedure. The results derived in Ref. [28] correspond to the case of

m = 0 in Eqs. (62).

According to the renormalization group procedure explained in the previous section,

we have to integrate over each m simplex r̄ ∈ Nn at each iteration of the RG procedure.

Each integration over the generic simplex r̄ performed in Eq.(57) contributes to the

Hamiltonian H ′({φ′}) with a term

−(1− µ1)
∑
q

φ2
q +

1

d− (d−m)µ1

[
(m+ 1)

∑
q

φ2
q + 2

∑
r<q

Arqφrφq)

]
. (63)

If we just focus on the term coupling different Gaussian fields for any (m+ 1)-

dimensional simplex which include both q and r the contribution is,[(
2

1

d− (d−m)µ1

)
Arqφrφq

]
. (64)

In the Apollonian simplicial complex, there are w
[m+1]
` d-simplices of iteration n incident

to a (m+1)-simplex of type `, including both the m simplex q and simplex r. The overall

contribution to the term proportional to φrφq in H ′({φ′}) is[(
2

1

d− (d−m)µ1

)
w

[m+1]
` Arqφrφq

]
. (65)

It follows that, before rescaling, the overall contribution of the integrals over r̄ ∈ Nn to

the term of the Hamiltonian H ′({φ′}) proportional to φrφq is given by{
2

[
p`+1 +

(
1

d− (d−m)µ1

)
w

[m+1]
`

]
Arqφrφq

}
. (66)

The real space RG procedure prescribes that after rescaling of the fields φq → φ′q, we

should have {
2

[
p`+1 +

(
1

d− (d−m)µ1

)
w

[m+1]
`

]
Arqφrφq

}
=
{

2p′`Arqφ
′
rφ
′
q

}
. (67)

The correct rescaling of the fields that ensures p′1 = p1 = 1 is given by

φ′ = φ

[
p2 +

d−m− 1

d− (d−m)µ1

]1/2

. (68)
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Here we have used w
[m+1]
1 = (d−m− 1). Finally, by using Eq. (25) for w

[m+1]
` , the RG

equation for p′` reads

p′` =

[
p`+1 +

(d−m− 1)(d−m− 2)`−1

d− (d−m)µ1

] [
p2 +

d−m− 1

d− (d−m)µ1

]−1

. (69)

In order to find the RG equations for µ′`, we need to consider the contribution to the

rescaled Hamiltonian coming from the integral Im in Eq. (63) that is proportional to

φ2
q. This contribution is,[(

−(1− µ1) +
m+ 1

d− (d−m)µ1

)
φ2
q

]
. (70)

Since there are w
[m]
` d-simplicies of generation n incident to the m-simplex q added at

generation n′ = n − `, the integration over the Gaussian fields corresponding to the

simplices added at generation n contributes,[(
−(1− µ1) +

m+ 1

d− (d−m)µ1

)
w

[m]
` φ2

q

]
. (71)

to the Hamiltonian for each m-dimensional simplex q. Let us now equate the term

proportional to φ2
q in the Hamiltonian before and after the rescaling of the fields, i.e.{[

−
∑̀
`′=1

(1− µ`′+1)p`′+1w
[m]
`−`′ +

(
−(1− µ1) +

m+ 1

d− (d−m)µ1

)
w

[m]
`

]
(φq)

2

}

=

{[
−
∑̀
`′=1

(1− µ′`′)p′`′w
[m]
`−`′

]
(φ′q)

2

}
. (72)

We observe that the coefficients w
[m]
` can be written as

w
[m]
` =

∑̀
`′=1

w
[m]
`−`′c`′ , (73)

where c`′ is given by

c` = (d−m− 2)`−1. (74)

After rescaling the fields according to Eq. (68), using Eq. (73) and Eq. (72) we get

the RG equation for µ`,

(1− µ′`)p′` =

(
(1− µ1)(d−m− 2)`−1 + (1− µ`+1)p`+1 −

(m+ 1)(d−m− 2)`−1

d− (d−m)µ1

)
×
[
p2 +

d−m− 1

d− (d−m)µ1

]−1

. (75)

This completes our derivation of the RG equations Eq.(62).

5.3. The free-energy density and spectral dimension for m ≤ d− 2

Using the renormalization group and in particular equation Eq. (48) for the partition

function, we can calculate the function g(ω)

g(ω) =
Nn
2Nn

lnG(µ1) +
Nn−1

2Nn

ln

[
p2 +

(d−m− 1)

d− (d−m)µ1

]
+ c, (76)
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where c indicates a constant. The first term on the right hand side of this equation comes

from the result of the integral Im in Eq. (57). The second term is the contribution due

to the rescaling of the fields given by Eq. (68). Given this expression for g(ω) the free

energy density f can be obtained from Eq. (50),

f '
∞∑
τ=0

g(R(τ)ω)

dτ

'
∞∑
τ=0

1

dτ

{
(d− 1)

2d
lnG

(
µ

(τ)
1

)
+

1

2d
ln

[
p

(τ)
2 +

d−m− 1

d− (d−m)µ
(τ)
1

]}
. (77)

Anticipating that the relevant fixed point at (µ?, p?2) = (0, p?) is repulsive, we assume

that close to this fixed point the RG flow can be described by the equations

µ
(τ)
1 ' µλτ

p
(τ)
2 ' p? + λτ (1− p?) (78)

where µ
(τ)
1 and p

(τ)
2 indicate the value of µ1 and p2 at the iteration τ of the RG

transformation, and where λ > 1 is the largest eigenvalue of the RG equations linearlised

close to the relevant fixed point. Therefore using Eq. (36) the spectral density ρ̄(µ) can

be found by,

ρ̄(µ) ' 2

π
Im

∞∑
τ=0

1

dτ
∂g(µ

(τ)
1 , pτ2)

∂µ

' 2

π
Im

∞∑
τ=0

λτ

dτ
(d− 1)

2d

[(
d− 1

m

)
1

d− (d−m)µ
(τ)
1

+

(
d− 1

m− 1

)
1

µ
(τ)
1

]

+
2

π
Im

∞∑
τ=0

λτ

dτ
d−m

2d
y
[(
p

(τ)
2

[
d− (d−m)µ

(τ)
1

]
+ y
)(

d− (d−m)µ
(τ)
1

)]−1

,

where y = d−m− 1. We notice that for m > 0 the spectrum acquires a delta peak at

µ = 0, corresponding to the finite density of zero eigenvalues of the up-Laplacian, i.e.

ρ̄(µ) = ρ̄(0)δ̂(µ) + ρ(µ). (79)

In fact by using the relation

1

π
Im

1

µ
= δ̂(µ), (80)

and the RG flow given by Eq. (78), we have

2

π
Im

∞∑
τ=0

λτ

dτ
d− 1

2d

(
d− 1

m− 1

)
1

µ
(τ)
1

= ρ̄(0)δ̂(µ), (81)

where

ρ̄(0) =
d− 1

d

(
d− 1

m− 1

)
1

1− 1/d
. (82)

The regular part of the density of eigenvalues ρ(µ) is given by

ρ(µ) ' 2

π
Im

∞∑
τ=0

λτ

dτ
(d− 1)

2d

[(
d− 1

m

)
1

d− (d−m)µ
(τ)
1

]
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+
2

π
Im

∞∑
τ=0

λτ

dτ
d−m

2d
y
[(
p(τ)

[
d− (d−m)µ

(τ)
1

]
+ y
)(

d− (d−m)µ
(τ)
1

)]−1

. (83)

This expression can be approximated by substituting the sum over τ with an integral.

Upon changing the variable of this integral to z = λτ we can use the theorem of residues

at µ
(τ)
1 = zµ = d/(d−m) to solve the integral, obtaining the asymptotic scaling

ρ(µ) ' CµdS/2−1, (84)

where the spectral dimension dS is given by,

dS = 2
ln d

lnλ
. (85)

Note however, that Eq. (85) holds only if the RG flow can be approximated by Eq.(78)

for µ
(τ)
1 ' d/(d−m).

5.4. RG equations for m = d− 1

In this paragraph we will show that for m = d− 1, the RG equations read,

p` = p1 = 1

(1− µ′`) = (1− µ`+1) + (−1)`
[
(1− µ1)− d

d− µ1

]
, (86)

for all ` ≥ 1 with initial conditions (µ`, p`) = (µ, 1) with µ� 1.

First we observe that for m = d − 1 the contribution of the integral Id−1 to the

Hamiltonian H ′(φ′) is given by{[
−(1− µ1) +

d

d− µ1

] ∑
r∈Mn

φ2
r

}
. (87)

This contribution does not contain any term proportional to φrφq. This observation

automatically indicates that p` = 1 for all ` and that the rescaling of the fields is trivial,

i.e. φ′q = φq. The RG equations for µ` can be obtained by proceeding as for the case

m < d − 1 and investigating the contributions of the integral Id−1 to the Hamiltonian.

In particular, if q is a type ` = 1 simplex, the term proportional to φ2
q transforms as,{

[(1− µ′1)]φ2
q

}
=

{[
(1− µ2) + (1− µ1)− d

d− µ1

]
φ2
q

}
. (88)

If instead the (d− 1)-simplex q is of type ` > 1, after one RG step we have,{[
(1− µ′`) + (1− µ′`−1)

]
φ2
q

}
=
{

[(1− µ`) + (1− µ`+1)]φ2
q

}
. (89)

In fact, any (d − 1)-dimensional simplex q of type ` > 1 after the RG step is incident

exclusively to a d-dimensional simplex of type ` and another d-dimensional simplex of

type `− 1. Eqs. (88) and (89) can be solved and reduce to the single RG equation valid

for m = d− 1

µ′` = µ`+1 + (−1)`
[
(1− µ1)− d

d− µ1

]
. (90)
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5.5. The free-energy density and spectral dimension for m = d− 1

For m = d− 1 the RG flow is dictated by the Eqs. (86) and there is no rescaling of the

fields. In this case the free-energy can be calculated using Eq. (50) with g(ω) given by

g(ω) =
Nn
2Nn

lnG(µ1) + c, (91)

where c is a constant. Note that this expression for g(ω) differs from Eq. (76) as it does

not contain the terms related to rescaling of the fields. Using this expression and the

Eq. (50) we can approximate the free energy f by,

f '
∞∑
τ=0

g(R(τ)ω)

dτ
=
∞∑
τ=0

1

dτ

{
(d− 1)

2d
lnG

(
µ

(τ)
1

)}
, (92)

with G(µ1) given by Eq.(60). Using Eq. (36) we can deduce the spectral density ρ̄(µ)

given by

ρ(µ) ' 2

π
Im

∞∑
τ=0

1

dτ
∂g(µ

(τ)
1 , pτ2)

∂µ

' 2

π
Im

∞∑
τ=0

λτ

dτ
(d− 1)

2d

[(
d− 1

m

)
1

d− (d−m)µ
(τ)
1

+

(
d− 1

m− 1

)
1

µ
(τ)
1

]
. (93)

6. RG flow for the Apollonian simplicial complex

In this section we will investigate the RG flow for the spectrum of the m dimensional

up-Laplacians on a d-dimensional Apollonian simplicial complex and we will derive its

density of eigenvalues and its spectral dimension. Interestingly, the RG equations can

be easily treated in full generality by considering the cases m = d − 1,m = d − 2 and

m ≤ d− 3.

6.1. Case m = d− 1

The RG equations for the case m = d − 1 are given by Eq.(86), which we will repeat

here for convenience

p` = p1 = 1

µ′` = µ`+1 + (−1)`
[
(1− µ1)− d

d− µ1

]
. (94)

The initial condition is µ` = µ � 1. From these equations we can obtain the recursive

equation for µ
(τ)
1 indicating the value of µ at the iteration τ of the RG transformation.

This equation reads

µ
(τ+1)
1 = 2µ− µ(τ)

1 −
[
(1− µ1)− d

d− µ1

]
, (95)
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where µ
(0)
1 = µ� 1. The fixed points of this RG flow are given by

µ?1 =
1

2
(d− 1 + 2µ)− 1

2

√
(d− 1 + 2µ)2 − 8dµ (96)

= 2
d

d− 1
µ+O(µ2), (97)

µ?1 =
1

2
(d− 1 + 2µ) +

1

2

√
(d− 1 + 2µ)2 − 8dµ, (98)

= d− 1− 2

d− 1
µ+O(µ2) (99)

The relevant fixed point is defined in Eq.(96), the derivative of the recursive RG equation

close to this fixed point at µ?1 is given by

λ1 =
d

(d− µ?)2
' 1

d
+

4

d(d− 1)
µ+O(µ2). (100)

Since λ1 < 1 it follows that the fixed point µ?1 defined in Eq.(96) is attractive.

Consequently, the RG flow starting from µ � 1 converges fast towards the fixed point

µ?1 defined in Eq. (96). The fixed point µ?1 is of the same order of magnitude as the

initial condition for µ.

In this case the fixed point is not at zero but at µ?1 = O(µ). Moreover, the fixed

point is attractive. This constitute a rather special scenario that we will not find for

smaller values of m. A careful study of the equation (93) for the spectral density ρ(µ)

reveals that in this case the corresponding up-Laplacian does not display a finite spectral

dimension.

6.2. Case m = d− 2

For m = d− 2 the RG Eqs. (62) imply that

p` = p

µ` = µ2 (101)

for all ` ≥ 1, while µ1 and p obey the following recursive RG equations,

(1− µ′1) =

(
(1− µ1) + (1− µ2)p− d− 1

d− 2µ1

)[
p+

1

d− 2µ1

]−1

,

µ′2 = µ2,

p′ = p

[
p+

1

d− 2µ1

]−1

, (102)

with initial condition (µ`, p`) = (µ, 1) with µ � 1 for all ` ≥ 1. In the zero order

approximation we can put µ2 = µ = 0. Therefore the renormalization group equations

(102) have three fixed points:

(µ?, p?) = (0, 0), (103)

(µ?, p?) =

(
0,
d− 1

d

)
, (104)

(µ?, p?) =

(
d+ 1

2
, 0

)
. (105)
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Close to the fixed point defined in Eq.(104) the linearised RG equations read,(
µ′1

p′ − d−1
d

)
=

(
(2 + d)/d 0

−2(d− 1)/d3 1/d

)(
µ1

p− d−1
d

)
+ µ

d− 1

d

(
1

0

)
. (106)

It follows that the eigenvalues of the Jacobian are

λ1 = λ = 1 +
2

d
, (107)

λ2 =
1

d
, (108)

i.e. close to the fixed point defined in Eq. (104) there is one attractive and one repulsive

direction. For initial conditions (µ, p) = (µ, 1), with µ � 1, the RG flow approaches

the fixed point defined in Eq.(104) and then runs away following the repulsive direction

towards the fixed point defined in Eq.(105). Since µ? at the fixed point defined in

Eq.(105) is close to the pole of Eq.(83) determining the asymptotic scaling of ρ(µ), the

RG flow close to the pole µ
(τ)
1 ' d/(d −m) = d/2 cannot be approximated by scaling

Eq. (78) determined by the second fixed point (defined in Eq. (104)). This scenario can

be deduced by the direct numerical implementation of the RG flow shown in Figure 3,

where plot µ
(τ)
1 , and p(τ) versus τ , for different dimensions d = 2, 3, 4. From the plots

of p? − p(τ) versus τ where p? = (d − 1)/d we observe the initial approach of the RG

flow to the fixed point defined in Eq.(104) and the subsequent repulsion of the RG flow

away from it as p?− p first decreases exponentially then increases exponentially with τ .

Moreover, from the plots showing µ
(τ)
1 versus τ , it is clear to see that as µ

(τ)
1 approaches

the pole of Eq.(83), i.e. µ(τ) = d/2 (red line), the RG flow deviates from the exponential

growth and starts to be affected by the fixed point defined in Eq.(105).

Using Eq. (85) one would expect the spectral dimension dS is given by

dS = 2
ln d

lnλ
= 2

ln d

ln[1 + 2/d]
. (109)

However, this is incorrect, because the RG flow is affected by the fixed point defined

in Eq. (105) close to the pole at µ
(τ)
1 ' d/(d −m) = d/2 of the explicit expression for

ρ̄(µ) in Eq. (83). A detailed prediction of the spectral dimension could be eventually

predicted by studying the RG flow numerically, this type of investigation is left for

subsequent studies.

6.3. Case m ≤ d− 3

For deriving the RG flow for the case m ≤ d − 3 we can rewrite the RG Eqs.(62) in a

simplified way with,

x` = (1− µ`)p`. (110)

We obtain a new set of RG equations relating the parameters ({x(τ)
` }, {p

(τ)
` }) at iteration

τ of the RG transformation with the parameters ({x(τ+1)
` }, {p(τ+1)

` }) at the next RG
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Figure 3. The RG flow for the Apollonian simplicial complex for m = d − 2 is

represented by plotting the numerically integrated values of µ
(τ)
1 and p? − pτ versus

τ , where p? = (d − 1)/d (blue curves). The red curve indicates the constant value

µ = d/2, where Eq.(83) has a simple pole. Plots (a)-(e), (b)-(f) and (c)-(g) display the

RG flow for dimension d = 2, d = 3 and d = 4 respectively. In all the plots µ = 10−15.

iteration. This set of equations is given by

x
(τ+1)
` =

[
x

(τ)
` +

(
x

(τ)
1 −

(m+ 1)

m+ (d−m)x
(τ)
1

)
(d−m− 2)`−1

][
p

(τ)
2 +

d−m− 1

m+ (d−m)x
(τ)
1

]−1

,

p
(τ+1)
` =

[
p

(τ)
`+1 +

(d−m− 1)(d−m− 2)`−1

m+ (d−m)x
(τ)
1

][
p

(τ)
2 +

d−m− 1

m+ (d−m)x
(τ)
1

]−1

, (111)

with initial conditions x
(0)
` = 1 − µ and p

(0)
` = 1. In order to find the solution of these

equations we use the auxiliary variable y
(τ)
1 given by

y
(τ+1)
1 = p

(τ+1)
2 +

d−m− 1

m+ (d−m)x
(τ+1)
1

. (112)

The explicit solution of the RG equations (111) reads

p
(τ+1)
2 =

τ∏
m=1

1

y
(m)
1

+ (d−m− 1)
τ∑

m=1

(d−m− 2)τ−m+1

m+ (d−m)x(m)

τ∏
m′=m

1

y
(m′)
1

,

y
(τ+1)
1 = p

(τ+1)
2 +

d−m− 1

m+ (d−m)x
(τ+1)
1

,

=
τ∏

m=1

1

y
(m)
1

+ (d−m− 1)
τ∑

m=1

(d−m− 2)τ−m+1

m+ (d−m)x(m)

τ∏
m′=m

1

y
(m′)
1

+
d−m− 1

m+ (d−m)x
(τ+1)
1

,
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x
(τ+1)
1 = x

(1)
1

τ∏
m=1

1

y
(m)
1

+
τ∑

m=1

(
x

(m)
1 − (m+ 1)

m+ (d−m)x
(m)
1

)
(d−m− 2)τ−m

τ∏
m′=m

1

y
(m′)
1

.

This solution shows that p
(τ+1)
2 , y

(τ+1)
1 and x

(τ+1)
1 depend on the entire RG flow up to time

τ , i.e. on all the values of the parameters p
(τ ′)
2 , y

(τ ′)
1 and x

(τ ′)
1 with τ ′ ≤ τ . This solution

therefore seems to indicate that in order to calculate the value of x
(τ+1)
` and p

(τ+1)
` the

knowledge of the entire RG flow up to iteration τ is necessary. However, one can recover

some Markovian recursive equations by introducing the additional auxiliary variables

called A(τ), B(τ) and C(τ). The auxiliary variables A(τ), B(τ) and C(τ) are defined as

A(τ) =
τ∏

m=1

1

y
(m)
1

,

B(τ) = (d−m− 1)
τ∑

m=1

(d−m− 2)τ−m+1

m+ (d−m)x(m)

τ∏
m′=m

1

y
(m′)
1

+
d−m− 1

m+ (d−m)x
(τ+1)
1

,

C(τ) =
τ∑

m=1

(
x

(m)
1 − (m+ 1)

m+ (d−m)x
(m)
1

)
(d−m− 2)τ−m

τ∏
m′=m

1

y
(m′)
1

.

The variables y
(τ+1)
1 and x

(τ+1)
1 can be simply expressed in terms of A(τ), B(τ) and C(τ)

by

y
(τ+1)
1 = A(τ) +B(τ),

x
(τ+1)
1 = (1− µ)A(τ) + C(τ). (113)

The solution of the RG equations can be written as the following set of recursive

equations for A(τ), B(τ) and C(τ)

A(τ+1) =
1

y
(τ+1)
1

A(τ),

B(τ+1) =
d−m− 2

y
(τ+1)
1

B(τ) + (d−m− 1)
1

m+ (d−m)x
(τ+2)
1

,

C(τ+1) =
(d−m− 2)

y
(τ+1)
1

C(τ) +
1

y
(τ+1)
1

(
x

(τ+1)
1 − (m+ 1)

m+ (d−m)x
(τ+1)
1

)
. (114)

This set of equations can be written as a closed set of equations for A(τ), B(τ) and C(τ) us-

ing Eq. (113), with initial conditions A(0) = 1, B(0) = (d−m−1)/(d−(d−m)µ)), C(0) =

0.

The fixed point of these RG equations at µ = 0 is

A? = 0,

B? =
d2 − (m+ 1)(d+ 1)

d
,

C? = 1. (115)

The Jacobian matrix of these RG equations has eigenvalues λ1 > λ2 > λ3 given by

λ1 = λ =
d2 −m(d+ 1)

d2 − (m+ 1)(d+ 1)
,
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λ2 =
d

d2 − (m+ 1)(d+ 1)
,

λ3 = 0 (116)

with λ1 > 1 and λ2 < 1.

The right eigenvectors corresponding to these eigenvalues are

u1 =
1

c1

(
d2 + d−m(1− d+m),−d2, d3 − d2 + d−m(1− d+ d2 +m)

)
,

u2 = (1, 0, 0) ,

u3 =
1

c3

(
d3 − d2 − d+m(1− 2d− d2 +m), d2, d2 − d+m(1− 2d+m)

)
,

where c1 and c3 are normalization constants. The left eigenvectors corresponding to

these eigenvalues are

v1 =
1

d1

(
0, d2 − d+m(1− 2d+m),−d2

)
,

v2 =
1

d2

(−1, d− 2−m, 1) ,

v3 =
1

d3

(
0, d3 − d2 + d−m(1− d+ d2 +m), d2

)
,

where d1, d2, d3 are normalization constants. In order to solve Eqs.(114) we indicate

with X(τ) the column vector

X(τ) =
(
A(τ), B(τ), C(τ)

)
. (117)

By linearizing Eqs.(114) near the fixed point X? given by

X? = (A?, B?, C?) , (118)

we obtain

X(τ) = X? +
3∑

m=1

λτmvm〈um,X(0) −X?〉. (119)

For the leading order term, we have

X(τ) = X? + λτ1v1〈u1,X
(0) −X?〉, (120)

where the scalar product is,

〈u1,X
(0) −X?〉 ∝ µ

d− µ(d−m)
. (121)

We therefore have proved that for µ� 1 we have,

µ
(τ)
1 ∝ λτµ. (122)

Using Eq. (85) it follows that for m ≤ d − 3 the spectral dimension dS decreases with

increasing m and is given by

dS = 2
ln d

lnλ
= 2(ln d)

[
ln

(
d2 −m(d+ 1)

d2 − (m+ 1)(d+ 1)

)]−1

. (123)
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Finally, we observe that in the limit d → ∞ and m � d the spectral dimension scales

like

dS ' (2 ln d)

[
d−m− 3

2
+O(1/d)

]
. (124)

The spectral dimension therefore grows faster than linearly with the topological

dimension d.

7. General RG equations for the pseudo-fractal simplicial complex

7.1. The RG equations

In a d-dimensional pseudo-fractal simplicial complex at each iteration n each (d − 1)-

simplex is glued to a new d-dimensional simplex. The difference with the algorithm

generating the Apollonian simplicial complexes is that in the case of the Apollonian

simplicial complex at each iteration n only the (d − 1)-simplices of the last generation

are glued to a new d-dimensional simplex. Given the structure of the pseudo-fractal

simplicial complex and its relation to the Apollonian simplicial complex, which was

already noted in Ref. [28], the general RG equations for the pseudo-fractal simplicial

complex can be easily derived from those for the Apollonian simplicial complex. In fact

it is sufficient to observe that in the pseudo-fractal simplicial complex each simplex of

type ` receives the sum of the contributions coming from the integration of the Gaussian

variables associated to the d-simplices added at the last generation. The RG equations

for m ≤ d− 2 are therefore given by

(1− µ′`)p′` =

[
(1− µ`+1)p`+1 +

(
(1− µ1)− (m+ 1)

d− (d−m)µ1

) `−1∑
`′=0

(d−m− 2)`
′

]

×
[
p2 +

(d−m− 1)

d− (d−m)µ1)

]−1

,

p′` =

[
p`+1 +

(d−m− 1)

d− (d−m)µ1

`−1∑
`′=0

(d−m− 2)`
′

] [
p2 +

(d−m− 1)

d− (d−m)µ1

]−1

, (125)

for all ` ≥ 1, with initial conditions (µ`, p`) = (µ, 1) with µ � 1 for all ` ≥ 1. For

m = d − 1 every m-simplex of type ` is connected to a d-simplex of generation n and

the RG equations for m = d− 1 and ` ≥ 1 read

p` = p1 = 1 (126)

and

(1− µ′`) = (1− µ`+1) +

[
(1− µ1)− d

d− µ1

]
(127)

with initial conditions (µ`, p`) = (µ, 1) with µ� 1 for all ` ≥ 1.
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7.2. The free-energy density and the spectral dimension

The free energy is given by Eq. (51). By using a procedure similar to the one used to

derive the corresponding expression for the Apollonian simplicial complex we easily find

for m ≤ d− 2

g(ω) =
Nn
2Nn

lnG(µ1) +
Nn−1

2Nn

ln

[
p2 +

d−m− 1

d− (d−m)µ1)

]
+ c, (128)

where c is a constant. Given this expression for g(ω), the free energy density f obtained

from Eq. (51) reads

f '
∞∑
τ=0

g(R(τ)ω)

(d+ 1)τ

'
∞∑
τ=0

1

(d+ 1)τ

{
d

2(d+ 1)
lnG

(
µ

(τ)
1

)
+

1

2(d+ 1)
ln

[
p

(τ)
2 +

d−m− 1

d− (d−m)µ
(τ)
1

]}
.

For the pseudo-fractal complex, we expect to find a relevant repulsive fixed point at

(µ?, p?2) = (0, p?). Under this hypothesis the RG flow is described by

µ
(τ)
1 ' µλτ

p
(τ)
2 ' p? + λτ (1− p?) (129)

close to the relevant fixed point, where λ > 1 is the largest eigenvalue of the linearized

RG equations close to the relevant fixed point. Using Eq. (36), the spectral density

ρ̄(µ) can be expressed as

ρ̄(µ) ' 2

π
Im

∞∑
τ=0

1

(d+ 1)τ
∂g(µ

(τ)
1 , pτ2)

∂µ

' 2

π
Im

∞∑
τ=0

λτ

(d+ 1)τ
d

2(d+ 1)

[(
d− 1

m

)
1

d− (d−m)µ
(τ)
1

+

(
d− 1

m− 1

)
1

µ
(τ)
1

]

+
2

π
Im

∞∑
τ=0

λτ

(d+ 1)τ
d−m

2(d+ 1)
y
[(
p

(τ)
2

[
d− (d−m)µ

(τ)
1

]
+ y
)(

d− (d−m)µ
(τ)
1

)]−1

,(130)

where y = d − m − 1. In the pseudo-fractal simplicial complex, the spectrum of the

up-Laplacian of order m acquires a delta peak at µ = 0 as well. This corresponds to

the finite density of zero eigenvalues of the up-Laplacian, i.e.

ρ̄(µ) = ρ̄(0)δ̂(µ) + ρ(µ) (131)

where ρ̄(0) given by

ρ̄(0) =
d

d+ 1

(
d− 1

m− 1

)
1

1− 1/(d+ 1)
. (132)

and the regular part of the spectrum is given by

ρ(µ) ' 2

π
Im

∞∑
τ=0

λτ

(d+ 1)τ
d

2(d+ 1)

[(
d− 1

m

)
1

d− (d−m)µ
(τ)
1

]

+
2

π
Im

∞∑
τ=0

λτ

(d+ 1)τ
d−m

2(d+ 1)
y
[(
p

(τ)
2

[
d− (d−m)µ

(τ)
1

]
+ y
)(

d− (d−m)µ
(τ)
1

)]−1

. (133)



The higher-order spectrum of simplicial complexes: a RG approach 28

By approximating this expression with an integral over τ and by changing the variable

of this integral to z = λτ we can approximate ρ(µ) by using the residue theorem at the

pole µ
(τ)
1 = zµ = d/(d−m), obtaining the asymptotic scaling

ρ(µ) ' CµdS/2−1. (134)

The spectral dimension dS is then given by

dS = 2
ln(d+ 1)

lnλ
. (135)

For m = d− 1 the Gaussian fields are not rescaled and g(ω) is given by

g(ω) =
Nn
2Nn

lnG(µ1) + c, (136)

where c is a constant. Using this expression and Eq. (51) we can approximate the free

energy f by

f '
∞∑
τ=0

g(R(τ)ω)

(d+ 1)τ
=
∞∑
τ=0

1

(d+ 1)τ

{
d

2(d+ 1)
lnG

(
µ

(τ)
1

)}
, (137)

with G(µ1) given by Eq.(60). Using Eq. (36), we can deduce that the spectral density

ρ̄(µ) is given by

ρ(µ) ' 2

π
Im

∞∑
τ=0

1

(d+ 1)τ
∂g(µ

(τ)
1 , pτ2)

∂µ

' 2

π
Im

∞∑
τ=0

λτ

(d+ 1)τ
d

2(d+ 1)

[(
d− 1

m

)
1

d− (d−m)µ
(τ)
1

+

(
d− 1

m− 1

)
1

µ
(τ)
1

]
. (138)

8. RG flow for the pseudo-fractal simplicial complex

In this section we will treat the RG flow for the pseudo-fractal simplicial complex. We

consider the cases m = d− 1,m = d− 2,m = d− 3 and m < d− 3.

8.1. Case m = d− 1

The RG equations for m = d − 1 are given by Eqs.(127), which can be used to derive

the following recursive equation for µ1,

µ′1 = µ1 −
[
(1− µ1)− d

d− µ1

]
, (139)

with initial condition µ1 = µ. The fixed points of this equations are

µ?1 = 0, (140)

µ?1 = d+ 1. (141)

At the fixed point at µ? = 0 the recursive equation Eqs.(139) has eigenvalue

λ = 2 +
1

d
> 1, (142)
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so µ? = 0 is a repulsive fixed point. The RG flow starts from µ1 = µ � 1 and runs

away from µ? = 0 according to

µ(τ) = µλτ . (143)

In doing so, the RG flow approaches the singularity of Eq.(139) at µ1 = d and the

linearised RG flow described by Eq. (143) is not longer valid. Therefore the RG flow

changes its trend, in some cases even changing sign. This scenario is apparent from

Figure 4 were the absolute values of µ
(τ)
1 (indicating the value of the parameter µ1 at

iteration τ of the RG transformation) are plotted versus τ This is a situation analogous

to the case m = d − 2 for the Apollonian simplicial complexes, where the RG flow

changes trends very close to the pole in Eq.(138). In this case λ cannot be used to give

a good estimation of the spectral dimension dS.
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Figure 4. The RG flow of the pseudo-fractal simplicial complex for m = d − 1

is represented by plotting the numerically integrated values of |µ(τ)
1 | versus τ (blue

curves). The red curves indicate the constant value µ1 = d where Eq.(138) has a

simple pole. Plots (a), (b) and (c) display RG flow for dimension d = 2, d = 3 and

d = 4 respectively. In all the plots µ = 10−15.

8.2. Case m = d− 2

For m = d − 2 the RG Eqs.(125) for the pseudo-fractal simplicial complex greatly

simplify. We have

µ` = µ1 (144)

for ` ≥ 1 and

p` = p

(145)

for all ` ≥ 2. The resulting RG equations are

(1− µ′1) =

[
2(1− µ1)− d− 1

d− 2µ1

] [
1 +

1

d− 2µ1

]−1

,
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p′ = 1, (146)

with initial conditions (µ`, p`) = (µ, 1) with µ � 1 for all ` ≥ 1. The fixed point is

(µ?, p?) = (0, 1). The eigenvalue of this system of equations is

λ = 2. (147)

The fixed point is µ?1 = 0 and p? = 1 with eigenvalue λ = 2. Using Eq.(135) we can

predict the spectral dimension

dS = 2
ln(d+ 1)

lnλ
= 2

ln(d+ 1)

ln 2
. (148)

8.3. Case m = d− 3

In the case m = d− 3 the RG Eqs.(125) can be expressed in terms of the variables x` as

defined in Eq. (110). Using x
(τ)
` and p

(τ)
` for indicating the parameter values at iteration

τ , by performing the sum over `′, the Eqs. (125) for m = d− 3 can be written as

x
(τ+1)
` =

[
x

(τ)
`+1 +

(
x

(τ)
1 −

d− 2

m+ 3x
(τ)
1

)
`

][
p

(τ)
2 +

d−m− 1

m+ 3x
(τ)
1

]−1

,

p
(τ+1)
` =

[
p

(τ)
`+1 +

(d−m− 1)`

m+ 3x
(τ)
1

][
p

(τ)
2 +

d−m− 1

m+ 3x
(τ)
1

]−1

, (149)

with initial conditions x
(0)
` = 1−µ and p

(0)
` = 1. Equations (149) can be solved in terms

of the auxiliary variable

y
(τ+1)
1 = p

(τ+1)
2 +

2

m+ 3x
(τ+1)
1

, (150)

and we obtain

x
(τ+1)
1 = (1− µ)

τ∏
m=1

1

y
(m)
1

+
τ∑

m=1

(
x

(m)
1 − d− 2

m+ 3x
(m)
1

)
(τ + 1−m)

τ∏
m′=m

1

y(m′)
,

p
(τ+1)
2 =

τ∏
m=1

1

y
(m)
1

+ (d−m− 1)
τ∑

m=1

1

m+ 3x
(m)
1

(τ + 2−m)
τ∏

m′=m

1

y(m′)
. (151)

Also in the pseudo-fractal case these non-Markovian equations can be turned to

Markovian iterative relations by expressing the variable at iteration τ + 1 exclusively

in terms of the variable at iteration τ . This is achieved by introducing the auxiliary

variables A(τ), B(τ), C(τ), D(τ) and E(τ) defined as

A(τ) =
τ∏

m=1

1

y
(m)
1

,

B(τ) =
τ∑

m=1

2

d+ 3x
(m)
1

(τ + 2−m)
τ∏

m′=m

1

y(m′)
,

C(τ) =
τ∑

m=1

(
x

(m)
1 − d− 2

m+ 3x
(m)
1

)
(τ + 1−m)

τ∏
m′=m

1

y(m′)
,
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D(τ) =
τ∑

m=1

(
x

(m)
1 − d− 2

m+ 3x
(m)
1

)
τ∏

m′=m

1

y(m′)
,

E(τ) =
τ∑

m=1

2

m+ 3x
(m)
1

τ∏
m′=m

1

y(m′)
. (152)

These auxiliary variables are related to y
(τ)
1 and x

(τ)
1 by

y
(τ+1)
1 = A(τ) +B(τ) +

2

m+ 3x
(τ+1)
1

,

x
(τ+1)
1 = (1− µ)A(τ) + C(τ). (153)

The recursive Markovian RG equations for the case m = d− 3 read

x
(τ+1)
1 = (1− µ)A(τ) + C(τ),

y
(τ+1)
1 = A(τ) +B(τ) +

2

m+ 3[(1− µ)A(τ) + C(τ)]
,

A(τ+1) =
1

y
(τ+1)
1

A(τ),

B(τ+1) =
1

y
(τ+1)
1

[
B(τ) + E(τ) +

4

m+ 3x
(τ+1)
1

]
,

C(τ+1) =
1

y
(τ+1)
1

[
C(τ) +D(τ) +

(
x

(τ+1)
1 − d− 2

m+ 3x
(τ+1)
1

)]
,

D(τ+1) =
1

y
(τ+1)
1

[
D(τ) +

(
x

(τ+1)
1 − d− 2

m+ 3x
(τ+1)
1

)]
,

E(τ+1) =
1

y
(τ+1)
1

[
E(τ) +

2

m+ 3x
(τ+1)
1

]
, (154)

with initial conditions A(1), B(1), C(1), D(1) and E(1), which can be found by inserting

x
(0)
1 = 1− µ and y

(0)
1 = 1 + 2

m+3(1−µ)
in Eqs. (152) and (153).

The relevant fixed point of these equations is

A? = 0,

B? =
1

d

(
d− 1 +

√
1 + 2d

)
,

C? = 1,

D? =
1

d

(
−1 +

√
1 + 2d

)
,

E? =
1

d

(
−1 +

√
1 + 2d

)
.

(155)

Close to this fixed point, the RG equations (154) have the relevant eigenvalue

λ = [1 + d+
√

1 + 2d]−2x̂, (156)
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where x̂ is the largest positive real root of the equation

−d6 − 2d5
√

2d+ 1− 4d5 − 2d4
√

2d+ 1− 2d4

+
(

4d4 + 5d3
√

2d+ 1 + 10d3 + 5d2
√

2d+ 1 + 5d2
)
x

+
(
−4d2 − 3d

√
2d+ 1− 6d− 3

√
2d+ 1− 3

)
x2 + x3 = 0 (157)

Using Eq.(135) we obtain that the spectral dimension dS is therefore given by

dS = 2
ln(d+ 1)

lnλ
. (158)

8.4. Case m < d− 3

In this paragraph we study the RG flow for the pseudo-fractal simplicial complex for

m < d− 3. By expressing Eqs. (125) in terms of the variables x
(τ)
` defined in Eq. (110)

and the variables p
(τ)
` calculated at iteration τ , we obtain the recursive equations

x
(τ+1)
` =

[
x

(τ)
`+1 +

(
x

(τ)
1 −

(m+ 1)

m+ (d−m)x
(τ)
1

)
[(d−m− 2)` − 1]

d−m− 3

][
p

(τ)
2 +

d−m− 1

m+ (d−m)x
(τ)
1

]−1

,

p
(τ+1)
` =

[
p

(τ)
`+1 +

(d−m− 1)

m+ (d−m)x
(τ)
1

[(d−m− 2)` − 1]

d−m− 3

][
p

(τ)
2 +

d−m− 1

m+ (d−m)x
(τ)
1

]−1

, (159)

with initial conditions x
(0)
` = 1−µ and p

(0)
` = 1. These equations can be solved in terms

of the variables y
(τ)
1 defined as

y
(τ)
1 = p

(τ)
2 +

(d−m− 1)

m+ (d−m)x
(τ)
1

. (160)

In particular the solution of Eqs. (159) is given by

p
(τ+1)
2 =

τ∏
m=1

1

y
(m)
1

+
(d−m− 1)

(d−m− 3)

τ∑
m=1

[(d−m− 2)τ−m+2 − 1]

m+ (d−m)x(m)

τ∏
m′=m

1

y
(m′)
1

,

y
(τ+1)
1 = p

(τ+1)
2 +

(d−m− 1)

m+ (d−m)x
(τ+1)
1

=
τ∏

m=1

1

y
(m)
1

+
(d−m− 1)

(d−m− 3)

τ∑
m=1

[(d−m− 2)τ−m+2 − 1]

m+ (d−m)x(m)

τ∏
m′=m

1

y
(m′)
1

+
(d−m− 1)

m+ (d−m)x
(τ+1)
1

,

x
(τ+1)
1 = x

(1)
1

τ∏
m=1

1

y
(m)
1

+
1

d−m− 3

τ∑
m=1

(
x

(m)
1 − m+ 1

m+ (d−m)x
(m)
1

)

× [(d−m− 2)τ+1−m − 1]
τ∏

m′=m

1

y
(m′)
1

. (161)

In order to turn this system of equations into a Markovian system of equations, we again

express the variables at iteration τ +1 only in terms of variables at iteration τ . We then
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have

y
(τ+1)
1 = A(τ) +B(τ) −D(τ) +

(d−m− 1)

m+ (d−m)x
(τ+1)
1

,

x
(τ+1)
1 = (1− µ)A(τ) + C(τ) − E(τ)

with A(τ), B(τ), C(τ), D(τ), E(τ) given by

A(τ) =
τ∏

m=1

1

y
(m)
1

,

B(τ) = =
(d−m− 1)

(d−m− 3)

τ∑
m=1

(d−m− 2)τ−m+2

m+ (d−m)x(m)

τ∏
m′=m

1

y
(m′)
1

,

C(τ) =
1

d−m− 3

τ∑
m=1

(
x

(m)
1 − (m+ 1)

m+ (d−m)x
(m)
1

)
(d−m− 2)τ+1−m

τ∏
m′=m

1

y
(m′)
1

,

D(τ) =
(d−m− 1)

(d−m− 3)

τ∑
m=1

1

m+ (d−m)x(m)

τ∏
m′=m

1

y
(m′)
1

,

E(τ) =
1

d−m− 3

τ∑
m=1

(
x

(m)
1 − (m+ 1)

m+ (d−m)x
(m)
1

)
τ∏

m′=m

1

y
(m′)
1

. (162)

The RG flow can therefore be cast in a set of recursive equations for A(τ), B(τ), C(τ), D(τ)

and E(τ) given by

y
(τ+1)
1 = A(τ) +B(τ) −D(τ) +

d−m− 1

m+ (d−m)[(1− µ)A(τ) + C(τ) − E(τ)]
,

x
(τ+1)
1 = (1− µ)A(τ) + C(τ) − E(τ),

A(τ+1) =
1

y
(τ+1)
1

A(τ),

B(τ+1) =
d−m− 2

y
(τ+1)
1

B(τ) +
(d−m− 1)(d−m− 2)2

(d−m− 3)

1

y
(τ+1)
1 [m+ (d−m))x

(τ+1)
1 ]

,

C(τ+1) =
(d−m− 2)

y
(τ+1)
1

C(τ) +
(d−m− 2)

(d−m− 3)

1

y
(τ+1)
1

(
x

(τ+1)
1 − (m+ 1)

m+ (d−m)x
(τ+1)
1

)
,

D(τ+1) =
1

y
(τ+1)
1

D(τ) +
(d−m− 1)

(d−m− 3)

1

y
(τ+1)
1 [m+ (d−m)x

(τ+1)
1 ]

,

E(τ+1) =
1

y
(τ+1)
1

E(τ) +
1

(d−m− 3)

1

y
(τ+1)
1

(
x

(τ+1)
1 − (m+ 1)

m+ (d−m)x
(τ+1)
1

)
, (163)

with initial conditions A(1), B(1), C(1), D(1), E(1) which can be found by inserting x
(0)
1 =

1− µ and y
(0)
1 = [1 + d−m−1

d−mµ)
] in Eq. (162).

By extracting the leading eigenvalue λ close to the relevant fixed point at µ? = 0

and using Eq. (135) we can deduce the values of the spectral dimension dS (see Table

2).

Here we make an additional useful observation. As is true for the specific case

m = 0 and d > 3 (see Ref. [28]) and in the more general case investigated here with
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Table 1. Numerical values for the spectral dimension dS of the m-up-Laplacian (with

m ≤ d − 3) of the d-dimensional Apollonian simplicial complexes up to dimension

d = 9. The values of dS are rounded at the sixth significant figure.

d/m d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9

m = d− 3 - 3.73813 4.5742 5.19979 5.70072 6.11932 6.47949 6.79596

m = d− 4 - - 7.39962 8.48212 9.35664 10.0913 10.7253 11.2833

m = d− 5 - - - 11.729 12.9719 14.0179 14.9217 15.7178

m = d− 6 - - - - 16.5732 17.9293 19.1017 20.1346

m = d− 7 - - - - - 21.8337 23.2741 24.5434

m = d− 8 - - - - - - 27.4423 28.9478

m = d− 9 - - - - - - - 33.3496

Table 2. Numerical values for the spectral dimension dS of the m-up-Laplacian (with

m ≤ d − 2) of the d-dimensional pseudo-fractal simplicial complexes up to dimension

d = 9. The values of dS are rounded at the sixth significant figure.

d/m d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9

m = d− 2 3.16993 4.0 4.64386 5.16993 5.61471 6.0 6.33985 6.64386

m = d− 3 - 5.31562 5.86924 6.28083 6.60535 6.87191 7.0975 7.29281

m = d− 4 - - 8.37610 8.99732 9.49705 9.91547 10.276 10.5934

m = d− 5 - - - 12.7140 13.7232 14.4689 15.057 15.5463

m = d− 6 - - - - 17.3048 18.5860 19.5562 20.3283

m = d− 7 - - - - - 22.2618 23.7403 24.897

m = d− 8 - - - - - - 27.5667 29.1935

m = d− 9 - - - - - - - 33.1841

m < d − 3, we observe that the RG Eqs.(159) of the pseudo-fractal simplicial complex

have the same leading term of the RG Eqs.(111) valid for the Apollonian simplicial

complex with m < d − 3. Therefore the leading eigenvalue λ of the Eqs.(159) is given

by

λ =
d2 −m(d+ 1)

d2 − (m+ 1)(d+ 1)
+O(d−1). (164)

It follows that for d� 1 and m finite, the spectral dimension dS obeys the asymptotic

scaling

dS ' 2(d−m) log(d+ 1) +O(log(d)), (165)

i.e. it grows faster than linearly with d.

9. Main results and comparison to numerical results

9.1. Higher-order spectral dimensions of Apollonian and pseudo-fractal simplicial

complexes

In the preceding paragraphs we have derived the equations from which we can deduce

the spectral dimensions dS of the up-Laplacians of order m of the Apollonian and
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pseudo-fractal simplicial complexes. The only exceptions are the case m = d − 2 for

the Apollonian network and the case m = d − 1 for the pseudo-fractal network. The

predicted values for the spectral dimensions dS for d-dimensional Apollonian (m ≤ d−3)

and pseudo-fractal simplicial complexes (m ≤ d− 2 ) up to dimension d = 9 are shown

in Table 1 and Table 2 respectively. In Figure 5 and Figure 6) we compare the spectra

obtained by numerical diagonalization of the higher-order up-Laplacians for Apollonian

and pseudo-fractal simplicial complexes of dimension d = 3 and d = 4. We find a very

good agreement with our exact analytical results. In addition we can fit the numerical

data finding the spectral dimensions for the case m = d− 1 of the Apollonian simplicial

complex and the case m = d− 2 of the pseudo-fractal simplicial complex.

From our RG calculations of the spectrum of higher-order up-Laplacians of

Apollonian simplicial complexes and pseudo-fractal simplicial complexes and its

numerical validation we draw the following main conclusions:

(1) Higher-order up-Laplacians of order m on Apollonian and pseudo-fractal simplicial

complexes display a finite spectral dimension with the only exception of the case

of m = d − 1 for the Apollonian simplicial complex. A single simplicial complex

generated by the above-mentioned models is therefore not just characterized by

a single spectral dimension but by multiple spectral dimensions corresponding to

different orders m.

(2) The analytical prediction of the spectrum of the m-order up-Laplacian on d-

dimensional Apollonian and pseudo-fractal simplicial complexes shows that the

spectral dimension dS decreases with increasing m as long as m ≤ d − 3 for the

Apollonian simplicial complexes and as long as m ≤ d − 2 for the pseudo-fractal

simplicial complex.

(3) The symmetries of the simplicial complex do not only induce degenerate eigenvalues

for the graph Laplacian [28] but also for their higher-dimensional counterparts.

Indeed, from our numerical results (Figures 5) and 6)) we observe that the higher-

order up-Laplacian have several eigenvalues that are highly degenerate.

10. Conclusions

Higher-order Laplacians are important topological objects that generalize graph

Laplacians and extend the notion of diffusion to higher dimension. Here we show that

two non-amenable simplicial complex models (the Apollonian simplicial complex, the

pseudo-fractal simplicial complex) display finite higher-order spectral dimensions dS.

We observe that a single simplicial complex can be characterized by a set of spectral

dimensions corresponding to the spectrum of the up-Laplacians of different order m.

We have used renormalization group methods applied to a Gaussian model to predict

the higher-order spectral dimension dS of up-Laplacians of order m of the Apollonian

simplicial complex and the pseudo-fractal simplicial complex of arbitrary dimension d.

With our RG approach it is possible to analytically calculate the spectral dimension dS
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Figure 5. The cumulative density of eigenvalues ρc(λ) of the up-Laplacians of order

m is shown in solid lines for the Apollonian and the pseudo-fractal simplicial complex

of dimension d = 3. Panels (a), (c) and (e) display results (blue lines) for the up-

Laplacian of order m of the Apollonian simplicial complex with respectively m = 0, 1, 2.

Panels (b), (d) and (f) display results (blue lines) for the up-Laplacian of order m of

the pseudo-fractal simplicial complex with respectively m = 0, 1, 2. The theoretically

predicted spectral dimensions are shown with red lines. Dashed black lines indicate

power-law fits.

for order m ≤ d − 3 for the Apollonian simplicial complexes and for order m ≤ d − 2

for pseudo-fractal simplicial complexes. In these cases the spectral dimensions are

determined by the scaling of the RG flow away from the repulsive fixed point at zero

mass, i.e. at (µ?1, p
?
2) = (0, p?). Additionally we have found that in the range of values

of m for which we can predict the spectral dimension, the spectral dimension dS up-

Laplacians of order m decreases as m increases. Our analytical calculations are validated

by numerical results. In the future [70] we plan to characterize the the higher-order
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Figure 6. The cumulative density of eigenvalues ρc(λ) of the up-Laplacians of order

m is shown in solid lines for the Apollonian and the pseudo-fractal simplicial complex

of dimension d = 4. Panels (a), (c), (e) and (g) display results (blue lines) for

the up-Laplacian of order m of the Apollonian simplicial complex with respectively

m = 0, 1, 2, 3. Panels (b), (d), (f) and (h) display results (blue lines) for the

up-Laplacian of order m of the pseudo-fractal simplicial complex with respectively

m = 0, 1, 2, 3. The theoretically predicted spectral dimensions are shown with red

lines. Dashed black lines indicate power-law fits.

Laplacians of the simplicial complex model called “Network Geometry with Flavor” in

order to investigate the role of randomness in determining the spectral properties of

the simplicial complexes and the implications that topological phase transitions have

on higher-order spectra. We hope that the present work can stimulate further research

on higher-order spectral dimensions and topological phase transitions in different fields

related to network topology including quantum gravity and brain research.
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[15] Šuvakov M, Andjelković M, and Tadić B 2018 Sci. Rep. 8, 1987
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