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Abstract 

The development of the latest generation of wide-body passenger aircraft has heralded a new era in the 

utilisation of carbon-fibre composite materials. One of the primary challenges facing future development 

programmes is the desire to reduce the extent of physical testing, required as part of the certification process, by 
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adopting a ‘certification by simulation’ approach. A hierarchical bottom-up multiscale simulation scheme can be 

an efficient approach that takes advantage of the natural separation of length scales between different entities 

(fibre/matrix, ply, laminate and component) in composite structures. In this work, composites with various 

fibre/matrix and interlaminar interfacial properties were fabricated using an autoclave under curing pressures 

ranging from 0 to 0.8 MPa. The microstructure (mainly void content and spatial distribution) and the mechanical 

properties of the matrix and fibre/matrix interface were measured, the latter by means of nano-indentation tests 

in matrix pockets, and fibre push-in tests. In addition, the macroscopic interlaminar shear strength was 

determined by means of three-points bend tests on short beams. To understand the influence of interfacial 

properties on the intralaminar failure behaviour, a high-fidelity microscale computational model is presented to 

predict homogenized ply properties under shear loading. Predicted ply material parameters are then transferred to 

a mesoscale composite damage model to reveal the interaction between intralaminar and interlaminar damage 

behaviour of composite laminates.   

Keywords: A. Polymer-matrix composites (PMCs); B. Interface/interphase; C. Damage mechanics; C. 

Computational modelling 

 

1. Introduction 

Carbon fibre reinforced composite materials are nowadays widely used in aero-structural components due to 

their high specific stiffness and strength. Nevertheless, composite structures are susceptible to damage from low-

velocity impact events leading to a significant reduction in compression- after-impact residual strength [1]. 

Another major challenge is to ensure a prescribed level of crashworthiness of fibre-reinforced composite 

vehicles [2]. The premise of superior material properties of composites, is currently tempered by high 

development costs, slow production rates and lengthy and expensive certification programmes. Substantial effort 

is currently being directed towards the development of new modelling and simulation tools, at all levels of the 

development cycle, to mitigate these shortcomings.  

Physically-based approaches, quantitatively accounting for the progression of the actual damage mechanisms has 

been widely developed to model damage behaviour under various loading conditions [1-8]. The key feature of 

these models is to take into account all possible failure modes and their complex interactions. Typical damage 

modes occurring in composite laminates consist of a combination of intralaminar damage (such as matrix 
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cracking or plasticity, fibre/matrix debonding and fibre fracture) and interlaminar damage, which develops at the 

interface between adjacent plies in the form of debonding between layers (delamination). Mesoscale models 

based on fracture and continuum damage mechanics (CDM) are currently the most popular method for the 

failure prediction of composite material. In order to deal with all the intralaminar damage mechanisms within a 

single framework, CDM treats the lamina as a homogeneous and anisotropic solid. This simplification is valid in 

most of the cases, except some particular cases when composite plies are subjected to large shear deformation. In 

this scenario, strain components are calculated from the symmetric part of the deformation gradient and, 

therefore, shear deformation parallel or perpendicular to the fibres leads to the same response, which is not the 

actual behaviour. Shear parallel to the fibres leads to failure by the localization of shear deformation in the 

matrix (and the shear strength is similar to the matrix shear strength) while shear perpendicular to the fibres 

induces fibre rotation and a marked strain hardening effect associated with the load taken up by the fibres [9, 10]. 

This fibre rotation effect is not directly taken into account in the CDM framework. CDM also presents problems 

in predicting the failure triggered by fibre kinking, as it is strongly affected by the elastic properties of the fibres 

and their geometry (waviness, diameter, imperfections, etc).  

The predictive capability of CDM models to accurately capture the damage behaviour of composite structures 

relies on the acquisition of accurate material properties [11]. These input material parameters have to be obtained 

through experimental campaigns for individual material systems. Results obtained for a given unidirectional 

composite ply cannot be directly extrapolated to other plies with different fibre volume fraction or constituent 

properties, leading to an extensive investment in their physical characterization. However, micromechanical 

models, in which the matrix and interface mechanical properties are obtained by means of in situ testing, offers a 

novel approach to understand the deformation and fracture mechanisms. Naya et al. [12] have demonstrated high 

accuracy in the prediction of the mechanical behaviour, including fracture mechanisms under complex multiaxial 

loading cases. A micromechanical model considering fibre rotation is able to capture this non-linear effect under 

large deformation shear loading [9]. It can also be used to determine the fracture resistance (toughness) of an 

individual ply [13] and the fatigue behaviour [14]. This provides a very powerful virtual testing tool to 

understand micromechanical failure mechanisms and predict material constants for the mesoscale model.  

In this work, a novel multi-scale model is presented to provide a framework to understand the effect of interface 

properties on the intralaminar and interlaminar failure behaviour of composite laminates. Composite laminates 
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with various intra/interlaminar properties were manufactured by curing under pressure. Verification of 

microscale and mesoscale model was carried out by simulating the interfacial characterization tests.  Excellent 

qualitative and quantitative correlation was achieved between the numerical models and experimental results. In 

particular, the micromechanical model was able to capture the failure modes under transverse 

tension/compression and shear perpendicular to fibre direction. Strain hardening effect due to fibre rotation was 

also observed under shear perpendicular to the fibre direction. The fibre rotation effect, in the mesoscale model, 

is explicitly modelled using the predicted non-linear stress strain curves from the microscale model. The 

numerical mesoscale modelling results were in excellent agreement with the experiment in terms of non-linear 

behaviour. The fidelity of the computational models provided detailed information on the initiation and 

propagation of damage in microscale and mesoscale model. These results enabled a deeper understanding of the 

effect of interfacial properties on the fracture processes and on the mechanical properties at the micro and macro 

scales in unidirectional composite laminates. 

2. Multiscale model 

As shown in Figure 1, a bottom-up multiscale virtual testing strategy is proposed to take into account the 

physical mechanisms of deformation at different length scales on the behaviour of the composite [15-17]. This 

study also enables carrying out multiscale modelling by computing the properties of individual ply and 

homogenizing the results into a constitutive model, followed by the transfer of information to the next length 

scale. In the bottom level of the multiscale modelling approach, micromechanical characterization techniques 

(nanoindentation, microbond tests, etc) are used to measure the properties of the constituents in the composite.   

Computational homogenization of a Representative Volume Element (RVE) of the microstructure is then used to 

predict the ply properties from the properties of the constituents (fibre, matrix and interfaces) together with the 

volume fraction and spatial distribution of the fibres within an individual ply. Mesoscale models use the 

homogenized results of the micromechanical models as constitutive models for each ply. In these models, a full 

three-dimensional stress state is considered. Intralaminar and interlaminar damage can be introduced separately 

together with the complex interaction between them.  At the macroscale level, the composite structural 

component will be carried out using shell elements which  is very efficient from the numerical viewpoint and 

ideal for analysing large structures [15, 16]. The basic idea is to treat the laminate as a homogeneous material 

whose mechanical properties are provided by the mesoscale model. The stiffness constants of the laminate are 
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easily obtained using laminate theory while the onset of damage is provided by a failure envelope in the stress 

space. The failure envelope can be obtained by mesoscale modelling of the laminate under uniaxial and 

multiaxial stress states.  

Multiscale modelling is expected to have a large impact on the efficient design, testing and certification of 

composite structures in the aerospace/automotive industries because it opens the door to the industrial 

implementation of virtual design and virtual testing tools. The influence of the properties of the constituents and 

of their behaviour, which are a function of cure kinetics and material conditioning, on the mechanical 

performance distribution of composite materials can be easily and rapidly assessed, which is both time-saving 

and economical [15, 16]. 

2.1.  Micromechanical model 

2.1.1 Constitutive law 

Carbon fibres are modelled as orthotropic solids considering thermal expansion in longitudinal and transverse 

directions. The polymer matrix of the composite material is modelled as an isotropic linear and elastic solid with 

an Extended Drucker–Prager model including a damage variable. The Extended Drucker–Prager yield criterion 

is a pressure-dependent model for determining whether a material has failed or undergone plastic yielding [18, 

19]. This enables the RVE to capture the damage behaviour of the polymer under tension, compression and shear 

loading. The yield function is defined in terms of the 𝐼1 and 𝐽2 invariants of the stress tensor as, 

 Φ(𝐼1, 𝐽2, 𝜎𝐼 , 𝛽, 𝛼) =
1

1 − 𝛼
(√3𝐽2 +  𝛼𝐼1 + 𝐵〈𝜎𝐼〉) − 𝜎𝑚𝑦𝑐 = 0  (1) 

where  𝐼1 stands for the first invariant of the stress tensor, 𝐽2 is the second invariant of the deviatoric stress 

tensor, 𝛼 is the pressure-sensitivity parameter of the Drucker–Prager yield criterion, 𝜎𝐼 is the maximum principal 

stress, 〈 〉 is the Macaulay operator (returning the argument if positive and zero otherwise) and 𝐵 is a function 

of the tensile and compressive yield stresses, 𝜎𝑚𝑦𝑡 and 𝜎𝑚𝑦𝑐, respectively, defined as 

 𝐵 =
𝜎𝑚𝑦𝑡

𝜎𝑚𝑦𝑐
 (1 − 𝛼) − (1 + 𝛼) (2) 

Where 𝛼 can be expressed in terms of the internal friction angle of the material (𝛽) according to tan 𝛽 = 3𝛼 .  

The internal friction angle controls the hydrostatic pressure dependence of the plastic behaviour of the material. 
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Under compression, the matrix is assumed to behave as a perfectly plastic solid, without strain hardening. Thus, 

the compression yield stress, 𝜎𝑚𝑦𝑐 , has the same value as the compressive strength 𝑌𝑐. Under tension, damage is 

initiated at 𝜎𝑚𝑦𝑡, and the softening behaviour after the onset of damage is defined by a linear cohesive law, 

characterized by a single normalized scalar damage variable, to ensure the correct energy dissipation of the 

matrix,  𝒢𝑚 (as shown in Figure 4a). Under shear loading, the matrix is modelled as elastic-plastic material with 

perfectly plastic post yielding behaviour. Both small and finite deformation theory were considered to investigate 

the effects of fibre rotation in the microscale level.  

An experimental micromechanics approach, in the following section, was developed to determine the key 

properties, including the elastic modulus, 𝐸𝑚, the compression yield limit ,𝜎𝑚𝑦𝑐 , and the internal friction angle, 

𝛽, of the matrix, by means of indentation. The fibre/matrix interface is modelling using cohesive surfaces, based 

on a traction-separation law. It enables the prediction of cohesive damage and the effect of friction occurring 

after fibre/matrix debonding. More detail about the cohesive zone model is given in the section 2.3.  

2.1.2 Model set-up 

In order to understand the role of fibre/matrix interfacial properties on the intralaminar failure behaviour, a 

computational micromechanical model based on a statistically representative volume element (RVE) was 

established. Several RVEs were generated such that the detailed microstructure information of fibre diameter 

distribution, volume fraction (60%), fibre clusters and resin pockets are representative of the real unidirectional 

lamina. The input material parameters are summarised in Table 1 and Table 2 [20, 21]. The interface fracture 

energy in mode I, 𝒢𝐼𝑐 could not be measured experimentally but it is assumed to be in the range of 2–5 𝐽/𝑚2. 

Similar values were used by other authors and reported in the literature [12, 22, 23]. In addition, due to the lack 

of experimental data, the interface fracture energies in the shear modes were set equal to the matrix cracking 

fracture energy, 𝒢𝐼𝐼𝑐 =100 𝐽/𝑚2, a value similar to the one used [12]. A sensitivity study of these values 

indicates they only affect material behaviour in the damage propagation regime slightly, given in Section 5.1.  

The RVEs were also able to account for the development of residual stresses in the material, prior to mechanical 

loading, arising from the temperature change from the curing temperature of 180 ºC down to room temperature 

20 ºC. The periodic RVE (as shown in Figure 2) was discretized using wedge and brick finite elements for fibres 

and matrix, with full Gauss integration (C3D6 and C3D8), respectively. Typically, each RVE contains 
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approximately 20,000 elements representing a discretization fine enough to capture the large stress gradients 

between neighbouring fibres. Node positions on opposite faces of the RVE are identical to apply periodic 

boundary conditions (PBC) [12], 

 {

�⃗� (0, 𝑌, 𝑍) − �⃗� (𝒘𝟎, 𝑌, 𝑍) = �⃗⃗� 𝑋, 𝑀𝑎𝑠𝑡𝑒𝑟 − 𝑋

�⃗� (𝑋, 0, 𝑍) − �⃗� (𝑋, 𝑳𝟎, 𝑍) = �⃗⃗� 𝑌, 𝑀𝑎𝑠𝑡𝑒𝑟 −  𝑌

�⃗� (𝑋, 0, 𝑍) − �⃗� (𝑋, 𝑌, 𝑯𝟎) = �⃗⃗� 𝑍,       𝑀𝑎𝑠𝑡𝑒𝑟 −  𝑍

 (3) 

where 𝑋, 𝑌, 𝑍 are the coordinates axis, and �⃗⃗� 𝑖 is the displacement of the master node i (with 𝑖 = 𝑋, 𝑌, 𝑍). As a 

result, three master nodes are defined on the three-dimensional unit cell: Master-X (𝑤0, 0 ,0), Master-Y (0, 𝐿0 ,0) 

and Master-Z (0, 0, 𝐻0). In this work, 𝐿0 = 𝐻0 = 58 𝜇𝑚 and 𝑤0 = 0.6 𝜇𝑚. Transverse tension and transverse 

compression is carried out with  �⃗⃗� 𝑋 = (0,±𝛿, 0). Shear parallel to the fibres (𝜏𝑋𝑍)  or shear perpendicular to the 

fibres (𝜏𝑌𝑍) can be applied with  �⃗⃗� 𝑋 = (𝛿, 0, 0) or �⃗⃗� 𝑍 = (0,0, 𝛿) respectively. The displacement and reaction 

force of these master nodes were used to determine the stress–strain curves under shear loads and corresponding 

material stiffness/strength properties. Simulations were then implemented with ABAQUS /Standard 6.14 based 

on finite deformations theory [24].  

2.2.  Mesoscale model 

2.2.1 Constitutive law 

A homogenized mesoscale model considering both intralaminar and interlaminar damage is used to capture 

failure behaviour of short-beam bending tests. The material is defined as a homogenous, linear orthotropic solid. 

The effective stresses �̃� = �̃�휀 are defined as stresses transmitted across the intact part of the cross-section in a 

Representative Volume Element (RVE), 

 �̃� =

[
 
 
 
 
 
 
 
 
 

1 − 𝜈23𝜈32

𝐸22𝐸33Ψ

𝜈21 + 𝜈31𝜈23

𝐸22𝐸33Ψ

𝜈31 + 𝜈21𝜈32

𝐸22𝐸33Ψ
𝜈12 + 𝜈13𝜈32

𝐸11𝐸33Ψ

1 − 𝜈31𝜈13

𝐸11𝐸33Ψ

𝜈32 + 𝜈31𝜈12

𝐸11𝐸33Ψ
𝜈13 + 𝜈12𝜈23

𝐸22𝐸11Ψ

𝜈23 + 𝜈13𝜈21

𝐸22𝐸11Ψ

1 − 𝜈12𝜈21

𝐸22𝐸11Ψ

2𝐺12

2𝐺23

2𝐺13]
 
 
 
 
 
 
 
 
 

 (4) 

and Ψ =
1−𝜈12𝜈21−𝜈23𝜈32−𝜈31𝜈13−2𝜈12𝜈23𝜈31

𝐸11𝐸22𝐸33
. 
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Under shear loading, the fibres rotate towards the loading axis as the shear strain increases during tests, resulting 

in strain hardening. Published results in the literature have confirmed that the ‘pseudo strain hardening’ 

behaviour of composite material under large deformation shear loading is essentially attributed to fibre rotation 

[10, 25]. Fibre rotation is facilitated by the yielding of the matrix and pick up load in tension, leading to 

influences on the post-yielding behaviour of the composite material. In this work, the fibre rotation behaviour is 

successfully predicted by the micromechanical model based on finite deformation theory as shown in Figure 11d 

and Figure 12d.  To establish a mesoscale model that includes the fibre rotation effect, the local material 

coordinates should be updated during analysis so as to account for the rotation of fibres due to shear 

deformation. The total rotation of materials should also be decomposed into rigid rotation and fibre rotation [16].  

For simplicity, the fibre rotation effect in this mesoscale model is explicitly modelled using the predicted non-

linear stress-strain curves from the micromechanical model (illustrated in Figure 4b). The stress-strain relation is 

represented by an exponential model, 

 𝜏(𝛾𝑖𝑗) = 𝜏𝑖𝑗
𝑌 [exp(𝑐1𝛾𝑖𝑗) − exp(𝑐2𝛾𝑖𝑗)] (5) 

where 𝜏𝑖𝑗
𝑌  is the initial yield strength, determined by the 2% offset strain point, 𝑐1 is a strain hardening coefficient 

and 𝑐2 controls the initial shear modulus and elastic-plastic transition region. The non-linear coefficients, 𝑐1(2), 

are calibrated against the stress-strain data given by the micromechanical model. The non-linear shear strain, 𝛾𝑖𝑗 , 

is decomposed as the sum of an elastic and inelastic component, 

 𝛾𝑖𝑗 = 𝛾𝑖𝑗,𝑒𝑙 + 𝛾𝑖𝑗,𝑖𝑛       𝑖 ≠ 𝑗. (6) 

A strain-based damage initiation function is used to model the material response in the longitudinal direction. 

The failure initiation criterion, based on Puck and Schürmann’s [26] and Catalanotti et al. [27], was used for 

predicting matrix damage behaviour. A brief summary of fibre-dominated and matrix-dominated failure criteria 

are given below. Full details of the criteria may be found in [1, 10, 28] and are not repeated here for brevity, 

Fibre-dominated 휀11 > 0,  𝐹11
𝑇 (휀11) = (

𝜀11

𝜀11
𝑂𝑇)

2

≥ 1 
(7) 

 휀11 < 0, 𝐹11
𝐶 (휀11) = (

𝜀11

𝜀11
𝑂𝐶)

2

≥ 1 
(8) 
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Matrix-dominated 𝜎𝑁𝑁 ≤ 0, 𝐹(𝜃) = (
𝜎𝐿𝑁

𝑆12−𝜇𝐿𝑁 𝜎𝑁𝑁
)

2

+ (
𝜎𝑁𝑇

𝑆23−𝜇𝑁𝑇 𝜎𝑁𝑁
)

2

 
(9) 

 𝜎𝑁𝑁 > 0, 𝐹(𝜃) = (
𝜎𝑁𝑁

𝑆23
)

2

+ (
𝜎𝐿𝑁

𝑆12
)

2

+ (
𝜎𝑁𝑇

𝑆23
)

2

+ 𝜆 (
𝜎𝑁𝑁

𝑆23
) (

𝜎𝐿𝑁

𝑆12
)

2

+ 𝜅 (
𝜎𝑁𝑁

𝑆23
) 

(10) 

where 𝐹11
𝑇  and  𝐹11

𝐶  are the failure indices for tensile and compressive loading, and the failure initiation strains 

(휀11
𝑂𝑇 and 휀11

𝑂𝐶  for tension and compression, respectively) are determined by the strengths in the respective 

directions, i.e. 휀11
𝑂𝑇 = 𝑋𝑇 𝐸11

0⁄  etc. The stress tensor 𝜎𝐿𝑁𝑇 = [𝑇(θ)]𝜎123[𝑇(θ)]𝑇 on the fracture plane was rotated 

using the standard transformation matrix 𝑇(θ), from the material coordinate system (123) to the fracture plane 

coordinate system (LNT), where 𝜃 is defined as the angle of the potential fracture plane. Parameters 𝜅 and 𝜆 are 

given by 𝜅 = 𝑆23
2 − (𝑌𝑇)2 𝑆23𝑌𝑇⁄ , and 𝜆 = 2𝜇𝐿𝑁𝑆23 𝑆12⁄ − 𝜅, where 𝑆12 and 𝑆23 are the shear strengths. The 

transverse friction coefficients  𝜇𝑁𝑇 and 𝜇𝐿𝑁, defined in [29], are based on Mohr-Coulom theory where 𝜇𝑁𝑇 =

−1 tan(2𝜃𝑓)⁄ , 𝑆23 = 𝑌𝐶 2 tan(𝜃𝑓)⁄  and 𝜇𝐿𝑁 = 𝜇𝑁𝑇𝑆12 𝑆23⁄ , 𝑌𝐶  and 𝑌𝑇 are the transverse compressive strength 

and transverse tensile strength, respectively. The fracture plane orientation, 𝜃𝑓, is typically found to be around 

53° for unidirectional composites under uniaxial transverse compressive loading [29].  For a general 3D load 

state, the orientation is not known a priori and is determined by the angle which maximizes the matrix 

dominated failure criteria functions. Brent’s algorithm [30] was used for this purpose which combines a golden 

section search with parabolic interpolation. 

The damage tensor is a function of three monotonically increasing damage variables, bound by 0 (no damage) 

and 1 (complete failure), each one relating to a form of damage mode under a different loading state. 𝑑11
𝑇  refers 

to tensile damage in the fibre direction, 𝑑11
𝐶  refers to compressive damage in the fibre direction and  𝑑𝑚𝑎𝑡 refers 

to matrix cracking due to a combination of transverse tension/compression and shear loading (shown in Figure 

4c). The damage parameter associated with loading in the longitudinal direction is given by,   

 𝑑11
𝑇(𝐶)(휀11) =

휀11
𝐹𝑇(𝐶)

휀11
𝐹𝑇(𝐶)

− 휀11
𝑂𝑇(𝐶)

(1 −
휀11

𝑂𝑇(𝐶)

휀11
𝑇(𝐶)

) ,  휀11
𝑇(𝐶)

 > 휀11
𝑂𝑇(𝐶)

 (11) 

where the failure strains, 휀11
𝐹𝑇(𝐶)

, at which net-section fracture across the element occurs, is determined by the 

critical energy release rates Γ11
𝑇(𝐶)

, and longitudinal tensile/compressive strength, 𝑋𝑇(𝐶) , given by, 

 휀11
𝐹𝑇(𝐶)

= 2Γ11
𝑇(𝐶)

𝑋𝑇(𝐶) 𝑙𝑓𝑖𝑏⁄   (12) 
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where 𝑙𝑓𝑖𝑏  is the characteristic length. Mesh objectivity of the model was achieved by employing the crack-band 

model of Bažant and Oh [31].The characteristic length associated with the longitudinal direction is determined 

by  𝑙𝑓𝑖𝑏 = 𝑉 𝐴⁄  , where 𝑉  is the element volume and 𝐴 is calculated using an approach proposed in [1].  

The overall damage progression for matrix damage is based on the mixed-mode loading state shown in Figure 4d. 

Once damage initiates, the normal and shear stresses on the fracture plane are recorded and a resultant stress 𝜎𝑟 =

√〈𝜎𝑁𝑁〉2 + (𝜎𝑁𝑇)
2 + (𝜎𝑁𝐿)

2 is calculated.  The degradation of the combined stress, 𝜎𝑟, on the fracture plane was 

defined using a single damage parameter, 𝑑𝑚𝑎𝑡 , Eq. (13).  

The matrix-dominated damage propagation is governed by the critical mixed-mode strain energy release rate, 𝛤𝑟
𝑐 , 

which is a function of the stresses (𝜎𝑁𝑁 , 𝜏𝑁𝐿 , 𝜏𝑁𝑇), the corresponding critical strain energy release rate (𝛤22
𝑐 , 𝛤12

𝑐 , 𝛤23
𝑐 ), 

and 𝑙2-norm of the stress vector on the fracture plane (𝜎𝑟). The critical mixed-mode strain energy release rate, 𝛤𝑟
𝑐 , 

is then given by Eq. (14). 

 

2.2.2 Model set-up 

Unidirectional [0˚]10 composite specimens were created in ABAQUS/Explicit 6.14, as shown Figure 3. Elastic 

properties were calculated based on Chamis’s rule of mixtures accounting for the intraply, interplay void content 

and resin-rich region (Table 3) [32].  Other material properties summarized in Table 4 and Table 5 were used to 

model the short beam bending behaviour [20]. The geometry was meshed (C3D8R) using an element size of 0.25 

mm x 0.25 mm within the lamina plane and 0.05 mm in the through-thickness direction. The lamina thickness, 

considering the void content and thick resin layer is 0.2 mm. To suppress spurious energy modes, an enhanced 

stiffness-based hourglass and distortion control were employed. Instead of introducing the voids and thick layer 

of matrix into the finite element model, the interlaminar properties between plies were simplified by defining it 

as surface-based cohesive behaviour with the interlaminar shear strength 𝜏𝐼𝐿𝑆𝑆 measured from experiment. A 

general contact algorithm was utilised to generate a contact force between contact surfaces. ‘Hard’ contact 

𝑑𝑚𝑎𝑡 =
휀𝑟

𝑓
− 휀𝑟,𝑖𝑛

0

휀𝑟
𝑓

− 휀𝑟
0

(1 −
휀𝑟

0 − 휀𝑟

휀𝑟 − 휀𝑟,𝑖𝑛
0 ) . (13) 

Γ𝑟
𝐶 = Γ22

𝐶 (
𝜎𝑁𝑁

0

𝜎𝑟
0

)

2

+ Γ12
𝐶 (

𝜏𝑁𝐿
0

𝜎𝑟
0
)

2

+ Γ23
𝐶 (

𝜏𝑁𝑇
0

𝜎𝑟
0
)

2

 . (14) 

http://scholar.google.co.uk/citations?user=tJ4t4Q8AAAAJ&hl=en&oi=sra
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conditions were defined between the platen and the plies as well as adjacent plies. The platen was modelled as an 

analytical rigid surface. The friction coefficients of ply-to-ply and ply-to-indenter contact were set to 0.4 [12] 

and 0.2 respectively [10]. BK-law mixed-mode ratio 𝜂 = 2  and a penalty interface stiffness 𝑘 =

1 × 105𝑁/𝑚𝑚3 were chosen. 

2.3. Cohesive zone model 

The surface-based cohesive behaviour [33] was used to capture both fibre/matrix debonding and interplay 

delamination using a bilinear traction-separation relationship. This approach is a convenient means to model the 

cohesive connections without the need to define cohesive elements and tie constraints. Contact separations are 

the relative displacements between the nodes on the slave surface and their corresponding projection points on 

the master surface along the contact normal and shear directions. Traction stresses are defined as the cohesive 

forces acting along the contact normal and shear directions divided by the current area at each contact point. 

Failure initiation was governed by a quadratic stress criterion, 

(
𝑡1

𝑡1
0)

2

+ (
𝑡2

𝑡2
0)

2

+ (
〈𝑡3〉

𝑡3
0 )

2

≤ 1, (15) 

where 𝑡𝑖(𝑖 = 1,2,3) are the traction stress vectors in the in-plane (1,2) and normal (3) directions, respectively, 

and 𝑡𝑖
0 are the corresponding maximum stresses associated with each direction, 𝑡𝑠ℎ

0 = √(𝑡1
0)2 + (𝑡2

0)2 is the 

resultant shear stress. The corresponding separations are denoted by 𝛿𝑖(𝑖 = 1,2,3), where the resultant planar 

shear separation is defined by 𝛿𝑠ℎ
0 = √(𝛿1

0)2 + (𝛿2
0)2  and 𝛿3 = 𝛿𝑛𝑜𝑟𝑚 is the normal separation of the cohesive 

surfaces. Delamination was propagated using a mixed-mode relationship proposed by Benzeggagh and Kenane 

(B-K propagation criterion) [34], 

𝐺𝑐 = 𝐺𝐼𝑐 + (𝐺𝐼𝐼𝑐 − 𝐺𝐼𝑐)B
𝜂 , (16) 

where 𝐺𝑐 is the mixed-mode fracture toughness, 𝐵 is the local mixed-mode ratio defined as 𝐵 = 𝐺𝑠ℎ𝑒𝑎𝑟/(𝐺𝐼 +

𝐺𝑠ℎ𝑒𝑎𝑟). 𝜂 is the mixed-mode interaction.  The normal strength is assumed equal to 𝑡3
0=2/3𝑡𝑠ℎ

0  based on the 

experimental results [35]. The interlaminar fracture toughness considering void content are using   𝐺𝐼𝑐,𝐼𝐼𝑐
𝑣𝑜𝑖𝑑 =

𝐺𝐼𝑐,𝐼𝐼𝑐[𝟏 − (
𝟒𝒇𝒗𝒐𝒊𝒅

𝝅
)𝟏/𝟐]  [36] as a reasonable approximation. 
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3. Material and methods 

3.1.  Autoclave manufacturing 

In this study, fibre reinforced composite laminates were manufactured from unidirectional carbon fibre (T800) 

reinforced/epoxy (CYCOM X850) prepreg [37]. Pre-impregnated sheets were supplied by Commercial Aircraft 

Corporation of China, Ltd with a fibre volume fraction of 65% and areal density of 190 g/m2. T800/X850 used a 

thermoplastic toughened epoxy to improve the delamination toughness, which includes a thermoplastic 

toughened epoxy interlayer of about 25 to 30 𝜇𝑚 thickness between layers. Eight unidirectional [0]10 composite 

laminates were fabricated in an autoclave with different values of applied pressure: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 

and 0.8 MPa. Laminates were heated at a constant rate of 1.5 ºC/min to 180 ºC and held for 150 min at this 

temperature. Afterwards, they were cooled down to room temperature (20 ºC) under the same pressure. The 

dimensions of the laminates were 200 mm (length) × 200 mm (width) × 2 mm (thickness), and the final cured 

thickness of the composite laminates was 2.0 ± 0.2 mm.  

3.2.  Mechanical characterization 

Matrix properties within the composite were measured by means of nanoidentation [13] while push-in tests of 

single fibres within the laminate were used to determine the interface strength [38, 39]. Push in tests were 

preferred instead of single fibre fragmentation tests [40, 41] or microbond tests [42] to measure the fibre-matrix 

interface properties because they are influenced  by the fibre packing density and the degree of matrix cure, 

which are accounted for in the push-in tests. The interlaminar shear strength was determined by means of a 

short-beam three point bending test [43] while optical and scanning electron microscopy were used to assess the 

void content and fracture mechanisms, respectively.  

3.2.1 Fibre/matrix interfacial properties 

The unidirectional laminates, consolidated at different pressures, were cut with a precision diamond saw to 

nominal dimensions of 10 mm × 10 mm × 2 mm. Samples were embedded in epoxy resin to facilitate handling 

during polishing. Surfaces perpendicular to the fibres were polished with silicon carbide papers of 600, 1000, 

2000, and 4000 grade, and polished with diamond pastes of 0.3 μm and 0.1 μm, followed by ultrasonic cleaning. 

The samples were inspected with an optical microscope to find the position of typical hexagonal fibre packing 

patterns. Afterwards, they were moved beneath the low-load indenter probe of a Hysitron TI 950 triboindenter. 
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The in-situ images obtained by raster scanning with the indenter probe over the sample surface led to the precise 

location of the fibre under the flat punch. Push-in tests of fibres were carried out with the high load indenter 

probe (maximum load of 950 mN) with a diamond flat punch of 5 μm in diameter. Push-in tests were performed 

under displacement control at 40 nm/s up to a maximum displacement of 1200 nm followed by unloading to the 

initial position. More than 15 fibre tests were carried out for each laminate. The fibres tested were surrounded by 

six nearest neighbours following a hexagonal close packing distribution.  

In this work, the interfacial shear strength (IFSS), 𝜏𝐼𝐹𝑆𝑆, was determined from the load-displacement curves 

provided by the nanoindenter following the methodology developed by Rodríguez et al [39]. The load–

displacement curve (𝑃 − 𝑢) presents an 𝑆 shape, and the initial region corresponds to an imperfect contact 

between the indenter and the fibre. This is followed by a linear region (with slope S0) due to the elastic 

deformation of the fibre and the matrix, which is followed by a non-linear region due to the onset of interface 

failure. The IFSS can be determined from the critical load 𝑃𝑐 at the onset of interface failure through the shear-

lag model [44, 45]. This definition provides a good indication of the critical load at the initiation of debonding,  

 𝜏𝑆𝐿 =
𝑛𝑃𝑐

2𝜋𝑟2
 (17) 

Where 𝑛 is a parameter that depends on the elastic properties of the fibres and the matrix and local fibre patterns 

and volume fraction. 𝑛 can be determined from the slope of the 𝑃 − 𝑢 curve in the linear region, S0, according 

to: 

 𝑛 =
S0

𝜋𝑟𝐸𝑓

 (18) 

Where 𝐸𝑓 is the longitudinal elastic modulus of the fibre modulus.  

3.2.2 Matrix properties 

The influence of cure pressure on the modulus of the resin was determined by performing nanoindentation tests 

in resin pockets identified on the polished cross-section of the composite materials (Thick layer of resin between 

adjacent plies). A Berkovich indenter was used to perform cyclic loading-unloading tests and to determine the 

elastic modulus as a function of indentation depth. Based on the Oliver and Pharr method [46], the reduced 

indentation modulus, Er, is given by:  
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 𝐸𝑟 =
𝑆

2𝛽
√

𝜋

𝐴(ℎ𝑐)
 (19) 

where S is the unloading stiffness, A(hc) is the contact area of indentation at the contact depth hc and  is a 

geometrical parameter that is taken as =1.034 for Berkovich indenters. The contact depth hc is given by: 

 ℎ𝑐 = ℎ − 0.75
𝑃

𝑆
 (20) 

where P and h are the indentation load and depth, respectively. The elastic modulus of the matrix Em was 

determined from the reduced modulus Er: 

 
1

𝐸𝑟

=
1 − 𝜈𝑖

𝐸𝑖

+
1 − 𝜈𝑚

𝐸𝑚

 (21) 

where E𝑖 = 1141𝐺𝑃𝑎 and 𝜈𝑖=0.07 [46] are the elastic modulus and Poisson ratio of the diamond indenter, 

respectively and the Poisson’s ratio of the matrix m =0.35 [20, 21]. Typical values found in the literature for 

epoxy resins 𝒢
𝑚

 are in the range of 40 J/m2 and 400 J/m2. Matrix toughness for X850 is assumed as 𝒢
𝑚

= 100 

J/m2. 

3.2.3 Interlaminar shear strength 

The interlaminar shear strength (ILSS) was determined according to the ASTM standard D2344/D2344M [43] 

using  the short-beam three point bend test. The specimens were cut by diamond saw to a nominal dimensional 

of 20 mm×10 mm (length×width) and the tests were carried out in a CMT5105 tensile testing machine (produced 

by Sansi Taijie Co., Ltd., China). Three tests were performed for each laminate under displacement control at a 

constant crosshead rate of 1 mm/min. The radius of loading roller and the support roller were 5 mm and 2 mm 

respectively. The span length between support rollers was 14.5 mm. The interlaminar shear strength of the 

composite samples was determined according to, 

 𝜏𝐼𝐿𝑆𝑆 =
3

4

𝑃𝑚𝑎𝑥

𝑏ℎ
 (22) 

where 𝑃𝑚𝑎𝑥 was the maximum load during the test and 𝑏 and ℎ,  the sample width and thickness, respectively. 
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3.2.4 Microstructural characterization 

The samples were polished following the procedure detailed above for the optical microscopy inspection. Void 

area fraction was measured from the optical microscopy images using an image analysis program. Cross-sections 

of short beam bending test samples were polished and inspected using optical microscopy (perpendicular to fibre 

orientation, YZ plane in Figure 5), while their facture surfaces of the broken samples (parallel to fibre 

orientation, XY plane in Figure 5) were examined by scanning electron microscopy (SEM) to investigate the 

interlaminar failure mechanisms. 

4. Experimental results 

4.1.  Void content 

Optical micrographs of the cross-section of the laminates manufactured under different autoclave pressure are 

depicted in Figure 5. Interlaminar resin-rich areas can be readily observed in the X850 prepreg laminates, 

resulting from the inclusion of a thermoplastic interlayer to improve delamination toughness and compression-

after-impact strength [47, 48].  The prepreg product included a resin rich surface containing fine, tough 

thermoplastic particles.  Since these thermoplastic particles have a melting point at or below the curing 

temperature, they melted during curing, making them almost invisible in the final cured laminate. Figure 5 shows 

that the porosity decreased as the cure pressure increased and more details may be found in [49]. Most of the 

voids in the laminates processed under low pressure (< 0.4 MPa) were found in the resin rich region between 

plies. These voids normally proceed from entrapped air bubbles during lay-up which were not evacuated during 

autoclave curing [36]. In addition, smaller voids were found within the plies. X-ray microtomography analyses 

showed that the intraply voids were elongated with the longer axis parallel to the fibre direction and originated 

from bubbles in the pre-preg as well as from volatiles  arising from the resin during cure [36, 50, 51].  Cure 

pressures in the range from 0.4 MPa to 0.6 MPa led to laminates with negligible porosity, but the porosity 

increased rapidly as the cure pressure was reduced below 0.4 MPa. Moreover, reducing the cure pressure led to 

the formation of wrinkles in the laminate, particularly in the laminates consolidated with 0.1 MPa or without 

pressure. Intraply void content and interplay void content are summarized in Table 3, and were used to calculate 

the effective longitudinal modulus of composite laminates for mesoscale finite element modelling.  
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4.2.  Matrix properties 

The imprint due to a Berkovich tip in a resin-rich pocket is shown in Figure 6a. The elastic modulus was 

determined for different indentation depths following the procedure indicated above and the evolution of the 

elastic modulus with the indentation depth is plotted in Figure 6b. The measured modulus deceased with 

indentation depth for small indentation depths (a behaviour that it is well established, see [46]) but quickly 

reached a plateau for indentation depths larger than 1 m. The elastic modulus was ≈4.7 GPa, independently of 

cure pressure, and it was concluded that the matrix modulus was not influenced by the curing pressure. The 

value of matrix modulus is close to the experimental value provided by the supplier (𝐸 = 4.56~4.75 GPa) [37]. 

4.3.  Fibre/matrix interfacial shear strength 

Push-in tests were always carried out in the centre of fibres surrounded by six fibres in a hexagonal pattern, as 

shown in Figure 7a. Interface fracture developed and the fibre was pushed in (Figure 7b).  Representative load-

displacement curves of fibres pushed in from laminates cured under different pressure are plotted in Figure 8a. 

The initial elastic stiffness was independent of the cure pressure but differences were found in the onset of the 

non-linear region and the higher the cure pressure the higher the load required to push in the fibre. The IFSS was 

calculated from these curves following the methodology developed by Rodríguez et al. [39]. The critical 

load, 𝑃𝑐 , was determined from the intersection of the 𝑃–𝑢 curve (Figure 8b) with a straight line that connects 

two points of the 𝑃– 𝑢 curve determined from two parallel lines with the initial stiffness 𝑆0 drawn with offset 

displacements of 2% and 10%. The evolution of the IFSS with cure pressure is plotted in Figure 9a. IFSS 

increases significantly from 56 MPa under cure pressure 0 MPa to 66MPa under cure pressure of 0.2 MPa.  

Since all the push-in tests are conducted in a typical hexagonal pattern without any visible voids or defects, it can 

be concluded that the increasing interfacial strength (IFSS) is not affected by the void content. The dramatic 

enhancement of IFSS (18.34%) is mainly attributed to the improved contact between fibre and matrix. When 

cure pressure increases from 0.2 MPa to 0.6 MPa, the value of IFSS reaches 76 MPa due to a better interface 

adhesion between fibre and matrix under higher pressure. The mechanisms responsible for the higher 

fibre/matrix adhesion of the specimens cured at high pressure in the autoclave are not clear, although enhanced 

lateral physical adsorption or mechanical interlocking on a rough surface (pressure sensitive adhesion) may play 

a role [52, 53]. Higher fibre/matrix adhesion results in the enhanced capability to transfer loads from the matrix 

to fibres through the stronger interface. 
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4.4.  Interlaminar shear strength 

The evolution of the interlaminar shear strength (ILSS) as a function of the cure pressure is plotted in Figure 9b. 

This curve shows that the ILSS increased rapidly with the autoclave pressure up to 0.4 MPa. Afterwards, it was 

independent of the autoclave pressure. Figure 5 shows the post failure surface of the composite laminates under 

short-beam bending tests using different autoclave pressure (0.2 MPa and 0.6MPa). The crack in the materials 

consolidated under 0.2 MPa mainly propagated along the void rich area either in the interlaminar resin area or in 

the intraply by connecting the voids. This confirms that the interlaminar shear strength was mainly controlled by 

the void content when extensive voids exist. Under a higher cure pressure (0.6MPa), voids vanish and cracks 

initiated and propagated in the intralaminar area through failure of the fibre/matrix interface. Therefore, ILSS 

failure modes in low void content composite laminates are dominated by fibre/matrix interface failure. Extensive 

delamination occurs in the middle plies (between ply 5 and ply 6). This is caused by the highest shear stress in 

the neutral plane under three-point bending.  

The fracture surfaces of the samples tested in three-point bending to measure the ILSS were analysed by a 

scanning electron microscope and representative micrographs can be found in Figure 10. The typical resin cusp 

structures (platelets inclined on the surface), indicative of fracture by shear along the fibre direction, can be 

found in all micrographs, although the number increases with the autoclave pressure. Cusps were formed as 

successive, parallel microcracks initiated by shear in the epoxy matrix along the main crack propagation 

direction.  

In the case of the laminate cured without pressure (Figure 10a), the fibre surface was smooth, indicating poor 

adhesion between matrix and fibres, and some fibres are even inclined and rotated due to the lack of support 

from matrix. In addition, resin rich pockets and voids are observed. These features demonstrate that 

impregnation of resin is poor and inhomogeneous in the absence of pressure, leading to low values of 

fibre/matrix interfacial strength and of the laminate interlaminar strength. As the cure pressure increased (Figure 

10b and Figure 10c), cusp structures became dominant and voids disappeared, indicating that the infiltration 

process was adequate. 

Increasing pressure leads to more resin cusps areas. Upon the application of pressure, most of the load was 

transferred through a continuous skeleton of fibre-rich regions. The higher pressure in these regions led to the 

migration of resin as well as voids. These SEM images confirm that the cure pressure drives the resin flow to 
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impregnate the fibre. In the range of 0 MPa and 0.3 MPa, when extensive voids are distributed, ILSS is mainly 

controlled by the void content which induces localized stress concentrations. However, when cure pressure 

reaches 0.4 MPa or above, ILSS is dominated by fibre/matrix interface failure.  

The higher cure pressure will lead to better impregnation performance and hence facilitated the coalescence and 

elimination of voids. At the same time, it will improve the adhesion between fibre and matrix and corresponding 

IFSS and interlaminar strength (ILSS).  There is no direct relationship between IFSS and ILSS (Table 3).  The 

interlaminar shear strength was mainly controlled by the void content under low cure pressure, while when cure 

pressure reached 0.4 MPa or above, failure modes in ILSS were dominated by fibre/matrix interface failure. It is 

not surprising to find that composite laminates with negligible void content and good mechanical properties at 

the micro and macro level could be obtained with autoclave pressures above 0.4 MPa (current standard cure 

pressure in aerospace industry is 0.6 MPa). 

5. Computational modelling results 

5.1. Micromechanical model 

Material properties from the material supplier and characterised by the nano-indentation tests were used as input 

material parameters (summarised in Table 1 and Table 2). Figure 11 and Figure 12 show the predicted failure 

modes and stress-strain curves of the RVE under transverse tension, transverse compression, shear perpendicular 

to fibre and shear parallel to fibre. Interfacial properties under different cure pressures were used as input 

parameters to investigate the effect of interfacial shear strength on the ply-level intralaminar behaviour. Damage 

due to longitudinal tensile/compressive stresses is not modelled in this work, as this has been previously reported 

[54].  

Under pure transverse tension loading (Figure 11a and Figure 12a), the damage process is mainly dominated by 

fibre/matrix interface debonding for all cure pressure conditions. Cracks start at the fibre cluster along the 

loading direction in those regions where the stress concentrations in the fibre/matrix interface are higher. After 

initiation of the interface failure, the matrix experienced severe plastic deformation, accumulating damage until 

ultimate failure of the matrix ligaments. The final failure of the RVE is a crack perpendicular to the loading axis. 

Stress-strain curves indicate that the intralaminar strength increased as the interfacial shear strength improved 

while the stiffness remained unchanged.  
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Under pure transverse compression (Figure 11b and Figure 12b), the final failure of the composite ply takes 

place by the development of matrix shear bands. Failure under pure transverse compression appears not to be 

initiated by interface debonding but directly by shear banding with an orientation of 𝜃𝑓 = 53.5°, which is very 

close to published experimental data [29] and has been used by many CDM models based on Puck’s failure 

criteria [26].   

Under shear loading (Figure 12c to Figure 12f), the shear fracture initiates as interfacial debonding and evolves 

as a result of interactions between interfacial debonding and matrix plastic deformation. To accurately capture 

the non-linear behaviour under large deformation, large deformation theory that considering fibre rotation effect 

was used. 

When transverse shear 𝜏𝑌𝑍(23) is applied in the 𝑌𝑍 plane as shown in Figure 11c, failure is trigged by interface 

debonding. There are multiple initiation matrix cracking sites with orientation of 𝜃𝑓 = 45°. As the crack 

propagated, plastic shear band deformations were formed. The stress-strain curves in Figure 12c show that the 

initial elastic behaviour is followed by a remarkable strain hardening behaviour, as matrix deformation is 

restricted by the fibre in the post-yielding regime. 

If longitudinal shear  𝜏𝑋𝑍(13) is applied in the 𝑋𝑍 plane, Figure 11d, the non-linear behaviour is dominated by 

matrix yielding, as the interface strength was higher than the matrix yield strength and the initial region of the 

stress–strain curves (Figure 12d) was not affected by interface debonding. Different behaviour was observed, 

depending on the shearing direction, parallel, 𝜏𝑋𝑍
∥  , or perpendicular to the fibres, 𝜏𝑋𝑍

⊥ , although the elastic 

behaviour and yield strength was almost identical. When shear loading was parallel to fibres, 𝜏𝑋𝑍
∥ , a perfect-

plastic behaviour was observed for all these test cases as the matrix yield strength was lower than the interface 

shear strengths considered.  When shear loading was applied perpendicular to the fibre, 𝜏𝑋𝑍
⊥ , a remarkable strain 

hardening effect was attained. As the fibres rotated with matrix plastic yielding, they started to pick up load in 

tension when the strain, 휀 > 1%. The combined effect of fibres and matrix give rise to the global strain 

hardening effect. In this study, the final stress-strain constitutive relationship and shear strength, 𝑆13(12), was 

approximated as the average of the values 𝜏𝑋𝑍
∥  and 𝜏𝑋𝑍

⊥ , as suggested by Totry [25].   

A sensitivity study of the cohesive penalty stiffness, 𝐾𝑛𝑛(𝑠𝑠,𝑡𝑡), (Figure 12e) shows that penalty stiffness should 

be larger than 104𝑁/𝑚𝑚3  to ensure displacement continuity in the absence of interface damage while avoiding 
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convergence difficulties due to an ill-conditioned stiffness matrix. Figure 12f indicates that the effect of the 

critical interface fracture energy on the material behaviour is limited unless very small value of   𝐺𝐼𝑐 (𝐼𝐼𝑐)  are 

used, which will lead to premature failure.  

All these predicted properties, including transverse tensile strength/stiffness, transverse compressive 

strength/stiffness and strength/stiffness are summarized in Table 4 . The reported numerical predictions are mean 

value of 5 random RVEs. They show good agreement with experimental results obtained under the 

manufacturer’s recommended curing cycle. The predicted homogenized ply properties were then used as input 

parameters for a mesoscale model to predict the laminate behaviour under bending.  

5.2. Mesoscale model 

A homogenized mesoscale model which accounts for both intralaminar and interlaminar damage was used to 

predict the failure of short-beam bending tests. Three groups of predicted intralaminar material properties and 

measured interlaminar properties were used as the input parameters to understand the interaction between 

intralaminar and interlaminar damage in SSB tests (Table 4 and Table 5). The carbon fibre lamina and the resin 

rich layer were homogenized as a single ply. The non-linear hardening effect was explicitly represented by an 

exponential model where the coefficients 𝑐𝑖(𝑖 = 1,2,3) were calibrated against the micromechanically predicted 

stress-strain curves (as the average of the stress-strain curves under shear loading of 𝜏𝑋𝑍
∥  and 𝜏𝑋𝑍

⊥ ) [25].  

Figure 13a shows the numerical and experimental load/displacement curves with three groups of interface 

properties. For the samples with very lower interfacial and matrix properties (0 MPa), the initial bending 

stiffness is very low due to the large extent of void content, which degraded the material stiffness significantly. 

Yielding of the matrix occurred at a load of 800 N. This was followed by a marked non-linear shear behaviour 

with a constant hardening rate. The non-linear hardening behaviour is believed to be the combination effect of 

geometrical fibre rotation, matrix yielding and interlaminar delamination. As the matrix start to yield with 

perfect-plastic behaviour, fibre rotation was able to accommodate the shear strain and pick up the load in tension, 

leading to the global hardening effect. In the numerical simulation, the fibre rotation hardening effect is 

explicitly represented by an exponential function given in Eq.(5). This simplified method the enabled finite 

element model to capture the material shear response accurately. Figure 13b indicated the presence of 

delamination in the non-linear region.  Delamination failure was trigged after matrix yielding, because the 

interlaminar shear strength is slightly higher than the matrix yield strength.  Delaminations were mainly 
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localized underneath the loading point where high interlaminar shear stresses are concentrated. Figure 13c 

illustrates the permanent inelastic strain accumulated in the non-linear shear region, which is a good indicator of 

shear localization in the intralaminar region.  

For the samples cured under higher pressure (0.2 MPa and 0.6 MPa), with most voids removed and better 

interlaminar and intralaminar properties achieved, the material becomes stiffer and stronger. The yielding 

strength and ultimate failure strength are also improved. Both of their post-yielding regimes showed a similar 

non-linear hardening behaviour, which again were caused by fibre rotation. Numerical results show very good 

correlation in stiffness, yield strength and non-linear hardening behaviour.  

Numerically predicted intralaminar damage contours for the composite laminates are shown in  Figure 14. The 

damage is mainly attributed to the combination of shear (parallel to fibre) and compression/tension (through-

thickness) loading. Extensive damage was initiated and propagated in the laminate with poor interlaminar 

properties and intralaminar matrix strength (cured under 0 MPa). As the interlaminar properties and matrix 

strength were enhanced under higher curing pressure (0.2 MPa and 0.6 MPa), the extent of damage was reduced 

and localized to plies close to the middle plane where the shear stresses are highest. The SEM image in Figure 

14c shows the intralaminar shear failure due to high shear loading, which is consistent with the micromechanical 

failure shown in Figure 11d. Simulation results achieved excellent agreement with experiment both 

quantitatively and qualitatively. The damage initiated in the composite laminates is mainly caused by competing 

intralaminar and interlaminar damage mechanisms. In these composite laminates, intralaminar matrix shear 

strengths are slightly lower than the interlaminar shear strength. This leads to extensive intralaminar damage 

rather than delamination. Final failure was eventually caused by the interaction of these two damage modes 

throughout the width of the specimen. 

Local indentation underneath the loading roller or above the support rollers was also captured by this meso-scale 

model. This is attributed to the nonlinear shear formulation of the meso-scale intralaminar damage model. The 

shear strain was decomposed into elastic strain 𝛾𝑒𝑙  and inelastic strain 𝛾𝑖𝑛 components, the latter enabling the 

capture of permanent indentation.  

It should also be mentioned that validation of the mesoscale model for impact and crush loading has been 

successfully conducted by the authors [1, 2, 11].  Extension to this multiscale modelling framework, where the 

composite laminates are homogenized as continuum shell elements for the modelling of large macroscale 
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structures is not show in this paper, but is a natural extension to this work which would fit within current 

conventional modelling methods used in the aerospace industry.   

6. Conclusions 

A hierarchical bottom-up multiscale modelling approach is presented to explore the role of interfacial properties 

(fibre/matrix interface and interlaminar interface) on the intralaminar and interlaminar failure mechanisms in 

composite laminates. The influence of the autoclave curing pressure (from 0 to 0.8 MPa) on the microstructure 

and mechanical properties of unidirectional carbon-fibre reinforced epoxy composites was characterised. The 

microstructure (mainly void content and spatial distribution) and the mechanical properties of the matrix and 

fibre/matrix interface were measured, the latter by means of nanoindenation tests in matrix pockets and fibre 

push-in tests. These material parameters were used in the microscale model as input parameters to predict the 

intralaminar material behaviour (e.g. stiffness, non-linear hardening behaviour and strength). The macroscopic 

interlaminar shear strength was determined by means of three-point bend tests on short beams. Microscale 

predicted intralaminar properties and interlaminar shear strength values were imported into the mesoscale model 

to predict composite laminate behaviour. The main conclusion drawn from this work are as follows: 

 The cure pressure had a strong influence on the void content and on the fibre/matrix interface strength but 

not on the matrix elastic modulus. The interlaminar shear strength was mainly controlled by the void 

content under low cure pressure.  When cure pressure reaches 0.4 MPa and above, ILSS failure modes 

were dominated by the fibre/matrix interface.  

 The damage initiated in the composite laminates was mainly caused by the competing intralaminar and 

interlaminar damage mechanisms. In this work, intralaminar damage was the dominant mechanism leading 

to failure in the short beam bending tests. 

 Micromechanical modelling was demonstrated to be an efficient means to predict intralaminar material 

characterisation and associated non-linear shear behaviour.  

 The mesoscale model, based on the predicted intralaminar material properties from the micromechanical 

model, and measured interlaminar properties, were shown to successfully capture the mesoscale failure 

with high accuracy both qualitatively and quantitatively. 
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This work makes a significant contribution to the understanding of the effect of cure cycle pressure on the 

interfacial properties at different length scales, providing the basis for multiscale modelling of composite 

structures which account for processing parameters. This will lead to more efficient and rapidly obtained 

designs, reduce uncertainty, accelerate materials development, transform the engineering design optimization 

process and unify design and manufacturing.  
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Figures 

 

 

Figure 1. Schematic of bottom-up multi-scale modelling of engineering composite structures [15, 55] 
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Figure 2. Schematic 2D view of the microscale RVE model showing the fibre distribution, FEM mesh, cohesive 

interface and periodic boundary conditions (PBC) 

 

Figure 3. Schematic 3D view of the mesoscale model showing SSB, FEM mesh, interlaminar cohesive interface  
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Figure 4. Schematic of constitutive laws (a) microscale-model: pure matrix under tension and compression, 

mesoscale model: (b) non-linear shear behaviour of composite lamina considering geometrical hardening 

associated with fibre rotation (c) elastic behaviour and damage evolution of composite laminar under 

longitudinal tension and compression (d) non-linear behaviour of composite laminar under 3D combined 

compression and shear loading  
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Figure 5. Optical microscopy images of crack propagation within composite laminates under short-beam bending 

tests using different autoclave pressure of (c) 0.2 MPa and (d) 0.6MPa, inset schematic figures indicating fibre 

orientation 

 

Figure 6. (a) Imprint of the Berkovich tip in a matrix pocket within the laminate. (b) Influence of the indentation 

depth on the elastic modulus of the resin. 
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Figure 7. (a) Optical micrograph of composite cross-section (b) In-situ imaging showing the detail of one 

hexagonal packing before and (c) after the fibre push-in test. 

 

 

Figure 8.  (a) Representative load-indentation depth curves of fibres pushed-in in laminates manufactured with 

different pressure. (b) Methodology to determine the critical load at the onset of interface debonding  
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Figure 9.  Evolution of (a) the fibre/matrix interfacial shear strength and (b)interlaminar shear strength (ILSS) as 

a function of the autoclave pressure. 
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Figure 10. Scanning electron micrographs of the fracture surfaces of specimens tested in three-point bending to 

measure the ILSS. (a) Autoclave pressure 0 MPa. (b) 0.2 MPa. (c) 0.6 MPa.(d) Schematic of intralaminar shear 

fracture 

 

 

Figure 11. Predicted damage contours under (a) transverse tension (b) transverse compression (c) out-of-plane 

shear (d) in-plane shear with shear perpendicular to fibre and shear parallel to fibre  
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Figure 12. Predicted stress-strain curves under (a) transverse tension (b) transverse compression (c) shear 

perpendicular to fibre and (d) shear parallel to fibre with interface properties under various cure pressure with 

and without fibre rotation, (e) cohesive stiffness without fibre rotation and (f) fracture toughness without fibre 

rotation 
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Figure 13. (a) Experimental and numerical load-displacement curves of short beam bending tests for composite 

laminates (b) Interlaminar failure of numerical test samples and (c) Inelastic shear strain 𝛾𝑋𝑍 of SSB numerical 

test on sample cured under 0 MPa pressure 
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Figure 14. Virtual tests using mesoscale model to predict the intralaminar and interlaminar shear failure with 

interfacial properties under cure pressure of (a) 0 MPa (b) 0.2 MPa (c) 0.6 MPa with inset SEM images (below) 

as SSB shear failure modes within an individual ply in XZ and YZ plane, micromechanical model indicating 

similar crack path with the experimental results 
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Tables 

Table 1. Thermo-elastic material properties of T800/X850: matrix, fibres and the homogenized composite [20, 

21].  

Material  𝑬𝟏 (GPa) 𝑬𝟐  (GPa) 𝑮𝟏𝟐(𝟏𝟑)  

(GPa) 

𝑮𝟐𝟑  

(GPa) 

𝝊𝟏𝟐 𝜶𝟏 

(𝟏𝟎−𝟔/℃) 

𝜶𝟐 

(𝟏𝟎−𝟔/℃) 

Fibre 282 11.38 6.37 3.84 0.33 -0.56 5.6 

Matrix 4.68 4.68 1.80 1.80 0.35 40 40 

Composite 185 9.03 4.75 3.15 0.34 13.6 17.6 

 

 

Table 2. Input material parameters for RVE in micromechanical model  

Pressure (MPa) Values 

0  𝑡3
0 = 37 𝑀𝑃𝑎, 𝑡1(2)

0 = 56 𝑀𝑃𝑎, 𝒢𝐼𝑐 = 0.66  𝐽/𝑚2, 𝒢𝐼𝐼𝑐 = 33 𝐽/𝑚2 

0.2  𝑡3
0 = 44 𝑀𝑃𝑎, 𝑡1(2)

0 = 66 𝑀𝑃𝑎, 𝒢𝐼𝑐 = 1.25  𝐽/𝑚2, 𝒢𝐼𝐼𝑐 = 62 𝐽/𝑚2 

0.4  𝑡3
0 = 46 𝑀𝑃𝑎, 𝑡1(2)

0 = 69 𝑀𝑃𝑎, 𝒢𝐼𝑐 = 1.6  𝐽/𝑚2, 𝒢𝐼𝐼𝑐 = 80 𝐽/𝑚2 

0.6  𝑡3
0 = 51 𝑀𝑃𝑎, 𝑡1(2)

0 = 76 𝑀𝑃𝑎, 𝒢𝐼𝑐 = 2  𝐽/𝑚2, 𝒢𝐼𝐼𝑐 = 100 𝐽/𝑚2 

     Shared values  

 𝜂 = 1.5, 𝐾 = 105 𝑁/𝑚𝑚3, 𝛽 = 29, 𝜎𝑚𝑦𝑡 = 121 𝑀𝑃𝑎, 𝜎𝑚𝑦𝑐 = 176 𝑀𝑃𝑎, 𝜏𝑚 =

50 𝑀𝑃𝑎, 𝒢𝑚 = 100 𝐽/𝑚2 
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Table 3. Experimental characterization of fibre/matrix interfacial shear strength (IFSS) and interlaminar shear 

strength (ILSS) 

Pressure (MPa) 

Intraply void (Exp) Interply void (Exp) IFSS (Exp) ILSS (Exp) 

Percentage (%) Percentage (%) Strength (MPa) Strength (MPa) 

0 8.0 ± 0.91 26.0 ± 1.81 56 ± 2.1 58 ± 2.1 

0.2 4.4 ± 0.46 6.2 ± 0.82  66 ± 3.3 86 ± 2.5 

0.4 3.1 ± 0.29 0.2 ± 0.05 69 ± 3.6 95 ± 3.1 

0.6 0.5 ± 0.17 0.1 ± 0.03 76 ± 5.2 96 ± 2.1 

 

 

 

Table 4. Numerically-predicted from RVE vs. experimentally-characterized elastic constants, transverse and 

shear strengths for a T800/X850 ply   

Pressure (MPa) 𝐸22 (GPa) 휀22 (%) 𝑆12(13)
𝐴∗  (MPa) 𝐺13 (GPa) 𝑌𝑇 (MPa) 𝑌𝐶  (MPa) 

0 (Num) 8.69 ± 0.19 0.91 ± 0.10 65 ± 1.9 4.58 51 ± 0.5 258 ± 2.7 

0.2 (Num) 8.76 ± 0.17 0.95 ± 0.08 68 ± 1.5 4.61 57 ± 1.7 266 ± 4.3 

0.4 (Num) 8.89 ± 0.15 0.11 ± 0.05 70 ± 1.0 4.63 59 ± 2.1 274 ± 5.7 

0.6 (Num) 9.01 ± 0.12 0.12 ± 0.04 75 ± 0.8 4.66 64 ± 3.8   282 ± 6.9 

     0.6 (Exp) *  8.75~9.13 0.10~0.15  70~80  4.56~4.75 68~90  290~312  

* Experimental data from authors and published literature [20, 21] , 𝑆12(13)
𝐴  is the average shear strength of 

values 𝜏𝑋𝑍
∥

 and 𝜏𝑋𝑍
⊥  considering fibre rotation effect 
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Table 5. Material properties of T800/X850 composite laminates for meso-scale model considering resin-rich 

layer (30 𝜇𝑚) and void contents, unassigned properties were given from RVE prediction  

Pressure  Values 

0 MPa E11 = 94 𝐺𝑃𝑎, 𝑡3
0 = 39.1 𝑀𝑃𝑎, 𝑡1(2)

0 = 58.7 𝑀𝑃𝑎, 𝑐1 = 17.4, 𝑐2 = −118,𝜏13
𝑌 = 50𝑀𝑃𝑎 

0.2 MPa  E11 = 132 𝐺𝑃𝑎, 𝑡3
0 = 57.8 𝑀𝑃𝑎, 𝑡1(2)

0 = 86.8 𝑀𝑃𝑎, 𝑐1 = 12.2, 𝑐2 = −101,𝜏13
𝑌 = 54𝑀𝑃𝑎 

0.6 MPa E11 = 148 𝐺𝑃𝑎, 𝑡3
0 = 65.4 𝑀𝑃𝑎, 𝑡1(2)

0 = 98.4 𝑀𝑃𝑎, 𝑐1 = 7.1, 𝑐2 = −94, 𝜏13
𝑌 = 60𝑀𝑃𝑎 

Shared 

value [21] 

𝑋𝑇 = 3041 𝑀𝑃𝑎, 𝑋𝐶 = 1747 𝑀𝑃𝑎, Γ11
T = 133 𝑘𝐽/𝑚2, Γ11

C = 40 𝑘𝐽/𝑚2, Γ22
T = Γ22

C = Γ12 =

Γ23 = Γ13 = 1.6𝑘𝐽/𝑚2, 𝐺𝐼𝐶 = 0.35 𝑘𝐽/𝑚2, 𝐺𝐼𝐼𝐶 = 3 𝑘𝐽/𝑚2, 𝜂 = 2 

*  (a). Homogeneous elastic properties considering the void content based on estimated by means of Chamis rule 

of mixtures [32]; (b) fracture toughness Γ𝑖𝑗
T(C)

(𝑖, 𝑗 = 1,2,3), is estimated from a similar material system 

T700/M21 [1], as the main failure mechanism here is not fibre breakage/kinking, the effect of these values is 

limited; (c). The interlaminar fracture toughness for 0 MPa and 0.2 MPa are using   𝐺𝐼𝑐,𝐼𝐼𝑐
𝑣𝑜𝑖𝑑 =

𝐺𝐼𝑐,𝐼𝐼𝑐[𝟏 − (
𝟒𝒇𝒗𝒐𝒊𝒅

𝝅
)𝟏/𝟐]  [36] as a reasonable approximation.  

 

 

 

 

 

 

 

 


