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Abstract  

Sessile droplet evaporation is widely encountered in nature, and it has numerous 

applications in industrial and scientific communities, therefore, the accurate 

prediction of droplet evaporation has great significance in practical applications. In 

this paper, for the first time, a comprehensive theoretical model is built up for 

diffusion-controlled heat and mass transfer for sessile droplet evaporation on curved 

substrate in toroidal coordinate. The evaporative mass transfer is coupled with the 

heat transfer across the gas-liquid droplet interface, as well as the heat transfer across 

the solid-liquid interface of the curved substrate. The effects of interfacial cooling, 

thermal conductivity of droplet and substrate as well as their initial shapes on the 

droplet evaporation are provided in details. It is found that the evaporative flux 

usually increases sharply near the droplet edge due to the short distance for heat 

conduction from the substrate to the droplet, however, it can be reversed from sharp 

increasing to decreasing at low thermal conductivity ratio 0.3Rk   of substrate over 

droplet or large initial droplet contact angle o30CA  . The interfacial evaporative 

cooling effect can always suppress the droplet evaporation. The lifetime of 

evaporative droplet can be prolonged with the decreasing thermal conductivity ratio, 

increasing evaporative cooling number, increasing initial droplet contact angle or 

tangential angle of curved substrate. These findings may be of great significance in 

the applications of droplet evaporation on the curved substrate.  

 

Keywords: Droplet evaporation; Curved substrate; Evaporative cooling; Theoretical 

analysis;  
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1 Introduction 

Evaporation of liquid droplets on underlying surfaces is omnipresent in our daily 

life, and it also has numerous industrial and scientific applications [1], such as ink-jet 

printing [2], DNA chip manufacturing [3], spray cooling [4], virus spreading and test 

[5]. Thus, a full understanding of the evolution of droplet evaporation is essential for 

the wide applications. So far extensive experimental and theoretical approaches have 

been carried out in this area. As the pioneers, Picknet and Bexon [6] identified two 

extreme modes of evaporation of a droplet on the substrate in still air, namely the 

Constant Contact Radius (CCR) mode and Constant Contact Angle (CCA) mode. In 

CCR mode the contact radius remains constant with decreasing contact angle, and in 

CCA mode the contact angle remains constant with decreasing contact radius. 

In order to carry out the theoretical studies on drop evaporation phenomenon, the 

simplifications are needed to get the idealized model [7]. The isothermal quasi-steady 

assumptions are usually made [8-10], in which the temperature along the gas-liquid 

interface is uniform, and vapor concentration at the interface is at the saturation value 

at the uniform temperature, the evaporation is driven by the vapor diffusion around 

the droplet according to the Fick’s law. Based on the lubrication theory, Deegan et al 

[11] investigated the evaporation of pinned sessile drops and revealed the mechanism 

of “coffee-ring” formation on hydrophilic substrate. With the help of Finite Element 

Analysis, Hu and Larson [12] derived the expression for overall evaporation rate for 

contact angle 90   , which agrees quite well with the experimental data. Bhardwaj 

[13] extended the study to droplet evaporation on hydrophobic substrate for contact 

angle 90 180    . Due to the similarity between the vapor concentration field 

around the droplet and electrostatic potential field of conductor, according to the 
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available electrostatic potential field by Lebedev [14], Popov [15] obtained the vapor 

concentration field around the droplet, as well as the evaporation rate and evaporation 

mass flux at arbitrary droplet contact angles. Based on the expressions, Nguyen and 

Nguyen derived the lifetime of sessile evaporating droplet in CCA and CCR modes 

with the effect of contact angle, contact radius and droplet height [16], then the power 

law was provided for the transient variation of droplet volume over time [17]. The 

theoretical results were further validated through their experiments [18]. Nguyen and 

Nguyen [19] found that the nanoparticles can increase the overall rate of droplet 

diffusive evaporation, leading to decrease of the droplet lifetime. Additionally, they 

also found that surfactants can affect the liquid cohesive energy density, as well as the 

droplet evaporation [20].  

Due to the uneven evaporation flux around the droplet, the temperature along the 

gas-liquid interface is not uniform as well as the vapor concentration. Chandramohan 

et al. [21] adopted the spatiotemporal infrared measurement to obtain the interfacial 

temperature distribution, as well as the transient variation of droplet volume and 

contact angle during the droplet evaporation. Dash and Garimella [22] found that due 

to the evaporative cooling, the actual lifetime of droplet evaporation is longer than 

that predicted by the isothermal model. Xu and Ma [23] simulated the droplet 

evaporation by coupling the temperature field in the droplet and the vapor 

concentration field in the atmosphere together, and found that both the evaporation 

flux along the droplet surface and the total evaporation rate will decrease with 

increase evaporative cooling effect. By coupling the vapor concentration and 

temperature field Nguyen et al. [24] derived the expression for evaporative flux 

around the droplet with the interfacial cooling effect for the first time, which is 

applicable for a full range of spherical-cap shape droplets of different contact angles 
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and types of fluids. 

Besides the evaporative cooling effect, the underlying substrate also has great 

effect on the droplet evaporation. Gleason et al. [25] experimentally studied the water 

droplet evaporation on a heated substrate, and found that the substrate cooling cannot 

be neglected for evaporation on polymer substrate with low thermal conductivity. 

Dunn et al.[26] revealed the strong influence of substrate conductivity on wetting 

droplet evaporation, and they proposed a mathematical model coupling the vapor 

concentration in the atmosphere and temperature in the liquid and substrate. Wang et 

al. [27] simulated the droplet evaporation with combined effects of evaporative 

cooling and the underlying substrate, and found that the influence of substrate on the 

droplet evaporation depends greatly on the strength of evaporative cooling. Saenz et 

al. [28] carried out the direct numerical simulation (DNS) on the non-axisymmetric 

sessile droplet evaporation, as well as the experimental studies. They found that the 

interfacial temperature keeps almost constant in the CCA mode, while it increases in 

the CCR mode as the droplet becomes thinner, therefore, with the increasing substrate 

heating, the evaporation rate in CCR mode will increase more rapidly than that in 

CCA mode. Besides the flat substrate, Petsi and Burganos [29] analytically studied 

the simplified two-dimensional isothermal droplet on curved substrate under various 

evaporation conditions, and it is found that the temperature drop at the free surface of 

a droplet on a convex hydrophobic substrate is far greater than that for flat or concave 

substrates of the same hydrophobicity.  

From the literature review above, it can be seen that most of the studies are 

focusing on the droplet evaporation on the flat substrate, and few studies are on 

droplet evaporation on the curved substrate. In reality, the curved substrate is more 

widely encountered than the flat substrate. For curved substrate the heat for interfacial 
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evaporation is transported through both substrate and droplet, the heat conduction 

through the curved substrate will have great effect on droplet evaporation. 

Furthermore, the interfacial cooling, vapor diffusion around the droplet will also 

affect the droplet evaporation, and these processes are strongly coupled together. So 

far the studies in this area are still scarce. Therefore, in this paper the theoretical 

analysis will be carried out for droplet evaporation on three-dimensional curved 

substrate, the evaporative mass transfer at the droplet interface is coupled with the 

heat transfer inside the substrate and droplet. The results can provide the theoretical 

guidance for numerical and experimental studies, and they are of great significance 

for the wider applications of sessile droplet evaporation.  

 

2. Theoretical Model 

For simplification the curved substrate is assumed as the shape of spherical cap, 

with the tangential angle Sub at the edge. When the gravitational effect is ignored, the 

droplet surface is also of the shape of spherical cap, with the contact angle CA on the 

substrate, CA Sub     is the cutting angle of droplet edge over the horizontal 

substrate bottom. Therefore, the droplet on the curved substrate can be exactly 

mapped in toroidal coordinate (α, β), which is a three-dimensional orthogonal 

coordinate that results from rotating the two-dimensional bipolar coordinate system 

about the axis that separates its two foci, as shown in Figure 1. The relationship 

between the toroidal coordinate (α, β) and the cylindrical coordinate ( ,r z ) is shown 

below. 

1/ sinh / sin (cosh cos )r z R                                (1) 

where R  is base radius of droplet.  
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The bottom of the substrate is assumed as constant temperature, the heat will be 

transferred to the gas-liquid interface for evaporation through substrate and droplet 

sequentially. The convective heat transfer inside the droplet is ignored, hence only 

heat conduction occurs inside the droplet and substrate, the temperature field is 

controlled by Laplace’s equation 2 0T  . Outside the droplet the vapor concentration 

field is diffusion-controlled without convective effect, hence it is controlled by 

Laplace equation 2 0C  . The detailed derivations can be referred to the 

supplementary materials, here the brief introduction is shown below. 

The boundary conditions of vapor concentration and temperature are as follows: 

For vapor region around the droplet ( 0 , 2 3          ) 

(1) In the region far from the droplet, temperature and vapor concentration are  

,T C   respectively 

(2) At the axis of symmetry: 

0( ( , ) / ) 0C        

(3) At the gas-solid interface, no penetration for vapor into the solid substrate:

2( ( , ) / ) 0C         

(4) At the gas-liquid interface, the heat transfer is coupled with the evaporative mass 

transfer, i.e. evaporative cooling effect is considered. 

3( ( )) ( ( ))q L J           

 where ( )q  is heat flux, L is liquid latent heat of vaporization, ( )J  is 

evaporative flux. 

For temperature region within the droplet ( Sub0 ,            ) 

(1) At the axis of symmetry:  

L 0( ( , ) / ) 0T        
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(2) At the solid−liquid interface, the heat transfer inside the substrate and droplet is 

coupled together, hence there is no temperature jump across the interface. 

L Sub S Sub( , ) ( , )T T         

The heat flux is identical from both sides 

   
Sub Sub

L S, ,(cosh cos ) (cosh cos )
R

T T
k

R R     

      
    

  


 
 

where Rk = Sk / Lk is relative thermal conductivity of substrate and droplet. 

For temperature region within the substrate ( Sub0 ,          ) 

(1) At the axis of symmetry: 

S 0( ( , ) / ) 0T        

(2) On the bottom, the temperature is constant  

S W( , )T T    

According to Nguyen et al.[24], the normalized vapor concentration field around the 

droplet can be written: 


C 0.50

e

( , )
( , ) 2 cosh 2 cos ( ) (cosh ) cosh[(2 ) ]i

C C
C E P d

C C 
          








   

  (2) 

Similarly it can be derived that the normalized temperature field within the droplet is  

 L W

W

0.5 S Sub Sub Sub Sub0

( , )
( , ) 2 cosh 2 cos

(cosh ) ( ){ ( , ) sinh[( ) ] sinh( ) cosh[( ) ]}

L

i

T T
T

T T

P E H d

    

              








  



     
 (3) 

The temperature field within substrate is 

 S W
S S 0.50

W

( , )
( , ) 2 cosh 2 cos ( ) (cosh ) sinh[( ) ]i

T T
T E P d

T T 
 

         






   

  (4) 

where , 0.5 (cosh )iP  and eC are the integration dummy, Legendre functions of the 

first kind and the saturated vapor concentration of the liquid at temperature WT of the 
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substrate bottom respectively. 

C ( )E  and S ( )E  are functions of the integration dummy, and are independent of the 

toroidal coordinates α and β  

C

R
R

R
R 0 R

cosh( )
( )

cosh( )

( , ) ( , )
sech[( ) ]( ( , ) ( , ))

3
( , ) ( , ) ( , )

{ ( , ) ( , )} { ( , ) tanh[( ) ]} ( , )
3 3

E

f k F
F g k

f k F F
F g k E F f k




        


              
 

 

 


    
 

 (5) 

0
S

R
R 0 R

cosh( )
( )

cosh( )

( , )
( , ) tanh[( ) ]

3
( , ) ( , ) ( , )

{ ( , ) ( , )} { ( , ) tanh[( ) ]} ( , )
3 3

E
E

F
F

f k F F
F g k E F f k




       


              
 

 


 


 

   
 

         (6) 

 

where  

Sub
R Sub

Sub
Sub R Sub

Sub

( , )
( 1)sinh( )

( , ) cosh( )
3 ( , )

dF
k

d
H k

F

   
   

  


                  (7) 

( , ) sin( ) / [sinh( ) sin ]F                                 (8) 

According Xu and Ma[23], the non-dimensional evaporative cooling number is 

defined as 

         0 / LE bLD k                                              (9) 

where b is the thermal gradient of vapor saturation concentration over temperature

satd / dC T , L is liquid latent heat of vaporization, D is coefficient of vapor diffusion in 

air, Lk  is liquid thermal conductivity. 0E  reflects the intensity of the effect of the 

evaporative cooling on the droplet evaporation, and is the ratio of the reduction in the 

evaporation flux to its initial value. It is noted that larger 0E  means more significant 

negative feedback effect of evaporative cooling to reduce evaporation rate. At 0 0E   
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it is the isothermal model with the uniform temperature around the droplet without 

evaporative cooling effect.  

The evaporation flux at the droplet surface is  

3/2
e

C 0.50

D( ) 2(cosh cos ) cosh[( ) ]sin
( , ) ( ) { sinh[( ) ]}

2(cosh cos )i

C C
J E P d

R 
            

 





  
  

 (10) 

Integrating it over the droplet surface in toroidal coordinates, the evaporation rate is. 

e R 0

( )
( )2 2 ( , , )

dm
D C C R k E

dt

                              (11) 

where  

R 0

0.5
C 0.50 0

( , , )

cosh[( ) ]sin
(cosh cos ) sinh [ ( ) (cosh )[ sinh[( ) ]]]

2(cosh cos )i

k E

d E P d

 
             
 

  





  
  (12) 

The volume of the droplet is 

3 3

Sub3 ( ) 3 ( )

R R
V

g g

 
 

 
                                     (13) 

where 

3

2

sin
( )

(1 cos ) (2 cos )
g


 


 

                                  (14) 

When the droplet evaporates in CCR mode, the base radius is kept constant while the 

contact angle is gradually decreases. Combining the Eq.(11) and Eq.(13), the variation 

of contact angle over time can be obtained. 

2e
R 02

L

( )
2 2 ( , , )(1 cos )

D C Cd
k E

dt R

   



                     (15) 

The lifetime of droplet in CCR mode can be integrated to give. 

0
2

L 0
CCR 2

R 0e

1

( , , )(1 cos )2 2 ( ) sub

R
t d

k ED C C





 
  


                 (16) 

where the θ0 and R0 are the initial tangential angle of the droplet surface with the 

plane at the edge and initial base radius respectively. 
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3. Results and Discussion 

3.1 Validation of current analytical model. 

In isothermal model of droplet evaporating without evaporative cooling effect, the 

temperature around the droplet surface is kept constant. However, for real droplet 

evaporation, due to the interfacial evaporative cooling effect, the temperature at the 

droplet surface will be lowered, furthermore, the temperature will not be constant due 

to the variable evaporation flux around the droplet. In the meantime, the lower 

temperature will lead to the lower evaporation flux at the surface, leading to longer 

lifetime of evaporating droplet, as proved by Dash and Garimella [22] that the 

isothermal model can over-predict the evaporation rate by 20%. In order to validate 

our analytical model with evaporative cooling effect, the evaporation rates from our 

model and experiments by Dunn et al.[26,30] are compared for three types of liquid 

droplets (water, methanol and acetone) at the flat substrate. In their experiments the 

droplets are generated through the syringe pump and deposited gently on the substrate. 

The droplet shape is captured with the charge-coupled device (CCD) camera, and 

analyzed with droplet shape analysis (DSA) software. In their experiments, the 

evaporating droplets have a volume ranging from 0.5 to 8μm, and the base radius 

ranging from 0.7 to 1.8mm, the initial contact angle is o40 for acetone, o43 for 

methanol and o60 for water. The relative humidity is 40% for water and zero for 

acetone and methanol with the ambient temperature 0 295KT  and ambient pressure

0 99.8kPaP  . The resultant evaporative cooling numbers 0E for water, methanol and 

acetone are 0.11, 0.84 and 1.03 respectively. During the droplet evaporation the 

contact angle will monotonically decrease with time, the evaporation rate is calculated 
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based on the average values over the variation range of contact angles. In Fig.2 the 

predicted overall evaporative rates in our non-isothermal model are compared with 

the experimental measurement by Dunn et al[26, 30]. It is found that the predicted 

results agree quite well with the experimental results for three types of liquid droplets 

with different evaporative cooling effects.  

3.2 Temperature field inside the evaporating droplet. 

According to Eq.(3) and Eq.(4) the normalized temperatures inside the droplet 

and substrate can be calculated respectively. In Fig.3 the temperature fields are shown 

under different ratios Rk  of thermal conductivities of substrate over droplet at 

evaporative cooling number 0 1E  , tangential angle of curved substrate o
Sub 40 

and droplet contact angle o
CA 50  . According to the definition of normalized 

temperature in Eq.(3) and Eq.(4), when the temperature is close to the wall 

temperature WT , the normalized temperature is close to 0; when the temperature is 

close to the ambient temperature T , the normalized temperature is close to -1. It can 

be clearly seen that the relative thermal conductivity has an important effect on the 

temperature field. When the thermal conductivity ratio is large at 5Rk  , the thermal 

resistance in the substrate is lower than that in the droplet, hence the temperature 

inside the substrate is more uniform, the temperature drop is mainly inside the droplet. 

When the ratio becomes infinity, the substrate will be at the same temperature WT as 

the bottom. However, if the thermal conductivity is low at 0.5Rk  , the temperature 

drop is mainly inside the substrate, and the temperature inside the droplet become 

more uniform than that inside the substrate, the droplet surface temperature is around 

-0.55, lower than -0.40 at 5Rk  . 
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3.3 Interfacial distribution of evaporative fluxes and temperatures 

Fig.4 shows the distribution of evaporative fluxes and temperatures along the 

gas-liquid interface under different ratios Rk  of thermal conductivities of substrate 

over droplet at evaporative cooling number 0 1E  , tangential angle of curved 

substrate o
Sub 40  and droplet contact angle o

CA 50  . It is found that in most of the 

region near the droplet center, the evaporative flux is quite uniform. Near the edge of 

the droplet, at the thermal conductivity ratio 0.3Rk  , the evaporative flux will 

increase sharply. Because at the edge the droplet surface is quite close to the substrate 

bottom, the heat can be easily transferred to the surface for evaporation, the 

evaporative cooling effect is not so significant, thus the temperature near the edge is 

increasing dramatically, close to the ambient temperature. The high temperature can 

result in the high evaporative flux near the edge, as for the droplet evaporation under 

isothermal condition when the contact angle is o
0 90  . However, when the thermal 

conductivity ratio 0.3Rk  , the evaporation flux gradually decreases to zero near 

edge, because at low thermal conductivity of substrate, the heat cannot be transferred 

to the droplet surface near the edge to compensate for the heat loss due to evaporation, 

thus the temperature near the edge will be reduced greatly, as seen in Fig. 4(b), 

leading to low evaporation flux. It is also found that with the increasing thermal 

conductivity ratio Rk , the evaporative flux near the center of droplet =0r will increase. 

For example, when Rk increases ten times from 1 to 10, the evaporative fluxes 

increase from 0.44 to 0.54. At low value of Rk , the effect is more significant, when 

Rk decreases from 1 to 0.1, the evaporative flux decrease from 0.44 to 0.18. 
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Fig.5 shows the radial variation of normalized heat fluxes, interfacial temperatures 

along the substrate surface under different ratios Rk of thermal conductivities of 

substrate over droplet at evaporative cooling number 0 1E  , tangential angle of 

curved substrate o
Sub 40  and droplet contact angle o

CA 50  . It can be seen 

obviously from Fig.5(a) that regardless of the value of thermal conductivity ratio, 

along the radial direction the heat flux will increase mildly first, then increase rapidly 

near the edge, because near the edge the heat conduction distance becomes short from 

the substrate bottom, the heat can be easily transferred to the solid-liquid interface. 

Furthermore, with the increasing thermal conductivity ratio, the heat flux from the 

substrate to the droplet will be increased.  

From Fig.5(b), it can be found that the interfacial temperature along the substrate 

surface is quite uniform in most of the region near the center. When 0.3Rk   the 

temperature near the edge increases sharply, while at 0.1Rk   the temperature near 

the edge is reduced due to the decreased temperature in the droplet edge. When the 

thermal conductivity ratio is low at 0.1Rk  , the normalized interfacial temperature 

is quite low, i.e. the substrate temperature is near the ambient temperature, because 

the larger thermal conductivity in the droplet leads to its uniform temperature 

distribution in the droplet. When the thermal conductivity ratio is high at 10Rk  , the 

normalized temperature is near 0, i.e. the substrate temperature is near the bottom 

temperature. 

Fig.6 shows the radial distribution of normalized evaporative fluxes, interfacial 

temperatures along the droplet surface under different droplet contact angles CA  of 

droplet at evaporation cooling number 0 1E  , thermal conductivity ratio 0.1Rk   
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and tangential angle of curved substrate 0
Sub 40  . It can be seen that the droplet 

contact angle has significant effect on the evaporative flux and interfacial temperature 

around the droplet surface. In most of the regions near the droplet center, the 

evaporative flux is quite uniform, as well as the interfacial temperature. However, 

near the droplet edge both the evaporative flux and interfacial temperature show quite 

different characteristics, depending on the droplet contact angle. When the droplet 

contact angle is low, the evaporative flux is increased sharply near the edge, as well as 

the interfacial temperature, while when the droplet contact angle is large, both the 

evaporative flux and interfacial temperature decrease dramatically. The contact angle 

o30CA   is the dividend line for the two different phenomena. Because at the low 

droplet contact angle, the heat transfer distance from the substrate bottom to the 

droplet surface is short, heat can be easily supplied to the droplet surface for 

evaporation, leading to the large evaporative flux and high interfacial temperature 

near the droplet edge, while at large droplet contact angle, heat is not easy to be 

supplied to the droplet surface due to long distance.   

3.4 The lifetime of droplet 

For the accuracy of comparison of droplet lifetime, the droplet volumes under 

different initial contact angles are set identical as those with initial droplet contact 

angle 0
In 90   on the flat substrate Sub 0  , and all the dimensions are normalized 

with the base radius for the baseline case.  

3.4.1 Effect of thermal conductivity ratio 

Fig.7 shows the transient variation of contact angle CA of droplet under 

different ratios Rk of thermal conductivities of substrate over droplet at evaporative 

cooling number 0 1E   and tangential angle of curved substrate 0
Sub 40  . The initial 
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contact angle of droplet with the substrate is 0
In 50  , during the droplet evaporation 

the contact angle will decrease until zero when the droplet is dried out. It is clearly 

seen that as the relative thermal conductivity Rk increases, the droplet lifetime will 

decrease, it is because that the lower thermal conductivity of substrate can transfer 

less heat to droplet for evaporation, leading to longer lifetime. It is interesting to find 

that when the thermal conductivity ratio Rk  is low, it has more profound effect on 

the droplet lifetime. For example, when Rk is increased from 1 to 10, the lifetime of 

droplet decreases only a little from 0.56 to 0.46, however, when Rk is increased from 

0.1 to 1, the lifetime decreases dramatically from 2.0 to 0.56.  

3.4.2 Effect of evaporative cooling 

The evaporative cooling effect can affect the droplet lifetime on the curved 

substrate, as shown in Fig.8. Transient variations of contact angle of droplet CA  are 

provided under different evaporative cooing number 0E  for different thermal 

conductivity ratio Rk at tangential angle of curved substrate 0
Sub 40  . Three typical 

evaporative cooling numbers are selected as 0.11, 0.84, 1.03, corresponding to the 

evaporation of water, methanol and acetone respectively at ambient temperature 

0 295KT  and ambient pressure 0 99.8kPaP  . It can be found that the evaporative 

cooling number has great effect on the droplet lifetime, when the evaporative cooling 

number is increased, the droplet lifetime will be prolonged, the effect becomes more 

significant at low thermal conductivity ratio. For example, at the thermal conductivity 

ratio 10Rk  , when the evaporative cooling number is increased from 0.11 to 1.03, the 

lifetime of droplet increases mildly from 0.38 to 0.46, while at 0.1Rk  , the lifetime 

of droplet increases dramatically from 1.05 to 2.02. 
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3.4.3 Effect of initial shape of droplet 

The initial contact angle of droplet can affect the lifetime of the evaporating 

droplet, as shown in Fig.9, the transient variations of contact angle of droplet CA are 

provided under different initial droplet contact angles In  at evaporative cooling 

number 0 1E   and tangential angle of curved substrate 0
Sub 40  . The initial droplet 

volume is kept constant under different initial contact angles o o o
In 10 ,30 ,50  . It can 

be found that when the initial contact angle In  is increased, the lifetime is prolonged, 

because the large initial contact angle can result in long heat transfer distance from the 

substrate bottom to the droplet surface, the interfacial droplet evaporation is weakened. 

The effect of the initial contact angle is more significant at low thermal conductivity 

ratio. For example, at the thermal conductivity ratio 10Rk  , when the initial contact 

angle increases from 100 to 500, the lifetime of droplet increases twice from 0.23 to 

0.46, while at the thermal conductivity ratio 0.1Rk  , the lifetime of droplet increases 

almost three times from 0.72 to 2.0. 

3.4.4 Effect of curved substrate shape 

The shape of the curved substrate has great effect on the droplet lifetime, as 

shown in Fig.10, the transient variations of contact angle of droplet CA under 

different tangential angles Sub  of curved substrate are provided at evaporative 

cooling number 0 1E  . It is noted that the initial tangential angle of droplet over the 

horizontal plane at the edge is kept at 0
0 90  , the initial droplet volume is also kept 

identical. It can be seen that the large tangential angle of curved substrate can lead to 

long droplet lifetime, because at large tangential angle, the heat will take long 
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distance to reach the droplet surface from the substrate bottom, thus the droplet 

evaporation is weakened. The effect of the tangential contact is more significant at 

low thermal conductivity ratio. For example, at 10Rk   droplet lifetime increases 

from 0.37 to 0.55 when the tangential angle is increased from 200 to 600, while at 

0.1Rk  , the lifetime is increased from 1.23 to 2.60.  

4. Conclusion 

In this study the theoretical model for the sessile droplet evaporation on curved 

substrate is built up in toroidal coordinate, the evaporative mass transfer and heat 

transfer are coupled together at the gas-liquid interface, as well as the heat transfer at 

the solid-liquid interface. The effect of key parameters on the droplet evaporation is 

studied, such as the interfacial evaporative cooling, thermal conductivity ratio of 

substrate over droplet, the initial droplet contact angle and tangential angle of curved 

substrate. The main findings are summarized as follows: 

1. The evaporative flux and interfacial temperature around the droplet surface are 

quite uniform in most regions of droplet near the center, while near the droplet 

edge, they will increase or decrease dramatically due to different local heat 

transfer performance. 

2. The low thermal conductivity ratio 0.3Rk  or the high initial droplet contact 

angle o30CA  can lead to the sharp decrease of evaporative flux and interfacial 

temperature near the droplet edge.   

3. The lifetime of evaporative droplet can be prolonged with the decreasing thermal 

conductivity ratio, increasing evaporative cooling number, increasing initial 

droplet contact angle and tangential angle of curved substrate. 
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Figure captions 

 

Figure 1. Schematic diagram of a sessile evaporating droplet on curved substrate in 

toroidal coordinate 

Figure 2. Comparison of total evaporation rates over different base radii between 

current theoretical model and experimental data at flat substrate ( sub 0  ) (Symbols 

are the experimental data from Dunn et al. [26, 30], solid lines are theoretical results 

from our model.) 

Figure 3. The normalized temperature field within an evaporating droplet and substrate 

under different ratios Rk  of thermal conductivities of curved substrate over droplet at 

0 1E  , o
Sub 40  and o

CA 50   

Figure 4. Radial variation of normalized evaporative fluxes, interfacial temperatures 

along the droplet surface under different ratios Rk of thermal conductivities of curved 

substrate over droplet at 0 1E  , o
Sub 40  and o

CA 50   

Figure 5. Radial variation of normalized heat fluxes, interfacial temperatures along the 

substrate surface under different ratios Rk of thermal conductivities of curved 

substrate over droplet at 0 1E  , o
Sub 40  and o

CA 50   

Figure 6. Variation of normalized evaporative fluxes J, interfacial temperatures T along 

the droplet surface under different contact angles CA  of droplet on curved substrate 

at 0 1E  , R 0.1k  , 0
Sub 40   

Figure 7.Transient variations of contact angle CA of droplet under different ratios Rk
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of thermal conductivities of curved substrate over droplet at 0 1E  , 0
Sub 40   

Figure 8.Transient variations of contact angle of droplet CA  under different 

evaporative cooing number 0E  on curved substrate at 0
Sub 40   

Figure 9. Transient variations of contact angle of droplet CA under different initial 

contact angles In of the droplet on curved substrate at 0 1E  , 0
Sub 40   

Figure 10.Transient variations of contact angle of droplet CA under different tangential 

angles of curved substrate Sub  at 0 1E   
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Figure 4. Radial variation of normalized evaporative fluxes, interfacial temperatures 

along the droplet surface under different ratios Rk of thermal conductivities of curved 

substrate over droplet at 0 1E  , o
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Figure 5. Radial variation of normalized heat fluxes, interfacial temperatures along the 

substrate surface under different ratios Rk of thermal conductivities of curved 

substrate over droplet at 0 1E  , o
Sub 40  and o

CA 50   
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(b) Interfacial temperature 

Figure 6. Variation of normalized evaporative fluxes J, interfacial temperatures T along 

the droplet surface under different contact angles CA  of droplet on curved substrate 

at 0 1E  , R 0.1k  , 0
Sub 40   
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Figure 7.Transient variations of contact angle CA of droplet under different ratios Rk

of thermal conductivities of curved substrate over droplet at 0 1E  , 0
Sub 40   

 

 

 

 

 

 

 

 



33 

 

 

 

 

 

 

0.0 0.5 1.0 1.5 2.0 2.5
0

10

20

30

40

50

 

 

             E
0
=0.11     E

0
=0.84       E

0
=1.03  

  k
R
=0.1                        

  k
R
=1                           

  k
R
=10                       

C
on

ta
ct

 a
ng

le
 

C
A

Evaporation time t  

Figure 8.Transient variations of contact angle of droplet CA  under different 

evaporative cooing number 0E  on curved substrate at 0
Sub 40   
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Figure 9. Transient variations of contact angle of droplet CA under different initial 

contact angles In of the droplet on curved substrate at 0 1E  , 0
Sub 40   
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Figure 10.Transient variations of contact angle of droplet CA under different tangential 

angles of curved substrate Sub  at 0 1E   

 


