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Highlights
 There are relatively few studies of the small area pattern of 

diabetes in the UK and of factors influencing it. 
 Evidence is lacking on urban-rural contrasts and impacts of the 

social environment
 Develops a diabetes risk index for English MSOAs (with England-

wide coverage), which can be applied to assess diabetes health 
care need

 The index shows the highest diabetes risk in more urban areas, 
and shows the clustering of higher diabetes in such areas

 Affluence offsets urbanity effect in some regions, while low area 
socio-economic status amplifies urbanity effect

 Impacts of social environment on diabetes remain after allowing for 
area SES and ethnicity
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A Diabetes Risk Index for Small Areas in England

Abstract

UK and international studies point to significant area variation in diabetes 
risk, and summary indices of diabetic risk  are potentially of value in effective 
targeting of health interventions and healthcare resources. This paper aims 
to develop a summary measure of the diabetic risk environment which can 
act as an index for targeting health care resources. The diabetes risk index 
is for 6791 English small areas (which provide entire coverage of England) 
and has advantages in incorporating evidence from both diabetes outcomes 
and area risk factors, and in including spatial correlation in its construction. 
The analysis underlying the risk index shows that area socio-economic 
status, social fragmentation and south Asian ethnic concentration are all 
positive risk factors for diabetes risk. However, urban-rural and regional 
differences in risk intersect with these socio-demographic influences. 
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1. Introduction

Increases in diabetes prevalence and related adverse outcomes are a 
concern for public health agencies. Estimated global diabetes prevalence 
(among 20-79 year olds) has risen from 151 million to 463 million in 2019 
(International Diabetes Federation, 2020). UK figures show 3.8 million 
people with diagnosed diabetes (aged 17 and over) in 2018, 7.2% of the 
adult population (Diabetes UK, 2020), and an increase of 2.1 million since 
1998. 

UK and international studies confirm significant spatial inequalities in the 
patterning of diabetes (Cox et al, 2007; Toms et al, 2019). To tackle upwards 
diabetes trends, local and regional health agencies may therefore prioritise 
diabetes related interventions to small areas identified as having higher 
disease risk (Gabert et al, 2016; Matthews et al, 2013). However, there is a 
paucity of recent evidence on the pattern of diabetes outcomes in UK small 
areas, and on the factors affecting it, though the policy need for such 
information is now recognised (House of Commons Library, 2019).

In the face of research gaps and the need to use health care resources 
effectively, small area indices of diabetes risk or diabetes health care needs 



have a major role. Area based health need indices to guide health 
interventions and resourcing are most commonly based on data reduction 
methods using socio-economic indicators (e.g. Earnest et al, 2015; 
Pampalon et al, 2009; Sundquist et al, 2003); that is, they do not include 
observed morbidity in their construction. A few studies include observed 
health outcomes such as prevalence, or health care activity (e.g. hospital 
admissions, prescribing rates, outpatient attendances). Thus Glover et al 
(2004) include a single health outcome (e.g. psychiatric hospital admissions) 
and regress it on socioeconomic risk indicators. Wang and Wall (2003), in 
the biostatistics literature, develop a cancer morbidity scale based on four 
types of cancer, though without incorporating socioeconomic indices. 

Here we develop a health risk index for diabetes (which can serve as an 
index of need for diabetes health care) across 6791 English small areas, 
these areas covering all of England, so that the study is national in the sense 
that England is one of the UK nations. This index is distinct from generic 
deprivation indices (e.g. Allick et al, 2020) in that it is addressing the area 
specific risk of a particular disease. The index is partly based on diabetes 
outcomes (mortality and prevalence), but we also incorporate ecological 
(area-level) risk factors for diabetes, such as area socio-economic status, 
social fragmentation, obesity, and urbanity in the construction of the risk 
index. 

The risk index has, as a major aim, to provide an index for allocating health 
resources, especially primary care and public health resources, as for 
existing indices of health need (e.g. Sundquist et al, 2003). A more general 
aim is to identify areas with a diabetogenic environment, where diabetes 
levels are high, and where contributory contextual factors are also elevated. 
It may also be used to identify aberrant health care activity (e.g. emergency 
diabetes hospitalizations in excess of what the need index suggests). The 
index can therefore serve more than one purpose: provide an overall 
morbidity measure, provide a measure of need for diabetes health care, or 
provide an index against which to assess diabetes activity levels.

The small areas used in the study were defined originally for UK Census 
purposes (Office of National Statistics, 2020), and are known as Middle 
Level Super Output Areas, or MSOAs for short. MSOAs are nested within 
larger agencies: 207 Clinical Commissioning Groups (CCGs) for health 
administration, 332 Local Authorities for local government, and nine regions 
(see Figure 1). 



The MSOAs provide a workable spatial scale: they have an average (all 
ages, 2017 estimates) population of 8190, with 5th and 95th percentiles of 
5730 and 11600. It is important that relatively low scales are used in 
ecological studies since “in choosing a suitable geographic area, those with 
the smallest possible population size are preferred as this is likely to mean 
better homogeneity among the population and reduce the risk of ecological 
fallacy” (Allick et al, 2020, p. 2). On the on the other hand, a lower spatial 
scale, such as the 32000 LSOAs in England, has the problem that health 
outcome data may become unduly sparse (as well as difficult to obtain), with 
a loss of information (e.g. diabetes deaths for LSOAs, even over a five year 
period, would imply many zero counts).

Spatial correlation in area health outcomes is frequently reported (Tosetti et 
al, 2018), due to clustering of high disease risk in neighbouring areas, and 
this clustering is apparent in diabetes outcomes (e.g. Green et al, 2003)  A 
small area health disease risk or needs index should ideally incorporate such 
correlation, though this feature is not in fact included in existing need indices. 
We use a spatial factor method, with Bayesian estimation (Wang and Wall, 
2003), allowing for spatial clustering in the risk index, and also for uncertainty 
in index scores (Marí-Dell'Olmo et al, 2011). 

This approach is extended here to both include morbidity outcome indicators 
(such as mortality and prevalence), and potential risk factors (such as area 
socio-economic status). Both outcome indicators and risk factors are 
components of the overall risk score. In the multivariate literature, these are 
known as a reflective and formative indicators respectively (Coltman et al, 
2008). Another terminology for this type of model is a “multiple indicators, 
and multiple causes” or MIMIC model (e.g. Proitsi et al, 2011; Wang and 
Wang, 2019), subject of course to caveats around causal interpretations 
being based on area data. 

The technique used therefore has the benefit of providing a small area index 
of varying diabetes risk, and hence need for diabetes care, but also provides 
evidence on community factors affecting small area variations in diabetes 
morbidity. In particular, we report on regional differences in diabetes risk, on 
urban-rural risk variations, and risk contrasts according to socio-economic 
and behavioural factors.

2. Methods



2.1 Area Risk Factors

The spatial factor method is here adapted to include area-based risk factors. 
Research in the UK and elsewhere has shown strong associations between 
diabetes and area poverty and material deprivation (Connolly et al, 2000; 
Nishino et al, 2015; Walker et al, 2011; Hsu et al, 2012). These in turn may 
be linked to variations in individual risk behaviours, which vary according to 
area socioeconomic status. In the UK, Diabetes UK (2010) report that “[area] 
deprivation is strongly associated with higher levels of obesity, physical 
inactivity, unhealthy diet, smoking and poor blood pressure control, all of 
which are linked to the risk of developing Type 2 diabetes”. UK studies have 
used summary deprivation measures to explain ecological variations in 
diabetes outcomes (e.g. Evans et al, 2000; Connolly et al, 2000; Walker et 
al, 2011; Fleetcroft et al, 2017) though these measures may incorporate 
illness measures in their construction, raising possible issues of 
endogeneity. 

In the present study we use MSOA data based on the approximate social 
grade (ASG) socio-economic classification, produced by the UK Office for 
National Statistics. Links between diabetes risk and occupational structure 
are confirmed in other studies (Poulsen et al, 2014; Vazquez et al, 2019). In 
particular, we use an Index of Concentration at Extremes (Malla et al, 2020; 
Krieger et al, 2018). This is obtained as [(DE)i-(AB)i]/Ti, where Ti is the total 
population aged 16-64; (DE)i is the number in ASGs D and E, namely in 
semi-skilled and unskilled manual occupations, unemployed and lowest 
grade occupations; and (AB)i is the number in higher and intermediate 
managerial, administrative, and professional occupations. This index has a 
theoretical range between -1 and +1, and measures extreme concentrations 
of lower skill and low income groups. It gives a better fit than using the 
percent in ASGs D and E per se, or an income deprivation score (Smith et 
al, 2015). For brevity, we denote this measure as ICE-ASG.

Some studies, though none UK based, have considered impacts of area 
social cohesion on diabetes outcomes, including diabetes self care (which 
influences mortality) (Gariepy et al, 2013; Walker et al, 2016). Gebreab et al 
(2017) suggest that adverse neighbourhood social environments may 
“contribute to T2DM through stress, transmission of negative health 
behaviours, and lack of social support”. Here we assess effects on diabetes 



risk of an inverse measure of social cohesion, namely a social fragmentation 
index (SFI) (Pabayo et al, 2014; Congdon, 1996). Pampalon et al (2009) 
refer to social fragmentation as a form of social deprivation, which they find 
relevant, along with material deprivation, to explaining small area variation 
in premature (all cause) mortality. The SFI index is used as an inverse 
measure of community cohesion in recent government initiatives to measure 
wellbeing (Brown et al, 2017). 

The SFI index is derived from a principal component analysis of four Census 
2011 variables for the 6791 MSOAs (percentages of one person households, 
of adults over 15 not married, of private sector renting, and of migration 
within the previous year): scores on the first component account for 73% of 
the variation in the four indicators. Scores on the SFI are higher in transient 
areas with high population turnover, high numbers of non-family and one 
person households, and high private sector renting. In the UK, private sector 
renting is typically short-stay insecure accommodation and surveys show 
private renters less likely to trust neighbours (Swales and Tipping, 2017). 
Low scores on the SFI occur in family-oriented areas, with relatively low 
residential turnover.

The ethnic structure of area populations is also relevant to variations in 
diabetes risk. Raised diabetes risk among south Asian groups has been 
attributed to increased insulin resistance, even adjusting for adiposity 
(McKeigue et al, 1991; Barnett et al, 2006). Nishino et al (2015) show area 
differences in emergency diabetes admissions to be linked to south Asian 
ethnicity, and non-UK studies also report higher diabetes prevalence among 
South Asians (Middelkoop et al, 1999).  Here we measure the potential 
impact of area ethnic mix by the proportion of the MSOA population with 
south Asian ethnicity (from the 2011 UK Census). 

A further source of geographic variability in diabetes outcomes is urban 
status. UK and international studies have shown lower T2D rates in areas 
with more greenspace (Bodicoat et al, 2014; Astell-Burt et al, 2014), while 
Cox et al (2007) report higher diabetes incidence in urban areas in Scotland. 
Links between air pollution (typically elevated in urban areas) and diabetes 
have also been proposed (Rajagopalan and Brook, 2012). As a measure of 
urban-rural status, we use a ridit score (Ernstsen et al, 2012) based on the  
UK 2011 Census rural-urban classification (Bibby and Brindley, 2013). This 
is an ordered 8-fold classification of MSOAs from most to least urban, with 
the extremes being “urban major conurbation” and “rural village and 



dispersed in a sparse setting”. The score is defined to be highest for urban 
areas, lowest for rural areas.

Further measures of the environment are provided by levels of physical 
inactivity and of overweight/obesity for adults aged 18 and over (these are 
percentage data for 2015/16 and at local authority level, available at 
https://fingertips.phe.org.uk/profile/physical-activity and 
https://fingertips.phe.org.uk/search/overweight). There is considerable 
research showing links between inactivity, excess weight and diabetes risk 
at both individual and ecological levels (Scarborough et al, 2011; Allender et 
al, 2007; Geiss et al, 2017). These factors have been adduced to explain 
increasing T2D levels among younger adults in the UK (e.g. Wilmot et al, 
2010).

In summary, there are six area-risk factors included in this analysis, namely 
a measure of area socio-economic status; social fragmentation; the 
proportion of MSOA populations of south Asian ethnicity; an index of 
urbanity; a measure of adult physical inactivity; and a measure of adult 
overweight. 

2.2 Sources of Data on Diabetes Outcomes

The two forms of diabetes outcome data are for deaths and diagnosed 
prevalence. Diabetes deaths for MSOAs in England during 2013-17 cover 
ICD-10 codes E10-E14, and hence encompass both type 1 and type 2 
diabetes. There are 25868 diabetes deaths during 2013-17. The geographic 
scope provided by the 6791 MSOAs is the entirety of England, one of the 
constituent countries of the United Kingdom. The data were obtained by 
request from the Office of National Statistics and are available at:
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandm
arriages/deaths/adhocs/009524deathsfromdiabetesbysexandmiddlelayersu
peroutputareamsoaengland2013to2017

Diabetes prevalence data for these MSOAS (with both diabetes types 
included) are for ages 17 and over and are for 2017/18, and obtained from 
the House of Commons Dashboard for chronic diseases included in the 
Quality Outcomes Framework (House of Commons, 2019). The Quality and 
Outcomes Framework (QOF) is an annual reward and incentive programme 
for all GP surgeries in England, which includes maintenance of registers of 

https://fingertips.phe.org.uk/profile/physical-activity
https://fingertips.phe.org.uk/search/overweight
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/adhocs/009524deathsfromdiabetesbysexandmiddlelayersuperoutputareamsoaengland2013to2017
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/adhocs/009524deathsfromdiabetesbysexandmiddlelayersuperoutputareamsoaengland2013to2017
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/adhocs/009524deathsfromdiabetesbysexandmiddlelayersuperoutputareamsoaengland2013to2017


diagnosed chronic diseases such as diabetes. The prevalence data can be 
obtained at:
https://commonslibrary.parliament.uk/social-policy/health/constituency-
data-how-healthy-is-your-area/.

Total diabetes cases for each MSOA are obtained by multiplying 2017 
MSOA adult populations (ages 17 and over) by the crude diabetes 
prevalence rates for each MSOA (i.e. unadjusted for age structure), which 
are provided by the Dashboard. We then adjust for differing age structures 
between MSOAs by including an offset for expected deaths and prevalent 
cases in the Poisson statistical model (see next section and Appendix 1).

Caveats regarding the health outcome data may be mentioned. The first is 
that both types of data (deaths and prevalence) include both diabetes type 
1 and 2. Type 1 diabetes (T1D, with disease code ICD E10) usually has child 
or adolescent onset, and accounts for around 10% of prevalent cases among 
adults (Diabetes UK, 2010). However, the QOF data is not available by 
diabetes type, and deaths data by type would be sparse (overly thinly 
scattered) at MSOA level for T1D. Data from NOMIS 
(https://www.nomisweb.co.uk) show that 6.2% of diabetes deaths in England 
over 2013-17 were from T1D, an average of 0.24 per MSOA.

There are relatively few studies explaining differences in T1D risk 
specifically, though regarding area socio-economic status, a meta-analysis 
by Scott et al (2017) found that “low socioeconomic status is associated with 
higher levels of mortality and morbidity for adults with type 1 diabetes”, while 
Collier et al (2015) and Govan et al (2012) report that complication rates 
among diabetes type 1 patients (and hence mortality risk) increase with area 
deprivation. Overweight may be relevant to development of T1D, as it is for 
T2D (Islam et al, 2014). 

Other caveats may be mentioned: the diabetes prevalence data omits 
undiagnosed cases, estimated at just under 1 million in the UK (Diabetes 
UK, 2020). Also diabetes deaths may be undercounted: Stokes and Preston 
(2017), in a US study, report that the proportion of deaths with diabetes 
assigned as the underlying cause of death (3.3–3.7%) understates the 
contribution of diabetes to US mortality.

2.3 Statistical Methods: Roles of Different Types of Indicator in the Model

https://commonslibrary.parliament.uk/social-policy/health/constituency-data-how-healthy-is-your-area/
https://commonslibrary.parliament.uk/social-policy/health/constituency-data-how-healthy-is-your-area/
https://www.nomisweb.co.uk


A Bayesian estimation strategy is adopted, with estimation using Markov 
chain Monte Carlo (MCMC) techniques in the WINBUGS package (Lunn et 
al, 2009).  Estimates are based on the last 15000 iterations of two chain runs 
of 20000 iterations with convergence assessed using Brooks-Gelman-Rubin 
diagnostics (Brooks and Gelman, 1998). We adopt regression techniques 
appropriate to count data (death and prevalence totals), allowing also for 
spatial dependence in the latent factor (see Appendix 1). Uncertainty about 
the factor scores (e.g. in terms of 95% credible intervals, or posterior density 
plots) is available as part of the estimation procedure, by analysing MCMC 
samples of the individual factor scores (Marí-Dell'Olmo et al, 2011).

As mentioned above, the factor analysis model includes both morbidity 
indicators as responses (denoted Y1 and Y2), and risk variables (X1 to X6) 
as predictors. In the terminology of factor analysis, the two response 
variables (mortality and prevalence) are reflective indicators, while the area 
risk factors (area SES, social fragmentation, obesity, urbanity, etc.) are 
formative indicators (Coltman et al, 2008; Diamantopoulos et al, 2008). The 
usual type of factor analysis, available in statistical packages, such as SPSS 
and Stata, involves reflective indicators only. Principal component analysis 
to develop socio-economic needs scores (e.g. Pampalon et al, 2009) is 
similar in intent to using factor analysis with reflective indicators only. 

As noted by Coltman (2008): “most scholars assume that this relationship 
between construct and indicator is reflective...with reflective (or effect) 
measurement models, causality flows from the latent construct to the 
indicator[s]”. However, not all observed indicators can be so regarded. As 
an example, consider a latent construct “life stress”; relevant reflective 
indicators might be poor sleep, or use of tranquilizer medication, while 
formative indicators might be marital problems, or job insecurity. 

In a model with reflective indicators only, the scores on the latent construct 
are determined by these indicators only (these indicators are the 
“components” of the construct); Wang and Wall (2003) provide a model with 
reflective indicators only. In a model with formative indicators only, these 
indicators determine the values of latent construct. In a model with both 
reflective and formative indicators, all the indicators (here, these are 
morbidity outcomes and area risk factors respectively) influence scores on  
the latent construct.



In the present application we can envisage the latent construct, a summary 
measure of diabetes risk, as an intermediate variable between the causes 
of varying risk (formative variables, here area or contextual risk factors which 
influence diabetes risk) and morbidity indicators (reflective measures). The 
model can be represented (Fleischer and Roux (2008) as a directed acyclic 
graph (DAG); see Figure 2, with observed data in squares, and latent data 
in circles. 

This Figure first shows the two-way feedback between areas on the latent 
construct F, via the model assumed for spatial dependence between them 
(see Appendix 1). Thus the factor score for the ith MSOA is based on 
average factor scores in the locality of the ith area (the set of areas 
surrounding that area and adjacent to it), denoted by j≠i.

Figure 2 also shows λ coefficients linking the latent construct F to relative 
risks for the two morbidity outcomes, R1 and R2, and coefficients β linking 
the area risk variables X1 to X6 to the latent construct. (The u1 and u2 terms 
represent Poisson heterogeneity; see Appendix 1). Relative risks are 
unknown measures of disease risk with national average 1 (Richardson et 
al, 2004). 

Assume F is constrained (as in this study) to be a positive measure of risk: 
such that higher F scores imply higher R1 and R2, and hence higher Y1 and 
Y2. Then all the observed variables (whether reflective or formative) impact 
on the values of F, and hence are “components” of it. If the risk variables are 
also positive measures of risk, and the β coefficients are positive, then higher 
X values necessarily translate into higher F scores (and thereby imply higher 
Y values). Similarly high Y values feed back (since this raises the model 
likelihood) to raise the F scores via the λ coefficients, assuming these 
coefficients are positive. 

We compare two basic modelling approaches. The full model contains both 
reflective and formative indicators, as in Figure 2. Another analysis involves 
a model with the two reflective indicators only, namely diabetes mortality and 
prevalence, dispensing with area risk factors; Wang and Wall (2003) provide 
a model with reflective indicators only. These approaches are compared in 
terms of fit using the Deviance Information Criterion, or DIC measure, of 
Spiegelhalter et al (2002). 



3. Results

3.1 Regression Parameters 

Table 1 shows the regression coefficients (the β coefficients in Figure 2) for 
the impacts of the six area variables on the diabetes risk score. The Table 
shows posterior means and standard deviations of the coefficients together 
with 95% credible intervals (analogous to 95% confidence intervals). It can 
be seen that all the area variables are all positive risk factors in the sense 
that higher values on them are associated with higher mortality and 
prevalence. The impacts are all significant in that their 95% credible intervals 
are positive. The most important risk factors are the area occupational status 
measure, proportions South Asian, and social fragmentation. Less important 
are urbanity, physical inactivity levels, and overweight levels, but they are 
still significant influences. So the results in Table 1 show that all the risk 
variables used in the procedure play a significant role: none are redundant.

3.2 Contrasts in Risk Scores and Modelled Outcomes

To show broad geographical contrasts in average risk and morbidity 
outcomes, Table 2 presents average risk scores and average mortality and 
prevalence rates (MSOA modelled relative risks times the national mortality 
and prevalence rates) disaggregated by standard region (Figure 1) and 
urban-rural category. The latter is collapsed to 5 categories1. 

Average risk scores, mortality and prevalence are highest in the 338 MSOAs 
classified as “urban major conurbation” in the West Midlands, and lowest in 
the most rural category (village and dispersed) in the South East region. 
Contrasts in modelled mortality and prevalence approach or exceed two-fold 
(86% for prevalence, 104% for mortality) when comparing the most 
contrasting region-urban categorisations. 

As one way of validating the model, we show how differences in risk scores 
translate into gradients in both morbidity and in area risk factors (area 
occupational status, social fragmentation, etc.). So we seek to show that 
method does what it purports to do: identify extreme environments in terms 
of diabetic risk, namely small areas where morbidity is high, and risk factors 
are elevated, and small areas where morbidity is low, and risk factors are 
also low.
 



MSOAs are accordingly grouped into decile categories on the risk score 
(Table 3). MSOAs with lowest risk (decile 1) have low mortality and 
prevalence, low scores on the ICE-ASG index, fragmentation and percent 
south Asian ethnicity, and low urbanity scores. By contrast, MSOAs with 
highest risk (decile 10) have considerably elevated mortality and prevalence, 
high scores on the ICE-ASG and fragmentation, notably high percentages 
south Asian, and are urban on average (high urbanity scores). Relative 
mortality and prevalence ratios approach 2.5-fold when comparing the 
highest and lowest risk deciles. 

Despite the urban bias for high diabetes risk, there are considerable risk 
variations within major urban centres To illustrate this, Figure 3 shows wide 
variability in the scores in Birmingham MSOAs (Birmingham is a major 
conurbation in the West Midlands), but also clustering of high scores, an 
issue pursued below.

3.3 Model Comparison

Subsidiary analysis involves a comparison with a model with reflective 
indicators only (diabetes mortality and prevalence) without area risk factors. 
The DIC of this model is 95106, as compared to 94153 for the model with 
both reflective and formative indicators. Hence there is a clear gain in using 
contextual risk predictors of diabetes morbidity. According to the criteria 
discussed by Spiegelhalter et al (2002, page 613) the reflective-formative 
model has “considerably more support”. Posterior predictive checks on the 
best fitting model, using the Poisson deviance, are also satisfactory (Gelman 
et al, 1996).

3.4 Validation Against Other Diabetes Outcome Indicators

Another form of model validation involves evaluation of the predictive utility 
of the diabetes risk measure for a diabetes outcome not included in the 
model. However, this may be problematic to some degree as there is no 
“gold standard” measure of diabetes risk, and available measures may 
reflect care variations as well as variations in true diabetes need (Booth and 
Hux, 2003). 

MSOA data on diabetes incidence (the other main epidemiological measure 
apart from mortality and prevalence) is not available. Here  we consider 
hospital admissions for diabetic complications for 207 Clinical 



Commissioning Groups (CCGs) in England in 2016/17, and CCG data on 
diabetes prescribing per head of adult population (net ingredient cost) for 
2017/18. 

Clinical variations in these outcomes may reflect partly levels of diabetes but 
also quality of care variations. For example, National Health Service (2011) 
refers to “unwarranted variation in diabetes care” and admissions for 
diabetes complications may be preventable to some extent (Booth and Hux, 
2003). Similarly House of Commons (2013) mention that “there will always 
be some variation in performance because some populations have more 
people at risk of diabetes than others but, [it is] recognised that variation is 
mostly driven by differences in how primary care trusts deliver diabetes care 
and in clinical practice between healthcare professionals”.

We undertake linear regressions (207 observations) of the two CCG 
outcomes on average CCG risk factor scores, and on region (as a variable 
with 9 categories), to account for geographic performance variation beyond 
risk. For complication rates (which are indirectly standardised ratios, with 
average 100), the R-squared is 59%. There is a significant positive slope on 
the risk score, 5.54 (s.e. 1.01), which implies a range in predicted 
complication rates from 87.5 to 118.2. For prescribing, the R-squared is 58% 
with a significant positive slope on the risk score, 11.7 (s.e. 2.1), implying a 
predicted range in NIC per head from 176.5 to 241.4. So the risk score has 
utility in predicting two important activity indicators for diabetes.

3.5 High Risk Clusters

As mentioned above, the risk scores may be applied in detecting high and 
low risk spatial clusters, with high risk clusters (adjacent MSOAs all with high 
diabetes risk scores), which is of potential importance regarding potential 
intervention. A LISA cluster map is available in the GEODA package (Anselin 
et al, 2006), classifying each MSOA by comparing risk scores in that MSOA 
and average risk scores in contiguous MSOAs; see Figure 4, based on 
Moran LISAs (Martins‐Melo et al, 2012). There are 1011 high-high MSOAs 
and 1478 low-low MSOAs in Figure 4. 

Remaining categories in Figure 4 can be interpreted as spatial outliers, 
namely high-low (high risk MSOAs surrounded by low risk), and low-high 
(low risk areas surrounded by high). These categories only account for 25 
MSOAs combined. A residual class entitled “not significant” in Figure 4, 



includes MSOAs in which contiguous MSOAs have intermediate (non-
significant) risk scores. 

High risk clusters are generally located in the most urbanised settings 
(MSOAs in urban major conurbations), namely 775 of 1011. Whereas 15% 
of all MSOAs are classed as high-high, proportions are much higher in 
metropolitan local authorities such as Birmingham (64% of its 132 MSOAs 
being high-high), Sandwell (with all 38 MSOAs being high-high) and 
Newham (all 37 of its MSOAs being high-high). By contrast, low-low clusters 
tend to be located in mainly less urbanised lower density settings, with 
MSOAs of larger geographic extent, so tending to dominate the map in 
Figure 4. Of the 1478 MSOAs in low-low clusters, 38% are in the two most 
rural settings (“Rural Town”, “Rural Village and Dispersed”), whereas these 
MSOAs only account for 18% of all 6791 English MSOAs. 

However, there are some low-low clusters in more urbanised settings, such 
as London, reflecting impacts of intra-urban variations in deprivation (see 
Figure 5). The cluster of high risk in north east London reflects locations of 
both large south Asian ethnic populations, and high deprivation (as in 
London boroughs such as Tower Hamlets and Newham). By contrast, 
affluent central boroughs (Kensington & Chelsea), and outer suburban 
boroughs (Richmond, Kingston, Bromley), have concentrations of low-low 
clustering. 

4.Discussion

There is a lack of UK based studies investigating the spatial patterning of 
diabetes, the extent of spatial clustering in this patterning, and the 
association of geographic diabetes variations with area sociodemographic 
characteristics. Research on small area diabetes contrasts in the UK is 
generally regional in focus. In particular, there are no UK based studies with 
a national focus (England being a constituent nation of the UK) aiming to 
produce a small area index of diabetes risk or health care need, as does the 
present study. 

The index here has the benefit of (a) incorporating evidence of risk both from 
diabetes outcomes and area risk factors, such as area socio-economic 
status, and of (b) including spatial correlation in its construction. It also has 
the benefit of extensive geographic coverage, namely all English MSOAs. 
This type of framework, with both reflective disease measures, and formative 



socio-economic contextual variables, could be adapted to using dynamic 
(change) measures of area ill-health and context (Norman, 2010).

Among limitations of the present study are its ecological nature, so that 
inferences about causal impacts on area diabetes risk cannot be made, and 
impacts of area characteristics may reflect compositional as well as 
contextual effects. However, there is increasing evidence that 
neighbourhood factors per se may contribute to higher diabetes outcomes, 
for example, through limited access to healthy foods and physical activity, 
via housing market factors affecting ethnic concentration (Phillips, 1998), or 
via neighbourhood social environments (Gebreab et al, 2017; Smalls et al, 
2015). The present study confirms positive impacts of physical inactivity and 
overweight on diabetes risk, and also finds a positive impact of an index of 
social fragmentation on diabetes risk, a link not considered in existing UK 
studies of diabetes geographic variation.   

The present study also confirms existing UK-based findings that area ethnic 
mix significantly affects area diabetes variations (Nishino et al, 2015). 
However, the study provides new evidence on the role of urban-rural status 
in diabetes spatial patterns in England. Urbanity effects remain after allowing 
for area socio-economic status, ethnicity, and social fragmentation. Further 
research is indicated on what urbanity impacts on diabetes might stem from, 
for example, built environment and air quality factors (Stewart et al, 2011; 
Rajagopalan and Brook, 2012).

The present study highlights concentrations of high diabetes risk, and spatial 
clustering of high risk, in more urbanised settings, with the urbanity effect 
strongest in particular English regions (e.g. the West Midlands). However, 
other dimensions of risk such as that of area socio-economic status, 
intersect the urban effect, as illustrated by clusters of diabetes risk in 
London. Detection of high risk and of high risk clusters are of particular 
importance for effective targeting of health resources and public health 
interventions to tackle diabetes and other chronic conditions. The present 
study describes a method applicable across chronic conditions for 
developing small area risk indices to guide such interventions.
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Notes
1. These 5 categories collapse over the three separate “sparse settings” 
categories (Bibby and Brindley, 2013), which together account for only 78 of 
6791 England MSOAs. The collapsed categories are 1 Major Conurbation, 
2 Minor Conurbation, 3 City and Town, 4 Rural Town and Fringe, 5 Rural 
Village and Dispersed.

Appendix 1 Formal Description of Methods
For analysis of the two reflective outcomes (diabetes deaths and 
prevalence), we use total events as the basis of the regression modeling. 
We assume Poisson distributed outcomes, Yij ~ Poisson(EijRij) for areas 
i=1,..,N, and outcomes j=1,..,J, where J=2, and j=1 for deaths, j=2 for 
prevalence. There are N=6791 areas. The Eij denote expected event totals, 
obtained by applying national age specific outcome rates to MSOA 
populations. The Rij denote relative risks of mortality and prevalence, with 
national averages of 1 (Richardson et al, 2004).
 
These two outcomes are taken as reflective indicators of a single latent risk 
factor F, so that log-link regressions for the relative risks have the form

log(Rij)=αj+λjFi+uij,
where αj are intercepts, and λj are loadings of log(Rij) on the score for 
common latent risk score Fi.The uij are unstructured residuals (i.e. with no 
spatial structure), uij∼N(0,ω ), which may be needed to account for spatially 2j
unstructured Poisson over-dispersion. By contrast, we assume the Fi are 
spatially structured, as set out below. 

As mentioned in Section 2.3, we allow area risk factors Xi1  to Xi6 (the 
formative indicators) to impact on the diabetes risk factor, with β=(β1,...,β6) 
the corresponding regression parameters. The risk factors are ICE-ASG, 
social fragmentation, south Asian ethnicity, urbanity, physical inactivity, and 
obesity. All risk factors are expressed in (0,1) form (0 for the minimum risk 
factor value, 1 for the maximum) so that their relative importance can be 
assessed by simply comparing coefficient sizes. Let ηi= β1Xi1+ β2Xi2+... 

+β6Xi6 denote their combined impact on Fi, the factor score for the ith MSOA 
(see Figure 2). The βj are assigned N(0,100) priors (prior densities). 



To represent spatial dependence we assume factor scores in area i depend 
on nearby areas, according to the scheme of Besag et al (1991). First denote 
ei=Fi-ηi, and let wij denote spatial adjacency indicators (wij=1 if MSOAs i 
and j are adjacent, wij=0 otherwise), and let mi=∑i≠jwij denote the number 
of MSOAs adjacent to the ith MSOA. Then, as in Stern and Cressie (2000, 
eqn 5), the conditional means for Fi are

E(Fi|F-i)= ηi+∑i≠jwijej/mi,
with conditional variances τ2/mi, where F-i denotes all MSOA risk scores 
apart from the score for MSOA i.

As in other latent factor applications, identifying restrictions are needed, 
either on the variance of the latent factor, or on one of the loadings λj. Here 
the variance parameter τ2 is set  to one (i.e. factor standardization), and so 
both loadings are unknowns (Skrondal and Rabe-Hesketh, 2007). To ensure 
unique labelling of the common factor Fi as a positive measure of risk (i.e. 
ensure that higher scores Fi denote higher diabetes risk), the loadings λj are 
assigned gamma Γ(1,0.1) priors.  The intercept parameters αj are assigned 
N(0,100) priors, and variances ω  are assigned Γ(1,0.1) priors.2j

The BUGS code (Lunn et al, 2009) for the model (essential elements only) 
is as follows: 
model { 
for (i in 1:N) {# mortality and prevalence counts, Y1 and Y2, in N=6791 areas
Y1[i] ~ dpois(mu[i,1])
Y2[i] ~ dpois(mu[i,2])
# expected events
E[i,1] <- E1[i]; E[i,2] <- E2[i]
# Relative Risk Models for J=2 outcomes
for (j in 1:2) {mu[i,j] <- E[i,j]*R[i,j]
log(R[i,j]) <- alpha[j]+lambda[j]*F[i]+u[i,j]
# iid effects for Poisson overdispersion
u[i,j] ~ dnorm(0,inv.omega2[j])}}
# Priors
for (j in 1:2) {lambda[j] ~ dgamma(1,0.1)}
# variance=100, so precision=0.01
for (j in 1:2) {alpha[j] ~ dnorm(0,0.01)}
for (j in 1:6)  {beta[j] ~ dnorm(0,0.01)}
for (j in 1:2) {inv.omega2[j]~ dgamma(1,0.1)}



# Risk Index Model
tau.F <- 1
# error vector over areas adjacent to area i (in vector adj), NN=total 
adjacencies (sum of num[i])
for (i in 1:NN) { We[i] <- e[adj[i]] }
for (i in 1:N) {F[i]  ~ dnorm(F.nei[i],tauF[i])
# prediction of risk
eta[i] <- beta[1]*ice_asg[i]+beta[2]*sas[i]+beta[3]*urb[i]
+beta[4]*frg[i]+beta[5]*inact[i]+beta[6]*ovrwgt[i]
e[i] <- F[i]-eta[i]
# num[i] is number of neighbours of area i
tauF[i]   <-  tau.F*num[i]
# vector cum.num[], of length NN+1, contains cumulative num[i], with 
elements 0,num1,num1+num2, etc. 
F.nei[i] <- eta[i]+sum(We[cum.num[i]+1:cum.num[i+1] ])/num[i]}}}

To obtain posterior summaries of the needs scores (and their uncertainty) 
one monitors the vector F[1:6791].

The vectors adj and num can be obtained in R using functions from spdep 
and maptools. One first reads in a shapefile using the maptools command: 
        shape = readShapePoly(("file.shp")
then  commands spatial=poly2nb(shape) and WB=nb2WB(spatial) create a 
list with adj and num vectors WB$adj and WB$num.
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Figure 3 Factor Scores in Birmingham MSOAs



Figure 4 LISA Cluster Categories for England MSOAs



      Figure 5. Need Cluster Categories based on LISA Indices (Greater London)



Regression Effects Mean St devn 2.5% 97.5%

ICE‐ASG,  2.55 0.066 2.42 2.67

Fragmentation,  2.50 0.093 2.32 2.69

South Asian,  3.06 0.110 2.84 3.27

Urbanity,  0.44 0.059 0.33 0.56

Physical inactivity,  0.34 0.093 0.16 0.53

Overweight/Obese,  0.43 0.123 0.18 0.67

Other Parameters Mean St devn 2.5% 97.5%

 ‐0.022 0.014 ‐0.021 0.002

 0.009 0.012 0.013 0.027

 0.197 0.006 0.197 0.209

 0.195 0.002 0.195 0.199

Table 1 Regression Parameter Summary



Table 2a Average Need Scores by Region and Urban‐Rural Category 

 

Urban 
Major 
Conurb‐
ation 

Urban 
Minor 
Conurb‐
ation 

Urban 
(City 
and 

Town) 

Rural 
Town 
and 

Fringe 

Rural 
Village 
and 

Dispersed 

All 
Categories 

London  0.53  ‐  ‐1.44  ‐0.02  ‐  0.53 

South East  ‐0.73  ‐  ‐0.47  ‐1.28  ‐1.69  ‐0.70 

South West  ‐  ‐  ‐0.33  ‐0.78  ‐1.13  ‐0.54 

East of England  ‐0.11  ‐  ‐0.25  ‐0.82  ‐0.94  ‐0.43 

East Midlands  ‐0.70  0.23  0.50  ‐0.45  ‐0.67  0.17 

West Midlands  1.35  ‐  0.33  ‐0.59  ‐0.98  0.63 

Yorkshire/Humberside  0.70  0.43  0.03  ‐0.63  ‐1.08  0.20 

North West  0.43  ‐   0.11  ‐0.58  ‐1.04  0.20 

North East  0.17  ‐  0.27  0.19  ‐0.72  0.18 

All Regions  0.54  0.35  ‐0.10  ‐0.72  ‐1.11  0.00 

        
Table 2b Modelled Mortality Rates (per 100,000) by Region and Urban‐Rural Category 

 

Urban 
Major 
Conurb‐
ation 

Urban 
Minor 
Conurb‐
ation 

Urban 
(City 
and 

Town) 

Rural 
Town 
and 

Fringe 

Rural 
Village 
and 

Dispersed 

All 
Categories 

London  47.87  ‐  28.87  35.52  ‐  47.82 

South East  34.99  ‐  39.04  33.15  29.99  37.18 

South West  ‐  ‐  41.17  36.80  34.25  39.26 

East of England  41.21  ‐  42.22  36.68  35.47  40.25 

East Midlands  34.70  49.14  48.36  39.15  37.96  45.90 

West Midlands  58.79  ‐  46.03  38.77  36.24  50.62 

Yorkshire/Humberside  50.02  44.49  45.31  38.03  34.08  45.24 

North West  44.83  ‐   42.90  36.68  34.21  43.25 

North East  41.63  ‐  44.58  45.90  34.94  43.11 

All Regions  47.80  46.39  42.62  37.32  34.33  43.40 

        
Table 2c Modelled Prevalence (Percentage) by Region and Urban‐Rural Category 

 

Urban 
Major 
Conurb‐
ation 

Urban 
Minor 
Conurb‐
ation 

Urban 
(City 
and 

Town) 

Rural 
Town 
and 

Fringe 

Rural 
Village 
and 

Dispersed 

All 
Categories 

London  7.70  ‐  4.94  6.45  ‐  7.70 

South East  5.89  ‐  6.19  5.19  4.79  5.92 

South West  ‐  ‐  6.30  5.74  5.36  6.05 

East of England  6.54  ‐  6.44  5.69  5.59  6.21 

East Midlands  5.85  7.01  7.48  6.15  5.90  7.01 

West Midlands  8.90  ‐  7.17  5.94  5.51  7.75 

Yorkshire/Humberside  7.90  7.33  6.77  5.93  5.43  7.10 

North West  7.36  ‐   6.89  5.98  5.48  7.04 

North East  6.91  ‐  7.04  6.92  5.88  6.93 

All Regions  7.65  7.20  6.63  5.82  5.40  6.83 

 



Table 3 Outcome and Risk Factor Profiles according to Need Score Category

MSOAs by Need Score Decile

Need 
Score 
Decile

Modelled 
Mortality 
Rate (per 
100,000)

Modelled 
Prevalence 

Rate 
(Percent)

Index of 
Concentrat-

ion at 
Extremes 
(ASG's DE 
vs ASG's 

AB)

Social 
Fragment-

ation 
Score (0,1 

scale)

% South 
Asian

Urbanity 
(0,1 

scale)

Physically 
Inactive 
Adults 

(%)

Over-
weight 
Adults 

(%)

1 
(Lowest 
Need)

28.1 4.4 -0.29 0.22 1.7 0.38 19.0 56.8

2 32.6 5.1 -0.18 0.20 1.6 0.36 20.1 59.9
3 35.1 5.6 -0.11 0.21 1.7 0.39 20.9 62.0
4 37.6 6.0 -0.06 0.22 2.0 0.46 21.8 62.6
5 40.1 6.3 0.00 0.23 2.3 0.50 22.1 63.0
6 42.2 6.7 0.06 0.24 2.5 0.54 23.2 64.1
7 45.2 7.2 0.12 0.27 2.8 0.55 23.3 64.3
8 49.3 7.6 0.19 0.30 3.6 0.58 23.8 64.8
9 54.7 8.4 0.23 0.33 6.1 0.63 24.0 63.6

10 
(Highest 

Need)
68.8 10.9 0.24 0.32 26.8 0.74 25.5 61.3




