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Abstract 
 

Vortex breakdown plays a central role in the performance of countless rotating machinery 

applications, many of which contain thermal gradients either inadvertently or by design. The 

effect of thermal gradients on vortex breakdown and further flow development in a cylindrical 

domain with a rotating bottom plate is examined using the Generalized Integral Transformation 

Technique (GITT) with a streamfunction-only formulation. A thermal gradient is imposed in 

the axial direction, such that the buoyancy forces oppose the base flow driven by the rotation 

of the lower plate, i.e. the temperature difference acts to stabilize the flow. The hybrid 

numerical-analytical approach is shown to accurately capture vortex breakdown phenomena 

for a variety of conditions involving single, double and triple recirculation bubbles. The 

buoyancy forces – expressed in terms of the Richardson number (Ri) – act to suppress vortex 

breakdown in all cases examined and led to a series of flow transitions with increasing Ri, 

characterized by the appearance of a stratified structure with multiple fluid layers. These flow 

transitions have a significant impact on the overall performance of the system. The torque 

coefficient decreases with Ri, compared to the base (isothermal) case following an empirical 

power law relationship, which is independent of Reynolds number, aspect ratio or number of 

fluid layers present. Flow stratification suppresses the transport of angular momentum; 

azimuthal velocity is shown to decline exponentially in the regions where layering occurs, 

accompanied by a sharp reduction in the Nusselt number, as fluid layers act to insulate the 

upper plate. 

 

 

Keywords: Vortex breakdown; Swirling flow; Navier-Stokes and energy equations; Mixed 

convection; Integral transforms; Cylindrical cavity. 
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Nomenclature 

Aij integral coefficient given by Eq. (44) 
Bijk integral coefficient given by Eq. (44) 
Cijk integral coefficient given by Eq. (45) 
CT torque coefficient 
Dijk integral coefficient given by Eq. (45) 
Eijk integral coefficient given by Eq. (46) 

 transformed boundary condition given by Eq. (49) 
Fij integral coefficient given by Eq. (46) 
Fr Froude number (=w2R/g) 
g gravity acceleration (m/s2) 

 transformed boundary condition given by Eq. (49) 
Gijk integral coefficient given by Eq. (47) 
Gr Grashof number (=b DT*gR3/n2) 
h aspect ratio (=H/R) 
H cavity height (m) 
hc heat transfer coefficient (W/m2K) 

 integral coefficient given by Eq. (52) 
Hijk integral coefficient given by Eq. (47) 
Iijk integral coefficient given by Eq. (48) 
Jijk integral coefficient given by Eq. (48) 
k fluid thermal conductivity (W/mK) 
Li normalization integral for the streamfunction field 
Mi normalization integral for the azimuthal velocity component 
N truncation order 

NF, NV, NT truncation orders for the streamfunction, azimuthal velocity component, and 
temperature expansions, respectively 

Ni normalization integral for the temperature field 
Nu0,  local and average Nusselt numbers at the bottom, respectively 
Nuh,  local and average Nusselt numbers at the top, respectively 
P*, P pressure field, dimensional (N/m2) and dimensionless, respectively 
Pr Prandtl number (=n/a) 
q" heat flux at the upper plate (W/m2) 
r*, r radial coordinate, dimensional (m) and dimensionless, respectively 
R cylinder radius (m) 
Ra Rayleigh number (=b DT*gR3/na=GrPr) 
Re Reynolds number (=wR2/n ) 
Ri Richardson number (=b DT*g/Rw2=Gr/Re2) 
T*, T temperature field, dimensional (m) and dimensionless, respectively 
T0 reference temperature (K) 

 transformed temperature 
vr

*, vr radial velocity component, dimensional (m/s) and dimensionless, respectively 
vz

*, vz axial velocity component, dimensional (m/s) and dimensionless, respectively 

v q
*, vq 

azimuthal velocity component, dimensional (m/s) and dimensionless, 
respectively 

 transformed azimuthal velocity component 
 mean azimuthal velocity at a given depth 

Xi eigenfunctions for the streamfunction expansion 
Yi eigenfunctions for the azimuthal velocity component expansion 
z*, z axial coordinate, dimensional (m) and dimensionless, respectively 

 fi

gi

hi

Nu0
Nuh

Ti

vθ,i
vθ,m
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Greek Letters 
a fluid thermal diffusivity (m2/s) 
b coefficient of thermal expansion of the fluid (K-1) 
bi eigenvalues for the temperature expansion 
gi eigenvalues for the streamfunction expansion 
Gi eigenfunctions for the temperature expansion 
DT* temperature difference between the top and the bottom plates (K) 
q angular coordinate 
li eigenvalues for the azimuthal velocity component expansion 
µi eigenvalues for the temperature expansion 
n kinematic viscosity of fluid (m2/s) 
r fluid density (kg/m3) 

 transformed streamfunction 
y streamfunction field 
w characteristic rotational velocity (s-1) 
wb rotational velocity of the bottom disk (s-1) 
wq azimuthal vorticity component (s-1) 

 
Subscripts and superscripts 

i,j,k orders from eigenvalue problems 
*
 

dimensional quantities 
__ transformed quantities 

 
  

ψi
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1. Introduction 
 
 Swirling flows occur throughout nature, such as tornadoes and hurricanes, and in countless 

industrial applications, including heat exchangers, combustion systems, bioreactors, separation, 

aeronautics, and spray drying devices. Such flows are characterized by the formation of a central vortex 

which has the tendency to breakdown, forming a recirculation region along the vortex core that strongly 

affects the overall application performance. Vortex breakdown (VB) has been the subject of extensive 

research over the past five decades and has been the topic of a number of reviews [1-5]. 

 Vortex breakdown can occur as an unsteady or steady process; either by the unravelling of the 

vortex core to form a spiral or double helix [5], or via the formation of stationary, axisymmetric 

recirculation bubbles along the vortex axis [6], respectively. The unsteady mode tends to occur in 

unconfined flows (as in aeronautics) [5], while the axisymmetric mode often dominates in confined 

flow, especially when there is no mean flow in the axial direction [4,7]. A cylindrical container in which 

one end plate is rotating at a speed, w, and the other is fixed, is the simplest geometry in which 

axisymmetric vortex breakdown occurs and is directly relevant to many industrial applications. The 

system can be characterized using two non-dimensional groups; the Reynolds number, Re = 

wR2/n (where R is the cylinder radius and n is the kinematic viscosity of the fluid) and the aspect ratio, 

h = H/R (where H is the cylinder height). Escudier [6] performed a series of flow visualization 

experiments in order to characterize the different regimes of vortex-breakdown, including stable flow 

(no breakdown), axisymmetric breakdown with one, two or three bubbles present, and unsteady 

oscillations. For Re ≤ 2500, the unsteady instability was not observed. As the Reynolds number is 

increased further, the flow becomes unsteady and eventually chaotic (Re ~ 104) [8]. The breakdown and 

the appearance of the different regimes is thought to depend strongly on the distribution of azimuthal 

vorticity [9,10] and only occurs for h ~ O(1) [9]. Sorensen et al. [11] studied the swirling flow between 

a rotating lid and a stationary cylinder experimentally using laser-based flow diagnostics, namely 

Particle Image Velocimetry (PIV) and Laser Doppler Anemometry (LDA). The onset of three-

dimensional flow behavior was measured and a detailed mapping of the transition scenario from steady 

and axisymmetric flow to unsteady and three-dimensional flow was provided, including table of neutral 

and critical Reynolds numbers obtained from LDA measurements carried out in the range h ϵ [1.0, 3.5] 

with a step size Δh = 0.1, and  Re ϵ [2,000, 5,000], with a step size ΔRe = 100 for various wave modes 

(see Table 1 in the work of Sorensen et al. [11]). 

 The different regimes can have a significant effect on the performance of the system, and there 

is a considerable body of work in the literature examining various methods of controlling the flow, e.g. 

via the insertion of a rod along the cylinder axis [12,13], a small rotating disk at the stationary wall [14], 

the use of magnetohydrodynamics [15,16], the addition of a second fluid with a slightly different density 

[17], and the application of a temperature gradient in the axial direction [9,18-23]. The latter case is of 

particular interest, as temperature gradients are a feature of many systems involving vortex breakdown, 
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such as the effect of temperature non-uniformity in tornadoes [19], combustion in vortex burners 

[24,25], and separation of compressed gases in Ranque-Hilsch vortex tubes [26,27], to name a few. 

 When a temperature difference across the cylinder axis, ΔT*, exists, two additional non-

dimensional groups are required to characterize the system; the Prandtl number, Pr = n/a, and the 

Richardson number, Ri = b DT*g/Rw2, which represents the ratio of buoyancy to centrifugal forces. In 

the case of a non-isothermal swirling flow, an additional parameter of interest is the heat flow across 

the top/bottom plates, which is non-dimensionalized as the Nusselt number, Nu = q"/kDT*/R, where q" 

is the heat flux at the upper plate and k is the thermal conductivity. In order to maintain Nu = 1 for the 

case of pure conduction, as is common in heat transfer analysis, the Nusselt number must be defined 

using the cylinder height as the characteristic length scale, Nu*=Nu.h. 

 Depending on the sign of DT*, the temperature gradients can act to stabilize the flow or promote 

vortex breakdown [9,18,19,21,28,29]. When the temperature gradient is positive (i.e. the top plate of 

the cylinder is hotter than the bottom plate), the critical Reynolds number for vortex-breakdown is 

reduced [18,30]. A similar effect is observed when a dense fluid is added to the bottom of the cylinder 

[17]. The positive thermal gradient can also lead to a dramatic change in the nature of vortex breakdown, 

with the appearance of a “two-cell” flow pattern, in which two counter-rotating toroidal vortices form 

in the top and bottom of the cylinder [18,21,23]. This layering results in a significant reduction in the 

Nusselt number [23]. However, it remains unclear what effect this layering may have on the torque 

transmitted through the fluid, which is a key factor in the performance of such rotating systems. 

Likewise, it is not known how further increases to the Richardson number may affect the development 

of the flow and the overall performance of the system when vortex breakdown has been already 

suppressed and layering is present. 

 This paper aims to address these questions and characterize the role of a temperature gradient 

on the flow dynamics in a variety of axisymmetric vortex breakdown regimes, as determined by Re and 

h. The problem is addressed using the Generalized Integral Transform Technique (GITT), which is a 

hybrid numerical-analytical methodology [31] that has previously been applied to fluid flow and heat 

transfer governed by the Navier-Stokes and energy equations [32-40], including cylindrical cavities 

[37-40]; however, a solution to the mixed convection problem in such geometry has not been 

implemented hitherto. Mathematical descriptions of the problem and the GITT methodology are 

outlined in the following section, the results are validated in Section 3.1 and are discussed in terms of 

flow, vorticity and temperature fields in Section 3.2; the effects of thermal gradients and induced flows 

on torque transmission, azimuthal velocity and heat transfer are discussed in Section 3.3, followed by 

some concluding remarks in Section 4. 
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2. Methodology 
 
2.1. Mathematical formulation 
 
 A cylindrical container with an axial temperature difference imposed between the top and 

bottom plates is studied as shown in Fig 1. The flow in the container is assumed to be laminar, steady 

and incompressible, and the fluid is Newtonian with constant physical properties, with the exception of 

density, which depends on the temperature according to Boussinesq’s approximation. Density changes 

result in both a centrifugal buoyancy force and a gravitational buoyancy force, which scale as ~bDT*w2R 

and ~ bDT*g, respectively. Therefore the ratio of gravitational to centrifugal buoyancy forces scales as 

g/w2R (i.e. the inverse of the Froude number, Fr), which were in the range 3.7 – 15.4 for all the data 

presented in this paper, i.e. the centrifugal buoyancy forces were small compared to those due to gravity. 

For this reason, the centrifugal buoyancy terms are neglected in the analysis. Similarly, viscous 

dissipation and radiative heat transfer are expected to be negligible and are also disregarded. 

 The bottom plate rotates in the clockwise direction, i.e. as ωb = - ω, while the top plate is 

stationary. The top plate is hotter than the bottom plate (with a temperature difference of DT*), i.e. the 

flow is convectively stable. The cylinder wall is stationary and assumed to be adiabatic. The 2D 

governing equations for this problem are expressed in dimensionless form as follows: 

 

  (1) 

  (2) 

  (3) 

  (4) 

  (5) 

 
The following flow and temperature boundary conditions are specified in non-dimensional form: 

 

  (6) 

  (7) 

  (8) 

1
r
∂(rvr )
∂r

+
∂vz
∂z

= 0

vr
∂vr
∂r

−
vθ
2

r
+ vz

∂vr
∂z

= − ∂P
∂r

+ 1
Re

∂2 vr
∂r2

+ 1
r
∂vr
∂r

−
vr
r2

+
∂2 vr
∂z2

⎛

⎝
⎜

⎞

⎠
⎟

vr
∂vz
∂r

+ vz
∂vz
∂z

= − ∂P
∂z

+ 1
Re

∂2 vz
∂r2

+ 1
r
∂vz
∂r

+
∂2 vz
∂z2

⎛

⎝
⎜

⎞

⎠
⎟ + RiT

vr
∂vθ
∂r

+
vrvθ
r

+ vz
∂vθ
∂z

= 1
Re

∂2 vθ
∂r2

+ 1
r
∂vθ
∂r

−
vθ
r2

+
∂2 vθ
∂z2

⎛

⎝
⎜

⎞

⎠
⎟

vr
∂T
∂r

+ vz
∂T
∂z

= 1
RePr

∂2T
∂r2

+ 1
r
∂T
∂r

+ ∂2T
∂z2

⎛
⎝⎜

⎞
⎠⎟

vr (0,z) = 0,  
∂vz (0,z)

∂r
= 0,  vθ(0,z) = 0,  ∂T(0,z)

∂r
= 0

vr (1,z) = 0,   vz (1,z) = 0,   vθ(1,z) = 0,   ∂T(1,z)
∂r

= 0

vr (r,0) = 0,        vz (r,0) = 0,     vθ(r,0) = −r,      T(r,0) = − 1
2



 8 

  (9) 

 
 Equations (1) to (9) are normalized as follows: 

 

  (10) 

 

 In order to implement the GITT approach to solve the above equations, a streamfunction 

formulation is employed [32-40]. The two-dimensional streamfunction is defined in terms of the 

velocity components in the r and z directions, respectively, as: 

 

  (11) 

 
and the mathematical formulation of this problem in terms of streamfunction can be written as: 

 

  (12) 

  (13) 

  (14) 

  (15) 

  (16) 

  (17) 

  (18) 

 

with the associated operators E2, E4 and Ñ2 defined as: 

 

  (19) 

 
 

vr (r,h) = 0,       vz (r,h) = 0,     vθ(r,h) = 0,    T(r,h) = 1
2

r = r*

R
,  z = z*

R
,  vr =

vr
*

Rω
,  vz =

vz
*

Rω
,  vθ =

vθ
*

Rω
,  P = P*

ρR2ω2 , T =
T* − T0

ΔT*

vr =
1
r
∂ψ
∂z

,   vz = − 1
r
∂ψ
∂r

1
r
∂ψ
∂z

∂(E2ψ)
∂r

− 1
r
∂ψ
∂r

∂(E2ψ)
∂z

− 2
r2

∂ψ
∂z

E2ψ − 2vθ

∂vθ

∂z
= 1

Re
E4ψ − Ri r ∂T

∂r

1
r
∂ψ
∂z

∂vθ
∂r

+
vθ
r

⎛
⎝⎜

⎞
⎠⎟
− 1
r
∂ψ
∂r

∂vθ
∂z

= 1
Re

∂2 vθ
∂r2

+ 1
r
∂vθ
∂r

−
vθ
r2

+
∂2 vθ
∂z2

⎛

⎝
⎜

⎞

⎠
⎟

1
r
∂ψ
∂z

∂Τ
∂r

− 1
r
∂ψ
∂r

∂Τ
∂z

= 1
RePr

∇2T

Lim
r→0

ψ(r,z)
r

⎡

⎣
⎢

⎤

⎦
⎥ = 0,    Lim

r→0

∂
∂r

1
r
∂ψ(r,z)

∂r
⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= 0,  vθ(0,z)=0, ∂T(0,z)

∂r
=0

ψ(1,z) = 0,   ∂ψ(1,z)
∂r

= 0,  vθ(1,z) = 0,      ∂T(1,z)
∂r

= 0

ψ(r,0) = 0,   ∂ψ(r,0)
∂z

= 0,  vθ(r,0) = −r,  T(r,0) = − 1
2

ψ(r,h) = 0,   ∂ψ(r,h)
∂z

= 0,  vθ(r,h) = 0,    T(r,h) = 1
2

E2 = ∂2

∂r2 −
1
r
∂
∂r

+ ∂2

∂z2 ,  

E4 = E2 E2( ) = ∂4

∂r4 −
2
r
∂3

∂r3 +
3
r2

∂2

∂r2 −
3
r3

∂
∂r

− 2
r

∂3

∂r∂z2 + 2 ∂4

∂r2 ∂z2 +
∂4

∂z4 ,  

∇2 = ∂2

∂r2 +
1
r
∂
∂r

+ ∂2

∂z2
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2.2. Solution methodology 

 

 The streamfunction formulation of the problem above, Eqs. (12) to (18), is solved by means of 

appropriate eigenfunction expansions. The details of the GITT approach are given as follows, as an 

extension to hybrid solutions previously implemented [31-40]. The GITT approach [31-40] is now 

applied in the solution of Eqs. (12) to (18), following previous developments on the hybrid integral 

transforms solution of the Navier-Stokes and energy equations in cylindrical coordinates [37-40]. 

Therefore, the respective eigenfunctions, eigenvalues, norms and orthogonality properties for each 

potential in the present problem are as follows: 

 
Streamfunction: 
 

  (20) 

  (21) 

  (22) 

 
 The general solution of the problem given by Eqs. (20) to (22) and the transcendental equation 

to compute the eigenvalues γi’s are expressed as: 

 

  (23) 

 
The eigenfunctions satisfy the following orthogonality property: 
 

  (24) 

 
Azimuthal velocity: 
 

  (25) 

  (26) 
 
 The eigenquantities are expressed as: 
 
  (27) 

  (28) 

d4Xi(r)
dr4

− 2
r
d3Xi(r)
dr3

+ 3
r2
d2Xi(r)
dr2

− 3
r3
dXi(r)
dr

= −γ i
2 d

2Xi(r)
dr2

− 1
r
dXi(r)
dr

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Lim
r→0

Xi(r)
r

⎡

⎣
⎢

⎤

⎦
⎥ = 0,    Lim

r→0

d
dr

1
r

dXi(r)
dr

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= 0

Xi(1) = 0,    
dXi(1)

dr
= 0

Xi(r) = r2 −
rJ1 γ ir( )
J1 γ i( ) ,  J2(γ i ) = 0,      for i=1,2,3,...

1
r

dXi(r)
dr

dX j(r)
dr0

1

∫ dr =
0,        i ≠ j
Li ,      i = j

⎧
⎨
⎪

⎩⎪
,   Li =

1
r

dXi(r)
dr

⎡

⎣
⎢

⎤

⎦
⎥

2

dr
0

1

∫ =
γ i

2

2

1
r
d
dr
r
dYi(r)
dr

⎡

⎣
⎢

⎤

⎦
⎥ −

1
r2

− λ i
2⎛

⎝⎜
⎞
⎠⎟
Yi(r) = 0

Yi(0) = 0,    Yi(1) = 0

Yi(r) = J1 λ ir( ),  J1 λ i( ) = 0,      for i=1,2,3,...

rYi(r)Yj(r)
0

1

∫ dr =
0,        i ≠ j
Mi,     i = j

⎧
⎨
⎪

⎩⎪
,  Mi = rYi

2(r)dr =
J0

2(λ i )
20

1

∫
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Temperature: 
 

  (29) 

  (30) 

 
 Similarly, the eigenquantities are expressed as: 
 
  (31) 

  (32) 

 
 Once the eigenvalue problem is fully defined the next step in the methodology is to determine 

integral transform pairs which will allow integral transformation of the partial differential equations in 

the streamfunction formulation of the problem. Therefore, the eigenvalue problems given by Eqs. (20) 

to (32) allow the following definitions: 

 

  (33) 

  (34) 

  (35) 

  (36) 

  (37) 

  (38) 

 
 The integral transformation of the problem is performed by multiplying the partial differential 

equations, Eqs. (12), (13) and (14), together with the boundary conditions, Eqs. (17) and (18), by Xi(r)/r, 

rYi(r), and r Gi(r), respectively, and then integrating over the domain [0,1] in the radial direction. The 

inverse formulae given by Eqs. (34), (36), and (38) are employed for the streamfunction, azimuthal 

velocity and temperature potentials, respectively. After some algebraic manipulations, the following 

system of coupled nonlinear ordinary differential equations (ODEs) for determining the transformed 

potentials, , , and , corresponding to the transformed streamfunction, azimuthal 

velocity component and temperature, respectively, is then obtained: 

 

1
r
d
dr
r
dΓ i (r)
dr

⎡

⎣
⎢

⎤

⎦
⎥ + µ i

2Γ i (r) = 0

dΓ i (0)
dr

= 0,    
dΓ i (1)

dr
= 0

Γ i (r) = J0 µ ir( ),   J1 µ i( ) = 0,      for i=1,2,3,...

rΓ i (r)Γ j(r)
0

1

∫ dr =
0,        i ≠ j
Ni ,     i = j

⎧
⎨
⎪

⎩⎪
,   Ni = rΓ i

2 (r)dr =
J0

2(µ i )
20

1

∫

ψ i (z) = − 1
Li

d
dr

1
r

dXi(r)
dr

⎡

⎣
⎢

⎤

⎦
⎥ψ(r,z)

0

1

∫ dr,           transform

ψ(r,z) = Xi(r)ψ i (z),
i=1

∞

∑                                  inverse

vθ,i (z) = 1
Mi

rYi(r)vθ(r,z)dr
0

1

∫ ,                      transform

vθ(r,z) = Yi(r)vθ,i (z)
i=1

∞

∑ ,                               inverse

Ti(z) = 1
Ni

rΓ i (r)T(r,z)dr
0

1

∫ ,                           transform

T(r,z) = Γ i (r)Ti(z)
i=1

∞

∑ ,                                   inverse

ψi (z) vθ,i (z) Ti(z)
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  (39) 

  (40) 

  (41) 

  (42) 

  (43) 

 
where the various coefficients are given by: 
 

 

 (44) 

  (45) 

  (46) 

  (47) 

  (48) 

  (49) 

 

 Once the transformed potentials are obtained, the inverse formulae are employed to derive the 

streamfunction, the azimuthal velocity component and temperature (Eqs. (34), (36), and (38)). For 

example, using the definition of the streamfunction (Eq. (11)) and the inverse transform, the axial and 

radial velocities can be expressed in terms of the transformed streamfunction, as follows: 

 

  (50) 

 
 A similar approach is followed to estimate other parameters of interest in this study such as the 

torque coefficient, the vorticity and the Nusselt number. Thus, the torque coefficient is defined as: 

Aij

d4ψ j(z)
dz4

j=1

∞

∑ = −
γ i

4

2
ψ i (z)+γ i

2 d2ψ i (z)
dz2 +Re Bijkψ j(z)

dψ k (z)
dz

⎡

⎣
⎢ +

k=1

∞

∑
j=1

∞

∑
⎧
⎨
⎪

⎩⎪

Cijk

dψ j(z)
dz

d2ψ k (z)
dz2 +Dijkψ j(z)

d3ψ k (z)
dz3

⎤

⎦
⎥
⎥
+ Eijkvθ, j(z)

dvθ,k (z)
dzk=1

∞

∑
j=1

∞

∑  +Ri Fij
j=1

∞

∑ Tj(z)
⎫
⎬
⎪

⎭⎪

d2vθ,i (z)
dz2

=λ i
2vθ,i (z)+Re G ijkvθ, j(z)

dψ k (z)
dz

+Hijk

dvθ, j(z)
dz

ψ k (z)
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥k=1

∞

∑
j=1

∞

∑

d2Ti(z)
dz2

=µ i
2Ti(z)+RePr IijkTj(z)

dψ k (z)
dz

+ Jijk
dTj(z)
dz

ψ k (z)
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥k=1

∞

∑
j=1

∞

∑

ψ i(0) = 0,   
dψ i(0)

dz
= 0,     vθ,i (0) = − fi,      Ti(0) = −

gi

2

ψ i(h) = 0,      
dψ i(h)

dz
= 0,     vθ,i(h) = 0,         Ti(h) =

gi

2

Aij=
Xi(r)X j(r)

r0

1

∫ dr,  Bijk= Xi(r)
X j

''' (r)
r2 −

3X j
'' (r)

r3 +
3X j

' (r)
r4

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
Xk (r)−

X j
' (r)Xk

'' (r)
r2 +

X j
' (r)Xk

' (r)
r3

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪0

1

∫ dr

Cijk = Xi(r)X j(r)
Xk

' (r)
r2 −

2Xk (r)
r3

⎡

⎣
⎢

⎤

⎦
⎥

0

1

∫ dr,    Dijk = −
Xi(r)X j

' (r)Xk (r)
r2

0

1

∫ dr

Eijk = −2
Xi(r)Yj(r)Yk (r)

r0

1

∫ dr,    Fij = Xi(r)Γ j
'

0

1

∫ (r)dr

G ijk =
1

Mi

Yi(r) Yj
' (r)+

Yj(r)
r

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥0

1

∫ Xk (r)dr,     Hijk = − 1
Mi

Yi(r)
0

1

∫ Yj(r)Xk
' (r)dr

Iijk =
1

Ni

Γ i (r)
0

1

∫ Γ j
' (r)Xk (r)dr,     J ijk = − 1

Ni

Γ i (r)
0

1

∫ Γ j(r)Xk
' (r)dr

fi =
1

Mi

r2Yi(r)
0

1

∫ dr,    gi =
1

Ni

rΓ i (r)
0

1

∫ dr

vr (r,z) =
Xi(r)

ri=1

∞

∑ dψ i (z)
dz

,   vz (r,z) = − 1
ri=1

∞

∑ dXi(r)
dr

ψ i (z)
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  (51) 

 
and by introducing the inverse formula, Eq. (36), for the vq velocity component into the definition, it 

can be expressed as: 

 

  (52) 

 
The azimuthal vorticity component is computed from its definition: 
 

  (53) 

 
and by introducing the inverse formula given by Eq. (34) it becomes: 
 

  (54) 

 
Finally, the local Nusselt numbers at the two lids are defined as 
 

  (55) 

 
and by making use of the inverse formula given by Eq. (38) they are expressed as follows: 
 

  (56) 

 
 The average Nusselt number is obtained by integrating the local Nusselt number either on the 

bottom or the top lid, thus 

 

  (57) 

 

 Once the streamfunction and angular velocity component fields have been determined from the 

solution of Eqs. (12) to (18), the relations of the radial and axial velocity components in terms of the 

streamfunction, Eqs. (11), can be recalled in terms of the inverse formula, Eq. (34), as given by Eqs. 

(50). Then, either through Eq. (2) or Eq. (3), the pressure field can be determined by substituting the 

relations for the three velocity components. In fact, since the analytical eigenfunction expansion is 

CT = 2 r
2 ∂vθ
∂z

z=00

1

∫ dr

CT = hi

dvθ,i (0)
dzi=1

∞

∑ ,      hi = 2 r2Yi(r)
0

1

∫ dr

ωθ =
∂vr
∂z

−
∂vz
∂r

= 1
r
∂2ψ
∂z2

+ 1
r
∂2ψ
∂r2

− 1
r2

∂ψ
∂r

ωθ ==
Xi(r)
r
d2ψ i (z)
dz2

+ 1
r
d2Xi(r)
dr2

ψ i (z)−
1
r2
dXi(r)
dr

ψ i (z)
⎡

⎣
⎢

⎤

⎦
⎥

i=1

∞

∑

Nu0(r) = ∂T
∂z z=0

,     Nuh (r) = ∂T
∂z z=h

Nu0(r) = Γ i (r)
dTi(0)

dzi=1

∞

∑ ,     Nuh (r) = Γ i (r)
dTi(h)

dzi=1

∞

∑    

Nui = 2 rNui(r)
0

1

∫ dr,       i=0 or h   
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proposed in the radial direction, it is more appropriate to employ Eq. (2) in determining the pressure 

field, since an analytical integration in the radial direction can be achieved exactly. 

 A computational code in Fortran 2003 was developed and implemented to solve the coupled 

system of ODEs given by Eqs. (39) to (43) making use of the DBVPFD subroutine from the IMSL 

Library [41]. The system is truncated to a sufficiently large number of terms (NF for the streamfunction, 

NV for the azimuthal velocity, and NT for the temperature), in order to reach a prescribed overall 

relative error in obtaining the original potentials. The characteristic of this subroutine is that it solves a 

(parameterized) system of ordinary differential equations with boundary conditions at two-points using 

a variable order, variable step-size finite difference method with deferred corrections. It also provides 

the important feature of automatically controlling the relative error in the solution of the system of 

ODEs, thus allowing the user to establish error targets for the transformed potentials. 

 A relative error target of 10-4, which represents four significant digits for the transformed 

potentials, was prescribed in this study. A careful analysis of the convergence behavior of the results 

revealed that a number of terms in the expansions of N=NF=NV=NT=90 was sufficient to guarantee at 

least three converged significant digits for the velocity and temperature fields. In this hybrid integral 

transform method, the only numerical task is to solve the system of coupled ordinary differential 

equations. In the present work, as mentioned before, we have used the subroutine DBVPFD from the 

IMSL Library [41]. The number of points in the mesh is a function of the governing parameters, mainly 

the Reynolds number. The mesh size is in fact not imposed, but is achieved to satisfy the adaptive error 

control, from the user prescribed relative error. A summary of the grid sizes achieved in the present 

work is shown in Table 1. 

 We focus on three combinations of Reynolds number and aspect ratio; Re = 1492, h = 1.5 in 

Section 3.2.1; Re = 2126, h = 2.5 in Section 3.2.2; and Re = 3061, h=3.5 in Section 3.2.3. These 

parameters are chosen to match previous experimental work by Escudier [6], who showed that they 

corresponded to different regimes of vortex breakdown, with one, two and three recirculation bubbles, 

respectively. In each case, Escudier showed that the flow was laminar, 2D and axisymmetric, which is 

consistent with our formulation (Section 2). It should be noted that in the h-Re regime map calculated 

by Sorensen et al. [11], our highest Reynolds number case lies just above the regime boundary for 

unsteady flow, which cannot be captured by our model. However, we note that our results are consistent 

with the observations of Escudier [6] (as will be discussed in Section 3.1), and that as the Richardson 

number is increased, the thermal gradient and associated layering of the fluid are expected to oppose 

the onset of three-dimensionality and unsteady behavior.  

 In all cases, the Prandtl number was fixed at Pr=1. At this point, it is important to mention that 

taking Pr=1, and considering the employed combinations of dimensionless parameters, Re=1492, 2126, 

and 3061, h=1.5, 2.5, and 3.5 and Ri=0, 0.01, and 0.1, the largest value for the Grashof number is about 

0.937x107, which corresponds to the largest values of Re (=3061) and Ri (=0.1). Considering the 

kinematic viscosity and expansion coefficient of air at T*=25oC, for instance, the temperature difference 
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between the lids can be computed as a function of the cylinder radius, being 55.6oC, 6.96oC and 0.87oC, 

for radii of 5, 10 and 20 cm, respectively, illustrating the importance of the cylinder geometry in 

inducing the mixed convection effects. 

 

3. Results 
 
3.1. Validation and verification of the technique 
 

 In order to confirm the ability of our approach to accurately capture the physics of the problem, 

results obtained for three cases, representing different forms of steady state vortex breakdown (VB) are 

compared to flow visualization experiments of Escudier [6]. These are: single bubble VB case, Re = 

1492, h = 1.5 (Fig. 2(a)); double bubble VB case, Re = 2126, h = 2.5 (Fig. 2(b)); and triple bubble VB 

case, Re = 3061, h = 3.5 (Fig. 2(c)). The Richardson number is zero in all cases, indicating the absence 

of buoyancy forces. It can be seen that the GITT methodology implemented in this study is capable of 

reproducing not just the number of breakdown bubbles present in the flow, but also their length and 

axial location of the bubbles within the flow. 

 The present GITT results were further validated by comparing the average Nusselt numbers 

against numerically computed ones from the work of Omi and Iwatsu [21], that used a finite-difference 

scheme for the same mixed convection problem analyzed herein. Figure 3 shows the variation of Nusselt 

number as a function of the Richardson number for the case of Re = 1000 and h = 2; good agreement 

between the present results and those in [21] can be observed  providing confidence that the GITT 

technique can be fully utilized to further explore the physics of non-isothermal flows in the same 

systems. 

 In the following sections, the effect of temperature gradients on the flow are explored for each 

of these three cases. 

 

3.2. VB suppression and buoyancy induced flow transitions 

 

3.2.1. Single VB case (Re = 1492, h = 1.5) 

 

 The effects of thermal gradients on the simplest case of vortex breakdown – a single, 

axisymmetric bubble – are shown in Fig. 4 for Re = 1492, h = 1.5 and four cases of Ri = 0, 0.01, 0.02 

and 0.1. The Ri = 0 case (base flow) corresponds to a complete decoupling of the velocity and 

temperature fields, in which no natural convection takes place. In the absence of any rotation of the 

bottom plate (i.e. for Re = 0), the temperature field would vary linearly from the top to the bottom with 

horizontal isotherms and the velocity field would be zero, as a pure heat conduction problem. However, 

in Fig. 4(a) the rotation of the bottom plate imparts angular velocity and a centrifugal force to the fluid 

near z = 0, and this force pushes the fluid radially outward. As the fluid reaches the cylinder walls it is 
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diverted upward, producing jets near |r| ≳ 0.75, with a broad return flow in the central region of the 

cylinder. The upward jets and the return flow result in the characteristic flow structure of centrifugal 

systems, with an axial vortex core aligned along the cylinder axis. This undergoes a breakdown, with a 

single bubble present at z = 1. 

 The downward flow in the center of the cylinder drags down hot fluid, as can be seen in the 

temperature field in Fig. 4(a,ii). This occurs in the absence of buoyancy forces (Ri = 0); however, when 

Ri > 0, the buoyancy forces act to oppose the return flow (and likewise to suppress the upward jets near 

the cylinder walls). This effect can be seen in Figs. 4(b) and 4(c), where there is a weakening of the 

magnitude of the streamfunction both in the jets and near the central axis. The buoyancy force also 

causes the isotherms near the top plate to become more horizontal, as the weaker return flow near the 

cylinder axis drags less fluid downward. This weakening of the downward flow also reduces the size 

of the vortex breakdown bubble at Ri = 0.01 and, by Ri = 0.02, VB is completely suppressed. 

 When the relative effects of free convection are increased further (Ri = 0.1, Fig. 4(d)), the 

buoyancy forces acting on the hot fluid near the top of the domain are so strong that the inertia forces 

arising from the motion of the bottom plate cannot drag the fluid downward and the flow is divided into 

a “two cells” structure. Below z ≈ 1.25, the streamfunction, temperature and vorticity fields are similar 

to those for the “single cell” cases (Figs. 4(a-c)), except that they appear compressed vertically into the 

region z < 1.25. Above this point, a counter-rotating toroidal vortex exists, which has a much smaller 

magnitude than the flow that occurs below (Fig. 4(d,iii)). Within this upper layer (z ≳ 1.25), the 

isotherms are close to horizontal, indicating the dominance of conduction over convection. 

 The azimuthal vorticity fields (bottom row of Fig. 4) for all three cases examined are dominated 

by the high magnitude (negative) vorticity near the bottom plate (which also has a negative rotation 

speed, ωb < 0) and two “arms” near the cylinder walls which correspond to the upward jets, which also 

have a negative radial velocity due to their recent presence at the rotating bottom plate. In Fig. 4(a,iii), 

two lobes of positive vorticity can be seen near the location of the vortex bubble at z ≈ 1; as Ri is 

increased and the vortex breakdown is suppressed, these lobes are weakened and are shifted downward 

(Figs. 4(b,iii) and 4(c,iii)). As the Richardson number is increased and the return flow is suppressed, 

the magnitude of the vorticity at the upper plate is reduced, which implies a reduction in the magnitude 

of the stresses and torque acting on this surface. The effect of Ri on the torque coefficient will be 

discussed in detail in Section 3.3. 

 In order to explore the transition from a single layer to a double layer flow structure near Ri = 

0.1 and to investigate whether further transitions occur, an additional series of simulations were 

performed spanning the range Ri = 0.03 – 1, which are summarized in Fig. 5. As the Richardson number 

is increased from Ri = 0.02 to 0.03 (Figs. 5(b) and 5(c)), the buoyancy forces acting on the hot fluid 

near the upper surface cause a small toroidal region of counter-flow to form, which in the rz-plane 

manifests as two lobes centered at |r| ≈ 0.3 in Fig. 5(c). This region grows in size as the Richardson 

number is increased further, until it occupies the entire upper part of the cylinder (Ri = 0.1, Fig. 5(d)). 
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Interestingly, a further increase in Ri to 0.15 (Fig. 5(e)) causes a new region of flow to form at the upper 

plate by the cylinder walls (|r| ≳ 0.5), which has an opposite rotation direction (in the meridian plane) 

to that of the counter flow regions that appeared for Ri = 0.03 and 0.1 (and the same rotational direction 

as the flow in the lower half of the cylinder). By Ri = 0.2 (Fig. 5(f)), this new region of counter flow 

has grown to occupy the entire flow domain near the top plate (i.e. for z ≳ 1.3), leading to a three-layer 

flow structure. Further increases in Ri (Figs. 5(g) and 5(h)) lead to the formation of additional regions 

of counter flow and additional fluid layers. 

 

3.2.2. Double VB case (Re = 2126, h = 2.5) 

 

 In Fig. 6 the effect of Richardson number is explored for a case in which a two-bubble vortex 

breakdown occurs. The two bubbles can clearly be seen in Fig. 6(a), centered along the cylinder axis at 

z ≈ 1.1 and 1.85. As in the single breakdown case (Re = 1492, h =1.5), two strong upward jets are visible 

near the cylinder walls. A small increase in the Richardson number to Ri = 0.005 (Fig. 6(b)) causes the 

vortex breakdown bubbles to shrink and elongate, and by Ri = 0.01 (Fig. 6(c)) they have merged to 

form a single long bubble. In the colorful terminology of Lugt and Abboud [9], an ‘onion’ bubble and 

an ‘egg’ bubble (Ri = 0) have transitioned to two ‘egg’ bubbles (Ri = 0.005) and finally merged to form 

a ‘cucumber’ bubble (Ri = 0.01). 

 When the Richardson number is increased to Ri = 0.015 (Fig. 6(d)), the buoyancy forces cause 

small regions of counter flow to form at the upper plate (as was seen for Re = 1492, Ri = 0.03 in Fig. 

5(c)); however, in this case these regions have merged with the nearby vortex breakdown bubble. As in 

the previous case, further increases in Ri cause this new fluid region to occupy the entire upper plate 

and the transition to a multi-layered flow pattern (Ri = 0.05, Fig. 6(e)). Increasing the Richardson 

number further leads to the formation of additional layers (Figs. 6(f-j)), although not all of the newly 

formed layers extend all the way from the cylinder walls to the central axis. At high Richardson number 

(Ri = 1, Fig. 6(j)), the various regions of counter flow at the upper half of the cylindrical container 

become indistinct, and the flow appears to revert to a structure with less layers. 

 

3.2.3. Triple VB case (Re = 3061, h = 3.5) 

 

 Finally, we analyze the effects of buoyancy forces for a case of vortex breakdown with three 

bubbles at Re = 3061, h = 3.5 (Fig. 7). In the absence of any buoyancy forces (Fig. 7(a)), three bubbles 

are present at z ≈ 1.4, 2 and 2.8, with the lower two vortices very close to each other. At a very low 

Richardson number (Ri = 0.001, Fig. 7(b)), these vortices merge, with the third bubble at z ≈ 2.8 

weakened slightly. By Ri = 0.005 (Fig. 7(c)) all three bubbles have merged into a single one. Similar to 

what was observed in the previous section, a further increase in Ri causes the growth of regions of 

counter rotating flow at the upper plate (Ri = 0.007, Fig. 7(d)) which merge with the vortex breakdown 
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bubble (Ri =0.03, Fig. 7(e)), leading to the formation of new fluid layers. Ultimately as Richardson 

number is increased to Ri = 1, these layers begin to merge with each other as in the case of the two 

bubbles. 

 Figure 8 summarizes the change in the number of fluid layers for the three cases discussed 

above. The number of layers was evaluated by identifying the recirculation zones occupying a specific 

portion of the cavity flow. In all cases, at Ri = 0, the flow is characterized by a single flow cell (one 

layer) which increases smoothly as Ri is increased. A very weak effect of buoyancy (Ri < 0.4) is 

sufficient to induce a multi-layered flow pattern. The number of layers seems to be dependent on the 

type of VB in this Ri range. However, overall Ri has a non-monotonic effect on flow structure, with an 

increase in Richardson number above approximately 0.3 leading to a slight reduction in number of 

layers formed, as the latter start to become indistinct. 

 It is clear that for the limiting case of Ri/Re®0, the flow will be entirely stable and will 

therefore contain a single layer (in this case of stagnant fluid), as occurs for Ri = 0. Therefore, further 

increases in the Richardson number beyond Ri = 1, when Re is held constant, can be expected to lead 

to a gradual reduction in the number of layering.  

 

3.3. Effect of flow structure on torque, azimuthal velocity and heat transport 

 

 Two key parameters in the performance of the system are the torque acting on the upper plate 

and the heat flux through this plate, which are expressed in terms of the torque coefficient, Eq. (52), 

and the average Nusselt number, Eq. (57), respectively. The variation in the torque coefficient with Ri 

for each of the three cases is shown in Fig. 9(a). Although the absolute values of CT depend on both Re 

and h, in all three cases CT declines smoothly with Ri. The reduction in CT with respect to the value at 

Ri = 0 can be described using the empirical equation 

 

  (58) 
 

as indicated by the black line in Fig. 9(b). This relationship holds regardless of how many layers are 

present in the flow, indicating that these transitions have a very weak effect on the shear stresses acting 

on the upper plate. However, Eq. (58) does not provide information on how the rotating flow varies 

within the domain. In order to characterize this variation, the absolute value of the mean azimuthal 

velocity component, v!,# = 2∫ rv!dr$
% , is plotted as a function of axial location in Fig. 10 for the 

sample case of Re = 3061, h= 3.5 (which corresponds to the flow fields presented in Fig. 7). At low 

Richardson number (Ri = 0 and 0.005), the streamlines in Fig. 7(a) and 7(c) show that a triple and single 

vortex breakdown bubble are present; these bubbles do not appear to have a significant effect on the 

azimuthal velocity profiles in Fig. 10, which exhibit only small, barely noticeable variations at the points 

CT −CT,Ri=0 = −1.52Ri0.583
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where the bubbles occur. Apart from these small fluctuations, the profiles are steep at either plate (z = 

0 and 3.5), and between these boundaries the profiles vary smoothly. 

 As the Richardson number is increased to 0.03 (Fig. 7(e)), the flow transitions to a layered state, 

with the layering occurring near z = 2.8. This point coincides with a sudden reduction in the mean 

azimuthal velocity (green line in Fig. 10). Likewise, for Ri = 0.1 and 1, layering extends to depths of z 

≈ 2 and 1 (Fig. 7(g) and 7(j)), respectively, which correspond to clear inflection points in the 

corresponding angular velocity profiles in Fig. 10. This result indicates that in the absence of layering 

the mean azimuthal velocity varies smoothly throughout the vessel and is only weakly affected by 

vortex breakdown; however, the transition to a layered state has a very large effect, leading to an 

exponential decline with distance from the rotating plate. Fig. 10 suggests that in terms of the operation 

of rotating machinery in the presence of temperature gradients, the layering state is likely to have a 

significantly greater impact on performance compared to vortex breakdown. 

 The variation in the average Nusselt number with Richardson number is shown in Fig. 11 for 

all three cases. A positive Nusselt number indicates heat flowing into the fluid from the top plate. The 

Ri = 0 case here corresponds to completely decoupled temperature and velocity fields (rather than 

simply an isothermal case). As was discussed previously, increasing Ri causes the plate-driven 

convection to be opposed by the buoyancy forces, and the flow tends to develop a fluid layered structure. 

The point at which layering occurs coincides with a sharp reduction in , as the weak flow in the 

fluid layer near the upper plate acts as an insulating layer, restricting heat transfer. Figure 11 indicates 

that the critical Richardson number at which layering occurs and heat transfer is restricted increases 

with Re and h. 

 Our results indicate that Re and h play an important role in the heat flux through swirling flows 

in enclosed geometries and by controlling the presence or absence of fluid layering, the heat transfer 

performance can be optimized, depending on the requirements of the system. 

 

4. Concluding remarks 

 

 The effect of thermal gradients on the vortex breakdown in the flow in a cylindrical container 

with a rotating bottom plate was examined using the GITT approach. The streamfunction formulation 

was employed and the problem was solved for imposed temperature differences acting in the opposite 

direction to the base flow. Different aspect ratios, Re and Ri numbers were examined in order to capture 

three cases of vortex breakdown (exhibiting a single, double and triple bubbles respectively) and 

explore the stabilizing effect of buoyancy forces. 

 The GITT approach was able to capture the different vortex breakdown phenomena reported in 

the literature for the isothermal case and allowed flow transitions to be explored for a wide range of 

Richardson numbers. In all three cases investigated, increasing the magnitude of the buoyancy forces 

Nu
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resulted in the suppression of vortex breakdown and at sufficiently high Richardson numbers, led to the 

onset of a layered fluid structure. The stratification was attributed to the opposing actions of the 

(destabilizing) centrifugal forces and the (stabilizing) buoyancy forces. In the case of double and triple 

breakdown, the suppression of vortex breakdown occurred through a gradual merging process and the 

emergence of a counter rotating flow near the top plate. The number of these counter rotating layers 

gradually increased with Ri and the layers occupied more of the fluid domain, until a critical Richardson 

number was reached, after which further increases in Ri lead to the merger of layers. 

 The impact of these flow transitions on the torque coefficient, mean angular velocity profiles 

and Nusselt number was examined. It was found that the change in the torque coefficient relative to the 

base (isothermal) case (Ri = 0) scales with Ri in a power law relationship, regardless of the Reynolds 

number, aspect ratio or the number of fluid layers present. Outside the stratified region of the flow and 

the vicinity of the solid walls, the mean angular velocity varies smoothly between bottom and upper 

plate and is only weakly affected by the presence of vortex breakdown. However, in the stratified region, 

the magnitude of the angular velocity declines exponentially with distance from the lower plate, 

indicating that layering has a stronger effect on the transport of angular velocity compared to the more 

well-studied phenomenon of vortex-breakdown. The heat transfer coefficient was also found to 

decrease sharply upon the onset of the layering structure implying that the latter acts to insulate the top 

plate. 

 The study demonstrates that thermal gradients can control the flow in rotating equipment and 

have the potential to reduce power requirements albeit at the expense of heat transfer. Hence, the 

performance of such systems needs to be optimized for a given application. The GITT approach 

implemented in this study is very amenable to optimization problems due to its hybrid numerical-

analytical nature and its efficiency relative to purely numerical techniques. This feature is inherent to 

hybrid numerical-analytical approaches, such as in the broad class of spectral methods, since the time 

consuming and approximate numerical task is associated with one single independent variable. Besides, 

the obtained hybrid solution can be exactly operated in those variables that have been eliminated 

through integral transformation, without any further approximation related to numerical differentiation 

or integration, and can be computed at specific positions and regions directly employing the inverse 

formulae, without requiring the numerical computation of the solution at a full mesh of nodes covering 

the entire physical domain. For the current problem, optimization in terms of either torque coefficient 

or heat transfer can be easily implemented through the corresponding analytical expressions derived 

(Eqs. (52) and (57), respectively). 

 It should be recalled that the present findings were based on two-dimensional simulations that 

assume the flow to be axisymmetric. However, the GITT methodology can be extended to explore the 

non-axisymmetric instabilities (i.e. 3D, unsteady breakdown) and their interaction with mixed 

convection. 
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Table 1 
Number of the grid points in the final mesh obtained with the subroutine DBVPFD from the IMSL 
Library [41].  

Test Case Ri=0 Ri=0.1 Ri=1 
Re=1492, h=1.5 NFinal=203 NFinal=203 NFinal=323 
Re=2126, h=2.5 NFinal=425 NFinal=425 NFinal=425 
Re=3061, h=3.5 NFinal=222 NFinal=254 NFinal=405 

NFinal=Number of grid points. 
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Figure Captions: 

 

Fig. 1. Geometric configuration of the mixed convection heat transfer problem in a cylindrical cavity 

with the rotating bottom end. 

Fig. 2. Validation of the present GITT results (left) against the flow visualizations of Escudier6 (right): 

(a) Re=1492 and h=1.5; (b) Re=2126 and h=2.5; (c) Re=3061 and h=3.5. 

Fig. 3. Verification of the present GITT results for the average Nusselt number against the numerical 

results of Omi and Iwatsu [21] for Re=1000 and h=2. 

Fig. 4. Isolines of streamfunction, temperature and azimuthal vorticity for different Richardson numbers 

and Re=1492 and h=1.5: (a) Ri=0; (b) Ri=0.01; (c) Ri=0.02; (d) Ri=0.1. 

Fig. 5. Flow transitions for progressively increasing Richardson numbers for the single bubble VB case 

(Re=1492 and h=1.5). 

Fig. 6. Flow transitions for progressively increasing Richardson numbers for the double bubble VB case 

(Re=2126 and h=2.5). 

Fig. 7. Flow transitions for progressively increasing Richardson numbers for the triple bubble VB case 

(Re=3061 and h=3.5). 

Fig. 8. Effect of Richardson number on the number of flow stratification layers formed. 

Fig. 9. Effect of Richardson number on the torque coefficient: a) variation of torque coefficient in the 

three VB cases with Ri; b) reduced torque coefficient with an empirical power law fit for all cases. 

Fig. 10. Distribution of absolute value of the mean azimuthal velocity, for the triple bubble VB case 

(Re = 3061, h = 3.5). The profiles correspond to the flow fields shown in Fig. 7. 

Fig. 11. Effect of the Richardson number on the average Nusselt number. 
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Fig. 5. 
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Fig. 5. Continued.  
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Fig. 6. 
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Fig. 6. Continued.  
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Fig. 7. 
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Fig. 7. Continued. 
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Fig. 8. 
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Fig. 9. 
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