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Abstract

We dualise Majid’s double bosonisation to find a construction of coquasitriangular Hopf

Bop>/·A·.<B∗ which we call codouble bosonisation, whereB is a finite-dimensional braided

Hopf algebra living in the category of comodules over coquasitriangular Hopf algebra

A. We then construct a reduced quantum coordinate algebra cq[SL2] at q primitive

n-th of unity by codouble bosonisation and find new generators for cq[SL2] such that

their monomials are essentially a dual basis to the standard PBW basis of the reduced

Drinfeld-Jimbo quantum enveloping algebra uq(sl2). Our methods apply in principle for

general cq[G] as we illustrate for the case of cq[SL3] at certain odd roots of unity.

We also introduce a method of finding differential calculi on double cross product A./H,

biproduct A·.<B, and bicrossproduct AI/H Hopf algebras by constructing their super

version. We apply our method to construct the natural differential calculus on the gen-

eralised quantum double D(A,H) = Aop./H such that the resulting exterior algebra

acts differentiably on H, and on the double coquasitriangular Hopf algebras A./RA such

that the resulting exterior algebra acts and coacts differentiably on A. We also con-

struct Ω(Cq[GL2.<C2]) for the quantum group of affine transformation of the plane and

Ωλ(Poinc1,1) for the bicrossproduct Poincaré group in 2 dimensions such that the result-

ing exterior algebras are strongly bicovariant and coact differentiably on the canonical

comodule algebras associated to these inhomogeneous quantum groups.
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Chapter 1

Introduction

Research on Hopf algebras has a long history, starting with Hopf [13] in his study of

H-spaces in algebraic topology. The term ‘Hopf algebras’ began to be used in late 1960s

with the publication of the book of Sweedler [45]. Early examples of Hopf algebras include

group algebras kG and enveloping algebras U(g) associated to complex semisimple Lie

algebras g and in early times Hopf algebras were mainly used as a tool to unify group

and Lie algebra constructions.

More interesting early examples are the Sweedler-Taft algebra [45] Uq(b+) and Uq(sl2)

[44] since these are not only non-commutative, but also non-cocommutative. They can

be viewed as deformations of U(b+) and U(sl2) respectively, where b+ is a positive

Borel subalgebra of sl2. The theory became particularly important in the late 1980s

when Drinfeld [11] and Jimbo [15] independently found a deformation of the enveloping

algebra, denoted by Uq(g), for all complex semisimple lie algebras g. Moreover, the

noncocommutativity of Uq(g) is controlled by an element R ∈ Uq(g) ⊗ Uq(g) if we are

working over formal series C[[t]], which turns out to be a solution of the quantum Yang-

Baxter equation. Drinfeld introduced the notion of such quasitriangular Hopf algebras

(H,R) with suitable axioms for R. He also introduced the quantum double D(H), at

least if H is finite-dimensional, which is nontrivially quasitriangular.
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Chapter 1. Introduction 9

The discovery of quantum groups Uq(g) opened a new role of Hopf algebras in knot theory

and algebra, such as Luzstig’s construction of quantum groups by ‘divided powers’ [16]

and their finite-dimensional quotients uq(g) at q a primitive n-th root of unity [14]. There

are also corresponding ‘coordinate algebra’ Cq[G] which are quotients of a bialgebra A(R)

due to Faddeev, Reshetikhin, and Takhtajan [12] in the 1980s, and in principle reduced

finite-dimensional quotients cq[G], best understood for specific cases [9]. Coming from

a non-commutative geometry point of view was another class of quantum groups in the

1980s [23], the bicrossproduct Hopf algebras initially as quantisation of classical phase

space and later also developed as quantum symmetry of ‘non-commutative spacetime’

algebras [36].

Many models of quantum geometries and their symmetries were explored in the 1990’s.

However, in many cases the more relevant structure was not necessarily a Hopf algebra.

For example the 2-dimensional quantum-braided plane C2
q has relation yx = qxy and

primitive coproduct ∆x = 1⊗x+x⊗ 1, similarly for ∆y. One can check that C2
q in this

setting is not a Hopf algebra, but rather a braided Hopf algebra [24, 31] as first introduced

by Majid. The idea of braided Hopf algebras is to quantise the tensor product of algebras

rather than just the algebra itself, i.e. for algebras B,C, its tensor product algebra B⊗C

has product

(b⊗ c)(a⊗ d) = bΨ(c⊗ d)a,

for all a, b ∈ B and c, d ∈ C, and braiding Ψ : C ⊗ B → B ⊗ C. Formally, we define a

braided Hopf algebra B to be an algebra and coalgebra in a braided monoidal category

C, where the unit element is viewed as a morphism η : 1 → B from the unit object,

and the product, counit, coproduct and antipode are morphisms such that they have the

similar axioms as a Hopf algebra but with the braiding Ψ on B ⊗B.

One of the main results in braided Hopf algebras is bosonisation [26], which is a method

to construct an ordinary Hopf algebra from a braided Hopf algebra living in the cate-

gory of (co)modules over a (co)quasitriangular Hopf algebra. Moreover, in [28] Majid

introduced double bosonisation which associates to each finite-dimensional braided Hopf
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algebra B living in the category of modules over a quasitriangular Hopf algebra H, a

new quasitriangular Hopf algebra

B∗cop>/·H·.<B =: DH(B),

where the second notation has also been used in the literature in line with the view of

this in [29] as the closest one can come to the bosonisation of a ‘braided double’ of B (the

latter does not itself exist in the strictly braided case). Majid also proved that quantum

groups Uq(g) can be constructed inductively by double bosonisation.

In spite of some extensive literature on Uq(g) or its reduced finite-dimensional case uq(g)

at primitive n-th root of unity, one problem which has been open even for the simplest

case of uq(sl2) is a description of the dual basis of cq[SL2] in terms of the generators and

relations. Here uq(sl2) has generators F,K,E with the relations of Uq(sl2) and addition-

ally En = Fn = 0,Kn = 1 and can be constructed for n odd by double bosonisation

as uq(sl2) = (c1q)
∗cop>/·CZn·.<c1q , where c1q is the reduced braided line. Double bosoni-

sation also gives the PBW basis {F iKjEk}0≤i,j,k<n of uq(sl2). The dual Hopf algebra

cq[SL2] is a quotient of Cq[SL2] with its standard matrix entry generators a, b, c, d, and

the additional relations an = dn = 1, bn = cn = 0 to give a Hopf algebra extension

C[SL2] ↪→ Cq[SL2]� cq[SL2].

This cq[SL2] has an obvious monomial basis {biajck} but its Hopf algebra pairing with

the PBW basis of uq(sl2) is rather complicated and does not form a dual basis even up

to normalisation. Knowing a basis and dual basis is equivalent to knowing the canon-

ical coevaluation element, which has many applications including Hopf algebra Fourier

transform.

In this thesis, I solve the dual basis problem for cq[SL2] at q a primitive odd root of

unity. This is now published in a joint work [2]. My approach to the dual basis problem

is to work out the dual version of double bosonisation or codouble bosonisation and use
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this to construct cq[SL2] in the dual form

Bop>/·A·.<B∗ =: coDA(B),

where each tensor factor pairs with the corresponding factor on the uq(sl2) side. This

dual version of double bosonisation is in Chapter 3 and is conceptually given by reversing

arrows in the original construction, but in practice takes a great deal of care to trace

through all the layers of the construction. We will find new generators x, t, y of cq[SL2]

such that normalised monomials {xitjyk} are essentially a dual basis in the sense of being

dually paired by

〈xitjyk, F i′Kj′Ek
′〉 = δii′δkk′q

jj′ [i]q−1 ![k]q!,

where [i]q etc. are q-integers.

In general, we can construct uq(slk) = ck−1
q >/· ˜uq(slk−1)·.<ck−1

q and similarly its dual

version cq[SLk] = ck−1
q >/· ˜cq[SLk−1]·.<ck−1

q . We will illustrate this for uq(sl3) and cq[SL3]

for some n in Chapter 4. There are also choices which do not have classical limit as we

illustrate in this thesis with A = Cq[GL2] not finite-dimensional, q generic and B = C0|2
q

the ‘fermionic braided plane’ in the category of A-comodules. This leads to an exotic

but still coquasitriangular version of Cq[SL3] with some matrix entries ‘fermionic’.

After constructing quantum groups which can be regarded as quantum geometries, one

could also study their noncommutative differentials using the tools of Hopf algebras. This

is a different approach to the ‘Dirac operator’ approach by Connes [10], where in our case

we start with differential structures on quantum groups or Hopf algebras and associated

comodule algebras, expressed in the form of a differential graded algebra (DGA), see for

instance [7, 20, 21]. Having at least 1-forms Ω1 and 2-forms Ω2, we can construct basic

elements of Riemannian geometry such as metrics, connections, curvature and torsion

which are all defined algebraically on the DGA.

A fundamental issue here is that in general, there will be many Ω1 and Ω2 on a given
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Hopf algebra even if we demand left and right translation invariance (i.e., bicovariance).

The only general result here remains that of Woronowicz [47] that bicovariant Ω1 cor-

respond to (say) right ideals of the augmentation ideal stable under the right adjoint

coaction. This, however, only translates the problem. If the Hopf algebra is coquasitri-

angular then a general classification was obtained in [5, 32] in terms of the irreducible

corepresentations, but for other types of Hopf algebras there are no such general results.

In particular for inhomogeneous quantum groups, there are many ideals and natural

differential structure are not usually known.

Here, in Chapter 5 – 7, we provide a different approach from Woronowicz that works for

inhomogeneous quantum groups. This work is based on a joint paper [3]. My approach

does not classify all calculi but rather selects out a natural calculus with the property

that the inhomogeneous quantum group coacts or acts differentiably on the canonically

associated comodule or module algebra. This is covered in four flavours : double cross

product Hopf algebras A./H where A right-acts on H and simultaneously H left-acts

on A, double cross coproduct HIJA where H right-coacts on A and simultaneously A

left-coacts on H, bicrossproduct AI/H where H left-acts on A and A right-coacts on H

[19, 23], and biproduct or bosonisation A·.<B.

We start with the notion of a strongly bicovariant exterior algebra Ω(A) introduced

recently in [39]. We recall that a DGA on Hopf algebra A means Ω(A) = ⊕iΩi a graded

algebra with a graded derivation d with d2 = 0, and we say Ω is an exterior algebra

if it is generated by Ω0 = A and Ω1 = AdA. This is strongly bicovariant if Ω(A) is

a super-Hopf algebra with coproduct ∆∗ (say) with ∆∗|A = ∆ the coproduct of A in

degree zero and d is a graded coderivation in the sense

∆∗d = (d⊗ id + (−1)| |id⊗ d)∆∗

where (−1)| |ω = (−1)|ω| for ω of degree |ω|. It was shown in [39] that the canonical

exterior algebra due to Woronowicz [47] of a first order bicovariant calculus is strongly
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bicovariant with ∆∗|Ω1 = ∆L+∆R in terms of the coactions on Ω1 induced by ∆ (that the

Woronowicz construction gives a super-Hopf algebra here was already known [8] while

the supercoderivation property was new). Conversely, if Ω(A) is strongly bicovariant

then ∆∗|Ωi ⊂ (A⊗Ωi)⊕· · ·⊕ (Ωi⊗A) recovers the left and right coactions on each Ωi as

the outer components, making Ω(A) bicovariant as a left and right comodule algebra, but

contains a lot more information in the intermediate components. It is natural to add to

this the idea that an algebra B with a calculus Ω(B) has a right coaction ∆R : B → B⊗A

that extends to ∆R∗ : Ω(B)→ Ω(B)⊗Ω(A) as a super comodule algebra. Such ∆R is said

to be differentiable. This is used in [7] in a different context from this thesis, namely in the

theory of quantum principal bundles and fibrations, but we use this notion to construct

Ω(B) if Ω(A) is given. We will also need the notion of an A acting differentiably on B

to make Ω(B) a super Ω(A)-module algebra which we introduce in Chapter 5.



Chapter 2

Preliminaries

We recall the notations and facts about Hopf algebras as can be found in several texts,

for example in [1, 14, 45], but we mostly follow [19, 20]. In particular, we focus on

the concepts of quasitriangular Hopf algebras as first introduced by Drinfeld [11], and

its dual notion of coquasitriangular Hopf algebras. We also recall the notion of Hopf

algebras in a braided monoidal category, or braided Hopf algebras [24, 31] and discuss

biproduct Hopf algebras or bosonisation [19, 20, 26]. Finally we also recall the definition

and some properties of differentials on Hopf algebras, which can be found for example

in [7, 21], as well as the less well-known notion of strongly bicovariant calculus [39].

We work over a ground field k. By ‘vector space’ we mean a vector space over k. The

tensor product of two spaces V ⊗W is understood to be over k. All maps here are linear

maps.

14
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2.1 Hopf algebras

2.1.1 Definition and basic properties

Recall that a (unital and associative) algebra (A, ·, η) means a vector space A equipped

with a multiplication as a map · : A⊗A→ A and a unit as a map η : k → A satisfying

· (id⊗ ·) = · (· ⊗ id), ·(id⊗ η) = id = ·(η ⊗ id).

One can recover the usual unit of A as 1A = η(1k) where 1k is the unit of k, and if there

is no confusion, we will write 1 for the unit of an algebra.

If A and B are algebras, then a map f : A → B is an algebra map if it satisfies

f(ab) = f(a)f(b) and f(1) = 1. The tensor product A ⊗ B is also an algebra with

product and unit

·A⊗B = (·A ⊗ ·B)(id⊗ flip⊗ id), ηA⊗B = ηA ⊗ ηB,

where flip is a map B ⊗ A → A ⊗ B such that flip(b ⊗ a) = a ⊗ b. It means that the

product and unit of A ⊗ B can be written explicitly as (a ⊗ b)(c ⊗ d) = ab ⊗ cd and

1A⊗B = 1 ⊗ 1. We denote Aop as the opposite algebra of A with product ·op = · ◦ flip

and the same unit as A. We then have A commutative if and only if A = Aop.

One can write the axioms for an algebra in terms of commutative diagram and reverse

its arrows to obtain the dual notion of a coalgebra

Definition 2.1.1. A (counital and coassociative) coalgebra (C,∆, ε) means a vector

space C equipped with a ‘coproduct’ map ∆ : C → C ⊗C and a ‘counit’ map ε : C → k

such that

(∆⊗ id)∆ = (id⊗∆)∆, (ε⊗ id)∆ = id = (id⊗ ε)∆.

We use Sweedler notation ∆c =
∑
c(1) ⊗ c(2) but when doing calculations and proofs

we do not write the sum sign which should be understood. Using this notation, the
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coassociativity axiom can be written as c(1)(1) ⊗ c(1)(2) ⊗ c(2) = c(1) ⊗ c(2)(1) ⊗ c(2)(2), and

the iterated indices can be renumbered as c(1)⊗ c(2)⊗ c(3). By applying ∆ repeatedly we

have ∆nc = c(1)⊗ c(2)⊗ c(3)⊗ c(4) · · ·⊗ c(n+1), where ∆n = (∆⊗ id)∆n−1 = (id⊗∆)∆n−1.

We can also write the counity axiom as ε(c(1))c(2) = c = c(1)ε(c(2)).

If C,D are coalgebras, then a map f : C → D is called a coalgebra map if ∆Df =

(f ⊗ f)∆C and εD ◦ f = εC . The tensor product C ⊗ D is also a coalgebra with

coproduct and counit

∆C⊗D = (id⊗ flip⊗ id)(∆C ⊗∆D), εC⊗D = εC ⊗ εD,

which can be written explicitly as ∆(c⊗d) = c(1)⊗d(1)⊗c(2)⊗d(2) and ε(c⊗d) = (εc)⊗(εd).

We denote Ccop as the coopposite coalgebra of C with coproduct ∆cop = flip ◦ ∆ and

the same counit as C. We then have C cocommutative if and only if Ccop = C.

Definition 2.1.2. A vector space (B, ·, η,∆, ε) is called a bialgebra if (B, ·, η) is an

algebra and (B,∆, ε) is a coalgebra such that ∆, ε are algebra maps (or equivalently ·, η

are coalgebra maps).

Definition 2.1.3. A bialgebra H is called a Hopf algebra if it is equipped with an

‘antipode’ map S : H → H such that (Sh(1))h(2) = ε(h) = h(1)(Sh(2)) for all h ∈ H.

Let H be a Hopf algebra with antipode S. It is known, e.g. in [19], that S is unique

and an anti-algebra map i.e. S(ab) = (Sb)(Sa) for all a, b ∈ H. One also has ∆(Sa) =

Sa(2) ⊗ Sa(1), and εS = ε. Furthermore, if H is commutative or cocommutative, then

S2 = id. Note that S is not always invertible, but if S−1 exists, then it become the

antipode of Hopf algebra Hop or Hcop. Moreover, Hopf algebra Hop/cop with opposite

product and coopposite coproduct has the antipode S. Finally, a map f : H → A of two

Hopf algebras H and A is called a Hopf algebra map if f is both an algebra map and a

coalgebra map such that f ◦ SH = SA ◦ f .

We will need a notion of duality between two Hopf algebras as given by a duality pairing.

Definition 2.1.4. Two bialgebras A,H are dually paired if there is a bilinear map
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〈 , 〉 : A⊗H → k called a pairing such that

〈ab, h〉 = 〈a⊗ b,∆h〉, 〈a, hg〉 = 〈∆a, h⊗ g〉, 〈1, h〉 = εh, 〈a, 1〉 = εa,

for all a, b ∈ A and h ∈ H. If A,H are Hopf algebras, then additionally

〈Sa, h〉 = 〈a, Sh〉.

The above definition says that the algebra structure on A corresponds to coalgebra

structure of H and vice versa. If H is finite-dimensional with dual H∗ = Hom(H, k),

then the pairing 〈 , 〉 : H∗ ⊗ H → k becomes the evaluation map. Furthermore, H∗

becomes a bialgebra or Hopf algebra with product ∆∗ : (H ⊗H)∗ = H∗⊗H∗ → H∗ and

coproduct ·∗ : H∗ → (H ⊗H)∗ = H∗ ⊗H∗.

2.1.2 (co)modules over Hopf algebras

Let H be a bialgebra or Hopf algebra. We first recall the following definition of modules

which can be thought of as a polarisation of the definition of an algebra

Definition 2.1.5. By a left H-module V we mean a vector space V on which H acts

from the left by a left action . : H ⊗ V → V satisfying (hg).v = h.(g.v), 1.v = v.

Similarly for a right H-module V with right action / : V ⊗H → V satisfying v/(hg) =

(v/h)/g and v/1 = v. We say that V is an H−H-bimodule if it is both an H-left module

and H-right module and these actions commute. Note that if V is a left H-module and

H a Hopf algebra, then we can turn V into a right H-module by v/h := (Sh).v. Also,

if V is a left H-module, then its dual V ∗ is a right H-module by (f/h)(v) = f(h.v) for

all v ∈ V , f ∈ V ∗, and h ∈ H. Furthermore, if H is a bialgebra or Hopf algebra, we can

take the tensor product of two left H-modules V and W so that V ⊗W is a H-modules

with action h.(v ⊗ w) = h(1).v ⊗ h(2).w. We can let V to have an algebra or coalgebra

structure such that the product or coproduct of V is compatible with the action of H.

Definition 2.1.6. An algebra V is called a left H-module algebra if it is a left H-module,
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and additionally

h.(vw) = (h(1).v)(h(2).w), h.1 = (εh)1 (2.1.1)

for all v, w ∈ V and h ∈ H. Similarly, an algebra V is called a right H-right module

algebra if it is a right H-module, and additionally

(vw)/h = (v/h(1))(w/h(2)), 1/h = 1(εh). (2.1.2)

Definition 2.1.7. A coalgebra V is called a left H-module coalgebra if it is a left H-

module, and additionally

∆(h.v) = (h(1).v(1))⊗ (h(2).v(2)), ε(h.v) = (εh)(εv) (2.1.3)

for all v ∈ V and h ∈ H. Similarly, a coalgebra V is a right H-module coalgebra if it is

a right H-module and additionally

∆(v/h) = (v(1)/h(1))⊗ (v(2)/h(2)), ε(v/h) = (εv)(εh). (2.1.4)

One can now reverse the arrow in the axioms for modules, landing us in the dual notion

of comodules over a bialgebra or Hopf algebra H.

Definition 2.1.8. A rightH-comodule is a vector space V equipped with a right coaction

∆R : V → V ⊗H, denoted by ∆Rv = v(0) ⊗ v(1) such that (∆R ⊗ id)∆R = (id ⊗∆)∆R

and (id⊗ ε)∆R = id, or equivalently

v(0)(0) ⊗ v(0)(1) ⊗ v(1) = v(0) ⊗ v(1)
(1) ⊗ v(1)

(2), v(0)ε(v(1)) = v.

This is just a polarisation of the coalgebra axioms. Similarly, V is a left H-comodule if

it is equipped with left coaction ∆L : V → H ⊗ V denoted by ∆Lv = v(1) ⊗ v(∞) , such
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that (id⊗∆L)∆L = (∆⊗ id)∆L and (ε⊗ id)∆L = id or equivalently

v(1) ⊗ v(∞)(1) ⊗ v(∞)(∞) = v(1)
(1) ⊗ v(1)

(2) ⊗ v(∞) , ε(v(1))v(∞) = v.

We say that V is an H −H bicomodule if it is both a left and right H-comodule such

that these coactions commute. Note that in the Hopf algebra case, we can turn a right

H-comodule V into left H-comodule by ∆Lv := Sv(1)⊗v(0) . We can also take the tensor

product of two right H-comodules V,W so that V ⊗W is a right H-module with coaction

∆R(v ⊗ w) = v(0) ⊗ w(0) ⊗ v(1)w(1) . Similar to the module case, we can let V to be an

algebra or coalgebra such that its product or coproduct are compatible with coaction

Definition 2.1.9. An algebra V is a right H-comodule algebra if V is a right H-comodule

and ∆R is an algebra map, i.e.,

∆R(vw) = v(0)w(0) ⊗ v(1)w(1) , ∆R(1) = 1⊗ 1, (2.1.5)

for all v, w ∈ V . Similarly, an algebra V is a left H-comodule algebra if V is a left

comodule, with ∆L is an algebra map, i.e.,

∆L(vw) = v(1)w(1) ⊗ v(∞)w(∞) , ∆L(1) = 1⊗ 1, (2.1.6)

for all v, w ∈ A.

Definition 2.1.10. A coalgebra V is said to be a right H-comodule coalgebra if V is a

right H-comodule with ∆R such that

(∆⊗ id)∆R(v) = v(1)
(0) ⊗ v(2)

(0) ⊗ v(1)
(1)v(2)

(1) , (ε⊗ id)∆R = ε⊗ 1 (2.1.7)

for all v ∈ V . Similarly, a coalgebra V is a left H-comodule if V is a left H-comodule

with ∆L such that

(id⊗∆)∆L(v) = v(1)
(1)v(2)

(1) ⊗ v(1)
(∞) ⊗ v(2)

(∞) , (id⊗ ε)∆L = 1⊗ ε. (2.1.8)
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If H is dually paired with A, then a right H-comodule V becomes a left A-module

by a.v = 〈a, v(1)〉v(0) . If V is a right H-comodule algebra, then it becomes a left A-

module algebra. Furthermore, if V is finite-dimensional, then V ∗ is a right A-module

coalgebra. Similarly if V is a right H-comodule coalgebra, then it becomes a left A-

module coalgebra. Furthermore, V ∗ is a right A-module algebra. There is also a notion

of Hopf H-modules for Hopf algebra H, which requires compatibility between their

modules and comodules structure.

Definition 2.1.11. Let H be a Hopf algebra. A vector space V is called a right Hopf

H-module if it is both a right H-module and right H-comodule such that its coaction is a

right H-module map, i.e. ∆R(v/h) = (∆Rv)(∆h). There is also an equivalent definition

for a left Hopf H-module.

Lemma 2.1.12 (Hopf Module Lemma). Let V be a right Hopf H-module, and let

V coH = {v ∈ V |∆Rv = v ⊗ 1}

be a space of right-invariant of V . Then V ∼= V coH ⊗H as right Hopf H-module, where

(v ⊗ h)/g = v ⊗ hg, ∆R(v ⊗ h) = v ⊗ h(1) ⊗ h(2)

for all v ∈ V and h, g ∈ H.

Proof. This is well-known, for instance see [1]. The isomorphism V coH⊗H → V is given

by v ⊗ h 7→ v/h, with inverse v 7→ v(0)(0)/Sv(0)(1) ⊗ v(1) .

We also need another concept of compatibility between modules and comodules, which

is called a crossed module or Radford-Drinfeld-Yetter module(c.f. [19, 25, 42]).

Definition 2.1.13. Let H be a Hopf algebra. A vector space V is called a right H-

crossed module if V is a right H-module and right H-coaction such that

∆R(v/h) = v(0)/h(2) ⊗ (Sh(1))v(1)h(3),



Chapter 2. Preliminaries 21

for all v ∈ V and h ∈ H. In this case, there is a morphism Ψ : V ⊗ V → V ⊗ V called a

pre-braiding of V given by

Ψ(v ⊗ w) = w(0) ⊗ v/w(1) .

Similarly, V is called a left H-crossed module if V is a left H-module and left H-comodule

such that

∆L(h.v) = h(1)v(1)Sh(3) ⊗ h(2).v(∞) ,

with pre-braiding given by

Ψ(v ⊗ w) = v(1).w ⊗ v(∞) .

We will see later that the category of right H-crossed modules is a pre-braided category

with the above pre-braidings, and becomes a braided category if the antipode of H is

invertible with the inverse braiding given by Ψ−1(v ⊗ w) = w/S−1v(1) ⊗ v(0) . Similarly

for left crossed modules.

Example 2.1.14. Every Hopf algebra H can be made into a right H-crossed module

with the right action given by multiplication, i.e. h/g = hg and the right coaction

given by the adjoint coaction i.e. ∆R = AdR : H → H ⊗ H is given by AdR(h) =

h(2) ⊗ (Sh(1))h(3). Furhermore, we can restrict H to its augmentation ideal H+ = ker ε,

making H+ a right H-crossed module.

In later chapters we will need a notion of super-Hopf algebra, which is a Z2-graded Hopf

algebra H, where H = H0 ⊕H1 with grade |a| = i for a ∈ Hi, where i = 0, 1. Here the

coproduct respects the total grades and is an algebra map to the super tensor product

algebra

(h⊗ g)(h′ ⊗ g′) = (−1)|g||h
′|(hh′ ⊗ gg′)

for h, h′, g, g′ ∈ H. The counit also respects the grade and hence ε|H1 = 0 if we work
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over a field k. If H is a super-Hopf algebra then H⊗H is also a super-Hopf algebra, with

∆(h⊗ g) = (−1)|h(2)||g(1)|h(1) ⊗ g(1) ⊗ h(2) ⊗ g(2).

The notions of action and coaction under a Hopf algebra similarly have super versions,

namely respecting the total degree. All of the above further notions similarly have super

versions with transposition acquring an extra sign depending on degrees. For instance

in the super version of right H-crossed module V , the compatibility between action and

coaction is given by

∆R(v/h) = (−1)|v
(1) |(|h(1)|+|h(2)|)+|h(1)||h(2)|v(0)/h(2) ⊗ (Sh(1))v(1)h(3)

for all homogeneous v ∈ V and h ∈ H.

2.2 (Co)quasitriangular Hopf algebra

We first recall Drinfeld’s definition of an important class of noncocommutative Hopf

algebras.

Definition 2.2.1. A Hopf algebra H is called quasitriangular [11] if equipped with

invertible R = R(1) ⊗R(2) ∈ H ⊗H (summation understood) such that

(∆⊗ id)R = R13R23, (id⊗∆)R = R13R12 (2.2.1)

flip ◦∆h = R(∆h)R−1. (2.2.2)

Here the leg indices indicate where the factor ofR lives in the tensor product, for instance

R12 = R⊗ 1, R13 = R(1) ⊗ 1⊗R(2) , etc.

Basic properties of quasitriangular Hopf algebras are well-studied, for example in [20].

We have (ε⊗ id)R = 1 = (id⊗ε)R. We also have (S⊗ id)R = R−1 and (id⊗S)R−1 = R

which directly imply (S ⊗ S)R = R. Furthermore, any quasitriangular Hopf algebra



Chapter 2. Preliminaries 23

(H,R) satisfies the following quantum Yang-Baxter equation

R12R13R23 = R23R13R12. (2.2.3)

It can be shown that the antipode of H is invertible [19, 24]. Moreover Hop and Hcop are

also quasitriangular with quasitriangularity R−1. We denote by H the quasitriangular

Hopf algebra which is the same Hopf algebra as H but with quasitriangular structure

R = R−1
21 . We also need the notion of coquasitriangular Hopf algebra :

Definition 2.2.2. A Hopf algebra A is called coquasitriangular if it is equipped with a

convolution-invertible map R : A⊗A→ k satisfying

R(ab, c) = R(a, c(1))R(b, c(2)), R(a, bc) = R(a(1), c)R(a(2), b), (2.2.4)

a(1)b(1)R(b(2), a(2)) = R(b(1), a(1))b(2)a(2) (2.2.5)

for all a, b, c ∈ A.

One can see that R(a, 1) = εa = R(1, a). Also, R(a, Sb) = R−1(a, b), R−1(a, Sb) =

R(a, b) and R(Sa, Sb) = R(a, b). It also obeys the following dual quantum Yang-Baxter

equation

R(a(1), b(1))R(a(2), c(1))R(b(2), c(2)) = R(b(1), c(1))R(a(1), c(2))R(a(2), b(2)). (2.2.6)

Note that the antipode of A is invertible, and Acop and Aop are coquasitriangular Hopf

algebras with coquasitriangular structure R−1. We also denote A to be the same Hopf

algebra as A but with coquasitriangular structure R = R−1
21 i.e. R(a, b) = R(Sb, a) for

all a, b ∈ A.

Lemma 2.2.3. If H is a finite-dimensional quasitriangular Hopf algebra, then H∗ is a

coquasitriangular Hopf algebra. Here R(a, b) = 〈R(1) , a〉〈R(2) , b〉.
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2.3 Braided Hopf algebras

We refer to [18] for a full treatment of category theory. Recall that a category C consists of

the following data : (i) a class of objects (ii) a set of morphism C(X,Y ) for any two objects

X,Y ∈ C (iii) for any three objects X,Y, Z ∈ C, there is a map C(X,Y ) × C(Y, Z) →

C(X,Z) by (f, g) 7→ g ◦ f such that (h ◦ g) ◦ f = h ◦ (g ◦ f) for all f : X → Y in C(X,Y )

and g : Y → Z in C(Y, Z), and for all X ∈ C there exists idX ∈ C(X,X) such that

f ◦ idX = f = idY ◦ f for all f ∈ C(X,Y ).

A (covariant) functor F : C → D between two categories assigns to any object X ∈ C

another object F (X) ∈ D, and assigns to any morphism f ∈ C(X,Y ) another morphism

F (f) ∈ D(F (X), F (Y )) such that F (idX) = idF (X) and F (g ◦ f) = F (g) ◦ F (f).

A natural transformation θ : F ⇒ G between two functors F,G : C → D is a collection

of morphisms {θX : F (X)→ G(X)|X ∈ C} in D such that θY ◦F (f) = G(f)◦θX for any

morphism f ∈ C(X,Y ). The natural transformation θ is called a natural isomorphism if

each θX is invertible as a morphism.

Definition 2.3.1. A monoidal category (C,⊗, 1,Φ, l, r) is a category C equipped with a

functor ⊗ : C×C → C, a natural transformation (called an associator), Φ : (−⊗−)⊗− ⇒

−⊗ (−⊗−) i.e. a collection of functorial isomorphisms

ΦX,Y,Z : (X ⊗ Y )⊗ Z ∼= X ⊗ (Y ⊗ Z),

and unit object 1 with its associated natural isomorphisms l : id ⇒ −⊗ 1 and r : id ⇒

1⊗− such that the Pentagon and Triangle identities shown in Figure 2.1 and Figure 2.2

are satisfied.

Definition 2.3.2. A braided category (C,Ψ) is a monoidal category C with a natural

isomorphism Ψ : ⊗ ⇒ ⊗op, i.e. a collection of functorial isomorphisms ΨX,Y : X ⊗ Y ∼=

Y ⊗X for all X,Y ∈ C such that the Hexagon identities shown in Figure 2.3 are satisfied.

Here the inverse braiding means Ψ−1
Y,X : Y ⊗X → X⊗Y such that Ψ−1

Y,X ◦ΨX,Y = idX⊗Y

and ΨX,Y ◦ Ψ−1
Y,X = idY,X . If we do not assume Ψ to be invertible, then we say the
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((X ⊗ Y )⊗ Z)⊗ U

(X ⊗ Y )⊗ (Z ⊗ U)

X ⊗ (Y ⊗ (Z ⊗ U))

(X ⊗ (Y ⊗ Z))⊗ U X ⊗ ((Y ⊗ Z))⊗ U)

Φ Φ

Φ⊗ id id⊗ Φ

Φ

Figure 2.1: Pentagon identity for monoidal category

(X ⊗ 1)⊗ Y X ⊗ (1⊗ Y )

X ⊗ Y

Φ

l ⊗ id id⊗ r

Figure 2.2: Triangle identity for monoidal category

X ⊗ (Y ⊗ Z)

(X ⊗ Y )⊗ Z

Z ⊗ (X ⊗ Y )

X ⊗ (Z ⊗ Y )

(X ⊗ Z)⊗ Y

(Z ⊗X)⊗ Y

id⊗Ψ Φ−1

Φ−1 Ψ

Ψ⊗ id Φ−1

(X ⊗ Y )⊗ Z

X ⊗ (Y ⊗ Z)

(Y ⊗ Z)⊗X

(Y ⊗X)⊗ Z

Y ⊗ (X ⊗ Z)

Y ⊗ (Z ⊗X)

Φ Ψ⊗ id

ΦΨ

id⊗ΨΦ

Figure 2.3: Hexagon identities for braided category

category C is pre-braided.

One can consider objects in C to enjoy some algebraic structure in the sense that the

morphisms in C satisfy the axioms of the said algebraic structure. Thus, an algebra in

a braided category C is an object B with a product morphism · : B ⊗B → B satisfying

the axiom for associativity, and unit morphism η : 1 → B satisfying unity axiom. For

any algebra objects B,C in C, their braided tensor product B⊗C is also an algebra in C
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with product morphism · such that [19, 24]

·B⊗C : (·B ⊗ ·C) ◦ (idB ⊗ΨC,B ⊗ idC)

and tensor product unit morphism. This is a generalisation of the super tensor product

algebra where the transposition by degree is replaced by more general braiding.

Similarly, a coalgebra in a braided category C is an object B with a coproduct morphism

∆ :→ B ⊗ B and counit morphism ε : C → 1 such that they satisfy coassociativity and

unity axioms. For any coalgebra objects B,C in C, B⊗C is also a coalgebra in C with

coproduct morphism

∆B⊗C = (idB ⊗ΨB,C ⊗ id) ◦ (∆B ⊗∆C)

and tensor product counit morphism, which generalises the super tensor product coal-

gebra. Now we are ready to define braided Hopf algebras :

Definition 2.3.3. [19, 24, 31] (B, ·, η,∆, ε, S) in a braided monoidal category C is called

a braided Hopf algebra if (B,m, η) is an algebra in C, (B,∆, ε) is a coalgebra in C, ∆ is

an algebra morphism to the braided tensor product algebra, and the antipode morphism

S : B → B obeying ·(id⊗ S)∆ = id = ·(S ⊗ id)∆.

In a concrete setting we write ∆b = b(1) ⊗ b(2) (summation understood), so that for

example the ∆(bc) = b(1)Ψ(b(2)⊗c(1))c(2) is the bialgebra axiom for braided Hopf algebra,

with Ψ the braiding on B⊗B. There is a diagrammatic method for braided Hopf algebras

which we will not use explicitly. It can be used, for example, to proved the following

basic identities [24, 31],

S ◦ · = · ◦Ψ ◦ (S ⊗ S), ∆ ◦ S = (S ⊗ S) ◦Ψ ◦∆. (2.3.1)

If C is the category of super or Z2-graded vector spaces, the above definition gives us a

super-Hopf algebra since the categorical braiding on B is Ψ(b⊗ c) = (−1)|b||c|c⊗ b. We
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will also need the notion of super braided Hopf algebra where the object satisfies the

same axioms as braided Hopf algebra but Z2-graded and with an extra factor (−1)| || |

in every braiding. This assumes direct sums in the category and can be viewed as a

braided Hopf algebra in a super version of the braided category where objects are of the

form B = B0 ⊕B1 and the braiding has additional signs according to the degree.

2.4 Bosonisation

We first recall that if B is a right H-module algebra, there is a right cross product algebra

H.<B built on H ⊗B with product

(h⊗ b)(g ⊗ c) = hg(1) ⊗ (b� g(2))c (2.4.1)

for all h, g ∈ H and b, c ∈ B. There is an equivalent left cross product B>/H where

B ∈ HM as module algebra with product is given by

(b⊗ h)(c⊗ g) = b(h(1).c)⊗ h(2)g (2.4.2)

Similarly, if B is a right H-comodule coalgebra, there is a right cross coproduct coalgebra

HI<B with coproduct

∆(h⊗ b) = h(1) ⊗ b(1)(0) ⊗ h(2)b(1)(1) ⊗ b(2). (2.4.3)

And if B is a left H-comodule coalgebra, there is a left cross coproduct coalgebra B>JH

with coproduct

∆(b⊗ h) = b(1) ⊗ b(2)(1)h(1) ⊗ b(2)(∞) ⊗ h
(2)
. (2.4.4)

Lemma 2.4.1 (Bosonisation). [25, 26] Let H be an ordinary Hopf algebra and B be a

braided Hopf algebra in MH
H the category of right H-crossed modules, then there is an

ordinary Hopf algebra H·.<B, the biproduct or bosonisation of B built on H ⊗ B with

product the cross product H.<B and coproduct the cross coproduct HI<B by the assumed
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action and coaction of H. Moreover, there is a Hopf algebra projection H
↪→
�H·.<B.

This structure was first found by Radford in [42] from a study of Hopf algebras with

projection (they are of this form) prior to the theory of braided Hopf algebras, while

the above formulation is due to Majid in [25]. There is also a left-handed version of

biproduct B>/·H with product is cross product B>/H and coproduct is cross coproduct

B>JH, where B is braided Hopf algebra in category of left H-crossed modules H
HM.

In the case of H (resp. A) being a quasitriangular (resp. coquasitriangular) Hopf alge-

bra, their category of left/right (co)modoules is a braided monoidal category with the

following braidings

ΨL(v ⊗ w) =R(2) � w ⊗R(1) � v, ΨR(v ⊗ w) =w �R(1) ⊗ v �R(2) ,

ΨL(v ⊗ w) =R(w(1) , v(1))w(∞) ⊗ v(∞) , ΨR(v ⊗ w) =w(0) ⊗ v(0)R(v(1) , w(1))

where ΨL is the braiding for the left H-modules category HM, similarly ΨR for right

H-modules category MH , and ΨL for the left A-comodule category AM, similarly ΨR

for right-comodules MA. There is a braided monoidal functor HM ↪→ H
HM in [19, 27]

with a coaction induced by the quasitriangular structure of H so as to form a crossed

module. Similarly from the right. Explicitly, these induced coactions are given by

∆Lb = R(2) ⊗R(1).b, ∆Rb = b/R(1) ⊗R(2) (2.4.5)

for all b ∈ B. Thus for braided Hopf algebra B ∈ MH ↪→ MH
H , the right bosonisation

H·.<B has cross product H.<B by the given action, and a cross coproduct HI<B by

the induced right coaction to give

∆(h⊗ b) = h(1) ⊗ b(1)/R(1) ⊗ h(2)R(2) ⊗ b(2). (2.4.6)

Similarly for a braided Hopf algebra B ∈ HM ↪→ H
HM to give a left bosonisation B>/·H

with cross product B>/H by the given action, and cross coproduct B>JH by the induced
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left coaction to give

∆(b⊗ h) = b(1) ⊗R(2)h(1) ⊗R(1).b(2) ⊗ h(2). (2.4.7)

The same is true for A being coquasitriangular Hopf algebra via functors AM ↪→ A
AM

and MA ↪→MA
A, with the following induced actions

a.b = R(b(1) , a)b(∞) , b/a = b(0)R(b(1) , a) (2.4.8)

for all a ∈ A and b ∈ B. Thus for a braided Hopf algebra B ∈ MA, we have a

cobosonisation A·.<B with AI<B by the given coaction and A.<B by the induced action

from the above functor. Explicitly, the cross product is

(a⊗ b)(d⊗ c) = ad(1) ⊗ b(0)cR(b(1) , d(2)) (2.4.9)

for all a, d ∈ A and b, c ∈ B. Similarly for a braided Hopf algebra B ∈ AM, there is

a cobosonisation B>/·A with cross coproduct B>JA by the given coaction, and cross

product B>/A by the induced action, explicitly

(b⊗ a)(c⊗ d) = bc(∞) ⊗ a(2)dR(c(1) , a(1)). (2.4.10)

Finally, the notion of a dually paired or categorical dual braided Hopf algebra B? (when

B is a rigid object, e.g. finite-dimensional in our applications) in [24, 31] needs a little

care to define the pairing B?⊗B?⊗B⊗B by pairing B?⊗B in the middle first. Pairing

maps go to the trivial object. In our context, where objects are built on vector spaces,

it is useful to match ordinary Hopf algebra conventions by defining B∗ with the adjoint

algebra and coalgebra structures in the usual way rather than the above categorical way,

which, however, canonically lands B∗ in a different category from B:

Lemma 2.4.2. Let B be a finite-dimensional braided Hopf algebra in MA then the

ordinary dual B∗ is a braided Hopf algebra in AM. Similarly, if B ∈ AM then the
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ordinary dual B∗ is a braided Hopf algebra in MA.

Proof. We check carefully that our conventions match up in the way stated. A right

coaction on B is equivalent to a left coaction on B∗ with the two related by

〈x, b(0)〉〈b(1) , a〉 = 〈x(∞) , b〉〈x(1) , a〉 (2.4.11)

for all x ∈ B∗, b ∈ B, and a ∈ A. Since the duality is the ordinary one, it is clear that

B∗ is an algebra and coalgebra with structure maps morphisms. We need to prove the

coproduct homomorphism property for B∗ ∈ AM,

〈∆(xy), b⊗ c〉 =〈x⊗ y,∆(bc)〉 = 〈x⊗ y, b(1)c(1)(0) ⊗ b(2)(0)c(2)〉R(b(2)(1) , c(1)(1))

=〈x, b(1)c(1)(0)〉〈y, b(2)(0)c(2)〉〈b(2)(1) ,R(1)〉〈c(1)(1) ,R(2)〉

=〈x(1), b(1)〉〈x(2), c(1)(0)〉〈y(1), b(2)(0)〉〈y(2), c(2)〉〈b(2)(1) ,R(1)〉〈c(1)(1) ,R(2)〉

=〈x(1), b(1)〉〈y(1)
(∞) , b(2)〉〈x(2)

(∞) , c(1)〉〈y(2), c(2)〉〈y(1)
(1) ,R(1)〉〈x(2)

(1) ,R(2)〉

=〈x(1)y(1)
(∞) ⊗ x(2)

(∞)y(2), b⊗ c〉R(y(1)
(1) , x(2)

(1)).

for all x, y ∈ B∗, and for all b, c ∈ B. Similarly for the second part of the lemma.

The same is true for B ∈ MH to give B∗ ∈ HM which is part of the original theory in

[28]. We will need the above dual version, so we have given that with proof. We then

have a precise statement:

Lemma 2.4.3. Let H be finite-dimensional and quasitriangular with dual A, and B be

a finite-dimensional braided Hopf algebra in MH , then (H·.<B)∗ = A·.<B∗. Similarly, if

B ∈ HM then (B>/·H)∗ = B∗>/·A.

Proof. We check that everything matches up correctly. The coproduct of (H·.<B)∗ is

defined by

〈∆(k ⊗ x),(h⊗ b)⊗ (g ⊗ c)〉 = 〈k ⊗ x, (h⊗ b)(g ⊗ c)〉
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=〈k, hg(1)〉〈x, (b� g(2))c〉

=〈k(1), h〉〈k(2), g(1)〉〈g(2) � x(1), b〉〈x(2), c〉

=〈k(1), h〉〈k(2), g(1)〉〈x(1)
(0) , b〉〈x(1)

(1) , g(2)〉〈x(2), c〉

=〈k(1) ⊗ x(1)
(0) ⊗ k(2)x(1)

(1) ⊗ x(2), h⊗ b⊗ g ⊗ c〉

for all b, c ∈ B, x, y ∈ B∗, h, g ∈ H, and k, ` ∈ A. Hence ∆(k ⊗ x) agrees with the

comultiplication of A·.<B∗. Similarly, the product of (H·.<B)∗ is defined by

〈(k ⊗ x)(`⊗ y), h⊗ b〉 = 〈k ⊗ x⊗ `⊗ y,∆(h⊗ b)〉

=〈k, h(1)〉〈x, b(1) �R(1)〉〈`, h(2)R(2)〉〈y, b(2)〉

=〈k, h(1)〉〈R(1) � x, b(1)〉〈`(1), h(2)〉〈`(2),R(2)〉〈y, b(2)〉

=〈k, h(1)〉〈x(0) , b(1)〉〈x(1) ,R(1)〉〈`(1), h(2)〉〈`(2),R(2)〉〈y, b(2)〉

=〈k`(1) ⊗ x(0)y, h⊗ b〉R(x(1) , `(2)).

Hence (k⊗x)(`⊗y) agrees with the multiplication in A·.<B∗. The proof of the left-handed

version is similar.

2.5 Differentials of Hopf algebras

Definition 2.5.1. A first order differential calculus on an algebra A is an A−A-bimodule

Ω1 equipped with a differential map d : A→ Ω1 satisfying Leibniz rule d(ab) = (da)b+

adb such that Ω1 = span{adb}.

This is the minimum data needed to generalise classical differentials. We also say that

da is a 1-form. One can also easily find that d1 = 0 by applying Leibniz rule to 1.1 = 1.

It is essential to not assume db.a = adb, since if otherwise, then we have a large kernel

if our algebra is noncommutative since d(ab− ba) = 0. For every algebra A, there is the

universal calculus Ω1
uni given by Ω1

uni = ker( · ) ⊂ A⊗A with dunia = 1⊗ a− a⊗ 1. It is

universal since any other calculus of A is isomorphic to Ω1
uni/I for some sub-bimodule I
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of Ω1
uni.

Definition 2.5.2. A calculus Ω1 on an algebra A is said to be inner if there is an element

θ ∈ Ω1 such that da = [θ, a] = θa− aθ for all a ∈ A

In the case of A being a Hopf algebra, its differential calculus Ω1 becomes right/left Hopf

A−A bimodule in the case that Ω1 is covariant.

Definition 2.5.3. A calculus Ω1 on a Hopf algebra A is called right-covariant if Ω1 is

a right A-comodule with right coaction ∆R : Ω1 → Ω1 ⊗ A such that ∆R commutes

with d in the sense ∆Rd = (d⊗ id)∆. Similarly for a left-covariant calculus. We call Ω1

bicovariant if it is both right and left covariant.

Let Λ1 = {v ∈ Ω1|∆Rv = v ⊗ 1} be the space of invariant 1-forms of Ω1. By the Hopf

Module Lemma, any right covariant Ω1 is a free module over Λ1 with da = ($πεa(1))a(2),

where πε = id − ε : A → A+ and $ : A+ � Λ1 is given by $(a) = (da(1))Sa(2),

the Maurer-Cartan form. Moreover, any bicovariant Ω1 is an A − A- bimodule and

bicomodule. Thus by the Hopf Module Lemma, there is an object M in the category of

crossed modules MA
A such that Ω1 ∼= M ⊗A. Note that from Example 2.1.14, A+ is an

A-crossed module, and due to Woronowicz [47], one can identify M as quotient module

A+ of A. Thus, one has Ω1 ∼= A+/I ⊗A for some ad-stable right ideal I.

2.5.1 Exterior Algebras

Definition 2.5.4. A differential graded algebra (DGA) over algebra A is a graded algebra

Ω = ⊕n≥0Ωn equipped with d : Ωn → Ωn+1 such that d2 = 0 and the graded Leibniz

rule d(ωη) = (dω)η + (−1)|ω|ωdη holds for all ω, η ∈ Ω. Here |ω| denotes the degree of

ω. Furthermore, we say Ω is an exterior algebra if Ω is generated by A and dA.

Given (A,Ω1,d), there is a maximal prolongation exterior algebra Ωmax where we impose

the quadratic relation
∑

i dbidci +
∑

j drjdsj whenever
∑

i dbi.ci −
∑

j rjdsj = 0 is a

relation in Ω1, where bi, ci, ri, si ∈ A. We also have the left/right/bicovariant exterior

algebras :
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Definition 2.5.5. An exterior algebra Ω on A is called left covariant if it is a left A-

comodule algebra with graded ∆L commuting with d, and similarly for the right covariant

case. It is bicovariant if it is both left-covariant and right-covariant.

In the case Ω1 is a bicovariant calculus, it is known [8] that Ω is a super Hopf algebra

with

∆∗|A = ∆, ∆∗|Ω1 = ∆L + ∆R.

The comultiplication on higher degrees are obtained from the coproduct on degree 0, 1,

for example we have

∆∗(dadb) = ∆∗(da)∆∗(db).

We also need a concept of strongly bicovariant exterior algebra which is first introduced

in [39]

Definition 2.5.6. An exterior algebra Ω is strongly bicovariant [39] if it is a super-

Hopf algebra with super-degree given by the grade mod 2, super-coproduct ∆∗ grade

preserving and restricting to the coproduct of A, and if d is a super-coderivation in the

sense

∆∗dω = (d⊗ id + (−1)| |id⊗ d)∆∗ω. (2.5.1)

It is proved in [39] that any strongly bicovariant exterior algebra is bicovariant, justifying

the terminology, with ∆L,∆R on Ωi extracted from the relevant grade component of

∆∗|Ωi . For example, ∆∗|Ω1 = ∆L + ∆R for the coactions on Ω1.

Finally, in the strongly bicovariant case it follows [39] by a super version of the Radford-

Majid biproduct (see Lemma 2.4.1) that Ω ∼= A·.<Λ is a super-bosonisation, where

Λ = ⊕i≥1Λi is the subalgebra of left-invariant differential forms and forms a super

braided Hopf algebra in category of right A-crossed modules MA
A.

Lemma 2.5.7. Let A,H be Hopf algebras, and let Ω(A),Ω(H) be strongly bicovariant ex-

terior algebras. Then Ω(A⊗H) := Ω(A)⊗Ω(H) is a strongly bicovariant exterior algebra
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with super tensor product algebra and super tensor coproduct coalgebra, and differential

d(ω ⊗ η) = dAω ⊗ η + (−1)|ω|ω ⊗ dHη,

for all ω, τ ∈ Ω(A), η, ξ ∈ Ω(H). Furthermore, it is isomorphic to (A⊗H)·.<(ΛA⊗ΛH).

Proof. It is easy to see that Ω1(A⊗H) = span{(a⊗ h)d(b⊗ g)} = span{adAb⊗ f + c⊗

hdHg} = Ω1(A)⊗H ⊕A⊗ Ω(H) since

(c⊗ h)d(1⊗ g) = c⊗ hdHg, (a⊗ 1)d(b⊗ f)− (ab⊗ 1)d(1⊗ f) = adAb⊗ f

for all a, b, c ∈ A and h, g, f ∈ H. The graded Leibniz-rule holds since d(ω ⊗ 1) = dAω

and d(1 ⊗ η) = dHη for all ω ∈ Ω(A), η ∈ Ω(A), and the algebra is just a super tensor

product algebra. The new part is that d is a super-coderivation :

∆∗d(ωη) =∆∗((dω)η + (−1)|ω|ωdη)

=(∆∗dω)∆∗η + (−1)|ω|(∆∗ω)(∆∗dη)

=((d⊗ id + (−1)| |id⊗ d)∆∗ω)(∆∗η) + (−1)|ω|(∆∗ω)((d⊗ id + (−1)| |id⊗ d)∆∗η)

=(−1)|η(1)||ω(2)|
((

(dω(1))η(1) + (−1)|ω(1)|ω(1)dη(1)

)
⊗ ω(2)η(2)

+ (−1)|ω(1)|+|η(1)|ω(1)η(1) ⊗
(
(dω(2))η(2) + (−1)|ω(2)|ω(2)dη(2)

))
=(−1)|η(1)||ω(2)|(d(ω(1)η(1))⊗ ω(2)η(2) + (−1)|ω(1)η(1)|ω(1)η(1) ⊗ ω(2)η(2))

=(d⊗ id + (−1)| |id⊗ d)∆∗(ωη).

Furthermore, A⊗H acts and coacts on ΛA ⊗ ΛH by (v ⊗ w)/(a⊗ h) = v/a⊗ w/h and

∆R(v ⊗ w) = v(0) ⊗ w(0) ⊗ v(1) ⊗ w(1) for all a ∈ A, h ∈ H and v ∈ ΛA, w ∈ ΛH , making

ΛA ⊗ ΛH an A⊗H-crossed module since

∆R((v ⊗ w)/(a⊗ h)) =(v(0) ⊗ w(0))/(a(2) ⊗ h(2))⊗ (S(a(1) ⊗ h(1)))(v(1) ⊗ w(1))(a(3) ⊗ h(3))

=(v(0)/a(2))⊗ (w(0)/h(2))⊗ (Sa(1))v(1)a(3) ⊗ (Sh(1))w(1)h(3)
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=∆R((v/a)⊗ (w/h)).

Thus there is a bosonisation (A ⊗H)·.<(ΛA ⊗ ΛH) and it is easy to show that Ω(A) ⊗

Ω(H) ∼= A·.<ΛA⊗H·.<ΛH ∼= (A⊗H)·.<(ΛA⊗ΛH) by a⊗ v⊗h⊗w 7→ a⊗h⊗ v⊗w.
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(Co)double bosonisation and dual

basis of cq[SL2]

In [28], Majid introduced a construction of quasitriangular Hopf algebra Ccop>/·H·.<B

called double bosonisation. Here H is a quasitriangular Hopf algebra, B is a braided

Hopf algebra living inMH , and C = B?op/cop, where B? is a categorical dual to B. One

can think of H as Cartan subalgebra, B as positive root space, and C as negative root

space. Moreover, Majid proved that quantum groups Uq(g) can be constructed using

double bosonisation. Justifying its terminology, double bosonisation contains bosonisa-

tions H·.<B and Ccop>/·H as sub-Hopf algebra, which gives a positive and negative Borel

subalgebra in the case of Uq(g).

We work out the dual version of double bosonisation in Section 3.2. In doing so, we need

to restrict our case to finite-dimensional braided Hopf algebra so that C = B∗ becomes

the ordinary dual of B. We then find a coquasitriangular Hopf algebra Bop>/·A·.<B∗

associated to a finite-dimensional Hopf algebra B in AM, where A is a coquasitriangular

Hopf algebra. Here the product and coproduct of codouble bosonisation are obtained by

taking the duality pairing with the coproduct and product on double bosonisation. How-

ever, we do not want to be limited to finite-dimensional A and give a direct proof for the

36
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codouble bosonisation as a coquasitriangular Hopf algebra. Also note that unlike dou-

ble bosonisation, the codouble bosonisation has coalgebra surjections to its components

Bop, A,B∗, making calculations on the codouble bosonisation harder than the original

version.

In Section 3.3, we take H = C[K]/(Kn − 1) for any n with its natural quasitriangular

structure RK such that its modules are the category of Zn-graded spaces with braiding

given by a power of q according to the degrees, where q is a primitive n-th root of unity.

We take B = C[E]/(En) and B∗cop = C[F ]/(Fn) and by double bosonisation, we will

obtain

B∗cop>/·H·.<B = uq(sl2) ∼=


up(sl2) n = 2m+ 1, p = q−m; p2 = q,

something else n even.

To illustrate the even case, u−1(sl2) in Example 3.3.4 is an interesting 8-dimensional

strictly quasitriangular and self-dual Hopf algebra presumably known elsewhere. Sim-

ilarly, we take B = C[x]/(xn) and its dual B∗ = C[Y ]/(Y n), again braided-lines but

this time viewed in the category of A = C[t]/(tn − 1)-comodules with its standard

coquasitriangular structure R(t, t) = q (so that its comodules form the same braided

category of Zn-graded vector spaces as before). Then the codouble bosonisation will

give a coquasitriangular Hopf algebra cq[SL2] = cp[SL2] when n is odd and some other

coquasitriangular Hopf algebra when n is even. This is Theorem 3.3.1 with the dual

basis result a corollary of the triangular decomposition. As an application, we work out

a Hopf algebra Fourier transform F : cq[SL2] → uq(sl2) in Section 3.4, and we will see

that it is well behaved with respect to the 3D-calculus of cp[SL2].

3.1 Double Bosonisation

We first need to recall basic facts about braided Hopf algebras which will be useful for

the construction of the double bosonisation. If B ∈ C is a braided Hopf algebra with
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invertible antipode in the braided monoidal category C, then Bcop with the same algebra

structure as B but with braided coopposite coproduct and antipode given by

∆cop = Ψ−1
B,B ◦∆, S = S−1 (3.1.1)

is a braided Hopf algebra in C, by which we mean C with the reversed (inverse) braid

crossing [24]. In a concrete setting, we write ∆copc = c(1) ⊗ c(2) for all c ∈ Bcop (summa-

tion understood).

Let (H,R) be a quasitriangular Hopf algebra with invertible antipode, and let B be a

finite-dimensional braided Hopf algebra in MH , and let B∗ be an ordinary dual of B

living in HM as explained in Lemma 2.4.2. We have braided Hopf algebra B∗cop in HM.

Thus, by bosonisation we have two Hopf algebras H·.<B and B∗cop>/·H. We can glue

them together to get the following theorem of double bosonisation.

Theorem 3.1.1. c.f. [28, Theorem 3.2] Let H be a quasitriangular Hopf algebra. Let B

be a finite-dimensional braided Hopf algebra in MH . There is an ordinary Hopf algebra

DH(B) = B∗cop>/·H·.<B, the double bosonisation, built on B∗cop ⊗H ⊗ B with product

and coproduct

(c⊗ h⊗ b)(d⊗ g ⊗ a) =c((h(1)R(2)

1 ).d(2))⊗ h(2)R(2)

2 R
−(1)

1 g(1) ⊗ (b(2)/(R−(1)

2 g(2)))a

〈R(1)

1 .d(1), b(1)/R(1)

2 〉〈R
−(2)

1 .Sd(3), b(3)/R−(2)

2 〉

∆(c⊗ h⊗ b) =c(1) ⊗R−(1)h(1) ⊗ b(1)/R(1) ⊗R−(2).c(2) ⊗ h(2)R(2) ⊗ b(2)

for all a, b ∈ B, c, d ∈ B∗ and h, g ∈ H, where R1,R2 are copies of R. Furthermore,

B∗cop>/·H·.<B has a quasitriangular structure

Rnew = exp · R, exp =
∑

fa ⊗ Sea

where {ea} is a basis of B and {fa} is a dual basis of B∗.

In the original theory, B is not required to be finite-dimensional, but we have restricted to
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the finite-dimensional case for simplicity. More generally, one has a double of biproduct

Hopf algebra when we consider braided Hopf algebra B lives in crossed module category

MH
H , but this is beyond our scope.

3.2 Codouble Bosonisation

Our goal in this section is to find a dual version of the double bosonisation theorem with

A coquasitriangular and B ∈ AM, in which case the category with reversed braiding is

AM and

a ·op b =R(Sa(1) , b(1))b(∞)a(∞) (3.2.1)

for all a, b ∈ Bop. As in Lemma 2.4.3, we think of AM as MH in the finite-dimensional

Hopf algebra case by evaluating against a coaction of A to get an action of H.

Lemma 3.2.1. If H is finite-dimensional and quasitriangular with dual A and B ∈ AM

is finite-dimensional then (Bop)∗ = B∗cop ∈ HM.

Proof. Here Bop ∈ AM orMH and (Bop)∗ ∈ HM where B∗cop lives. It is clear that the

coproduct of Bop corresponds to the product of B∗cop. For the other half,

〈x, b ·op c〉 = 〈x, c(∞)b(∞)〉R(Sb(1) , c(1)) = 〈x(1), c(∞)〉〈x(2), b(∞)〉〈b(∞) ,R−(2)〉〈c(1) ,R−(1)〉

= 〈x(1), c�R−(1)〉〈x
(2)
, b�R−(2)〉 = 〈R−(2) � x

(2)
⊗R−(1) � x

(1)
, b⊗ c〉

which is 〈∆copx, b⊗ c〉 as required.

The dual version of Theorem 3.1.1 can in principle now be deduced at least when A is

finite-dimensional. However, we do not want to be limited to this case and give a direct

proof of the resulting formulae.

Theorem 3.2.2 (Codouble bosonisation). Let B be a finite-dimensional braided Hopf

algebra in AM with basis {ea}. Denote its dual by B∗ ∈MA with dual basis {fa}. Then

there is an ordinary Hopf algebra Bop>/·A·.<B∗, the codouble bosonisation, built on the
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vector space Bop ⊗A⊗B∗ with

(x⊗k ⊗ y)(w ⊗ `⊗ z) = x ·op w(∞) ⊗ k(2)`(1) ⊗ y(0)zR(y(1) , `(2))R(Sk(1), w(1)),

∆(x⊗k ⊗ y)

=
∑
a

x(1) ⊗ x(2)
(1)

(1)k(1) ⊗ fa ⊗ ea(1)(∞) ·op x(1)
(∞) ·op Sea(3)(∞) ⊗ k(4)y(1)

(1)
(2) ⊗ y(2)

R(ea(1)(1) , x(2)
(1)

(2)k(2))R(S(k(3)y(1)
(1)

(1)), ea(3)(1)) 〈y(1)
(0) , ea(2)〉

for all x,w ∈ Bop, k, ` ∈ A, and y, z ∈ B∗.

Here Bop, A and B∗ are subalgebras of Bop>/·A·.<B∗ and identifying x ≡ x ⊗ 1 ⊗ 1,

k ≡ 1⊗ k ⊗ 1 and y ≡ 1⊗ 1⊗ y we have xky ≡ x⊗ k ⊗ y. We also have algebra maps

B∗ ↪→ Bop>/·A·.<B∗ � Bop>/·A, Bop ↪→ Bop>/·A·.<B∗ � A·.<B∗

where the surjections are id⊗ε and ε⊗id respectively. It remains to prove Theorem 3.2.2,

which we will prove by the following separate lemmas.

Lemma 3.2.3. The product stated in Theorem 3.2.2 is associative.

Proof. We expand the definition of the product to find

(
(x⊗k ⊗ y)(w ⊗ `⊗ z)

)
(m⊗ j ⊗ v)

=(x ·op w(∞) ⊗ k(2)`(1) ⊗ y(0)z)(m⊗ j ⊗ v) R(y(1) , `(2))R(Sk(1), w(1))

=x ·op w(∞) ·op m(∞) ⊗ k(3)`(2)j(1) ⊗ y(0)(0)z(0)v R(y(1) , `(3))R(Sk(1), w(1))

R(y(0)(1)z(1) , j(2))R(S(k(2)`(1)),m(1))

=x ·op w(∞) ·op m(∞) ⊗ k(3)`(2)j(1) ⊗ y(0)z(0)v R(y(1)
(2), `(3))R(Sk(1), w(1))

R(y(1)
(1), j(2))R(z(1) , j(3))R(S`(1),m(1)

(1))R(Sk(2),m(1)
(2)),

for all x,w,m ∈ Bop, k, `, j ∈ A and y, z, v ∈ B∗, where the last equality uses the
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right-coaction property on y. Similarly,

(x⊗k ⊗ y)
(

(w ⊗ `⊗ z)(m⊗ j ⊗ v)
)

=(x⊗ k ⊗ y)(w ·op m(∞) ⊗ `(2)j(1) ⊗ z(0)v) R(z(1) , j(2))R(S`(1),m(1))

=x ·op w(∞) ·op m(∞)(∞) ⊗ k(2)`(2)j(1) ⊗ y(0)z(0)v R(z(1) , j(3))R(S`(1),m(1))

R(y(1) , `(3)j(2))R(Sk(1), w(1)m(∞)(1)),

which by the left-coaction property on m agrees with our first calculation.

Lemma 3.2.4. The coproduct ∆ stated in Theorem 3.2.2 is an algebra map.

Proof. Expanding the product and then the coproduct, we have

∆
(

(x⊗ k ⊗ y)(w ⊗ `⊗ z)
)

=x(1) ·op w(∞)
(1)

(∞) ⊗ x(2)
(∞)(1)

(1)w(∞)
(2)

(1)
(1)k(2)`(1) ⊗ fa

⊗ ea(1)(∞) ·op x(2)
(∞)(∞) ·op w(∞)

(2)
(∞) ·op Sea(3)(∞) ⊗ k(5)`(4)y(0)

(1)
(1)

(2)z(1)
(1)(1)

(2)

⊗ y(0)
(2)

(0)z(2) R(ea(1)(1) , x(2)
(∞)(1)

(2)w(∞)
(2)

(1)
(2)k(3)`(2))

R(S(k(4)`(3)y(0)
(1)

(1)
(1)z(1)

(0)(1)
(1)), ea(3)(1))R(Sk(1), w(1))R(y(1) , `(5))

R(Sx(2)
(1) , w(∞)

(1)
(1))R(y(0)

(2)
(1) , z(1)

(1))〈y(0)
(1)

(0)z(1)
(0)(0) , ea(2)〉

=x(1) ·op w(1)
(∞) ⊗ x(2)

(1)
(2)w(2)

(1)
(2)k(2)`(1) ⊗ fa

⊗ ea(1)(∞) ·op x(2)
(∞) ·op w(2)

(∞) ·op Sea(4)(∞) ⊗ k(5)`(4)y(1)
(1)

(2)z(1)
(1)

(2) ⊗ y(2)
(0)z(2)

R(ea(1)(1) , x(2)
(1)

(3)w(2)
(1)

(3)k(3)`(2))R(Sk(1), w(1)
(1)

(1)w(2)
(1)

(1))R(y(2)
(1)

(1), z(1)
(1)

(3))

R(S(k(4)`(3)y(1)
(1)

(1)z(1)
(1)

(1)), ea(4)(1))R(y(1)
(1)

(3)y(2)
(1)

(2), `(5))R(Sx(2)
(1)

(1), w(1)
(1)

(2))

〈y(1)
(0) , ea(2)〉〈z(1)

(0) , ea(3)〉

=x(1) ·op w(1)
(∞) ⊗ x(2)

(1)
(2)w(2)

(1)
(2)k(3)`(1) ⊗ fa

⊗ ea(1)(∞) ·op x(2)
(∞) ·op w(2)

(∞) ·op Sea(4)(∞) ⊗ k(6)`(4)y(1)
(1)

(2)z(1)
(1)

(2) ⊗ y(2)
(0)z(2)

R(ea(1)(1) , x(2)
(1)

(3)w(2)
(1)

(3)k(4)`(2))R(Sk(2), w(2)
(1)

(1))R(S(x(2)
(1)

(1)k(1)), w(1)
(1))

R(S(k(5)`(3)y(1)
(1)

(1)z(1)
(1)

(1)), ea(4)(1))R(y(1)
(1)

(3), `(5))R(y(2)
(1) , `(6)z(1)

(1)
(3))
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〈y(1)
(0) , ea(2)〉〈z(1)

(0) , ea(3)〉

for all x,w ∈ Bop, k, ` ∈ A, and y, z ∈ B∗. The second equality uses the comodule

coalgebra property (2.1.8) on w and coassociativity. The last expression uses coqua-

sitriangularity (2.2.4) to gather the parts of w(1)
(1) and y(2)

(1) inside R. On the other

side,

∆(x⊗ k ⊗ y)∆(w ⊗ `⊗ z)

=x(1) ·op w(1)
(∞) ⊗ x(2)

(1)
(1)(2)k(1)(2)w(2)

(1)
(1)(1)`(1)(1) ⊗ fa(0)f b

⊗ ea(1)(∞) ·op x(2)
(∞) ·op Sea(3)(∞) ·op eb(1)(∞)(∞) ·op w(2)

(∞)(∞) ·op Seb(3)(∞)(∞)

⊗ k(4)(2)y(1)
(1)

(2)(2)`(4)(1)z(1)
(1)

(2)(1) ⊗ y(2)
(0)z(2)R(ea(1)(1) , x(2)

(1)
(2)k(2))

R(S(k(3)y(1)
(1)

(1)), ea(3)(1))R(eb(1)(1) , w(2)
(1)

(2)`(2))R(S(`(3)z(1)
(1)

(1)), eb(3)(1))

R(S(x(2)
(1)

(1)(1)k(1)(1)), w(1)
(1))R(fa(1) , w(2)

(1)
(1)(2)`(1)(2))

R(S(k(4)(1)y(1)
(1)

(2)(1)), eb(1)(∞)(1)w(2)
(∞)(1)eb(3)(∞)(1))R(y(2)

(1) , `(4)(2)z(1)
(1)

(2)(2))

〈y(1)
(0) , ea(2)〉〈z(1)

(0) , eb(2)〉

=x(1) ·op w(1)
(∞) ⊗ x(2)

(1)
(2)k(2)w(2)

(1)
(1)`(1) ⊗ faf b

⊗ ea(1)(∞)(∞) ·op x(2)
(∞) ·op Sea(3)(∞)(∞) ·op ea(4)(∞)(∞) ·op w(2)

(∞)(∞) ·op Sea(6)(∞)(∞)

⊗ k(6)y(1)
(1)

(3)`(5)z(1)
(1)

(2) ⊗ y(2)
(0)z(2) R(ea(1)(∞)(1) , x(2)

(1)
(3)k(3))

R(S(k(4)y(1)
(1)

(1)), ea(3)(∞)(1))R(ea(4)(1) , w(2)
(1)

(3)`(3))R(S(`(4)z(1)
(1)

(1)), ea(6)(1))

R(S(x(2)
(1)

(1)k(1)), w(1)
(1))R(ea(1)(1)ea(2)(1)ea(3)(1) , w(2)

(1)
(2)`(2))

R(S(k(5)y(1)
(1)

(2)), ea(4)(∞)(1)w(2)
(∞)(1)ea(6)(∞)(1))R(y(2)

(1) , `(6)z(1)
(1)

(3))

〈y(1)
(0) , ea(2)(∞)〉〈z(1)

(0) , ea(5)〉

=x(1) ·op w(1)
(∞) ⊗ x(2)

(1)
(2)k(2)w(2)

(1)
(1)`(1) ⊗ fa

⊗ ea(1)(∞) ·op x(2)
(∞) ·op w(2)

(∞) ·op Sea(4)(∞) ⊗ k(5)y(1)
(1)

(3)`(4)z(1)
(1)

(2) ⊗ y(2)
(0)z(2)

R(ea(1)(1) (2), x(2)
(1)

(3)k(3))R(S(`(3)z(1)
(1)

(1)), ea(4)(1) (1))R(S(x(2)
(1)

(1)k(1)), w(1)
(1))

R(ea(1)(1) (1)y(1)
(1)

(1), w(2)
(1)

(2)`(2))R(S(k(4)y(1)
(1)

(2)), w(2)
(1)

(3)ea(4)(1) (2))
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R(y(2)
(1) , `(5)z(1)

(1)
(3))〈y(1)

(0) , ea(2)〉〈z(1)
(0) , ea(3)〉

=x(1) ·op w(1)
(∞) ⊗ x(2)

(1)
(2)k(2)w(2)

(1)
(1)`(1) ⊗ fa

⊗ ea(1)(∞) ·op x(2)
(∞) ·op w(2)

(∞) ·op Sea(4)(∞) ⊗ k(6)y(1)
(1)

(3)`(5)z(1)
(1)

(2) ⊗ y(2)
(0)z(2)

R(ea(1)(1) , x(2)
(1)

(3)k(3)w(2)
(1)

(2)`(2))R(S(k(5)y(1)
(1)

(2)`(4)z(1)
(1)

(1)), ea(4)(1))

R(S(x(2)
(1)

(1)k(1)), w(1)
(1))R(y(2)

(1) , `(6)z(1)
(1)

(3))R(y(1)
(1)

(1), `(3))R(Sk(4), w(2)
(1)

(3))

〈y(1)
(0) , ea(2)〉〈z(1)

(0) , ea(3)〉

where the second equality uses duality 〈fa(0) , ea〉fa(1) = 〈fa, e(∞)
a 〉e(1)a followed by the co-

module coalgebra property (2.1.8) on ea. The third equality cancels (Sea(3) ·opea(4))(∞)(∞)

making all subsequent coactions trivial. The fourth equality uses (2.2.4) to gather the

parts of ea(1)(1) and ea(4)(1) inside R, and cancels some Rs. In the final expression, one

can use quasicommutativity (2.2.5) to reorder the second tensor factor so as to coincide

with the result of the first calculation.

Lemma 3.2.5. The coproduct ∆ stated in Theorem 3.2.2 is coassociative.

Proof. We expand the definition of the coproduct to find

(id⊗∆)∆(x⊗ k ⊗ y)

=x(1) ⊗ x(2)
(1)

(1)x(3)
(1)

(1)k(1) ⊗ fa ⊗ ea(1)(∞) ·op x(2)
(∞) ·op Sea(5)(∞)

⊗ ea(2)(1) (4)x(3)
(1)

(4)ea(4)(1) (3)k(4)y(1)
(1)

(2) ⊗ f b

⊗ eb(1)(∞) ·op ea(2)(∞) ·op x(3)
(∞) ·op Sea(4)(∞) ·op Seb(3)(∞) ⊗ k(7)y(1)

(1)
(5)y(2)

(1)
(2) ⊗ y(3)

R(eb(1)(1) , ea(2)(1) (5)x(3)
(1)

(5)ea(4)(1) (4)k(5)y(1)
(1)

(3))R(S(k(6)y(1)
(1)

(4)y(2)
(1)

(1)), eb(3)(1))

R(ea(1)(1)ea(2)(1) (1), x(2)
(1)

(2)x(3)
(1)

(2)k(2))R(S(k(3)y(1)
(1)

(1)), ea(4)(1) (1)ea(5)(1) (1))

R(S(ea(2)(1) (3)x(3)
(1)

(3)), ea(5)(1) (3))R(Sea(4)(1) (2), ea(5)(1) (2))R(Sea(2)(1) (2), x(2)
(1)

(3))

〈y(1)
(0) , ea(3)〉〈y(2)

(0) , eb(2)〉

=x(1) ⊗ x(2)
(1)

(1)x(3)
(1)

(1)k(1) ⊗ fa ⊗ ea(1)(∞) ·op x(2)
(∞) ·op Sea(5)(∞)

⊗ ea(2)(1) (3)x(3)
(1)

(5)ea(4)(1) (3)k(6)y(1)
(1)

(3) ⊗ f b
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⊗ eb(1)(∞) ·op ea(2)(∞) ·op x(3)
(∞) ·op Sea(4)(∞) ·op Seb(3)(∞) ⊗ k(9)y(1)

(1)
(6)y(2)

(1)
(2) ⊗ y(3)

R(eb(1)(1) , ea(2)(1) (4)x(3)
(1)

(6)ea(4)(1) (4)k(7)y(1)
(1)

(4))R(S(k(8)y(1)
(1)

(5)y(2)
(1)

(1)), eb(3)(1))

R(ea(1)(1) , x(2)
(1)

(2)x(3)
(1)

(2)k(2))R(S(ea(2)(1) (2)x(3)
(1)

(4)ea(4)(1) (2)k(5)y(1)
(1)

(2)), ea(5)(1))

R(ea(2)(1) (1), x(3)
(1)

(3)k(3))R(S(k(4)y(1)
(1)

(1)), ea(4)(1) (1))〈y(1)
(0) , ea(3)〉〈y(2)

(0) , eb(2)〉

=x(1) ⊗ x(2)
(1)

(1)x(3)
(1)

(1)k(1) ⊗ fa ⊗ ea(1)(∞) ·op x(2)
(∞) ·op Sea(5)(∞)

⊗ x(3)
(1)

(4)ea(2)(1) (3)k(5)ea(4)(1) (3)y(1)
(1)

(3) ⊗ f b

⊗ eb(1)(∞) ·op ea(2)(∞) ·op x(3)
(∞) ·op Sea(4)(∞) ·op Seb(3)(∞) ⊗ k(9)y(1)

(1)
(6)y(2)

(1)
(2) ⊗ y(3)

R(eb(1)(1) , x(3)
(1)

(5)ea(2)(1) (4)k(6)ea(4)(1) (4)y(1)
(1)

(4))R(S(k(8)y(1)
(1)

(5)y(2)
(1)

(1)), eb(3)(1))

R(ea(1)(1) , x(2)
(1)

(2)x(3)
(1)

(2)k(2))R(S(x(3)
(1)

(3)ea(2)(1) (2)k(4)ea(4)(1) (2)y(1)
(1)

(2)), ea(5)(1))

R(ea(2)(1) (1), k(3))R(ea(2)(1) (5), x(3)
(1)

(6))R(Sy(1)
(1)

(1), ea(4)(1) (1))R(Sk(7), ea(4)(1) (5))

〈y(1)
(0) , ea(3)〉〈y(2)

(0) , eb(2)〉,

where the second equality uses (2.2.4) to gather the parts of ea(1)(1) and ea(5)(1) , cancelling

some of the Rs. We lastly use (2.2.5) to change the order in the fifth tensor factor and

in a similar term inside R, again cancelling some of the Rs. On the other side,

(∆⊗ id)∆(x⊗ k ⊗ y)

=x(1) ⊗ x(2)
(1)

(1)x(3)
(1)

(1)k(1) ⊗ f b ⊗ eb(1)(∞) ·op x(2)
(∞) ·op Seb(3)(∞) ⊗ x(3)

(1)
(4)k(4)f

a
(1)

(1)
(2)

⊗ fa(2) ⊗ ea(1)(∞) ·op x(3)
(∞) ·op Sea(3)(∞) ⊗ k(7)y(1)

(1)
(2) ⊗ y(2)

R(eb(1)(1) , x(2)
(1)

(2)x(3)
(1)

(2)k(2))R(S(x(3)
(1)

(3)k(3)f
a
(1)

(1)
(1)), eb(3)(1))R(ea(1)(1) , x(3)

(1)
(5)k(5))

R(S(k(6)y(1)
(1)

(1)
), ea(3)(1))〈y(1)

(0) , ea(2)〉〈fa(1)(0) , eb(2)〉

=x(1) ⊗ x(2)
(1)

(1)x(3)
(1)

(1)k(1) ⊗ f b ⊗ eb(1)(∞) ·op x(2)
(∞) ·op Seb(3)(∞) ⊗ x(3)

(1)
(4)k(4)eb(2)(1) (2)

⊗ f c ⊗ (e(∞)
c ·op e

(∞)
a )(1)(∞) ·op x(3)

(∞)S(e(∞)
c ·op e

(∞)
a )(3)(∞) ⊗ k(7)y(1)

(1)
(2) ⊗ y(2)

R(eb(1)(1) , x(2)
(1)

(2)x(3)
(1)

(2)k(2))R(S(x(3)
(1)

(3)k(3)eb(2)(1) (1)), eb(3)(1))

R((e(∞)
c ·op e

(∞)
a )(1)(1) , x(3)

(1)
(5)k(5))R(S(k(6)y(1)

(1)
(1)), (e

(∞)
c ·op e

(∞)
a )(3)(1))

R(e(1)c , e(1)a )〈fa, eb(2)(∞)〉〈y(1)
(0) , (e(∞)

c ·op e
(∞)
a )(2)〉
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=x(1) ⊗ x(2)
(1)

(1)x(3)
(1)

(1)k(1) ⊗ f b ⊗ eb(1)(∞) ·op x(2)
(∞) ·op Seb(5)(∞)

⊗ x(3)
(1)

(4)k(4)eb(2)(1) (2)eb(3)(1) (2)eb(4)(1) (2) ⊗ f c

⊗ ec(1)(∞) ·op eb(2)(∞) ·op x(3)
(∞) ·op S(ec(3)(∞) ·op eb(4)(∞))⊗ k(7)y(1)

(1)
(2) ⊗ y(2)

R(eb(1)(1) , x(2)
(1)

(2)x(3)
(1)

(2)k(2))R(S(x(3)
(1)

(3)k(3)eb(2)(1) (1)eb(3)(1) (1)eb(4)(1) (1)), eb(5)(1))

R(ec(1)(1) (2)eb(2)(1) (6), x(3)
(1)

(5)k(5))R(S(k(6)y(1)
(1)

(1)), ec(3)(1) (3)eb(4)(1) (4))

R(ec(1)(1) (1)ec(2)(1) (1)ec(3)(1) (1), eb(2)(1) (3)eb(3)(1) (3)eb(4)(1) (3))R(Sec(3)(1) (2)eb(2)(1) (4)eb(3)(1) (4))

R(Sec(2)(1) (2), eb(2)(1) (5))〈y(1)
(0) , ec(2)(∞) ·op eb(3)(∞)〉.

For the second equality we use duality 〈fa(1)(0) , eb(2)〉fa(1)(1) = 〈fa(1), eb(2)(∞)〉eb(2)(1) to

replace fa(1)(1) by eb(2)(1) , followed by

ea ⊗ fa(1) ⊗ fa(2) = e(∞)
c ·op e

(∞)
a ⊗ fa ⊗ f c R(e(1)c , e(1)a )

to replace fa(1) ⊗ fa(2) by fa ⊗ f c. For the third equality, we use 〈fa, eb(2)(∞)〉 to replace

ea by eb(2)(∞) , after which we expand (e(∞)
c ·op eb(2)(∞)(∞))(1) etc. using ∆ a braided-

homomorphism. In the last expression, we expand S of a ·op product and use

〈y(1)
(0) , ec(2)(∞) ·op eb(3)(∞)〉 = 〈y(1)

(0)
(1), eb(3)(∞)〉〈y(1)

(0)
(2), ec(2)(∞)〉R(Sec(2)(∞)(1) , eb(3)(∞)(1)).

By the comodule coalgebra property (2.1.7), the first pairing on the right becomes

〈y(1)
(0) , eb(3)(∞)〉〈y(2)

(0) , ec(2)(∞)〉 and duality 〈y(1)
(0) , eb(3)(∞)〉eb(3)(1) = 〈y(1)

(0)(0) , eb(3)〉y(1)
(0)(1)

replaces eb(3)(1) by y(1)
(0)(1) . The other pairing similarly replaces ec(2)(1) by y(2)

(0)(1) , so

(∆⊗ id)∆(x⊗ k ⊗ y)

=x(1) ⊗ x(2)
(1)

(1)x(3)
(1)

(1)k(1) ⊗ f b ⊗ eb(1)(∞) ·op x(2)
(∞) ·op Seb(5)(∞)

⊗ x(3)
(1)

(4)k(4)eb(2)(1) (2)y(1)
(1)

(2)eb(4)(1) (2) ⊗ f c

⊗ ec(1)(∞) ·op eb(2)(∞) ·op x(3)
(∞) ·op Seb(4)(∞) ·op Sec(3)(∞) ⊗ k(7)y(1)

(1)
(7)y(2)

(1)
(5) ⊗ y(3)

R(eb(1)(1) , x(2)
(1)

(2)x(3)
(1)

(2)k(2))R(S(x(3)
(1)

(3)k(3)eb(2)(1) (1)y(1)
(1)

(1)eb(4)(1) (1)), eb(5)(1))
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R(ec(1)(1) (2)eb(2)(1) (6), x(3)
(1)

(5)k(5))R(S(k(6)y(1)
(1)

(6)y(2)
(1)

(4)), ec(3)(1) (3)eb(4)(1) (4))

R(Sec(3)(1) (2), eb(2)(1) (4)y(1)
(1)

(4))R(ec(1)(1) (1)y(2)
(1)

(1)ec(3)(1) (1), eb(2)(1) (3)y(1)
(1)

(3)eb(4)(1) (3))

R(Sy(2)
(1)

(2), eb(2)(1) (5))R(Sy(2)
(1)

(3), y(1)
(1)

(5))R(Sec(3)(1) (4), eb(4)(1) (5))〈y(1)
(0) , eb(3)〉〈y(2)

(0) , ec(2)〉

=x(1) ⊗ x(2)
(1)

(1)x(3)
(1)

(1)k(1) ⊗ f b ⊗ eb(1)(∞) ·op x(2)
(∞) ·op Seb(5)(∞)

⊗ x(3)
(1)

(4)k(4)eb(2)(1) (2)y(1)
(1)

(2)eb(4)(1) (2) ⊗ f c

⊗ ec(1)(∞) ·op eb(2)(∞) ·op x(3)
(∞) ·op Seb(4)(∞) ·op Sec(3)(∞) ⊗ k(9)y(1)

(1)
(6)y(2)

(1)
(2) ⊗ y(3)

R(eb(1)(1) , x(2)
(1)

(2)x(3)
(1)

(2)k(2))R(S(x(3)
(1)

(3)k(3)eb(2)(1) (1)y(1)
(1)

(1)eb(4)(1) (1)), eb(5)(1))

R(S(k(8)y(1)
(1)

(5)y(2)
(1)

(1)), ec(3)(1))R(S(k(7)y(1)
(1)

(4)), eb(4)(1) (4))R(eb(2)(1) (4), x(3)
(1)

(6)k(6))

R(ec(1)(1) , x(3)
(1)

(5)k(5)eb(2)(1) (3)y(1)
(1)

(3)eb(4)(1) (3))〈y(1)
(0) , eb(3)〉〈y(2)

(0) , ec(2)〉,

using (2.2.4) to gather ec(1)(1) and ec(3)(1) , and cancelling some Rs. In the final expression

one can use (2.2.5) to change the order in the fifth tensor factor as well as inside R, to

recover our calculation of (id⊗∆)∆(x⊗ k ⊗ y) up to a change of basis labels.

Lemma 3.2.6. The antipode of Bop>/·A·.<B∗ in Theorem 3.2.2 is given by

S(x⊗ k ⊗ y) =S(ea(1)(∞) ·op x(∞) ·op Sea(3)(∞))⊗ S(x(1)
(2)k(2)f

a(1)
(3))⊗ Sfa(0)

R(fa(1) (1), S(x(1)
(1)k(1)))R(S2(k(5)y(1)

(2)), ea(1)(1) (3)x(1)
(5)ea(3)(1) (3))

R(ea(1)(1) (1), x(1)
(3)k(3))R(S(k(4)y(1)

(1)), ea(3)(1) (1))〈y(0) , ea(2)〉

v(fa(1) (2))u(ea(1)(1) (2)x(1)
(4)ea(3)(1) (2)),

where v(k) = R(k(1), Sk(2)) and u(k) = R(S2k(1), k(2)).

Proof. We first compute (S(x ⊗ k ⊗ y)(1))(x ⊗ k ⊗ y)(2), which on expanding out the

product has in the first tensor factor

S(eb(1)(∞) ·op x(1)
(∞) ·op Seb(3)(∞)) ·op ea(1)(∞) ·op x(2)

(∞) ·op Sea(3)(∞)

=(ε(ea(1))ε(ea(3))ε(x)ε(eb(1))ε(eb(3)))(∞) ,
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which further collapses the full expression to give

(S(x⊗k ⊗ y)(1))(x⊗ k ⊗ y)(2) = ε(x)⊗ S(k(2)f
b(1)

(4))k(3)y(1)
(1)

(1) ⊗ (Sf b(0))y(2)

〈fa, eb〉〈y(1)
(0) , ea〉R(f b(1) (2), Sk(1))R(f b(1) (1), k(4)y(1)

(1)
(2))v(f b(1) (3))

=ε(x)⊗ (Sy(1)
(0)(1)

(5))(Sk(2))k(3)y(1)
(1)

(1) ⊗ (Sy(1)
(0)(0))y(2)

R(y(1)
(0)(1)

(3), Sk(1))R(y(1)
(0)(1)

(1), y(1)
(1)

(2))R(y(1)
(0)(1)

(2), k(4))v(y(1)
(0)(1)

(4))

=ε(x)⊗ ε(k)(Sy(1)
(1)

(3))y(1)
(1)

(4) ⊗ (Sy(1)
(0))y(2)R(y(1)

(1)
(1), y(1)

(1)
(5))v(y(1)

(1)
(2))

=ε(x)⊗ ε(k)⊗ (Sy(1)
(0))y(2) R(y(1)

(1)
(1), y(1)

(1)
(3))v(y(1)

(1)
(2))

=ε(x)⊗ ε(k)⊗ ε(y) = ε(x⊗ k ⊗ y).

Similarly, on computing (x⊗ k ⊗ y)(1)(S(x⊗ k ⊗ y)(2)) we have fa(0)Sf b(0) = (εfaεf b)(0)

in the third tensor factor which collapses the expressions to give

(x⊗k ⊗ y)(1)(S(x⊗ k ⊗ y)(2)) = x(1) ·op Sx(2)
(∞)(∞) ⊗ x(2)

(1)
(2)k(2)S(x(2)

(1)
(3)k(3))⊗ εy

R(S2k(4), x(2)
(1)

(5))R(S(x(2)
(1)

(1)k(1)), x(2)
(∞)(1))u(x(2)

(1)
(4))

=x(1) ·op Sx(2)
(∞) ⊗ x(2)

(1)
(2)k(2)Sk(3)Sx(2)

(1)
(3) ⊗ εyR(S2k

(4)
, x(2)

(1)
(6))

R(Sk(1)Sx(2)
(1)

(1), x(2)
(1)

(6))u(x(2)
(1)

(4))

=x(1) ·op Sx(2)
(∞) ⊗ 1⊗ εyR(S2k(2), x(2)

(1)
(3))R(Sk(1), x(2)

(1)
(4))R(Sx(2)

(1)
(1), x(2)

(1)
(5))u(x(2)

(1)
(2))

=x(1) ·op Sx(2)
(∞) ⊗ εk ⊗ εyR(Sx(2)

(1)
(1), x(2)

(1)
(3))u(x(2)

(1)
(2)) = ε(x⊗ k ⊗ y).

Finally, we show that the codouble bosonisation is coquasitriangular so as to have an

inductive construction of such Hopf algebras.

Proposition 3.2.7. The codouble bosonisation coDA(B) = Bop>/·A·.<B∗ is coquasitri-

angular with

R(x⊗ k ⊗ y, w ⊗ `⊗ z) =〈Sz(0) , x〉R(k, `z(1))ε(y)ε(w)
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for all x,w ⊗Bop, k, ` ∈ A, and y, z ∈ B∗.

Proof. (i) Expanding the definitions of the product and the coquasitriangular structure,

R
(

(m⊗ j ⊗ v), (x⊗ k ⊗ y)(w ⊗ `⊗ z)
)

=〈S(y(0)(0)z(0)),m〉R(j, k`(1)y(0)(1)z(1))R(y(1) , `(2))

=〈S(y(0)z(0)),m〉R(j, k`(1)y(1)
(1)z(1))R(y(1)

(2), `(2))

=〈Sz(0)(0)Sy(0)(0) ,m〉R(j, k`(1)y(1)
(1)z(1))R(y(1)

(2), `(2))R(y(0)(1) , z(0)(1))

=〈Sz(0) ,m(1)〉〈Sy(0) ,m(2)〉R(j, k`(1)y(1)
(2)z(1)

(2))R(y(1)
(3), `(2))R(y(1)

(1), z(1)
(1))

=〈Sz(0) ,m(1)〉〈Sy(0) ,m(2)〉R(j, ky(1)
(3)`(2)z(1)

(2))R(y(1)
(1), z(1)

(1))R(y(1)
(2), `(1)).

The second equality uses the right coaction on y. The third equality expands the braided-

antipode S(y(0)z(0)). The fourth equality uses the right-coaction on y and z, and evalu-

ation. The last equality uses quasicommutativity to change the order of product inside

the first R. On the other side,

R
(

(m⊗j ⊗ v)(1), w ⊗ `⊗ z
)
R
(

(m⊗ j ⊗ v)(2), x⊗ k ⊗ y
)

=R(m(1) ⊗m(2)
(1)

(1)j(1) ⊗ fa, w ⊗ `⊗ z)

R(ea(1)(∞) ·op m(2)
(∞) ·op Sea(3)(∞) ⊗ j(4)v(1)

(1)
(2) ⊗ v(2), x⊗ k ⊗ y)

R(ea(1)(1) ,m(2)
(1)

(2)j(2))R(S(j(3)v(1)
(1)

(1)), ea(3)(1))〈v(1)
(0) , ea(2)〉

=〈Sz(0) ,m(1)〉〈Sy(0) ,m(2)
(∞)〉R(m(2)

(1)j(1), `z(1))R(j(2), ky(1))

=〈Sz(0) ,m(1)〉〈Sy(0)(0) ,m(2)〉R(y(0)(1)j(1), `z(1))R(j(2), ky(1))

=〈Sz(0) ,m(1)〉〈Sy(0) ,m(2)〉R(y(1)
(1)j(1), `z(1))R(j(2), ky(1)

(2)).

The third equality uses 〈y(0) ,m(2)
(∞)〉m(2)

(1) = 〈y(0)(0) ,m(2)〉y(0)(1) and the fourth uses the

right coaction on y. We can then use (2.2.4) to gather the parts of j and obtain the
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same expression as on the first side. (ii) Similarly expanding the definitions,

R
(

(x⊗k ⊗ y)(w ⊗ `⊗ z), (m⊗ j ⊗ v)
)

=〈Sv(0) , x ·op w(∞)〉R(k(2)`, jv(1))R(Sk(1), w(1))

=〈Sv(0) , w(∞)(∞)x(∞)〉R(k(2)`, jv(1))R(Sk(1), w(1))R(Sx(1) , w(∞)(1))

=〈Sv(0)
(1)

(0) , x(∞)〉〈Sv(0)
(2)

(0) , w(∞)〉R(k(2)`, jv(1))R(Sk(1), w(1)
(1))

R(Sx(1) , w(1)
(2))R(v(0)

(1)
(1) , v(0)

(2)
(1))

=〈Sv(1)
(0) , x(∞)〉〈Sv(2)

(0) , w(∞)〉R(k(2)`, jv(1)
(1)

(2)v(2)
(1)

(2))R(Sk(1), w(1)
(1))

R(Sx(1) , w(1)
(2))R(v(1)

(1)
(1), v(2)

(1)
(1))

=〈Sv(1)
(0)(0) , x〉〈Sv(2)

(0)(0) , w〉R(k(2)`, jv(1)
(1)

(2)v(2)
(1)

(2))R(Sk(1), v(2)
(0)(1)

(1))

R(Sv(1)
(0)(1) , v(2)

(0)(1)
(2))R(v(1)

(1)
(1), v(2)

(1)
(1))

=〈Sv(1)
(0) , x〉〈Sv(2)

(0) , w〉R(k(2)`, jv(1)
(1)

(3)v(2)
(1)

(4))R(Sk(1), v(2)
(1)

(1))

R(Sv(1)
(1)

(1), v(2)
(1)

(2))R(v(1)
(1)

(2), v(2)
(1)

(3))

=〈Sv(1)
(0) , x〉〈Sv(2)

(0) , w〉R(k, j(1)v(1)
(1)

(1))R(`, j(2)v(1)
(1)

(2)v(2)
(1)).

The second equality expands the braided-product ·op. The third equality uses the left-

coaction on w, followed by the duality pairing and taking S to the left in ∆(Sv(0)). The

fourth equality uses the comodule coalgebra property (2.1.7) on v and the right coaction

axioms. The fifth equality moves the coactions onto x,w by duality. The sixth equality

is similar to the fourth. For the last equality we cancel the last two Rs and use (2.2.4)

to gather k inside R and cancel further. On the other side,

R
(

(x⊗ k ⊗ y), (m⊗ j ⊗ v)(1)

)
R
(

(w ⊗ `⊗ z), (m⊗ j ⊗ v)(2)

)
=〈Sfa(0) , x〉〈Sv(2)

(0) , w〉〈v(1)
(0) , ea〉R(k, j(1)f

a(1))R(`, j(2)v(1)
(1)v(2)

(1))

=〈Sv(1)
(0)(0) , x〉〈Sv(2)

(0) , w〉R(k, j(1)v(1)
(0)(1))R(`, j(2)v(1)

(1)v(2)
(1))

on substituting fa = v(1)
(0) . We can then use the right coaction property on v(1) to
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recover the result of our first calculation. (iii) We expand the definitions to compute

(x⊗k ⊗ y)(2)(w ⊗ `⊗ z)(2)R
(

(x⊗ k ⊗ y)(1), (w ⊗ `⊗ z)(1)
)

=x(2)
(∞) ·op eb(1)(∞) ·op w(∞) ·op Seb(3)(∞) ⊗ k(3)`(4)z(1)

(1)
(2) ⊗ y(0)z(2)

R(Sk(2), eb(1)(1) (2)w(1)
(3)eb(3)(1) (2))R(y(1) , `(5)z(1)

(1)
(3))R(eb(1)(1) (1), w(1)

(2)`(2))

R(S(`(3)z(1)
(1)

(1)), eb(3)(1) (1))R(x(2)
(1)k(1), w(1)

(1)`(1)f
b(1))〈Sf b(0) , x(1)〉〈z(1)

(0) , eb(2)〉

=x(4)
(∞) ·op S

−1
x(3)

(∞) ·op w(∞) ·op SS
−1
x(1)

(∞) ⊗ k(3)`(4)z(1)
(1)

(2) ⊗ y(0)z(2)

R(Sk(2), x(3)
(1)

(5)w(1)
(3)x(1)

(1)
(4))R(y(1) , `(5)z(1)

(1)
(3))R(x(3)

(1)
(4), w(1)

(2)`(2))

R(S(`(3)z(1)
(1)

(1)), x(1)
(1)

(3))R(x(4)
(1)k(1), w(1)

(1)`(1)x(1)
(1)

(1)x(2)
(1)

(1)x(3)
(1)

(1))

R(x(2)
(1)

(2)x(3)
(1)

(2), x(1)
(1)

(2))R(x(3)
(1)

(3), x(2)
(1)

(3))〈z(1)
(0) , S

−1
x(2)

(∞)〉

=w(∞) ·op x(1)
(∞) ⊗ k(3)`(3)z(1)

(1)
(2) ⊗ y(0)z(2)

R(Sk(2), w(1)
(2)x(1)

(1)
(4))R(y(1) , `(4)z(1)

(1)
(3))R(S(`(2)z(1)

(1)
(1)), x(1)

(1)
(3))

R(k(1), w(1)
(1)`(1)x(1)

(1)
(1)x(2)

(1)
(1))R(x(2)

(1)
(2), x(1)

(1)
(2))〈z(1)

(0) , S
−1
x(2)

(∞)〉

=w(∞) ·op x(1)
(∞) ⊗ k(3)`(3)z(1)

(1)
(2) ⊗ y(0)z(2)

R(Sk(2), w(1)
(2)x(1)

(1)
(4))R(y(1) , `(4)z(1)

(1)
(3))R(S(`(2)z(1)

(1)
(1)), x(1)

(1)
(3))

R(k(1), w(1)
(1)`(1)x(1)

(1)
(1)z(1)

(0)(1)
(1))R(z(1)

(0)(1)
(2), x(1)

(1)
(2))〈Sz(1)

(0) , x(2)〉

=w ·op x(1)
(∞) ⊗ k(3)`(3)z(1)

(1)
(2) ⊗ y(0)z(2)〈Sz(1)

(0) , x(2)〉

R(Sk(2), x(1)
(1)

(3))R(y(1) , `(4)z(1)
(1)

(3))R(S`(2), x(1)
(1)

(2))R(k(1), `(1)x(1)
(1)

(1)z(1)
(1)

(1))

=w ·op x(1)
(∞) ⊗ k(2)`(3)z(1)

(1)
(2) ⊗ y(0)z(2) 〈Sz(1)

(0) , x(2)〉

R(y(1) , `(4)z(1)
(1)

(3))R(S`(1), x(1)
(1))R(k(1), `(2)z(1)

(1)
(1))

=w ·op x(1)
(∞) ⊗ `(2)z(1)

(1)
(1)k(1) ⊗ y(0)z(2)〈Sz(1)

(0) , x(2)〉

R(y(1) , `(4)z(1)
(1)

(3))R(S`(1), x(1)
(1))R(k(2), `(3)z(1)

(1)
(2)).

The second equality uses the duality 〈Sf b(0) , x
(1)
〉f b(1) = 〈f b, S−1

x
(1)

(∞)〉x
(1)

(1) to substi-

tute eb = S
−1
x

(1)
(∞) in all the places where it occurs, and the comodule algebra property

(2.1.8). The third equality cancels (x
(4)
·op S

−1
x

(3)
)(∞) resulting in trivial coactions. We

use the duality 〈z(1)
(0) , S

−1
x(2)

(∞)〉x(2)
(1) = 〈Sz(1)

(0) , x(2)〉z(1)
(0)(1) for the fourth equality
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and gather w(1) inside R to cancel it for the fifth one. The sixth equality uses (2.2.5) in

`(1)x(1)
(1)

(1)R(x(1)
(1)

(2), `(2)) = x(1)
(1)

(2)`(2)R(x(1)
(1)

(1), `(2))

and then gathers the parts of x(1)
(1) , and cancels some Rs. We finally use (2.2.5) to

change the order of products in the third tensor factor. On the other side,

(w ⊗ `⊗ z)(1)(x⊗ k ⊗ y)(1)R
(

(x⊗ k ⊗ y)(2), (w ⊗ `⊗ z)(2)
)

=w ·op x(1)
(∞) ⊗ `(2)x(2)

(1)
(1)k(1) ⊗ f b(0)fa〈Sz(2)

(0) , ea(1)(∞) ·op x(2)
(∞) ·op Sea(3)(∞)〉

R(k(5)y(1)
(2), `(3)z(1)

(1)z(2)
(1))R(S`(1), x(1)

(1))R(f b(1) , x(2)
(1)

(2)k(2))R(ea(1)(1) , x(2)
(1)

(3)k(3))

R(S(k(4)y(1)
(1)), ea(3)(1)) 〈y(0) , ea(2)〉〈z(1)

(0) , eb〉

=w ·op x(1)
(∞) ⊗ `(2)x(2)

(1)
(1)k(1) ⊗ z(1)

(0)fa〈Sz(2)
(0) , (S−1ea(3)(∞))x(2)

(∞)ea(1)(∞)〉

R(k(5)y(1)
(2), `(3)z(1)

(1)
(2)z(2)

(1))R(S`(1), x(1)
(1))R(z(1)

(1)
(1), x(2)

(1)
(2)k(2))

R(ea(1)(1) (1), x(2)
(1)

(3)k(3))R(S(k(4)y(1)
(1)), ea(3)(1) (1))R(Sea(1)(1) (2), x(2)

(1)
(4))

R(S(x(2)
(1)

(5)ea(1)(1) (3)), ea(3)(1) (2))〈y(0) , ea(2)〉

=w ·op x(1)
(∞) ⊗ `(2)x(2)

(1)
(1)k(1) ⊗ z(1)

(0)faR(S`(1), x(1)
(1))R(z(1)

(1)
(1), x(2)

(1)
(2)k(2))

R(z(2)
(1)

(1), x(2)
(1)

(3)k(3))R(S(k(4)y(1)
(1)), z(1)

(1)
(1))R(z(2)

(1)
(2), x(2)

(1)
(4))

R(S(x(2)
(1)

(5)z(2)
(1)

(3)), z(4)
(1)

(2))R(k(5)y(1)
(2), `(3)z(1)

(1)
(2)z(2)

(1)
(5)z(3)

(1)
(3)z(4)

(1)
(5))

R(z(3)
(1)

(1), z(4)
(1)

(3))R(z(2)
(1)

(4), z(4)
(1)

(4))〈Sz(2)
(0) , ea(1)(∞)〉〈y(0) , ea(2)〉〈Sz(4)

(0) , S−1ea(3)(∞)〉

〈Sz(3)
(0) , x(2)

(∞)〉

=w ·op x(1)
(∞) ⊗ `(2)x(2)

(1)
(1)k(1)

⊗ y(0)z(2)
(0)R(S`(1), x(1)

(1))R(S(k(2)y(1)
(1)), z(2)

(1)
(1))

R(Sx(2)
(1)

(2), z(2)
(1)

(2))R(k(3)y(1)
(2), `(3)z(1)

(1)
(2)z(2)

(1)
(4))R(z(1)

(1)
(1), z(2)

(1)
(3))〈Sz(1)

(0) , x(2)
(∞)〉

=w ·op x(1)
(∞) ⊗ `(2)z(1)

(1)
(1)k(1) ⊗ y(0)z(2)

(0)R(S`(1), x(1)
(1)

(1))R(S(k(2)y(1)
(1)), z(2)

(1)
(1))

R(k(3)y(1)
(2), `(3)z(1)

(1)
(4)z(2)

(1)
(4))R(Sz(1)

(1)
(2), z(2)

(1)
(2))R(z(1)

(1)
(3), z(2)

(1)
(3))〈Sz(1)

(0) , x(1)
(1)〉.

The second equality uses 〈z(1)
(0) , eb〉 to substitute f b = z(1)

(0) and we then expand ·op
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inside the pairing. For the third equality, we use

〈Sz(2)
(0) , (S−1ea(3)(∞))x(2)

(∞)ea(1)(∞)〉

=〈(Sz(2)
(0))(1), S

−1ea(3)(∞)〉〈(Sz(2)
(0))(2), x(2)

(∞)〉〈(Sz(2)
(0))

(3)
, ea(1)(∞)〉

and move S to the left in ∆2(Sz(2)
(0)). For the fourth equality we gather the coproducts

of ea to give 〈(Sz(2)
(0))y(0)z(4)

(0) , ea〉 so that we can set fa = (Sz(2)
(0))y(0)z(4)

(0) , allowing

us to cancel (z(1)Sz(2))(0) and drop out following coactions. For the fifth equality, we

use the duality pairing 〈Sz(1)
(0) , x(2)

(∞)〉x(2)
(1) = 〈Sz(1)

(0)(0) , x(2)〉z(1)
(0)(1) and then gather

z(2)
(1) inside R so as to cancel it and recover the result of our first calculation.

3.3 Dual Basis of cq[SL2] by Codouble Bosonisation

The coquasitriangular Hopf algebra Cq[SL2] in some standard conventions is generated

by a, b, c, d with the relations,

ba = qab, ca = qac, db = qbd, dc = qcd, cb = bc,

ad− q−1bc = 1, da− ad = (q − q−1)bc,

a ‘matrix’ form of coproduct (so ∆a = a⊗a+ b⊗ c etc.), ε(a) = ε(d) = 1, ε(b) = ε(c) = 0

and antipode Sa = d, Sd = a, Sb = −qb, Sc = −q−1c. The reduced version cq[SL2] has

an = 1 = dn, bn = 0 = cn

as additional relations when q is a primitive n-th root of unity. We will show how some

version of this is obtained by codouble bosonisation.

LetA = Cq[t]/(tn−1) be a coquasitriangular Hopf algebra with t grouplike andR(tr, ts) =

qrs. Also let B = C[x]/(xn) be a braided Hopf algebra in AM with

∆Lx = t⊗ x, ∆x = 1⊗ x+ x⊗ 1, εx = 0, Sx = −x, Ψ(xr ⊗ xs) = qrsxs ⊗ xr.
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The dual B∗ = C[y]/(yn) lives in MA with the same form of coproduct, etc., as for B,

but with right-coaction ∆Ry = y ⊗ t. We choose pairing 〈x, y〉 = 1 and take a basis of

B and a dual basis of B∗ respectively as

{ea} = {xa}0≤a<n, {fa} =
{ ya

[a]q!

}
0≤a<n

,

where [a]q is a q-integer defined by [a]q = (1− qa)/(1− q) and [a]q! = [a]q[a− 1]q · · · [1]q!

with [0]q! = 1. We also write
[
a
r

]
q

=
[a]q !

[r]q ![a−r]q ! . We write xa(op) = x ·op x ·op · · · ·op x with

a-many x, and find inductively that

xa =q
a(a−1)

2 xa(op), S(xa) = (−1)axa(op). (3.3.1)

Theorem 3.3.1. Let q be a primitive n-th root of unity and A,B,B∗ be as above.

1. The codouble bosonisation of B, denoted cq[SL2], has generators x, t, y and

xn = yn = 0, tn = 1, yx = xy, xt = qtx, yt = qty,

∆t = q
n−2∑
a=0

(q − 1)a−1(1− q−a−1)tya ⊗ xat

=
t

q − 1

(
q

1− ((q − 1)y ⊗ x)n−1

1− (q − 1)y ⊗ x
− 1− ((1− q−1)y ⊗ x)n−1

1− (1− q−1)y ⊗ x

)
t,

∆x = x⊗ 1 +
n−2∑
a=0

(q − 1)atya ⊗ xa+1 = x⊗ 1 + t

(
1− ((q − 1)y ⊗ x)n−1

1− (q − 1)y ⊗ x

)
x,

∆y = 1⊗ y +
n−2∑
a=0

(1− q−1)aya+1 ⊗ xat = 1⊗ y + y

(
1− ((1− q−1)y ⊗ x)n−1

1− (1− q−1)y ⊗ x

)
t.

2. If n = 2m+ 1, there is an isomorphism φ : cq[SL2]→ cq−m [SL2] defined by

φ(x) = bd−1, φ(t) = d−2, φ(y) =
d−1c

qm − q−m
.



Chapter 3. (Co)double bosonisation and dual basis of cq[SL2] 54

Proof. (1) First we determine the products

(1⊗ 1⊗ y)(x⊗ 1⊗ 1) =x(∞) ⊗ 1⊗ y(0) R(y(1) , 1)R(S1, x(1)) = x⊗ 1⊗ y,

(1⊗ t⊗ 1)(x⊗ 1⊗ 1) =x(∞) ⊗ t⊗ 1 R(St, x(1)) = q−1x⊗ t⊗ 1,

(1⊗ 1⊗ y)(1⊗ t⊗ 1) =1⊗ t⊗ y(0) R(y(1) , t) = q1⊗ t⊗ y

as stated. The algebra generated by x, y, t with these relations is n3 dimensional, hence

these are all the relations we need. Before go further, we note the q-identities

a∑
r=0

(−1)r
q
r(r+1)

2

[r]q![a− r]q!
= (1− q)a,

a∑
r=0

qr(−1)r
q
r(r+1)

2

[r]q![a− r]q!
= (1− q)a[a+ 1]q. (3.3.2)

Then, using (3.3.1), we compute

∆(1⊗ t⊗ 1) =
n−1∑
a=0

a∑
r=0

[a
r

]
q

1⊗ t⊗ ya

[a]q!
⊗ xr ·op Sx

a−r ⊗ t⊗ 1R(tr, t)R(St, ta−r)

=
n−1∑
a=0

a∑
r=0

[a
r

]
q

(−1)a−rq
r(r−1)

2
+2r−a1⊗ t⊗ ya

[a]q!
⊗ xr(op) ·op x

(a−r)(op) ⊗ t⊗ 1

=
n−2∑
a=0

a∑
r=0

(−1)a−r
[
a
r

]
q
q
r(r+1)

2 q−a+r

[a]q!
tya ⊗ xat

since there is no contribution when a = n− 1. We then use (3.3.2). Similarly,

∆(x⊗1⊗ 1) = x⊗ 1⊗ 1⊗ 1⊗ 1⊗ 1

+

n−1∑
a=0

a∑
r=0

[a
r

]
q

1⊗ t⊗ ya

[a]q!
⊗ xr ·op x ·op Sx

a−r ⊗ 1⊗ 1R(tr, t

= x⊗ 1⊗ 1⊗ 1⊗ 1⊗ 1

+

n−1∑
a=0

a∑
r=0

[a
r

]
q
q
r(r+1)

2 1⊗ t⊗ ya

[a]q!
⊗ xr(op) ·op x ·op (−1)a−rx(a−r)(op) ⊗ 1⊗ 1

= x⊗ 1 +

n−2∑
a=0

a∑
r=0

(−1)a−r
[
a
r

]
q
q
r(r+1)

2

[a]q!
tya ⊗ xa+1,

where for a = n−1, we will have the term tyn−1⊗xn = 0. We again use (3.3.2). Finally,
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we use ∆2(ea) = ∆2(xa) =
a∑
r=0

r∑
s=0

[
a
r

]
q

[
r
s

]
q
xs ⊗ xr−s ⊗ xa−r to find

∆(1⊗ 1⊗ y) = 1⊗ 1⊗ 1⊗ 1⊗ 1⊗ y

+
n−1∑
a=0

1⊗ 1⊗ fa ⊗ ea(1) ·op Sea(3)(∞) ⊗ t⊗ 1R(St, ea(3)(1))〈y, ea(2)〉.

= 1⊗ 1⊗ 1⊗ 1⊗ 1⊗ y

+
n−1∑
a=0

a∑
r=0

r∑
s=0

[a
r

]
q

[r
s

]
q

1⊗ 1⊗ ya

[a]q!
⊗ xs ·op Sx

a−r ⊗ t⊗ 1 R(St, ta−r)〈y, xr−s〉

= 1⊗ 1⊗ 1⊗ 1⊗ 1⊗ y

+

n−1∑
a=0

a∑
r=0

r∑
s=0

[a
r

]
q

[r
s

]
q
δ1,r−sq

s(s−1)
2 (−q−1)−a+r1⊗ 1⊗ ya

[a]q!
⊗ xs(op) ·op x

(a−r)(op) ⊗ t⊗ 1

= 1⊗ y +

n−1∑
a=0

a∑
r=0

r∑
s=0

(−1)a−rδ1,r−s
[
a
r

]
q

[
r
s

]
q
q
s(s−1)

2 q−a+r

[a]q!
ya ⊗ xa−r+st

= 1⊗ y +
n−2∑
a=0

a∑
r=0

(−1)a−r
[
a
r

]
q
q
r(r+1)

2 q−a

[a]q!
ya+1 ⊗ xat.

There was no contribution from a = 0 and for a > 0 we needed s = r−1 for a contribution.

We then use (3.3.2). Theorem 3.2.2 ensures that the Hopf algebra is coquasitriangular

with R(t, t) = q, R(x, y) = −1, and zero otherwise.

(2) If n = 2m+ 1 then ϕ : cq−m [SL2]→ cq[SL2] defined by

ϕ(a) = tm+1 + (qm − q−m)xtmy, ϕ(b) = xtm, ϕ(c) = (qm − q−m)tmy, ϕ(d) = tm.

is an algebra map and inverse to φ. Tedious but straightforward calculation gives

∆(ϕ(d)) = ∆tm =tm ⊗ tm + (q2m − 1)tmy ⊗ tmx = tm ⊗ tm + (qm − q−m)tmy ⊗ xtm,

to prove that ∆(ϕ(d)) = (ϕ⊗ϕ)∆d. The coalgebra map property on the other generators

then follows using this formula for ∆tm. Furthermore, the coquasitriangular structure



Chapter 3. (Co)double bosonisation and dual basis of cq[SL2] 56

from Lemma 3.2.7 computed on ϕ(a), ϕ(b), ϕ(c), ϕ(d) as a matrix ϕ(tij) is

RIJ = qm(m+1)



q−m 0 0 0

0 1 q−m − qm 0

0 0 1 0

0 0 0 q−m


. (3.3.3)

for the values ofR(ϕ(tij), ϕ(tkl)) where I = (i, k) is (1,1),(1,2),(2,1), or (2,2) and similarly

for J = (j, l). If we set p = q−m then any power of p is also a 2m+1-th root of unity and

q = q−2m = p2 so that our Hopf algebra is cp[SL2] with its standard coquasitriangular

structure with the correct factor qm(m+1) = p−m−1 = pm = p−
1
2 .

We now recall explicitly that for q a primitive n-th root of unity and q2 6= 1, uq(sl2) is

generated by E,F,K, with relations, coproducts and coquasitriangular structure

En = Fn = 0, Kn = 1, KEK−1 = q−2E, KFK−1 = q2F, [E,F ] = K −K−1,

∆K = K ⊗K, ∆F = F ⊗ 1 +K−1 ⊗ F, ∆E = E ⊗K + 1⊗ E,

R =
1

n

n−1∑
r,a,b=0

(−1)rq−2ab

[r]q−2 !
F rKa ⊗ ErKb,

where in our conventions we do not divide by the usual q − q−1 in the [E,F ]-relation

(and where we use q−2 rather than q2 in the remaining relations compared with [20]).

One can consider this as an unconventional normalisation of E which is cleaner when we

are not interested in a classical limit. It gives a commutative Hopf algebra u−1(sl2) when

q = −1. We first show that double bosonisation gives us some version of such reduced

quantum groups, agreeing for primitive odd roots. This was outlined in [20, Example

17.6] in the odd root case but we give a short derivation for all roots.

Lemma 3.3.2. [20] Let q be a primitive n-th root of unity and let H = CqZn =

Cq[K]/(Kn − 1) be a quasitriangular Hopf algebra by RK = 1
n

n−1∑
a,b=0

q−abKa ⊗ Kb as

in [19]. Let B = C[E]/(En) be a braided Hopf algebra in MH and dual B∗ = C[F ]/(Fn)
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in HM with actions E �K = qE and K � F = qF .

1. The double bosonisation B∗cop>/·H·.<B is a quasitriangular Hopf algebra, which we

denote uq(sl2), with the same coalgebra structure as above but with

En = Fn = 0, Kn = 1, KEK−1 = q−1E, KFK−1 = qF, [E,F ] = K−K−1,

Ruq(sl2) =
1

n

n−1∑
r,a,b=0

(−1)rq−ab

[r]q−1 !
F rKa ⊗ ErKb.

2. If n = 2m+ 1 then uq(sl2) is isomorphic to uq−m(sl2) with its standard quasitrian-

gular structure.

Proof. Here EK ≡ (1 ⊗ E)(K ⊗ 1) = K ⊗ E � K = K ⊗ qE ≡ qKE and KF ≡

(1 ⊗ K)(F ⊗ 1) = K � F ⊗ K = qF ⊗ K ≡ qFK. From the cross relations stated in

Theorem 3.1.1, we also have

EF =FE +
1

n

n−1∑
a,b=0

q−abKb〈F,E �Ka〉 − 1

n

n−1∑
a,b=0

qabKa〈Kb � F,E〉

=FE +
1

n

n−1∑
b=0

(
1− q−n(b−1)

1− q−(b−1)

)
Kb〈F,E〉 − 1

n

n−1∑
a=0

(
1− qn(a+1)

1− qa+1

)
Ka〈F,E〉

=FE +K −K−1,

where we choose 〈F,E〉 = 1. This is the same choice of normalisation for the braided line

duality as in the calculation in Theorem 3.3.1. For the coproduct, clearly ∆K = K ⊗K

while ∆E ≡ ∆(1⊗E) = 1⊗1⊗1⊗E+1⊗E�R(1)

K ⊗R
(2)

K ⊗1 = 1⊗1⊗1⊗E+1⊗E⊗K⊗1 ≡

1 ⊗ E + E ⊗ K and ∆F ≡ ∆(F ⊗ 1) = F ⊗ 1 ⊗ 1 ⊗ 1 + 1 ⊗ R−(1)

K ⊗ R−(2)

K � F ⊗ 1 =

F ⊗ 1⊗ 1⊗ 1 + 1⊗K−1 ⊗ F ⊗ 1 ≡ F ⊗ 1 +K−1 ⊗ F . Hence we have the relations and

coalgebra as stated. Also from Theorem 3.1.1,

Ruq(sl2) =
n−1∑
r=0

(
F r

[r]q!
⊗ SEr

)
RK =

1

n

n−1∑
r,a,b=0

(−1)rq
r(r−1)

2 q−ab

[r]q!
F rKa ⊗ ErKb,
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which we write as stated. When n = 2m + 1, it is easy to see that the relations and

quasitriangular structure become those of up(sl2) with p = q−m, which are the same as

in [20] after allowing for the normalisation of the generators. Note that if q is an even

root of unity then Ruq(sl2) need not be factorisable, see Example 3.3.4. In fact, Ruq(sl2)

is factorisable iff n is odd, which can be proven in a similar way to the proof in [17].

We see that the double bosonisation uq(sl2) recovers up(sl2) in the odd root of unity

case with p = q
1
2 , in line with the generic q case in [28]. Clearly uq(sl2) has a PBW-type

basis {F iKjEk}0≤i,j,k≤n−1 as familiar in the odd case for up(sl2).

Corollary 3.3.3. The basis {xitjyk}0≤i,j,k≤n−1 of cq[SL2] is, up to normalisation, dual

to the PBW basis of uq(sl2) in the sense

〈xitjyk, F i′Kj′Ek
′〉 = δi,i′δk,k′q

jj′ [i]q−1 ![k]q!.

More precisely,
{ xiδj(t)yk

[i]q−1 ![k]q!

}
0≤i,j,k<n

is a dual basis to {F iKjEk}0≤i,j,k<n, where δj(t) =

1
n

n−1∑
l=0

q−jltl.

Proof. The duality pairing between the double and codouble bosonisations is

〈xitjyk, F i′Kj′En
′〉 = 〈xi(op), F i

′〉〈tj ,Kj′〉〈yk, Ek′〉,

where the pairing between (C[x]/(xn))op and (C[F ]/(Fn))cop implied by 〈x, F 〉 = 1 is

〈xi(op), F i
′〉 = δi,i′ [i]q−1 ! while 〈tj ,Kj′〉 = qjj

′
is implied by 〈t,K〉 = q. The latter is the

duality pairing in the Pontryagin sense in which Zn is self-dual, and can be written as

a usual dual pairing with the δj . Equally well,
{F iδj(K)Ek

[i]q−1 ![k]q!

}
0≤i,j,k<n

is a dual basis to

{xitjyk}0≤i,j,k<n.

This applies even when q = −1, in that case as a self-duality pairing.

Example 3.3.4. If q = −1 then the double bosonisation u−1(sl2) = B∗cop>/·H·.<B from
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Lemma 3.3.2 has relations and coalgebra structure given by

E2 = F 2 = 0, K2 = 1, EF = FE, KE = −EK, KF = −FK,

∆K = K ⊗K, ∆F = F ⊗ 1 +K ⊗ F, ∆E = E ⊗K + 1⊗ E

and is self-dual and strictly quasitriangular with

R = (1⊗ 1− F ⊗ E)RK , RK =
1

2
(1⊗ 1 + 1⊗K +K ⊗ 1−K ⊗K).

It is easy to check that this is not triangular, i.e Q := R21R = 1 ⊗ 1 − E ⊗ F −

KF ⊗ EK − EKF ⊗ FKE 6= 1 ⊗ 1, and also not factorisable in the sense that the

map u−1(sl2)∗ → u−1(sl2) which sends φ 7→ (φ ⊗ id)Q is not surjective (the element

FK ∈ u−1(sl2) is not in the image). On the other hand, Theorem 3.3.1 (1) gives us an

isomorphic Hopf algebra by x 7→ F, y 7→ E and t 7→ K, so our Hopf algebra is self-dual,

i.e., u−1(sl2) ∼= c−1[SL2]. Note that u−1(sl2) has the same dimension and the coalgebra

structure of u−1(sl2) but cannot be isomorphic, being noncommutative. One can also

check that c−1[SL2] is not isomorphic as a Hopf algebra to c−1[SL2] and the latter, being

noncocommutative, cannot be dual to u−1(sl2).

3.4 Application to Hopf Algebra Fourier Transform

As a corollary of the above results, we briefly consider Hopf algebra Fourier transform

between our double and codouble bosonisations. Recall from standard Hopf algebra

theory, e.g. [19], that for a finite-dimensional Hopf algebra H there is, up to scale, a

unique right integral structure
∫

: H → k satisfying

(∫
⊗id

)
∆h =

(∫
h

)
1

for all h ∈ H. Such a right integral is the main ingredient for Fourier transform F : H →

H∗. The following preliminary lemma is essentially well-known (see [19, Proposition,



Chapter 3. (Co)double bosonisation and dual basis of cq[SL2] 60

1.7.7]), but for completeness we give the easier part that we need.

Lemma 3.4.1. Let
∫
,
∫ ∗

be right integrals on finite-dimensional Hopf algebras H,H∗

respectively and µ =
∫

(
∫ ∗

). The Fourier transform F : H → H∗ and adjunct F∗ obey

F(h) :=
∑
a

(∫
eah

)
fa, F∗(φ) :=

∑
a

ea

(∫ ∗
φfa

)
, F∗ ◦ F = µS,

where {ea} is basis of H, {fa} is the dual basis of H∗. Hence F is invertible if µ 6= 0.

Proof. We write
∫ ∗

= Λ∗ when regarded as element in H. Then

F∗ ◦ F(h) =ea

(∫ ∗
(

∫
ebh)f bfa

)
= (

∫
ea

(1)
h)ea

(2)
(

∫ ∗
fa)

=(

∫
Λ∗(1)h(1)

)Λ∗(2)h(2)
Sh

(3)
= (

∫
Λ∗h

(1)
)Sh

(2)
= (

∫
Λ∗)Sh = µSh.

If µ 6= 0 then this implies that F is injective and hence in our case invertible (with a bit

more work [19] one can show that the inverse is µ−1S−1F∗).

Proposition 3.4.2. Let q be a primitive n-th root of unity. The Fourier transform

F : cq[SL2]→ uq(sl2) is invertible and given by

F(xαtβyγ) =

n−1∑
l=0

q−(l+α)(1−β)+β(n−1−γ)

n[n− 1− α]q−1 ![n− 1− γ]q!
Fn−1−αK lEn−1−γ .

Proof. The right integral for cq[SL2] is given by

∫
xαtβyγ =


1, if α = γ = n− 1, β = 1

0, otherwise.

This integral is equivalent in usual generators to
∫
bn−1cn−1 = 1 and zero otherwise.

Corollary 3.3.3 gives us the basis {ea} = {xitjyk}0≤i,j,k≤n−1 of cq[SL2] and the dual
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basis {fa} = { F iδj(K)Ek

[i]q−1 !qj2 [k]q !
}0≤i,j,k≤n−1 of uq(sl2). Then

F(xαtβyγ) =
n−1∑
i,j,k=0

(

∫
xitjykxαtβyγ)

F iδj(K)Ek

[i]q−1 ![k]q!

=

n−1∑
i,j,k=0

q−αj+βk(

∫
xi+αtj+βyk+γ)

F iδj(K)Ek

[i]q−1 ![k]q!

=q−α(1−β)+β(n−1−γ) F 2−αδ1−β(K)En−1−γ

[n− 1− α]q−1 ![n− 1− γ]q!

=

n−1∑
l=0

q−(l+α)(1−β)+β(n−1−γ)

(n− 1 + 1)[n− 1− α]q−1 ![n− 1− γ]q!
Fn−1−αK lEn−1−γ .

The similar right integral of uq(sl2) and resulting µ are

∫ ∗
FαKβEγ =


1 if α = γ = n− 1, β = 1

0 otherwise,

µ =
q−1

n[n− 1]q−1 ![n− 1]q!
,

which is nonzero.

It appears to be a hard computational problem to give the general formula of the inverse

Fourier transform, but one can compute it for specific cases.

Example 3.4.3. Let q be a primitive cube root of unity. First, observe that for α, β =

0, 1, 2, we have

[Eα, F β] = F β−1([α]q[β]qK − [α]q−1 [β]q−1K−1)Eα−1

+ F β−2([2]qK − [2]q−1K−1)(K −K−1)Eα−2

in uq(sl2). Using this relation, we obtain

F∗(FαKβEγ) =

2∑
l=0

qβ(2−α)+(γ−l)(1−β)

3[2− α]q−1 ![2− γ]q!
x2−αtly2−γ

+
2∑
l=0

qβ(l−α−γ)([γ]q[3− α]q − q2(γ−l)+1[γ]q−1 [3− α]q−1)

3[3− α]q−1 ![3− γ]q!
F 3−αtly3−γ
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− q2β+1

3[4− α]q−1 ![4− γ]q!
x4−αt2y4−γ .

One can check that F∗F(xαtβyγ) = µS(xαtβyγ), where µ = q−1

3[2]q−1 ![2]q !
= q2

3 and

S(xαtβyγ) =
qαβ−βγ

[2− α]q−1 ![α]q−1 ![2− γ]q![γ]q!
xαt−δyγ

+
qαβ−βγ(q2β−2 − qδ−2)

[2− α]q−1 ![α]q−1 ![1− γ]q![1 + γ]q!
xα+1t−δ−1yγ+1

− 1 + qβ+1 + q2β+2

[2− α]q−1 ![2 + α]q−1 ![2− γ]q![2 + γ]q!
x2+αt2y2+γ ,

where δ = α+ β + γ.

Example 3.4.4. At q = −1, the Fourier transform in Proposition 3.4.2 combined with

the self-duality in Example 3.3.4 becomes a Fourier transform operator c−1[SL2] →

c−1[SL2]. This has eigenvalues ± ı√
2

with multiplicity 2, ± (−1)1/4√
2

and ± (−1)3/4√
2

with

multiplicity 1, and characteristic polynomial f(x) = 1
16 + x2

4 + x4

2 +x6 +x8. We also have

F∗(F aKbEc) =
1

2

1∑
l=0

(−1)(1−b)(c−l)+b(1−a)x1−atly1−c

and one can check that F−1 = µ−1S−1F∗ as in Lemma 3.4.1.

It is known that Fourier transform behaves well with respect to the coregular represen-

tation. This implies that it behaves well with respect to any covariant calculus. The

following is known, see e.g. [35], but we include a short derivation in our conventions.

In our case H is finite-dimensional.

Lemma 3.4.5. Let {ea} be a basis of Λ1, {fa} a dual basis and define partial derivatives

∂a : H → H by dh =
∑

a(∂
ah)ea and χa ∈ H∗ by χa(h) = 〈fa, $πεS−1h〉 for all h ∈ H.

Then F(∂ah) = (Fh)χa for all h ∈ H.

Proof. Using the right-integral property, we have

F(∂ah) = F(h(1))〈fa, $πεh(2)〉 =
∑
b

(

∫
eb(1)h(1))f

b〈fa, $πε((S−1eb(3))eb(2)h(2)〉
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=
∑
b

(

∫
eb(1)h)f b〈fa, $πε(S−1eb(2)〉 =

∑
b,c

(

∫
ebh)f bf c〈fa, $πε(S−1ec〉 = (Fh)χa.

Example 3.4.6. The 3D calculus c.f. [47] has left-invariant basic 1-forms e±, e0 with

e±h = p|h|he± and e0h = p2|h|he0 where p = q−m and | | denotes a grading with a, c

grade 1 and b, d grade -1 as a Zn-grading of cp[SL2]. Correspondingly for cq[SL2], we

have a calculus with |x| = 0, |t| = |y| = 2 and one can compute

dx = q−mte−, dt = (1 + q)
(
q(q−m − qm)tye− + te0

)
,

dy = (q−1 − 1)−1e+ + (1 + q)ye0 + q(q−m − qm)y2e−,

which implies on a general monomial basis element that

d(xitjyk) =(q−1 − 1)−1[k]qx
itjyk−1e+ + (1 + q)[j + k]q2x

itjyke0

+
(
q(q−m − qm)[2j + k]qx

itjyk+1 + [i]q−1q−m+j+kxi−1tj+1yk
)
e−.

We determine χa ∈ up(sl2) from 〈xitjyk, χa〉 = ε(∂a(xitjyk)) with the result

χ+ =
n−1∑
j=0

δj(K)E

q−1 − 1
=

n−1∑
i,j=0

q−ij

n(q−1 − 1)
KiE =

E

q−1 − 1
,

χ0 =
n−1∑
j=0

(1 + q)[j]q2δj(K) =
n−1∑
i,j=0

q−ij(1− q2j)

n(1− q)
Ki =

1−K2

1− q
,

χ− =

n−1∑
j=0

q−m+jFδj(K) =

n−1∑
i,j=0

q−mqj−ij

n
FKi = q−mFK.

These are versions of similar elements found for Cq[SU2] with real q in [47].



Chapter 4

Versions of uq(sl3) and cq[SL3] by

(co)double bosonisation

As mentioned in the introduction, double bosonisation can in principle be used iteratively

to construct all the uq(g) [20, 28] and hence by making the corresponding codouble

bosonisation at each step we will construct an appropriate cq[G].

In Section 4.1 we demonstrate this with

uq(sl3) = c2q>/·ũq(sl2)·.<c2q = c2q>/·(c1q>/·CZ2
n·.<c1q)·.<c2q

where ũq(sl2) is a central extension requiring an integer β such that β2 = 3 mod n, where

we assume that n = 2m+ 1 is odd, and c2q denotes the reduced quantum-braided plane

at the root of unity by making the generators nilpotent of order n. By setting p = q−m,

we will see that

uq(sl3) ∼=


uq−m(sl3) m > 1,

(uq−m(sl3)/〈K1 −K2〉)⊗ (C[g]/(gn − 1)) m = 1,

where the m = 1 case equates the two Cartan generators of the usual quantum group.

64
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This quotient is necessarily quasitriangular by our construction whereas we are not clear

if this is the case for up(sl3) itself when q3 = 1.

We then construct the dual by A = ˜cq[SL2] in Section 4.2 and similar quantum-braided

planes now as Hopf algebras in its category comodules lead to a dual coquasitriangular

Hopf algebra cq[SL3]. For m > 1 we show that this is isomorphic to the usual cq−m [SL3].

Even at the second stage of A = c̃q(sl2), there are other potential choices for braided

planes. We illustrate a non-classical choice where A = Cq[GL2] is not finite-dimensional,

q is generic and B = C0|2
q is the ‘fermionic quantum-braided plane’ in the category of

A-comodules. This leads to an exotic but still coquasitriangular version of Cq[SL3] with

some matrix entries ‘fermionic’.

We do not illustrate the inductive construction for cases beyond cq[SL3] since the direct

calculation becomes too complicated, but the method is not in doubt since one can always

work backwards by deleting all root generators of a quantum group associated to a node

in the Dynkin diagram (where the root vector contains the corresponding simple root)

to give the sub-quantum group and finding the required quantum-braided plane for the

induction step from the associated split projection of the q-Borel sub-Hopf algebra, c.f.

[30] in the Lie bialgebra case. We then dualise the data for the corresponding codouble

construction.

4.1 Construction of uq(sl3) from uq(sl2) by double bosonisa-

tion

The quantum group uq(sl3) in more or less standard conventions is generated by Ei, Fi,Ki

for i = 1, 2, with, c.f. [14],

Eni = Fni = 0, Kn
i = 1,

KiKj = KjKi, EiKj = qaijKiEj , KiFj = qaijFjKi, [Ei, Fj ] = δij(Ki −K−1
i ),

∆Ki = Ki ⊗Ki, ∆Ei = Ei ⊗Ki + 1⊗ Ei, ∆Fi = Fi ⊗ 1 +K−1
i ⊗ Fi,
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where a11 = a22 = 2 and a12 = a21 = −1. As before, we absorbed a factor q− q−1 in the

cross relation as a normalisation of Ei. We also require the q-Serre relations

E2
i Ej − (q + q−1)EiEjEi + EjE

2
i = 0, F 2

i Fj − (q + q−1)FiFjFi + FjF
2
i = 0

for i 6= j. Note that uq(sl2) appears as a sub-Hopf algebra generated by E1, F1,K1.

Let q be a primitive n-th root of unity with n = 2m+ 1 and p = q−m = q
1
2 . Let B = c2q

be the algebra generated by e1, e2 with relation e2e1 = q−me1e2 in the category of right

uq(sl2)-modules. The canonical left-action of uq(sl2) on B is given by

(
e1

e2

)
�K = 〈K,

a b

c d

〉(e1

e2

)
=

q−m 0

0 qm

(e1

e2

)
,

(
e1

e2

)
� E = 〈E,

a b

c d

〉(e1

e2

)
=

0 0

λ 0

(e1

e2

)
,

(
e1

e2

)
� F = 〈F,

a b

c d

〉(e1

e2

)
=

0 1

0 0

(e1

e2

)
,

(4.1.1)

where λ = qm − q−m. The duality between uq(sl2) and cq−m [SL2] is the standard one

when the former is identified with uq−m(sl2), or can be obtained from Corollary 3.3.3.

Lemma 4.1.1. Let q be a primitive n-th root of 1 with n = 2m+ 1 such that β2 = 3 has

a solution mod n. Let H = ũq(sl2) = uq(sl2)⊗ Cq[g]/(gn − 1), and let g act on ei by

ei � g = qmβei.

Then c2q is a braided Hopf algebra in the braided category of right H-modules with

en1 = en2 = 0, e2e1 = q−me1e2, ∆(ei) = ei ⊗ 1 + 1⊗ ei, ε(ei) = 0, S(ei) = −ei,

Ψ(ei⊗ei) = qei⊗ei, Ψ(e1⊗e2) = q−me2⊗e1, Ψ(e2⊗e1) = q−me1⊗e2 +(q−1)e2⊗e1.



Chapter 4. Versions of uq(sl3) and cq[SL3] by (co)double bosonisation 67

Proof. The quasitriangular structure of ũq(sl2) is given by Ruq(sl2)Rg, where Rg =

1
n

n−1∑
s,t=0

q−stgs ⊗ gt and Ruq(sl2) is given in Lemma 3.3.2. Thus, we can compute that

Ψ(ei ⊗ ej) = qm
2β2

(ei ⊗ ej) �Ruq(sl2).

This braiding is equal to the correctly normalised braiding in the statement (as needed

for ∆ to extend as a homomorphism to the braided tensor product algebra) iff m2β2 =

m(m − 1) mod n, or mβ2 = m − 1 since any m > 0 is invertible mod n (this is true

for m = 1 and if m > 1 then m and 2m + 1 are coprime). Thus the condition for c2q

to form a braided Hopf algebra in the category of ũq(sl2)-modules by an action of the

stated form is m(β2 − 1) = −1 = 2m mod n, or β2 = 3 mod n. Some version of this

lemma was largely in [6], working directly with p = q−m.

Here β = 0 is only possible for m = 1, i.e., n = 3. In this case c2q is already a braided

Hopf algebra in the category of uq(sl2)-modules without a central extension being needed.

Otherwise, the least n satisfying the condition is n = 11 with β = 5. For n prime, β

exists if and only if n = ±1 mod 12, see [46].

The dual B∗ = (c2q)
∗ ∈ HM is generated by f1, f2 satisfying the same relations f2f1 =

q−mf1f2 and additive braided coproduct as B but with the left action

K �

(
f1 f2

)
=

(
f1 f2

)q−m 0

0 qm

 , g � fi = qmβfi,

E �

(
f1 f2

)
=

(
f1 f2

)0 0

λ 0

 , F �

(
f1 f2

)
=

(
f1 f2

)0 1

0 0

 .

(4.1.2)

Lemma 4.1.2. The quantum-braided planes c2q and (c2q)
∗ in Lemma 4.1.1 are dually

paired by 〈er1es2, f r
′

1 f
s′
2 〉 = δr,r′δs,s′ [r]q![s]q!.
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Proof. It is not hard to see that 〈eri , f r
′
i 〉 = δr,r′ [r]q! and this implies that

〈er1es2, f r
′

1 f
s′
2 〉 =〈er1 ⊗ es2,

r′∑
r1=0

s′∑
s1=0

r′
r1


q

s′
s1


q

q−ms1(r′−r1)f r11 fs12 ⊗ f
r′−r1
1 fs

′−s1
2 〉

= 〈er1 ⊗ es2, f r
′

1 ⊗ fs
′

2 〉 = δr,r′δs,s′ [r]q![s]q!.

In the double bosonisation, we read the generators e1, e2 of the quantum-braided plane

B = c2q as E12 and E2 respectively. Similarly, the generators f1, f2 of its dual quantum-

braided plane (c2q)
∗ are read as F12, F2 respectively. Also, we read the generators E,F,K

of uq(sl2) as E1, F1 and K1 so that

En1 = Fn1 = 0, Kn
1 = 1, K1E1K

−1
1 = q−1E1, K1F1K

−1
1 = qF1, [E1, F1] = K1−K−1

1 .

Lemma 4.1.3. Suppose the setting of Lemma 4.1.1 with n odd and β2 = 3 solved mod

n.

1. The double bosonisation of c2q, which we denote uq(sl3), is generated by Ei, Fi,K1, g

for i = 1, 2, with E1, F1,K1 generating uq(sl2) as a sub-Hopf algebra, and

E2K1 = qmK1E2, E2g = qmβgE2, K1F2 = qmF2K1, gF2 = qmβF2g,

[E1, F2] = [E2, F1] = 0, [E2, F2] = Km
1 g

mβ −K−m1 g−mβ,

{E2
i , Ej} = (qm + q−m)EiEjEi, {F 2

i , Fj} = (qm + q−m)FiFjFi; i 6= j,

∆E2 = 1⊗ E2 + E2 ⊗Km
1 g

mβ, ∆F2 = F2 ⊗ 1 + g−mβK−m1 ⊗ F2,

Ruq(sl3) =
1

n2

∑ (−1)r+v+wqvw−st−ab

[r]q−1 ![v]q−1 ![w]q−1 !
F v12F

w
2 F

r
1K

s
1g
a ⊗ Ev12E

w
2 E

r
1K

t
1g
b,
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where we sum over r, s, a, t, b, v, w from 0 to n− 1 and

E2E1 = qmE1E2 + λE12, F1F2 = q−mF2F1 + F12; λ = qm − q−m.

2. If n > 3 and is not divisible by 3 then uq(sl3) is isomorphic to uq−m(sl3).

Proof. (1) This is a direct computation using Theorem 3.1.1. First, we have that E2h =

h(1)(E2�h(2)) and hF2 = (h(1)�F2)h(2) for all h ∈ ũq(sl2) and using the actions mentioned

above. Those not involving E12, F12 are as listed, while two more are regarded in the

statement as definitions of E12, F12 in terms of the other generators. In this case the

remaining cross relations

E12K1 = q−mK1E12, K1F12 = q−mF12K1, E12g = qmβgE12, gF12 = qmβF12g

are all empty and can be dropped. Similarly, the first two of

[E12, F1] = K−1
1 E2, [E1, F12] = λF2K1, E12E1 = q−mE1E12, F1F12 = qmF12F1

are empty and can be dropped. The remaining two and the original quantum-braided

plane relations E12E2 = qmE2E12, F12F2 = qmF2F12 are the four q-Serre relations stated

for i 6= i. We next look at the cross relations between the two quantum-braided planes.

For example,

[E2, F2] = R(2)〈F2, E2 �R(1)〉 − R−(1)〈R−(2) � F2, E2〉.

Putting in the form of R and R−1 gives the stated cross relation. One similarly has

[E12, F2] = −E1K
m
1 g

mβ, [E2, F12] = λg−mβK−m1 F1, [E12, F12] = K−m1 gmβ−Km
1 g
−mβ

of which the first two are empty by a similar computation to the one above and the last

is also empty by a more complicated calculation. In fact all these identities can be useful
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even though we do not include them in the defining relations. We also have

∆E2 = 1⊗ E2 +
1

n2

∑ (−1)r

[r]q−1 !
q−st−ab(E2 � F r1K

s
1g
a)⊗ Er1Kt

1g
b

= 1⊗ E2 +
1

n2

∑
q−s(t−m)−a(b−mβ)E2 ⊗Kt

1g
b = 1⊗ E2 + E2 ⊗Km

1 g
mβ,

where we sum over r, s, a, t, b from 0 to n− 1. To compute ∆F2, we need

R−1 = SR(1) ⊗R(2) =
1

n2

∑ q−st−ab

[r]q−1 !
g−aKr−s

1 F r1 ⊗ Er1Kt
1g
b.

Only the first term contributes when acting on F2,

∆F2 = F2 ⊗ 1 +
1

n2

∑ (−1)r

[r]q−1 !
q−st−abg−aKr−s

1 F r1 ⊗ Er1Kt
1g
b � F2

= F2 ⊗ 1 +
1

n2

∑
q−t(s−m)−b(a−mβ)g−aK−s1 ⊗ F2 = F2 ⊗ 1 + g−mβK−m1 ⊗ F2

and similarly for ∆E2. One also has

∆E12 = 1⊗ E12 + E12 ⊗K−m1 gmβ − E2 ⊗ E1K
m
1 g

mβ,

∆F12 = F12 ⊗ 1 + g−mβKm
1 ⊗ F12 + λg−mβK−m1 F ⊗ F2

which we did not state as E12, F12 are not generators. By Theorem 3.1.1 and Lemma

4.1.2, the quasitriangular structure of uq(sl3) is

Ruq(sl3) = (
n−1∑
v,w=0

F v12F
w
2

[v]q![w]q!
⊗ S(Ev12E

w
2 ))Ruq(sl2)Rg, (4.1.3)

where Ruq(sl2)Rg is explained in the proof of Lemma 4.1.1. By (2.3.1) for the braided-

antipode, we find

S(Ev12E
w
2 ) = (−1)v+wq

v(v−1)+w(w−1)
2

+vwEw12E
v
2 ,

so that (4.1.3) becomes the expression stated.
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(2) If m > 1, we define ϕ : uq−m(sl3)→ uq(sl3) by

ϕ(Ei) = Ei, ϕ(Fi) = Fi, ϕ(K1) = K1, ϕ(K2) = Km
1 g

mβ.

It is easy to see that ϕ is an algebra and coalgebra map. In the other direction, when

m > 1, β is invertible mod n iff 3 is. We then define φ : uq(sl3)→ uq−m(sl3) by

φ(Ei) = Ei, φ(Fi) = Fi, φ(K1) = K1, ϕ(g) = (K−m1 K2)
1
mβ ,

which is clearly inverse to ϕ.

We again write p = q−m so that uq(sl3) is isomorphic to up(sl3) under our assumptions,

where n = 33 and β = 6 is the first case excluded. The double bosonisation construction

also gives {F i112F
i2
2 F

i3
1 K

i4
1 g

i5Ei61 E
i7
12E

i8
2 } as a basis of uq(sl3).

Example 4.1.4. As mentioned before, when q is a primitive cubic root of unity i.e., when

β = 0, c2q is already a braided Hopf algebra in the category of uq(sl2)-modules without an

extension needed. Then Theorem 3.1.1 gives us a quasitriangular Hopf algebra, which we

denote u′q(sl3), generated by Ei, Fi,K1 with i = 1, 2 with the relations and coproducts

EiK1 = qK1Ei, K1Fi = qFiK1, [Ei, Fj ] = δi,j(K1 −K−1
1 ),

{E2
i , Ej} = (q + q−1)EiEjEi, {F 2

i , Fj} = (q + q−1)FiFjFi; i 6= j,

∆Ei = 1⊗ Ei + Ei ⊗K1, ∆Fi = Fi ⊗ 1 +K−1
1 ⊗ Fi,

RH =
1

9

∑ (−1)r+v+wqvw−st

[r]q−1 ![v]q−1 ![w]q−1 !
F v12F

w
2 F

r
1K

s
1 ⊗ Ev12E

w
2 E

r
1K

t
1,

where the sum is over r, s, t, v, w from 0 to 2. This u′q(sl3) is not isomorphic to uq−1(sl3)

since we do not have the generator K2. However, the element K−1
1 K2 is central and

group-like in uq−1(sl3) and u′q(sl3) ∼= uq−1(sl3)/〈K−1
1 K2 − 1〉. In addition, Lemma 4.1.3

still applies and g is already group-like, and central when β = 0. Therefore we have

uq(sl3) = u′q(sl3)⊗ Cq[g]/(g3 − 1) for m = 1.
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4.2 Construction of cq[SL3] from cq[SL2] by codouble boson-

isation

Recall, see e.g. [19], that the coquasitriangular Hopf algebra Cq[SL3] is generated by

t = (tij) for i, j = 1, 2, 3, with matrix-form of coproduct ∆t = t⊗ t, and for i < k, j < l,

the relations

[til, t
i
j ]q = 0, [tkj , t

i
j ]q = 0, [til, t

k
j ] = 0, [tkl, t

i
j ] = λtilt

k
j ,

detq(t) := t11(t22t
3

3−q−1t23t
3

2)−q−1t12(t21t
3

3−q−1t23t
3

1)+q−2t13(t21t
3

2−q−1t22t
3

1) = 1,

where [a, b]q := ba − qab and λ = q − q−1. The reduced version is denoted by cq[SL3]

and has the additional relations

(tij)
n = δij .

Throughout this section we limit ourselves to q a primitive n = 2m+ 1-th root of unity

so that cq[SL2] ∼= cq−m [SL2] according to Theorem 3.3.1. Since we only consider this

case, it will be convenient to use the isomorphism to define new generators a, b, c, d of

cq[SL2] related to our previous ones by x = bd−1, t = d−2 and y = d−1c/(qm − q−m).

Then we can benefit from both the matrix form of coproduct on the new set and the

dual basis feature of the original set. We let A = ˜cq[SL2] = cq[SL2] ⊗ Cq[ς]/(ςn − 1)

be the central extension dual to ũq(sl2) = uq(sl2) ⊗ Cq[g]/(gn − 1). Here 〈ς, g〉 = q and

R(ς, ς) = q is the coquasitriangular structure on the central extension factor. Let B

be a quantum-braided plane c2q as in Lemma 4.1.1 but viewed in the category of left

comodules over A with left coaction

∆L

x1

x2

 =

ã b̃

c̃ d̃

⊗
x1

x2

 ;

ã b̃

c̃ d̃

 =

a b

c d

 ςmβ, (4.2.1)
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where we now denote the generators x1, x2. In this case we will have

Ψ(xi ⊗ xj) = qm
2β2
Rjk

i
lxk ⊗ xl,

where R was given in (3.3.3). We again require that β2 = 3 mod n so that q3m2
R has

the correct normalisation factor q3m2+m(m+1) = q−m in front of the matrix in (3.3.3), as

needed to obtain a braided Hopf algebra. One also has, c.f. [19],

∆(xr1x
s
2) =

r∑
r1=0

s∑
s1=0

 r
r1


q

 s
s1


q

q−ms1(r−r1)xr11 x
s1
2 ⊗ x

r−r1
1 xs−s12 .

The dual B∗ was likewise explained in the previous section and is now taken with gen-

erators yi and regarded in the category of right comodules over A with

∆R

(
y1 y2

)
=

(
y1 y2

)
⊗

ã b̃

c̃ d̃

 . (4.2.2)

Theorem 4.2.1. Let n = 2m+ 1 such that β2 = 3 is solved mod n. Let A = ˜cq[SL2] =

cq[SL2]⊗Cq[ς]/(ςn−1) regarded with generators ς, ã, b̃, c̃, d̃. Let B,B∗ be quantum-braided

planes with generators xi, yi for i = 1, 2 as above.

1. The codouble bosonisation, denoted cq[SL3], has cross relations and coproducts

xiyj = yjxi, xiς = qmβςxi, yiς = qmβςyi,

ã b̃

c̃ d̃

x1 =

q−1x1ã q−1x1b̃

qmx1c̃ qmx1d̃

 ,

ã b̃

c̃ d̃

x2 =

qmx2ã+ (q−1 − 1)x1c̃ qmx2b̃+ (q−1 − 1)x1d̃

q−1x2c̃ q−1x2d̃

 ,

y1

ã b̃

c̃ d̃

 =

qãy1 q−mb̃y1

qc̃y1 q−md̃y1

 , y2

ã b̃

c̃ d̃

 =

q−mãy2 + (q − 1)b̃y1 qb̃y2

q−mc̃y2 + (q − 1)d̃y1 qd̃y2

 ,
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∆x1 =x1 ⊗ 1 +
n−1∑
r,s=0

(q − 1)r+s

r + s

s


q

(
ãyr1y

s
2 ⊗ xr+1

1 xs2 + q−mr b̃yr1y
s
2 ⊗ xr1xs+1

2

)
,

∆x2 =x2 ⊗ 1 +

n−1∑
r,s=0

(q − 1)r+s

r + s

s


q

(
c̃yr1y

s
2 ⊗ xr+1

1 xs2 + q−mrd̃yr1y
s
2 ⊗ xr1xs+1

2

)
,

∆y1 =1⊗ y1 +
n−1∑
r,s=0

(q − 1)r+s−1q−r+ms+1

r + s− 1

s


q

yr1y
s
2 ⊗ xr−1

1 xs2ã

+

n−1∑
r,s=0

(q − 1)r+s−1q−r−s+1

r + s− 1

s− 1


q

yr1y
s
2 ⊗ xr1xs−1

2 c̃,

∆y2 =1⊗ y2 +
n−1∑
r,s=0

(q − 1)r+s−1q−r+ms+1

r + s− 1

s


q

yr1y
s
2 ⊗ xr−1

1 xs2b̃

+

n−1∑
r,s=0

(q − 1)r+s−1q−r−s+1

r + s− 1

s− 1


q

yr1y
s
2 ⊗ xr1xs−1

2 d̃,

∆ς =
n−1∑
r,s=0

q−mβ(r+s)(q − 1)r+s

r + 2mβ − 1

r


q

r + s+ 2mβ − 1

s


q

ςyr1y
s
2 ⊗ xr1xs2ς,

∆ã =

n−1∑
r,s=0

(q − 1)r+sq−r−s

r + s

s


q

ãyr1y
s
2 ⊗

(
q−ms[r + 1]qx

r
1x
s
2ã+ [s]qx

r+1
1 xs−1

2 c̃
)

+
n−1∑
r,s=0

(q − 1)r+sqm(r+s)

r + s

s


q

b̃yr1y
s
2 ⊗

(
q−m[r]qx

r−1
1 xs+1

2 ã+ qsxr1x
s
2c̃
)
,

∆b̃ =
n−1∑
r,s=0

(q − 1)r+sq−r−s

r + s

s


q

ãyr1y
s
2 ⊗

(
q−ms[r + 1]qx

r
1x
s
2b̃+ [s]qx

r+1
1 xs−1

2 d̃
)

+

n−1∑
r,s=0

(q − 1)r+sqm(r+s)

r + s

s


q

b̃yr1y
s
2 ⊗

(
q−m[r]qx

r−1
1 xs+1

2 b̃+ qsxr1x
s
2d̃
)
,

∆c̃ =
n−1∑
r,s=0

(q − 1)r+sq−r−s

r + s

s


q

c̃yr1y
s
2 ⊗

(
q−ms[r + 1]qx

r
1x
s
2ã+ [s]qx

r+1
1 xs−1

2 c̃
)
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+
n−1∑
r,s=0

(q − 1)r+sqm(r+s)

r + s

s


q

d̃yr1y
s
2 ⊗

(
q−m[r]qx

r−1
1 xs+1

2 ã+ qsxr1x
s
2c̃
)
,

∆d̃ =

n−1∑
r,s=0

(q − 1)r+sq−r−s

r + s

s


q

c̃yr1y
s
2 ⊗

(
q−ms[r + 1]qx

r
1x
s
2b̃+ [s]qx

r+1
1 xs−1

2 d̃
)

+
n−1∑
r,s=0

(q − 1)r+sqm(r+s)

r + s

s


q

d̃yr1y
s
2 ⊗

(
q−m[r]qx

r−1
1 xs+1

2 b̃+ qsxr1x
s
2d̃
)
.

2. If n > 3 and is not divisible by 3 then cq[SL3] is isomorphic to cq−m [SL3] with its

standard coquasitriangular structure.

Proof. (1) From x2 ·op x1 = qx1 ·op x2, we work inductively and find that

x
r(op)

1 ·op x
s(op)

2 = q
−(r+s)(r+s−1)

2 xr1x
s
2, S(x

r(op)

1 ·op x
s(op)

2 ) = (−1)r+sq
−(r+s)(r+s−1)

2 x1x2

where x
r(op)

1 means x1 ·op x1 ·op · · · r-times. We also need that

∆L(xr1) =
r∑

r1=0

 r
r1


q

ãr1 b̃r−r1 ⊗ xr11 x
r−r1
2 , ∆L(xs2) =

s∑
s1=0

 s
s1


q

c̃r1 d̃s−s1 ⊗ xs11 x
s−s1
2

and that ζ commutes with ã, b̃, c̃, d̃. Then computation from Theorem 3.2.2 gives

xiyj = yjxi, xiς = qmβςxi, yiς = qmβςyi,

a b

c d

x1 =

q−m2
x1a q−m

2
x1b

qm
2
x1c qm

2
x1d

 , y1

a b

c d

 =

qm2
ay1 q−m

2
by1

qm
2
cy1 q−m

2
dy1


a b

c d

x2 =

qm2
(x2a+ (qm − q−m)x1c) qm

2
(x2b+ (qm − q−m)x1d)

q−m
2
x2c q−m

2
x2d

 ,
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y2

a b

c d

 =

q−m2
(ay2 − (qm − q−m)by1) qm

2
by2

q−m
2
(cy2 − (qm − q−m)dy1) qm

2
dy2


and hence the relations stated. The algebra generated by xi, yi, ς, ã, b̃, c̃, d̃ is n8 dimen-

sional as required for these to be all the relations. For the coproduct, we use Lemma 4.1.2

to provide a basis and dual basis of c2q and (c2q)
∗. Then

∆x1 =x1 ⊗ 1

+
n−1∑
r,s=0

r∑
r1=0

s∑
s1=0

 r
r1


q

 s
s1


q

(−1)r+s−r1−s1qs1(r−r1)+
(r1+s1)(r1+s1+1)

2
+r1+s1

× ãyr1y
s
2

[r]q![s]q!
⊗ xr+1

1 xs2

+

n−1∑
r,s=0

r∑
r1=0

s∑
s1=0

 r
r1


q

 s
s1


q

(−1)r+s−r1−s1qs1(r−r1)+
(r1+s1)(r1+s1−1)

2
+s1−mr

× (1 + [r1]q(q − 1))
b̃yr1y

s
2

[r]q![s]q!
⊗ xr1xs+1

2

and similarly for ∆x2. Likewise,

∆y1 =1⊗ y1

+
n−1∑
r,s=0

r∑
r1=0

s∑
s1=0

 r
r1


q

 s
s1


q

(−1)r+s−r1−s1qs1(r−r1)+
(r1+s1−1)(r1+s1−2)

2
−r+ms+r1+s1

× [r1]q
yr1y

s
2

[r]q![s]q!
⊗ xr−1

1 xs2ã

+
n−1∑
r,s=0

r∑
r1=0

s∑
s1=0

 r
r1


q

 s
s1


q

qr1+s1−r−s+ (r1+s1)(r1+s1−1)
2 (−1)r+s−r1−s1

× ([s1]q + [r1]q[s− s1]q)
yr1y

s
2

[r]q![s]q!
⊗ xr1xs−1

2 c̃
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and similarly for ∆y2. Next, we have

∆ς =

n−1∑
r,s=0

r∑
r1=0

s∑
s1=0

 r
r1


q

 s
s1


q

qs1(r−r1)+mβ(2r1+2s1−r−s)+ (r1+s1)(r1+s1−1)
2 (−1)r+s−r1−s1

× ςyr1y
s
2

[r]q![s]q!
⊗ xr1xs2ς,

∆ã =
n−1∑
r,s=0

r∑
r1=0

s∑
s1=0

 r
r1


q

 s
s1


q

(−1)r+s−r1−s1qs1(r−r1)+2r1+s1−r+ms+ (r1+s1)(r1+s1−1)
2

× ãyr1y
s
2

[r]q![s]q!
⊗ xr1xs2ã

+

n−1∑
r,s=0

r∑
r1=0

s∑
s1=0

 r
r1


q

 s
s1


q

[s− s1]q(−1)r+s−r1−s1qs1(r−r1)+2r1+2s1−r−s+ (r1+s1)(r1+s1−1)
2

× (1− q) ãyr1y
s
2

[r]q![s]q!
⊗ xr+1

1 xs−1
2 c̃

+
n−1∑
r,s=0

r∑
r1=0

s∑
s1=0

 r
r1


q

 s
s1


q

[r1]q(−1)r+s−r1−s1qs1(r−r1)+r1+s1+mr+ms+
(r1+s1)(r1+s1−1)

2

× (q−m − qm)
b̃yr1y

s
2

[r]q![s]q!
⊗ xr−1

1 xs+1
2 ã

+

n−1∑
r,s=0

r∑
r1=0

s∑
s1=0

 r
r1


q

 s
s1


q

(−1)r+s−r1−s1qs1(r−r1)+
(r1+s1)(r1+s1−1)

2
+r1+2s1+mr−s

× (1− [r1]q[s− s1]q(q − 1)2)
b̃yr1y

s
2

[r]q![s]q!
⊗ xr1xs2c̃

and similarly for ∆b̃,∆c̃,∆d̃. The stated coproducts follow from the q-identity

r∑
r1=0

(−1)r−r1q
r1(r1+1)

2 qsr1

[r1]q![r − r1]q!
= (q − 1)r

r + s

r


q

(4.2.3)

for all r, s (of which (3.3.2) are special cases) and further calculation, which will be given

in the Appendix.

(2) If n > 3 and is not divisible by 3 then β is invertible mod n. We define ϕ :
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cq−m [SL3]→ cq[SL3] by

ϕ(t11) = aς
m
β + λx1ς

1
β y1, ϕ(t12) = bς

m
β + λx1ς

1
β y2, ϕ(t13) = x1ς

1
β ,

ϕ(t21) = cς
m
β + λx2ς

1
β y1, ϕ(t22) = dς

m
β + λx2ς

1
β y2, ϕ(t23) = x2ς

1
β ,

ϕ(t31) = λς
1
β y1, ϕ(t32) = λς

1
β y2, ϕ(t33) = ς

1
β ,

where λ = qm − q−m. A tedious calculation shows that this extends as an algebra map

and is a coalgebra map. In the other direction, we define φ : cq[SL3]→ cq−m [SL3] by

φ(ς) = (t33)β, φ(x1) = t13(t33)−1, φ(x2) = t23(t33)−1,

φ(y1) = λ−1(t33)−1t31, φ(y2) = λ−1(t33)−1t32,

φ(a) = t11(t33)−m − qmt13t
3

1(t33)m, φ(b) = t12(t33)−m − qmt13t
3

2(t33)m,

φ(c) = t21(t33)−m − qmt23t
3

1(t33)m, φ(d) = t22(t33)−m − qmt23t
3

2(t33)m

as inverse to ϕ. Although one can verify these matters directly, the map ϕ was obtained

as adjoint to the isomorphism uq−m(sl3)→ uq(sl3) in part (2) of Lemma 4.1.3 as follows.

The standard duality between uq−m(sl3) and cq−m [SL3] is by

〈t, F1〉 = e12, 〈t, F2〉 = e23, 〈t, F12〉 = e13, 〈t, E1〉 = λe21, 〈t, E2〉 = λe32,

〈t, E12〉 = λe31, 〈t,K1〉 =


q−m 0 0

0 qm 0

0 0 1

 , 〈t,K2〉 =


1 0 0

0 q−m 0

0 0 qm

 ,

where eij is an elementary matrix with entry 1 in (i, j)-position and 0 elsewhere. The

duality between uq(sl3) and cq[SL3] is part of our construction with a natural basis of

cq[SL3] built from bases of c2q , (c
2
q)
∗ and ˜cq[SL2] = cq[SL2] ⊗ Cq[ς]/(ςn − 1). The first

tensor factor here has a basis of monomials in x, t, y by Theorem 3.3.1. Therefore we

have {xi11 x
i2
2 x

i3tj1ςj2yk1yk21 y
k3
2 } as a basis of cq[SL3] essentially dual to the PBW basis
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of uq(sl3) in the sense

〈xi11 x
i2
2 x

i3tj1ςj2yk1yk21 y
k3
2 , F

i′1
12F

i′2
2 F

i′3
1 K

j′1
1 g

j′2E
k′1
1 E

k′2
12E

k′3
2 〉

= δi1i′1δi2i′2δi3i′3δk1k′1δk2k′2δk3k′3 [i1]q−1 ![i2]q−1 ![i3]q−1 !qj1j
′
1+j2j′2 [k1]q![k2]q![k3]q!.

This is the dual basis result for uq(sl3) and cq[SL3] analogous to Corollary 3.3.3 in the

sl2 case. Hence the coefficients of ϕ(tij) in this basis of cq[SL3] will be picked out by

evaluation against the dual basis F i112F
i2
2 F

i3
1 δj1(K1)δj2(g)Ek11 Ek212E

k3
2 , where δj(K1), δj(g)

are defined as in Corollary 3.3.3. These values are given by the matrix representation

as above except that we still need the matrix representation of g. From Lemma 4.1.3

we recall that that uq(sl3) ∼= uq−m(sl3) with g 7→ (K−mK2)
1
mβ , hence we have 〈t, g〉 =

diag(q
m
β , q

m
β , q

1
β ). Write J = F i112F

i2
2 F

i3
1 δj1(K1)δj2(g)Ek11 Ek212E

k3
2 , then this gives

〈ϕ(t11), J〉 =δi1,0δi2,0δi3,0δj1,−mδj2,mβ δk1,0δk2,0δk3,0

+ λδi1,0δi2,0δi3,1δj1,mδj2,mβ δk1,1δk2,0δk3,0

+ λδi1,1δi2,0δi3,0δj1,0δj2, 1β
δk1,0δk2,1δk3,0

〈ϕ(t12), J〉 =δi1,0δi2,0δi3,1δj1,mδj2,mβ δk1,0δk2,0δk3,0

+ λδi1,1δi2,0δi3,0δj1,0δj2, 1β
δk1,0δk2,0δk3,1

〈ϕ(t13), J〉 =δi1,1δi2,0δi3,0δj1,0δj2, 1β
δk1,0δk2,0δk3,0

〈ϕ(t21), J〉 =λδi1,0δi2,0δi3,0δj1,mδj2,mβ δk1,1δk2,0δk3,0

+ λδi1,0δi2,1δi3,0δj1,0δj2, 1β
δk1,0δk2,1δk3,0

〈ϕ(t22), J〉 =δi1,0δi2,0δi3,0δj1,mδj2,mβ δk1,0δk2,0δk3,0

+ λδi1,0δi2,1δi3,0δj1,0δj2, 1β
δk1,0δk2,0δk3,1

〈ϕ(t23), J〉 =δi1,0δi2,1δi3,0δj1,0δj2, 1β
δk1,0δk2,0δk3,0

〈ϕ(t31), J〉 =λδi1,0δi2,0δi3,0δj1,0δj2, 1β
δk1,0δk2,1δk3,0

〈ϕ(t32), J〉 =λδi1,0δi2,0δi3,0δj1,0δj2, 1β
δk1,0δk2,0δk3,1

〈ϕ(t33), J〉 =δi1,0δi2,0δi3,0δj1,0δj2, 1β
δk1,0δk2,0δk3,0.
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We then convert to the a, b, c, d generators as discussed.

Finally, the coquasitriangular structure of cq[SL3] computed using Lemma 3.2.7 and

pulled back to the cq−m [SL3] generators is R(ϕ(tij), ϕ(tkl)) = RIJ , where I = (i, k),

J = (j, l) are taken in lexicographic order (1, 1), (1, 2), · · · , (3, 3) and

RIJ = q
m
3



q−m 0 0 0 0 0 0 0 0

0 1 0 q−m − qm 0 0 0 0 0

0 0 1 0 0 0 q−m − qm 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 q−m 0 0 0 0

0 0 0 0 0 1 0 q−m − qm 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 q−m



,

which is the standard coquasitriangular structure on the generators of cp[SL3] given in

[20] when specialised to the root of unity p = q−m.

Remark 4.2.2. In the case (2) of the theorem above, we can identify ˜cq[SL2] ∼=

cq−m [GL2] by sending the four matrix generators of the latter to ã = aςmβ, b̃ = bςmβ, c̃ =

cςmβ, d̃ = dςmβ. The q-determinant D maps to ς2mβ. The converse direction is clear

since β is invertible mod n when n > 3 and not divisible by 3, so we can write ς = D
1

2mβ .

Example 4.2.3. At q3 = 1, c2q is already a braided Hopf algebra in the category of

cq[SL2]-comodules without a central extension. Therefore we can apply Theorem 3.2.2

and obtain a Hopf algebra, which we denote c′q[SL3], generated by xi, yi, a, b, c, d with

the additional cross relations and coproducts

a b

c d

x1 =

q−1x1a q−1x1b

qx1c qx1d

 ,
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a b

c d

x2 =

qx2a+ (q−1 − 1)x1c qx2b+ (q−1 − 1)x1d

q−1x2c q−1x2d

 ,

y1

a b

c d

 =

qay1 q−1by1

qcy1 q−1dy1

 , y2

a b

c d

 =

q−1ay2 + (q − 1)by1 qby2

q−1cy2 + (q − 1)dy1 qdy2

 ,

∆x1 =x1 ⊗ 1 + a⊗ x1 + b⊗ x2 + λay1 ⊗ x2
1 + λby2 ⊗ x2

2 + λay2 ⊗ x1x2

+ λq2by1 ⊗ x1x2 + λ2ay2
2 ⊗ x1x

2
2 + λ2qby2

1 ⊗ x2
1x2

+ λ2[2]qay1y2 ⊗ x2
1x2 + λ2[2]qq

2by1y2 ⊗ x1x
2
2

,∆y1 =1⊗ y1 + y1 ⊗ a+ y2 ⊗ c+ λq2y2
1 ⊗ x1a+ λq2y2

2 ⊗ x2c+ λqy1y2 ⊗ x2a

+ λq2y1y2 ⊗ x1c+ λ2q2y1y
2
2 ⊗ x2

2a+ λ2[2]qqy1y
2
2 ⊗ x1x2c

+ λ2[2]qy
2
1y2 ⊗ x1x2a+ λ2qy2

1y2 ⊗ x2
1c

∆a =a⊗ a+ b⊗ c+ λ[2]qq
2ay1 ⊗ x1a+ λqay2 ⊗ x2a+ λq2ay2 ⊗ x1c

+ λ[2]qq
−1by2 ⊗ x2c+ λby1 ⊗ x2a+ λqby1 ⊗ x1c+ λ2q2ay2

2 ⊗ x2
2a

+ λ2q2by2
1 ⊗ x2

1c+ λ2[2]qqay
2
2 ⊗ x1x2c+ λ2[2]qqby

2
1 ⊗ x1x2a

+ λ2[2]2qay1y2 ⊗ x1x2a+ λ2[2]2qby1y2 ⊗ x1x2c

+ λ2[2]qqay1y2 ⊗ x2
1c+ λ2[2]qqby1y2 ⊗ x2

2a,

and similarly for the remaining coproducts. Here λ = q − 1. This c′q[SL3] is dual to

u′q(sl3) in Example 4.1.4 and it is not isomorphic to cq−1 [SL3], but rather to a sub-Hopf

algebra by φ : c′q[SL3] ↪→ cq−1 [SL3] with

φ(x1) = t13(t33)−1, φ(x2) = t23(t33)−1, φ(y1) = − t
3

1(t33)−1

λ
, φ(y2) = − t

3
2(t33)−1

λ
,

φ(a) = t11(t33)−1 − t13(t33)−1t31(t33)−1, φ(b) = t12(t33)−1 − t13(t33)−1t32(t33)−1,

φ(c) = t21(t33)−1 − t23(t33)−1t31(t33)−1, φ(d) = t22(t33)−1 − t23(t33)−1t32(t33)−1.
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Moreover, c′q[SL3] is a coquasitriangular Hopf algebra by Lemma 3.2.7. Writing s1
1 =

a, s1
2 = b, s2

1 = c, s2
2 = d for the matrix form of the generators of cq[SL2], the coquasi-

triangular structure of c′q[SL3] comes out as

R(sij , s
k
l) = Rij

k
l, R(xi, yj) = −δi,j , R(xi, xj) = R(yi, yj) = R(yi, xj) = 0,

R(xi, s
j
k) = R(yi, s

j
k) = R(sij , xk) = R(sij , yk) = 0,

R(xis
j
k, s

u
vyw) = −δw1,iR

j
j1
w1
wR

j1
k
u
v, R(sijyk, xus

v
w) = 0,

where R is as in (3.3.3) with m = 1. Theorem 4.2.1 (1) still applies at q3 = 1 with β = 0

giving that ς is central and group-like in cq[SL3] and that cq[SL3] ∼= c′q[SL3]⊗Cq[ς]/(ς3−

1).

4.3 Fermionic version of Cq[SL3]

Here we similarly apply codouble bosonisation but this time to obtain a part-fermionic

version of Cq[SL3] by using the fermionic quantum-braided plane. We no longer work at

roots of unity but rather with q generic and also, in the spirit of Remark 4.2.2, we take as

our middle Hopf algebra A = Cq[GL2], the coquasitriangular Hopf algebra generated by

ã, b̃, c̃, d̃ with the same q-commutation relations and coalgebra structure as Cq[SL2], but

with D = ãd̃− q−1b̃c̃ = d̃ã− qb̃c̃ inverted. The antipode and coquasitriangular structure

are given in matrix form by

S

ã b̃

c̃ d̃

 = D−1

 d̃ −qb̃

−q−1c̃ ã

 , R = −q−1



q 0 0 0

0 1 q − q−1 0

0 0 1 0

0 0 0 q


.

In fact the normalisation of R here can be chosen freely (there is a 1-parameter family

of such quasitriangular structures on this Hopf algbra) which we have fixed so that we

have B = C0|2
q ∈ AM as a fermionic quantum-braided plane generated by e1, e2 with the
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relations and coproduct and braiding

e2
i = 0, e2e1 + q−1e1e2 = 0, ∆ei = ei ⊗ 1 + 1⊗ ei, εei = 0, Sei = −ei,

Ψ(ei⊗ei) = −ei⊗ei, Ψ(e1⊗e2) = −q−1e2⊗e1, Ψ(e2⊗e1) = −q−1e1⊗e2−(1−q−2)e2⊗e1.

This has a left Cq[GL2]-coaction as in (4.2.1). Similarly, its dual B∗ = (C0|2
q )∗ lives in

the category of right Cq[GL2]-comodules with coaction as in (4.2.2).

Proposition 4.3.1. Let q ∈ C∗ not be a root of unity. The codouble bosonisation

Bop>/·A·.<B∗ with the above B,A,B∗ is a coquasitriangular Hopf algebra Cferq [SL3] gen-

erated by ei, fi for i = 1, 2 and ã, b̃, c̃, d̃, D,D−1, with cross relations and coproducts

fiej = ejfi,

ã b̃

c̃ d̃

 e1 =

−e1ã −e1b̃

−qe1c̃ −qe1d̃

 ,

ã b̃

c̃ d̃

 e2 =

−qe2ã− (1− q2)e1c̃ −qe2b̃− (1− q2)e1d̃

−e2c̃ −e2d̃

 ,

f1

ã b̃

c̃ d̃

 =

−ãf1 −q−1b̃f1

−c̃f1 −q−1d̃f1

 , f2

ã b̃

c̃ d̃

 =

−q−1ãf2 − (1− q−2)b̃f1 −b̃f2

−q−1c̃f2 − (1− q−2)d̃f1 −d̃f2

 ,

∆e1 = e1 ⊗ 1 + ã⊗ e1 + b̃⊗ e2 + (1− q−2)(q−1b̃f1 − ãf2)⊗ e1e2,

∆e2 = e2 ⊗ 1 + c̃⊗ e1 + d̃⊗ e2 + (1− q−2)(q−1d̃f1 − c̃f2)⊗ e1e2,

∆f1 = 1⊗ f1 + f1 ⊗ ã+ f2 ⊗ c̃+ (1− q2)f1f2 ⊗ (e1c̃− q−1e2ã),

∆f2 = 1⊗ f2 + f1 ⊗ b̃+ f2 ⊗ d̃+ (1− q2)f1f2 ⊗ (e1d̃− q−1e2b̃),

∆ã = ã⊗ ã+ b̃⊗ c̃+ (q − q−1)(b̃f1 − qãf2)⊗ (e1c̃− q−1e2ã),

∆b̃ = ã⊗ b̃+ b̃⊗ d̃+ (q − q−1)(b̃f1 − qãf2)⊗ (e1d̃− q−1e2b̃),

∆c̃ = c̃⊗ ã+ d̃⊗ c̃+ (q − q−1)(d̃f1 − qc̃f2)⊗ (e1c̃− q−1e2ã),
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∆d̃ = c̃⊗ b̃+ d̃⊗ d̃+ (q − q−1)(d̃f1 − qc̃f2)⊗ (e1d̃− q−1e2b̃).

Proof. First note that

R(Sã, ã) = R(Sd̃, d̃) = −1, R(Sã, d̃) = R(Sd̃, ã) = −q, R(Sb̃, c̃) = −(1− q2)

and zero on other cases of this form. Then the inverse braiding is

Ψ−1(e1 ⊗ e2) = R(Se(1)1 , e(1)2 )e(∞)

2 ⊗ e(∞)

1 = −qe2 ⊗ e1 − (1− q2)e1 ⊗ e2,

Ψ−1(e2 ⊗ e1) = R(Se(1)2 , e(1)1 )e(∞)

1 ⊗ e(∞)

2 = −qe1 ⊗ e2,

with the result that S(e1 ·op e2) = q2e1 ·op e2 and e2 ·op e1 + q−1e1 ·op e2 = 0 in Bop. We

now apply the codouble bosonisation theorem. It is easy to see that fiej ≡ (1 ⊗ 1 ⊗

fi)(ej ⊗ 1⊗ 1) = ej ⊗ 1⊗ 1 ≡ ejfi. Next, we compute that for any sij ∈ Cq[GL2], where

s1
1 = ã, s1

2 = b̃, s2
1 = c̃, s2

2 = d̃,

sijek = e(∞)

k (sij)(2)R(S(sij)(1), e
(1)

k ) =
2∑
l=1

e(∞)

k sljR(Ssil, e
(1)

k ),

fks
i
j = (sij)(1)f

(0)

k R(f (1)

k , (sij)(2)) =

2∑
l=1

silf
(0)

k R(f (1)

k , slj),

which comes out as the stated cross relations. Now let

{ea} = {1, e1, e2, e1e2}, {fa} = {1, f1, f2, f1f2}

be a basis and dual basis of B,B∗ respectively. Then

∆ei = ei ⊗ 1 +
2∑

a=1

e(1)i (1)f
a ⊗ (ea(1)(∞) ·op e

(∞)

i ·op Sea(2))R(ea(1)(1) , e
(1)

i (2)),

∆fi = 1⊗ fi +

2∑
a=1

fa ⊗ (ea(1) ·op Sea(3)(∞))f (1)

i (2)R(Sf (1)

i (1), ea(3)(∞))〈fi, ea(2)〉,
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∆sij =
2∑

a,k,l,r=1

sikf
a ⊗ (ea(1)(∞) ·op Sea(2)(∞))srjR(ea(1)(1) , s

k
l)R(Sslr, ea(2)(1)),

which come out as stated for all i, j ∈ {1, 2}. Finally, we let

s1 = (q − q−1)(b̃f1 − qãf2), s2 = (q − q−1)(d̃f1 − qc̃f2),

t1 = e1c̃− q−1e2ã, t2 = e1d̃− q−1e2b̃,

and write Cferq [SL3] as having a matrix of generators tij , where now i, j ∈ {1, 2, 3}, by

t =


t11 t12 t13

t21 t22 t23

t31 t32 t33

 =


x t1 t2

s1 ã b̃

s2 c̃ d̃

 ;

x = D+(t1D
−1(d̃s1 − qb̃s2)− q−1t2D

−1(c̃s1 − qãs2)). (4.3.1)

Here D obeys Dti = qtiD and Dsi = qsiD for i = 1, 2. The coproduct now has the

standard matrix form ∆t = t⊗ t and in these terms the quadratic relations are

(t12)2 = (t13)2 = (t21)2 = (t31)2 = 0,

[t12, t
1

1]q−1 = [t13, t
1

1]q−1 = [t21, t
1

1]q−1 = [t31, t
1

1]q−1 = [t23, t
2

2]q = [t32, t
2

2]q = 0,

[t33, t
2

3]q = [t33, t
3

2]q = [t21, t
1

2] = [t21, t
1

3] = [t31, t
1

2] = [t31, t
1

3] = [t32, t
2

3] = 0,

[t22, t
1

1] = −λt12t
2

1, [t23, t
1

1] = −λt13t
2

1, [t32, t
1

1] = −λt12t
3

1,

[t33, t
1

1] = −λt13t
3

1, [t33, t
2

2] = λt23t
3

2, {t13, t
1

2}q−1 = {t31, t
2

1}q−1 = 0,

{t22, t
1

2}q = {t22, t
2

1}q = {t23, t
1

3}q = {t23, t
2

1}q = {t32, t
1

2}q = {t32, t
3

1}q = 0,

{t33, t
1

3}q = {t33, t
3

1}q = {t22, t
1

3} = {t31, t
2

2} = {t31, t
2

3} = {t32, t
1

3} = 0,

{t23, t
1

2} = −λt13t
2

2, {t33, t
1

2} = −λt13t
3

2, {t32, t
2

1} = λt22t
3

1, {t33, t
2

1} = λt23t
3

1,
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where [ , ]q is as before, similarly {a, b}q = ab+qba for any a, b is the q-anti-commutator,

and λ = q − q−1. Using Lemma 3.2.7, the values R(tij , t
k
l) of the coquasitriangular

structure of Cferq [SL3] come out, in the same conventions as in the proof of part (2) of

Theorem 4.2.1, as

RIJ =



q−2 0 0 0 0 0 0 0 0

0 q−1 0 −q−1λ 0 0 0 0 0

0 0 q−1 0 0 0 −q−1λ 0 0

0 0 0 q−1 0 0 0 0 0

0 0 0 0 −1 0 0 0 0

0 0 0 0 0 −q−1 0 −q−1λ 0

0 0 0 0 0 0 q−1 0 0

0 0 0 0 0 0 0 −q−1 0

0 0 0 0 0 0 0 0 −1



.

Note that since t11 was defined in terms of the other generators including the q-sub-

determinant D = t22t
3

3 − q−1t23t
3

2, there are in fact only 8 algebra generators and

28 q-(anti)commutation relations other than the nilpotency ones and those involving

t11, putting this conceptually on a par with Cq[SL3]. Instead of a cubic q-determinant

relation, we can regard (4.3.1) as the cubic-quartic relation

Dt11 − qt12(t33t
2

1 − qt23t
3

1) + t13(t32t
2

1 − qt22t
3

1) = D2.

Also note that (2.2.5) in the ‘R-matrix’ form Rim
k
nt
m
jt
n
l = tknt

i
mR

m
j
n
l (sum over

repeated indices) encodes exactly the quadratic relations above for Cferq [SL3] including

the nilpotent ones.



Chapter 4. Versions of uq(sl3) and cq[SL3] by (co)double bosonisation 87

4.4 Appendix

Here we give the detailed calculation for the formulae in Theorem 4.2.1 since they are

complicated and were omitted there.

Lemma 4.4.1. The Formula of ∆x1 and ∆x2 is as stated as in Theorem 4.2.1.

Proof. Write ∆x1 = x1 ⊗ 1 + A1 + A2, and divide the calculation into two parts. We

suppress the index of summation, and remember that in the summation, r, s run from 0

to n− 1, r1 runs from 0 to r, and s1 runs from 0 to s. First, we have

A1 =
∑ r

r1


q

 s
s1


q

(−1)r+s−r1−s1qs1(r−r1)+
(r1+s1)(r1+s1+1)

2
+r1+s1 ãyr1y

s
2

[r]q![s]q!
⊗ xr+1

1 xs2

=
∑ r

r1


q

 s
s1


q

qrs1+
r1(r1+1)

2
+
s1(s1+1)

2 (−1)r+s−r1−s1
ãyr1y

s
2

[r]q![s]q!
⊗ xr+1

1 xs2

=
∑

(q − 1)r+s

r + s

s


q

ãyr1y
s
2 ⊗ xr+1

1 xs2,

where we use (4.2.3) in the last equality. For the second term, notice that 1+[r1]q(q−1) =

qr1 . Thus, we have

A2 =
∑ r

r1


q

 s
s1


q

(−1)r+s−r1−s1qs1(r−r1)+
(r1+s1)(r1+s1−1)

2
+s1−mr+r1 b̃yr1y

s
2

[r]q![s]q!
⊗ xr1xs+1

2

=
∑ r

r1


q

 s
s1


q

(−1)r+s−r1−s1q−mr+rs1+
r1(r1+1)

2
+
s1(s1+1)

2 b̃yr1y
s
2 ⊗ xr1xs+1

2

=
∑

q−mr(q − 1)r+s

r + s

s


q

b̃yr1y
s
2 ⊗ xr1xs+1

2 ,

where we use (4.2.3) in the last equality. Thus we obtained ∆x1 as stated in Theorem

4.2.1. The calculation for ∆x2 is similar.



Chapter 4. Versions of uq(sl3) and cq[SL3] by (co)double bosonisation 88

Lemma 4.4.2. The formula of ∆y1 and ∆y2 is as stated in Theorem 4.2.1.

Proof. Write ∆y1 = 1⊗ y1 + B1 + B2, and divide the calculation into two parts. First,

we have

B1 =
∑ r

r1


q

 s
s1


q

[r1]q(−1)r+s−r1−s1qs1(r−r1)+
(r1+s1−1)(r1+s1−2)

2
−r+ms+r1+s1

× yr1y
s
2

[r]q![s]q!
⊗ xr−1

1 xs2ã

=
∑

q−r+ms+1
((−1)r−r1q

r1(r1+1)
2 q−r1 [r1]q

[r1]q![r − r1]q!

)((−1)s−s1q
s1(s1+1)

2 qs1(r−1)

[s1]q![s− s1]q!

)
× yr1ys2 ⊗ xr−1

1 xs2ã

=
∑

q−r+ms+1(q − 1)s

r + s− 1

s


q

(−(q − 1)r

(1− q)

)
yr1y

s
2 ⊗ xr−1

1 xs2ã

=
∑r + s− 1

s


q

(q − 1)r+s−1q−r+ms+1yr1y
s
2 ⊗ xr−1

1 xs2ã,

where we use (4.2.3) in the third equality. For B2, one can find that

[s1]q + [r1]q[s− s1]q = [s]q −
qr1+s1

1− q
+
qr1+s

1− q
.

Thus, we have the following

B2 =
∑ r

r1


q

 s
s1


q

qr1+s1−r−s+ (r1+s1)(r1+s1−1)
2 (−1)r+s−r1−s1([s]q −

qr1+s1

1− q
+
qr1+s

1− q
)

× yr1y
s
2

[r]q![s]q!
⊗ xr1xs−1

2 c̃

=
∑ (−1)r+s−r1−s1q−r−s+1−r1+s1(r−1)+

r1(r1+1)
2

+
s1(s1+1)

2

[r1]q![r − r1]q![s1]q![s− s1]q!
([s]q −

qr1+s1

1− q
+
qr1+s

1− q
)

× yr1ys2 ⊗ xr1xs−1
2 c̃.

We write B2 = (b1 + b2 + b3)yr1y
s
2 ⊗ xr1x

s−1
2 c̃, where b1, b2, b3 are the products of the
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fraction preceding the bracket with [s]q,
qr1+s1

1−q , and qr1+s

1−q respectively. There will be no

contribution from b1 since b1 = 0. By using (4.2.3), we have

b2 =
∑

q−r−s+1
( (−1)r−r1q

r1(r1+1)
2

[r1]q![r − r1]q!(q − 1)

)((−1)s−s1q
s1(s1+1)

2 qrs1

[s1]q![s− s1]q!

)

=
∑

q−r−s+1(q − 1)r+s−1

r + s

s


q

.

Similarly, by using (4.2.3), we have

b3 =
∑

q−r−s+1
((−1)r−r1q

r1(r1+1)
2

[r1]q![r − r1]q!

)((−1)s−s1q
s1(s1+1)

2 qs1(r−1)+s

[s1]q![s− s1]q!

)

=−
∑

q−r−s+1(q − 1)r+s−1

r + s− 1

s


q

qs.

Combine them together, we have

B2 =
∑

q−r−s+1(q − 1)r+s−1
(r + s

s


q

−

r + s− 1

s


q

qs
)
yr1y

s
2 ⊗ xr1xs−1

2 c̃.

A bit more calculation gives us that

(r + s

s


q

−

r + s− 1

s


q

qs
)

=
[r + s− 1]q!

[r − 1]q![s]q!

( [r + s]q
[r]q

− qs
)

=
[r + s− 1]q!

[r − 1]q![s]q!
.
[s]q
[r]q

=
[r + s− 1]q!

[r]q![s− 1]q!
=

r + s− 1

s− 1


q

,

which simplifies B2 into

B2 =
∑

q−r−s+1(q − 1)r+s−1

r + s− 1

s− 1


q

yr1y
s
2 ⊗ xr1xs−1

2 c̃.

Thus we obtain the formula of ∆y1 as stated in Theorem 4.2.1. Similarly for ∆y2.
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Lemma 4.4.3. The formula of ∆ς is as stated in Theorem 4.2.1.

Proof. We compute directly that

∆ς =
∑ r

r1


q

 s
s1


q

qs1(r−r1)+mβ(2r1+2s1−r−s)+ (r1+s1)(r1+s1−1)
2 (−1)r+s−r1−s1

× ςyr1y
s
2

[r]q![s]q!
⊗ xr1xs2ς

=
∑

q−mβ(r+s)
((−1)r−r1q

r1(r1+1)
2 q(2mβ−1)r1

[r1]q![s− s1]q!

)((−1)s−s1q
s1(s1+1)

2 q2mβ+r−1s1

[s1]q![s− s1]q!

)
× ςyr1ys2 ⊗ xr1xs2ς

=
∑

q−mβ(r+s)(q − 1)r+s

r + 2mβ − 1

r


q

r + s+ 2mβ − 1

s


q

ςyr1y
s
2 ⊗ xr1xs2ς,

where the last equality is obtained by (4.2.3).

Lemma 4.4.4. The formula of ∆ã,∆b̃,∆c̃ and ∆d̃ are as stated in Theorem 4.2.1.

Proof. Write the formula of ∆ã in the proof of Theorem 4.2.1 into four parts, i.e. ∆ã =

a1 + a2 + a3 + a4. First, we compute that

a1 =
∑ r

r1


q

 s
s1


q

(−1)r+s−r1−s1qs1(r−r1)+2r1+s1−r+ms+ (r1+s1)(r1+s1−1)
2

× ãyr1y
s
2

[r]q![s]q!
⊗ xr1xs2ã

=
∑

q−r+ms
((−1)r−r1q

r1(r1+1)
2 qr1

[r1]q![r − r1]q!

)((−1)s−s1q
s1(s1+1)

2 qrs1

[s1]q![s− s1]q!

)
ãyr1y

s
2 ⊗ xr1xs2ã

=
∑

q−r+ms(q − 1)r+s

r + s

s


q

[r + 1]qãy
r
1y
s
2 ⊗ xr1xs2ã,
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where we use (4.2.3) in the last equality. Next, we compute that

a2 =
∑ r

r1


q

 s
s1


q

[s− s1]q(−1)r+s−r1−s1qs1(r−r1)+2r1+2s1−r−s+ (r1+s1)(r1+s1−1)
2

× (1− q) ãyr1y
s
2

[r]q![s]q!
⊗ xr+1

1 xs−1
2 c̃

=
∑

q−r−s(1− q)
((−1)r−r1q

r1(r1+1)
2 qr1

[r1]q![r − r1]q!

)((−1)s−s1q
s1(s1+1)

2 q(r+1)s1 [s− s1]q
[s1]q![s− s1]q!

)
× ãyr1ys2 ⊗ xr+1

1 xs−1
2 c̃

=q−r−s(q − 1)r+s[r + 1]q

(r + s+ 1

s


q

− qs

r + s

s


q

)
ãyr1y

s
2 ⊗ xr+1

1 xs−1
2 c̃

=
∑

q−r−s(q − 1)r+s

r + s

s


q

[s]qãy
r
1y
s
2 ⊗ xr+1

1 xs−1
2 c̃.

Where we simplify the last bracket in the second equality using (4.2.3) into

(q − 1)s

1− q

(r + s+ 1

s


q

− qs

r + s

s


q

)
.

and further calculation again by (4.2.3) gives the third equality. Next, we have

a3 =
∑ r

r1


q

 s
s1


q

[r1]q(−1)r+s−r1−s1qs1(r−r1)+r1+s1+mr+ms+
(r1+s1)(r1+s1−1)

2

× (q−m − qm)
b̃yr1y

s
2

[r]q![s]q!
⊗ xr−1

1 xs+1
2 ã

=
∑

qm(r+s)
((−1)r−r1q

r1(r1+1)
2 [r1]q(q

−m − qm)

[r1]q![r − r1]q!

)((−1)s−s1q
s1(s1+1)

2 qrs1

[s1]q![s− s1]q!

)
× b̃yr1ys2 ⊗ xr−1

1 xs+1
2 ã

=
∑

qm(r+s−1)(q − 1)r+s

r + s

s


q

[r]q b̃y
r
1y
s
2 ⊗ xr−1

1 xs+1
2 ã,
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where the first bracket in the second equality is simplified to q−m(q − 1)r[r]q, and we

therefore we obtain the third equality by (4.2.3). Finally, we have

a4 =
∑ r

r1


q

 s
s1


q

(−1)r+s−r1−s1qs1(r−r1)+
(r1+s1)(r1+s1−1)

2
+r1+2s1+mr−s

× (1− [r1]q[s− s1]q(q − 1)2)
b̃yr1y

s
2

[r]q![s]q!
⊗ xr1xs2c̃.

=
∑ (−1)r+s−r1−s1qmr−sq

r1(r1+1)+s1(s1+1)
2

+(r+1)s1

[r1]q![r − r1]q![s1]q![s− s1]q!
(1− [r1]q[s− s1]q(q − 1)2)

× b̃yr1ys2 ⊗ xr1xs2c̃.

Notice that

1− [r1]q[s− s1]q(q − 1)2 = qr1 + qs−s1 − qr1−s1+s

Thus we write a4 = (b1 + b2 − b3)b̃yr1y
s
2 ⊗ xr1xs2c̃, where b1, b2, b3 are the products of the

fraction preceding the bracket with qr1 , qs−s1 , qr1−s1+s respectively. By using (4.2.3), we

have

b1 =
∑

qmr−s
((−1)r−r1q

r1(r1+1)
2 qr1

[r1]q![r − r1]q!

)((−1)s−s1q
s1(s1+1)

2 q(r+1)s1

[s1]q![s− s1]q!

)

=
∑

qmr−s(q − 1)r+s

r + s+ 1

s


q

[r + 1]q.

b2 =
∑

qmr−s
((−1)r−r1q

r1(r1+1)
2

[r1]q![r − r1]q!

)((−1)s−s1q
s1(s1+1)

2 qrs1+s

[s1]q![s− s1]q!

)

=
∑

qmr−s(q − 1)r+sqs

r + s

s


q

.

b3 =
∑

qmr−s
((−1)r−r1q

r1(r1+1)
2 qr1

[r1]q![r − r1]q!

)((−1)s−s1q
s1(s1+1)

2 qrs1+s

[s1]q![s− s1]q!

)

=
∑

qmr−s(q − 1)r+sqs

r + s

s


q

[r + 1]q.
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By combining them, we have

a4 =
∑

qmr−s(q − 1)r+s
(r + s+ 1

s


q

[r + 1]q + qs

r + s

s


q

− qs

r + s

s


q

[r + 1]q

)

× b̃yr1ys2 ⊗ xr1xs2c̃

=
∑

qmr−s(q − 1)r+s

r + s

s


q

[s+ 1]q b̃y
r
1y
s
2 ⊗ xr1xs2c̃.

Therefore ∆ã is as stated in Theorem 4.2.1. Similarly for ∆b̃,∆c̃ and ∆d̃.



Chapter 5

Exterior algebra on double cross

(co)product Hopf algebras

We will first recall the concept of differentiable coaction in Section 5.1, where the coaction

B → B⊗A extends to Ω(B)→ Ω(B)⊗Ω(A) as a map of exterior algebra, making Ω(B)

a super Ω(A)-comodule algebra, and also introduce the concept of differentiable action,

where the action / : B ⊗ A → B of module algebra extends to Ω(B)⊗Ω(A) → Ω(B),

making Ω(B) a super Ω(A)-module algebra.

Then in Section 5.2, for bialgebras or Hopf algebras A,H forming a double cross product

A./H, we construct a super double cross product Ω(A)./Ω(H) and show that it gives a

strongly bicovariant exterior algebra on the double cross product A./H. As a special case,

for dually paired Hopf algebras A,H, the differential calculus on the quantum double

D(A,H) = Aop./H is discussed in Section 5.2.1. Moreover, we show that Ω(D(A,H))

acts on H differentiably. Similarly, differential calculus on the double cross product of

coquasitriangular Hopf algebras A./RA is discussed in Section 5.2.2 and we show that

Ω(A)./RΩ(A) acts and coacts on A differentiably. For completeness, we also give a

construction of differentials on the double cross coproduct HIJA in Section 5.3 such

that it coacts on H and A differentiably.

94
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5.1 Differentiable coactions and actions

Definition 5.1.1. Let B be a right A-comodule algebra with coaction ∆Rb = b(0) ⊗ b(1)

equipped with an exterior differential algebra Ω(B) which is a right A-comodule algebra

with right coaction ∆Rη = η(0)⊗η(1) on each degree such that d is a comodule map. The

coaction ∆R is called differentiable if it extends to a degree-preserving map ∆R∗ : Ω(B)→

Ω(B)⊗Ω(A) of differential exterior algebras, where we take the graded tensor product,

and ∆R∗ respects d of Ω(B)⊗Ω(A) in the sense that ∆R∗dB = d∆R∗, or explicitly

∆R∗dBη = dBη(0)∗ ⊗ η(1)∗ + (−1)|η|η(0)∗ ⊗ dAη(1)∗, (5.1.1)

where we denote ∆R∗η = η(0)∗ ⊗ η(1)∗ ∈ Ω(B)⊗Ω(A) for all η ∈ Ω(B).

If ∆R∗ exists then it is uniquely determined from ∆R. For instance on Ω1(B), we would

need

∆R∗(bdBc) = b(0)dBc(0) ⊗ b(1)c(1) + b(0)c(0) ⊗ b(1)dAc(1) . (5.1.2)

where the first term is the coaction ∆R : Ω1(B) → Ω1(B) ⊗ A and the second term is

map

δR(bdBc) = b(0)c(0) ⊗ b(1)dAc(1) , δR : Ω1(B)→ B ⊗ Ω1(A).

which we require to be well-defined.

Lemma 5.1.2. [7] For Ω(B) an A-covariant calculus, if the map ∆R∗ : Ω1(B) →

(Ω1(B) ⊗ A) ⊕ (B ⊗ Ω1(A)) in (5.1.2) is well-defined and Ω(B) is the maximal pro-

longation of Ω1(B) then ∆R∗ extends to all degrees and the coaction ∆R is differentiable.

Proof. This is in [7] but to be self-contained, we give our own short proof. In fact, it

suffices to prove that ∆R∗ extends to Ω2(B) since the maximal prolongation is quadratic.

So we need to check that ∆R∗(ξη) = ∆R∗(ξ)∆R∗(η) is well-defined for ξ, η ∈ Ω1(B).

Suppose we have the relation bdBc = 0 in Ω1(B) (sum of such terms understood) which
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implies that dBbdBc = 0 ∈ Ω2(B). Applying ∆R∗ to the relation in Ω1(B) we have

b(0)dBc(0) ⊗ b(1)c(1) = 0, b(0)c(0) ⊗ b(1)dAc(1) = 0.

Applying id⊗dA to the first equation and dB⊗id to the second equation then subtracting

them gives us

b(0)dBc(0) ⊗ (dAb(1))c(1) − (dBb(0))c(0) ⊗ b(1)dAc(1) = 0,

which is the Ω1(B)⊗Ω1(A) part of ∆R∗(dBbdBc). Applying dB⊗ id to the first equation

gives

dBb(0)dBc(0) ⊗ b(1)c(1) = 0

which is the Ω2(B)⊗ id part. Finally, applying id⊗ dA to the second equation gives

b(0)c(0) ⊗ dAb(1)dAc(1) = 0

which is the B⊗Ω2(A) part. Since all relations in the maximal prolongation are sent to

zero then ∆R∗ extends to Ω2(B), which completes the proof.

There is an equally good left-handed definition of differentiable coaction, where the left

coaction ∆L : B → A⊗B extends to a degree-preserving map ∆L∗ : Ω(B)→ Ω(A)⊗Ω(B)

of exterior algebra. We also need a concept of differentiable action, which we introduce

now

Definition 5.1.3. Let B be a right A-module algebra with action / : B ⊗ A → A,

equipped with an A-covariant exterior algebra Ω(B), i.e., Ω(B) is also a right A-module

algebra with action / and d an A-module map. This action is called differentiable if

it extends to a degree-preserving map / : Ω(B)⊗Ω(A) → Ω(B), making Ω(B) a super

Ω(A)-module algebra, and / respects d of Ω(B)⊗Ω(A) in the sense that dB/ = /d, or
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explicitly

dB(η/ω) = (dBη)/ω + (−1)|η|η/(dAω). (5.1.3)

If the action is differentiable, then it is uniquely determined. For instance, on Ω1(B)

and Ω2(B), we have

dB(b/a) = (dBb)/a+ b/dAa, dB((dBb)/a) = −(dBb)/dAa

where the (dBb)/a is given as is dB(b/a), hence b/dAa is determined, and hence also

/ : B ⊗ Ω1(A) → Ω1(B). Similarly the second equation specified / : Ω1(B)⊗Ω1(A) →

Ω2(B). The action also obeys module algebra axiom, for example

(ηξ)/dAa = (η/a(1))(ξ/dAa(2)) + (−1)|ξ|(η/dAa(1))(ξ/a(2)),

for all η, ξ ∈ Ω(B) and a ∈ A, hence Ω(B)⊗Ω1(A)→ Ω(B) is specified.

Lemma 5.1.4. Let B be an A-module algebra with an exterior algebra Ω(B) which

is also an A-module algebra and let Ω(A) be the maximal prolongation of Ω1(A). If

/ : Ω(B)⊗Ω1(A)→ Ω(B) is well-defined by

η/((dAa)c) := (η/dAa)/c, η/dAa := (−1)|η|
(
dB(η/a)− (dBη)/a

)
for all η ∈ Ω(A) and a, c ∈ A then it extends to / : Ω(B)⊗Ω(A) → Ω(B) as a differen-

tiable action.

Proof. First we check that / : Ω(B)⊗Ω1(A)→ Ω(B) if defined as above gives an action

of Ω1(A) in the sense

η/(adAc) =η/(dA(ac)− (dAa)c) = (−1)|η|dB(η/ac)− (−1)|η|(dBη)/ac− (η/dAa)/c

=(−1)|η|dB((η/a)/c)− (−1)|η|((dBη)/a)/c− (η/dAa)/c
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=(−1)|η|(dB(η/a))/c+ (η/a)/dAc− (−1)|η|((dBη)/a)/c− (η/dAa)/c

=(−1)|η|((dBη)/a)/c+ (η/dAa)/c+ (η/a)/dAc− (−1)|η|((dBη)/a)/c− (η/dAa)/c

=(η/a)/dAc.

We now suppose that Ω(A) is the maximal prolongation of Ω1(A) and show that we can

extend the above to a right action of Ω(A) of all degrees. The higher relations relations

are quadratic of the form dAadAc = 0 for adAc = 0 (a sum of such terms understood)

and we check that

0 =dB(η/(adAc)) = (dBη)/(adAc) + (−1)|η|η/(dAadAc) = (−1)|η|η/(dAadAc)

as required. Indeed this gives an action of Ω2(A) in the sense

η/dAadAc =η/dA(adAc) = (−1)|η|(dB(η/adAc)− (dBη)/adAc)

=(−1)|η|
(
dB((η/a)/dAc)− ((dBη)/a)/dAc

)
= (η/dAa)/dAc,

and since Ω(A) is the maximal prolongation of Ω1(A), then there is no new relations in

higher degree and thus / can be extended further to be an action of Ω(A) of all degrees.

Next we check that Ω(B) is a super right Ω(A)-module algebra with regard to the action

of Ω1(A),

(ηξ)/dAa =(−1)|ηξ|(dB((ηξ)/a)− dB(ηξ)/a)

=(−1)|η|+|ξ|dB
(
(η/a(1))(ξ/a(2))− ((dBη)ξ)/a− (−1)|η|(ηdBξ)/a

)
=(−1)|η|+|ξ|(dB(η/a(1)))(ξ/a(2)) + (−1)|ξ|(η/a(1))dB(ξ/a(2))− (−1)|η|+|ξ|((dBη)ξ)/a

− (−1)|ξ|(ηdBξ)/a

=(−1)|η|+|ξ|((dBη)/a(1))(ξ/a(2)) + (−1)|ξ|(η/dAa(1))(ξ/a(2)) + (−1)|ξ|(η/a(1))((dBξ)/a(2))

+ (η/a(1))(ξ/dAa(2))− (−1)|η|+|ξ|((dBη)/a(1))(ξ/a(2))− (−1)|ξ|(η/a(1))((dBξ)/a(2))

=(η/a(1))(ξ/dAa(2)) + (−1)|ξ|(η/dAa(1))(ξ/a(2))
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where we see the coproduct ∆∗(dAa) = a(1) ⊗ dAa(2) + dAa(1) ⊗ a(2) of Ω(A). As a direct

consequence, one can find that

(ηξ)/((dAa)c) =(η/(a(1)c(1)))(ξ/((dAa(2))c(2))) + (−1)|ξ|(η/((dAa(1))c(1)))(ξ/(a(2)c(2)))

(ηξ)/(adAc) =(η/(a(1)c(1)))(ξ/(a(2)dAc(2))) + (−1)|ξ|(η/(a(1)dAc(1)))(ξ/(a(2)c(2)))

as required for the action of general elements of Ω1(A). Since Ω(A) is the maximal

prolongation of Ω1(A), then by taking adAc = 0, one can check that

0 =dB
(
(ηξ)/(adAc)

)
= (dB(ηξ))/(adAc) + (−1)|η|+|ξ|(ηξ)/(dAadAc)

implying (ηξ)/(dAadAc) = 0, making Ω(B) a super right Ω(A)-module algebra.

There is an equally good left-handed definition of differentiable action, where the left

action . : A ⊗ B → B extends to . : Ω(A)⊗Ω(B) → Ω(B), making Ω(B) a super left

Ω(A)-module algebra.

5.2 Differentials by super double cross product

Let A and H be two bialgebras or Hopf algebras with H be a right A-module coalgebra

by / : H ⊗A→ H, and A be a left H-module coalgebra by . : H ⊗A→ A. We suppose

that / and . are compatible as in [19, 23] such that they form a double cross product

Hopf algebra A./H.

Now let Ω(A) and Ω(H) be strongly bicovariant exterior algebras, and extend / and . to

/ : Ω(H)⊗Ω(A)→ Ω(H) and . : Ω(H)⊗Ω(A)→ Ω(A) as module coalgebras such that

dH(η/ω) =(dHη)/ω + (−1)|η|η/dAω (5.2.1)

dA(η.ω) =(dHη).ω + (−1)|η|η.dAω. (5.2.2)
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If / and . obey the super double cross product conditions:

1/ω =εω, η.1 = εη (5.2.3)

(ηξ)/ω =(−1)|ω(1)||ξ(2)|(η/(ξ(1).ω(1)))(ξ(2)/ω(2)) (5.2.4)

η.(ωτ) =(−1)|ω(1)||η(2)|(η(1).ω(1))((η(2)/ω(2)).τ) (5.2.5)

(−1)|ω(1)||η(2)|η(1)/ω(1) ⊗ η(2).ω(2) (5.2.6)

=(−1)|η(1)|(|η(2)|+|ω(2)|)+|ω(1)||ω(2)|η(2)/ω(2) ⊗ η(1).ω(1)

then we have a double cross product super bialgebra or super Hopf algebra Ω(A)./Ω(H)

with super tensor product coalgebra and the product

(ω ⊗ η)(τ ⊗ ξ) = (−1)|η(2)||τ (1)|ω(η(1).τ (1))⊗ (η(2)/τ (2))ξ

for all η, ξ ∈ Ω(H) and ω, τ ∈ Ω(A). We omit the proof that Ω(A)./Ω(H) is a super

Hopf algebra since this is similar to the usual version [19] with extra signs.

Theorem 5.2.1. Let A,H be bialgebras or Hopf algebras and that form a double cross

product A./H and let Ω(A) and Ω(H) be strongly bicovariant with /, . obeying the con-

ditions (5.2.1)-(5.2.6). Then Ω(A./H) := Ω(A)./Ω(H) is a strongly bicovariant exterior

algebra on A./H with differential

d(ω ⊗ η) = dAω ⊗ η + (−1)|ω|ω ⊗ dHη

Proof. First note that Ω1(A./H) = span{(a⊗h)d(b⊗g)} = span{adAb⊗f+c⊗hdHg} =

Ω1(A)./H ⊕A./Ω1(H) since

(c⊗ h)d(1⊗ g) = c⊗ hdHg, (a⊗ 1)d(b⊗ f)− (ab⊗ 1)d(1⊗ f) = adAb⊗ f

for all a, b, c ∈ A and f, g, h ∈ H.

Since d(ω⊗ 1) = dAω and d(1⊗ η) = dHη for all η ∈ Ω(H) and ω ∈ Ω(A), we show that
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the graded Leibniz rule holds as

d(ηω) ≡d((1⊗ η)(ω ⊗ 1))

=(−1)|η(2)||ω(1)|
(
(dHη(1)).ω(1) ⊗ η(2)/ω(2) + (−1)|η(1)|+|ω(1)|η(1).ω(1) ⊗ (dHη(2))/ω(2)

)
+ (−1)|η(2)||ω(1)|+|η(1)|

(
η(1).dAω(1) ⊗ η(2)/ω(2) + (−1)|η(2)|+|ω(1)|η(1).ω(1) ⊗ η(2)/dAω(2)

)
=(−1)|(dHη)(2)||ω(1)|(dHη)(1).⊗ ω(1) ⊗ (dHη)(2)/ω(2)

+ (−1)|η|+|η(1)||(dAω)(1)|η(1).(dAω)(1) ⊗ η(2)/(dAω)(2)

=(1⊗ dHη)(ω ⊗ 1) + (−1)|η|(1⊗ η)(dAω ⊗ 1) ≡ (dη)ω + (−1)|η|ηdω.

Clearly d2 = 0 and thus Ω(A)./Ω(H) is a DGA. Finally since ∆∗ is a super tensor

coproduct as in Lemma 2.5.7, then d is a super-coderivation .

Remark 5.2.2. If A is finite-dimensional, it is explained in [38] that A./H acts on A∗

as module algebra by

(φ/h)(a) = φ(h.a), φ/a = 〈φ(1), a〉φ(2),

for all φ ∈ A∗, a ∈ A, and h ∈ H. Similarly for a left action on H∗. However, for

differentiablity, we would need Ω(A∗) or Ω(H∗) to be specified.

5.2.1 Exterior algebra on generalised quantum double D(A,H)

Let A,H be dually paired Hopf algebras with duality pairing 〈 , 〉 : H ⊗ A→ k. Then,

A acts on H and H acts on A by the following actions

h/a = h(2)〈Sh(1), a(1)〉〈h(3), a(2)〉, h.a = a(2)〈Sh(1), a(1)〉〈h(2), a(3)〉,

and one has a generalised quantum double D(A,H) = Aop./H [19]. In this case, the

product becomes (a⊗ b)(c⊗ d) = 〈Sb(1), c(1)〉c(2)a⊗ b(2)d〈b(3), c(3)〉. Note that if A = H∗

is finite-dimensional, then we recover Drinfeld’s double [11].
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Note that if Ω(A) is a DGA, then Ω(A)op remains a DGA since

dA(ω ·op τ) =(−1)|τ ||ω|dA(τω) = (−1)|τ ||ω|((dAτ)ω + (−1)|τ |τdAω)

=(−1)|τ |(|ω|+1)τdAω + (−1)(|τ |+1)|ω|+|ω|(dAτ)ω

=dAω ·op τ + (−1)|ω|ω ·op dAτ,

for all ω, τ ∈ Ω(A). Therefore we can define Ω(Aop) := Ω(A)op with differential dA. Now

let Ω(H),Ω(A) be a strongly bicovariant exterior algebras and suppose that the above

pairing can be extended to a super Hopf algebra pairing 〈 , 〉 : Ω(H) ⊗ Ω(A) → k by 0

for degree ≥ 1. So we have

η/ω =


η(2)〈Sη(1), ω(1)〉〈η(3), ω(2)〉 if ω ∈ A

0 otherwise,

η.ω =


ω(2)〈Sη(1), ω(1)〉〈η(2), ω(3)〉 if η ∈ H

0 otherwise,

where only the part of ∆2
∗η in H ⊗ Ω(H) ⊗H contributes in the first action, and only

the part of ∆2
∗ω in A⊗ Ω(A)⊗A contributes in the second action.

One can check that the above actions obey conditions (5.2.1)− (5.2.6) for super double

cross product. Therefore, there is a super double cross product Ω(A)op./Ω(H) with

product

(ω ⊗ η)(τ ⊗ ξ) = (−1)(|η|+|ω|)|τ |〈Sη(1), τ (1)〉τ (2)ω ⊗ η(2)ξ〈η(3), τ (3)〉

for all ω, τ ∈ Ω(A), η, ξ ∈ Ω(H) and super tensor product coalgebra. Note that in the

above product, τ (2) and ω are crossed with η(2) and so we should have generated a factor

(−1)(|η(2)|+|ω|)|τ (2)| but 〈 , 〉 is 0 on degree ≥ 1, and the part of ∆2
∗η in H ⊗ Ω(H) ⊗H

and the part of ∆2
∗τ in A⊗ Ω(A)⊗A contribute, so |η(2)| = |η| and |τ (2)| = |τ |.

Proposition 5.2.3. Let A,H be dually paired Hopf algebras forming D(A,H) = Aop./H.
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Let Ω(A) and Ω(H) be dually paired strongly bicovariant exterior algebras as above. Then

Ω(D(A,H)) := Ω(A)op./Ω(H) is a strongly bicovariant exterior algebra on the gener-

alised quantum double D(A,H) with differential

d(ω ⊗ η) = dAω ⊗ η + (−1)|ω|ω ⊗ dHη,

for all η ∈ Ω(H) and ω ∈ Ω(A). Moreover, the action of D(A,H) on H defined by

g/(a ⊗ h) = 〈g(2), a〉(Sh(1))g(1)h(2) extends to a differentiable action of Ω(D(A,H)) on

Ω(H) by

ξ/(ω ⊗ η) =


(−1)|η(1)||ξ|〈ξ(2), ω〉(Sη(1))ξ(1)η(2) if ω ∈ A

0 otherwise,

where only the part of ∆∗ξ in Ω(H)⊗H contributes. Explicitly

ξ/(a⊗ η) = (−1)|η(1)||ξ|〈ξ(1) , a〉(Sη(1))ξ(0)η(2),

where ∆Rξ = ξ(0) ⊗ ξ(1) is the right coaction of H on Ω(H). Similarly with left-right

reversal for a differentiable left action of D(A,H) on A.

Proof. The first part of the proposition follows from Theorem 5.2.1. One can check

the stated action makes Ω(H) a super right Ω(D(A,H))-module algebra. Moreover,

∆∗ξ = ∆Rξ + terms of higher degree on the second factor, giving the explicit formula

stated. It also respects d since

dH(ξ/(a⊗ η)) =(−1)|η(1)||ξ|〈ξ(1) , a〉dH((Sη(1))ξ(0)η(2))

=(−1)|η(1)||ξ|〈ξ(1) , a〉
(

(dHSη(1))ξ(0)η(2) + (−1)|η(1)|(Sη(1))(dHξ(0))η(2)

+ (Sη(1))ξ(0)dHη(2)

)
=(dHξ)/a⊗ η + (−1)|ξ|ξ/d(a⊗ η),
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where in the last equation, we have ξ/d(a ⊗ η) = ξ/(a ⊗ dHη) since ξ/(dAa ⊗ η) = 0.

The formulae with A,H and left-right reversal and its proof are similar.

Example 5.2.4. Let H = Uq(b+) be a self-dual Hopf algebra generated by x, t with

relations, comultiplication, and duality pairing

tx = q2xt, ∆t = t⊗ t, ∆x = 1⊗ x+ x⊗ t

〈t, s〉 = q−2, 〈x, s〉 = 〈t, y〉 = 0, 〈x, y〉 =
1

1− q2

where y, s are another copies of x, t, regarded as generators of Aop = Uq(b+)op = Uq−1(b+)

and q2 6= 1. Let Ω(Uq(b+)) be strongly bicovariant (it will be constructed later in

Proposition 6.4.1) with the following bimodule relations and comultiplication

(dt)t = q2tdt, (dx)x = q2xdx, (dx)t = tdx, (dt)x = q2xdt+ (q2 − 1)tdx

(dt)2 = (dx)2 = 0, dtdx = −dxdt, ∆∗dt = dt⊗t+t⊗dt, ∆∗dx = 1⊗dx+dx⊗t+x⊗dt.

Then Ω(D(Uq(b+))) contains Ω(Uq(b+)) and Ω(Uq−1(b+)) as sub-strongly bicovariant

exterior algebras, and the following cross-relations

ts = st, ty = q−2yt, xs = q−2sx, xy = q−2yx+
1− st
1− q2

(dt)s = sdt, (ds)t = tds, (dx)s = q−2sds, (ds)x = q2xds, (dt)y = q−2ydt,

(dy)t = q2tdy, (dx)y = q−2ydx− sdt

1− q2
, (dy)x = q2xdy +

tds

q−2 − 1
,

dtds = −dsdt, dtdy = −q−2dydt, dxds = −q−2dsdx, dxdy = −q−2dydx− dsdt

1− q2
.

Moreover, Ω(Dq(U(b+))) acts differentiably on Uq(b+).

Proof. One can check that 〈 , 〉 extends by 0 on degree ≥ 1. Then the stated crossed

relations can be found by direct calculation and one can check that the graded Leibniz
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rule holds, and d is a super-coderivation. By Proposition 5.2.3, Ω(Uq−1(b+))./Ω(Uq(b+))

acts differentiably by

t/t = t, t/x = (1− q−2)tx, x/t = q−2x, x/x = (1− q−2)x2,

(dt)/t = q2dt, (dt)/x = (q2 − 1)tdx, (dx)/t = dx, (dx)/x = (q2 − 1)xdx,

t/dt = (1− q2)dt, t/dx = (q2 − 1)xdt, x/dt = (q−2 − 1)dx, x/dx = (1− q−2)xdx,

(dt)/dt = (dx)/dt = (dx)/dx = 0, (dt)/dx = (1− q2)dtdx,

t/s = q−2t, t/y = 0, x/s = x, x/y =
t

1− q2
,

(dt)/s = q−2dt, (dt)/y = 0, (dx)/s = dx, (dx)/y =
dt

1− q2
,

t/ds = t/dy = x/ds = x/dy = 0.

Remark 5.2.5. It is known [11] that D(Uq(b+))/(st−1 − 1) ∼= Uq(sl2) by

x 7→ x+K, y 7→ x−K, t 7→ K2,

where here Uq(sl2) is generated by K,x± with the following relation

KK−1 = K−1K, Kx± = q±1x±K, [x+, x−] =
K2 −K−2

q − q−1
.

However, Ω(D(Uq(b+))) in Example 5.2.4 above does not descend to Ω(Uq(sl2)) since

d(st−1) = 0 gives ds = q−2dt.

Example 5.2.6. Let U(su2) be the enveloping algebra of su2 with generators xa, for

a = 1, 2, 3 with primitive coproducts and relations [xa, xb] = 2λεabcxc where λ ∈ ıR is

a purely imaginary number and εabc is the totally antisymmetric tensor. Let Ω(U(su2))
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be a 4D strongly bicovariant exterior algebra with the following bimodule relations [4]

[dxa, xb] = λεabcdxc − λ2δabθ, [θ, xa] = dxa

dθ = 0, {dxa, dxb} = 0, {θ,dxa} = 0,

and primitives coproducts on dxa and θ.

Let C[SU2] be the commutative Hopf algebra generated as usual by t = (tij), with

determinant t11t
2

2− t12t
2

1 = 1 and ∆tij = tik ⊗ tkj . Also let Ω(C[SU2]) be the classical

3D strongly bicovariant exterior algebra with

[dtij , t
k
l] = 0, {dtij , dtkl} = 0, dt22 = (t22)(t12dt21 + t21dt12 − t22dt11),

∆∗dt
i
j = dtik ⊗ tkj + tik ⊗ dtkj ,

and St = t−1 as usual. Then Ω(C[SU2])>/Ω(U(su2)) is strongly bicovariant and contains

Ω(C[SU2]) and Ω(U(su2)) as sub-strongly bicovariant exterior algebra, with the following

cross bimodule relations

[xa, t
i
j ] = −ıλ(tik(σa)

k
j − (σa)

i
kt
k
j), [xa, dt

i
j ] = −ıλ(dtik(σa)

k
j − (σa)

i
kdt

k
j)

[dxa, t
i
j ] = 0, [θ, tij ] = 0, {dxa, dtij} = 0, {θ,dtij} = 0,

where (σa)
i
j is the (i, j)-th entry of the standard Pauli matrix σa for a = 1, 2, 3. More-

over, Ω(C[SU2])>/Ω(U(su2)) acts differentiably on U(su2), and it forms a ∗-differential

calculus with the usual ∗-structure of U(su2) and C[SU2].

Proof. First note that xa/t = xa for all t ∈ C[SU2], so C[SU2]./U(su2) = C[SU2]>/U(su2).

The duality pairing between C[SU2] and U(su2) is given by 〈tij , xa〉 = −ıλ(σa)
i
j , and

this gives the stated cross relation on degree 0 as found previously in [4]. One can check

that 〈 , 〉 extends to the pairing between Ω(C[SU2]) and Ω(U(su2)) by 0 for degree ≥ 1,



Chapter 5. Exterior algebra on double cross (co)product Hopf algebras 107

giving the rest of stated crossed relations on Ω(C[SU2])>/Ω(U(su2)). One can also check

that the graded Leibniz rule holds and d is a super-coderivation. Note that Ω(C[SU2])

and Ω(U(su2)) are ∗-calculi (in the usual sense that ∗ commutes with d and is a graded

antilinear order-reversing involution), with the usual ∗-structure given by

x∗a = xa, θ∗ = −θ, (dxa)
∗ = dxa, (tij)

∗ = Stji , (dtij)
∗ = Sdtj i

We check that these results in a ∗-calculus, e.g.

[xa,dt
i
j ]
∗ =[(dtij)

∗, x∗a] = [Sdtij , xa] = −ıλ((σa)
j
kSdtki − (Sdtjk)(σa)

k
i)

=
(
− ıλ(dtik(σa)

k
j − (σa)

i
kdt

k
j)
)∗
.

By Proposition 5.2.3, the action of Ω(C[SU2])>/Ω(U(su2)) on Ω(U(su2)) as a super

module algebra is given by

xa/xb = [xa, xb], (dxa)/xb = [dxa, xb], xa/dxb = [xa,dxb], (dxa)/dxb = {dxa,dxb},

xa/t
i
j = xaδ

i
j − ıλ(σa)

i
j , (dxa)/t

i
j = dxaδ

i
j , xa/dt

i
j = 0

θ/tij = θδij , (dxa)/dt
i
j = 0, θ/dtij = 0.

Remark 5.2.7. One can replace Aop by A in the above construction and regard the

Hopf algebra pairing 〈 , 〉 as a skew pairing σ : H⊗A→ k, that is an involutive-invertible

map satisfying

σ(hg, a) = σ(h, a(1))σ(g, a(2)), σ(h, ab) = σ(h(2), a)σ(h(1), b).

Here 〈S( ), 〉 provides σ−1 if we start with a Hopf algebra pairing. The above is then

equivalent to a generalised quantum double A./σH. By extending to σ : Ω(H)⊗Ω(A)→

k by 0 for degree ≥ 1, we have a super double cross product Ω(A)./σΩ(H), and by
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Theorem 5.2.1 we have Ω(A./σH) := Ω(A)./σΩ(H). In this approach, we can work with

strongly bicovariant exterior algebra Ω(A) rather than with Ω(A)op.

5.2.2 Exterior algebra on A./RA

Let (A,R) be a coquasitriangular Hopf algebra. In this case, we can view A as skew-

paired with itself by σ = R in Remark 5.2.7 and have the double coquasitriangular

A./RA with A left and right acts on itself by

b/a = b(2)R(Sb(1), a(1))R(b(3), a(2)), b.a = a(2)R(Sb(1), a(1))R(b(2), a(3)).

Here the product is (a⊗b)(c⊗d) = R(Sb(1), c(1))ac(2)⊗b(2)dR(b(3), c(3)) for all a, b, c, d ∈ A,

see [19]. For example, if A = Cq[SU2] then this can be viewed as Cq[SO3,1], if we work

over C with the relevant ∗-structures.

Let Ω(A) be a strongly bicovariant exterior algebra, viewed as a super-coquasitriangular

Hopf algebra with R extended by 0 on degree ≥ 1. The above actions extend to actions

of Ω(A) on itself by

η/ω =


η(2)R(Sη(1), ω(1))R(η(3), ω(2)) if ω ∈ A

0 otherwise,

η.ω =


ω(2)R(Sη(1), ω(1))R(η(2), ω(3)) if η ∈ A

0 otherwise,

where only the part of ∆2
∗η ∈ A⊗Ω(A)⊗A contributes in the first action, and only the

part of ∆2
∗ω ∈ A⊗Ω(A)⊗A contributes in the second action. One can check that these

actions obey (5.2.1) – (5.2.6) and thus we have a super double version Ω(A)./RΩ(A)

with product coproduct

(ω ⊗ η)(τ ⊗ ξ) = (−1)|η||τ |R(Sη(1), τ (1))ωτ (2) ⊗ η(2)ξR(η(3), τ (3))
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∆∗(ω ⊗ η) = (−1)|η(1)||ω(2)|ω(1) ⊗ η(1) ⊗ ω(2) ⊗ η(2).

for all ω, η, τ, ξ ∈ Ω(A). Note that in the above product, the crossing between η(2) and

τ (2) so we should have generated a factor (−1)|η(2)||τ (2)| but R is 0 on degree ≥ 1, so

only the parts of ∆2
∗η and ∆2

∗τ in A⊗Ω(A)⊗A contributes, resulting in |η(2)| = |η| and

|τ (2)| = |τ |.

Corollary 5.2.8. Let Ω(A) be a strongly bicovariant exterior algebra on a coquasitri-

angular Hopf algebra A. Then Ω(A./RA) := Ω(A)./RΩ(A) is a strongly bicovariant

exterior algebra on A./RA with differential

d(ω ⊗ η) = dAω ⊗ η + (−1)|ω|ω ⊗ dAη,

and A./RA acts on A given by a/(b ⊗ c) = R(a(2), b)(Sc(1))a(1)c(2) for all a, b, c ∈ A

extends to an action of Ω(A)./RΩ(A) differentiably with

τ/(ω ⊗ η) =


(−1)|η(1)||τ |R(τ (2), ω)(Sη(1))τ (1)η(2) if ω ∈ A

0 otherwise,

where only the part of ∆∗τ ∈ A ⊗ Ω(A) contributes. Moreover, there is a coaction

∆R : A→ A⊗A./RA, where A is a transmutation of A, given by ∆Ra = a(2)⊗Sa(1)⊗a(3)

which is differentiable with ∆R∗ω = (−1)|ω(1)||ω(2)|ω(2) ⊗ Sω(1) ⊗ ω(3) for a certain Ω(A)

(see Section 6.1 and Remark 6.2.4)

Proof. The first part of the statement follows from Proposition 5.2.3, where 〈 , 〉 is

replaced byR, and 〈S( ), 〉 is replaced byR−1 as in Remark 5.2.7. For the new part, since

Ω(A) is strongly bicvoariant, we defer the proof that ∆R∗ : Ω(A)→ Ω(A)⊗Ω(A)./RΩ(A)

above is globally defined and makes Ω(A) a super Ω(A)./RΩ(A)-comodule algebra. It

also respects d since

∆R∗(dAω) =(−1)|(dAω)(1)||(dAω)(2)|(dAω)(2) ⊗ S(dAω)(1) ⊗ (dAω)(3)
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=(−1)|dAω(1)||ω(2)|ω(2) ⊗ SdAω(1) ⊗ ω(3) + (−1)|ω(1)||dAω(2)|+|ω(1)|dAω(2) ⊗ Sω(1) ⊗ ω(3)

+ (−1)|ω(1)||ω(2)|+|ω(1)|+|ω(2)|ω(2) ⊗ Sω(1) ⊗ dAω(3)

=(−1)|ω(1)||ω(2)|(dAω(2) ⊗ Sω(1) ⊗ ω(3) + (−1)|ω(2)|ω(2) ⊗ d(Sω(1) ⊗ ω(3)))

=(dA ⊗ id + (−1)| |id⊗ d)∆R∗ω.

Example 5.2.9. Let R ∈ Mn(R) ⊗Mn(R) be a q-Hecke R-matrix, and let A(R) be

an FRT bialgebra [12] generated by t = (tij) with relation Rt1t2 = t2t1R, and let

Ω(A(R)) be strongly bicovariant with relations (dt1)t2 = R21t2dt1R and dt1dt2 =

−R21dt2dt1R. Assume that there is a grouplike and central element D in A(R), and

let A = A(R)[D−1] be a Hopf algebra localisation of A(R) such that Ω(A(R)) extends

to Ω(A) with dD−1 = −D−1(dD)D−1 (the detail on FRT bialgebra and its strongly

bicovariant exterior algebra will be discussed later in Section 6.3). Then Ω(A./RA) :=

Ω(A)./RΩ(A) has the following cross relation and comultiplication

Rt1s2 = s2t1R, (ds2)t1R = Rt1ds2, R(dt1)s2 = s2dt1R, Rdt1ds2 = −ds2dt1R

∆t = t⊗ t, ∆s = s⊗ s, ∆∗dt = dt⊗ t + t⊗ dt, ∆∗ds = ds⊗ s + s⊗ ds,

where s is the copy of t. Furthermore Ω(A./RA) acts on A and coacts on A differentiably.

Proof. One can find the stated relations since A is a coquasitriangular withR(t1, t2) = R

and R(St1, t2) = R−1, and R extends as super coquasitriangular structure on Ω(A(R))

by zero in degree ≥ 1. One can check that Leibniz rule hold and d is a super-coderivation.

By Corollary 5.2.8, the action of Ω(A)./RΩ(A) on Ω(A) as a super module algebra is

given by

t1/t2 = (St2)t1t2, (dt1)/t2 = (St2)(dt1)t2, t1/dt2 = (Sdt2)t1t2 + (St2)t1dt2

t1/s2 = t1R, (dt1)/s2 = (dt1)R, t1/ds2 = 0,
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and the coaction of Ω(A)./RΩ(A) on Ω(A) as a super comodule algebra is given by

∆Ru = u⊗ Ss⊗ t, ∆R∗du = du⊗ Ss⊗ t + u⊗ dSs⊗ t + u⊗ Ss⊗ dt,

where u = (uij) are generators of A.

5.3 Differentials by super double cross coproduct

Let H and A be two bialgebras or Hopf algebras with A a right H-comodule algebra

with right coaction α : A→ A⊗H and H a left A-comodule algebra with left coaction

β : H → A ⊗ H. Suppose that α and β are compatible as in [19] so that they form a

double cross coproduct HIJA.

Let Ω(H) and Ω(A) be strongly bicovariant exterior algebras, and let α and β are differen-

tiable, i.e., they extend to α∗ : Ω(A)→ Ω(A)⊗Ω(H) and β∗ : Ω(H)→ Ω(A)⊗Ω(H) as su-

per comodule algebras, which mean α∗ and β∗ commute with d′ = dA⊗id+(−1)| |id⊗dH .

Suppose further that α∗ and β∗ are compatible in the following sense :

(∆A∗ ⊗ id) ◦ α∗(ω) =((id⊗ β∗) ◦ α∗(ω(1)))(1⊗ α∗(ω(2))) (5.3.1)

(id⊗∆H∗) ◦ β∗(η) =(β∗(η(1))⊗ id)((α∗ ⊗ id) ◦ β∗(η(2))) (5.3.2)

α∗(ω)β∗(η) =(−1)|ω||η|β∗(η)α∗(ω), (5.3.3)

then there is a super double cross coproduct Ω(H)IJΩ(A) with super tensor product

algebra structure, counit, and

∆∗(η ⊗ ω) = (−1)|ω(1)||η(2)|η(1) ⊗ α∗(ω(1))β∗(η(2))⊗ ω(2).

We omit the proof that Ω(A)IJΩ(H) is a super Hopf algebra since this is just a super

version to the usual double cross coproduct [19].

Theorem 5.3.1. Let A,H be bialgebras or Hopf algebras forming a double cross co-

product HIJA, and let Ω(A),Ω(H) be strongly bicovariant exterior algebras with α∗, β∗
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satisfying (5.3.1)-(5.3.3). Then Ω(HIJA) := Ω(H)IJΩ(A) is a strongly bicovariant

exterior algebra on HIJA with differential

d(η ⊗ ω) = dHη ⊗ ω + (−1)|η|η ⊗ dAω.

Proof. Since the algebra structure is the super tensor product, the graded Leibniz rule

is already proved in Lemma 2.5.7. We need to prove d is a super-coderivation. Thus,

∆∗d(η ⊗ ω) = ∆∗(dHη ⊗ ω) + (−1)|η|∆∗(η ⊗ dAω)

=(−1)|ω(1)||η(2)|dHη(1) ⊗ α∗(ω(1))β∗(η(2))⊗ ω(2)

+ (−1)|ω(1)||η(2)|+|ω(1)|+|η(1)|η(1) ⊗ α∗(ω(1))β∗(dHη(2))⊗ ω(2)

+ (−1)|ω(1)||η(2)|+|η(1)|η(1) ⊗ α∗(dAω(1))β∗(η(2))⊗ ω(2)

+ (−1)|ω(1)||η(2)|+|η|+|ω(1)|η(1) ⊗ α∗(ω(1))β∗(η(2))⊗ dAω(2)

=(−1)|ω(1)||η(2)|dHη(1) ⊗ α∗(ω(1))β∗(η(2))⊗ ω(2)

+ (−1)|ω(1)||η(2)|+|η(1)|η(1) ⊗ d′(α∗(ω(1))β∗(η(2)))⊗ ω(2)

+ (−1)|ω(1)||η(2)|+|η|+|ω(1)|η(1) ⊗ α∗(ω(1))β∗(η(2))⊗ ω(2)

=
(
(dH ⊗ id + (−1)| |id⊗ dA)⊗ id

)
((−1)|ω(1)||η(2)|η(1) ⊗ α∗(ω(1))β∗(η(2))⊗ ω(2))

+ (−1)| |
(
id⊗ (dH ⊗ id + (−1)| |id⊗ dA)

)
((−1)|ω(1)||η(2)|η(1) ⊗ α∗(ω(1))β∗(η(2))⊗ ω(2))

=(d⊗ id + (−1)| |id⊗ d)∆∗(η ⊗ ω).

In the first equality we expand d(η⊗ω) by its definition, with its comultiplication in the

second equality. Notice that β∗(dHη(2)) = d′(β∗(η(2))) and α∗(dAω(1)) = d′(α∗(ω(1))), and

thus we obtain the third equality by Leibniz rule of d′ on α∗(ω(1))β∗(η(2)). Expanding

d′ = dA⊗id+(−1)| |id⊗dH , one can rewrite to obtain fourth equality, which is equivalent

to the fifth equality.

Corollary 5.3.2. Under the condition of Theorem 5.3.1, the left coaction ∆L : H →

HIJA⊗H as comodule algebra given by ∆Lh = h(1)⊗β(h(2)) is differentiable. Similarly,

the right coaction ∆R : A→ A⊗HIJA as comodule algebra given by ∆Ra = α(a(1))⊗a(2)
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is differentiable.

Proof. Write α(a) = a(̃0) ⊗ a(̃1) and β(h) = h(1) ⊗ h(∞) (summations understood). We

check that ∆L is a coaction as follows

(id⊗∆L)∆Lh =h(1) ⊗ h(2)
(1) ⊗ h(2)

(∞)
(1) ⊗ h(2)

(∞)
(2)

(1) ⊗ h(2)
(∞)

(2)
(1)

=h(1) ⊗ h(2)
(1)h(3)

(1)(̃0) ⊗ h(2)
(∞)h(3)

(1)(̃1) ⊗ h(3)
(∞)(1) ⊗ h(3)

(∞)(∞)

=h(1) ⊗ h(2)
(1)h(3)

(1)
(1)

(̃0) ⊗ h(2)
(∞)h(3)

(1)
(1)

(̃1) ⊗ h(3)
(1)

(2) ⊗ h(3)
(∞)

=h(1) ⊗ β(h(2))α(h(3)
(1)

(1))⊗ h(3)
(1)

(2) ⊗ h(3)
(∞)

=h(1) ⊗ α(h(3)
(1)

(1))β(h(2))⊗ h(3)
(1)

(2) ⊗ h(3)
(∞)

=∆(h(1) ⊗ h(2)
(1))⊗ h(2)

(∞) = (∆⊗ id)∆Lh.

We apply the definition of ∆L twice in the first equality, and we use the condition (5.3.2)

on h(2)
(∞) in our notation of α and β to obtain the second equality. Then since β is

a coaction, we rewrite (id ⊗ β)β(h(3)
(∞)) = (∆H ⊗ id)β(h(3)

(∞)) and obtain the third

equality, which equivalent to the fourth equality. Then we use condition (5.3.3) to get

the fifth equality, which is equal to the sixth equality. We also check that ∆L is an

algebra map:

∆L(hg) =(h(1)g(1))⊗ β(h(2)g(2)) = h(1)g(1) ⊗ β(h(2))β(g(2))

=(h(1) ⊗ β(h(2)))(g(1) ⊗ β(g(2))) = (∆Lh)(∆Lg).

Thus, H is a left HIJA-comodule algebra. Similarly for ∆R a coaction,

(∆R ⊗ id)∆Ra =a(1)
(̃0)

(1)
(̃0) ⊗ a(1)

(̃0)
(1)

(̃1) ⊗ a(1)
(̃0)

(2) ⊗ a(1)
(̃0) ⊗ a(2)

=a(1)
(̃0)(̃0) ⊗ a(1)

(̃0)(̃1) ⊗ a(1)
(̃1)(1)a(2)

(̃0) ⊗ a(1)
(̃1)(∞)a(2)

(̃1) ⊗ a(3)

=a(1)
(̃0) ⊗ a(1)

(̃1)
(1) ⊗ a(1)

(̃1)
(2)

(1)a(2)
(̃0) ⊗ a(1)

(̃1)
(2)

(∞)a(2)
(̃1) ⊗ a(3)

=a(1)
(̃0) ⊗ a(1)

(̃1)
(1) ⊗ β(a(1)

(̃1)
(2))α(a(2))⊗ a(3)

=a(1)
(̃0) ⊗ a(1)

(̃1)
(1) ⊗ α(a(2))β(a(1)

(̃1)
(2))⊗ a(3)
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=a(1)
(̃0) ⊗∆(a(1)

(̃1) ⊗ a(2)) = (id⊗∆)∆Ra

and is again an algebra map. Since β∗ and α∗ globally exist as assumed in Theorem

5.3.1, it is clear that we can define

∆L∗η = η(1) ⊗ β∗(η(2)), ∆R∗ω = α∗(ω(1))⊗ ω(2)

for all η ∈ Ω(H) and ω ∈ Ω(A), and that they have the required properties by our

assumptions on α∗, β∗ and a super version of the above proofs for ∆L and ∆R. For

example on degree 1, we have

∆L∗dHh = dHh(1) ⊗ β(h(2)) + h(1) ⊗ β∗(dHh(2)),

∆R∗dAa = α∗(da(1))⊗ a(2) + α(a(1))⊗ dAa(2).

As an application, we find in principle a strongly bicovariant exterior algebra of the

quantum codouble coD(Uq(su2)) = Uq(su2)copIJCq[SU2] as a version of Cq[SO1,3] such

that coD(Uq(su2)) coacts differentiably on Uq(su2), viewed as a version of unit “sphere”

in q-Minkowski space [34]. We omit the detail as it is essentially equivalent to the case

of Cq[SU2]./RC[SU2] in Example 5.2.9.



Chapter 6

Exterior algebra on quantum

groups obtained by bosonisation

Let A be a coquasitriangular Hopf algebra with a strongly bicovariant exterior algebra

Ω(A), and let A be the transmutation of A. In Section 6.1, we show that the known

isomorphism A./RA ∼= A·.<A in [19] extends to Ω(A)./RΩ(A) ∼= Ω(A)·.<Ω(A) as exterior

algebras, and the latter gives a strongly bicovariant exterior algebra on bosonisation

A·.<A. This motivates a general construction of a super bosonisation Ω(A)·.<Ω(B),

where Ω(B) is a strongly bicovariant exterior algebra on braided Hopf algebra B. This is

given in Section 6.2 and we will show that Ω(A)·.<Ω(B) gives a natural exterior algebra

on A·.<B such that the canonical coaction ∆R : B → B⊗A·.<B extends to ∆R∗ : Ω(B)→

Ω(B)⊗Ω(A·.<B) differentiably.

As an application, in Section 6.4 we recover the natural differential calculus of the

Sweedler-Taft algebra Uq(b+) in the known classification[41], but we think of it as a

q-deformed coordinate algebra Cq[B+] = C[t, t−1]·.<C[x], where C[x] is a braided-line

in the category of Z-graded spaces, such that Cq[B+] coacts on C[x] differentiably. We

also find the natural strongly bicovariant exterior algebra of Cq[P ] = Cq[GL2]·.<C2
q as a

quantum deformation of a maximal parabolic subgroup P ⊂ SL3, where C2
q is a two-

115
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dimensional quantum-braided plane in the category of Cq[GL2]. These examples are

part of a more general construction of Ω(A·.<V (R)) = Ω(A)·.<Ω(V (R)) in Section 6.3.

Here A = A(R)[D−1] is a Hopf algebra localisation of the FRT bialgebra A(R)[12] with

invertible quantum determinant D which is assumed grouplike and central in A(R), and

V (R) is an additive braided plane in the category of A-crossed modules.

6.1 The special case of transmutation

Given a coquasitriangular Hopf algebra (A,R), its transmutation is a braided-Hopf alge-

bra A introduced in [24] as one of the main constructions in the theory of braided Hopf

algebra (the other one is bosonisation as discussed in Section 2.4). Here A has the same

coalgebra structure as A but a modified product a • b = a(2)b(2)R((Sa(1))a(3), Sb(1)), and

lives in the braided category of right-modules MA where the right coaction is given by

the adjoint coaction AdRa = a(2) ⊗ (Sa(1))a(3). Furthermore, there is a right action of A

on A given by b/a = b(0)R(b(1) , a) = b(2)R((Sb(1))b(3), a) making A ∈ MA
A (this follows

from a functor A ∈ MA ↪→ MA
A, see Section 2.4). Either by cobosonisation or from

the crossed module point of view, one has an ordinary Hopf algebra A·.<A. It is known

[19, Theorem 7.4.10] that A·.<A ∼= A./RA. Similarly, regarding a strongly bicovariant

Ω(A) as coquastriangular by extending R by zero, it transmutes to a super-braided Hopf

algebra Ω(A). We write Ω(A) ∼= A·.<Λ as generated by A,Λ1 as discussed above.

Lemma 6.1.1. [34, Proposition 8] If Ω(A) is a strongly bicovariant exterior algebra on

a coquasitriangular Hopf algebra A then Ω(A) := Ω(A) is a braided exterior algebra on

A generated by A and Λ1 with relations

a • v = av, v • a = a(2) • (v(0)/a(3))R(v(1) , Sa(1)), v • w = vw

for all v, w ∈ Λ1 and a ∈ A, and the differential map of Ω(A) is the same as the

differential map of Ω(A).

By construction, Ω(A) := Ω(A) is a super braided Hopf algebra in MΩ(A)
Ω(A) by adjoint
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coaction and the induced action. Thus, we have super bosonisation Ω(A)·.<Ω(A) as in

[19] but now with signs,

(ω ⊗ η)(τ ⊗ ξ) = (−1)|η||τ |ωτ (1) ⊗ η(2)ξ(2)R((Sη(1))η(3), τ (2)Sξ(1))

∆∗(ω ⊗ η) = (−1)(|ω(2)|+|η(1)|)|η(2)|ω(1) ⊗ η(2) ⊗ ω(2)(Sη(1))η(3) ⊗ η(4)

for all ω, τ ∈ Ω(A) and η, ξ ∈ Ω(A).

Proposition 6.1.2. Let Ω(A) be a strongly bicovariant exterior algebra on a coquasitri-

angular Hopf algebra A and A the transmutation of A. Then Ω(A·.<A) := Ω(A)·.<Ω(A)

is a strongly bicovariant exterior algebra on A·.<A. Moreover, Ω(A·.<A) ∼= Ω(A./RA) as

an isomorphism of differential exterior algebras.

Proof. For the first part, we define d to be the graded sum of dA and dA as in Cor-

rolary 5.2.8. That this gives a strongly bicovariant exterior algebra is a special case of

Theorem 6.2.1 proven later so we omit the details. It is also clear once we have proven

the asserted isomorphism. For the latter, let ϕ : A./RA→ A·.<A,ϕ(a⊗ b) = ab(1) ⊗ b(2)

which is a Hopf algebra isomorphism by [19, Theorem 7.4.10]. We extend this to a map

ϕ∗ : Ω(A)./RΩ(A) → Ω(A)·.<Ω(A) by ϕ∗(ω ⊗ η) = ωη(1) ⊗ η(2) for all ω, η ∈ Ω(A). It

is straightforward to check that ϕ∗ is a super-Hopf algebra map. We also need to check

that ϕ∗ commutes with d and note that d on both sides is the graded sum of the d on

each tensor factor. We check

d(ϕ∗(ω ⊗ η)) =d(ωη(1) ⊗ η(2)) = dA(ωη(1))⊗ η(2) + (−1)|ωη(1)|ωη(1) ⊗ dAη(2)

=(dAω)η(1) ⊗ η(2) + (−1)|ω|ω(dAη(1))⊗ η(2) + (−1)|ω|+|η(1)|ωη(1) ⊗ dAη(2)

=(dAω)η(1) ⊗ η(2) + (−1)|ω|ω(dAη)(1) ⊗ (dAη)(2)

=ϕ∗(dAω ⊗ η + (−1)|ω|ω ⊗ dAη) = ϕ∗(d(ω ⊗ η)).

The map ϕ∗ is invertible with inverse φ∗(ω ⊗ η) = ωSη(1) ⊗ η(2).



Chapter 6. Exterior algebra on quantum groups obtained by bosonisation 118

6.2 Differentials by super bosonisation

We generalise the first part of Proposition 6.1.2 replacing A by any Hopf algebra with

and A by any braided Hopf algebra B in the category of right A-crossed modules.

Thus, let A be a Hopf algebra with strongly bicovariant exterior algebra Ω(A). Let B

be a right A-comodule algebra with coaction ∆Rb = b(0) ⊗ b(1) such that ∆R extends to

∆R∗ : Ω(B)→ Ω(B)⊗Ω(A) by ∆R∗η = η(0)∗ ⊗ η(1)∗ as differentiable coaction.

We now come to the genuinely new data: (i) assume that A also acts on Ω(B) so as

to make this an A-crossed module algebra (an algebra in MA
A); (ii) suppose that this

action extends to / : Ω(B)⊗Ω(A) → Ω(B) as differentiable action; (iii) suppose that B

is a braided Hopf algebra inMA
A; (iv) suppose that Ω(B) is braided strongly bicovariant

in the sense that ∆ extends to a degree preserving super braided coproduct ∆∗ making

Ω(B) a super braided Hopf algebra in MΩ(A)
Ω(A) and dB a super-coderivation in the sense

of (2.5.1).

Also, given a super-braided Hopf algebra Ω(B) ∈MΩ(A)
Ω(A), the usual bosonisation formulae

extend with signs to define a super bosonisation Ω(A)·.<Ω(B) with

(ω ⊗ η)(τ ⊗ ξ) = (−1)|η||τ (1)|ωτ (1) ⊗ (η/τ (2))ξ

∆∗(ω ⊗ η) = (−1)
|ω(2)||η(1)(0)

∗|
ω(1) ⊗ η(1)

(0)∗ ⊗ ω(2)η(1)
(1)∗ ⊗ η(2)

for all ω, τ ∈ Ω(A) and η, ξ ∈ Ω(B).

Theorem 6.2.1. Let A be a Hopf algebra and let B be a braided Hopf algebra in MA
A,

Ω(A) a strongly bicovariant exterior algebra and Ω(B) a braided strongly bicovariant

exterior algebra in MΩ(A)
Ω(A) (so the action and coaction of A is differentiable and dB is

a super coderivation). Then Ω(A·.<B) := Ω(A)·.<Ω(B) is a strongly bicovariant exterior

algebra on A·.<B with differential

d(ω ⊗ η) = dAω ⊗ η + (−1)|ω|ω ⊗ dBη
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for all ω ∈ Ω(A), η ∈ Ω(B).

Proof. First note that Ω1(A·.<B) = span{(a⊗b)d(c⊗d)} = span{adAc⊗b+a′⊗b′dBd′} =

Ω1(A)⊗B ⊕A·.<Ω1(B) since

(a⊗ 1)d(c⊗ b)− (ac⊗ 1)d(1⊗ b) = adAc⊗ b, (a′ ⊗ b′)d(1⊗ d′) = a′ ⊗ b′dBd′

for all a′, a, c ∈ A and b, b′, d′ ∈ B. The graded Leibniz rule holds since

d(ηω) ≡d((1⊗ η)(ω ⊗ 1))

=(−1)|η||ω(1)|
(
(−1)|ω(1)|ω(1) ⊗ (dBη)ω(2) + dAω(1) ⊗ η/ω(2) + (−1)|η|+|ω(1)|ω ⊗ η/dAω(2)

)
=(1⊗ dBη)(ω ⊗ 1) + (−1)|η|(1⊗ η)(dAω ⊗ 1) ≡ (dη)ω + (−1)|η|ηdω

for all η ∈ Ω(B) and ω ∈ Ω(A). Clearly d2 = 0 and thus Ω(A)·.<Ω(B) is a DGA.

We also show that the calculus on A·.<B is strongly bicovariant by showing that d is a

super-coderivation as follow

∆∗d(ωη) =(∆∗dω)∆∗(η) + (−1)|ω|∆∗(ω)∆∗(dη)

=(−1)
|ω(2)||η(1)(0)

∗|
(dω(1))η(1)

(0)∗ ⊗ ω(2)η(1)
(1)∗η(2)

+ (−1)
|ω(1)|+|dω(2)||η(1)(0)

∗|
ω(1)η(1)

(0)∗ ⊗ (dω(2))η(1)
(1)∗η(2)

+ (−1)
|ω|+|ω(2)||dη(1)(0)

∗|
ω(1)dη(1)

(0)∗ ⊗ ω(2)η(1)
(1)∗η(2)

+ (−1)
|ω|+|ω(2)||η(1)(0)

∗|+|η(1)(0)
∗|
ω(1)η(1)

(0)∗ ⊗ ω(2)d(η(1)
(1)∗η(2))

=(−1)
|ω(2)||η(1)(0)

∗|
d(ω(1)η(1)

(0)∗)⊗ ω(2)η(1)
(1)∗η(2)

+ (−1)
|ω(2)||η(1)(0)

∗|+|ω(1)η(1)
(0)∗|

ω(2)η(1)
(0)∗ ⊗ d(ω(2)η(1)

(1)∗η(2))

=(d⊗ id + (−1)| |id⊗ d)((−1)
|ω(2)||η(1)(0)

∗|
ω(1)η(1)

(0)∗ ⊗ ω(2)η(1)
(1)∗η(2))

=(d⊗ id + (−1)| |id⊗ d)∆∗(ωη),

which completes the proof.
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In practice since Ω(A) and Ω(B) are generated by their elements of degree 0 and 1,

we can construct the bosonisation Ω(A)·.<Ω(B) providing that we know the action and

coaction on degree 0 and degree 1.

Lemma 6.2.2. (i) If B is an A-crossed module with differentiable action and coaction

obeying

∆R∗((dBb)/a) = (dBb(0))/a(2) ⊗ (Sa(1))b(1)a(3) + b(0)/a(2) ⊗ Sa(1)(dAb(1))a(3)

for all b ∈ B and for all a ∈ A, then Ω(B) is a super Ω(A)-crossed module algebra.

(ii) Furthermore, if B is a braided Hopf algebra in MA
A,

∆(bdBc) = b(1)dBc(1)(0)⊗(b(2)/c(1)(1))c(2)+b(1)c(1)(0)⊗
(
(b(2)/dAc(1)(1))c(2)+(b(2)/c(1)(1))dBc(2)

)
is well-defined, and Ω(B) is the maximal prolongation of Ω1(B), then Ω(B) is a braided

strongly bicovariant calculus, i.e. a super braided Hopf algebra in MΩ(A)
Ω(A) such that dB

is a super-coderivation in the sense of (2.5.1).

Proof. (i) We first check,

∆R∗(b/dAa) =∆R∗(dB(b/a)− (dBb)/a)

=dB(b/a)(0) ⊗ (b/a)(1) + (b/a)(0) ⊗ dA(b/a)(1) −∆R∗((dBη)/a)

=dB(b(0)/a(2))⊗ (Sa(1))b(1)a(3) + b(0)/a(2) ⊗ dA((Sa(1))b(1)a(3))

− (dBb(0))/a(2) ⊗ (Sa(1))b(1)a(3) − b(0)/a(2) ⊗ Sa(1)(dAb(1))a(3)

=b(0)/dAa(2) ⊗ (Sa(1))b(1)a(3) + b(0)/a(2) ⊗ (dASa(1))b(1)a(3)

+ b(0)/a(2) ⊗ (Sa(1))b(1)dAa(3)

=b(0)/(dAa)(2) ⊗ S(dAa)(1)b(1)(dAa)(3).

This makes B is a crossed module as regards the action and coaction of Ω1(A). Similarly
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for Ω1(B), where we check using (5.1.1),

∆R∗((dBb)/dAa) = ∆R∗(dB(b/dAa))

=dB(b/dAa)(0) ⊗ (Sa(1))b(1)a(3) + (−1)|(b/dAa)(0) |(b/dAa)(0) ⊗ dA(b/dAa)(1)

=dB(b(0)/dAa(2))⊗ (Sa(1))b(0)a(3) + dB(b(0)/a(2))⊗ (dASa(1))b(1)a(3)

+ dB(b(0)/a(2))⊗ (Sa(1))b(1)dAa(3) − b(0)/dAa(2) ⊗ dA((Sa(1))b(1)a(3))

+ b(0)/a(2) ⊗ dA((dASa(1))b(1)a(3)) + b(0)/a(2) ⊗ dA(Sa(1)b(1)dAa(3))

=(dBb(0))/dAa(2) ⊗ (Sa(1))b(1)a(3) + (dBb(0))/a(2) ⊗ (SdAa(1))b(1)a(3)

+ (dBb(0))/a(2) ⊗ (Sa(1))b(1)dAa(3) − b(0)/dAa(2) ⊗ (Sa(1))(dAb(1))a(3)

− b(0)/a(2) ⊗ (SdAa(1))(dAb(1))a(3) + b(0)/a(2) ⊗ (Sa(1))(dAb(1))a(3)

=(dBb(0))/(dAa)(2) ⊗ S(dAa)(1)b(1)(dAa)(3)

+ (−1)|(dAa)(1)|+|(dAa)(2)|b(0)/(dAa)(2) ⊗ S(dAa)(1)(dBb(1))(dAa)(3)

=(−1)|(dBb)
(1) |(|(dAa)(1)|+|(dAa)(2)|)(dBb)(0)/(dAa)(2) ⊗ S(dAa)(1)(dBb)(1)(dAa)(3).

Since the action and coaction of A on B are differentiable, and both exterior algebras are

generated by degrees 0,1, it follows that ∆R∗(η/ω) obeys the crossed module condition

in general, making Ω(B) a super Ω(A)-crossed module.

(ii) We need to prove that ∆∗(ξη) = (∆∗ξ)(∆∗η), and it suffices to prove that ∆∗ extends

to Ω2(B) since Ω(B) is the maximal prolongation of Ω1(B). Applying ∆∗ to bdBc = 0,

we have

b(1)dBc(1)(0)⊗(b(2)/c(1)(0))c(2) = 0, b(1)c(1)(0)⊗((b(2)/dAc(1)(1))c(2)+(b(2)/c(1)(1))dBc(2)) = 0.

Applying dB ⊗ id to the first equation, we have

dBb(1)dBc(1)(0) ⊗ (b(2)/c(1)(1))c(2) = 0

which is the Ω2(B)⊗B part of ∆∗(dBbdBc). Applying id⊗ dB to the second equation,
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we have

b(1)c(1)(0) ⊗ ((dBb(2))/dAc(1)(1))c(2) + b(1)c(1)(0) ⊗ ((dBb(2))/c(1)(1))dBc(2) = 0

which is the B ⊗ Ω2(B) part of ∆∗(dBbdBc). Finally, applying dB ⊗ id to the second

equation and id⊗ dB to the first equation and subtracting them, we have

(dBb(1))c(1)(0)⊗
(
(b(2)/dAc(1)(1))c(2)+(b(2)/c(1)(1))dBc(2)

)
−b(1)dBc(1)(0)⊗((dBb(2))/c(1)(1))c(2) = 0

which is the Ω1(B)⊗Ω1(B) part of ∆∗(dBbdBc) and thus completes the proof.

This lemma assists with the data needed for Theorem 6.2.1. Finally, we note that B is

canonically a A·.<B-comodule algebra by ∆Rb = b(1)(0) ⊗ b(1)(1) ⊗ b(2).

Corollary 6.2.3. Under the condition of Theorem 6.2.1, ∆R : B → B ⊗ A·.<B is

differentiable.

Proof. Since ∆R∗ : Ω(B)→ Ω(B)⊗Ω(A) and ∆∗ globally exist as assumed in Theorem

6.2.1, it is clear that ∆R∗η = η(1)
(0)∗ ⊗ η(1)

(1)∗ ⊗ η(2) is well-defined and gives a coaction

of Ω(A·.<B) on Ω(B). For example, on degree 1 we have

∆R∗(dBb) = dBb(1)(0) ⊗ b(1)(1) ⊗ b(2) + b(1)(0) ⊗ dAb(1)(1) ⊗ b(2) + b(1)(0) ⊗ b(1)(1) ⊗ dBb(2).

Remark 6.2.4. In the special case of A·.<A ∼= A./RA in Proposition 6.1.2, the latter

coacts on A differentiably and we recover Corollary 5.2.8.

We will give some q-deformed examples of the preceding section and for this it is conve-

nient to use R-matrix methods starting with the FRT bialgebra A(R) and its strongly

bicovariant exterior algebra. We start some results at this level for R a q-Hecke solution
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of the braid relations, before moving to specific examples in following subsections. We

use notations and conventions of [19].

6.3 Exterior algebra on A·.<V (R)

It has been mentioned in Example 5.2.9 that the FRT bialgebra A(R) is generated by

t = (tij) such that

Rt1t2 = t2t1R, ∆t = t⊗ t, εt = id

where R = (Rij
k
l) ∈Mn(C)⊗Mn(C) where (i, j) label the first copy and (k, l) the second.

In the compact notation the numerical suffices indicate the position in the tensor matrix

product, e.g. t1 = t ⊗ id, t2 = id ⊗ t, R23 = id ⊗ R etc. We ask for R to satisfy the

Yang-Baxter equation R12R13R23 = R23R13R12 (equivalent to the braid relation) and

for the present purpose to be q-Hecke, which means that it satisfies

(PR− q)(PR+ q−1) = 0, (6.3.1)

where P = (P ij
k
l) is a permutation matrix with P ij

k
l = δilδ

k
j in terms of the Kronecker

delta or identity matrix. The q-Hecke condition is equivalent to R21R = id+(q−q−1)PR

where R21 = PRP has the tensor factors swapped.

It is already proven in [19, Proposition 10.5.1] that A(R) in the q-Hecke case is an

additive braided Hopf algebra in the braided category of A(R)cop⊗A(R)-right comodules

(or A(R)-bicomodules) with coproduct ∆t = t ⊗ 1 + 1 ⊗ t, or in a compact notation

t′′ = t′ + t where t′ is a second copy of t, and t′′ obeys FRT bialgebra relation provided

t′1t2 = R21t2t
′
1R. This expresses the braided Hopf algebra homomorphism property of

the coproduct with respect to the relevant braiding Ψ(t1 ⊗ t2) = R21t2 ⊗ t1R, see [19]

for details. As a consequence, as for any additive braided Hopf algebra, it followed that

A(R) has a bicovariant exterior algebra Ω(A(R)) generated by t and dt with bimodule

relations as in the next lemma. The new part is that this makes Ω(A(R)) strongly

bicovariant.
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Lemma 6.3.1. Let A(R) be the FRT-bialgebra with R q-Hecke. The exterior algebra

Ω(A(R)) with bimodule and exterior algebra relations (dt1)t2 = R21t2dt1R and dt1dt2 =

−R21dt2dt1R as in [19] is strongly bicovariant with ∆∗dt = dt⊗ t + t⊗ dt.

Proof. The exterior algebra was already constructed in [19], but we provide a short check

of the Leibniz rule so as to be self-contained. Thus, on generators,

d(Rdt1t2) = R((dt1)t2 + t1dt2) = RR21t2dt1R+Rt1dt2

=t2dt1R+ (q − q−1)RP t2dt1R+Rt1dt2 = Rt1dt2(id + (q − q−1)PR) + t2dt1R

=(dt2)t1R+ t2dt1R = Rt1dt2R21R+ t2dt1R = d(t2t1R)

where we used R21 = R−1 + (q − q−1)P for the second equality and t1dt2P = P t2dt1

for the third equality. Applying d once more to the stated bimodule relation on degree 1

gives the stated relations in degree 2 and there are no further relations in higher degree,

which means that Ω(A(R)) is the maximal prolongation of Ω1(A(R)).

The new part is the super-coproduct ∆∗, which is uniquely determined by the super-

coderivation property but we need to check that it is well-defined. Thus,

∆∗((dt1)t2) =(dt1)t2 ⊗ t1t2 + t1t2 ⊗ (dt1)t2 = R21t2dt1R⊗ t1t2 + t1t2 ⊗R21t2dt1R

=R21t2dt1 ⊗ t2t1R+R21t2t1 ⊗ t2dt1R = ∆∗(R21t2dt1R)

on Ω1(A(R)). Since Ω(A(R)) is the maximal prolongation, we do not in principle

need to check the relations in higher degrees due to arguments similar to the proof

of Lemma 5.1.2. In practice, however, we check the degree 2 relations explicitly. Thus

∆∗(−dt1dt2) = −dt1dt2 ⊗ t1t2 − (dt1)t2 ⊗ t1dt2 + t1dt2 ⊗ (dt1)t2 − t1t2 ⊗ dt1dt2

=R21dt2dt1R⊗ t1t2 −R21t2dt1R⊗ t1dt2 + t1dt2 ⊗R21t2dt1R+ t1t2 ⊗R21dt2dt1R

=R21dt2dt1 ⊗ t2t1R−R21t2dt1R⊗ t1dt2 + t1dt2 ⊗R21t2dt1R+R21t2t1 ⊗ dt2dt1R
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∆∗(R21dt2dt1R) = R21

(
dt2dt1 ⊗ t2t1 + dt2.t1 ⊗ t2dt1 − t2dt1 ⊗ dt2.t1 + t2t1 ⊗ dt2dt1

)
R

=R21dt2dt1 ⊗ t2t1R+R21Rt1dt2R21 ⊗ t2dt1R−R21t2dt1 ⊗Rt1dt2R21R

+R21t2t1 ⊗ dt2dt1R

=R21dt2dt1 ⊗ t2t1R+ (id + (q − q−1)PR)t1dt2R21 ⊗ t2dt1R

−R21t2dt1 ⊗Rt1dt2(id + (q − q−1)P ) +R21t2t1 ⊗ dt2dt1R

=R21dt2dt1 ⊗ t2t1R+ t1dt2 ⊗R21t2dt1R+ (q − q−1)PRt1dt2R21 ⊗ t2dt1R

−R21t2dt1R⊗ t1dt2 − (q − q−1)R21t2dt1 ⊗Rt1dt2PR+R21t2t1 ⊗ dt2dt1R.

The two expressions are equal since

PRt1dt2R21 ⊗ t2dt1R =R21P t1dt2 ⊗ dt1.t2 = R21t2dt1 ⊗ Pdt1.t2 = R21t2dt1 ⊗ dt2.t1P

=R21t2dt1 ⊗Rt1dt2R21P = R21t2dt1 ⊗Rt1dt2PR.

so that (q − q−1)(PRt1dt2R21 ⊗ t2dt1R−R21t2dt1 ⊗Rt1dt2PR) vanishes.

Now consider additive braided Hopf algebras V (R) on which A(R) right coacts. These

are the q-Hecke case of the general construction in [19, Proposition 10.2.8] and are

generated by x = (xi) regarded as a vector row with relations qx1x2 = x2x1R with

coaction ∆Rx = x⊗ t. The braided Hopf algebra structure is expressed in [19, Theorem

10.2.6] as braided addition x′′ = x′ + x where x′′ obeys the relation of V (R) provided

x′1x2 = x2x
′
1qR (the latter expresses the braiding Ψ(x1 ⊗ x2) = x2 ⊗ x1qR induced by

the coquasitriangular structure R(t1 ⊗ t2) = qR). As before, the additive braided Hopf

algebra theory implies the maximal prolongation exterior algebra Ω(V (R)) given at the

end of [19, Chapter 10.4] with the relations shown in the next lemma. A more formal

treatment of the exterior algebras on an additive braided Hopf algebra, which underlies

both Ω(A(R)) and Ω(V (R)), recently appeared in [35, Prop. 2.9]. The new part is that

∆R is differentiable.

Lemma 6.3.2. Let V (R) be the right A(R)-covariant braided plane with R q-Hecke.

The exterior algebra Ω(V (R)) with bimodule and exterior algebra relations (dx1)x2 =
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x2dx1qR and −dx1dx2 = dx2dx1qR as in [19] has differentiable right coaction with

∆R∗dx = dx⊗ t + x⊗ dt.

Proof. That ∆R∗ is well-defined on degree 1 is

∆R∗((dx1)x2) =(dx1)x2 ⊗ t1t2 + x1x2 ⊗ (dt1)t2 = x2dx1qR⊗ t1t2 + x1x2 ⊗R21t2dt1R

=x2dx1 ⊗ qRt1t2 + x1x2R21 ⊗ t2dt1R = x2dx1 ⊗ t2t1qR+ x2x1 ⊗ t2dt1qR

=∆R∗(x2dx1qR).

This is sufficient by Lemma 5.1.2 since Ω(V (R)) is the maximal prolongation of Ω1(V (R)).

If one wants to see it explicitly on degree 2, this is

∆R∗(−dx1dx2) = −dx1dx2 ⊗ t1t2 − (dx1)x2 ⊗ t1dt2 + x1dx2 ⊗ (dt1)t2 − x1x2 ⊗ dt1dt2

=dx2dx1qR⊗ t1t2 − qx2dx1R⊗ t1dt2 + x1dx2 ⊗R21t2dt1R+ x1x2 ⊗R21dt2dt1R

=dx2dx1 ⊗ t2t1qR− qx2dx1R⊗ t1dt2 + x1dx2 ⊗R21t2dt1R+ x2x1 ⊗ dt2dt1qR.

∆R∗(x2dx1qR) = (dx2dx1 ⊗ t2t1 + dx2.x1 ⊗ t2dt1 − x2dx1 ⊗ (dt2)t1 + x2x1 ⊗ dt2dt1)qR

=dx2dx1 ⊗ t2t1qR+ q2x1dx2 ⊗R21t2dt1R− qx2dx1 ⊗Rt1dt2R21R+ x2x1 ⊗ dt2dt1qR

=dx2dx1 ⊗ t2t1qR+ q2x1dx2 ⊗R21t2dt1R− qx2dx1 ⊗Rt1dt2(id + (q − q−1)PR)

+ x2x1 ⊗ dt2dt1qR

=dx2dx1 ⊗ t2t1qR+ q2x1dx2 ⊗R21t2dt1R− qx2dx1 ⊗Rt1dt2 + x2x1 ⊗ dt2dt1qR

− (q2 − 1)x2dx1PR21 ⊗ t2dt1R

which simplifies to the first expression.

Now suppose A(R) has a central grouplike element D such that A = A(R)[D−1] is a Hopf

algebra. For the standard Cq[GLn] R-matrix, this is just the q-determinant allowing St

to be constructed as D−1 times a q-matrix of cofactors. (Another approach, which we will
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not take, is to assume that R is ‘bi-invertible’ and define a Hopf algebra by reconstruction

from a rigid braided category defined by R.) It is easy to see that Ω(A(R)) extends to

a strongly bicovariant exterior algebra Ω(A) with dD−1 = −D−1(dD)D−1. We take the

same ∆Rx = x ⊗ t on V (R) but now viewed as a coaction of A. We are now ready for

our main theorem.

Theorem 6.3.3. Let A = A(R)[D−1] with R q-Hecke and V (R) the right-covariant

braided plane as above. Then Ω(V (R)) is a super-braided Hopf algebra with xi, dxi prim-

itive in the crossed module category MΩ(A)
Ω(A) with coaction ∆R∗ as in Lemma 6.3.2 and

x1/t2 = x1q
−1R−1

21 , (dx1)/t2 = dx1q
−1R, x1/dt2 = (q−2−1)dx1P, (dx1)/dt2 = 0,

where P is a permutation matrix. This defines a strongly bicovariant exterior algebra

Ω(A·.<V (R)) := Ω(A)·.<Ω(V (R)) with relations, coproducts, and antipodes

x1t2 = t2x1q
−1R−1

21 , (dx1)t2 = t2dx1q
−1R, x1dt2 = (dt2)x1q

−1R−1
21 +(q−2−1)t2dx1P

dx1dt2 = −dt2dx1q
−1R, ∆x = 1⊗ x + x⊗ t, ∆∗dx = 1⊗ dx + dx⊗ t + x⊗ dt

Sx = −xSt, Sdx = −(dx)St− xSdt.

Proof. Note that the degree 0 part is the Hopf algebra A·.<V (R) and is just the q-Hecke

case of construction of inhomogeneous quantum groups by cobosonisation in [19]. Note

that the action of Ω1(A) is not given as far as we know by some general construction and

one has to check by hand that we indeed obtain Ω(V (R)) as a super right Ω(A)-crossed

module as follow. First, we have

∆R(x1/t2) =x1/t2 ⊗ (St2)t1t2 = x1q
1R−1

21 ⊗ (St2)t1t2 = (id⊗ St2)(x1q
1R−1

21 ⊗ t1t2)

=(id⊗ St2)(x1 ⊗ t2t1q
−1R−1

21 ) = x1 ⊗ (St2)t2t1q
−1R−1

21 ) = x1 ⊗ t1q
−1R−1

21
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Next, we have

∆R∗((dx1)/t2) =(dx1)/t2 ⊗ (St2)t1t2 + x1/t2 ⊗ (St2)(dt1)t2

=dx1q
−1R⊗ (St2)t1t2 + x1q

−1R−1
21 ⊗ (St2)(dt1)t2

=(id⊗ St2)(dx1q
−1R⊗ t1t2 + x1q

−1R−1
21 ⊗ (dt1)t2)

=(id⊗ St2)(dx1 ⊗ t2t1q
−1R+ x1 ⊗ t2dt1q

−1R)

=dx1 ⊗ t1q
−1R+ x1 ⊗ dt1q

−1R.

This verifies the conditions of Lemma 6.2.2 (i) hold and therefore Ω(V (R)) is a su-

per right Ω(A)-crossed module, but one can also check directly that ∆R∗(x1/dt2) and

∆R∗((dx1)/dt2) obey the crossed module axiom.

One can also check that Ω(V (R)) is indeed a super-Hopf algebra in this category with

xi,dxi primitive with the braiding for Ω(V (R)) in the crossed module category comes

out from the action and coaction of Ω(A) as

Ψ(x1 ⊗ x2) = x2 ⊗ x1q
−1R−1

21 , Ψ(dx1 ⊗ x2) = x2 ⊗ dx1q
−1R

Ψ(x1 ⊗ dx2) = dx2 ⊗ x1q
−1R−1

21 + (q−2 − 1)x2 ⊗ x1P, Ψ(dx1 ⊗ dx2) = dx2 ⊗ x1q
−1R,

and V (R) is a braided Hopf algebra with respect to this action. This verifies that the

conditions of Lemma 6.2.2 (ii) hold. We exhibit directly that the construction works by

showing that the super coproduct ∆∗ of Ω(A·.<V (R)) is indeed well-defined degree 1.

We let λ = q−2 − 1. Then,

∆∗(x1dt2) =dt2 ⊗ x1t2 + t2 ⊗ x1dt2 + x1dt2 ⊗ t1t2 + x1t2 ⊗ t1dt2

=dt2 ⊗ t2x1q
−1R−1

21 + t2 ⊗ dt2.x1q
−1R−1

21 + λt2 ⊗ t2dx1P

+ dt2x1 ⊗ t2t1q
−1R−1

21 + λt2dx1 ⊗ t2t1P + t2x1q
−1R−1

21 ⊗ t1dt2.
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On the other hand, we have

∆∗((dt2)x1q
−1R−1

21 ) = (dt2 ⊗ t2x1 + dt2.x1 ⊗ t2t1 + t2 ⊗ (dt2)x1 + t2x1 ⊗ (dt2)t1)q−1R−1
21

=
(

dt2 ⊗ t2x1 + dt2.x1 ⊗ t2t1 + t2 ⊗ (dt2)x1

)
q−1R−1

21 + q−1t2x1 ⊗Rt1dt2

∆∗(λt2dx1P ) =(t2 ⊗ t2dx1 + t2dx1 ⊗ t2t1 + t2x1 ⊗ t2dt1)λP

from which we find that ∆∗(x1dt2−dt2.x1q
−1R−1

21 −λt2dx1P ) = 0 using λP = q−1(R−1
21 −

R). We also exhibit that this bimodule relation is compatible with the graded-Leibniz

rule as it must,

d(x1dt2−(dt2)x1q
−1R−1

21 − λt2dx1P )

=dx1dt2 + dt2dx1q
−1R−1

21 − λdt2dx1P = dt2dx1

(
q−1(−R+R−1

21 )− λP
)

= 0.

Similarly for the other relations.

We also know by Corollary 6.2.3 that the right A·.<V (R) coaction ∆Rx = x⊗t+1⊗x ∈

V (R)⊗A·.<V (R) on V (R) coming view of A·.<V (R) as inhomogeneous quantum groups,

is differentiable for the exterior algebras above.

6.4 Calculations for the smallest R-matrices

The construction in Theorem 6.3.3 includes the standard q-deformation R-matrix for

the SLn for all n as these are all known to be q-Hecke when normalised correctly, see

[19]. In this case A = Cq[GLn] and V (R) = Cnq is the standard quantum-braided plane

with relations xjxi = qxixj for all j > i. Thus we obtain Ω(Cq[GLn]·.<Cnq ) such that

the canonical coaction of Cq[GLn]·.<Cnq on Cnq is differentiable. In this section, we show

n = 1 and n = 2 explicitly.

For n = 1, R = (q), D = t and A = C[t, t−1] is the algebraic circle with ∆t = t⊗ t which
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has a strongly bicovariant exterior algebra with

(dt)t = q2tdt, (dt)2 = 0, ∆∗dt = t⊗ dt+ dt⊗ t.

by Lemma 6.3.1 and those implied for t−1. (This is the standard bicovariant calculus a

circle, for some parameter q). We have B = V (R) = C[x] with calculus (dx)x = q2xdx,

(dx)2 = 0, which is A-covariant with ∆Rx = x⊗ t by Lemma 6.3.2.

Proposition 6.4.1. We can view B = V (R) = C[x] as a braided Hopf algebra in MA
A

as part of Ω(B) a super braided Hopf algebra in MΩ(A)
Ω(A) with

x/t = q−2x, x/dt = (q−2 − 1)dx, dx/t = dx, dx/dt = 0

∆Rx = x⊗ t, ∆R∗dx = dx⊗ t+ x⊗ dt.

(dx)x = q2xdx, (dx)2 = 0, ∆x = 1⊗ x+ x⊗ 1, ∆∗dx = 1⊗ dx+ dx⊗ 1.

The super bosonisation defines a strongly bicovariant exterior algebra Ω(Cq[B+]) :=

Ω(A)·.<Ω(B) with relations and comultiplication

xt = q−2tx, (dx)t = tdx, (dt)x = q2xdt+ (q2 − 1)tdx, dxdt = −dtdx

∆x = 1⊗ x+ x⊗ t, ∆∗dx = 1⊗ dx+ dx⊗ t+ x⊗ dt

where we identify A·.<B = Cq[B+] the quantisation of the positive Borel subgroup of SL2

(a quotient of Cq[SL2]). Moreover, the coaction ∆R : C[x] → C[x] ⊗ C[B+] given by

∆Rx = 1⊗ x+ x⊗ t is differentiable.

Proof. This is read off immediately from Theorem 6.3.3 but it is simple enough to verify

the key facts by hand.

Remark 6.4.2. The Hopf algebra Cq[B+] is also called the Sweedler-Taft algebra (but we

think of it as a q-deformed coordinate algebra). One can also think of it as Uq(b+) and in

this case the exterior algebra is the two dimensional Ω(Uq(b+)) found in [41]. In addition,
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we can work on q primitive n-th odd root of unity case where now A = Cq[t]/(tn − 1)

and B = C[x]/(xn), giving us the the exterior algebra of the reduced quantum group

cq[B+] with additional relations tn = 1 and xn = 0.

We now compute the rather more complicated n = 2 case where A = Cq[GL2]. This

is explained in Section 4.3 but now we write its generators as t11 = a, t12 = b, etc.

It is known for example in [7, 47] that Cq[GL2] has an obvious 1-parameter family of

coquasitriangular structures

R(t1 ⊗ t2) = Rα = qα



q 0 0 0

0 1 q − q−1 0

0 0 1 0

0 0 0 q


(6.4.1)

with R = R0 the q-Hecke normalisation. The choice of R means a 1-parameter family

Ωα(Cq[GL2]) it we use the standard construction for coquasitriangular Hopf algebras.

We refer to [35] for a recent treatment, which gives this calculus in the form Cq[GL2]·.<Λ

where the left-invariant 1-forms Λ1 has basis E1
1 = ea, E1

2 = eb, E2
1 = ec and E2

2 = ed

of Λ1 and is a right crossed A-module by

∆REr
s = Em

n ⊗ tmrStsn, Er
s/tij = Em

n(Rα)mr
i
k(Rα)kj

s
n

resulting in super coproduct and relations

∆∗Er
s = 1⊗ Ers + Em

n ⊗ tmrStsn, Er
stij = tikEm

n(Rα)mr
k
l(Rα)lj

s
n.

Explicitly, this is

ea

a b

c d

 = q2α

q2a b

q2c d

 ea, [eb,

a b

c d

]q1+2α = q1+2αλ

0 a

0 c

 ea
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[ec,

a b

c d

]q1+2α = q1+2αλ

b 0

d 0

 ea, [ed,

a
c

]q2α = q2αλ

b
d

 eb

[ed,

b
d

]q2+2α = q2αλ

aec + λbea

cec + λdea


where λ = q − q−1. When α = −1

2 the calculus descends to the quotient D = 1 giving

the standard 4D calculus on Cq[SL2] as in [47] but otherwise we are in the same family

but with a different q-factor in the commutation relations. It is inner with θ = ea + ed,

so that

dtij = tik(Rα21Rα)kj
r
sEr

s − tijθ = [θ, tij ].

On the other hand, the crossed module braiding Ψ on Λ1 is given in [35] is given by

an expression with an equal number of Rα and its appropriate inverse, so does not

depend on the normalisation factor in Rα and hence the left-invariant exterior algebra

Λ = B−(Λ1) = TΛ1/ ker(id−Ψ) is the same as for the standard 4D calculus on Cq[SL2],

namely the usual Grassmanian variables on ea, eb, ec and

eaed + edea + q−1λeceb = 0, edec + q2eced + q−1λeaec = 0

ebed + q2edeb + q−1λebea = 0, e2
a = e2

b = e2
c = 0, e2

d = q−1λeceb

and with exterior derivative

dea = q−1λebec, deb = λ(q−1ea − qed)eb, dec = λec(q
−1ea − qed), ded = q−1λeceb.

This gives a full structure on exterior algebra Ωα(Cq[GL2]) = Cq[GL2]·.<Λ.

We next consider the quantum-braided plane B = C2
q generated by x1, x2 with relation

x2x1 = qx1x2 and viewed initially as a braided Hopf algebra in the category of right

Cq[GL2] modules and with exterior algebra Ω(C2
q) with standard relations and coaction
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from Lemma 6.3.2,

(dxi)xi = q2xidxi, (dx1)x2 = qx2dx1, (dx2)x1 = qx1dx2 + (q2 − 1)x2dx1

(dxi)
2 = 0, dx2dx1 = −q−1dx1dx2, ∆Rxi = xj ⊗ tj i. (6.4.2)

Lemma 6.4.3. The 4D strongly bicovariant calculus Ω(Cq[GL2]) in Lemma 6.3.1 has

relations

(da)a = q2ada, (da)b = qbda, (da)c = qcda, (da)d = dda

(db)a = qadb+(q2−1)bda, (db)b = q2bdb, (db)c = cdb+(q−q−1)dda, (db)d = qddb

(dc)a = qadc+(q2−1)cda, (dc)b = bdc+(q−q−1)dda, (dc)c = q2cdc, (dc)d = qddc

(dd)a = add+ (q − q−1)(bdc+ cdb+ (q − q−1)dda), (dd)b = qbdd+ (q2 − 1)ddb

(dd)c = qcdd+ (q2 − 1)ddc, (dd)d = q2ddd

along with implied relations for D−1, and is isomorphic to Ω0(Cq[GL2]). Moreover,

it is the unique strongly bicovariant exterior algebra containing strongly bicovariant

Ω(C[D,D−1]) such that the canonical right coaction on Cq[GL2] on C2
q is differentiable.

Proof. The displayed calculus is a routine calculation from the Lemma 6.3.1, while the

last part of the statement is as follows. Requiring ∆R∗((dxi)xi) = ∆R∗(q
2xidxi) we

obtain all the relations stated except for those stated for (da)d, (db)c, (dc)b, (dd)a,

(dc)db and (dd)da, but we also get the following additional conditions

(dc)b+ q−1(da)d = bdc+ qdda, (db)c+ q−1(da)d = cdb+ qdda

(dc)b+ q(dd)a = q2bdc+ (q2 − 1)cdb+ qadd+ q(q2 − 1)dda

(db)c+ q(dd)a = q2cdb+ (q2 − 1)bdc+ qadd+ q(q2 − 1)dda.
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Since D is central, group-like and invertible, then C[D,D−1] is a sub-Hopf algebra of

Cq[GL2] and is isomorphic to C[t, t−1]. By requiring (dD)D = q2D(dD) as in Proposition

6.4.1, the above conditions are simplified into

a[da, d]d+ qbc[da, d] = 0.

This can be simplified further by moving the elements of degree 0 to the right by using

the already-known relations and obtain [da, d]D = 0, which implies [da, d] = 0 since

D 6= 0. The rest of relations are followed. We are now able to write dD explicitly as

dD = add− q−1bdc− q−1cdb+ q−2dda

(dtij)D = q2Ddtij , (dD)tij = tijdD + (q2 − 1)Ddtij .

By applying d to the stated bimodule relations, we obtain

(da)2 = (db)2 = (dc)2 = (dd)2 = (dD)2 = 0

dbda = −q−1dadb, dcda = −q−1dadc, dddb = −q−1dbdc, dddc = −q−1dcdd

dcdb = −dbdc+ (q − q−1)dadd, ddda = −dadd, dDdtij = −q−2dtijdD

for the degree 2 relations.

Finally, working in this calculus, consider the basis of left-invariant 1-form ωa = $(a),

ωb = $(b), ωc = $(c), ωd = $(d), where $(a) = (Sa(1))da(2) is the quantum Maurer-

Cartan form. Explicitly we have basic forms and relations

ωa = D−1(dda− qbdc), ωb = D−1(ddb− qbdd)

ωc = D−1(adc− q−1cda), ωd = D−1(add− q−1cdb)
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ωa

a b

c d

 =

q2a b

q2c d

ωa, [ωb,

a b

c d

]q = λ

b 0

d 0

ωa, [ωb,

a b

c d

]q = λ

0 a

0 c

ωa

[ωd,

a
c

] =

qλbωc + λ2aωa

qλdωc + λ2cωa

 , [ωd,

b
d

]q2 = λ

a
c

ωb

where λ = q − q−1, and exterior derivative

da = aωa + bωc, db = aωb + bωd, dc = cωa + dωc, cωb + dωd.

It is then a straightforward calculation to prove that ϕ : Ω(Cq[GL2]) → Ω0(Cq[GL2])

given by the identity map for elements of degree 0 and

ϕ(ωa) = qλea, ϕ(ωb) = λec, ϕ(ωc) = λeb, ϕ(ωd) = qλed + λ2ea

is an isomorphism.

We are now ready to state our example of Theorem 6.3.3.

Proposition 6.4.4. Let Ω(A) = Ω(Cq[GL2]) be the strongly bicovariant exterior algebra

in Lemma 6.4.3 and B = C2
q be viewed as a braided Hopf algebra inMA

A as part of Ω(B) =

Ω(C2
q) a super braided Hopf algebra in the category of Ω(Cq[GL2])-crossed modules with

(co)action and coproduct

x1/

a b

c d

 =

q−2x1 (q−2 − 1)x2

0 q−1x1

 , x2/

a b

c d

 =

q−1x2 0

0 q−2x2



x1/

da db

dc dd

 =

(q−2 − 1)dx1 (q−2 − 1)dx2

0 0

 dx1/

a b

c d

 =

dx1 0

0 q−1dx1



x2/

da db

dc dd

 =

 0 0

(q−2 − 1)dx1 (q−2 − 1)dx2

 dx2/

a b

c d

 =

 q−1dx2 0

(1− q−2)dx1 dx2
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dxi/dt
k
l = 0, ∆Rx1 = x1 ⊗ a+ x2 ⊗ c, ∆Rx2 = x1 ⊗ b+ x2 ⊗ c

∆R∗dx1 = dx1 ⊗ a+ dx2 ⊗ c+ x1 ⊗ da+ x2 ⊗ dc

∆R∗dx2 = dx1 ⊗ b+ dx2 ⊗ d+ x1 ⊗ db+ x2 ⊗ dd

∆xi = xi ⊗ 1 + 1⊗ xi, ∆∗dxi = dxi ⊗ 1 + 1⊗ dxi.

Its super bosonisation is a strongly bicovariant exterior algebra Ω(Cq[GL2]·.<C2) :=

Ω(Cq[GL2])·.<Ω(C2
q) with sub-exterior algebras Ω(Cq[GL2]), Ω(C2

q) and cross relations

and super coproduct

x1

a b

c d

 =

q−2ax1 q−1bx1 + (q−2 − 1)ax2

q−2cx1 q−1dx1 + (q−2 − 1)cx2

 , x2

a b

c d

 =

q−1ax1 q−2bx2

q−1cx2 q−2dx2



dx1

a b

c d

 =

adx1 q−1bdx1

cdx1 q−1ddx1

 , dx2

a b

c d

 =

q−1adx2 + (1− q−2)bdx1 bdx2

q−1cdx2 + (1− q−2)cdx2 ddx2



x1

da db

dc dd

 =

q−2(da)x1 + (q−2 − 1)adx1 q−1(db)x1 + (q−2 − 1)((da)x2 + adx2)

q−2(dc)x1 + (q−2 − 1)cdx1 q−1(dd)x1 + (q−2 − 1)((dc)x2 + cdx2)



x2

da db

dc dd

 =

q−1(da)x2 + (q−2 − 1)bdx1 q−2(db)x2 + (q−2 − 1)bdx2

q−1(dc)x2 + (q−2 − 1)ddx1 q−2(dd)x2 + (q−2 − 1)ddx2



dx1

da db

dc dd

 = −

dadx1 q−1dbdx1

dcdx1 q−1dddx1



dx2

da db

dc dd

 = −

q−1dadx2 + (1− q−2)dbdx1 dbdx2

q−1dcdx2 + (1− q−2)dddx1 dddx2


∆xi = 1⊗ xi + ∆R(xi), ∆∗(dxi) = 1⊗ dxi + ∆R∗(dxi)

along with the coproduct of Ω(Cq[GL2]) a sub-super Hopf algebra. Moreover, the canon-

ical coaction ∆R : C2
q → C2

q ⊗ Cq[GL2]·.<C2
q is differentiable.
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Proof. We apply Theorem 6.3.3. The Cq[GL2]-crossed module structure has coaction

∆Rxi = xj ⊗ tj i and right action xi/t
k
l = q−1xj(R

−1
21 )j i

k
l which computes as shown.

The rest follows similarly by computation for our choice of R as in (6.4.1) with the

q-Hecke normalisation α = 0. The coaction of Cq[GL2]·.<C2
q at the end is ∆Rxi =

1⊗ xi + xj ⊗ tj i.

Remark 6.4.5. Note that Cq[GL2]·.<C2
q it a quantum deformation of a maximal parabolic

P ⊂ SL3 and one can check that this is indeed isomorphic to a quotient of Cq[SL3]. We

have find its strongly bicovariant calculus and moreover it coacts differentiably on C2
q by

our results. The same construction still works when q is a primitive n-th odd root of unity.

Here we take A = cq[GL2] = Cq[GL2]/(an − 1, bn, cn, dn − 1) and B = c2
q = C2

q/(x
n
1 , x

n
2 )

with cq[GL2]·.<c2
q and strongly bicovariant exterior algebra as above with the additional

relations cq[GL2] and c2
q .



Chapter 7

Exterior algebra on

bicrossproduct Hopf algebras

Bicrossproduct Hopf algebras AI/H were first introduced by Majid[23] in the search of

self-dual algebraic structures. It still remains one of two main constructions known for

quantum groups. LetA,H be Hopf algebras forming a bicrossproduct and let Ω(A),Ω(H)

be their strongly bicovariant exterior algebras. In Section 7.1, we follow the similar

philosophy of Chapters 5 and 6 to construct a super bicrossproduct Ω(A)I/Ω(H) and

show that it gives a strongly bicovariant exterior algebra on AI/H such that the canonical

coaction ∆R : H → H ⊗ AI/H is differentiable, i.e., extends to ∆R∗ : Ω(H)→ Ω(H)⊗

Ω(AI/H) as super comodule algebra. We note that differential calculi on finite group

bicrossproducts C(M)I/CG where a finite group factorises into G,M were classified in

[40] but this did not address which of the calculi in the classification to take even in this

case.

As an application, in section 7.2 we recover the natural exterior algebra of the Planck

scale Hopf algebra C[g, g−1]I/C[p] in the known classification [37] such that it coacts

differentiably on a copy C[r] of C[p]. We also find the natural exterior algebra of the

simplest Poincaré quantum group Cλ[Poinc1,1] = C[SO1,1]I/U(b+) in a family of models

138
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of quantum spacetime[33] such that it coacts on U(b+) differentiably. Here C[SO1,1]

is the hyperbolic Hopf algebra and the U(b+) is regarded as the algebra of spacetime

coordinates in 1 + 1 dimensions.

7.1 Differentials by super bicrossproduct

Let H and A be two Hopf algebras with A a left H-module algebra by left action ., and

let H be a right A-comodule coalgebra by coaction β(h) = h(0) ⊗ h(1) . We suppose in

this section that . and ∆R are compatible in a way [23] such that the cross product by

. and cross coproduct by ∆R form a bicrossproduct Hopf algebra AI/H.

Let Ω(A) and Ω(H) be strongly bicovariant exterior algebras. Assume that Ω(A) is an

H-covariant, i.e. Ω(A) is an H-module algebra by an action . : H ⊗ Ω(A) → Ω(A)

commuting with d and that this extends further to an action . : Ω(H)⊗Ω(A) → Ω(A)

differentiably such that

dA(η.ω) = (dHη).ω + (−1)|η|η.(dAω) (7.1.1)

for all ω ∈ Ω(A) and η ∈ Ω(H).

Dually, assume β extends to a degree-preserving super coaction β∗ : Ω(H)→ Ω(H)⊗Ω(A),

denoted by β∗(η) = η(0)∗ ⊗ η(1)∗, such that Ω(H) is a super Ω(A)-comodule coalgebra

and

β∗(dHη) = dHη(0)∗ ⊗ η(1)∗ + η(0)∗ ⊗ dAη(1)∗. (7.1.2)

If . and β∗ obey the super bicrossproduct conditions:

ε(η.ω) = ε(η)ε(ω) (7.1.3)

∆∗(η.ω) = (−1)(|η(1)(1)
∗|+|η(2)|)|ω(1)|η(1)

(0)∗.ω(1) ⊗ η(1)
(1)∗(η(2).ω(2)) (7.1.4)

β∗(ηξ) = (−1)(|η(1)(1)
∗|+|η(2)|)|ξ(0)

∗|η(1)
(0)∗ξ(0)∗ ⊗ η(1)

(1)∗(η(2).ξ(1)
∗) (7.1.5)

(−1)|ω||η(2)
(1)∗|+|η(1)||η(2)(0)

∗|η(2)
(0)∗ ⊗ (η(1).ω)η(2)

(1)∗ = η(1)
(0)∗ ⊗ η(1)

(1)∗(η(2).ω) (7.1.6)
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then we have a bicrossproduct super Hopf algebra Ω(A)I/Ω(H) with product and co-

product

(ω ⊗ η)(τ ⊗ ξ) = (−1)|η(2)||τ |ω(η(1).τ)⊗ η(2)ξ

∆∗(ω ⊗ η) = (−1)|ω(2)||η(1)(0)
∗|ω(1) ⊗ η(1)

(0)∗ ⊗ ω(2)η(1)
(1)∗ ⊗ η(2)

for all ω, τ ∈ Ω(A), η, ξ ∈ Ω(H). We omit the proof since this close to the usual version

[19, 23] just with some extra signs.

Theorem 7.1.1. Let A,H be Hopf algebras and form a bicrossproduct AI/H and let

Ω(A) and Ω(H) be strongly bicovariant exterior algebras with ., β∗ obey the conditions

(7.1.1)-(7.1.6). Then Ω(AI/H) := Ω(A)I/Ω(H) is a strongly bicovariant exterior alge-

bra on AI/H with differential

d(ω ⊗ η) = dAω ⊗ η + (−1)|ω|ω ⊗ dHη.

Proof. This is clear since the product here is the left super cross product, which is a left

reversal of the right-handed super cross product and the coproduct is the super right

cross coproduct, which are similar to the proof of Theorem 6.2.1 with d the graded tensor

product differential.

In practice, we typically only need to know that the bicrossproduct action . and coaction

β extend to degree 1 to construct the super bicrossproduct, since the extension to higher

degrees is determined. Note also that if Ω(A) is an H-module algebra and if Ω(H) is the

maximal prolongation of Ω1(H), then by the left-hand reversal of Lemma 5.1.4, Ω(A) is

a super Ω(H)-module algebra such that (7.1.1) holds.

Lemma 7.1.2. Let A,H be Hopf algebras forming a bicrossproduct AI/H. Let Ω(A)

be a super left Ω(H)-module algebra such that (7.1.1) holds, suppose that the coaction
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extends to a well-defined map β∗ : Ω1(H)→ Ω1(H)⊗A⊕H ⊗ Ω1(A) by

(1) β∗(hdHg) = h(1)
(0)dHg(0) ⊗ h(1)

(1)(h(2).g(1)) + h(1)
(0)g(0) ⊗ h(1)

(1)(h(2).dAg(1))

for all h, g ∈ H, and suppose that the action obeys ε(η.ω) = ε(η)ε(ω) and

(2) ∆∗(h.dAa) = h(1)
(0).dAa(1) ⊗ h(1)

(1)(h(2).a(2)) + h(1)
(0).a(1) ⊗ h(1)

(1)(h(2).dAa(2))

(3) h(2)
(0) ⊗ (h(1).dAa)h(2)

(1) = h(1)
(0) ⊗ h(1)

(1)(h(2).dAa)

for all h ∈ H and a ∈ A. If Ω(H) is the maximal prolongation of Ω1(H), and Ω(A) is

the maximal prolongation of Ω1(A), then β∗ extends to all degrees obeying (7.1.4)-(7.1.6)

and form Ω(A)I/Ω(H) by Theorem 7.1.1.

Proof. (i) First we first check that β∗((dHh)g) also satisfies (7.1.5) for products from the

other side,

β∗((dHh)g) =∆R∗(dH(hg)− hdHg)

=dH(hg)(0) ⊗ (hg)(1) + (hg)(0) ⊗ dA(hg)(1) − h(1)
(0)dHg(0) ⊗ h(1)

(1)(h(2).g(1))

− h(1)
(0)g(0) ⊗ h(1)

(1)(h(2).dAg(1))

=dH(h(1)
(0)g(0))⊗ h(1)

(1)(h(2).g(1)) + h(1)
(0)g(0) ⊗ dA(h(1)

(1)(h(2).g(1)))

− h(1)
(0)dHg(0) ⊗ h(1)

(1)(h(2).g(1))− h(1)
(0)g(0) ⊗ h(1)

(1)(h(2).dAg(1))

=(dHh(1)
(0))g(0) ⊗ h(1)

(1)(h(2).g
(1)

) + h(1)
(0)g(0) ⊗ (dAh(1)

(1))(h(2).g(1))

+ h(1)
(0)g(0) ⊗ h(1)

(1)((dHh(2)).g
(1)

)

=((dHh)(1)(0))g(0) ⊗ (dHh)(1)(1)((dHh)(2).g(1)).

Next, we prove that β∗ extends by (7.1.5) to Ω2(H) for the maximal prolongation.

Suppose hdHg = 0 in Ω1(H) (a sum of such terms understood) then β∗(hdHg) = 0 tells
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us that

h(1)
(0)dHg(0) ⊗ h(1)

(1)(h(2).g(1)) = 0, h(1)
(0)g(0) ⊗ h(1)

(1)(h(2).dAg(1)) = 0.

Applying dH⊗id to the first equation, we have the following Ω2(H)⊗A-part of β∗(dHrdHs+

dHbdHc)

dHh(1)
(0)dHg(0) ⊗ h(1)

(1)(h(2).g(1)) = 0.

Applying id ⊗ dA to the second equation, we have the following H ⊗ Ω2(A)-part of

β∗(dHrdHs+ dHbdHc)

h(1)
(0)g(0) ⊗

(
(dAh(1)

(1))(h(2).dAg(1)) + h(1)
(1)((dHh(2)).dAg(1))

)
= 0.

Finally, applying dH ⊗ id to the second equation and id ⊗ dA to the first equation and

subtracting them, we have the Ω1(H)⊗Ω1(A)-part of β∗(dHrdHs+ dHbdHc)

(dHh(1)
(0))g(0)⊗h(1)

(1)(h(2).dAg(1))

− h(1)
(0)dHg(0) ⊗ ((dAh(1)

(1))(h(2).g(1)) + h(1)
(1)((dHh(2)).g(1))) = 0.

Since . : Ω(H)⊗Ω(A) → Ω(A) is defined and Ω(H) is the maximal prolongation of

Ω1(H), β∗ can be extended further to higher degree obeying (7.1.5).

(ii) Next we check that ∆∗((dHh).a) satisfies (7.1.4)

∆∗((dHh).a) = ∆∗(dA(h.a)− h.dAa)

=dA(h.a)(1) ⊗ (h.a)(2) + (h.a)(1) ⊗ dA(h.a)(2) −∆∗(h.dAa)

=dA(h(1)
(0).a(1))⊗ h(1)

(1)(h(2).a(2)) + (h(1)
(0).a(1))⊗ dA(h(1)

(1)(h(2).a(2)))

− h(1)
(0).dAa(1) ⊗ h(1)

(1)(h(2).a(2))− h(1)
(0).a(1) ⊗ h(1)

(1)(h(2).dAa(2))

=dHh(1)
(0).a(1) ⊗ h(1)

(1)(h(2).a(2)) + (h(1)
(0).a(1))⊗ (dAh(1)

(1))(h(2).a(2))
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+ h(1)
(0).a(1) ⊗ h(1)

(1)((dHh(2)).a(2))

=(dHh)(1)(0).a(1) ⊗ (dHh)(1)(1)((dHh)(2).a(2))

and one can find further that

∆∗((hdHg).a) =(h(1)
(0)dHg(1)

(0)).a(1) ⊗ h(1)
(1)(h(2).g(1)

(1))((h(2)g(2)).a(2))

+ (h(1)
(0)g(1)

(0)).a(1) ⊗ h(1)
(1)(h(2).dAg(1)

(1))((h(2)g(2)).a(2))

+ (h(1)
(0)g(1)

(0)).a(1) ⊗ h(1)
(1)(h(2).g(1)

(1))((h(2)dHg(2)).a(2))

for all a ∈ A as also required for (7.1.4). We can extends further to ∆∗((dHh).dAa) and

prove that it obeys (7.1.4) as follow

∆∗((dHh).dAa) = ∆∗(dA(h.dAa))

=dA(h.dAa)(1) ⊗ (h.dAa)(2) + (−1)|(h.dAa)(1)|(h.dAa)(1) ⊗ dA(h.dAa)

=dA(h(1)
(0).dAa(1))⊗ h(1)

(1)(h(2).a(2))− h(1)
(0).dAa(1) ⊗ dA(h(1)

(1)(h(2).a(2)))

+ dA(h(1)
(0).a(1))⊗ h(1)

(1)(h(2).dAa(2)) + h(1)
(0).a(1) ⊗ dA(h(1)

(1)(h(2).dAa(2)))

=(dHh(1)
(0)).dAa(1) ⊗ h(1)

(1)(h(2).a(2))− h(1)
(0).dAa(1) ⊗ (dAh(1)

(1))(h(2).a(2))

− h(1)
(0).dAa(1) ⊗ h(1)

(1)((dHh(2)).a(2)) + (dHh(1)
(0)).a(1) ⊗ h(1)

(1)(h(2).dAa(2))

+ h(1)
(0).a(1) ⊗ (dAh(1)

(1))(h(2).dAa(2)) + h(1)
(0).a(1) ⊗ h(1)

(1)((dHh(2)).dAa(2))

=(−1)(|(dHh)(1)
(1) |+|(dHh)(2)|)|(dAa)(1)|(dHh)(1)(0).(dAa)(1) ⊗ (dHh)(1)(1)((dHh)(2).(dAa)(2)).

This then extends to all degrees since ∆∗ of Ω(A) and . : Ω(H)⊗Ω(A) → Ω(A) are

defined by assumption and β∗ : Ω(H) → Ω(H)⊗Ω(A) is now defined since Ω(H) is the

maximal prolongation of Ω1(H).

(iii) Finally, we check that β∗ obeys (7.1.6). In fact by applying dH ⊗ id + id⊗ dA to

h(2)
(0) ⊗ (h(1).a)h(2)

(1) = h(1)
(0) ⊗ h(1)

(1)(h(2).a)
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combined with assumption (3), we have

dHh(2)
(0) ⊗ (h(1).a)h(2)

(1) + h(2)
(0) ⊗ ((dHh(1)).a)h(2)

(1) + h(2)
(0) ⊗ (h(1).a)dAh(2)

(1)

= dHh(1)
(0) ⊗ h(1)

(1)(h(2).a) + h(1)
(0) ⊗ dAh(1)

(1)(h(2).a) + h(1)
(0) ⊗ h(1)

(1)(dHh(2).a)

which is equivalent to

(dHh)(2)(0) ⊗ ((dHh)(1).a)(dHh)(2)(1) = (dHh)(1)(0) ⊗ (dHh)(1)(1)((dHh)(2).a).

Furthermore, one can find that

(hdHg)(2)(0) ⊗ ((hdHg)(1).a)(hdHg)(2)(1) = (hdHg)(1)(0) ⊗ (hdHg)(1)(1)((hdHg)(2).a).

We can also extend this by applying dH ⊗ id + id⊗ dA to the assumption (3), where we

have

dHh(2)
(0) ⊗ (h(1).dAa)h(2)

(1) + h(2)
(0) ⊗

(
((dHh(1)).dAa)h(2)

(1) − (h(1).dA)dAh(2)
(1)
)

= dHh(1)
(0) ⊗ h(1)

(1)(h(2).dAa) + h(1)
(1) ⊗

(
(dAh(1))(h(2).dAa) + h(1)

(1)((dHh(2)).dAa)
)

which is equivalent to

(−1)|(dHh)(2)
(1) ||dAa|(dHh)(2)(0)⊗((dHh)(1).dAa)(dHh)(2)(1)

= (dHh)(1)(0) ⊗ (dHh)(1)(1)((dHh)(2).dA).

Since . and β∗ are defined for Ω(H), one can extend the above equation further to higher

degree by applying dH ⊗ id + (−1)| |id ⊗ dA to the lower degree equation, and thus β∗

obeys (7.1.6). This completes the proof.

This lemma assists with the data for Theorem 7.1.1. Moreover, as part of theory of

bicrossproduct Hopf algebras, there is a covariant right coaction ∆R : H → H ⊗ AI/H
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given by ∆Rh = h(1)
(0)⊗h(1)

(1)⊗h(2). The following proposition shows that this coaction

is differentiable.

Corollary 7.1.3. If . and β∗ obey the condition on Theorem 7.1.1 then ∆R : H →

H ⊗AI/H as above is differentiable.

Proof. Since the coaction Ω(H) → Ω(H)⊗Ω(A) and action Ω(H)⊗Ω(A) → Ω(A) glob-

ally exist as assumed in Theorem 6.2.1, it is clear that ∆R∗η = η(1)
(0)∗ ⊗ η(1)

(1)∗ ⊗ η(2) is

well-defined and gives a coaction of Ω(AI/H) on Ω(H). For example, on degree 1 we

have

∆R∗(dHh) = dHh(1)
(0) ⊗ h(1)

(1) ⊗ h(2) + h(1)
(0) ⊗ dAh(1)

(1) ⊗ h(2) + h(1)
(0) ⊗ h(1)

(1) ⊗ dHh(2).

7.2 Examples of exterior algebras from super bicrossprod-

uct

We now turn to some examples of exterior algebras constructed as super bicrossproducts.

Our warm-up example is the ‘Planck scale’ Hopf algebra C[g, g−1]I/C[p] generated by

g, g−1, p with

[p, g] = λ(1− g)g, ∆g = g ⊗ g, ∆p = 1⊗ p+ p⊗ g

where λ = ı ~G is an imaginary constant built from Planck’s constant and the gravita-

tional constant G, and g = e−
x
G where x is the spatial position in [22] (while we work

algebraically with g as a generator). This turned out to be a Drinfeld twist of U(b+)

and we will obtain the same calculus as found in [37] by twisting methods. Let C[r] be

another copy of C[p] and let Ω(C[r]) be an exterior algebra with

[r, dr] = λdr, (dr)2 = 0.
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Also as part of the theory of bicrossproducts there is a natural coaction ∆R : C[r] →

C[r] ⊗ C[g, g−1]I/C[p] given by ∆Rr = 1 ⊗ p + r ⊗ g making C[r] a comodule-algebra.

This coaction extends to Ω(C[r]) by ∆Rdr = dr ⊗ g.

Proposition 7.2.1. There is a unique strongly bicovariant exterior algebra Ω(C[g, g−1]I/C[p])

such that ∆R is differentiable. This has relations

[dg, g] = 0, [p,dp] = λdp, [dp, g] = λgdg, [dg, p] = λ(1− g)dg

(dp)2 = (dg)2 = 0, dpdg = −dgdp

Furthermore, Ω(C[g, g−1]I/C[p]) = Ω(C[g, g−1])I/Ω(C[p]) with coproduct

∆g = g ⊗ g, ∆∗dg = dg ⊗ g + g ⊗ dg

∆p = 1⊗ p+ p⊗ g, ∆∗dp = 1⊗ dp+ dp⊗ g + p⊗ dg.

Proof. If it exists then ∆R∗dr = dr ⊗ g + 1 ⊗ dp + r ⊗ dg. For this to extend in a

well-defined way to Ω1(C[p]) as in (5.1.2) we require ∆R∗(dr.r − rdr + λdr) = 0 which

gives [p, dp] = λdp, [dg, g] = 0 and

[dg, p] + [dp, g] + λdg = 0.

By requiring ∆R∗(dr)
2 = 0 we find that [g,dp] = λgdg which implies [dg, p] as stated.

We also find the relations on degree 2 as stated. One can check that they obey Leibniz

rule, making Ω(C[g, g−1]I/C[p]) an exterior algebra.

Furthermore, one can find that Ω(C[p]) is a super right Ω(C[g, g−1])-comodule and

Ω(C[g, g−1]) is a super right Ω(H)-module by the following actions and coactions

p.g = λ(1− g)g, dp.g = −λgdg, p.dg = λ(1− g)dg, dp.dg = 0

β(p) = p⊗ g, β∗(dp) = dp⊗ g + p⊗ dg.
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It is a routine calculation to show that the stated action and coaction obey the condition

on Theorem 7.1.1. Therefore super bicrossproduct Ω(C[g, g−1])I/Ω(C[p]) gives the same

exterior algebra as Ω(C[g, g−1]I/C[p]) and with the stated coproduct.

The next most complicated example in this context is the quantum Poincaré group

C[Poinc1,1] = C[SO1,1]I/U(R>/R) for which we follow the construction in [33]. Here

C[SO1,1] is the ‘hyperbolic Hopf algebra’ generated by c = coshα and s = sinhα with

relations c2 − s2 = 1 and cs = sc. (We work algebraically with c, s and do not need α

itself.) This is a Hopf algebra with

∆

c s

s c

 =

c s

s c

⊗
c s

s c

 , ε

c s

s c

 =

1 0

0 1

 , S

c s

s c

 =

 c −s

−s c

 .

Also recall that U(R>/R) is a Hopf algebra generated by a0 and a1 with relation [a0, a1] =

λa0 for some λ ∈ C, and primitive comultiplication ∆ai = 1 ⊗ ai + ai ⊗ 1 for i = 0, 1.

C[SO1,1] coacts on U(R>/R) and U(R>/R) acts on C[SO1,1] by

a0.

c
s

 = λ

s2

sc

 , a1.

c
s

 = λ

cs− s
c2 − c

 , ∆R

(
a0 a1

)
= ∆R

(
a0 a1

)
⊗

c s

s c.


Thus their bicrossproduct Cλ[Poinc1,1] = C[SO1,1]I/U(R>/R) contains C[SO1,1] as sub-

Hopf algebra, U(R>/R) as subalgebra, and with the following additional cross-relations

and coproducts[33]

[a0,

c
s

] = λs

s
c

 , [a1,

c
s

] = λ(c− 1)

s
c

 , ∆ai = 1⊗ ai + ∆Rai.

Finally, we let U(R>/R) be another copy with generators t, x in place of a0, a1 with

exterior algebra[43]

[dx, x] = λθ′, [dx, t] = 0, [dt, x] = λdx, [dt, t] = λ(dt−θ′), [θ′, x] = 0, [θ′, t] = −λθ′
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dθ′ = 0, (dx)2 = (dt)2 = 0, dxdt = −dtdx, dx.θ′ = −θ′dx, dt.θ′ = −θ′dt.

It is known that this is covariant under Cλ[Poinc1,1] by coaction

∆R : U(R>/R)→ U(R>/R)⊗C[Poinc1,1], ∆R(t x) = 1⊗ (a0 a1)+(t x)⊗

c s

s c


in the same matrix notation as for coproducts above.

Proposition 7.2.2. There is a unique strongly bicovariant exterior algebra Ω(C[Poinc1,1])

such that the above coaction on U(R>/R) is differentiable. It contains Ω(U(R>/R)) as

sub-exterior algebras and has the additional relations on degree 1 and 2

(dc)s = sdc, (ds)c = cds, (dc)c = cdc = sds = (ds)s

[da0,

c
s

] = λc

dc

ds

 , [da1,

c
s

] = λs

dc

ds



[a0,

dc

ds

] = λs

ds

dc

 , [a1,

dc

ds

] = λ(c− 1)

ds

dc

 , [θ′,

c
s

] = λ(c− 1)

dc

ds



{da0,

dc

ds

} =

 0

λdsdc

 , {da1,

dc

ds

} =

λdcds

0

 .

Furthermore, Ω(C[Poinc1,1]) = Ω(C[SO1,1])I/Ω(U(R>/R)) with coproduct that of Cλ[Poinc1,1]

on degree 0 and

∆∗dc = dc⊗ c+ ds⊗ s+ c⊗ dc+ s⊗ ds, ∆ds = dc⊗ s+ ds⊗ c+ c⊗ ds+ s⊗ dc

∆∗da0 = 1⊗ da0 + da0 ⊗ c+ da1 ⊗ s+ a0 ⊗ dc+ a1 ⊗ ds

∆∗da1 = 1⊗ da1 + da0 ⊗ s+ da1 ⊗ c+ a0 ⊗ ds+ a1 ⊗ dc

∆∗θ
′ = 1⊗ θ′ + θ′ ⊗ 1− 1⊗ da0 − da0 ⊗ 1 + ∆∗da0.
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Proof. If ∆R∗ exists obeying (5.1.2), we will need

∆R∗dt = 1⊗ da0 + dt⊗ c+ dx⊗ s+ t⊗ dc+ x⊗ ds

∆R∗dx = 1⊗ da1 + dt⊗ s+ dx⊗ c+ t⊗ ds+ x⊗ dc

∆R∗θ
′ = 1⊗ θ′ − 1⊗ da0 + θ′ ⊗ 1− dt⊗ 1 + ∆R∗dt

By requiring ∆R∗([dt, x]) = ∆R∗(λdx) and ∆R∗([dx, t]) = 0, we find

(ds)c = cds, (dc)s = sdc, (dc)c+ (ds)s− cdc− sds = 0.

[da1, c] = [a0,ds], [da1, s]− [a0,dc] + λ((ds)s− cdc) = 0

[a1, dc] = [da0, s]− λds, [da0, c]− [a1, ds] + λ((dc)c− sds− dc) = 0.

Additionally, from d(c2−s2) = 0 combined with the condition dc.c+ds.s−cdc−sds = 0

above, we find that (dc)c = sds and (ds)s = cdc. But then by requiring ∆R∗([dx, x]) =

∆R∗(λθ
′) we also find that (dc)c = cdc and (ds)s = sds. Thus we have (dc)c = cdc =

sds = (ds)s. Also by requiring ∆R∗(dx)2 = 0 and ∆R∗(dt)
2 = 0 one can find that

[da0,

c
s

] = λc

dc

ds

 , [da1,

c
s

] = λs

dc

ds


leading to the stated bimodule relations. The relations involving θ′ are obtained by using

the other relations. One can also find that the stated relations on degree 2 hold and

Ω(Cλ[Poinc1,1]) contains Ω(U(R>/R)) from the above calculation.

Furthermore, Ω(C[SO1,1]) is a super Ω(U(R>/R))-module and Ω(U(R>/R)) is a super

Ω(C[SO1,1])-comodule with actions and coactions

da0.

c
s

 = λc

dc

ds

 , da1.

c
s

 = λs

dc

ds
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a0.

dc

ds

 = λs

ds

dc

 , a1.

dc

ds

 = λ(c− 1)

ds

dc


β∗(da0) = da0 ⊗ c+ da1 ⊗ s+ a0 ⊗ dc+ a1 ⊗ ds

β∗(da1) = da0 ⊗ s+ da1 ⊗ c+ a0 ⊗ ds+ a1 ⊗ dc

θ.

c
s

 = λ(c− 1)

dc

ds

 , β∗(θ
′) = θ′ ⊗ 1− da0 ⊗ 1 + β∗(da0)

and one can check that they obey the conditions for Theorem 7.1.1. Therefore we can ap-

ply the super bicrossproduct and identify Ω(Cλ[Poinc1,1]) = Ω(C[SO1,1])I/Ω(U(R>/R))

with coproducts as stated.
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