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Thesis Abstract 

Porous hydroxyapatite (PHA) ceramic granules have been found to be highly successful 

synthetic bone graft substitute (BGS) materials, encouraging rapid, good quality bone healing. 

Key to the success of these materials is a hierarchical multi-scale pore structure, consisting of 

both macro pores (Larger than 50 𝜇m in diameter) giving the granules their characteristic 

foam-like pore structure, and smaller micro pores (less than 20 𝜇m in diameter) which are 

found within the ‘struts’ or ‘body’ of the foam structure. 

It has been widely reported that control of the level of total porosity (dominated by the macro 

pores) has an impact on bone healing in BGS, the rate of remodelling and the nature of bone 

growth. However, within porous hydroxyapatite (PHA) granules the level of strut porosity and 

micro porosity have also been found to be key to the rate and pattern of bone growth. This 

has been hypothesised to be due to the variation in the macro-structure and micro-architecture 

of the BGS resulting in different level of strains experienced within the niche environments of 

the implanted granule masses, which in turn stimulates or supresses bone growth through 

mechano-transduction pathways.  

The aim of this study was to develop, simulate and analyse finite element models of PHA 

granule masses. This is to identify whether changes in the level of strut and total porosities, 

could alter the patterns of stresses and strains exhibited within granule masses to effect local 

bone formation. Models for finite element analysis (FEA) were generated from micro-CT scans 

of cylinders packed with granule masses of different combinations of total and strut porosities. 

The procedure captured the natural porous architecture in a novel approach to the analysis of 

PHA.  
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The study demonstrated that PHA granules as a material maintain their heterogeneity and 

density at different scales and thus lend themselves to homogenisation techniques to create 

representative volume entities (RVEs).  

The analysis incorporated RVEs of different sizes to investigate the continuity of the material 

behaviour. All the models were energetically validated. They were modelled using a linear 

elastic model as well as a plastic non-linear one typically used in soil and powder modelling 

applications. The non-linear Drucker-Prager cap model, was utilised combining a 

mathematical approach and mechanical testing techniques, to obtain the model’s parameters, 

in an attempt to eliminate the need for extensive mechanical tests.  

FEA on the representative volumes demonstrated a wholesale change in strain levels and 

distribution associated with the level of porosity. Changes in strut porosities showed a direct 

effect on the peak strain levels within the porous structures. Where the location of both stress 

and strain peaks as well as fields favoured the pore waists throughout all simulations with 

slight variation in the precision of concentration in response to changes in strut porosity.  

These observations could explain the differences observed in the structure of bone growth 

within BGS materials with matched total porosities but varied levels of strut porosities. 

Moreover, they may also explain the phenomena where by bone formation within PHA has 

been observed to occur simultaneously within a single pore via both endochondral and 

mesenchymal pathways. These results suggest that the models generated in this PhD could 

be used to further investigate the effect of structure and strain manipulation to control the rate 

and quality of bone regeneration within bone graft substitutes  
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Thesis Structure and Overview:  

Chapter 1:  

The thesis starts with introducing bone grafts and discussing bone graft substitutes and their 

importance to orthopaedics. The discussion continues to cover the rationale for choosing 

porous Hydroxyapatite as the material to investigate, and for employing a finite element 

approach for the analysis. The chapter also covers the background theory of bone remodelling 

and bone grafting. It presents the previous research findings of mechanical-signalling 

pathways which is the motivation for investigating the mechanical strain fields in bone graft 

substitutes. The chapter introduces the finite element approach, as well as representative 

volume entities and their relevance to the research.  

Chapter 2:  

This is chapter covers the experimental methods used in this research.  

 Archimedes density measurements 

 Scanning electron microscopy imaging to determine the porosity 

 Mechanical compression testing 

Chapter 3:  

The chapter introduces the methods used to create 3D models from grey scale scans of 

porous hydroxyapatite granules using commercial software ScanIP. The meshing process as 

well and the investigation of density conservation within RVEs. 

Chapter 4: 

The chapter discusses finite element analysis methods in more detail. It demonstrates the 

results for the hydroxyapatite RVEs analysed using the linear elastic model obtained using 
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ABAQUS. The chapter discusses the results using Von Mises and axial strain colour contours, 

energy conservation and strain energies of the models.   

Chapter 5:  

The chapter introduces and discusses the second finite element analysis model used for this 

research, the Drucker Prager Cap plasticity model. The model is employed as a failure 

criteria and employs data from compression tests. The chapter discusses the results using 

the Von Mises colour contours and PEEQ values in conjunction with the linear elastic model 

results.  

Chapter 6:  

The chapter contains a thorough discussion of all the results and the conclusions drawn from 

the findings. It also discusses possible future applications and research that may stem from 

this research. 
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Chapter 1.  

Introduction and literature survey  

1.1 Bone Biology and Physiology  

1.1.1 Bone Tissue 

Bone is an active biological tissue and is the largest constituent of the skeletal system, and its 

functions are varied and essential for survival. They range from providing protection for the 

underlying organs, blood cell production, and support of the body frame as well as acting as 

a reservoir for minerals. Bone plays a critical role in maintaining the homeostasis of the body 

by maintaining the PH levels and releasing minerals when needed. Bone is also home to 

progenitor cells such as the mesenchymal and hematopoietic stem cells. It also houses growth 

factors and cytokines. When bone loses one of its roles and functions, the results are quite 

negative. This can be seen clearly in cases such as osteoporosis and osteoarthritis. 

(Taichman, 2018).  

Bone is an anisotropic composite material made of mineralised osseous tissue constituting 

50% to 70% of its weight. It also contains collagen type 1 with traces of types 3 and 5, 

constituting the organic matrix with a percentage ranging from 20% to 40%. Collagen, is the 

material responsible for bone’s toughness and elasticity whilst the mineral component 

provides it with rigidity and strength (Landis, 1995). Variation in terms of the orientation of the 

collagen fibres as well as the way the crystals of the mineral phase are deposited result in 

variations of properties of bone tissue depending on their location in the body. Water 

constitutes 5% to 10% of the bone tissue weight with a few lipids constituting no more than 

3%. Bone is a viable tissue, and thus has its own blood vessels, and nerves. The mineral 

component of bone, which is also referred to as the inorganic phase, is a form of Calcium 

Phosphate with a similar crystallographic structure to  Hydroxyapatite (HA) 𝐶𝑎10(𝑃𝑂4)6(𝑂𝐻)2, 

(Clarke, 2008).  
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The bone mineral also includes traces of other ions such as Magnesium, Carbonate, Sodium, 

Manganese as well as Fluoride (Fernández et al., 2006). Bone mineral crystals are platelet 

shaped, they range from 4-6 nm in thickness, 30-45 nm in width, with a length of about 100 

nm. The constituents of bone tissue are subject to various factors such as age, health 

conditions and location in the body, these differences give rise to the variations in mechanical 

and structural characteristics, function and behaviour. Bone is classified according to structure 

into two types;  

 Cortical (dense bone) constituting 20% of the skeleton weight 

 Cancellous (trabecular or spongy bone) constituting 80% of the skeleton weight 

 

Cortical bone can be thought of as a denser form of the cancellous bone. By simply 

considering only the difference in their porosity and packing density. Cancellous bone 

however, is known as spongy and trabecular hinting to the very different nature of its structure 

which is more porous than its counterpart. These two forms are distributed throughout the 

skeletal system. With trabecular bone being more abundant in the axial skeleton and cortical 

bone being more abundant in  appendicular skeleton (Plowman, 2013).  

 

1.1.2 Cortical Bone 

Cortical or compact bone, as mentioned is quite dense due to the way the osteon assembles. 

The assembly is of lamellae concentric rings or sheets of densely packed osteon. The osteon 

is basically constructed of a central canal called the harversian canal surrounded by rings or 

curved lamellae of bone matrix. Between those rings there are cavities, these pockets or 

cavities are called lacunae which are in turn connected to one another via tubes or channels 

called the canaliculi. The lacunae house mature bone cells (osteocytes) as they become 

trapped within the lamellae after matrix formation, with their projections occupying the 

canaliculi.  
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The tight packing of the harversian system gives rise to the dense solid appearance of cortical 

bone. The harversian canals house the blood vessels running parallel to the axes of the 

structure. The vessels are connected to more blood vessels at the bone surface via perforating 

canals, thus insuring sufficient delivery of nutrition, hormones, drugs and other blood born 

substances to bone cells. This also insures sufficient waste control, as well as the opportunity 

to bringing progenitor cells that can differentiate into bone cells when needed for remodelling 

and healing purposes (Porter et al., 2009).  

With only 5% of its volume dedicated to pores, cortical bone has an apparent density of 2 

g/mL, with ten times more strength than cancellous bone in compression (Benzel et al., 2012), 

this structure serves its purpose very well as it usually surrounds bone perimeters, it is a strong 

structure with a Young’s modulus of 17-20 GPa longitudinally and 6-13 GPa transversely as 

cortical bone is an anisotropic material (Mow, 1991),(Porter et al., 2009).  

 

1.1.3 Cancellous Bone  

Cancellous bone is as its name suggests spongy. It is less densely packed than its counterpart 

cortical bone. It has a honeycomb appearance due to the high porosity of its matrix. Instead 

of having canals it consists of plates which are called the trabeculae. These are surrounded 

by pores or struts and are arranged along stress lines which gives this type of bone its ability 

to withstand loads, as this arrangement provides it with the maximum strength possible. The 

cavities or pores contain bone marrow. The blood supply is provided via canaliculi, which are 

channels linking those cavities, and thus it is clear that this structure has a better blood supply 

than cortical bone and a larger surface area resulting in faster healing and remodelling rates. 

Cancellous bone behaves in a viscoelastic manner, it is isotropic and is much softer than 

cortical bone. Due to its viscoelasticity, its mechanical behaviour is more rate dependant than 

cortical bone (Clarke, 2008). 
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Cancellous bone, is not as strong with a Young’s modulus ranging from 50-100 MPa subject 

to location, age and a number other factors (Mow, 1991). The variation in structure between 

the two types of bone causes variation in their function and as a result their position, as can 

be seen in Figure 1. (Hage et al., 2012), compact bone is almost always covering the 

cancellous bone structures, as both provide different mechanical roles to the skeletal structure 

and work together for an optimal mechanical function. The variations in structure can also be 

seen in terms of their application as autografts and allografts with autografts being grafts 

harvested from the patient and allografts being grafts harvested from donors  (Clarke, 2008), 

(Mow, 1991).  

The structure of the autografts influences the healing process and the rate of the process, this 

is evident during the revascularisation process, as it takes only a couple of weeks to fully 

complete for cancellous bone, whilst the same process takes up to two months to complete 

for cortical bone (Burchardt, 1983). The two categories also differ in their osteo-conductivity 

due to the same reason.  

Figure 1: Schematic demonstrating the microstructure of cancellous bone and the difference in location and density 

between the cancellous and compact bone tissue  
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The quick vascularisation of the cancellous graft invites progenitor cells that differentiate into 

osteogenic cells, this is followed by a gradual absorbance of the necrotic graft and complete 

regrowth of new bone tissue replacing the graft. However, for cortical bone the process is 

different as its structure is not as permeable to vascularisation as is cancellous bone. For 

cortical bone the absorption starts at the peripheries this is than followed by a gradual invasion 

of vessels through the canals, however, once the entire periphery is covered with vessels the 

inner parts of the cortical graft will become vascularised at a faster rate. This means that during 

the process of bone repair or healing whilst osteoblasts (bone forming cells) initiate the bone 

remodelling procedure with cancellous bone grafts, it is actually osteoclasts (Bone absorbing 

cells) that initiate the remodelling with cortical bone.  

This is evident through the mechanical changes that occur during the procedure, as they are 

correlated with the method of remodelling/healing process. As discussed, due to the fact that 

cancellous bone grafts are repaired via creating bone on their surfaces followed by absorption 

the process strengthens the graft initially which is the opposite of the mechanical change in 

cortical grafts as they weaken initially due to the osteoclasts creating space prior to laying 

down the newly formed bone. These are observations that were evident through studies 

conducted on dog and human bone (Hing, 2004), (Burchardt, 1983).  

This is an important factor to keep in mind when creating or designing a bone graft substitute 

as it needs to not only mechanically match the type of bone it is replacing, it also needs to 

lend its self to the mechanisms of bone repair and remodelling that are appropriate for the site 

in which it will be employed. This is a strong point in favour of Hydroxyapatite based ceramics 

or other synthetic materials such as bio-glass bone graft substitutes, as these materials  can 

be manufactured via a variety of methods to control their porosity, thus the synthesised graft 

can be application specific (Hing, 2004).  
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1.1.4 Bone Biology 

  

Understanding the structure of bone is not enough to fathom its function and is insufficient to 

attempt to heal or repair it. To understand bone fully it should be studied from a structural, 

biological and physiological as well as from a chemical perspective. In the previous sections 

the process of bone repair, remodelling and bone cells were touched upon. In this section 

these processes and entities will be discussed thoroughly as understanding them is essential 

in designing and applying bone graft substitutes.  

1.1.5 Origins of Bone Cells  

Osteogenic or bone forming cells are all derived from mesenchymal progenitor cells, also 

called mesenchymal stem cells (MSCs) they are multipotent and can differentiate into cell 

lines with mono-potential capacities such as osteogenic (bone) adipocytes (fat cells), 

myoblasts (muscle cells), and chondrocytes (cartilage cells). The mesenchymal cells are 

available in the bone marrow and can also be found near bone surfaces such as the 

periosteum and the endosteum. The differentiation takes place as a response to biochemical 

and biomechanical stimuli. Biochemical factors may include organic and non-organic 

substances such as glucocorticoids, transforming growth factor TGF-β, Runx2 (A transcription 

factor) (Agamemnon et al.,1988), insulin derived growth factors IGFs, Bone morphogen 

proteins BMPs and 𝐶𝑎2+(Aubin et al., 1995), (Papachroni et al., 2009). Biomechanical stimuli 

is subjecting the cells to mechanical strain, a number of studies suggest a link between 

osteogenic differentiation, and up regulation of BMPs gene expressions with mechanical strain 

as well as sinusoidal cyclic strains (Loboa et al., 2006). Other studies have also confirmed the 

relationship demonstrating that small strain levels increased the RUNx expression and 

osteogenic gene markers, they have also demonstrated that high strains produced the 

opposite effect (Claes et al., 2011). These facts and findings are highly relevant to this 

research as the strain fields imposed on PHA granules are investigated (Qi et al., 2008).  
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The introduction of PHA granules has an influence on the differentiation of mesenchymal cells 

and consequently the production of bone is hypothesised to be due to the following factors 

(Barrère et al., 2003). 

1. The PHA granules introduce an appetite layer similar to mineral tissue that is 

recognised by mesenchymal cells. 

2. PHA granules provide a high level of free Ca2+ ions, inducing mesenchymal cell 

differentiation  

3. A large rough surface area that influences the division of mesenchymal cells 

 

1.1.6 Bone Cells 

There are three types of bone cells that exist due to the differentiation of mesenchymal and 

hematopoietic stem cells. They are differentiated to preform specific tasks that insure the 

viability of bone tissue, these tasks are: 

1. Production of proteins  

2. Mineralisation of the collagen matrix  

3. Tissue maintenance 

4. Tissue resorption 

5. Maintain the mineral homeostasis  

 

The cells are classified based on their functions. The bone forming cells are called the 

osteoblasts. Their differentiation from MSCs requires an environment of low mechanical strain 

and a high Oxygen saturation.  Osteoblasts are simply the osteoid forming cells. They make 

bone via secretion, deposition and mineralizing processes (Florencio-Silva  et al., 2015). They 

can divide through mitosis to increase their number. Once activated osteoblasts perform many 

tasks in the bone tissue, these include synthesising and secreting the osteoid non-mineralised 

component of the bone matrix, and involvement in the calcification of osteoid.  
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Proliferation and differentiation of osteoblasts, are governed by certain signalling pathways 

that involve various factors, such as the transcription factor and core binding factor 𝛼1 (Cbfa1). 

The stromal cells derived from bone marrows have been the focus of research in the field of 

bone tissue regeneration, and evidence confirms strongly that combining these cells with 

porous ceramics can yield bone growth ectopically (Friedenstein , 1971), as well as in rodent 

bone defects (Anselme, 2000), (Marupanthorn et al., 2017). 

Studies have confirmed that osteoblasts are quite responsive to mechanical stimulus, 

depending on both the type and the duration as well as rate and magnitude of the stimulus 

(Papachroni et al., 2009). Showing that complete lack of mechanical stimulation results in their 

apoptosis (Basdra et al.,1995), (Augat et al., 2005), leading to bone loss whilst modest 

exercise plays a major role in increasing the bone density, (Rittweger et al., 2005). These 

findings and others, give a pressing need to investigate the mechanical environment of bone 

graft substitutes and may result in a further understanding of the effect their structures may 

have on the local cells.  

When osteoblasts are encased by osteoid they differentiate and give rise to another type of 

bone cells called the Osteocytes, these are the most abundant of all bone cells. Osteocytes 

play a major role in communication, they can be thought of as the telecommunication network 

of bone tissue, as they communicate with each other as well as other cells such as the 

osteoblasts and the surface lining cells via their cytoplasmic processes also known as 

dendrites (Franz-Odendaal et al ., 2006). These processes communicate via gap junctions, 

and through them small molecules known as signalling molecules can travel.  

The processes extend all the way to the tissues vascular supply and thus can play a major 

role in sensing and controlling hormonal or ionic level fluctuations. Within the narrow space 

that separates the osteocytes from the bone matrix resides a paracellular fluid. It is believed 

that through its movements osteocytes can sense mechanical stimulus as they are otherwise 

isolated.  
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It is also believed that the fluid’s movement is subject to the architecture as well as the 

composition of the matrix, thus can change with changes to the matrix’s composition and the 

location of dwelling of the osteocytes (Schaffler et al., 2014). Osteocytes tasks include and 

are not restricted to, sensing and responding to skeletal environment changes through 

signalling to neighbouring bone cells and progenitor cells to kick-start remodelling processes 

(Verborgt et al., 2002).  

They are active participants in the mineral homoeostasis particularly of calcium and phosphate 

(Fukumoto and Martin, 2009) as well as bone mass. To a degree, they are also able to 

manipulate the mineral levels in their surroundings through absorbing and secreting minerals 

through which they can directly influence the metabolic functions of the surrounding as well 

as the mechanical properties due to mineral changes. Their ability to change their shape can 

also influence the mechanical loading of the surroundings as they can directly influence the 

fluid flow (Gasser and Kneissel, 2017). Even during their apoptosis, which can be triggered by 

micro damage to the surrounding tissue, they are able to send stress signals initiating 

remodelling processes to replace them. Osteocytes, being the most long lived of bone cells 

and being so versatile in their abilities are very essential to bone health and mechano-

transduction, thus, after their death an immediate response by osteoclasts takes place in order 

to remove them and start the remodelling processes of the damaged tissue (Verborgt et al., 

2002).  

Osteoclasts, the third type of bone cells, unlike osteocytes and osteoblasts are of a 

hematopoietic lineage. They are large and multi-nucleated, this is due to the fusion of the 

mono-nucleated (monocytes) precursor cells recruited by osteocytes and osteoblasts through 

secreting the necessary cytokines such as RANK. Osteoclast’s exclusive job is the resorption 

of bone tissue (Ross, 2009). Osteoclasts achieve this by dissolving the bone mineral to 

decalcify bone tissue.  
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This is followed by enzyme degradation of the exposed collagen components of the matrix. In 

order to do this, osteoclasts have to isolate the microenvironment from the extra cellular fluid, 

where they attach themselves to the tissue via the mediation of specialised transmembrane 

proteins, thus sealing it completely before the action of degradation takes place (Ross, 2005).  

Osteoclasts live to do their job, following bone resorption they go into apoptosis. This is a 

result of a number of triggers some of which are not fully understood. It is however believed 

that their detachment from the site, and the change in Calcium concentration in the extra 

cellular matrix are amongst the contributors of their apoptosis (Ross, 2009). Understanding 

these bone cells and how they function is essential to utilising the mechanisms used for natural 

bone remodelling process to facilitate the survival and success of the bone graft substitutes. 

for instance the Introduction of Hydroxyapatite has been linked to the initiation of a similar 

reaction to the one that kick-starts the natural bone healing processes (Holmes, 1979).  

The signalling process that starts the cascade of bone healing and bone re-modelling resulting 

in reabsorption of the graft and the formation of new bone tissue starts from the moment any 

BGS is introduced. Through first interaction with the BGS’s surface where proteins and 

protein–ion complexes such as growth factors can adhere to the surface of the graft and 

stimulate or supress through factor specific receptors on cell membranes and through the 

adsorption of cell adhesion molecules, a specific group of protein, enabling cell surface 

attachment by binding specialised transmembrane cell receptors such as integrins. The 

intracellular components of the receptors may then have interactions with the cytoskeleton, 

through which cell to surface adhesions enables signal transmittance to promote or supress 

cell responses such as proliferation or differentiation. The chemistry of the BGS can also 

directly stimulate the system with release of soluble ionic species that can be detected by 

cells’ ion channels, inducing specific responses and by influencing the PH level. (Hing, 2005), 

(Hench, 1991). 
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1.1.7 Bone Healing and Remodelling  

Bone cells are directly involved in bone modelling and remodelling under normal bone 

physiological conditions as well as after the introduction of the BGSs. (Papachroni et al., 

2009). In this section the process of bone modelling and remodelling will be discussed as the 

ideal response that should result from the application of BGSs. Thus the knowledge of the 

factors that control the responses, in particular the role of mechanical stimuli, are key.  To 

generate bone, there are only two physiological methods by which this can be achieved, these 

are;  

1. Osteogenic bone modelling 

2. Remodelling 

The first one is mainly employed for generating the initial bone tissue. It is a process where 

the osteoblasts and osteoclasts act independently from one another, through this process the 

bone tissue can be formed with the aid of a cartilage template or an existing bone surface, 

thus no resorption via osteoclasts will be necessary, this type of modelling is known as 

formation modelling.  Remodelling however, is quite a unique process, in which both the 

osteoblasts and osteoclasts work together within the same vicinity. Thus, combining bone 

resorption and bone formation. The osteoclasts start degrading the matrix and osteoblasts 

than follow this action by creating new osteoid tissue (Papachroni et al., 2009),(Gasser and 

Kneissel, 2017). Bone remodelling can be subdivided into two categories: 

 Non-targeted remodelling  

The non-targeted remodelling is believed to be a natural process that occurs due to the normal 

physiological homeostasis role of bone tissue.   

 Targeted remodelling  

The targeted remodelling starts as a response to a type of signal transmitted form the site to 

be remodelled.  
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This signal can be a stress signal caused by the apoptosis of osteocytes, a local micro-

damage situation, a number of bio-chemical changes to the environment  and of the most 

interest to this research is the changes of the mechanical stimuli (Parfitt, 2002), (Sikavitsas et 

al., 2001).  

Targeted remodelling processes present an opportunity for manipulation in porous synthetic 

BGSs, potentially via a number of routes. These can include, chemical manipulation and 

structural manipulation such as alterations to the macro and micro structure of the graft, the 

latter of which will affect the graft morphology and its mechanical behaviour, the latter being 

the focus of this research.  

 

1.1.8 The Processes of Bone Healing:  

What stands out in the bone’s capacity in repairing its self is the fact that, the healing process 

which is in many ways similar to other biological tissues, does not result in the formation of 

scar tissue. In fact, it produces new healthy and strong bone tissue. Healing in bone after 

injury is similar to the initial embryonic bone formation process. When bone is injured, usually 

as a result of a mechanical overload, its healing is carried out following a sequence of events 

(Mckibbin, 1978).  

 Inflammation 

 Callus formation 

 Re-modelling  

 maturation 

The process can be briefly explained as a cascade of events that begin with the bleeding from 

the injured tissue, followed by the recruitment of leucocytes to clear the vicinity of fracture from 

any debris and dead tissue.  
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This is then followed by the formation of a hematoma (clot) which when fibro vascular tissue 

invades the scene which constitutes the soft callus (granulation tissue), attempting to bridge 

the ends of bone which in fact are suspected to have a role in the process of cell recruitment 

of progenitor cells and their proliferation, however unconfirmed, and providing at the very least 

a passive linking bridge to the viable distant tissue from which certain elements may be 

recruited. Soft callus is replaced with woven bone which is in turn remodelled and replaced 

with more organised lamellar bone (Kumar and Narayan, 2014), (Mckibbin, 1978). 

This structure is initially not as strong as mature bone with a young’s modulus of approximately 

6.65 ± 1.02 GPa (Padmanabhan et al., 2013). However, it provides the fracture fixation 

necessary to start the remodelling process achieving the necessary bone union for the 

following process. The remodelling then follows insuring the replacement of the fibrous bone 

structure with a much stronger organised and mature lamellar bone as the final step (Mohindra 

and Jain, 2017).  

1.2 Bone Remodelling: A Consequence of Mechanical Signalling: 

It is a fact that that bone without mechanical stimulation can atrophy and become weaker. This 

phenomenon is known as Disuse. Bone loss was observed in astronauts spending long 

periods of time in a low gravity environment. Having lost the effect of gravitational forces, their 

bones appeared to have  lower mass due to the loss of gravitational forces and regular loading 

(Nagaraja and Jo, 2014).  

The significance of mechanical stimulation to bone remodelling was first investigated by the 

pioneer of the field Julius Wolff in his 1892 publication; The Law of bone remodelling, (Brand 

and Claes, 1988). In it he established a law that governs the relationship between mechanical 

stimuli and bone remodelling. The law suggests mathematical equations governing both the 

macro and micro architectural changes as a direct response to mechanical demands therefore 

indicating the significance of loading as a factor responsible for the initiation of bone 

remodelling (Chen et al., 2010), (Brand and Claes, 1988), (Turner, 1998).  
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Various studies have indeed confirmed the strong relationship between the promotion of bone 

formation and exercise (Judex, Gross and Zernicke, 1997), (Vuori, 1995), (Snow-Harter et al., 

2009).  

The cellular response to mechanical stimulation as a process is known as mechano-

transduction (Liedert et al., 2006). Information on the intrinsic mechanisms of this process 

remains insufficient. However, several studies have shed the light on a few observations that 

have clarified certain aspects of the mechanical induced cellular responses particularly in 

relevance to cellular reaction. Generally speaking, bone mass is proportional to the 

mechanical activity of the tissue (Padmanabhan et al., 2013). The density of bone was found 

to be directly influenced by its loading history, with the magnitude of loading having a greater 

effect than the frequency at which it is applied (Whalen et al., 1988).  

1.2.1 The Physiological Implications of Mechanical Loading 

Mechanical stimulation can influence bone regeneration in cooperation with hormones such 

as oestrogen and parathyroid hormones with a local regulation carried out by cytokines and 

specific growth factors (Mikuni-Takagaki, 1999). The mechano-transduction, by which the 

physical stimulus is converted to a signal transmitted to cells makes use of what is known as 

transduction pathways (Liedert et al., 2006). In addition to osteocytes both osteoblasts and 

osteoclasts are considered as mechanically sensitive cells (Frost, 1987). Mechano-

transduction, has been linked to the activation of osteoblasts, changing the rates of the 

proliferation and matrix generation. It is believed that integrins particularly the ones of the β1 

subunits, Cadherins, and Calcium ion channels are involved in the process of converting the 

mechanical signals to the cellular level as active constituents of the transduction pathways 

(Mikuni-Takagaki, 1999). In theory all cells have the ability to sense mechanical stimulus 

(Weinbaum et al., 1994). In bone tissue, the sensitivity is not restricted to osteocytes and 

osteoblasts, osteo-progenitor cells (Chen et al., 2010) are also subject to mechanical 

influence. Osteocytes are considered as the primary sensor cells, while the osteoblasts are 
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considered to be secondary sensors, known as  the effector cells, as they respond to these 

signals (Turner and Pavalko, 1998).  

On a cellular level, cell membranes physically deform in response to applied strain. The 

changes to the shape of the cells, in turn give rise to changes in the fluid adjacent to them; 

resulting in changes in the hydrostatic pressure which in turn induces fluid shear stresses that 

can also be sensed by the cells. The shear stresses are a result of the flow created by the 

movement of the interstitial fluid (Pavalko et al., 2003),(Duncan and Turner, 1995), as this 

movement creates an effective electrical potential (Chakkalakal, 1989).  

This electrical potential created, is essential for the activation of the voltage sensitive Calcium 

ion channels, their activation promotes the ions entry into the cells, their entry is a direct factor 

to the release of the vesicular ATP energy molecule (Damian et al., 2005). Stresses have 

been known to cause a change in the electromechanical environment of bone cells. Areas 

experiencing compression are electronegative whilst areas experiencing tension are 

electropositive. Although electrical charge induces bone remodelling on its own merit, stresses 

induced changes to the electrical environment and can thus initiate remodelling from a 

secondary route of its own (Alvin et al., 1956). Other ion channels such as the cation channels 

are also activated due to stresses particularly in osteoblasts. For example, Calcium ion 

channels have been shown in an in vitro study, to be the most probable route of transduction 

when the strain belongs to a high spectrum (Li et al., 2002). however, unlike their counterparts 

these channels are activated due to the stretching of the cell  membranes (Pavalko et al., 

2003). Gap junctions act as messengers between cells, linking the membranes of adjacent 

cells together through a membranous protein called connexion. These junctions are the 

primary messengers in the transduction pathways. There is evidence to suggest that an 

increase in  the expression of connexion, as a direct result of mechanical strain, is due to the 

formation of more gap junctions to facilitate rapid transmission of signals (Higgs and Peterson, 

2005). These signals are transmitted through the release of certain ions such as Na+, K+,Ca+2 

and Mg+2, as well as similarly small signalling molecules (Doty, 1981).  
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When the cells experience a load, they respond by releasing signalling molecules such as 

Prostaglandins and Nitric Oxide. Prostaglandins are associated with gap junctions in that they 

induce an increase in the number of the active gap junctions available (Higgs and Peterson, 

2005), (Ajubi et al., 1999).  

Nitrogen oxide, which is produced during higher interstitial fluid flow rates, is believed to be a 

preventative of osteocyte apoptosis (Rossig et al., 2000). These are considered to be the early 

responses to mechanical strain. These molecular level responses are a clear demonstration 

of Wolff’s law of bone adaptation to mechanical stresses.  

1.3 Bone Grafts: An Introduction  

Bone grafting is one of the most common transplant procedures taking place in surgical 

settings worldwide, second only to blood transfusion (Boyce et al., 1999). Bone grafts are 

commonly used to amend defects in bone tissue that occur due to disease, trauma or post-

traumatic union processes as well as inherent defects (Prakasam et al., 2015). Bone grafting 

can be considered as the most reliable method that harnesses the natural bone tissue’s ability 

to regenerate. Basic bone grafting procedures were pioneered in the 18th century (Meeder and 

Eggers, 1980), and have advanced ever since. The procedure of bone grafting has infiltrated 

different surgical and dental applications. There are a number of methods used to obtain bone 

grafts. The most common one and what is to date still considered to be the golden standard 

by surgeons; is the autograft, where bone grafts are harvested from the patient’s own skeletal 

tissue. Autografts, are considered to be most osteo-conductive and osteo-inductive as well as 

osteogenic (Prakasam et al., 2015). However, there are issues associated with the necessity 

to harvest from patients, thus prompting researchers to find a better or at least a similar 

alternative that is less invasive and eliminate the issues and problems related to using 

autografts. These issues may include: 

1- The limitation in its osteogenicity as a number of viable cells die during transplant, 

due to the variation in the bone biology of the patient.  
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2- The dual surgical sites and the infection/complication issues associated with them. 

3- Increased chances of blood loss, which is a major limitation in terms of surgery. 

4- Chronic pain in the donor site. 

 

The second most common form of bone grafts, is the Allograft. It has been reported, that 

these grafts constitute one third of the bone grafting procedures taking place. Allografts 

are grafts harvested from donors of the same species as an alternative for the self-donated 

autografts. They have acceptable osteo-conductivity. However, due to treatments 

undergone after harvesting to remove any immunogenic or infections elements osteo-

conductive potential is lost. Another issue that may arise despite the extensive treatments 

that include radiation as well as chemical treatments and freeze drying to process the 

grafts after harvest, is the risk of transferring disease-causing viruses and pathogens to 

patients (Sandhu et al.,1999). Other risks and shortfalls can also include;  

1- The possibility of an immune response (transplant rejection). 

2- Allografts are weaker due to the post harvesting treatments. 

3- Rehydration processes prior to implantation can induce the formation of both macro 

and microscopic cracks decreasing thus the graft’s strength.  

 

Another bio-graft is harvested from different species, known as the Xenograft, such as grafts 

from porcine or bovine bone tissue. These types of grafts also undergo similar treatment 

processes to allografts such as the radiation and the freezing, with the addition of 

demineralisation or deprotonation steps.  They are thus the least preferred of the previously 

mentioned bio grafts, this is due to limitations in their availability, mechanical properties as 

well as the increased risk of infections and rejections associated with using them (Laurencin, 

2008). 
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1.3.1 Synthetic Bone Graft Substitutes: 

In order to overcome the mentioned limitations, and eliminate the limitations associated with 

availability, and the experienced complications associated with the traditional methods of bone 

grafting. Alternatives to bone grafts, best known as “bone graft substitutes”, have been 

introduced and investigated thoroughly in the recent decades. Bone graft substitutes can be 

categorised as one of the following.  

 Organic or Biological 

 Synthetic or Inorganic (Schlickewei and Schlickewei, 2007) 

 

Researchers have established that for a synthetic biomaterial to be considered as a bone graft 

substitute it needs to meet most if not all the following properties: 

1- Osteoconductive; can be simply defined as the material’s ability guide bone growth 

upon its surface and structure.  

2- Osteoinductive; Osteoinduction is the process by which organic and nonorganic factors 

are released from the graft stimulating the differentiation of progenitor cells into 

specialised bone cells (Oppenheimer at al., 2008).  

3- Resorbable; degrades in the host vicinity and replaced by new bone tissue. This is due 

to the chemical action of the physiological environment on the material. 

4- Remodellable (Hing et al., 1998). 

5- No supply issues. 

6- Sterilisable.  

7- Mechanically suitable for the application i.e. prevents shielding. (Pryor et al., 2009). 

 

Logically, a synthetic substitute with the same osteo-inductivity as autografts is more 

preferable due to its availability, the elimination of harvesting and multiple site surgeries. In 

addition, there is evidence indicating that grafting bone using synthetic bone graft substitutes 

reduces blood loss in comparison to their bio counterparts, as well as less pain associated 

with graft donor sites such as the case for autografts. 
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It has also been reported that synthetic bone graft substitutes require less operational time 

and consequently a reduced risk of infections (Campana et al., 2014). For the past three 

decades, the focus of scientists turned towards a variety of synthetic bone graft materials. The 

main materials investigated as synthetic bone graft substitutes are ceramics and bioactive 

glasses. Going back into the development of bio-ceramics as bone graft substitutes takes us 

to the early 1920’s when scientist’s realised the similar x-ray diffraction patterns between the 

actual bone minerals and the calcium phosphate ceramic known clinically as Hydroxyapatite 

(de Jong, 1926). Research has gone to show a further similarity between the two in their 

crystallographic structure (Posner, 1969).  

Bio-glass, a specific formulation of bioactive glass developed by Larry Hench, and was shown 

to develop a hydroxyl-carbonate layer which is considered to be a bioactive layer that can 

provide bonding with the host’s own bone tissue. This was believed to be due to the similarities 

between the carbonate layer and the bone’s mineral phase both chemically as well as 

structurally (Pantano et al., 1974), (Ogino and Hench, 1980).  

Bio-ceramics used as bone graft substitutes were later categorised as either bio-inert or 

bioactive. The bio-inert materials, elicit the least response by the host tissue (Best et al., 2008). 

Bioactive materials however, elicit a desired response within the host tissue, such as bonding 

and new bone tissue formation. In the 1990’s a differentiating bioactivity index was introduced 

by Hench, who later classified bioactive materials into classes. Class A bioactive material; 

which allows bone tissue to grow along the interfaces between bone graft and host tissue as 

well as recruiting cells that differentiate into bone producing cells and consequently new bone 

tissue growth, thus being an osteo-integrative material also known as osteo-inductive, as well 

as having the basic ability to support bone growth upon the graft’s surface which is known as 

being osteo-conductive. Class B, differs in that it can only be osteo-conductive and does not 

have the bioactive properties associated with class A materials (Cypher and Grossman, 1996), 

(Hench and West, 1996), (Wilson and Low, 1992).  
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1.3.2 Bio-Active Bone Graft Substitutes: 

As discussed, the preferred bio-ceramics should ideally include class A bioactive property. 

Most importantly, they should allow sufficient penetration and integration of newly formed 

tissue, marrow and the necessary blood vessels. In addition to the aforementioned properties. 

Synthetic bone grafts should ideally demonstrate a certain level of compatibility with the host 

tissue mechanical properties, having a similar Young’s modulus to the bone tissue in order to 

avoid stress shielding and/or failure of the graft if the material is too weak. Grafts also need to 

be tough enough to withstand initial loading, before new bone tissue reinforces the graft site 

and the implantation process. From the family of synthetic biomaterials, bio-ceramics and 

particularly those composed of Calcium, Silicon or Phosphate seem to fit the requirements 

both the biological and the mechanical to a good degree (Bohner, 2000), (Vikas et al.,1999).  

The most popular of these bio-ceramics are:  

1. Bioactive glasses and glass ceramics  

2. Calcium Sulphate 

3. Beta Tri-Calcium Phosphate 

4. Hydroxyapatite 

 

Bioactive glass is a product of  𝑆𝑖𝑂2,𝐶𝑎𝑂 and 𝑃2𝑂5. Bioactive glass was the first of its kind to 

be employed as a synthetic graft substitute by Hench, a non-porous hard material that bonds 

well to bone. Bioglass is known to be both osteoconductive as well as osteogenic depending 

on the ratios of its composition mostly dependant on the original formula introduced first by 

Hench in the 1970’s (Hench et al, 1971), (Wilson et al.,1981), (Hench and Paschall, 1973). In 

the early 90’s a Glass ceramic was developed by Kokubo (Kokubo, 1991), by heating a 

compact of powdered glass having a specific composition, which yielded an 

Oxyfluroapatite (𝐶𝑎10(𝑃𝑂4)6 (𝑂, 𝐹2 ).  
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Glass ceramics have superior mechanical properties to Bioactive glass with some of them 

demonstrating mechanical properties approaching the mechanical properties of natural bone 

tissue (Padilla et al., 2005), (Gil-Albarova et al., 2005), (Salinas and Vallet-Regí, 2007).  

Glass ionomers (glass polyalkenoate cement) a cement originally developed for dental 

applications, when set it develops into a porous structure. It has a similar young’s modulus to 

natural cortical bone tissue, and this overcomes the disadvantage of not being absorbed by 

the host or replaced by new tissue, as the similar elastic moduli reduces the risk of stress 

shielding (Williams and Billington, 1989), (Jonck et al., 1989). They are advantageous in that 

they can be loaded with desired particles for slow and controlled release, such as proteins and 

antibiotics, using Glass ionomers insures a more efficient release than formerly used cements 

such as PMMA. The glass ionomers however have to be cemented in place during surgery 

and has had successful results in maxillofacial and ENT applications (Wittwer et al., 1994), 

(Moore et al., 2001).  

Alumina,Al2O3 can be used on its own or with other bone graft substitutes. Alumina is bioinert 

and does not form any bond with host tissue. Thus, they are not as popular unless porosity is 

introduced, allowing a level of osteo-integration (Karlsson et al., 2003). They are 

advantageous in terms of strength, as they are quite strong and rigid and thus suitable for 

applications that require resistance particularly to flexural fractures (Williams, 1990).  

Calcium sulphate, has the formula CaSO4.
1

2
 H2 O and is also known as plaster of Paris and 

used for fracture stabilisation for centuries. The interest in it as a bone graft substitute stems 

from its biocompatibility and its ability to support bone formation, as well as being a resorbable 

and osteo-conductive material (Ricci, 2003). Most importantly, calcium sulphate as a bone 

graft substitute is a good choice when cost and availability of other bone grafts are limited 

particularly in underdeveloped countries (Kumar et al., 2013).  It has shown good results in 

filling defects with 94% bone growth in defected areas alongside 100% absorption of the 

calcium sulphate pallets implanted (Kelly et al., 2001).  
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Calcium sulphate however, is not as similar to the mineral phase of bone as for example, 

calcium phosphate, It is also quite weak in aqueous environments, as its dissolution rate in-

vivo is quite fast and thus may not provide sufficient material stability for osteoblast adhesion 

(Glazer et al., 2001),) (Liljensten et al., 2003), (Hing et al., 2007).  

When crystallising the structure formed can have defects, and the crystals formed after mixing 

with water produces randomly sized crystals that cannot be controlled, thus resulting in a 

variation in mechanical properties, solubility and consequently porosity. To produce uniformly 

sized crystals, the process of manufacturing has to be extremely controlled on a micro-scale 

level (Vikas et al.,1999).  

1.3.3 Calcium Phosphate Ceramics 

The mineral constituent of bone tissue is a ceramic calcium phosphate similar to 

Hydroxyapatite in its crystallographic structure yet not completely analogous to it. It is deficient 

in Calcium, Phosphate and the Hydroxyl group with a Calcium to Phosphorous ration of 1.37-

1.87. Which is different than the ratio of the Calcium to Phosphorous in the synthetic 

stoichiometric hydroxyapatite which is 1.67 (Posner, 1969). It is also characterised by a having 

a significant level of additional trace elements due substitutions with a range of cations and 

anions (Hughes, 1996). The calcium phosphate family is attractive as bone graft substitute; 

they vary in properties as a result of the different proportions of Calcium ions to Phosphorus 

ions. They also readily undergo ionic substitution, this being the mechanism for the 

incorporation of trace elements in bone mineral (Vallet-Regí, 2010). Together, the variation of 

the Ca:P ratio and the incorporation of other ions are responsible for the differences in both 

the solubility as well as the thermal stability of various Calcium Phosphates both stoichiometric 

and substituted (Maeyer and Verbeeck, 1993).  
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1.3.4 Hydroxyapatite a Member of the Calcium Phosphate Ceramics  

Hydroxyapatite is the bio-ceramic with closest crystallographic resemblance to bone tissue’s 

own mineral content. It has the formula  𝐶𝑎10 (𝑃𝑂4)6(𝑂𝐻)2 . The composition of 

Hydroxyapatite has a percentage weight composition of 𝐶𝑎 at 39.68%, and Phosphorus at 

18.45% with a molar ratio of Calcium to Phosphorus of 1.67 (Suchanek and Yoshimura, 1998).  

Hydroxyapatite, is an interesting bio-ceramic for grafting applications, due to the 

biocompatibility with both the bone tissue of the host as well as the surrounding soft tissue 

(Hench, 1991).  

Hydroxyapatite lends itself to the introduction of various levels of porosities and ionic 

substitutions, which in turn allows for a large variation in the HA grafts, lending themselves to 

a variety of applications as bone graft substitutes. Hydroxyapatite thus is a sophisticated and 

complicated structure particularly as a porous ceramic (Suchanek and Yoshimura, 1998). The  

major difference between stoichiometric Hydroxyapatite and the mineral phase of bone,  is the 

lack or reduced amount of hydroxyl groups in the latter, as well as the content of carbonate 

(Glimcher, 2010). 

Research demonstrates a strong link between the dissolution of certain ions such as Silicate 

and the bioactivity of this synthetic graft. The released ions are believed to have a direct 

influence on the cells in the vicinity as well as the recruited ones, as the ions diffuse through 

the blood and travel to further cells, this process is believed to be achieved via the up 

regulation of gene expressions of the cells thus consequently initiating their differentiation into 

bone producing cells (Xynos et al., 2001). 

The most relevant substitution to this study is the silicon substitution, as it has been proven to 

enhance the graft’s (Gibson et al.,1999) Silicon has been linked to the healthy metabolism of 

connective tissue. A study conducted on chicks demonstrated that removing Silicon from their 

diet resulted in lower levels of growth in comparison to Silicon fed chicks, leading to a 

hindrance to their skeletal tissue development (Carlisle, 1980), (Carlisle, 1972).   
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Another study conducted on silicon substituted hydroxyapatite coatings demonstrated an 

increase in the attachment, the proliferation and differentiation of osteoblasts (Thian et al., 

2007). This is due to the release of Silicon ions during in-vivo applications, where they tend to 

bind to the Oxygen ions in the vicinity. This partnership of ions has been linked to an enhanced 

capability of proteins binding to graft surfaces (Schwarz and Milne, 1972).  Silicate ions are 

usually added as a trace element substituting for the Phosphate ions, thus changing the 

formula from Ca10(PO4)6(OH)2 to Ca10(PO4)6−x(SiO4)x(OH)2−X, with X being the number of 

moles, as a result changing the Ca:P ration to Ca: P + Si with the value remaining at the 

stoichiometric 1.67 (Harden et al., 2013).  

1.3.5 Mechanisms of Mechano-Transduction and Relevance to Bone 

Graft Substitutes 

In this section the dynamics of mechanical signalling and the relationship between BGS 

architecture and the cellular responses and how they collectively affect the translation of these 

signals to influence bone tissue remodelling, will be discussed. It is however important to note, 

that available information on Mechano-transduction is not yet sufficient to fully explain in detail 

all the aspects of the process.  This section will demonstrate based on the available literature 

the link between the architecture, in terms of the macro and micro structures of PHA bone 

graft substitutes and the mechanical signalling pathways discussing the possible factors that 

can elicit mechanically induced, desirable cellular responses and consequent bone 

generation.  

In the discussion of bone remodelling sections 1.1.7 and 1.2.1 fluid flow was mentioned. This 

is the fluid within the lacunae of bone, inducing hydrostatic pressure on bone cells. The 

hydrostatic pressure changes due to forces applied to bone when the tissue experiences 

physiological loading such as, during walking or running which physically deform the bone 

matrix in what is known as strain. These deformations are translated into slight volume 

changes within these pores, as some volumes increase and some decrease creating a 

pressure gradient of fluid (Sikavitsas et al., 2001).  The change in hydrostatic pressure drives 
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the interstitial fluid to flow causing in turn shear stresses acting on the osteocyte cell 

membranes and on their extensions through the canalicular spaces (Takai et al., 2004), (Chao 

et al., 2012). These pressure changes are thus important to highlight, in order to understand 

how loading an implanted porous BGS can lead to stimulating bone cells and consequently 

the bone remodelling of the BGS.  

When osteocytes sense a mechanical stimulus, they release the signalling molecules such 

as; BMPs (bone morphogenic proteins), IGFs (Insulin like growth factors), TGF-β 

(transforming growth factors) and FGFs (fibroblast growth factors) as well as prostaglandins 

and nitric oxide. These molecules can be transferred through gap junctions or paracrine 

signalling pathways depending on the molecular size, to neighbouring osteoblast cells (Doty, 

1981). The ability to provoke bone growth under controlled mechanical stimulation is known 

as Distraction osteogenesis (Qi et al., 2008).  

Nitric Oxide is one of those molecules that has a direct effect on osteoblasts, with high 

concentrations associated with their apoptosis, and low concentrations associated with an 

increased activity of their proliferation and differentiation. Nitric Oxide has a short life in the 

blood as it binds to haemoglobin thus can only effect osteoblasts at a closer range than other 

hormone like circulating signalling molecules, (Mancini et al., 2000), (Hakim et al., 1996). The 

induced change to the membrane of osteocytes causes conformational changes to membrane 

proteins, such as integrin’s and stretch activated channels. Some of the membrane proteins 

are linked to protein complexes known as mechanosomes. The mechanosomes have the 

ability to communicate with nuclei causing geometrical changes to specific regions of the DNA 

known as mechano-sensitive genes, inducing alterations to the genetic activity of cells. 

(Rawlinson et al.,1996), (Schmid et al., 2014). These alterations are in turn responsible for the 

proliferation and differentiation of osteoblasts (Pavalko et al., 2003).  

Osteoblasts themselves can also sense mechanical stimulus as mentioned previously. It has 

been reported that osteoblasts in culture have shown sensitivity to loads of a low magnitude, 

provided the load is of high frequency (Ward et al., 2004). Cyclic loading was linked to the 
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induction of osteoblast differentiation as a direct result of osteogenic gene enhancement 

(Wang et al., 2012), (Wang et al., 2010). 

Further in-vitro investigations have demonstrated a link between mechanical strain (stretching) 

of osteoblasts and an increase in growth factor expressions on these cells (Cillo et al., 2000). 

In terms of osteoclasts, studies have found that medium mechanical stresses have a 

suppressing effect upon osteoclast differentiation. The opposite is true in the absence of 

mechanical stimulus, with the lack of stresses linked to an increase in bone resorption. The 

case is different for extremely high stresses which are linked to osteoclast differentiation due 

to the micro-damage they create (Medsker et al., 2016). Some researchers have postulated 

that fluid flow may not have a direct effect on osteoclasts but that, it creates streaming 

electrical potentials. These in turn have been shown to effect osteoclasts and osteoblasts, with 

the first being attracted to the positive field and the latter to the negative one (Hillsley and 

Frangos, 1994). Other studies support the relationship between mechanical stimulation and 

osteoblast activities. Showing an enhancement of the rate of differentiation and proliferation 

as well as evidence of an increase in the production of collagen, phosphates,  prostaglandins 

as well as mineralisation (Chambers et al., 1993), (Murray and Rushton, 1990).  

Over expressions of a number of osteoblast genes were also observed due to mechanical 

stimulation. It has also been reported that mechanical stimulation causes an up-regulation of 

the production of growth factors such as the TGF’s, IGF’s and VEGF’s, which are necessary 

for the process of bone modelling, stimulating and altering the growth of cells (Mikuni-

Takagaki, 1999), in addition to their ability to induce the osteogenic differentiation of 

mesenchymal cells (Sumanasinghe et al., 2006).  

Mature osteoblasts and osteocytes can be present or migrate to the vicinity from neighbouring 

bone tissue. Osteoprogenitor cells can be delivered to the site by blood due to injury, as well 

as through recruitment due to the actions of the attached serum proteins (Chai et al., 2011), 

(Kilpadi et al., 2004). There is evidence suggesting that the dendritic processes of osteocytes 
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carry transmembrane protein CD44, which has a receptor for Hydroxyapatite, thus allowing 

the integration of osteocytes along the structure of the graft (Noonan et al., 1997), (Nakamura 

et al., 1995).  

This information provides evidence that both the mechanical properties as well as the 

composition and architecture can send physiochemical cues, that up-regulate the desired 

genetic alteration associated with osteoblast differentiation from progenitor cells. These 

physiochemical cues were found to accelerate the rate of differentiation , osteo-generation 

and integration as well as vascularisation (Mattei et al., 2015).  

 
1.3.6 Influence of Bone Graft Substitute Porosity on Mechanics and 

Cellular Response 

The mechanical properties of PHA granules are dependent on both the structural architecture 

and the porosity of the granules (Peelen and Rejda,1978), evident in the increase in UCS 

,ultimate compressive stress, values from 1 -11 MPa as a response to increasing the total 

porosity from 50-80 %. The modulus is also affected not only by the change in porosity but 

also by the degree of anisotropy of the structure (Hing et al.,1999).  

The architecture of PHA granules can also direct the action and behaviour of cells (Bignon et 

al., 2003) . Bone cells including osteoprogenitor cells (Mauney et al., 2004) can sense the 

mechanical properties of their environment and thus the graft that is introduced to them. Bone 

cells adapt by adjusting their spreading along the surface provided and through changes in 

their morphology. Evidence supports that cells attached to hydroxyapatite surfaces show a 

typical elongation, which is quantified by measuring the change in ratio of the long axis of the 

cell to the short axis (Nakamura et al., 2009), (Mattila and Lappalainen, 2008).  These 

morphological changes act as a cue for the events that lead to cell-graft communication, 

dictating the fate of all associated cells and inevitably the outcome of grafting (Marcellini et al., 

2012).  
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Porosity plays a major role in cell response and bone remodelling. In bone structure, cavities 

such as the canaliculi and lacunae are considered to be stress concentrators. Within a stress 

concentrator region the strain is significantly higher than the macro-strain experienced by the 

bone as a macro structure (Currey, 2003), (Currey, 1962).  

These stress concentrations could potentially weaken a structure. However, bone tissue 

compensates for this through the orientation for those cavities (lacunae) and blood vessels, 

which tends to reduce the stress concentration effect (Currey, 1962).  

PHA given its porous nature will contain stress concentrators (pores). The pores are 

necessary for the material’s function as a bone graft substitute, but inevitably weakens it, 

limiting its loading capacity. However, there is a level of adaptation proportional to time 

duration after implantation that helps compensate for the initial weakness of the structure. A 

study demonstrated that after 24 weeks in vivo, PHA implants of different initial porosities of 

70% and 80% and varied strut porosities (micro porosities); had similar UCSs (ultimate 

compressive strengths) despite of different UCS values between them initially. This indicates 

a level of reinforcement to the grafts as a result of bone growth. The mechanics of the BGS 

as a function of both levels of porosity seem to also influence the equilibrium of bone growth. 

(Bignon et al., 2003), (Boyde et al., 1999), (Hing, 2005) (Hing et al., 2002).  

It is very important to map the strain and the strain energy responses to mechanical stimulus 

amongst PHA granules and the effect of the discontinuities caused by the porosity and the 

strut porosity of their structure. Increasing the micro porosity for instance decreases the strut 

modulus. When the strut modulus falls below a threshold value, this in turn caused a shift in 

the cellular activity equilibrium and causes them to deposit more bone to compensate for the 

modulus change, thus creating a greater more stable tissue apposition (O’Connor et al.,1982).  

Under mechanical stimulus, bone formation is responsive to the pattern of strain the stimulus 

creates. Bone growth seems to follow an engineering algorithm with more growth associated 

with areas of high strains in attempt to adapt to the new mechanical conditions. This was 

evident in a study conducted on rat ulnas subjected to site specific mechanical loading.  
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The study showed that bone growth was directed towards the areas of experiencing higher 

strains. This strain guided bone growth, allowed the rats’ ulnas to withstand 100 time more 

cycles of loading than they can usually cope with (Warden et al., 2005). In a study conducted 

on metaphysical bone models, lower strains were found to give rise to intramembranous bone 

formation while higher strains induced endochondral bone formation and fibrocartilage 

formation (Claes et al., 2011). This research aims to create 3D finite element models of PHA 

bone graft substitute material at different porosity levels. The approach aims to investigate the 

behaviour of the material under physiological strain conditions. Findings may link the observed 

behaviour to possible bone growth patterns.  

1.3.7 Porosity and Strain Co-Dependency    

The idea behind grafting with PHA is to mimic grafting with an autograft or an allograft, where 

the new bone can successfully penetrate the graft and replace most of it through the process 

of remodelling, where the graft is removed by bone resorbing cells (osteoclasts) and 

phagocytic cells whilst being replaced by bone tissue made by the bone forming cells 

(osteoblasts) (Hing, 2005).  

The interest in porous structures stemmed from the early observations of fibrous 

encapsulations of porous implants and tissue penetration (Hulbert et al.,1972), showing a 

complete occupation of their macro-pores by blood vessels, bone tissue and bone marrow 

fully incorporated in a manner similar to the organic bone grafts (Ling et al.,1993). Figure 2 

shows a schematic first presented by Hing (Hing, 2005), demonstrating the principle of 

porosity in ceramic bone graft substitutes, particularly Hydroxyapatite, the level of porosity, 

macro and micro porosities as well as strut porosities and connectivity.  
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The interest in porosity, particularly as the prominent variable for this research is due to the 

effect it has on bone integration, the quality of the bone tissue modelled and the rate of bone’s 

integration into the graft. Studies have reported a clear dependence of remodelling upon the 

porosity parameters of the graft (Jin et al., 2000), (Kaito et al., 2005), (Bignon et al., 2003). 

Those parameters are; porosity volume, pore interconnectivity, macro and micro porosity as 

well as pore geometry. Pores larger than 50 µm are considered as macro. Pores of this size 

are linked to the ease of transportation of ions and cells  (Bignon et al., 2003). Pores of 100 

µm- 130 µm are viewed as a minimum for a satisfactory bone infiltration (Klawitter and Hulbert, 

1971), (Orlovskii et al., 2002). Pores of less than 50 µm within the ceramic struts are 

considered as micro. Micro pores are believed to provide the large surface area necessary for 

chemical surface interactions such as ion exchange, protein adsorption and subsequently cell 

attachment and spreading. With faster opposition rates associated with pores larger than 20 

µm (Hing et al., 2004), (Bignon et al., 2003). Pore interconnectivity or inter granular pores that 

act as channels are believed to influence the vascularisation of the graft, with greater 

penetration associated with interconnection sizes ranging between 100 – 135 µm (Komlev and 

Barinov, 2002), (Jin et al., 2000), (Kaito et al., 2005).  

Figure 2: Schematic demonstrating volume fractions of pores and their types within the structure of hydroxyapatite. 

𝑽𝑴 And 𝑽𝝁 are the macro pore volume fraction and the micropore volume fraction respectively. 𝑽𝒔 And 𝑽𝑯 are the 

strut volume fraction and the hydroxyapatite volume fraction. Adding 𝑽𝑴 and  𝑽𝝁 gives the total porosity of the 

material from which the fraction of strut porosity is given by dividing 𝑽𝝁 by 𝑽𝒔 . 
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Vascularisation is an important factor to the survival of a graft. Interconnectivity along with the 

microarchitecture of the bone graft determine the rate and the level of vascularisation as well 

as complete infiltration of the graft (Oppenheimer et al., 2008). To achieve the best 

performance from a BGS, an optimum combination of porosity levels needs to be 

implemented. However, achieving this optimal combination remains to be a challenge 

(Woodard et al., 2007) (Kalita et al., 2003).  There is a need for a compromise bringing a 

balance between  

I. the mechanical integrity, essential for survival of the graft during implantation and 

throughout the first stages of the remodelling period and a  

II.  sufficient open porous structure and interconnectivity to allow for and sustain bone 

tissue integration (Hing, 2005).  

Macro pores resemble the intra-trabecular spaces of bone tissue, and the micropores of sizes 

≥20 µm, resemble the osteocyte lacunae. An increase in porosity is synonymous to a decrease 

in density associated with a decrease in the compressive strength and young’s modulus of the 

material (Orlovskii et al.,2002) (Innocentini et al., 2010). It is true that provided the appropriate 

method is used, PHA can be synthesised with compressive strength values comparable to 

cancellous bone (Schumacher et al., 2010), (Ramay and Zhang, 2004), however, not as 

comparable in terms of shear and tensile strength (Charrière et al., 2003). Hence the 

application of such grafts are usually done with the aid of fixating devices.  

The relationship between the ultimate compressive stress (𝜎𝑐 ) and the compression modulus 

(𝐸𝑐) with the apparent density of hydroxyapatite (𝜌) can be summed in the following 

relationships (Gibson, 2005), (Hing et al.,1999);  

     𝜎𝑐 ∝ 𝑐𝑎𝜌𝑥     Eq. 1 

    𝐸𝑐 ∝ 𝑐𝑏𝜌
𝑦     Eq. 2 

 

With ca and cb  are known as constants of proportionality with values of ~ 1 and ~0.5 

respectively. The (x) and (y) are foam structure coefficients with a value of 1 for (x) and 2 or 3 
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for (y) for open and closed structures respectively (Gibson, 2005). As mentioned PHA graft 

substitutes are structures that include both macro and micro pores open and closed, with the 

micro-pores constituting what is known as strut pores. The strut pores (micro pores within the 

ceramic strut) increase the surface area for protein attachment (Hing et al., 2005). The change 

in the geometry caused by the introduction of the micro pores, could possibly be providing 

cells with a more favourable structure for attachment (Dalby et al., 2000), (Chong et al., 2015). 

In-vivo and in-vitro studies (Chan et al., 2012), (Coathup et al., 2012) demonstrated an 

increase in protein adsorption and osteo-conduction, as well as an increase in bone formation 

as a direct result of increasing the strut/micro porosity. 

For the purpose of this thesis, the effects of both the macro and micro porosities on PHA 

structures are investigated, both on the mechanical environment of the substitute, and on the 

structurally induced stress and strain concentrations as well as on strain distribution. For the 

purpose of this thesis. The macro and micro porosities of the PHA bone graft substitute are 

varied. This was done in order to investigate their effect on the mechanical environment of the 

BGS, and on the structurally induced stress and strain concentration and distribution. By 

preforming a strain mapping procedure on the BGS structures using finite element analysis. 

The process can reveal the strain distribution within the BGS structures enabling the 

investigation of the mechanical environments and the possible effects on local cells when in-

vivo. High local strains can lead to 

 Micro-fractures 

These are micro scale fractures typically resolved via bone healing mechanisms similar to 

actual fractures and associated with the formation of micro callus and woven bone 

 Micro-damage 

Which are micro scale lesions typically resolved through remodelling. Studies suggest that 

cells are sensitive to both micro fractures and micro damage, both caused by changes to 

strains, which are in turn associated with structural variation.  
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Strain field mapping can possibly predict bone growth patterns in a graft substitute as well as 

the possible cellular behaviour, through understanding the mechanical environment and the 

stimulation of cells through the observed mechanical strain (O’Connor et al.,1982), (Mosekilde 

et al., 2000).  

Strain mapping of BGS has the potential to influence future modifications to the materials, that 

could expand their biological applications as currently the applications are limited to drug 

delivery, implant coating and low load bearing locations such as in spinal fusion and 

maxillofacial reconstruction (Prakasam et al., 2015).  Simulations of these particularly 

interesting parameters can also minimise the need for carrying out daunting mechanical tests 

which can be quite tricky given that PHA grafts particularly the ones with high porosity are very 

brittle. The finite element analysis method is particularly useful when dealing with the granule 

form of the material.  

1.3.8 Motivation for Investigating the Mechanical Behaviour of Porous 

Silicon Substituted Hydroxyapatite Ceramics  

Hydroxyapatite has been investigated for orthopaedic and dental applications. It has been 

used in a number of forms; as porous granules, dense implants as well as coatings for implants 

such as hip replacements in order to improve the bonding with host tissue (Dorozhkin, 2015), 

(Pearson and Scammell, 2013) and create an osteo-conductive environment that enhances 

the implant fixation and limits thereof the reaction to foreign bodies that usually accompanies 

metal implants (Takashi et al., 2005). The osteo-conductive property of porous 

Hydroxyapatite, was reported to have exceeded the osteo-conductivity of some autografts 

when implanted in an onlay position i.e. on top of existing bone (Kalantarian et al., 2005).  

Hydroxyapatite’s porosity, particularly its micro porosity, allows for the adsorption of more 

osteogenic proteins via increasing the surface area of the BGS. This in turn enhances 

functions such as proliferation and differentiation when compared to materials of lower micro 

porosity volume (Hing et al., 1999), (Eggli, Muller and Schenk, 1988), (Klawitter and Hulbert, 

1971), (Della et al, 1974). The macro porosity influences the processes of angiogenesis 
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(formation of new blood vessels) and osteogenesis (bone formation) (Sobral et al., 2011) as 

well as the rate of bone growth (Woodard et al., 2007). BGSs with multiscale porosity bare the 

closest resemblance to natural bone tissue (Innocentini et al., 2010). It has also been reported 

that changes in the macro porosity are more effective for manipulating the mechanical 

properties of bio-ceramics than changes in their micro porosity (Bignon et al., 2003). A study 

conducted on 3D scaffolds (Cho et al., 2010) found, that the shape of the pores had a 

significant effect upon Oxygen diffusion. The cone shaped pores demonstrated a superior 

supply of Oxygen when compared to oval shaped pores.  

The level of interconnectivity of the porous BGS structure controls the degree of fluid flow 

within the structure and consequently the quality of bone growth (Bignon et al., 2003). They 

have also been linked through studies carried out in-vivo and in-vitro, to the actual depth of 

infiltration of the newly formed bone tissue deposition as well as the rate of at which the 

phenomenon takes place (Bignon et al., 2003), (Hing et al., 2002).  

In order to avoid stress shielding, it is import that the rate at which the graft degrades or 

absorbed, matches the rate at which new bone tissue is formed, whilst maintaining the 

mechanical integrity of the graft particularly at the early stages as they later gain strength as 

a result of bone infiltration particularly when the rate of bone growth is high, a phenomenon 

observed even with bone grafts of low density i.e. of high porosity. It was shown that after 

three months post implantation the compressive strength of a porous hydroxyapatite graft 

increased from 2 MPa to 20 MPa (Sopyan et al., 2007), which is quite a significant increase 

that strengthens the case for using Hydroxyapatite grafts of high porosity e.g. > 60% of the 

material. Highly porous HA is linked to good in-vivo performance with a high rate of osteo-

integration (Hannink and Arts, 2011), (Yoshikawa, 2005), (Sopyan et al., 2007).  

Investigating the material’s in-vivo mechanical responses experimentally can be difficult. 

Using a 3D finite element analysis approach and linking the findings to histology data from 

previous studies is a novel method adopted in this study to link the mechanical responses with 

in-vivo behaviour (Gibson and Ashby, 1988) 
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1.4 An Introduction to Finite Element Analysis 

As computers advance along with tools and methods for simulating various structures, scales, 

loads and strains. Computer simulated studies, become more attractive for studying and 

understanding complex engineering scenarios and geometries. Finite element analysis is an 

engineering numerical technique that allows for the analysis of continuums through partial 

differential equations. This is done via the discretisation of a continua of interest into a finite 

number of smaller interconnected sub domains. The subdomains known as elements vary in 

size and geometry and are connected to each other through nodes (Whiteman, 1985), (Bathe, 

2006). 

Elements, contain all the material information and allow for the partial differential equations to 

be approximated in order to solve them using numerical model equations. The solutions, which 

are again an approximation of the partial differential equations are then transferred between 

neighbouring elements. The finite element analysis creates a meaningful solution of the 

approximations of the continuum. The process of discretisation is widely known as meshing 

and is typically carried out using appropriate software commercial or otherwise. The term finite 

stands for the finite number of degrees of freedom associated with each element in the mesh 

assembly (Whiteman, 1985), (Bathe, 2006).  

There is a level of control that can be asserted over the mesh size. The geometric details of 

parts determine the mesh density (element size) to be used for an FEA. The choice of mesh 

size is also subject to the level of accuracy required, with smaller elements associated with 

more accurate solutions. A compromise needs to be established as denser meshes are 

computationally expensive. Generally, elements can be one, two or three dimensional. Within 

a given mesh adjacent elements are connected at nodes. Element Nodes are points identified 

through coordinates which define the degrees of freedom. Degrees of freedom can be 

displacement, rotation, temperature and electric potential depending on the type of analysis. 

Two and three dimensional elements having 3 and 6 degrees of freedom respectively.  
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Three dimensional elements are typically used for volume analysis. Along with two 

dimensional elements, three dimensional elements are also used for simulations that 

require detailed results (Bathe, 2006).  

Types of elements are: 

1- Elements of zero dimensions which are points, nodes are considered as 0D elements 

2- Lines, which are elements of one dimension. Edges are considered as 1D elements 

3- Elements of two dimensions. These include triangles and quadrilaterals. Faces are 

considered as two dimensional elements 

4- Three dimensional elements usually employed for meshing volumes. These include 

tetrahedrons, hexahedrons, wedges and pyramids (Dassault Systèmes, 2014).  

There are a number of factors that influence the type of elements and mesh densities for an 

FE analysis;  

1- The level of complexity of the geometry 

2- The level of detail expected from the analysis 

3- The computational memory and capacity available for the analysis (Dassault 

Systèmes, 2014).   

For the purpose of this research, it was necessary to create an FEM model able to capture 

the complex form of PHA granules. The complex geometry of the porous structure was 

captured using 3D imaging techniques. Similar approaches were conducted on bone, the 

investigations applied imaging techniques such as MRI, CT-Scans and ultrasound that can 

produce high quality images. These were used to create meshed volumes using various 

software and algorithms that can produce good quality meshes for analysis (Said et al., 2008), 

(Young et al., 2008).  

Complex porous structures such as bone and porous bone graft substitutes present a number 

of concerns when applying a FEA technique, due to the error sources and the magnitude of 
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those errors, resulting from the geometry and the assumptions (simplifications) regarding 

boundary conditions and the application of load.  

Energy conservation plots alongside convergence tests, are used to validate the modelled 

meshes and the assumptions made during the analysis. Three dimensional volume rendering 

approach though challenging, can potentially yield more realistic results than the traditional 

modelling approaches employing 2D simulations conducted on Hydroxyapatite. In previous 

studies simulating hydroxyapatite, the porosity was generated mathematically and the models 

tended to be in two dimensions, and did not capture the full extent of porosity, distribution of 

pores, strut structures or the unique connectivity and their effect on the strain distribution 

during loading (G.N et al., 2015), (Ozturk et al., 2010), (Palmero et al., 2009) (Sharma et al., 

2018).  As one of the first 3D finite element models of HA, there may be some shortfalls to this 

study and the models created. However, these models can be considered as a good step 

towards future work that can potentially change our understanding of HA as a material and its 

application as a bone graft substitute.   

1.5 Representative Volume Entities  

Despite of the availability of efficient software to preform finite element analysis on volume 

rendered scans of porous granules of Hydroxyapatite. Computational time and expense need 

to be considered for each model to be analysed. After thorough consideration it was evident 

that the application of representative volume entities for the purpose of this analysis is a 

necessity. An RVE can be defined as a sufficiently large volume of the heterogeneous 

material, including a sufficient amount of micro-heterogeneity thus allowing it to be considered 

as a statistical representative of the general properties of the material (Ullah at al., 2017). The 

use of representative volume entities is popular for material science applications. RVE 

analysis is a micromechanics approach to investigate the microstructural properties and 

behaviour of microscopic entities and subdomains of larger sets at the macro scale, in this 

case; the strut (micro) porosities. An RVE is considered as a quasi-homogeneous 

representative of the responses and the material behaviour of the larger scale heterogeneous 
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domain. Thus, linking the gross macro-mechanics to the microscopic constituents (Fritsch et 

al., 2007). For materials such metals, this is not necessary as their structure is completely 

homogeneous (Ullah et al., 2017), (Runesson et al., 2011). One of the aims of this study is to 

capture the natural behaviour and responses of the granular form of porous hydroxyapatite 

bone graft substitutes as these are the most relevant to medical applications. Heterogeneity, 

is a feature present throughout the scales of porous hydroxyapatite material. Smaller scales 

can possibly represent larger scales, as the assumption of continuum is considered to be valid. 

Smaller scales can be investigated if a homogenisation process is applied. Homogenisation 

can be thought of as a method of bridging the length scales, approximating the heterogeneous 

structure mechanics through the analysis of the micro elements of the representative volume.  

In this case, the struts and their micro pores are analysed. Their influence on the stress and 

strain fields transcends the microstructures to effect the macro heterogeneous domain they 

constitute. The FE analysis will be based on the local strut regions where the fields 

concentrate. The stresses and strains will be averaged throughout the RVE structures and 

their energies are plotted against the global strain thus homogenising the RVE structures. 

Steps will be taken to validate this approach and the RVEs representativeness through their 

conservation of porosity and strain energies with the latter changing in accordance with the 

change in global size (Hollister and Kikuchi, 1992).   

The rationale for applying an RVE approach for this investigation can be summed up in the 

following points:  

1- Due to the complexity of the structure, a numerical simulation using finite element 

analysis can prove computationally demanding and expensive.  PBGS structures 

require fine meshes that can conform to the contours of the model creating thus an 

extremely large number of degrees of freedom.  
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2- Modelling PBGS granules using a homogenisation approach is not common for FEA 

analysis of Hydroxyapatite. Adopting this approach allows for investigating the extent 

of representativeness of RVEs at different sizes to enable further studies on the 

material using similar RVEs.   

3- Homogenisation and the application of representative entities allow for a better insight 

into the microscopic fields (micro-pores), particularly strain fields caused by stresses 

or strains applied to the macroscopic structure. Thus, linking the heterogeneity of the 

macro structure to the influence of its constituent microstructures.  

 

Applying this method to Porous BGSs, was quite challenging. Literature was limited in terms 

of finite element analysis of true Porous BGS structures and the homogenisation of such 

structures. There is no clear information on what the building block of this architecture might 

be. The logical assumption would be that the building block is one granule. In this research, 

the granule sizes were obtained via crushing larger granules than applying a sieving technique 

to collect the granules ranging between 1-2 mm. The granules were packed in polymer tubes 

of 8 mm diameter and 16 mm height for scanning. The volume rendering techniques applied 

to the rendered scans do not allow for border definition between granules to be established. 

Treating the granule filled cylinder as a continuum. This limits the application of granule 

borders as boundary conditions. For obtaining RVEs, the cylinders were segmented to shorter 

cylinders that should include less amount of granules. The aim is to obtain an RVE with the 

least number of granules whilst maintaining the level of material’s porosity. This is the best 

way to obtain statistical representatives of the material for FE analysis.  
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Maintaining the level of porosity is essential as the material’s properties are defined by the 

porosity level. It is also a requirement that the RV remains to be a true representative of the 

material i.e. behaves similarly to the material (Hill, 1963). The segmentation to smaller 

constituents or volumes, is known as volume fractioning (Yu, 2016). Although having an RVE 

of one granule only, can be attractive, it is not quite achievable due to the lack of border 

definition, and does not comply with RVEs condition number two.  

RVE requirements can be summed in the following  

1- To behave as a mechanically statistical representative of larger volumes during the  

deformation processes (Trusov and Shveykin, 2017).  

2- RVEs must be large enough to contain sufficient microstructural information, 

maintaining material properties such as the modulus, yet are significantly smaller than 

the global size  (Drugan and Willis, 1996) (Hashin, 1983).  

3- An RVE must be of a scale similar to laboratory specimens, thus allowing it to be 

regarded as a continuum on its own merit yet a representative of a larger scale 

continuum (Hashin, 1983) .  

4- RVEs must obey the Hill-Mandel principle of macro-homogeneity. Which dictates that 

the strain energy of the RVEs should respond to the change in their global size 

accordingly. As the micro porosity is simulated any increase in the RVE size increases 

the level of micro pores contributing to the strain energy output (Hill, 1963), (Mandel, 

1971), (Hill, 1972). 
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1.6 Research Novelty  

Ceramics and particularly porous ceramics such as PHA especially in the granule form, lend 

themselves to be an attractive target for finite element analysis. Finite element simulations do 

not only serve to analyse the mechanical responses, but can be utilised further to cover the 

various and complex in vivo multi-axial loading conditions that grafts experience when 

implanted such as; muscle forces, shear forces as well as the pressure caused by aqueous 

flow (Hayes, 2016).  

It is beyond the scope of this research to cover all the possible loading conditions. This is 

especially challenging when investigating PHA granules as a 3D realistic structure as obtained 

from scans. Which is a novel approach to adopt for the material, and has not been preceded 

by similar approaches prior to this study. Most of the finite element investigations in literature 

have been focusing on the 2D structures or on the material as part of an implant system and 

not as a standalone structure despite of it being used as a bone graft substitute in its granular 

form (Ozturk et al., 2010), (Palmero et al., 2009) (Sharma et al., 2018). This study could pave 

the way for future research possibilities using volume rendered realistic structures of PHA 

granules. This could potentially create a complete mechanical map of the material, thus 

influencing the way it is manufactured and used as a bone graft substitute. 

1.6.1 Rational One 

Simulating an as-scanned 3D structure of PHA, is a novel approach introduced in this research 

to field of bone graft substitutes. The simulations will be carried out on different statistically 

representative volume entities, and will focus on the stress and strain fields created under 

uniaxial compressive loading conditions. The results will be discussed in relation to 

documented bone growth patterns from previous publications. In an attempt to find a link 

between the patterns of bone deposits on the material in-vivo and the strain field distribution 

within the material under load. 
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1.6.2 Rational Two  

The research will include mechanical tests carried out on PHA granules of various porosity 

levels from which data was used to define some of the materials’ properties for FE analysis. 

Applied through ABAQUS software for the Drucker Prager failure model, which is traditionally 

used for powder compaction and soil simulations. However not yet applied to PHA granules. 

The rationale behind this approach is that; in several bone graft applications, PHA is used in 

its granular form (Hing et al., 2005). Simulation of the structures in this form allows for further 

research linking the Finite element results to in-vivo behaviour and patterns of bone growth. 

The research attempts to shed some light on the relationship between the macroscopic 

mechanical response and the microscopic porous structure of hydroxyapatite. 
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Chapter 2 

2.1 Introduction:  

Prior to engaging in analysis, it is essential to characterise certain relevant aspects of the 

material in question. Typical characterisation techniques include 

1- Chemical characterisation. Typically employing X-ray diffraction and infrared 

spectroscopy. 

2- Structural characterisation that may include one or more of the following;  

a) Grain size measurements 

b) Porosity measurements  

c) Density measurements 

3- Mechanical testing  

Structural and mechanical characterisation techniques were necessary for the purpose of the 

study. These include:  

1- Density measurements. Using the Archimedes method to obtain the total porosity  

2- Micro porosity measurements. Using scanning electron microscopy 

3- Mechanical testing. Applying a uniaxial compression test on PHA granules and a 

diametral test also known as Brazilian disc test on porous PHA discs.  

The granules of the porous Silicon substituted Hydroxyapatite (PSHA) were provided by 

ApaTech Limited, UK. PHA and PSHA are interchangeable terms in this study used for the 

same material as the silicon substitution is at 0.8 wt % and irrelevant to the mechanical results. 

Table 1 demonstrates the nominal porosities of the materials received and used throughout 

the study, P-Total is the total porosity and P-Strut is the strut or micro porosity. The density 

measurements and SEM analysis provided data that agree with the nominal values for the 

batches received. Data obtained from the compression tests was used as material property 
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input for the Drucker Prager finite analysis model, the same applies for the Brazilian disc 

results where they were used to obtain parameters for the model.  

Table 1: Nominal porosities of the PHA material used in the study  

PHA Sample P-Total P-Strut Percentage substitution of Silicon in 

Hydroxyapatite 

SA 80-20 80 % 20 % 0.8 wt % 

SA 80-30 80 % 30 % 0.8 wt % 

SA 70-20 70 % 20 % 0.8 wt % 

SA 60-20 60 % 20 % 0.8 wt % 

SA 60-30 60 % 30 % 0.8 wt % 

 

2.2 Characterisation Techniques:  

2.2.1 Total Porosity Analysis 

In order to confirm the total porosity of granules to be used for mechanical testing and scanning 

for FEM analysis, the density of the granules were measured using the standard Archimedes 

principle (Hing et al., 1999). Three specimens were analysed for each porosity combination. 

In this method the granules were measured dry in triplicate repeats using an electronic balance 

(Ohaus, Leicester, UK). The dry weight is indicated by 𝑊𝑑𝑟𝑦. This was followed by a 

submergence procedure which involved placing the granule in deionised water at a 

temperature of 100 C0 and boiling for one hour, this is to insure that all the pores were  
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                    Figure3 : Archimedes testing kit to measure the total porosity of the PHA granules  

 

completely filled with water. The specimens were then left to cool to room temperature prior 

to undergoing further weighing procedures in triplicate repeats. The specimens were weighed 

in the submerged state, the weight is known as 𝑊𝑠𝑢𝑏. After removing the specimen from water 

and allowing the excess water to drip for 3 minutes. The specimens are weighed in a saturated 

state also known as wet state 𝑊𝑠𝑎𝑡  . All measurements were conducted using the AP density 

solid kit (Ohaus, Leicester, UK). Using the density value of 3.156 gcm-3 for dense HA (Akao 

et al.,1981), and the density of water in accordance with Ohaus manual for the density of water 

at room temperature. The apparent and real densities of the Hydroxyapatite granules were 

calculated using the following equations (Hing et al., 1999)   

 𝐷𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 = (
𝑊𝑑𝑟𝑦

𝑊𝑠𝑎𝑡− 𝑊𝑠𝑢𝑏
)  𝜌𝐻2𝑂  Eq. 3 

    𝐷𝑟𝑒𝑎𝑙 = (
𝑊𝑑𝑟𝑦

𝑊𝑑𝑟𝑦− 𝑊𝑠𝑢𝑏
)  𝜌𝐻2𝑂     Eq. 4 

 

With  𝐷𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡  being the apparent density, and  𝐷𝑟𝑒𝑎𝑙 the real density. Where the apparent 

density equation considers the open pores as well as the closed pores of the specimen as 

well as all open voids including the spaces between particles. The real density equation takes 

into consideration the closed pores only. Figure 4, demonstrates the difference between open 

and closed pores in typical porous ceramic structures.  

(a) (b) 
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The following equations were also used, in order to determine the closed and the total 

porosities of the material. Table 2 clarifies all the abbreviations used in the density 

calculations. 

   𝐶𝑆𝜇 = ( 1 − 
𝐷𝑟𝑒𝑎𝑙

𝜌𝐻𝐴 
 )  𝑋 100    Eq. 5 

                                          𝑇𝑃 = ( 1 − 
𝐷𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡

𝜌𝐻𝐴 
 )  𝑋 100   Eq. 6 

 

 

Table 2: Abbreviations used in the density calculations  

Notation 
 

Definition 

𝑫 Density 
 

𝐃𝐫𝐞𝐚𝐥 Real Density 
 

𝐃𝐚𝐩𝐩𝐚𝐫𝐞𝐧𝐭 Apparent Density 
 

𝐖𝐝𝐫𝐲 Measured Weight-Dry 
 

𝐖𝐬𝐚𝐭 Measured Weight-Saturated (Wet) 
 

𝐖𝐬𝐮𝐛 Measured Weight-Submerged 
 

𝝆𝑯𝑨 The theoretical density of Hydroxyapatite granules at 
3.156g/cm3 

 

𝝆𝑯𝟐𝑶 The density of deionised water 
 

𝐂𝐒𝛍 Represents the closed strut porosity 
 

Figure 4: Schematic demonstrating the difference between open and closed pores as 

well as channels which constitute the structure of Hydroxyapatite bone graft 

substitutes. 
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2.2.2 Strut Porosity Analysis:  

In order to determine the strut porosities of the specimens, scanning electron microscopy was 

used. The specimens required embedding and polishing procedures prior to microscopy. The 

granules were embedded in resin (EpoFix Resin, Struers, UK) with a hardener (EpoFix 

Hardner, Struers, UK), at a 1:6 ratios in a 25 mm diameter mould under vacuum using an 

EpoVacTM vacuum embedded, and left to set for 24 hours in a fume cupboard after removal 

from the vacuum kit. These steps were necessary to insure that the resin penetrates the macro 

and the micro porosities of the specimens. After the removal of the hardened epoxy from the 

mould, the surface of the epoxy structure was polished in order to bring the PHA granules to 

the surface whilst keeping a smooth finish. In order to achieve the desired surface finish a 

semi manual polishing machine was used (Abramin, Struers, UK), applying water as lubricant 

and a range of diamond impregnated grinding pads starting with grinder sizes of 220, 600 and 

1200 and polished on PoliFloc polishing pads with 3 𝜇𝑚 diamond paste, where all grinding, 

polishing pads and consumables were obtained from (Abramin,Struers,UK).   

 

 

Figure 5: PHA granules embedded in epoxy resin ready for polishing. (a) gold coated embedded samples. 

(b) embedding in epoxy resin. 

(a) (b) 
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The surface was cleaned thoroughly before each change of pad. Finally, the samples are 

cleaned with water and methanol to prepare them for coating and microscopy. The samples 

were then mounted on steel studs using a carbon paste insuring connectivity to the surface 

coating which was chosen to be gold for the images to insure good electron conduction during 

the microscopy process. A small region of the sample was imaged and photomicrographs 

were taken at 50, 100 and 700 magnifications.  

Using SEM has the advantage of producing high resolution images with high magnifications. 

It has a high field of view allowing a larger area of the sample to be investigated, producing 

images of the surfaces resembling 3D images. There are two types of electrons used by the 

scanning electron microscope and these are the backscattered electrons and the secondary 

electrons. They differ in their energy and the depth they can excite. The escape depth for 

secondary electrons ranges from only 5 to 50 nm, hence it is used to obtain surface data, and 

whilst the backscattered electrons escape depths are 100 times greater. Inelastic scattering 

caused by the primary beam hitting the samples generate secondary electrons. Back scattered 

electrons however, are generated from elastic scattering where the primary beam interacts 

with the nucleus (Figure 6). SEM detectors can collect secondary electrons from the thin 

surface of the sample whilst back scattered electrons can be collected from deeper regions of 

the sample due to their high energy (Moncrieff and Barker, 1978). 

 

 

Figure 6: Schematic demonstrating the difference between backscattered and secondary electrons 
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As the secondary electrons during SEM are emitted from the slopes and edges of the surface 

layer. They result in images of good contrast between the slopes and the flat surfaces. This 

provides the topological data needed for this research to determine the closed and open 

porosities of the PHA samples used alongside the data gathered from the density 

investigation. Using SEM can confirm the micro-porosity within the granules’ struts. To 

calculate the percentage occupied by micro-pores a threshold masking technique in 2D was 

carried out using Scan IP (SimplewareTM, 2017) software.  This technique allowed for the 

verification of the strut porosity levels in all samples. This approach is both accurate and time 

conserving for this type of characterisation. This is due to ability of the software to use the 

SEM’s image own contrast to allocate a colour to the flat surfaces leaving the empty spaces 

or voids at zero threshold. The voids or pores can be then covered with a different mask for 

zero threshold in order to calculate the percentage of space occupied by the pores.  

2.3 Constrained Compression Testing  

The study aims to build a model that can investigate the strains within granule masses of PHA, 

as the granular form is clinically more relevant. The decision was made to perform constrained 

compression tests on granular samples to obtain data for the granular masses and evaluate 

their mechanical behaviour. The ultimate compressive strengths, Young’s moduli and tensile 

strengths were also necessary for creating the finite element models. The ultimate 

compressive strength and Young’s moduli were obtained from literature as they require 

different settings to the constrained granular test (Hing et al., 2005), (Campion and Hing, 

2017).   

A Brazilian diametral test was also conducted in this study for the purpose of obtaining values 

of diametral tensile strengths. However, due to the lack of variety of porosities in the form of 

Brazilian discs, more data was collected from literature to cover a wider range of porosities. 

More on the test method will be discussed in section 2.3 of this chapter.   
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When subjecting HA granules to mechanical tests, it is essential to keep in mind the effect of 

the strain rate applied to the material. Dense ceramics of total porosities lower than 40%, have 

a characteristic behaviour when loaded in compression. With an initial short lived elastic 

behaviour followed by sudden failure. Highly porous ceramics demonstrate a longer lived 

elastic behaviour, which is not as short lived as dense ceramics. This is due to the progression 

of pore walls collapsing. This phase is than followed by a sudden drop in load due to crack 

propagation within the struts of the material (Meille et al., 2012).   

Under high strain rates, porous ceramics show an increase in brittle behaviour.  This is true 

for many ceramics as well as some metals (Mishra and Mukherjee, 2000). Applying high strain 

rates during compression tests is known as shock testing, which results in a loss of strength. 

This could be explained  by the strain not allowing the occurrence of micro-crack propagation  

within the material’s struts as a result of a  non-linear microscopic response (Zhan et al., 2007).  

A strain rate of 0.5 mm/min was selected I accordance with literature review  (Hing et al., 

1999). A uniaxial testing approach was adopted for practicality reasons, the method has been 

previously adopted to investigate the mechanical behaviour of cancellous bone and PBGS 

(Peelen et al.,1978), (Akao et al., 1981), (Fritsch et al., 2009).  

The PHA granules received from ApaTech Limited, UK, and come as irregular sized lumps for 

each porosity combination. The materials were crushed and sieved to collect smaller granules 

of diameters ranging between 1 and 2 mm. These granule sizes are easy to handle and fill 

into cylinders for further analysis. The testing was carried out using INSTRON equipment in 

combination with Blue Hill Bluehill® LE Software, with a cylindrical rig of 30 mm in diameter 

and 30 mm in height. The strain rate was set to 0.5 mm/min. the axial stress was calculated 

from the compressive load divided by the cross-section area, and the axial strain from the 

change in height divided by the original height of the sample. The cavity of the rig compartment 

was filled with 8 ml of granules giving a height of 18 mm. Figure 7 and 8 demonstrate the test 

set up with a schematic explaining the stresses that the granules experience due to the axial 

compressive stress applied. It is important to note, that only the axial stress can be measured 
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using this set up. Since the mechanical behaviour of PHA is density (porosity) dependent it is 

important to calculate the change in density that occurs during the axial compression process. 

This is done through measuring the initial densities of the samples through the Archimedes 

method.  The volume of granules within the rig was also measured, this step is essential for 

the application of the Drucker Prager Cap model in ABAQUS as the model is density 

dependant.  

 

 

  

Figure 8:  Cylindrical rig setting and filling with PHA granules ready for compression testing using Instron and 

Bluehill® Software  

 

Figure 7: a) Instron machine in action, (b) a schematic demonstrating the stresses experienced by the PHA 

granule during uniaxial compression. The schematic demonstrates a realistic volume rendered to demonstrate 

the porosity of the sample and the inhomogeneity of the structure 

(a) (b) 
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2.4 Brazilian Diametral Strength Test 

A Brazilian test, also known as a diametral compression tests, are tests typically used on 

ceramic material. This is a test to failure, which can potentially provide data such as tensile 

strength and fracture toughness indirectly without the need for the impracticality of subjecting 

ceramic specimens to tensile tests that this approach has been adopted. To perform the test, 

a cylindrical sample of PHA is compressed between two flat surfaces along its diameter as 

illustrated in Figure 9. Compressing a disc in that manner causes tensile stresses to occur at 

the centre of the disc sample normal to the direction of load applied. A number of assumptions 

are accepted by scientists for these type of tests (Croquelois et al., 2017), (Li and Wong, 

2013). 

1- The radial pressure is assumed to be uniformly applied to the short segment of the 

circumferences in direct contact with the plates. 

2- The friction between the cylinder sample and the plates is negligible (Li and Wong, 

2013). 

3- Materials tested are considered to be isotropic and homogeneous (Mellor and Hawkes, 

1971). 

4- Failure takes place at the centre of the disc, at the point of maximum tensile stress (Li 

and Wong, 2013), which can be derived using the relationship  

  𝜎 =  
2𝐹

𝜋𝐷ℎ
      Eq. 7 

 

 Where 𝜎 is the maximum is tensile stress, 𝐹 is the applied force, 𝐷 the diameter of the disc 

and ℎ is its thickness. The discs tested in this study were Porous Hydroxyapatite discs 

averaging at 1mm diameter and 4 mm in height. To measure the porosity of the samples an 

Archimedes tests similar to the one carried out in chapter 2 on the PHA granules. The discs 

available were of 35%, 34% and 17% only. Ten discs in total were tested for each porosity.  
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In order to obtain values of tensile strengths for a wider range of porosities, more values were 

collected from literature. Figure 9, shows the Brazilian test setting carried out using the Instron 

machine and Bluehill® LE Software, with two flat metal plates attached. The plates were 

covered by sand paper to enhance the grip on the discs. The load was applied at 1 mm/min.  

2.5 Results and Discussion 

2.5.1 Total Porosity and Strut Porosity Analysis 

Table 3, demonstrates the results obtained from the density measurements to determine the 

total porosities of the batches of the material received.  

Table 3: Density measurements obtained using the Archmedis method ± error 

Sample 
 

Apparent Density gcm-3 Real Density gcm-3 Total Porosity % 

80-20 0.552 ±0.007 
 

3.107±0.007 82.5 

80-30 0.536 ±0.007 
 

2.991±0.007 83.0 

70-20 0.858 ± 0.007 
 

3.085±0.007 72.8 

60-20 1.204 ±0.007 
 

2.984±0.007 61.8 

60-30 1.167± 0.007 
 

3.094±0.007 63.0 

 

Figure 9: Brazilian diametral test using the Instron machine with two flat metal plates covered by sand paper for a 

better grip. The picture demonstrates a typical disc failure 



58 
 

The results confirm the total porosity of the batches of the material received AapaTech limited, 

UK. The following images in Figures 10, 11 and 12 demonstrate the results of the SE 

microscopy applying SE electrons and employing ScanIP for analysis to determine the strut 

porosities.  

2.5.2 Results of the Brazilian Diametral Tests 

Results of the Brazilian diametral tests are listed in table. The samples demonstrated typical 

fracture behaviour as seen in Figure 9, with the fracture occurring at the centre where the 

maximum stress is located. 

Table 4: Results of the diametral Brazilian tests carried out using the Instron machine with flat plates 

Sample Porosity Radial Stress in MPa ± SD 

17% 11.3 ± 1.9 

34% 7.5 ±  0.4 

35% 8.7 ±  1.2 
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2.5.3 Results from SEM-Analysis of the Strut Porosities 

 

 
Figure 10: SEM analysis results Left 80-20 PHA granule surface under x700 magnification, using ScanIP software for pixel masks. Right 80-30 PHA granule surface under x700 

magnification, using ScanIP software for pixel masks 
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Figure 11: SEM analysis results Left 60-20 PHA granule surface under x700 magnification, using ScanIP software for pixel masks. Right 60-30 PHA granule surface under x700 

magnification, using ScanIP software for pixel masks 
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Table 5: Strut porosity results as obtained from the SEM analysis using ScanIP masking technique              

Material Strut Porosity ± SD 
 

80-20 18.4 ± 0.3 

80-30 28.2 ± 0.2 

70-20 21.7 ± 0.5 

60-20 20.9 ± 0.8 

60-30 24.8 ± 0.7 

 

 

 

 

 

 

 

 

 

Figure 12: SEM analysis results for 70-20 PHA granule surface under x700 magnification, 

using ScanIP software for pixel masks 
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2.5.4 Constrained Compression Test Results  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: The graphs demonstrates the Stress Vs Strain curve constructed from raw data of 

the Compression test repeats for PHA granules of 80-20  and 80-30 porosity combinations 

respectively. Nine repeats in total for the 80-20 batch and eight for the 80-30, demonstrating 

similar behaviour.  
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Figure 14: The graph demonstrates the Stress Vs Strain curve constructed from 

raw data of the Compression test repeats for PHA granules of 70-20 porosity 

combination. Seven repeats in total, demonstrating similar behaviour. 



64 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 15: The graphs demonstrates the Stress Vs Strain curve constructed from raw 

data of the Compression test repeats for PHA granules of 60-20  and 60-30 porosity 

combinations respectively. Eight repeats in total for the 60-20 batch and eight for the 

60-30, demonstrating similar behaviour. 
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2.6 Discussion: 

For any given sample batch, the granules were found to behave similarly but not identically. 

This is possibly due to the random morphology and orientation of granules and the 

inhomogeneity of their porosities. All PHA granules demonstrate a typical Stress-Strain curve 

with an exponential increase in stress as a response to the increase in strain, as the material 

reacts through macro porosity than transitions slowly to reacting through micro porosity.  

All samples were subjected to the same loading profile. All tests were automatically set to stop 

when a stress of 1.5 MPa was reached. In some cases, the tests were manually stopped when 

the stresses zigzag indicating damage. The tests demonstrated that the materials with largest 

total porosities were the easiest to strain and as the total porosity decreases straining 

becomes more difficult with the maximum stress allowed, either reached at a lower strains or 

samples damaged prior to reaching maximum allowed stress.  

Segmenting these mechanical profiles using gradients as demonstrated in Figures 16-20, is 

an attempt to quantify the mechanical behaviour of PHA granules as a result of their porosity 

profile. The stress vs strain graphs can be divided into three regions; 

1- The first region, where the initial stresses are experienced by the granules and the 

macro porosities are reacting to the load applied.  

2- The transition region, where both levels of porosities (macro and micro) are involved 

in reaction to the load.  

3- The final region, where the micro pores are experiencing a larger portion of the load 

applied than the first two regions.  

These regions can be estimated by finding the steepest gradients for each section.  
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Figure 16: The averaged stress/strain graph for the 80-20 PHA granules. Grdients 

calculated to find the three regions dependant on the level of porosity under compression  

Figure 17: The averaged stress/strain graph for the 80-30 PHA granules. Grdients 

calculated to find the three regions dependant on the level of porosity under 

compression 
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Figure 18: The averaged stress/strain graph for the 70-20 PHA granules. Grdients 

calculated to find the three regions dependant on the level of porosity under 

compression 

Figure 19: The averaged stress/strain graph for the 60-20 PHA granules. Grdients 

calculated to find the three regions dependant on the level of porosity under 

compression 
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When investigating the segmented regions of the stress strain profiles of PHA granules, it was 

found that;  

 Regarding the first region of the stress-strain curve; PHA granules of 80% total porosities 

and 30% micro porosity show on average the same levels of stresses for similar strains 

when compared to the 20% counterparts. This is not the case for the granules from the 

60% total porosity groups with the granules of 20% micro porosity demonstrating higher 

levels of stresses than their 30% counterparts at similar strain levels as indicated by the 

steeper gradient for region. The granules of the 30% micro porosity from the 80% and the 

30% of 60% groups show similar stress levels in the first region at similar strains. Thus the 

results cannot be conclusive in regards to the behaviour of granules during the initial 

stages of loading. A wider range of porosity combinations need to be investigated prior to 

reaching a final conclusion. However, it seems that the initial response to loading in the 

case of the granules investigated is actually experienced by the strut (micro) porosity of 

the granules.  

 Regarding the second region of the stress-strain curve; the gradient over this region is 

similar for all the granules with the 60-20 and the 70-20 showing slightly higher gradients. 

Figure 20: The averaged stress/strain graph for the 60-30 PHA granules. Grdients 

calculated to find the three regions dependant on the level of porosity under 

compression 
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These results suggest that generally granules of lower total porosity levels experience the 

highest stresses / strain in their transition regions, where both levels of porosities react to 

the load applied. However, there is no clear evidence to suggest how the micro porosity 

could influence this region.  

 Regarding the final region; the lower total porosity combination group showed the highest 

gradients with 60-20 showing the steepest gradients. This suggests that micro pores are 

mostly effected with the denser materials.  The results however cannot be decisive as 

there are various factors at play, such as granule movements, pore arrangement and pore 

sizes. The gradients of all segments are generally higher at lower total porosity levels. The 

gradient values suggest that the strut porosities have less of an effect on the mechanical 

behaviour of the samples than the total porosities. To investigate the effect of strut porosity 

an FE analysis is the best option. Identifying the three regions is useful when imputing the 

values into finite element analysis for the purpose of the failure model.  

Summary 

The supplied material was as described by provider. The constrained compression tests of 

the granules suggest that under compression, the total porosity levels had a more prominent 

effect on the behaviour than the strut porosity, more porosity variation is advised for future 

mechanical analysis. The Brazilian diametral tests have provided data that coincides with 

similar tests conducted on PHA of similar porosities as indicated in Figure 55, chapter 5.  
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Chapter 3  

Generation of 3D Meshed Models of Granule Masses of 

PHA 

3.1 Introduction:  

This chapter discusses the methods applied for acquisition of raw image data of 

Hydroxyapatite granules. The novelty introduced in this chapter is applying a time efficient 

technique that can capture the intrinsic details of the material’s macro porosity. The micro-CT 

scanning technique used for this was developed by Professor Graham Davis from the Institute 

of Dentistry, Barts and the London. The images were able to capture desired details for volume 

rendering and subsequently meshing and finite element analysis.  

The chapter discusses the processing methods applied to achieve the final meshed models 

for finite element analysis using ABAQUS. The processes covered in this chapter are; 

masking, smoothing, volume rendering, creation of representative volume entities (RVEs), 

investigation of structural conservation and meshing.  

3.2 Computerized Tomography Scanning: 

CT scanners have been increasingly used in order to visualise and provide a non-destructive 

way for obtaining structural three dimensional information at a resolution suitable for model 

rendering and finite element simulation. Most typical CT scanners do not have the resolution 

necessary to capture the fine details of porous Hydroxyapatite. Using a µ-CT scanning 

approach ensures that all the finite element analysis is carried on realistic representatives of 

the materials’ architecture and structure maintaining the complexity and inhomogeneity of their 

macro porosity.  
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3.2.1 Acquisition of Raw Images of PHA Granules 

 

Table 6: Material specification for specimens scanned for FE analysis 

Material Scanned Total Porosity from Archimedes 
density analysis 

Strut Porosity from SEM 

80% 82.5 % 18.4 % 

80% 83.0% 28.2 % 

70% 72.8% 21.7 % 

60% 61.8% 20.9 % 

60% 63.0% 24.8 % 

 

To gain 3D data of the macrostructure of porous hydroxyapatite for the purpose of finite 

element analysis.  A volume of nominally 6ml of granules 1-2 mm in size, were placed in a 

clear silicon tube of 8 mm diameter and 16 mm length. The tubes, sealed with polymer meshes 

and sent to the Institute of Dentistry– Barts and The London, for CT scanning using the MuCat- 

2 scanner 17, with a voltage of 90 Kv, and a beam current of 0.18000 mA to obtain projections 

with a voxel value of 10µm. 

The image data obtained from the µ-CT scanner, were extracted as stacks of images in the 

Bitmap file format. This was carried out using an in house software (TomView), developed by 

Professor Graham Davis from the Institute of Dentistry, Barts and the London. The images 

were imported into a commercial processing and meshing software, ScanIP (SimplewareTM, 

2017), where a number of steps, discussed in later sections of the chapter, were used to 

render the final 3D volumes and mesh them before exportation to another commercial 

software ABAQUS (Dassault Systèmes, 2014) as input files for FE analysis. 

3.2.2 Image Processing: Applying a Mask and Creating a 3D Image View 

ScanIP uses masks to create surfaces from the voxels occupied by a material, in this case the 

material being hydroxyapatite. As the grey scale scans include only one material, this 

eliminates the need to apply any grey scale mapping such as the Hounsfield Unit. The HU, is 

a linear attenuation coefficient typically applied in similar cases, when multiple materials are 



74 
 

present in the scanned images. It matches voxels to material groups such as enamel, bone, 

muscle or fat. As the granules scanned contained only Silicon substituted hydroxyapatite and 

air, this step was not necessary.  

Scan IP Computational Requirements:  

 

 CPU Processor: The speed of operations such applying filters and meshing is 

dependent on the processor. The recommendation from the software developers 

is an Intel Core i7. 

 Computer memory (RAM), limits the size of data that can be processed by the 

software. The developers’ recommendation is 16GB or more of RAM. In order to 

import an image file into ScanIP, the size of RAM needed is equivalent to the size 

of the file imported. More RAM of up to 8 times the size of the file is needed for 

image processing and meshing. The need for more RAM increases in correlation 

with the level of topological complexity of the mask, the number of masks used, as 

well as the size of the mask and the mesh density (SimplewareTM, 2017).  

 

The PC used for this study had 16GB RAM only. This has put constrictions on the size of data 

that can be processed and the level of processing that can be applied. This limitation has 

made it impossible to process multiple jobs simultaneously, therefore making the processing 

and meshing of one model very time consuming.  

 

 Disk space; the recommended disk space is 100GB, a hard drive can be used to 

provide more space depending on the size of the data sets.  
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3.2.3 Volume Rendering:  

A series of actions were performed in order to achieve the final desired volume structures for 

meshing using the Scan IP (SimplewareTM, 2017). The structures should maintain the level of 

porosity from the original scans. They should not include any lone islands (small isolated 

regions); lone islands can hinder the meshing process and the simulation process during the 

FE analysis. The structures should also have smooth surfaces; rough surfaces do not produce 

meshes that can pass the software’s quality checks.  

First, the stacks of images were imported into Scan IP (SimplewareTM, 2017). Before starting 

any image processing, a manual cropping procedure was necessary to eliminate the excess 

empty space in the scanned images in order to minimise the size of data. These cropping 

steps were preceded by a size fitting step, which was necessary to maintain the appropriate 

separation distance between each scanned slice in the stack depending on the dimensions of 

the original sample scanned and the number of slices produced. This was done by dividing 

the number of slices by the dimensions of the cylinder scanned, thus giving them the 

appropriate separation size. Figure 21, demonstrates the size fitting step, the cropping and 

the pixel skipping.  

Due to the limited memory and computational power available, it was necessary to minimise 

the input data further. Therefore, another step was applied, skipping three pixels of the images 

along all of their three dimensions. The three pixels, were the maximum number of pixels that 

can be skipped before compromising on the volume detail. A volume image is basically a 

matrix composed of three dimensions of voxels also known as pixels. The numbers of pixels 

in each direction is linked to the memory used by the software for the job.  
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Figure 21: The images extracted from ScanIP show the process of importing the 

BITMAP images, sizing, pixel skipping and cropping. 
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Following the stacking of the grey scale images, a 3D mask was created for the voxels of 

interest representing PHA granules. A threshold procedure was performed using the tool “paint 

with threshold”, using this tool lower and upper grey scales of interest were selected. PHA 

granules were found from visual inspection to fall between 61-72 for the upper threshold value, 

whilst the empty space representing pores was set at zero as a lower boundary or threshold. 

The mask was then applied to the voxels of interest to render the volume of the material. 

Figure 22, demonstrates one slide of the stacked images and the mask result of thresh-holding 

which covered all the material present.  

 

 

 

Figure 22: a slide of the 3D stacked image and the mask resulting from thresh holding procedure applied 

covering all the material including loan islands. 
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3.2.4 Processing and Creation of 3D Models:  

In Figure 23, the presence of artefacts such as lone islands, rough surfaces can be clearly 

seen. Meshing a mask of PHA granules from raw stacks of CT images is thus very challenging 

for the software. A few additional steps were performed to clean up the rendered volume to 

make them suitable for finite element analysis.  The first step was to remove the small lone 

islands using a voxel value filter (Figure 24). However, this process was not 100% successful 

due to software limitations in detecting all the lone islands, which could be due to the 

complexity of the structure. Therefore, it was necessary to remove them manually, using the 

volume of interest tool “VOI”, where careful positioning was essential to avoid deletion of core 

material (Figure 25).  

Figure 23: the 3D rendered volume of the granules from the stack of images of PHA granules, (a) volume rendered as 

grey scale. (b) After masking the surfaces using the threshold tools with lone islands circled.  

(a) (b) 
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Figure 24: automated voxel filter, used to remove most of the loan islands from the rendered 

volume 

Figure 25: (a),(b) Manual removal of loan islands using the “Volume of 

Interest” tool within the ScanIP package. Figure (c) shows the 

structure raw and (d) after removing all the islands and smoothing the 

surfaces 
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The surfaces of the raw rendered volume after removing the islands remained quite rough. 

which complicated the meshing process (Figure 25), resulting in the software aborting the job 

midway, incapable of fitting elements to such difficult surfaces. After multiple job abortions it 

was obvious that it would be necessary to further smooth the structure in order to obtain a 

reasonable mesh acceptable by the finite element software.  In order to achieve this, a 

compromise had to be made to smooth the structure for meshing without losing the essential 

details of the structures’ original architecture and porous arrangement captured in the raw 

scans. The smoothing was done via applying a combination of mean and median filters. The 

mean filter is a noise reducing tool that works by computing the statistical mean of the 

neighbouring pixels from each direction. The radius measured in number of pixels, should be 

kept to a minimum when applying the filter, and for this application a radius value of 2-pixels 

was applied. The other smoothing technique applied was a median filter which is similar to the 

mean filter. However, the noise it reduces is related to grey level outliers, and a value of 2-

pixel radius was also applied. Results are demonstrated in Figure 25. Once the masks were 

smooth enough. 

3.3 Discretisation (Meshing) of the Volume Rendered models for 

FE Analysis 

In order to simulate a physical structure using numerical simulation techniques employed by 

any commercial software such as ABAQUS (Dassault Systèmes, 2014).  Discretisation is 

necessary to approximate the complexity of the area or domain of interest through dividing 

them into smaller sets or domains, also known as elements, which are not only smaller but 

geometrically simpler than the original larger geometry. The discretisation process is known 

as meshing. Techniques have come a long way to make this process as automated as 

possible providing high quality conforming meshes that fit the geometry of interest and 

captures the intrinsic details (Dassault Systèmes, 2014).  
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3.3.1 Self Coating  

However, meshing such complex and porous structure as porous hydroxyapatite in its natural 

form as expected, can be very difficult. The surfaces are irregular and challenging. The 

surfaces are also very large due to the level of porosity, and the porous architecture is quite 

arbitrary. A number of procedures were used during this investigation to establish good quality 

meshes that are dense enough to conform to structural detail, in order to obtain accurate and 

efficient analysis without needing unrealistically long computational time. At first, the mesh 

was made on the open structure, which proved problematic for the application of boundary 

conditions using ABAQUS (Dassault Systèmes, 2014) as can be seen in (Figure 26). The term 

“Boundary conditions” is used to describe the restrictions, strains or loads applied to a model 

translating the mechanical environment effecting it. Boundary conditions need to be applied 

correctly and uniformly for an accurate output.  

There is a lack of uniform surfaces necessary for BC application (Figure 26). The irregularity 

of the structure in turn gave rise to irregular distribution of the mesh density. This is due to the 

automatic mesh refinement carried out by the software, a necessary step for simulating 

complex structures that contain curves, pores and stress concentrators. However, this 

variation in the mesh density distribution within the structure does not allow for uniform BC 

application. To avoid inaccuracy during analysis a solution using the Scan IP software was 

created, by dilating the outer borders of the volume to create a thin surface on which boundary 

conditions can be applied without any significant effect on the output of the simulations. Figure 

27, explains the process of “self-coating”. A novel method that was developed to overcome 

the lack of uniform closed surface.  
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The volumes or models created were meshed using Scan IP (SimplewareTM, 2017). The 

elements of choice were tetrahedral. The reason for this is that despite the advanced software, 

it was a challenge to create a hexagonal robust mesh for a non-uniform arbitrary structure, 

which is the typical choice for natural materials such as bone tissue (Blacker, 2001), as this 

element type produces less density and consequently less computational expenses . 

Hexahedral meshes through ScanIP did not pass the mesh inspection with much abortions 

during meshing and a high level of element distortion. Tetrahedral elements were the best 

Figure 26: Demonstrates a meshed volume and the difficulty in creating 

boundary conditions on the open structure 

Figure 27: The process of self-coating, created by dilating the outer surfaces to form a very thin layer through 

which boundary conditions can be applied to the structure during the simulation process. 
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choice for the models in this research and are well suited for complex structures. More on 

element choice in the next section.  

3.3.2 Automated Meshing for FE Analysis 

The main goal was to achieve a conforming, good quality mesh, i.e. conserving the integrity 

of the structure originally obtained from CT scans without any debilitating distortions. Ideally a 

combination of good quality and low number of elements to save on computational time. This 

can only be achieved if hexahedral elements were to be applied, as they are the most 

economical. One hexahedral element has the same degrees of freedom as six tetrahedral 

elements thus less elements to achieve a similar accuracy.  

Unfortunately, Scan IP can only produce automated meshes and does not provide many 

options for manual discretisation, which is essential if the structure to be meshed contains 

certain problematic issues with its geometry such as extensive structural fine detail, which is 

the case for PHA granules. Hexahedral meshes would require manual refinement as they do 

not conform to the contours as well as tetrahedral ones. Thus, there was again a need to 

compromise on the accuracy and computational speed for practical reasons (Blacker, 2001). 

Scan IP indeed fell short in terms of creating conforming hexagonal meshes for the structures. 

It remains a challenge to automate hexagonal meshes for complex structures with a large 

percentage of element distortion. This is a typical shortfall for hexahedral elements when used 

for complex geometry. Linear tetrahedral elements, which are 3D elements of linear shape 

functions, are typically used for complex geometries. They do however present with some 

disadvantages. Using these elements may cause locking, which is a phenomenon that 

describes the elements inability to translate the deformation kinematics.  

This commonly occurs when the elements are used for bending beams or when dealing with 

incompressible materials. Locking in this research was avoided by increasing the density of 

the mesh, with the consequent long computational time due to the large number of elements. 

However, linear tetrahedral elements remain to be the easiest to apply for any 3D model, 
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irrespective of complexity as they adapt to all types of structures and topologies (Shepherd 

and Johnson, 2008).  

Another challenge with discretising PHA granules for FE analysis, is the inability to employ a 

structured mesh. Which is a mesh that is spatially efficient, characterised by a regular grid. 

Such meshes can only be obtained for simple geometries using a hexahedral or hexahedral 

dominated mesh. The meshes used in this study are non-structured free meshes, which can 

be obtained using any type of element. The shortfalls with such meshes are the non-uniformity 

of the mesh grid, in addition to the more problematic computational power and storage 

requirements associated with them. There is however no escaping free meshing for natural 

structures.  

Unstructured meshes are advantageous in that they provide a way to discretise those tough 

to mesh geometries as they are more suitable for non-uniformity. A drawback of using the 

ScanIP automated meshing is, the lack of an advanced method to exert control over the mesh 

size. The Software offers a scale of mesh coarseness, which is quite primitive. This shortfall 

is not very problematic, as the algorithms it applies seem to create meshes that are refined to 

the contours of the structure with denser meshes around curves, pores and sharp edges.  

The meshes created with Scan-IP do not lend themselves to any further manipulation after 

exportation as they are exported in the form of orphan meshes. Orphan meshes, are volume 

grids with no part associated with them as is the usual case when using ABAQUS. Parts are 

the original volumes before meshing. Typically, all applications are conducted on parts which 

are then meshed in ABAQUS.  

For this study creating models from orphan meshes, meant that every mesh had to be tested 

before accepting it as valid. There was no particular need to refine the mesh at certain areas 

as the level of automated refinement by ScanIP was acceptable. All meshes produced had to 

be diagnosed for distorted elements with a built in tool in the software “quality inspection”, 

which checks for deformed and problematic elements (Figure 28).  
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3.4 Representative Volume Entities 

The volume rendered models were created from porous hydroxyapatite cylinders of 8mm 

diameter and 16 mm length. Cross sectional cuts of 4 mm, 8 mm and 12 mm long were made 

to the original volumes to create potential RVEs for the following reasons.  

1- Meshing smaller models with a dense mesh using ScanIP is computationally more feasible 

given the limitations of the PC used.  

2- Running FEA on the entire volume is difficult due to the complexity of the structure and the 

density of the meshes, which require unsupported computational time and power. It is 

important to note that for such a structure, only a dense mesh can conform to the structure 

and produce a good model for finite element analysis. The commercial software ScanIP 

(SimplewareTM, 2017), is programmed to understand such structures and thus can only 

produce dense meshes for complicated topologies. Attempts to coarsen the mesh 

were met with abortion of jobs during the meshing processes.  

3- To provide a basis for analysing PHA granules through using a representative volume 

entity (RVE). This approach saves on computation expense due to the model size 

reduction. Cuts were made with the level of porosity maintained throughout, which means 

any future FEA analysis can easily be carried out on RVEs given they follow the Hill-

Mandel criteria discussed in chapter 1. The reason the cuts were made at different length 

Figure 28: The process of mesh quality inspection using ScanIP before exportation as an orphan mesh for FE analysis 
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scales was to compare the models at different sizes, and demonstrate the stability of the 

RVEs in this study, and their ability to represent the materials’ behaviour.  

4- Cuts were made along the cross section. This approach has not been attempted before 

for PHA granules, thus there was no guarantee that shorter cuts can be representatives 

of the entire structure. Figure 29, demonstrates the cutting procedure carried out after 

smoothing prior to meshing in order to create RVEs for PHA granules.  

 

The large element count need to insure accuracy has proven problematic. The 4mm sized 

RVE had elements of the order of hundreds of thousands, approaching a million elements for 

12 mm RVEs. Table 1 in appendix contains the element numbers used for each RVE model.  

The volume rendered cylinders of PHA granules were cut in accordance with the requirements 

in section 1.5.  The shortest cuts thus were 4mm in length. This cut was found to be the 

shortest one that maintained the material’s porosity i.e. its density as well as the representative 

architecture.   

 

Figure 29: The cross sectional cutting procedure using ScanIP tools to create shorter RVEs from the original longer 

scanned tube of PHA granules. As seen, the cut goes through granules and split the surface pores converting some 

from closed to open pores.   
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Smaller cuts may have been possible if filters were not applied to the scanned slides to enable 

meshing.  Three cross sectional cuts of 4mm, 8 mm and 12 mm were made for analysis. The 

original 16 mm long cylinder was not meshed due to computer power limitations. Figures 30 -

32, demonstrate the process of testing the RVEs, insuring that every cut has maintained the 

porosity level and thus the material properties of the macro structure. This was achieved via 

applying a second mask for the space occupied by pores using the threshold tool in ScanIP.  

The volume fraction they occupy can thus be calculated as the porosity percentage. The 

process is used to determine the conservation of porosity levels throughout the cuts. Table 7, 

demonstrates the results obtained from the process of applying porosity masks to the cuts.  

 

Table 7: Results obtained from conducting volume analysis using ScanIP demonstrating the conservation of the 

porosity level throughout the RVE cuts created, results are in %  ± 0.01 % error 

PHA-Sample VFP in 12mm RVE VFP in 8mm RVE VFP in 4mm RVE 

80 total 20 strut 82.31 % 
 

82.41 % 82.53 % 

80 total 30 strut 83.36 % 83.36 % 83.36 % 

70 total 20 strut 72.18 % 72.38 % 72.67 % 

60 total 20 strut 62.23 % 62.34 % 62.54 % 

60 total 30 strut 63.05 % 63.33 % 63.34 % 
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Figure 30: Volume rendered RVEs with dual masks to determain conservation of porosity after cutting to shorter cyliners. Figure (a), The RVEs 

created for the 8020 porous hydrsoxyapatite. The pink mask for the hydroxyapatite material and the brown mask for the empty space (porosity). 

Figure (b), the RVEs created for the 8030 porous hydroxyaptite, the white mask is for the material and the brown mask for empty space (porosity).  
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Figure 31: Volume rendered RVEs with dual masks to determine conservation of porosity after cutting to shorter cylinders. Figure (a), The 

RVEs created for the 60-20 porous hydrsoxyapatite. The yellow mask for the hydroxyapatite material and the green mask for the empty space 

(porosity). Figure (b), the RVEs created for the 60-30 porous hydroxyaptite, the white mask is for the material and the blue mask for the empty 

space (porosity).  
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As mentioned in section 1.4. One of the main conditions for accepting a cut of the macro 

structure as a true representative of the material also known as an RVE, is to maintain the 

material’s porosity (density). It was thus essential to provide evidence that the RVEs created 

comply with the condition of density conservation. Evident from the previous figures and 

values of total porosity demonstrated in (Table 7) that the cuts created maintain their material 

representativeness in terms of porosity volume, and thus could be used for FEA analysis as 

an RVE from the perspective of material property. The second step in validating the RVEs, is 

to provide energetic evidence of their representativeness in accordance with the requirements 

in section 1.5. This will be carried out in chapter 4. This research attempts for the first time to 

investigate the representativeness of RVE structures of PHA granules in their natural form as 

scanned. This approach can be thought of as a necessary step towards widening the scope 

of finite element analysis of hydroxyapatite based porous graft substitutes. In summary, this 

chapter covered the methods necessary to create 3D models from µ-CT scans. µ-CT scans 

Figure 32: Volume rendered RVEs with dual masks to determain conservation of porosity after cutting to shorter 

cyliners. The RVEs created for the 7020 porous hydrsoxyapatite. The light blue mask for the hydroxyapatite 

material and the dark bluen mask for the empty space (porosity) 
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insure the creation of realistic models for finite element analysis. In order to obtain such 

models, a good volume rendering and meshing software was employed. For this research the 

software of choice was ScanIp (SimplewareTM, 2017). Through it necessary steps that render 

the granules fit for meshing and consequently FE analysis were employed. These steps 

include stacking the slices into a 3D volume, creating a mask for the volume, cleaning and 

filtering the volume and finally meshing it and exporting it to a finite element analysis software, 

ABAQUS in this case. The volumes of PHA granules were cut to create RVEs of different 

sizes. These were necessary to minimise the computational expenses making the analysis 

more feasible, and to understand the behaviour of PHA material at different scales. This 

chapter demonstrated conservation of density, as the RVE cuts maintain the porosity and thus 

structurally satisfy the first criteria of the Hill-Mandel homogeneity principle.  

Summary:  

The steps needed to create 3D meshed models of porous hydroxyapatite for the purpose of 

finite element analysis are the following: 

1- High resolution scanning technique 

2- Volume rendering form image data 

3- Creating 3D models from volumes  

4- Smoothing of topographical rough features 

5- Meshing using appropriate elements
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Chapter 4  

Finite Element Analysis: Simulation of PHA Bone 

Graft Substitutes 

4.1 Introduction 

The purpose of this research is to use a finite element approach on three-dimensional models 

of true reconstructed structures of PHA BGS granules from CT scans. This is to understand 

the behaviour of the material and investigate the strain fields generated during physiological 

loading conditions as described in chapter 3. An RVE approach was conducted out of 

necessity due to the large element density of the scanned cylinders of PHA granules, which 

could not be in their entirety with the equipment available. Using the RVE approach 

necessitated the conduction of both structural and energetic validation techniques. Chapter 3, 

discussed the structural validation.  

The energetic validation, described in this chapter, is concerned with the relationship between 

the strain energy of the models and their size. There should be a corresponding change in the 

strain energy of the models as the RVE sizes change. Increasing the size of an RVE should 

induce an increase in the registered strain energy and the opposite is true. The increase would 

be expected to be linear with a homogenous material (Mandel Jean, 1971), (Hill, 1972). 

However, in this research it is accepted that the change may be subject to some non-linear 

variation due to the extensive random porosity. The energy of a model should be 

conserved throughout the simulation procedure for it to be valid, with the energy put 

into the model converting totally to an energy output making the total energy of the 

simulation equal to zero.  
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4.2 Selection of Input Data for FE Analysis 

4.2.1 Constitutive Models:  

This research employs two constitutive model approaches. Constitutive models in finite 

element analysis tend to describe the responses of materials under different mechanical 

environments. There are three classes of constitutive models based on the relationship 

between stresses and strains: 

1- Algebraic; 𝝈 = 𝒇 (𝜺) 

2- Differential; 𝑑𝝈 = 𝑬𝑡: 𝑑𝜺 

3- Integral; 𝝈 = 
𝛿 𝑊

𝛿𝜺
 

With (𝜎) being stress, (𝜀) strain, (𝑊) strain energy potential and  (𝐸𝑡) the tangential modulus 

(William, 2002). In this chapter, an algebraic constitutive model, linking stress and strain states 

to material specific parameters was used to simulate the RVEs of PHA granule masses. It 

treats a model as a simple linear elastic problem and can be applied to most materials. It is 

thus a straight forward method to establish the behaviour of the PHA models, and the 

representativeness of the RVEs used. This chapter will demonstrate the following: 

1. Validation of the RVEs using the strain energy output. As well as the energy conservation 

during the simulation process to validate the FE analysis. 

2. The simulation results of the FE linear elastic model applied to REVs of PHA granule 

masses 

Thus, it is important to input the appropriate model parameters which are 

 Material properties such as the elastic modulus and density 

 Appropriate boundary conditions 
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4.2.2 Selection of Boundary Conditions and Material Parameters 

4.2.2.1 Strain Levels 

On application of force bone tissue and bone graft substitute materials deform. It is these 

deformations and the fluid flow they create that are responsible for the mechanical signalling 

that directs bone remodelling. In physiology, all forces experienced by bone and bone grafts 

are expressed as micro strains. A 1,000 𝜇𝜀 applied to a dimension is equal to a 0.01% change 

in the original value of the dimension (Lanyon et al., 1975). Research suggests that micro-

strains ranging between 1,000 to 3,000 are anabolic inducing bone remodelling (Turner et al., 

1994), (Reijnders et al., 2007). Typically, habitual strains that maintain the bone’s homeostasis 

do not exceed 400 𝜇𝜀. These small strains are thus unable to induce further bone remodelling 

and can only maintain tissue mass (Klein-Nulend et al., 2012).  

Bone remodelling through mechanical stimulus can be achieved via low strain conditions if 

their frequency is amplified. The opposite is true for high strain conditions (Ozcivici et al.,2010), 

(Price et al.,2011). Reports have demonstrated that strains of 3,400 𝜇𝜀 have induced an 

increase in bone production by osteoblasts, whilst micro-strains larger than 5,000 𝜇𝜀 can 

induce fractures, the severity of which is dependent on the health condition of the bone tissue. 

However, it was reported that higher levels of strains of up to 10,000 𝜇𝜀 can induce desired 

bone responses, without any significant damage, given the method of mechanical strain 

application such as in a four-point bending tests (Robinson et al., 2006).  

In fact, the same study realised that there are various strain conditions for bone cell stimulation 

that can vary between the two extremities of high and low strains, depending on the 

mechanical application method. Strains caused by pulsating fluid flow, had a stimulating effect 

on bone tissue at levels lower than 800 𝜇𝜀. Fluid shear strains however, evoked bone 

stimulation at levels higher than 800 𝜇𝜀.   

Higher strains of 1,000 𝜇𝜀 and 10,000 𝜇𝜀 were reported as the lower and upper thresholds for 

the four point bending tests. These variations in the observed values are due to the different 
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mediating mechanical transduction pathways activated in accordance with the test mode and 

strain applied (Hughes-Fulford, 2004). The phenomenon of strain amplification can explain 

how low levels of applied strain can have an effect on the stimulation of bone growth in a 

similar way to the effect of applying high strains. Within the bone matrix, strains were found to 

amplify locally at the osteocyte lacuna, with evidence suggesting an amplification of up to three 

times the original applied value, due to the porous nature of bone tissue (Bonivtch et al., 2007). 

PHA granules are porous structures similar to bone tissue, and thus it is possible to encounter 

regions of amplified strain within the structure when subjected to physiological strains.   

4.2.2.2 PHA Material Parameters 

Five different total-strut porosity combinations were used each considered as a separate graft 

type. For each type, there were three RVEs of 4, 8 and 12 mm long with an 8 mm diameters. 

For each RVE, five models of different mesh densities were simulated in order to attempt a 

mesh convergence, despite the inevitable difficulty due to the complicated structures of the 

models. Tables 1 and 2 in Appendix contain the mesh densities used for each model. The 

multiple meshes were also needed to calculate the averages of strain energies and to ensure 

the accuracy of the results. A number of steps were necessary to achieve a successful 

simulation that closely resembles realistic settings and boundary conditions. The density 

values used were obtained from the Archimedes density analysis in chapter 2.  

The simulation analysis was conducted on the struts of the grafts. Thus only the contribution 

of the strut porosities was considered when assigning the Young’s moduli to the bulk. The 

strut porosity values were obtained from the SEM analysis in chapter 2.  The strut porosity 

relevant moduli were obtained by combining data from literature sources (Figure 33).  

An exponential fit was used to obtain a relationship from which values of the elastic moduli 

could be assigned to specific strut porosities as seen in Figure 33 and Table 8.  
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Table 8: Young’s moduli for the struts of PHA samples as determained from analysis  of published data 

PHA-Sample SEM measured strut porosity Calculated Young’s Modulus in GPa 

60-20 20.9 34 

60-30 24.8 26 

70-20 21.7 32 

80-20 18.4 40 

80-30 28.2 21 

  

Figure 33: Young’s modulus values obtained from literature for different levels of porosities for porous 

hydroxyapatite bone graft substitutes. An exponential fit to find a relationship from which a value for the 

elastic moduli can be calculated for the materials used in this research 
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4.3 Technical Assembly for FE Simulation 

This section details the assembly of FE models and the application of boundary conditions 

using ABAQUS (Dassault Systèmes, 2014). The models were exported to the ABAQUS from 

ScanIP as orphan meshes. This limits any further changes to the models using ABAQUS tools 

such as; mesh refinement and partitioning, due to the lack of parts associated with orphan 

meshes. Typically, the models simulated using ABAQUS are made using the same software 

or solid works with the latter allowing the models to be exported as a part. The expression 

“part” refers to the model prior to meshing. Parts are then meshed with ABAQUS tools, 

allowing for further changes if necessary.  

Despite smoothing the external surfaces of the models using the dilation tools in Scan IP 

(SimplewareTM, 2017), it was necessary to create an outer shell (skin), through which 

boundary conditions can be applied as an evenly distributed strain could not be applied as a 

boundary condition to an irregular mesh. The density of the elements tended to follow the 

contours of the materials’ architectures. This lead to an uneven distribution of the strain when 

applying it directly to the surface elements. To overcome this issue, an analytical rigid body 

was created. Analytical rigid bodies are used when a smooth surface is needed for BC 

application. They are in direct contact with the surface elements and are not included in the 

simulation. Through rigid bodies the strains and the axial boundary conditions were applied 

via reference points associated with their governing nodes.  These nodes also act as their 

centre of mass and are allocated an arbitrary mass value much larger than the mass of the 

material. This is to eliminate any noise effect during the simulation process. The rigid bodies 

act as the metal plates used to compress the granules during the mechanical compression 

tests (Figure 34). The models were created to replicate the conditions of the mechanical test 

discussed in chapter 2.  
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In light of the previous discussion, the strain applied to the models should fall within 

physiological strain levels mentioned earlier. After various attempts to run simulations using 

low physiological strains. It was evident that lower strains were problematic. The lowest strain 

level applied that registered with the software and produced an output was the 5,000 𝜇𝜀 

microstrain for the 8 and the 12 mm RVEs only. Despite of the registered numerical output, 

there were no strain or stress distribution registered on the structures. The lack of coloured 

contours associated with the porous structure, does not allow for studying the stress and strain 

fields caused by the porosity. In order to study the fields, the strain applied was increased 

gradually. The strains applied were as follows 5,000𝜇𝜀, 10,000 𝜇𝜀, 12,000 𝜇𝜀  , 25,000 𝜇𝜀 and 

50,000 𝜇𝜀.  

 

 

 

Figure 34: The figure demonstrates the two analytical rigid bodies as discs on the top and the 

bottom of the model acting as compression plates. The image also shows the reference points 

indicated as RP, BCs and arbitrary masses can be applied to the nodes of the reference point. 

This method ensured an even BC application.  
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It was evident that the thin outer layer created using ScanIP for the application of boundary 

conditions was causing a problem during the simulation when low strains were applied. It 

appeared that this skin like layer produced some sort of a shielding effect, not allowing the 

strain applied to be distributed through the porous structures as should be the case. Figure 

35, demonstrates the shielding effect and how it diminished with increasing the strain applied 

from 5,000 𝜇𝜀 to 50,000 𝜇𝜀.  
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Figure 35: Figure (a) The figure demonstrates the shielding effect the thin outer layer created which did not allow the lower applied micro strains to distribute through the structure 

of the model. Figure (b) shows how increasing the strain eventually allowed the strain to bypass the outer layer and distribute within the model’s porous architecture, which permits 

the investigation of stress and strain fields and the effect of porosity upon their distribution within the structure.  
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Therefore, to demonstrate the effect of the porosity on stress and strain distribution within the 

porous structure. The results demonstrated in this chapter will be from the models simulated 

at 50,000 𝜇𝜀. This level of strain holds no physiological significance, as it is very high. 

However, it is the best strain level to demonstrate the distribution of stresses and strains 

through the body of the model. Equivalent physiological values of output stresses and strains 

at 5,000 𝜇𝜀 were obtained through the following procedure: 

 The output stresses and strains were plotted against the micro strain values applied 

for all the models.  

 A relationship that allows the conversion of the output stresses and strains from the 

50,000 𝜇𝜀 models to their equivalent at the lower micro strain level of 5,000 𝜇𝜀 was 

obtained using a linear fit.  Figures 36 and 37 demonstrate the process for the 80-20 

PHA models. The remaining model plots can be found in the appendix section A2.  

 

 

 

  

Figure 36: Plot of the averaged outputs of Von Mises stresses for the 80-20 PHA models 

at 12 mm as obtained from ABAQUS, against the microstrain applied. A linear fit was 

added to obtain a relationship used to convert the Von Mises Stress outputs for the 

material at 50,000 𝝁𝜺 to their equivelant at 5,000 𝝁𝜺.  
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Figure 37: Plots of Maximum and Minimum axial output strains as obtained from ABAQUS 

plotted against the micro strain applied for the 8020 PHA models. A linear fit was added to 

plots to obtain a relationship for the convergence of the output strains from the models of 

50,000 𝝁𝜺 to their equivalent at 5,000 𝝁𝜺.  
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4.4 Energy Validation for The Simulated RVE Models 

This section includes the plots of averaged output strain energies vs output strain; these are 

known as energy profiles. The profiles are used to validate the RVE sizes as energetically 

acceptable representatives of the material in accordance with the Hill-Mandel conditions in 

chapter 1. These profiles provide a quantitative demonstration of the change in strain energy 

as a result of the change in the size of the model recorded. 

The other type of energy profiles included in this section are energy conservation plots known 

as; simulation energy profiles. These are typically used to validate any simulation. These 

profiles are provided by the software to help validate the reliability of simulations. To deem a 

simulation valid and its results reliable, it must demonstrate that it has conserved its energy 

throughout its running time. The total energy of the system known as ETOTAL, must be 

constant at zero at all times. A valid energy profile must also demonstrate minimal energy 

losses. This condition is true for both static and quasi static models (Dassault Systèmes, 

2014). 

Ideally an energy conservation profile should have values for the artificial energy, ALLAE; 

which is the energy the model dissipates to control the deformation, particularly hour glassing 

deformation, which can be problematic if excessive as any particular energy that is registered 

as artificial is deemed non-recoverable by the software. A typical approach to determine the 

excess distortion is to compare the artificial energy with the internal energies of the models, 

as the relationship between the two means that if a lot of energy is needed to control the hour 

glassing it is lost from the strain energy.  

This comparison is calculated from the ratio of the artificial energy to the strain energy, in 

accordance with the equation (Dassault Systèmes, 2014). 

                                                    𝐴𝐿𝐿𝐼𝐸 = 𝐴𝐿𝐿𝐴𝐸 + 𝐴𝐿𝐿𝑆𝐸                                                       

With 𝐴𝐿𝐿𝐼𝐸 being the internal energy of the model, 𝐴𝐿𝐿𝐴𝐸 the artificial strain energy, 𝐴𝐿𝐿𝑆𝐸 

the strain energy (Dassault Systèmes, 2014). However, having made the mesh in a different 
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software and exported it as an orphan mesh, the software (ABAQUS) couldn’t register the 

artificial energies if they existed, and thus the 𝐴𝐿𝐿𝐴𝐸 value equals zero in all outputs. 

Therefore, and in order to demonstrate the extent of the stability and validity of the models 

and the strain energies recorded, the approach was altered slightly to show the contribution 

of the strain energy to the internal energy in order to demonstrate that, despite of the 

unavailability of the 𝐴𝐿𝐿𝐴𝐸. 

To further test the validity of the models; the extent of conversion of the external work done 

on the models 𝐴𝐿𝐿𝑊𝐾, and the percentage of its conversion to strain energy 𝐴𝐿𝐿𝑆𝐸, should 

also be considered. This was investigated for every model simulated. Ideally, most if not all 

the work done on a model should be converted to strain energy. It is understandable that a 

total conversion is not feasible due to various factors such as the model’s complexity, the 

mesh quality and element deformation throughout the simulations. All the energy profiles in 

this section of the chapter will be for the 12 mm models simulated under 50,000𝜇𝜀. The 

remaining validation profiles for the rest of the model sizes are included in the appendix section 

A-4, alongside the percentage conversion values.  
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Energy Profiles for the 80-20 PHA RVE Models  

 

 

 

 

  

 

Figure 38: Left, the averaged strain energies of the simulations vs their strain for all model (RVE) sizes of the 80-20 PHA models. The profile shows a clear increase in strain energies 

for given strains in response to the increase in RVE model sizes for the material.  The profile provides an energetic validation for all the RVEs. Right, the energy conservation profile 

as extracted from ABAQUS for the 12 mm RVE models only. The profile provides validation to the simulation as the total energy is zero throughout the simulation. A 100% of the 

ALLSE converting to ALLIE, and 96% of ALLWK converting to ALLSE. Data gathered from simulations under 50,000 𝝁𝜺. 
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Energy Profiles for the 80-30 PHA RVE Models 
 

 

 

 

 

 

Figure 39: Left, the averaged strain energies of the simulations vs their strain for all model (RVE) sizes of the 80-30 PHA models. The profile shows a clear increase in the strain 

energies for given strains in response to the increase in RVE model sizes for the material. The profile provides an energetic validation for all the RVEs. Right, the energy conservation 

profile as extracted from ABAQUS for the 12 mm RVE models only. The profile provides validation to the simulation as the total energy is zero throughout the simulation. A 100% of 

the ALLSE converting to ALLIE, and 97% of ALLWK converting to ALLSE. Data gathered from simulations under 50,000 𝝁𝜺. 
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Energy Profiles for the 70-20 PHA RVE Models 
 

 

 

 

 

 

Figure 40: Left, the averaged strain energies of the simulations vs their strain for all model (RVE) sizes of the 70-20 PHA models. The profile shows a clear increase in the strain 

energies for given strains in response to the increase in RVE model sizes for the material.  The profile provides an energetic validation for all the RVEs. Right, the energy conservation 

profile as extracted from ABAQUS for the 12 mm RVE models only. The profile provides validation to the simulation as the total energy is zero throughout the simulation. A 100% of 

the ALLSE converting to ALLIE, and 97% of ALLWK converting to ALLSE. Data gathered from simulations under 50,000 𝝁𝜺. 
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Energy Profiles for the 60-20 PHA RVE Models 

 

 

 

 

 

 

Figure 41: Left, the averaged strain energies of the simulations vs their strain for all model (RVE) sizes of the 60-20 PHA models. The profile shows a clear increase in the strain 

energies for given strains in response to the increase in RVE model sizes for the material.  The profile provides an energetic validation for all the RVEs. Right, the energy conservation 

profile as extracted from ABAQUS for the 12 mm RVE models only. The profile provides validation to the simulation as the total energy is zero throughout the simulation. A 100% of 

the ALLSE converting to ALLIE, and 97% of ALLWK converting to ALLSE. Data gathered from simulations under 50,000 𝝁𝜺. 
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Energy Profiles for the 60-30 PHA RVE Models 
 

 

 

Figure 42: Left, the averaged strain energies of the simulations vs their strain for all model (RVE) sizes of the 60-30 PHA models. The profile shows a clear increase in the strain 

energies for given strains in response to the increase in RVE model sizes for the material apart from the 8 mm models which fell short with incomplete simulations. The profile 

provides an energetic validation for all the RVEs. Right, the energy conservation profile as extracted from ABAQUS for the 12 mm RVE models only. The profile provides validation 

to the simulation as the total energy is zero throughout the simulation. A 100% of the ALLSE converting to ALLIE, and 92% of ALLWK converting to ALLSE. Data gathered from 

simulations under 50,000 𝝁𝜺. 
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The Energy plots for strain energies vs strains for all the models clear the RVEs as 

energetically valid representatives of the grafts. The shortfall of the 60-30 models at 8 mm is 

believed to be due to the simulation not going to completion rather than the size (Figure 42).  

The energetic validity of the 4 mm and 8 mm models is not sufficient to accept the stress and 

strain field outputs of their models as reliable, as they were affected by the skin shielding. The 

outer layer for the shorter models seemed to shield their structures and thus not allowing the 

for the full extent of stress and strain distribution as is the case for the larger models of 12 

mm, which are more stable and thus considered as the most reliable in this study. 

The energy conservation profiles in this section are for the 12 mm models only for the reasons 

discussed previously. The rest of the profiles are found in the appendix section A-4. All the 

energy profiles for the 12 mm models show simulations that run into completion reaching 1.0 

on the x-axis. The total energies ETOTALs of all models remained at zero throughout the 

duration of the simulations, including the incomplete ones. Ideally most if not all the work done 

on the model should be converted to strain energy. It is understandable that a total conversion 

is not feasible due to various factors such as the extent of the model complexity and the mesh 

quality and its deformation throughout the simulations. Most of the work done 𝐴𝐿𝐿𝑊𝐾 was 

converted to strain energies ALLSE throughout the RVE models. The average percentage of 

work converted to strain energy is 96% for the 12 mm models, 94% for the 8 mm models and 

92% for the 4 mm models. This could suggest that the increase in material volume associated 

with the increase in length scale provides more structural stability that reflects on the 

simulation of the material with a better 𝐴𝐿𝐿𝑊𝐾 to 𝐴𝐿𝐿𝑆𝐸 conversions.  

The porous structure complexity of hydroxyapatite does not decrease with the increase in 

scale however, there is more meshed material associated with this increase which may be the 

reason for the healthier conversion associated with the Larger scales. More meshed material 

allows for less distorted elements. Within the shorter models, a large fraction of the elements 

faces the sudden change from material to pore, which is similar to the larger ones however, 

with more elements covering the solid structure than is the case for the shorter models.  
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The high conversions indicate that the all the models can be considered as stable. More 

stability could be achieved through better meshing techniques and a more sensitive software, 

and if possible through picking hexahedral elements rather than tetrahedral or a hybrid of both. 

The change in strain energy as a response to change in size indicates that energetically the 

RVEs are valid for simulation purposes. In order to validate the simulations. Energy output 

plots of the models were presented. The RVEs were all valid as models representing the 

material. A shortfall of the 8 mm models of the 60-30 was due to the simulations not able to 

complete. The 60-30 material is a dense material with a complicated porous structure. Cutting 

it may not have been the best option. For future studies RVE sizes should be scanned at the 

sizes of interest rather than cut to maintain the integrity of the granules. The energetic validity 

of models as RVEs for hydroxyapatite does not qualify all of them to produce reliable results. 

As this research shows, the shorter RVEs are more susceptible to the influence of the outer 

layer created to apply boundary conditions. This was not the case for the larger models of 12 

mm. For future simulations larger models should be used. The thin outer layer should be 

avoided and a method through which boundary conditions can be applied to each node should 

be used in a similar manner to discrete element analysis. 
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4.4.1 Mesh Convergence  

Mesh convergence studies are typically applied to judge the level of mesh refinement 

necessary. Usually a simulation will start with a coarse mesh which is then refined until the 

output value is unaffected by the change in mesh density. This should be consistent for at 

least three mesh densities, where the output starts to converge to a consistent value, which 

will indicate that the simulations are producing mathematically accurate solutions.  

It was not possible to start with coarse meshes. It was also not feasible to insert much control 

on the number of elements during refinement due to the limitations of the ScanIP software 

which employs a leaver for mesh refinement. It was expected that the models do not 

demonstrate a typical convergence for the following reasons: 

1. The structure is complicated, porous and contains irregular edges 

2. The mesh is not structured and the shapes of certain areas in the model can give rise 

to element distortion during simulation 

3. There were only 5 mesh densities, mesh convergence could have occurred if a wider 

range of mesh densities were used.  

The lack of a mesh convergence however, is not a detrimental factor for this study for the 

following reasons:  

 The mesh densities used are fine and very dense  

 The models have satisfied the energy conservation validation. 

 The stress outputs are similar to the mechanical test values obtained and thus the 

models are considered valid  

Attempts at mesh convergence can be found in the appendix section A-5.  
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4.4.2 Validity of RVEs as FE Models 

The stress and strain field results in this chapter will be from the 12 mm sized RVEs only for 

the following reasons 

 Although the shorter RVEs were proven to be energetically valid as demonstrated in 

section 4.4 of the chapter through their strain energy. During simulation, they seemed 

to show less stress and strain concentrations with the stresses and strains being more 

global. The outer skin applied to enable uniform BC application, provided protection 

for the inner structure (Figure 43). Larger models however, have a larger material 

volume to skin ratio and thus the skin had less of a masking effect resulting in a more 

representative and realistic distribution of stresses and strains through the porous 

structures. This infers that the larger models are better representatives of the real 

scenario during loading and thus considered to be the most effective cut size for 

evaluation of stress and strain distributions through structures. 

 The stress and strain output values seen in the following section (section 4.5) do not 

always maintain a linear increase with the model size increase (Figures 44 to 47). This 

could be due to various factors such the skin effect and samples not having a uniform 

structure after cuts.  
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Figure 43: The images from left to right are sections from the 4 mm, 8 mm and 12 mm models respectively of the 80-20 models at 5000 𝝁𝜺 micro strains (numbers after conversion 

from the 50,000 𝝁𝜺). The images show that the 12 mm cut size is the most appropriate size to use for analysis as the strains appear to distribute within the porous structure 

bypassing the thin outer layer.  
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4.5 Application of The Linear Elastic FE Model to PHA Granule 

Masses 

As the different sized RVE models are cuts of the same graft type, which have maintained 

their porosity levels. Intrinsically models of the same porosity type have the same modulus 

due to the assumption that the strut porosity does not vary. The stress output from the finite 

element analysis presented in this section show that the models at different sizes may not 

extrinsically act like materials of the same modulus, and thus the stress change with the 

increase was not always linear as seen in the following figures. This is due to the random 

arrangement of pores within the structure. This is to be expected with cuts as they contain 

different regions of the original material. Different specimens of the same material and same 

size models would give similar results due to the factor of porosity. There is also the fact that 

the controlled variable applied as a boundary condition was strain and not stress.  

Stress Output  
 

The following plots are of the averaged stress output results from the FE analysis of the 80-

20 and 80-30 models strained at 10,000, 12,000, 25,000 and 50,000 𝜇𝜀. The remaining plots 

can be found in the appendix section A-3. The plots clearly show that stress values do not 

always increase linearly in response to the increase in size. In Figure 45, at 50,000 𝜇𝜀 for the 

80-20 models, the stress dropped as the cut size increased from 4 mm to 8 mm than resumed 

rising as the model size increased to 12 mm. There were random unexplained drops in 

stresses for a number of the models of all the materials. The most stable increases happen to 

belong to the 80-30 material models, which could be due to the fact that they have a higher 

concentration of strut porosity. This can be seen in Figure 10, chapter 2 and Figure 30, chapter 

3. These findings in addition to the outer skin effect on the smaller models, which was 

discussed earlier lead to the conclusion that all the stress and strain field results in this chapter 

should be of the 12 mm RVE models only.  
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Figure 45: Von Mises avereged output from the FE analysis of the 80-20 and 80-30 PHA models at 25,000 με and 

50,000 με respectively with standard error bars. The stresses seem to steadily increase when increasing the model 

sizes for the 80-30 models. For the 80-20 models there is an increase in output stress with increase in model size as 

25,000 applied microstrains albit not as steady as models under lower microstrains. At the high applied strain of 

50,000 με the stress sharply drops at the 8 mm model size and resumes increasing for the 12 mm models. 

Figure 44: Von Mises avereged output from the FE analysis of the 80-20 and 80-30 PHA models at 10,000 με and 12,000 

με respectively with standard error bars. The stresses seem to steadily increase when increasing the model sizes for 

the 80-20 models and the 80-30 models at both levels of applied strain.  
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Strain Output 
 

This section presents the axial strain outputs obtained from the FE analysis for the 80-20 and 

the 80-30 models. The remaining plots for the rest of the materials investigated can be found 

in the appendix section A-3.  

The strain outputs show a more consistent trend then the stresses (Figures 46-47) with the 

maximum strains increasing and the minimum strains decreasing in response to the increase 

in model size. The maximum strains are positive and tensile. The minimum strains are 

negative and compressive. Both strains are output strains resulting from the micro strain 

applied as a boundary condition to the models. These output strains are the effectors in an in-

vivo environment, initiating some of the mechano-signalling events covered in chapter one. 

This trend in the output strain is expected, as the boundary condition applied, in this case a 

controlled variable during simulation is strain. The plots are of the averaged axial strains with 

standard error bars as obtained from ABAQUS.  
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Figure 46: Axial strain avereged outputs from the FE analysis of the 80-20 and 80-30 PHA models at 10,000 με and 

12,000 με respectively, with standard error bars. Both material models behave in a similar manner for both 

microstrain levels applied following the expected trend.  

 

Figure 47: Axial strain avereged outputs from the FE analysis of the 80-20 and 80-30 PHA models at 25,000 με and 

50,000 με , with standard error bars. The trend is followed by both materials.  
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4.5.1 Analysis of the Stress and Strain Fields within Simulated PHA 

Models of Granule Masses 

The models presented in this chapter have been strained at 50,000 𝜇𝜀. The output stresses 

are Von Mises stresses in Pascal’s accompanied with a contour colour plot. As the strain 

applied was uniaxial, the output strains chosen were captured in the axial direction indicated 

in the contour plot as LE33. All the outputs have been converted to their equivalent at 5,000 𝜇𝜀 

using the factors obtained from linear fits as demonstrated in Figures 36 and 37 in this chapter 

and in section A-2 of the appendix.  

The LE33 contours, help visualise the effect of the porous structure on the distribution of strain 

applied as output strain fields. Through them the regions experiencing compression and those 

experiencing tension can be identified. The results also show the regions of amplified strain. 

All of which are physiologically relevant, as they create the mechanical environment 

experienced by cells in-vivo and are responsible for kick starting mechanical signalling 

pathways.  

Through ABAQUS, the full structure of models can be investigated easily and the regions of 

interest can be zoomed into and investigated from different angles. However, images of the 

full structure are not as clear in print and the contours appear as vague colours. The size of 

the models, the widespread porosity, the fine meshes, and the depth of the regions of interests 

within the structure all contribute to the inability to capture the true effect of the strain applied 

on the architecture of the models. To overcome this, and to showcase the contours the 

research needs to present, the stress and strain field results will be demonstrated as focused 

figures, zooming in at the locations of interest. 

Before exploring the stress and strain fields, it is useful to consider the volume fraction of the 

macro and strut porosities. The strut porosity values can be found in Table 9. The total 

porosities of the modelled grafts are 80%, 70% and 60% with hydroxyapatite present at 20%, 

30% and 40% respectively.  
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The grafts were modelled with the macro-porosity as an architectural feature. The strut 

porosity was modelled through variation in the elastic modulus of the material in the struts. 

The percentage of porosity in the struts, known as micro porosity was calculated using Eq. 8 

provided by Dr Hing, and listed in Table 9.  

% 𝜇𝑃 = % 𝑆𝑃 (
%𝐻𝐴

100−% 𝑆𝑃
)     Eq. 8 

 

Table 9: Distribution of porosity within the struts and macro pores of the PHA material specimens 

Material (Total Porosity) Porosity in struts (Micro-porosity) Porosity in macro pores 

80-20 4.5 75.5 

80-30 7.8 72.2 

70-20 8.3 61.7 

60-20 10.5 49.5 

60-30 13.2 46.8 
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4.5.1.1 Stress and Strain Field Results for the 80-20 PHA Models  

 

 

Figure 48: Figure (a) focused images of the stress fields, showing that stresses tend to concentrate at the waists (pore borders), the colour contour values are 

Von Mises stresses in Pascals. Figure (b) focused images of the strain fields, showing strain concentrations at the waists which tend to be compressive (-), the 

bulk of the struts experience tensile strain (+) as indicated by the colour contour. 
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4.5.1.2 Stress and Strain Field Results for the 80-30 PHA Models  

  

Figure 49: Figure (a) focused images of the stress fields, showing that stresses tend to concentrate at the waists (pore borders), the colour contour values are 

Von Mises stresses in Pascals. Figure (b) focused images of the strain fields, showing strain concentrations at the waists which tend to be compressive (-), as 

well as tensile (+). The bulk of the struts remain under tensile strain. 
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4.5.1.3 Stress and Strain Field Results for the 70-20 PHA Models  

 

Figure 50: Figure (a) focused images of the stress fields, showing that stresses tend to concentrate at the waists (pore borders), the colour contour values are 

Von Mises stresses in Pascals. Figure (b) focused images of the strain fields, showing strain concentrations at the waists which tend to be compressive (-), the 

bulk of the struts remain under tensile strain. 
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4.5.1.4 Stress and Strain Field Results for the 60-20 PHA Models 

 

 

Figure 51: Figure (a) focused images of the stress fields, showing that stresses tend to concentrate at the waists (pore borders), the colour contour values are 

Von Mises stresses in Pascals. Figure (b) focused images of the strain fields, showing strain concentrations at the waists which tend to be compressive (-), the 

bulk of the struts remain under tensile strain. 
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4.5.1.5 Stress and Strain Field Results for the 60-30 PHA Models 

Figure 52: Figure (a) focused images of the stress fields, showing that stresses tend to concentrate at the waists (pore borders), the colour contour values are 

Von Mises stresses in Pascals. Figure (b) focused images of the strain fields, showing strain concentrations at the waists which tend to be compressive (-) 

with some pockets of (+) tensile strains, the bulk of the struts remain under tensile strain. 
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4.6 Evaluation of Stress and Strain Field Results 

Once the stresses and strains are distributed through the structure. They tend to locate around 

the pore waists (pore borders). These are the borders and edges of pores. Figure 53, is a 

schematic demonstrating the locations of waists and nodes in PHA structures.  Stresses and 

Strains building up at the struts (the body) of the structure reaching their highest peaks at the 

waists Figures 48-52 in what can be viewed as an amplification process. The bulk of the 

material experiences a positive strain (tensile) as a response to the compressive micro-strain 

applied. This changes at the pore waists to a negative (compressive) strain.  

 

 

Effect of Total Porosity:  
 

The total porosity of the models, also known as macro porosity, are architectural features of 

the modelled granule masses. The coloured contours and the values associated with them in 

Figures 48, 50 and 51 can help investigate the effect of the total porosity levels on the 

distribution of stresses and strains.  

The results indicate the following: 

1. The stress levels demonstrated a decrease in response to the decrease in the 

percentage of total porosities for models of similar strut porosities  

Figure 53: Porous Hydroxyapatite structure showing pores, nodes and waists 
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2. The strain level demonstrated an increase in response to the decrease in the 

percentage of total porosities for models of similar strut porosities 

 

Effect of Strut Porosity:  

 

Changes in strut porosities demonstrated similar effects on the levels of stresses and strains 

as seen in Figures 48, 49 and 51, 52. However, the drops in output stresses and the increase 

in strain levels as a response to decreasing the percentage of strut porosities are higher than 

the effect seen with decreasing the total porosity (macro).  

Field Distribution 
 

The 80-30 models showed less field distribution within their structures in comparison to the 

20% models of 80% total porosity. The stress and strain fields as well as their peaks 

concentrated at the waists only. This is not the case for the 80-20 models where the peaks 

can be seen at the waists, whilst the fields covered other areas of the structure in addition to 

the waists.  

The fields of the 80-30 models occupied smaller areas of the waists than the 80-20 models. 

This means that the fields associated with the 80-30 models have a higher degree of focus. 

The contours suggest lower stress peak levels for the 80-30, yet higher strain peal levels both 

compressive and tensile. These observations could be due to the 80-20 models having the 

lowest micro-porosity volume within their struts despite of being the second highest porous 

material after the 80-30 (Table 9). The lack of high levels of micro porosity may also be 

responsible for the haphazard distribution of their fields.  

The 80-30 models have thicker struts than the 80-20 models (Figure 10), (Figure 30), as well 

as more pores within their struts.  Their thick porous struts could be providing them with the 

ability to channel the spread of stress and strain fields to more confined locations. This 

explains the inefficiency in focusing the fields within the 80-20 models, as their struts lack 

sufficient levels of micro porosity.  
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The models of 70% total porosities showed the most well distributed stress and strain fields, 

covering most of the pore waists in the structure. Strut porosities appeared to have more of 

an influence on the stress levels for the 70% models. At 20% the 70-20 models have stress 

peak values higher than the 80-30 models and close to the 80-20 models. This implies that 

the strut and micro porosities are more influential than the macro porosity. 

The 60-20 modules are the least porous modules simulated in this study and the densest.  

The 60-20 models have the second highest level of micro porosity within their struts after the 

60-30 models. Most of the structure is clear of stress and strain fields apart from a few pore 

waists scattered across the structure brought into a high degree of focus (Figure 51). The 

strain levels registered are close to the values for the 70-20 models. This could be due to their 

level of micro porosity which is only slightly higher than the 70-20 (Table 9). The total strut 

porosities of the two materials are also quite close (Table 8). This suggest that strut porosities 

are the major effectors in strain amplification.  

The change in total porosity from 70% to 60% at 20% strut porosity, had a more pronounced 

effect on the stress levels than the effect of decreasing the total porosity from 80% to 70%. 

This suggests a link between the architecture and stress levels experienced by loaded PHA 

granules, particularly for materials of low total porosity levels.  

The strain levels for the 60-30 are much higher than their 20% counterparts, and the highest 

for all the materials. The stress registered however, is lower than the 20% counterpart and 

indeed the lowest of all materials. The 60-30 models have the highest volume of micro porosity 

(Table 9) which explains the high values and degree of focus for strain peaks. 
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Summary:  

Stress and strain fields prefer the pore waists. The results indicate that the micro pores within 

the struts have a channelling effect guiding the stress and strain fields to specific locations 

within the structures of the models. Higher values of peak strains seem to belong to models 

of high levels of micro porosity within their struts. They also demonstrate the most localised 

fields and peaks of stresses and strains within their waists, confirming that micro porosities 

are indeed involved in channelling the loads within PHA structures and in amplifying the strain. 

The level of stresses and strains appear to also be subject to the arrangement of the material 

and the architecture of the model which is controlled by the total porosity and the thickness of 

the struts. The models belonging to the 70% are very interesting in their ability to effectively 

distribute stresses and strains through their structures, which could be very useful to their 

application as bone graft substitutes. 
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Chapter 5 

Application of the Non-Linear Drucker Prager 

Constitutive Model  

5.1 Introduction  

The Drucker-Prager Plasticity model is a widely used constitutive non-linear model, typically 

applied to simulate powder compaction problems. Developed by Drucker and Prager in the 

early 50’s for soil and powder metallurgy problems (DRUCKER and PRAGER, 1952), it is 

applied to model the behaviour of powders and granules during compaction as the 

particles/granules rearrange themselves to form a tightly packed dense structure, representing 

the hardening and densification during compression, as well as the friction between the 

granules or particles. The model is particularly interested in the permanent plastic deformation 

that occurs during the final stages of compression with density being the variable and the 

elastic properties inputted as a function of density (Sinka.,et al 2009). The data from the 

mechanical compression tests alongside the radial strength data from tests and literature were 

used as material parameters for the simulation as a Cap Plasticity model in the ABAQUS’s 

material’s property section. The analysis was carried out on the materials of 20% strut 

porosities only, as UCS values obtained from cylindrical specimens of the same origin were 

only available at this strut porosity (Campion and Hing, 2017). The values are necessary for 

obtaining the parameters needed for the DP model. During the compression testing of the 

PHA granules, the pressure applied does not reach a level where the granules can be 

completely conciliated as is the case for powder compaction tests typically applying the 

Drucker Prager Criteria. Powders demonstrate hardening during compression, where the 

amorphous structure becomes a hard compact (usually a pill). The characteristics of the 

resultant compact structure are a reduction in the bulk density and an increase in strength.  
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From the stress vs strain profiles presented in chapter 2 for the compression tests, the 

granules demonstrated a level of hardening which could be due to the following; 

1- The rearrangement of the granules,  

2- The breaking of some struts  

3- The collapse of some pores  

4- The sliding of granules past each other, creating a more tightly packed structure.  

The PHA models were simulated using the DP-Cap model for the following reasons: 

1. Obtaining a stress vs strain profile from the simulated models for comparison with the 

compression test results was not a computationally feasible option due to the size of 

the models. The experimental data were instead inputted as a material property to 

investigate the real behaviour of the material under a failure criterion. As the Drucker-

Prager approach uses information from the uniaxial compression tests previously 

conducted it can be applied for validation. 

2. It was found that the stress and strain output curves of linear models and deferential 

models tend to overlap (Liu et al., 2018). This suggests that the Drucker-Prager model 

output can be used in conjunction with the linear model output to describe the 

behaviour of a material.  

 

3. The Drucker Prager concept is not fully incorporated into modelling porous bio-

ceramics.  Literature is limited and usually apply the failure criteria to models with pre-

specified geometries and volume fractions of porosity, typically modelling in two-

dimensions unrealistic structures, and not on CT-scanned real three dimensional 

models (Fritsch, 2009a), (Liu et al., 2018).  
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The DP model through ABAQUS is applied to isotropic materials (Dassault Systèmes, 2014) 

. The model has a yield surface that is divided into three regions.  

1. The shear failure surface (Fs), which represents the shear flow of the granules.  

2. The transition surface, which provides a separation, and a smooth transition between 

the first and third region.  

3. The third surface, represents the hardening occurring during compaction which is also 

the inelastic plastic segment, known as the cap surface Fc ( DiMaggio, 1971), (Drucker 

and Prager, 1952). 

Figure 54, adapted from (Han et al., 2008), demonstrates the three surfaces as well as the 

terms associated with the application of the model and the parameters necessary for its 

successful application using ABAQUS. However, these parameters are based on various tests 

that are not only extensive but technically challenging to perform on porous ceramics. These 

tests are uniaxial tension tests, tri-axial compression tests and shear tests in addition to the 

uniaxial compression tests (Shang, Sinka and Pan, 2012).  

 

 

 

Figure 54: The Drucker-Prager Cap model. The schematic demonstrates the q vs p plane featuring all the surfaces 
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The parameters needed include, the friction angle which is denoted on the graph as 𝛼 and the  

Cohesion which is  ℎ. The equation for the shear surface can be written as such, 

  𝐹𝑠 = 𝑞 − 𝑝 𝑡𝑎𝑛  𝛼 − ℎ     Eq. 9 

 

Where 𝑞 is the Mises equivalent stress and is defined as,  

 

    𝑞 =  |𝜎𝑧 −  𝜎𝑟|     Eq. 10 

 

The term  𝜎𝑧  is the applied axial stress during the compression tests, 𝜎𝑟 is the radial strength. 

The 𝑝  in the shear surface equation stands for the hydrostatic pressure stress and is obtained 

using the relationship  

                                               𝑝 =  − 
1

3
 ( 𝜎𝑧 + 2 𝜎𝑟)    Eq. 11 

 

The 𝜎𝑟 values were obtained from Brazilian disc diametral tests conducted in this research 

and from literature sources as seen in Figure 55.  
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The cap surface, which is the ellipse in the figure, describes the yield surface under hydrostatic 

pressure. This surface requires two parameters to describe it, which are the Eccentricity, and 

the evolution parameter 𝑝𝑎, these can be obtained using triaxial tests and/or axial tests that 

allow radial stress measurements. The parameters needed for all the surfaces are; the 

eccentricity, which is the ratio of the vertical axis over the horizontal axis controlling the cap 

shape and is denoted by 𝑅 in the following equations with a value between 1000 and 0.001,but 

taken as 0.001 in this study following Sinka’s approach for ceramic based materials (Sinka et 

al., 2009), the evolution parameter, which represents hardening and/or softening that is 

caused by the volumetric plastic strain and is denoted as 𝑝𝑎, the hydrostatic compression yield 

strength, which describes the volumetric inelastic strain and is denoted by 𝑝𝑏,the friction angle 

denoted as 𝛼, and the transition parameter denoted as 𝛽. Which controls the smoothness of 

the transition surface between the  𝐹𝑠  and the 𝐹𝑐 surfaces.  

 

Figure 55: Radial strength values obtained from Brazilian tests from both literature sources and tests 

conducted for the study. The relationship between porosity and radial strength obtained through an 

exponential fit.  
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The cap surface formula is given in Eq. 12;  

𝐹𝑐 = √(𝑝 −  𝑝)2 + [
𝑅𝑞

1+ 𝛽−
𝛽

𝑐𝑜𝑠𝛼

]

2

− 𝑅 (ℎ + 𝑝𝑎  𝑡𝑎𝑛 𝛼) = 0     Eq. 12 

 

And the transition surface formula in Eq. 13;  

 

𝐹𝑡 = √[(𝑝 − 𝑝𝑎)]2 +  [𝑞 − (1 − 
𝛽

𝑐𝑜𝑠 𝛼
) (ℎ + 𝑝𝑎 𝑡𝑎𝑛 𝛼)]

2

−  𝛽(ℎ + 𝑝𝑎  𝑡𝑎𝑛 𝛼) = 0    Eq.13 

 

To obtain the values necessary to carry out the simulation in ABAQUS. First. The value for 𝑝𝑎 

was obtained using the following relationship 

 

𝑝𝑎 = − 
[3𝑞𝐴+4ℎ tan𝛼 (1+𝛽−𝛽/ cos𝛼)2] 

4[1+ 𝛽−
𝛽

cos𝛼) tan𝛽
]
2 +  

     
 √9𝑞𝐴    

2 +24ℎ𝑞𝐴(1+𝛽−𝛽/ 𝑐𝑜𝑠 𝛼)2   𝑡𝑎𝑛 𝛼+8 (3 𝑝𝐴𝑞𝐴+2𝑞𝐴
2)[(1+ 𝛽−𝛽/ 𝑐𝑜𝑠 𝛼) 𝑡𝑎𝑛 𝛼]2 

4[1+ 𝛽−
𝛽

𝑐𝑜𝑠𝛼) 𝑡𝑎𝑛𝛽
]
2      Eq. 14 

 

This was achieved by substituting Eq.14 into Eq.15 to obtain the value for the shape 

parameter 𝑅 ;  

 

       𝑅 =  √
2 (1+ 𝛽−𝛽/ 𝑐𝑜𝑠 𝛼)2

3𝑞𝐴
 (𝑝𝐴 − 𝑝𝑎)      Eq. 15 
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The values for 𝑞𝐴 and 𝑝𝐴 were obtained from the plot of 𝑞 vs 𝑝, which was derived from 𝜎𝑧 

and 𝜎𝑟 . By obtaining 𝑅 , the value for 𝑝𝑎 was obtained by substituting Eq. 15 into Eq. 16 (Sinka 

et al., 2009),(Han et al., 2008).  

        𝑝𝑎 = 
𝑝𝑏−𝑅ℎ

(1+𝑅 𝑡𝑎𝑛 𝛼)
     E.q 16 

 

The 𝑝𝑏 value was determined using the original density of the granules before applying 

pressure during the compression test and working out the density from the strain value and 

knowledge of the die measurements i.e. volume occupied by granules, as 𝑝𝑏 is a function of 

the volumetric volume strain given by the relationship;  

  𝑝𝑏 = 𝑓(𝜀𝑣
𝜌
)     Eq. 17 

Where                                                          

   𝜀𝑣
𝜌

= (
𝜌

𝜌0
)     Eq. 18 

 

With 𝜌0 being the initial density of the granules prior to compression as given by the 

Archimedes tests in chapter 2, and 𝜌 the density at the final compression state calculated from 

the volume the granules occupy.  
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5.2. Elastic Properties of the Single Crystal of PHA: in The Micro-

Scale; Estimation of The Friction Angle and Cohesion Values for 

Porous PHA Ceramics from Uniaxial Compressive Strength 

Measurements 

The friction angle and cohesion parameters are critical for the equations listed. These values 

can be obtained from uniaxial compression strength values, using the multi-scale model from 

Fritsch (Fritsch, 2009) to eliminate the need for extensive testing. The process was as such, 

Compression strength values were fitted to the multi scale model adopted from (Fritsch, 2009). 

This model uses the elastic properties of single crystals of hydroxyapatite bio-ceramics, 

particularly the shear modulus 𝜇𝑐  with a value of 44.9 GPa and the bulk modulus 𝜅𝑐 with a 

value of 82.6 GPa (Fritsch, 2009). The crystal compressibility 𝜒 is the ratio between those two 

values represented by the relationship;  

    𝜒 =  
𝜇𝑐

𝜅𝑐
= 0.54     Eq. 19 

 

In order to obtain the elastic properties of the polycrystalline structure in the macro-scale; the 

stiffness of the interface between single crystals of the bio-ceramic need to be considered as 

they influence the friction angle 𝛼 and the cohesion ℎ. If the assumption is made that the bulk 

modulus of polycrystalline Hydroxyapatite 𝜅𝑝𝑜𝑙𝑦 is the same as the bulk modulus for the single 

crystal (Fritsch, 2009).  

𝑘𝑝𝑜𝑙𝑦 = 𝑘𝑐     Eq. 20 

 

The shear modulus for the polycrystal can be obtained using the relationship (Fritsch, 2009). 

𝜇𝑐

𝜇𝑝𝑜𝑙𝑦
= 1 + 3 [

5

2
 𝜅 + (

1

8
 ×

𝜇𝑐

𝜇𝑝𝑜𝑙𝑦
 + 

17𝜒 +6

4 𝜒 +57
)
−1

 ]

−1

    Eq. 21 

 

     𝜅 =  
𝐾𝑡 𝑎

𝜇𝑐
      Eq. 22 
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Where 𝐾𝑡 stands for the stiffness of the interface, and 𝑎 is the average size of single crystals. 

Using this relationship, the  𝜇𝑝𝑜𝑙𝑦 , the shear modulus for the polycrystal, can be obtained, and 

once that is obtained it becomes possible to calculate the compressibility of the polycrystal 

structure 𝜒𝑝𝑜𝑙𝑦 using the relationship (Fritsch, 2009).   

     𝜒𝑝𝑜𝑙𝑦 = 
𝜇𝑝𝑜𝑙𝑦

𝜅𝑝𝑜𝑙𝑦
     Eq. 23 

 

And the Poisson ratio for the polycrystals will be given by  

             𝜈𝑝𝑜𝑙𝑦 = 
 3−2𝜒𝑝𝑜𝑙𝑦   

6+2𝜒𝑝𝑜𝑙𝑦 
     Eq. 24 

 

Accounting for the total porosity 𝜑 to get.  

           
𝜅𝑝𝑜𝑟𝑜

 𝜅𝑝𝑜𝑙𝑦
= 4𝜒𝑝𝑜𝑙𝑦  

1−𝜑

4𝜒𝑝𝑜𝑙𝑦 + 3
     Eq. 25 

 

                 
𝜇𝑝𝑜𝑟𝑜

𝜇𝑝𝑜𝑙𝑦
= (1 − 𝜑) 

1+ 
8

9
 𝜒𝑝𝑜𝑙𝑦

1+
2

3
 𝜑+

8

9
 𝜒𝑝𝑜𝑙𝑦 (1+

3

2
𝜑)

     Eq. 26 

 

5.3 Elastic properties of porous PHA including strut porosities 

The general expression of the uniaxial compressive strength of  PHA as a function of porosity 

level is adopted from (Fritsch, 2009), as it allows the establishment of a linear relationship 

between the cohesion and the uniaxial compression strength, as such;  

 

[
3

4
𝜑 − (

𝛼

Β𝑇𝑡
)
2

] Σ2
𝑝𝑜𝑟𝑜,𝑚 + [1 + 

23−50 𝜐𝑝𝑜𝑙𝑦
2

(5𝜈𝑝𝑜𝑙𝑦−7)
2  2𝜑] Σ2

𝑝𝑜𝑟𝑜,𝑑  

+ (
𝛼

𝛣𝑇𝑡
)
2

ℎ(1 − 𝜑)𝛴𝑝𝑜𝑟𝑜,𝑚 = (
𝛼

𝛣𝑇𝑡
)
2

ℎ2 (1 − 𝜑)2      Eq. 27 
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Where 𝛼 is the friction angle and ℎ, is the cohesion, Σ𝑝𝑜𝑟𝑜,𝑑 is the deviatoric effective stress, 

Σ𝑝𝑜𝑟𝑜,𝑚 is the mean stress, 𝜑 is the total porosity and the term Β𝑇𝑡 is a proportionality factor 

and can be expressed as;  

          𝛣𝑇𝑡 = √−
1

3
 𝜅2  

𝜕

𝜕𝜅
 (

𝜇𝑐

𝜇𝑝𝑜𝑙𝑦
)      Eq. 28 

 

Assuming 𝑓𝑐 is the uniaxial compressive strength, of a uniaxial compression state, the stress 

tensor Σ is given by;  

     𝛴 =  [
−𝑓𝑐 0 0
0 0 0
0 0 0

]       Eq. 29 

Hence,  

     𝛴𝑝𝑜𝑟𝑜,𝑚 = − 
𝑓𝑐

3
      Eq. 30 

 

And the deviatoric stress tensor Σ𝑑 thus: 

𝛴𝑑 =  𝛴—𝑓𝑐  𝛪 =  

[
 
 
 
 
 −

2

3𝑓𝑐
0 0

0
1

3𝑓𝑐
0

0 0
1

3𝑓𝑐]
 
 
 
 
 

     Eq. 31 

And  

                                 𝑝𝑜𝑟𝑜,𝑑 = √
1

2
𝛴𝑑: 𝛴𝑑 = √

1

2
 (

4

9
+ 

1

9
+ 

1

9
) 𝑓𝑐2 = 

1

√3
 𝑓𝑐      Eq. 32 

 

Substituting Eq. 32 and Eq. 30 into Eq. 27 gives: 

[

3

4
𝜑 − (

𝛼

𝛣𝑇𝑡
)
2

 
𝑓𝑐

2

9
+ [1 + 

23−50 𝜈𝑝𝑜𝑙𝑦
2

(5 𝜈𝑝𝑜𝑙𝑦−7)
2  2𝜑] 

𝑓𝑐
2

3
−

2 (
𝛼

𝛣𝑇𝑡
)
2

 ℎ(1 − 𝜑)
𝑓𝑐

3
= (

𝛼

𝛣𝑇𝑡
)
2

ℎ2 (1 − 𝜑)2

]     Eq. 33 
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Fitting the experimental data from literature (Peelen et al., 1978),(Martin and Brown, 1995),  

into Eq. 33 using a MATLAB code developed by Dr Ettore Barberie employing a non-linear 

least square fit (Figure 56).  

From this fit, it becomes possible to extrapolate the uniaxial compressive strength of 

Hydroxyapatite at zero porosity 𝑓𝑐0
. The value for 𝑓𝑐0

 was found to be 666.2 MPa. When solving 

for 𝑓𝑐0
 a linear relationship between 𝑓𝑐0

 and cohesion ℎ is obtained. This relationship can be 

expressed as such  

𝑓𝑐0
= ℎ 

√−54 
2

5𝜅2 𝐹(𝜅,𝜒)𝛼2 

6+ 
2

5𝜅2 𝐹(𝜅,𝜒)𝛼2
 – 

3−
2

5𝜅2  𝐹 (𝜅,𝜒)𝛼2 

6+ 
2

5𝜅2 𝐹(𝜅,𝜒)𝛼2
= ℎ 𝐺 (𝛼, 𝜅, 𝜒)      Eq. 34 

 

Where 𝐹(𝜅, 𝜒) is a known function (Fritsch, 2009). Substituting equation Eq34 into Eq33 leads 

to Eq35, which can be fitted to the experimental data (Campion and Hing, 2017), (Figure 57). 

[
3

4
𝜑 − (

𝛼

𝛣𝑇𝑡
)
2

] 
𝑓𝑐

2

9
+ [ 1 + 

23−50 𝑣𝑝𝑜𝑙𝑦
2

(5𝑣𝑝𝑜𝑙𝑦−7)
2  2𝜑] 

𝑓𝑐
2

3
− 2 (

𝛼

𝛣𝑇𝑡
)
2 𝑓𝑐0

𝐺 (𝛼,𝜅,𝜒)
 (1 − 𝜑)

𝑓𝑐

3
=

       (
𝛼

𝛣𝑇𝑡
)
2

(
𝑓𝑐0

𝐺 (𝛼,𝜅,𝜒)
)
2

 (1 − 𝜑)2      Eq. 35 

 

Figure 56: fitting of literature data using equation 33, adopted from Eq.B.44 by Fritsch (Fritsch, 2009) 
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Figure 57: least square fit of experimental data using Equation 35, to obtain the necessary parameters α and 

h for the PHA 20% strut porosity granules for the application of the Drucker Prager Cap Model. Matlab code 

by Dr Ettore Barberie 
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5.4 Results from The FE Analysis Using The DP Criteria on Models 

of PHA Granular Masses:  

As demonstrated in chapter 3, the porosity levels were conserved throughout the RVEs, and 

in chapter 4, the RVEs demonstrated that their strain energies adhere to the Hill-Mandel 

principle. However, for applying the DP criteria, the 12 mm RVE models were the only models 

simulated for the following reasons: 

1. The findings from the simulation results in chapter 4 indicate that meaningful results 

can best be obtained from the 12 mm RVE models, due to the shielding effect of the 

artificial outer layer. 

2. For a realistic simulation the model requires a significant amount of granules present 

in the RVE. The 12 mm RVEs contain the largest amount of granules of the three sizes 

in this study.   

The Drucker Prager parameters were applied to simulate the models in ABAQUS, applying 

the same material properties, boundary conditions and applied strains as the linear model 

simulations conducted in chapter 4. The DP parameters were inputted as a subroutine in the 

properties section of ABAQUS, using the Plasticity Cap model and the Cap Hardening sub 

model options.  

As the compression test data were incorporated into the calculation of the input parameters of 

the Drucker- Prager model. The model is expected to produce outputs that are justified by the 

mechanical compression results. The output data, in this chapter in conjunction with the linear 

model results, create a more comprehensive understanding of the material behaviour under 

compressive conditions (Linear model) and its failure under those conditions (DP).     

The model as mentioned is a failure criteria module. This means that irrelevant of the strain 

applied the simulation will stop when the material fails. The output Von Misses stress values 

should thus be similar to the values obtained from literature for the stress at failure for the 

materials simulated. Incorporating the compression data from the three regions involving both 

the macro and micro porosities, provides the model with a complete behaviour profile. The 
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aim is to produce results that capture the effect of the strut porosities which are modelled 

through the input material properties as well as the effect of the architecture that is the due to 

the total porosity which includes the macro level.  

The output stresses will be presented using the same methods used in chapter 4. Through 

Von Mises stress contour plots in Pascals, with the addition of the PEEQ values. PEEQ is the 

name used by the software ABAQUS for the equivalent plastic strain (Dassault Systèmes, 

2014). It is a scalar parameter that measures the materials inelastic deformation. When a 

value above zero is registered for PEEQ it indicates that the yield strength of the material has 

been reached. Thus, the parameter is used here as a failure criterion for the models.  
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5.5 Drucker Prager Cap Model Results 

5.5.1 Results for the 80-20 PHA Models at 12 mm 

 

Figure 58: Simulation results showing the concentration of Von Mises stresses at the top and bottom corners of the cylindrical model, spreading towards the 

centre. The zoomed in images show the concentration of stresses on the waists of the pores and on the struts of the material (material body). Areas of stress 

concentration indicate the location of potential failure. The model was subjected to 50,000 𝝁𝜺. The output stress in MPa 
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5.5.2 Results for the 70-20 PHA Models at 12 mm 

 

  

Figure 59:  Simulation results showing the concentration of Von Mises stresses at the top and bottom corners of the cylindrical model, spreading towards 

the centre. The zoomed in images show the concentration of stresses on the waists of the pores with the struts remaining free of stress. Areas of stress 

concentration indicate the location of potential failure. The model was subjected to 50,000 με. The output stress in MPa 
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5.5.3 Results for the 60-20 PHA Models at 12 mm 

 

Figure 60: Simulation results showing the concentration of Von Mises stresses at the top and bottom corners of the cylindrical model, spreading towards the 

centre. The zoomed in images show the concentration of stresses on the waists of the pores with the struts remaining free of stress. Areas of stress 

concentration indicate the location of potential failure. The model was subjected to 50,000 με. The output stress in MPa 
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Table 10: Comparison of the output Von Mises Stress and UCS values from literature for PHA  

Materials 
 

Literature UCS stress ± STDV Von Mises Output ± STDV 

80-20 4.20e-1  ± 0.34 4.83e-1 ± 0.08 

70-20 1.49e+0 ± 0.54 1.35e+0 ± 0.46 
 

60-20 6.25e+0 ± 1.11 5.00e+0 ± 1.46 
 

 

All the models experience plastic deformation (damage) as they reach the stress output levels 

indicated in the colour contour plots. The output stress values appear to coincide with ultimate 

compressive strengths reported for the same materials (Table 10),(Campion, 2017). For the 

80-20 model (Figure 58), the colour contour indicates that the UCS value is achieved at the 

band between 6.45e-1 and 4.83e-1 (green), which constitutes the majority of the stress fields 

observed. This suggests that all areas experiencing the stress field are experiencing 

deformation. The contour of 70-20 (Figure 59) shows that the UCS value from literature for 

the material (Table 10), coincides with the highest band (red). The areas where the UCS is 

met are very confined, to small locations on the waists, which indicates that most of the struts 

due to the material’s ability to distribute the load did not deform as much as the 80-20 model. 

The 80-20 model is more porous with thinner struts. Therefore, causing the spread of the 

stress fields to the body of material i.e. its struts. For the 60-20 models, the stress fields are 

minimally spread (Figure 60). They are confined to only a few pore waists within the structure. 

However, as the contour plot shows, the UCS value was met at the highest band (red). A very 

small area tucked within the structure. Indicating that most of the material does not experience 

much plastic deformation. It is also the strongest material of the three.  

Figures 60-62 demonstrate that for all the models simulated using the DP model, the areas 

affected by the stress fields are located around the pores, specifically on the waists. The 

exception is the 80-20 models where the stress fields spread to include some struts as was 

the case in the linear elastic results in chapter 4. The results as seen in the figures suggest 

that the majority of the areas affected by the stress fields experience stresses approaching 

the UCS values of the material.  
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Figure 61, presents the averaged output equivalent plastic strains for all the models of 20% 

strut porosity analysed using the DP simulation model. The PEEQ values should be 

considered in conjunction with the Von Mises stress outputs.  The PEEQ values quantify the 

plastic deformation experienced by the model within the regions effected by the stress fields. 

The 80-20 models have the thinnest struts and the highest level of porosity. The 60-20 models 

have the thickest struts and is the least porous material of three simulated. However, the 

values of PEEQ registered for 80-20 and 60-20 models are both quite high in comparison with 

the 70-20 models. This suggests that 70-20 models due to their ability to spread the load they 

experience the least plastic deformation. The 80-20 models due to their thinner structure 

experience higher deformation as they have less struts. Although the stresses are well 

distributed the thin structure forces the stress fields to spread from the pore waists to include 

the struts. The high PEEQ value indicates that the material experiences high deformation due 

to its week structure (Figure 61).  

 

Figure 61: PEEQ values for the PHA models simulated using the DP failure 

Criteria. All models show values above zero indicating that the models 

experience failure under compressive conditions.  
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The highest PEEQ values were registered for the 60-20 models. Their thick structures mean 

that they have more material loaded. Their inability to spread the load as well as the other 

materials simulated forced the stress fields to smaller areas of the structure (waists). The high 

plastic deformation value suggests that the material deforms at higher stresses. This 

conclusion is supported by the Von Mises stress output values for the material.   

Summary:  

The contour plots demonstrate the following:  

 All models showed stress concentration at the corners of the cylinders. The stresses 

spread into the structure of the model with the 80-20 showing the most widely 

distributed stress fields followed by the 70-20 models and finally the 60-20 models with 

the least level of stress field distribution.  

 The stress levels are the lowest for the 80-20 models, followed by the 70-20 then the 

60-20 models.  

 The stress fields concentrated on the pore waists for all the models as is the case for 

the linear models in chapter 4. The differences are that the stress fields seem to spread 

from the corners of the cylinders inwards (Figures 58-60). The 80-20 models showed 

stress fields spreading to cover the struts, which is not the case for the rest of the 

models.  

The results suggest that the level of total porosity dictates the strength and the ability of PHA 

materials to withstand compressive strains. As they control the thickness of the struts. The 

80% total porosity models appeared to be the weakest of the models, expected to fail at the 

pore waists as well as the struts at low stresses. The 60% models appeared to be the strongest 

due to their thick struts, yet the least effective in spreading the load. The results suggest that 

they would fail at high stresses through the waists.  
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The 70% models were the most effective in spreading the load. Due to their unique porous 

structure they are able to withstand high stresses with the least deformation. Their failure is 

expected to be at high stresses and confined to small locations within the structure. Future 

research should consider exploring this behaviour further, and the possibility of bone 

structures behaving in such manner as a function of porosity. 
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Chapter 6 

Discussion and Evaluation of the Models’ Validity for 

Simulation of Stress and Strain Fields distribution in 

PHA granule masses 

6.1 RVE Application 

Simulations were constructed on representative volume entities as linear elastic models the 

following reasons 

1- To explore the possibility of developing three-dimensional models for PHA granule 

masses generated from µ-CT scans in order to simulate their complex geometry.  

2- To investigate the distribution of stress and strain fields within three-dimensional PHA 

models with various combinations of total and strut porosities. 

3- To investigate the applicability of representative volume entities as a tool to facilitate 

the simulations of such complex structures. 

 

It was advantageous in terms of maintaining the authentic architecture of granules to use µ-

CT scans capturing the intrinsic structure. ScanIP was used to create orphan meshes for 

volume rendered models. Orphan free meshes of tetrahedral elements increased the 

complexity of the simulations, despite additional steps of smoothing and mesh validation. 

These elements however were the only feasible option available through the commercial 

software for meshing the structures. The simulated models were able to produce output data 

that can help understand the behaviour of the material under applied strain and map both the 

stress and the strain fields within the grafts. 
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6.1.2 Energy Conservation during Simulations for Different RVE Sizes 

For a simulation to be deemed valid; the total energy of the model must be constant throughout 

the run at zero, or approaching zero for static and quasi static simulations, which was the case 

for the simulations in this study. ABAQUS provides energy profiles as outputs. The energy 

profiles for all models under the physiological strain of 5,000 𝜇𝜀 were presented (converted 

from 50,000 𝜇𝜀). The energy profiles provided by the software demonstrated successful 

energy conservation throughout the duration of all the simulations. To further test the validity 

of the simulations; profiles of the energy conversion of external work to strain energy , were 

presented and the tables of the percentage of conversion can be found in the appendix.  

It appears that ABAQUS is more suited for models with more material present, particularly for 

a model with a very complicated porous structure. This complexity does not decrease with the 

increase in scale however, there is more meshed material associated with the increase, which 

may be the reason for the healthier conversion associated with the larger scales. More 

meshed material allows for less distorted elements per model. Within the shorter RVEs, a 

large fraction of the elements per model experience sudden changes from material to pore, 

which is not the case with the larger models. Another argument for using the 12 mm models 

to present the simulation results.   

The high conversions indicate that the all the models can be considered as stable. However, 

better stability can be achieved through larger RVE sizes, better meshing techniques, a more 

equipped software, and if possible through picking elements such as hexahedral rather than 

tetrahedral elements or a hybrid of both.  
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6.1.3 Variation of Stress and Strain fields in PHA Bone Graft Substitute 

FE Models 

Stress values did always increase linearly in response to the increase in model size. This was 

found to be due to the instability of the shorter models. Which in turn was related to the thin 

outer layer added during the volume rendering stage. The outer layer is thus considered a 

defect that should be avoided in future studies by applying localised boundary conditions, or 

compensated for its effect by using large RVEs that can overcome it.  

Cutting the larger RVEs manually could have created sharp edges that influenced the 

inconsistencies in the stress outputs.  To avoid manual cutting when creating the RVEs, µ-CT 

scanning can be conducted on individual granules or smaller granule masses. RVEs can be 

built from stacking the rendered volumes, thus avoiding any disturbance to the structure. The 

advantage to this approach will be the ability to have detailed borders for the granules, which 

would allow the application of boundary conditions on the granule boundaries consequently 

creating more precise finite element models that can simulate the relations of the granules to 

each other.  Factors such as shear and crack propagation can be incorporated with this 

approach which can help develop a deeper understanding of the material behaviour.    

6.1.4 Strain Behaviour and Distribution; Influence of Strut Porosity  

Axial strains in general remained stable throughout the simulations. Peak levels of strain 

increased in response to decreasing the total porosity of the grafts. Higher strains were 

associated within models of the higher strut porosities, as can be seen with the 80-30 vs 80-

20 grafts and the 60-30 vs the 60-20 grafts. The strut porosities effect on the strain energies 

recorded is also clear (Figures 38-42). With strain Energy recorded for 80-20 models being 

higher than 80-30, and the strain energy for 60-20 also higher than the 60-30 models.  

The link made between the high levels of axial strains recorded for the materials of higher strut 

porosities could shed the light on the important role of strut porosities in the structures of PHA 

bone graft substitutes from a mechanical perspective. Strut pores are essential in providing 
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routes for the transport of signalling molecules, as well as for the nutrition necessary for their 

biological functions. Higher levels of micro porosity within the struts have been associated with 

higher levels of cell attachments in biomaterials (Bignon et al., 2003). Studies have linked high 

levels of strut porosities with increased osteoinductivity particularly at the early grafting stages 

in-vivo, whilst materials with low strut porosities demonstrate no osteoinduction irrespective of 

the chemical composition of the material (Chan et al., 2012),(Habibovic et al., 2005).  

The results from this thesis provide the mechanical evidence for the previous findings, with 

PHA bone graft substitutes of higher strut porosities experiencing higher strains than their 

counter parts of the low strut porosity groups from the same material. These strains can be 

linked to the mechano-transduction pathways, higher strut porosities cause fields of higher 

strain levels consequently stimulating the process of osteogenesis (Coathup et al., 2011), 

(Chan et al., 2012).   

6.1.5 Strain Amplification  

There is a possible mechanical explanation for the effect of strut porosities that has been 

overlooked in previous studies, which could be explained by the findings of the finite element 

analysis results in this research. High strains were found to be associated with higher levels 

of strut porosities. Strut porosities appeared to act as a route to deliver the strain applied to 

further and deeper areas within the structure creating strain amplified regions (peaks), this 

amplification was higher for PHA granules with higher strut porosities. The strain amplification 

phenomenon was mentioned earlier in chapters 1 and 4. The results from the FE analysis on 

all models support the phenomenon as seen in chapters 4 and 5. 

An example of an amplified strain is the 8.09 𝑒−2 registered for the 12 mm model at the 60-30 

models (Figure 52). This output strain is equivalent to 8,000 𝜇𝜀 when the strain applied to the 

model did not exceed 5000 𝜇𝜀. In a study conducted on cortical bone, physiological strains 

applied at a level of 1500 𝜇𝜀 were amplified near the lacunae to 7,000 𝜇𝜀 and up to 15,000 𝜇𝜀 

at some locations (Nicolella et al., 2006). These findings suggest that strain amplification is 
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due to architecture, which indicates that Porous hydroxyapatite BGSs resemble bone 

structures in their reaction to applied strain, with the porosity of the BGSs playing the role of 

the bone lacunae in the bone graft. Amplifications observed in the FE models were restricted 

to the waists. Their presence can cause micro-cracking in those areas. The micro-cracks can 

be used by the bone’s remodelling system to start a cascade of events as mentioned in the 

introductory chapter, in an attempt to resolve the issue and generate bone tissue to replace 

the cracked (damaged) region (Fernández-Tresguerres-Hernández-Gil et al., 2006), (Reilly, 

2000). 

Micro cracks have been considered as a reinforcement to Hydroxyapatite graft materials, as 

they have been shown to introduce a shielding mechanisms to the crack vicinity, these regions 

act to increase the fracture toughness of the bone graft material (Suchanek and Yoshimura, 

1998).  

These findings can have implications on the application of bone graft substitutes. As strains 

applied alongside other materials, in addition to physiological factors can indeed determine 

the reaction of the host cells to the substance. The strain- structure combination of a graft can 

potentially control the remodelling events that follow as well as the mass and quality of bone 

tissue generated as a result of those events. It is important to stress that this research 

suggests that values obtained using typical measurement approaches via strain gauges 

should not be taken as representatives of the actual local strains experienced by the porous 

structure.  

The local strains are more relevant to cellular environments and thus could possibly be the 

most important in terms of bone remodelling. Various phenomena that are associated with 

bone graft substitutes as well as bone tissue could only be understood when the global and 

local strains are taken into consideration. It is also important to mention that the mode by 

which the strain is applied can assist in achieving the goals desired in terms of bone tissue 

generation. High strains can be applied only under low frequency such as the loads induced 

by exercise on bone tissue and grafts (Nagaraja and Jo, 2014), and as mentioned in chapter 
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1, lower magnitudes of strain can potentially achieve similar results in bone remodelling if 

applied at higher frequencies, such as the strains induced by typical muscle contractions which 

can be as low as 10 𝜇𝜀 (Nagaraja and Jo, 2014) .  

The results in this study have shown that strains amplify and concentrate depending on the 

variation of structure i.e. total porosity and particularly the strut porosity. This means that 

desired rates of bone remodelling and the quality of the bone formed through the remodelling 

process can be easily achieved. This can be through applying lower strains at higher 

frequencies given the involvement of an appropriate structure with predetermined porosity 

levels and through finite element analysis results as a guide. Desired local strains can be 

predetermined for desired results.  

Prior to the application of strains in-vivo, simulation techniques can be applied to map regions 

of amplification, leading to a near accurate prediction of regions of bone remodelling.  A 

simulation dictated approach can help avoid any excessive micro-cracking or graft failure 

during future applications of porous bone graft substitutes. 

This brings the discussion to the effect of loading history on the grafts. All the FE models in 

this study can be considered as virgin models in terms of loading history. The strains applied 

during the simulations were the only strains experienced by each model conducted on static 

models. This is not a completely realistic scenario for bone grafts in-vivo. During these 

applications, there are various forms of strains such as shear and tensile as well as areas 

carrying residual strains not completely recovered. This is in addition to the possible micro 

damage caused by previous loads. These residual strains as well as micro damage can 

individually or collectively be responsible for several changes to the material’s mechanical 

response in-vivo.  

These effects were beyond the scope of this study, as the main aim was to model PHA 

granules as true three-dimensional realistic structures under compression using different 

constitutive finite element approaches. Thus, taking the loading history into consideration 
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should be a future prospect for FE analysis. This could be achieved through step simulations 

where the loading steps start from the point at which the previous loads end. These can be 

applied as initial boundary conditions (Zhao and Guo, 2014) .  

6.1.6 Contribution of Total Porosity to Strain Fields within PHA 

Granule Masses  

As demonstrated, both stresses and strains distribute similarly within PHA structures. Certain 

regions were more stressed and strained than other areas of the models. These areas were 

within close proximity to the pores (pore waists).  The strain values increased from the 80% to 

the 70% total porosity models, then increased only slightly from 70% to 60%. Confirming that 

the architectural features of the models, total porosity, have an effect on the strain levels. It is 

important to note, that the 70% total porosity group was at a 20% strut porosity only.  

The strain energies recorded for the materials do not demonstrate a very clear trend for the 

effect of total porosities as is the case for the strut porosities. These findings indicate that the 

porosities are able to control the distribution of strains within the structures of the models. The 

distribution of stresses as well as strains do not tend to vary in location as a result of porosity 

variation. They concentrate at the pore waists, which are basically the pore borders. However, 

stress and strain peaks show noticeable differences in response to porosity variation, 

particularly strut porosity.  

The nodes seem to act like channels guiding the stresses and strains to the waists. The only 

models where the stress and strain fields were not fully contained at the waists were the 80-

20 models. This seemed related to their structure having the thinnest struts and belonging to 

the group of the highest total porosity level. Their micro porosity levels are the lowest, another 

consequence of their thin struts.  

The micro pores in the struts could be the channels directing stresses and strains through the 

structure of PHA granules. This conclusion appears plausible as the models of higher micro 

porosity levels have their stress and strain fields concentrated only at focused regions of the 
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pore waists, which was not the case for the 80-20 models with the lowest micro porosity levels 

of all models simulated.  

Simulation figures in section 4.5.1 show that the models belonging to the high micro porosity 

category had the most restricted fields of stresses and strains within their waists, with the 60% 

total porosity models having their stress and strain fields confined to only a portion of the pore 

waists. The 70-20 PHA models demonstrate a behaviour that can be considered as superior 

to their counterparts as their structures seem to distribute the strain applied in a way that 

maximises its potential as a bone graft substitute and minimises the damage that may be 

induced by strains applied. Their micro porosity levels lay between the 80% and the 60% 

groups. High enough to channel the stress and strain fields to the pore waists. The difference 

between them and the other models is their efficiency in distributing the fields to cover most 

of the pore waists within the structure, spreading them more evenly. This behaviour can be 

explained by looking at how a fraction of the strut porosity (micro-porosity) changes with the 

change as the strut porosity is kept near constant.  

Findings from (Hing et al., 2005) conducted on monolithic HA BGS, show that the macro pore 

structures within the 80-20 groups of HA are about 73% of the total volume. This value falls 

down to around 65% as the total porosity drops within the 70-20 structure and continues to 

fall to 48% as the total porosity drops with the 60-20 structure. Table 9 in chapter 4 

demonstrates similar results.  

These values confirm that the 70-20 porous PHA lays in the middle of other porosities in terms 

of their micro and macro structures. Which explains their behaviour in terms of strain 

distribution that is quite intermediate when compared with other groups of the same strut 

porosities. Thus, it is highly recommended to carry out future investigations on a wider range 

of grafts of different total and strut porosity combinations in order to establish a clearer 

understanding of the mechanical trends associated with porosity levels and their categories.   
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6.1.7 Strain Distribution and Possible Influence on Bone Remodelling  

The FE analysis results regarding the influence of porosity levels on strain and strain 

distribution within the BGS structures can be linked to bone remodelling,  In a study conducted 

on HA cylinders with different strut porosity levels implanted in rabbits (Hing et al., 2004)5, 

where the bone growth was monitored at different stages of the modelling processes. The 

study found that bone growth as well as the rate of bone growth favoured PHA structures with 

higher strut porosity levels. Another study by (Coathup et al., 2011), demonstrates a difference 

in terms of bone deposition within the structures, preferring the deep macro pores for the low 

level strut porosity structures and the peripheries of macro pores for the high level strut 

porosity implants particularly during the earlier stages of implantation.  

The (Coathup et al., 2011) study postulated that their findings may possibly be linked to the 

effect the structure on the mechanical environment particularly as a result of micro porosity. 

The FE analysis carried out in this research supports the micro porosity theory.  The results 

in chapter 4, demonstrate clearly the effect of varying the level of micro porosity on the level 

of strain amplification and concentration which can indeed influence the local mechano 

environments of the graft. The study touched upon the possibility of the micro pores acting as 

a regulator for nutrition delivery. In this study, another explanation is introduced, suggesting 

that the micro pores act as regulators for strain distribution along the structures.  

The stress and strain field contours at the proximity of the pores (waists) can be linked to the 

histological findings from a study (Hing et al., 2004), where the results can also offer an 

explanation regarding the ossification patterns related to each level of strut porosity. 

Studies have demonstrated that calcium phosphate based BGSs of high strut porosity levels 

demonstrate both endochondral (bone growth replacing collagenous tissue) and 

intramembranous (Direct bone growth) ossifications within a close proximity to each other 

(Chan et al., 2012), when the expected behaviour is to have a predominantly intramembranous 

ossification (Elliott et al., 1970),(Yuan et al., 2002).  This is different than the pattern of 
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ossification found in lower strut porosity calcium phosphate-based BGSs, as they 

demonstrated more of the collagenous structures at the same time frames (Chan et al., 2012). 

Another study confirms that bone does indeed replace the soft tissue growing centripetally 

(Coathup et al., 2011) . These findings confirm the preference for using graft substitutes of 

higher levels of strut porosities. This is due to their great influence on the bioactivity of the 

material and the level of osteointegration in comparison with their counterparts (Hing, 2005) 

(Hing et al., 2004),(Chan et al., 2012). 

When investigating the strain field distributions throughout the models, the strains tend to vary 

in a way that could have different effects on cells depending on their location within the 

structure of the BGS. There are two types of axial strains observed, the first one is a positive 

tensile strain and the second one is a negative compressive strain. What is quite noticeable 

in all models that the strain acting in the same direction as the micro-strains applied are mostly 

located in the centre of the structure. The higher most positive and negative values tend to be 

located at the pore waists side by side. However, the majority of the strains within the pore 

waists are compressive (negative). Most of the models’ structures experience a positive 

(tensile) strain, which appears to be a reaction by the struts to the applied compressive strain.  

These distributions lead to the highest value of one type strain being surrounded by the highest 

value of an opposing strain, with the first being the cause for the creation of the second. This 

could be the method through which strain amplification occurs in porous ceramics. These high 

values are recognised as amplifications as they tend to be much higher than the strain applied.  

Physiological strains experienced by a BGS create an environment of strains opposing each 

other in a fashion similar to a three-point bending scenario. This scenario can only be credited 

to the structure’s vast distribution of pores both micro and macro. The strains will concentrate 

at locations at close proximity to the pores amplified through the action-reaction process.  

The location of amplified and concentrated strains can be predicted through finite element 

analysis. It is also safe to conclude that these locations which are usually at the pore 
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proximities are predominantly located at the waists. These areas as the results suggest are 

also the regions where micro-cracks can be expected to form. This conclusion is justified 

through the Von Mises contour results from the Drucker Prager analysis in chapter 5, which 

show that; the stress levels were consistent with the measured ultimate compressive strengths 

for the graft structures are located at the pore waists within the models. Where the stress and 

strain fields were found to concentrate. Future research needs to look into relating the local 

mechanical environments in BGSs to the bone growth in more detail. It is also beneficial to 

find if bone tissue experiences and distributes strain in a similar manner to Porous HA 

structures.  

6.2 Future Work  

This section will summarise the various future-work related points made throughout the thesis 

and introduce further directions for future work.   

Recommendations for Mechanical Testing  

 

Mechanical tests are better conducted on monolithic specimens, as opposed to granules. This 

allows for the accurate measurements of values such as the Young’s modulus and ultimate 

compression strength. 

For future work if possible. There should be a combination of mechanical tests carried out on 

monolithic as well as on granular specimens where necessary.  This approach can potentially 

produce output relevant to clinical applications and useful for further finite element analysis.  

 

Recommendation for Creation of RVEs 

 

1- Micro-CT scans can be taken for individual granules from which larger structures can 

be constructed 

2- The software used for volume rendering should allow for the exportation of parts to be 

meshed by the software of choice, preferably the software used for the simulation. This 

insures more control on the parts, the elements used and the element density 
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3- Software used for meshing volume renders should be able to provide a wider variety 

of elements for meshing purposes as well as hybrids as they can be more useful for 

complicated structures.  

Recommendation for Future Finite Element Analysis  

 

1- Introducing loading history into future finite element analysis of PHA  

2- Introducing a larger spectrum of total-strut porosity combinations  

3- Employing dynamic analysis through which investigations of study claims regarding bone 

sensitivity to low strain-high frequency and high strain-low frequency can be investigated 

4- In the literature review the influence of shear induced by interstitial fluid within the porous 

bone and graft structures was discussed. Shear strain is a major factor in bone 

remodelling, and simulation of its effect on PHA structures as well as the method by which 

those structures translate and redistribute such strains is very relevant to studying the bio 

mechanics of BGSs. Thus shear should be explored using an FEA approach.  

5- FE simulation of bone tissue alongside simulations of bone graft substitutes under similar 

mechanical conditions could bring to light the similarities and dissimilarities between the 

structures. This can consequently lead to a better match making between bone tissue, 

location and graft substitute.    

6- It is highly recommended to link simulation results with in-vivo findings of bone formation 

in situ. This could help develop a deeper insight into the mechanisms of mechano-

transduction, which are yet to be fully understood. As previously discussed mechano-

transduction is a major factor in regulating bone growth and remodelling, every step taken 

towards understanding more about this important method of translating mechanical signals 

into biological cues, is a step towards optimising bone graft substitutes. 
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Appendix 

A-1 Mesh densities used for simulations 

Table 11: Mesh densities for the 4 and 8 mm models 

Material RVE size in 
mm 

number of 
elements 

Material RVE size in mm number of 
elements 

80-20 4mm 400237 80-20 8mm 902586 

80-20 4mm 400385 80-20 8mm 906251 

80-20 4mm 400585 80-20 8mm 906763 

80-20 4mm 402004 80-20 8mm 924297 

80-20 4mm 424067 80-20 8mm 941684 

80-30 4mm 440255 80-30 8mm 808264 

80-30 4mm 446547 80-30 8mm 824656 

80-30 4mm 450160 80-30 8mm 833429 

80-30 4mm 452785 80-30 8mm 835439 

80-30 4mm 463820 80-30 8mm 844073 

70-20 4mm 506362 70-20 8mm 870765 

70-20 4mm 513314 70-20 8mm 903601 

70-20 4mm 513420 70-20 8mm 911064 

70-20 4mm 519640 70-20 8mm 925091 

70-20 4mm 519895 70-20 8mm 932209 

60-20 4mm 529182 60-20 8mm 846342 

60-20 4mm 533912 60-20 8mm 848579 

60-20 4mm 545185 60-20 8mm 848650 

60-20 4mm 559695 60-20 8mm 942822 

60-20 4mm 559800 60-20 8mm 941901 

60-30 4mm 445386 60-30 8mm 834177 

60-30 4mm 445848 60-30 8mm 857353 

60-30 4mm 450963 60-30 8mm 876382 

60-30 4mm 453694 60-30 8mm 880572 

60-30 4mm 464957 60-30 8mm 880684 
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Table 12: Mesh densities for the 12 mm models 

Material RVE size in mm Number of elements 

80-20 12mm 1394125 

80-20 12mm 1397184 

80-20 12mm 1397912 

80-20 12mm 1404573 

80-20 12mm 1406446 

80-30 12mm 1276469 

80-30 12mm 1282509 

80-30 12mm 1282733 

80-30 12mm 1288593 

80-30 12mm 1289850 

70-20 12mm 1180748 

70-20 12mm 1181194 

70-20 12mm 1186747 

70-20 12mm 1187673 

70-20 12mm 1192922 

60-20 12mm 985286 

60-20 12mm 986974 

60-20 12mm 1375157 

60-20 12mm 1482122 

60-20 12mm 1963534 

60-30 12mm 1022761 

60-30 12mm 1026181 

60-30 12mm 1030947 

60-30 12mm 1034643 

60-30 12mm 1428097 
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A-2 Rescaling Stress and Strain outputs with linear 

fitting 
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A-3 Stress and strain  
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A-4 Energy Conservation Profiles for the 4mm and 

8mm models  
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Energy conversion values 

Material RVE Strain applied / 𝝁𝜺 Model ALLSE contribution to ALLIE 
% 

8020 4 50000 All 100 

8020 8 50000 All 100 

8020 12 50000 All 100 

8030 4 50000 All 100 

8030 8 50000 All 100 

8030 12 50000 All 100 

7020 4 50000 All 100 

7020 8 50000 All 100 

7020 12 50000 All 100 

6020 4 50000 All 100 

6020 8 50000 All 100 

6020 12 50000 All 100 

6030 4 50000 All 100 

6030 8 50000 All 100 

6030 12 50000 All 100 
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Material RVE Strain applied Model ALLWK contribution to ALLSE 
% 

82% - Hydroxyapatite 4mm 50000 All Models 88 

82% - Hydroxyapatite 8mm 50000 All Models 93 

82% - Hydroxyapatite 12mm 50000 All Models 96 

83% - Hydroxyapatite 4mm 50000 All Models 87 

83% - Hydroxyapatite 8mm 50000 All Models 93 

83% - Hydroxyapatite 12mm 50000 All Models 97 

72% - Hydroxyapatite 4mm 50000 All Models 93 

72% - Hydroxyapatite 8mm 50000 All Models 96 

72% - Hydroxyapatite 12mm 50000 All Models 97 

62% - Hydroxyapatite 4mm 50000 All Models 94 

62% - Hydroxyapatite 8mm 50000 All Models 96 

62% - Hydroxyapatite 12mm 50000 All Models 97 

63% - Hydroxyapatite 4mm 50000 All Models 96 

63% - Hydroxyapatite 8mm 50000 All Models 94 

63% - Hydroxyapatite 12mm 50000 All Models 92 
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Section A-5 Mesh convergence  

 

 

 

 

 

 

 

 

 

 


