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Abstract

In this paper, we examine the cyclical dynamics of a Real Business Cycle model with ambiguity
averse consumers and investment irreversibility using the smooth ambiguity model of Klibanoff
et al. (2005, 2009). Ambiguity of belief about the productivity process arises as agents do not know
the process driving variation in aggregate TFP, and they must make inferences regarding the true
process at the same time as they infer the behavior of the unobserved temporary component using
a Kalman filtering algorithm. Our findings may be summarized as follows. First, the standard
business cycle facts hold in our framework, which are not altered significantly by changes in
the degree of ambiguity aversion. Second, we demonstrate a role for information and learning
effects, and show that lower initial ambiguity or greater confidence coupled with learning dynamics
lowers the volatility and increases the persistence in all of key macroeconomic variables. Third,
comparing the performance of our model to the New Keynesian business cycle model of Ilut and
Schneider (2014) with maxmin expected utility, the version of their model without nominal and
real frictions turns out to have limited success at matching the moments for the quantity variables.
In the maxmin expected utility framework, the worst case scenario instills too much caution on
the part of agents who, in the absence of a key set of nominal and real frictions, end up excessively
reducing their responses to TFP shocks.
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1 Introduction

In this paper we adopt the smooth ambiguity preferences of Klibanoff et al. (2005, 2009) to study the

cyclical dynamics of a Real Business Cycle model with investment irreversibility and labor augmenting

technology shocks. We examine the evolution of beliefs under ambiguity, information and learning

and their impact on the cyclical behavior of key aggregate variables (such as output, consumption,

investment and hours worked). In this framework, the shock to aggregate TFP evolves as a function

of a latent variable governing its persistence. Ambiguity of belief about the productivity process

arises in our framework as agents do not know whether variation in aggregate TFP is driven by a

process with high persistence and low volatility, or one with lower persistence but higher volatility,

and they must, at the same time, infer the behavior of the unobserved temporary component using a

Kalman filtering algorithm. In our framework, time-varying uncertainty shocks that emerge under

learning and ambiguity aversion interact with the irreversible nature of investment, leading to a

wait-and-see attitude in response to uncertainty shocks and in turn, creating business cycle-like

effects.

In the smooth ambiguity model it is possible to hold the agents’ information fixed while varying

their ambiguity attitude; the variation may range from extreme aversion (when it corresponds to

maxmin expected utility) through a continuum of intermediate cases to ambiguity neutrality (i.e.,

expected utility with Bayesian model averaging). This facilitates a natural way to understand the

pure effect of introducing ambiguity aversion into the environment. In essence, we are motivated by

two questions. First, to what extent the results that were achieved in matching the dynamics of the

equity premium, as studied by Collard et al. (2018), by moving from Bayesian model averaging to

ambiguity aversion in an endowment economy is replicated in explaining the cyclical dynamics of

real variables such as consumption, investment, output and hours. Second, in comparison to recent

papers that study related questions, we seek to clarify the effect of changes in ambiguity and/or

ambiguity aversion on dynamics of real variables in a neoclassical environment that is very minimally,

if at all, perturbed by frictions, to better understand the effect of ambiguity in and of itself.

Our major results may be summarized as follows. First, the standard business cycle facts hold
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in our model, and they are not significantly altered by changes in the degree of ambiguity aversion.

Following Tallarini (2000) and Backus et al. (2015), this result arises from the complete markets

assumption that underlies the allocations of the social planning problem and the precautionary

saving motives that it induces. Second, changes in initial ambiguity as measured by the degree of

informativeness of the unknown latent process driving temporary fluctuations in productivity growth

have significant business cycle effects. This demonstrates a role for information and learning in the

smooth ambiguity model.1 Holding the degree of ambiguity aversion constant, lower initial ambiguity

or greater confidence lead to significantly lower cyclical variability in investment and hours. Lower

ambiguity also leads to the lower responsiveness of output and consumption to shocks as well as

amplifying co-movement.

Third, we compare our findings with those from the New Keynesian model with maxmin expected

utility studied by Ilut and Schneider (2014).2 Based on a comparison of the model-generated moments

from their model with those in the data, we find that removing the different types of frictions in

their model has non-negligible effects on the results. In particular, a version of their model without

nominal and real frictions, which corresponds more closely to our RBC framework, has limited success

at matching the moments for the quantity variables. In the maxmin expected utility framework,

which corresponds to the limiting case of the smooth ambiguity model as ambiguity aversion goes

to infinity, agents make decisions based on the worst case distribution characterizing the TFP

process. By contrast, in our framework, agents have endogenously distorted beliefs that depend on

the properties of the unknown distributions characterizing TFP growth. In the absence of rigidities

deriving from monopolistic competition in goods and labor supply and price and wage setting by

firms of intermediate goods and by households, respectively, the worst case scenario instills too

much caution on the part of agents, who end up excessively reducing their response to shocks from

the estimated TFP process. These results indicate that the smooth ambiguity preferences together

with the endogenous sources of pessimism that this framework generates are able to account for the

cyclical dynamics of key quantity variables that the model with worst-case beliefs cannot capture.
1That learning dynamics may prove useful for generating the observed business cycle dynamics is noted by Backus

et al. (2015).
2For recent experimental evidence on discriminating between the smooth ambiguity model and maxmin expected

utility, see Cubitt et al. (2020).
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The recent literature on models with ambiguity and ambiguity aversion has examined a variety

of phenomena. A group of papers have examined asset pricing relations under smooth ambiguity

related to asset pricing and business cycle phenomena. These include Ju and Miao (2007, 2012), who

consider the implications of the generalized recursive smooth ambiguity model that distinguishes

among risk aversion, intertemporal substitution and ambiguity aversion in an endowment economy or

Jahan-Parvar and Liu (2014) and Liu and Zhang (2018), who extend this framework to a production

economy. Collin-Dufresne et al. (2016) and Collard et al. (2018) exploit learning dynamics to generate

significant effects of ambiguity on asset prices. Others have examined business cycle phenomena

under alternative assumption about the existence of real and nominal frictions; see, for example,

Bidder and Smith (2012), Ilut and Schneider (2014) or Bhandari et al. (2016). Nimark (2014) presents

a business cycle model with higher order beliefs and considers the impact of signals observed after

unusual events that increase uncertainty and disagreement among agents. In all of these analyses, the

presence of ambiguity and agents’ aversion to ambiguity is taken as a key feature of the environment,

as in our framework, and the focus of the analysis is to unravel the effects of these features on

different outcomes.

The analysis of Jahan-Parvar and Liu (2014), Liu and Zhang (2018), and Bidder and Smith

(2012) remains within a standard neoclassical environment describing investment and production.

Bidder and Smith (2012) consider a Real Business Cycle Model with a version of the multiplier

preferences that are robust to misspecification following Hansen and Sargent (2008) and find small

but significant effects on business cycle moments of time-varying volatility shocks to TFP growth. In

Ilut and Schneider (2014) or Bhandari et al. (2016), ambiguous preferences are paired with real and

nominal frictions to account for the impact of changes in beliefs on cyclical outcomes.3 Our paper

examines the implications of the smooth ambiguity model and compares them with the implications

from the the maxmin expected utility model with worst case beliefs.

In the literature on ambiguity and/or robust decision-making, the issue of the extent of knowledge

possessed by the econometrician versus agents a plays a key role; see Hansen (2007). In the New
3The concepts of ambiguity and ambiguity aversion, has also attracted considerable interest in recent years following

the Great Recession of 2008-9. Some recent examples that examine the implications of ambiguity and ambiguity
aversion for observed outcomes during the recent financial crisis include Zhou (2015), Dimmock et al. (2016) and
Boyarchenko (2012).
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Keynesian models of Ilut and Schneider (2014); Bianchi et al. (2017), survey expectations are used

to empirically discipline time variation in ambiguity in New Keynesian frameworks.4 In our model,

the agent and the econometrician possess the same information and must infer the nature of the

true TFP growth process based on past observations of TFP growth. Thus, in our analysis, the

rational expectations assumption that agents are endowed with more precise information than the

econometrician is relaxed. This unifies the treatment of uncertainty and ambiguity without recourse

to exogenous sources of data to estimate beliefs or extraneous assumptions about the knowledge

possessed by agents versus the econometrician.

The remainder of this paper is organized as follows. Section 2 describes the nature of uncertainty

and ambiguity and presents Bayesian inference of the underlying TFP process. Section 3 describes a

real business cycle model with ambiguity and ambiguity aversion. Section 4 presents the quantitative

results while Section 5 compares our results with those from a New Keynesian with maxmin expected

utility while Section 6 compares our results with those from other alternative frameworks. Section 7

concludes.

2 The sources of uncertainty

Uncertainty in this economy is assumed to be driven by the stochastic behavior of productivity

growth. Specifically, there is a long-run average growth rate of productivity, ḡ, and a deviation

from it, xt+1, which is assumed to follow a persistent stochastic process. This specification of the

technology process is similar to the models of long-run risk proposed by Bansal and Yaron (2004)

and Croce (2014); see also Collard et al. (2018). However, the business cycle effect on productivity,

xt+1, is not observed directly and moreover, may derive from two possible processes. Specifically, the
4Other papers that use survey data to identify agents’ beliefs include Bhandari et al. (2016), who consider the robust

preference model of Hansen and Sargent (2001) and extend the model to allow agents to be exposed to shocks about
their ambiguity concerns or Rossi et al. (2016), who discuss empirical approaches for constructing aggregate measures
of ambiguity/Knightian uncertainty.
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agent assumes that technology growth evolves as

gA,t+1 = ḡ + xt+1 + σAεA,t+1, (2.1)

xt+1 = ρxt + σxεx,t+1, (2.2)

where (εA,t+1, εx,t+1)′ ∼ N(0, I2) and I2 is a 2× 2 identity matrix. Given these assumptions, next

period’s technology shock is written as

At+1 = At exp(gA,t+1) = At exp(ḡ + xt+1 + σAεA,t+1). (2.3)

According to this representation, the growth rate of the technology shock between t and t+ 1 evolves

as a function of the permanent mean, ḡ, the temporary component xt+1, and some noise. At time

t, the agent has available observations on the current and past values of the technology shock, At.

However, the agent does not know the process generating xt and forms beliefs about it, given prior

beliefs at time 0 and the observations on the technology as As for s = 1, . . . , t.5

This process is parameterized using observations of aggregate TFP growth for the postwar

period. Figure 1 displays the growth rates of the factor utilization adjusted TFP series measured (at

annualized rates) for the full sample together with NBER recession dates in shaded areas.6

5The uncertainty we assume derives from the nature of latent process driving productivity growth. However, similar
formulations may be used to model uncertainty about other types of shocks such as investment-specific shocks; see, for
example, Greenwood et al. (1997) or Fisher (2006).

6For the observations on (the growth rate of) the technology shock, At, we use seasonally adjusted data on total
factor productivity (TFP) growth obtained from the Federal Reserve of San Francisco, see Fernald (2012) for details.
The data on inputs, including capital, are used to produce a real-time, quarterly series on total factor productivity
growth as the measured Solow residual. The advantages of these data are that they are adjusted to account for the
changes in factor utilization and they are at the quarterly frequency, unlike the typical annual TFP data.
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Figure 1: The growth rate of factor utilization adjusted TFP (in percentage terms) over the sample
1947:2-2015:4
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This figure shows that there have been significant variations in the average growth rate of

productivity and its volatility over the sample period. As Gordon (2015) and others have noted,

there has been a secular decline in TFP growth in that average TFP growth has declined in the

post-1980’s relative to the pre-1980’s period from 1.78% to 0.88% for the adjusted TFP growth series,

measured at annualized rates. There is also a decline in the variability of TFP growth after 1980 but

this is not as large as the decline in the average quantities.7

Consider the inference process of an agent who is a Bayesian learner regarding the properties

of the unknown TFP growth and who faces these data. To exploit the business cycle effects in the

TFP growth process, the agent is assumed to be situated in 1977, which implies that the agent

has roughly 30 years of data to infer the parameters of the model in equations (2.1-2.2).8 This

corresponds to the part of the data set prior to the occurrence of the potential (ex-post) structural

change in the observed TFP process. As the agent is a Bayesian learner regarding the distribution of

the underlying parameters, s/he infers the values of the persistence/volatility pairs using a Bayesian

rule by combining prior beliefs with the data, i.e. prior distributions of the parameters together

with the likelihood function to form posterior distributions. The agent’s ignorance about the model

parameters is modeled using non-informative prior distributions about the model parameters. The

estimated posterior distributions of the model parameters are displayed in Figure 2.
7Specifically, the standard deviation of adjusted TFP growth has fallen from 3.75% in the pre-1980’s period to to

2.94% in the post-1980’s period. Similar findings hold for the unadjusted TFP growth series, which are not reported for
the sake of brevity.

8See Collard et al. (2018) for a similar setup.
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Figure 2: Parameter distributions estimated using the TFP growth process
ḡ σ2
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Figure 2 shows that the distribution of the model parameters are precisely estimated except

for the persistence parameter, suggesting that the agent can infer the parameters ḡ, σ2
x and σ2

A by

using the posterior distributions. However, the ambiguity confronting by the agent stems from the

persistence parameter (and therefore, from xt) as the persistence parameter ρ covers a wide range of

values between 0 and and 0.90 with high probability. This also indicates the difficulty to pinpoint the

exact value of the persistence in the TFP growth process. To see this further, next, we estimate the

models for given values of ρ covering this range, i.e. ρ = 0.25, 0.30, 0.65, 0.70, 0.85, 0.90. The results

are displayed in Table 1.

Table 1: Posterior results for the model using TFP-util for different values of ρ using the
sample of 1947-2 : 1977-4

ρ 0.25 0.30 0.65 0.70 0.85 0.90
ḡ 0.469 (0.086) 0.469 (0.086) 0.469 (0.086) 0.469 (0.086) 0.469 (0.086) 0.469 (0.086)
σA 0.945 (0.075) 0.946 (0.071) 0.949 (0.063) 0.950 (0.063) 0.952 (0.062) 0.953 (0.062)
σx 0.046 (0.120) 0.044 (0.110) 0.056 (0.080) 0.054 (0.073) 0.040 (0.049) 0.033 (0.040)
Max. Like. -167.40 -167.40 -167.40 -167.40 -167.40 -167.40
Mar. Like. -169.70 -169.73 -170.16 -170.20 -170.32 -170.38

Note: The results show the posterior means and posterior standard deviations (in parenthesis) of the model
parameters in (2.1)-(2.2) (evaluated in percentage terms). The inference was carried out with 60,000 draws
where the first 10,000 are used as burn-in sample. We kept every 5th draw, which yields a sample of 10,000
draws from the ergodic distribution. Max. Like. refers to the maximized likelihood value of the models,
whereas Mar. Like refers to the marginal likelihood value of the models, i.e. independent of the specific
parameter values except the value of the ρ.

Table 1 provides important insights regarding the ambiguity the agent is facing. While the

estimated value of the ḡ remains unchanged, there are some rather minor changes in the estimates
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of the variance parameters. Regardless of the values of the ρ ranging from 0.20 to 0.90, the

values of (logarithm of the) maximum likelihood, which is computed using the posterior mode

of the distributions, do not change at all. Hence, different processes depending on the value of

persistence parameter yield the same likelihood.9 This implies that the agent (and, by analogy, the

econometrician) faces ambiguity about the process stemming from the fact that the value of the

persistence parameter cannot be inferred precisely.

2.1 Beliefs

The evidence in the previous section suggests a natural way to model the ambiguity that agents are

facing. This involves assuming that agents are unsure about the value of the persistence parameter

that determines the evolution of the latent productivity process, which they believe could be high

(ρh) or low (ρl). For a given (xk,t, ρk) for k = l, h and the current observations, the probability

distribution over gAk,t+1 is given by

gAk,t+1 ∼ N(ḡ + ρkxk,t, σ
2
Ak

+ σ2
xk

). (2.4)

which is the first-order uncertainty the agent confronts as discussed earlier.

Denote by ηt as the agent’s belief about the true DGP denoted for the low persistence process with

ρ = 0.30 relative to the one with ρ = 0.85. This is computed using the agent’s updating mechanism

after observing data on the actual TFP growth process.10 The sequence of ηt’s is computed over the

period starting from 1947:12 until 2015:4 using the parameter setup as shown in Table 1.
9We also compute the (logarithm of the) marginal likelihood values of the models. Note that the marginal likelihood

is computed by integrating out the parameter distributions taking parameter uncertainty into account. Therefore,
it provides a precise metrics of model probabilities as it is independent of the parameter values except the value of
persistence parameter, ρ. The changes in the marginal likelihood values are very minor, only to the scale of 0.60 in
terms of the log-differences.

10The steady state Kalman filter is used to compute the beliefs, the details of which are provided in Section B of the
Supplementary Material.
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Figure 3: Evolution of the probability of the model with ρ = 0.30 being the true DGP over the
sample 1947:2:2015-4
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Figure 3 displays the evolution of these beliefs. In line with the results so far, the probabilities

attached to each separate process vary in a band around 0.50-0.55, with some tendency to increase

above this value towards the end of the sample. This suggests that there is very little learning that

is occurring over the sample period, though there is an increase in the probability attached to the

low persistence process in the run-up to the 2008 global financial crisis.

Figure 4: Filtered values of the deviations, xt, from the long-run over the sample 1947:2:2015-4
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Filtered values of xt for the DGP ρ = 0.85, x̂h,t

-.03

-.02

-.01

.00

.01

.02

-.03

-.02

-.01

.00

.01

.02

50 55 60 65 70 75 80 85 90 95 00 05 10 15

The two panels in Figure 4 further show the time series of the filtered means, x̂l,t and x̂h,t (in

percentage terms) estimated using data on actual TFP growth. The filtered means tend to decline

during the recessions of the 1970’s and 1980’s as well as during the global financial crisis of 2008. This

decline is particularly severe for agents’ beliefs regarding the cyclical mean of the high persistence
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process, x̂h,t. This is a priori evidence for the existence of a role for ambiguity in agents’ decision

problem. The reason is that an ambiguity-averse agent endogenously behaves as if the uncertainty is

more persistent and severe following negative shocks than in normal times.

These results motivate the notion of second-order uncertainty confronted by the agent, which

arises from the fact that agent cannot distinguish which process xk,t is drawn from. The support of

the second-order distribution is a union of two component sets, {ρlxl,t|xl,t ∈ <} and {ρhxh,t|xh,t ∈ <}.

The agent’s prior belief ascribes a measure to each component sets.11 The agent updates her beliefs

according to Bayes rule, based on the history of growth realizations and under the assumption that

the economy conforms to one of the two processes described above. Let x̂k,t ≡ E[xt|gAk,1, . . . , gAk,t]

denote the expectation of xk,t, conditional on the history of growth rates up to t, i.e. filtered values of

xt, if the beliefs were updated assuming ρ = ρk is the data generating process. The agent’s posterior

beliefs are described by a measure on the first component set given by ηt ×N(x̂l,t,Ωl) and that on

the second by (1− ηt)×N(x̂h,t,Ωh), where Ωk, k = l, h denotes the steady state variance associated

with the Kalman filter based on the process with ρ = ρk. Hence, the agent’s posterior beliefs may be

summarized by the tuple µt = (x̂l,t, x̂h,t, ηt).

To summarize, ambiguity is the agent’s uncertainty about the probability distribution governing

the productivity process. While she knows the form of the distribution characterizing productivity,

she does not know values of the persistence parameter, ρ, and the latent component of productivity,

xt, at any point in time and therefore, does not know the mean of the distribution generating

productivity growth next period. In the framework of the smooth ambiguity model, this ambiguity

is expressed as a (second-order) probability distribution over the values of (ρ, xt). The prior (or

second-order probability) belief is the initial ambiguity. The ambiguity evolves with observations on

productivity growth, as the agent learns, by adapting the prior belief to the observations. Hence,

evolution of ambiguity is formally expressed by the sequence of posteriors. By exogenously changing

how uncertain (alternatively, how informative or how confident) the prior belief is, the comparative

statics of changes in the initial ambiguity ascribed to the agent may be traced out. In this framework,

the evolution of ambiguity is endogenous, it is only the specification of the initial ambiguity, the
11The measure on the first component is given by η0×N(0, σ2

0) and that on the second component by (1−η0)×N(0, σ2
0).
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prior, that is exogenous. As ambiguity evolves, endogenously, it may increase or decrease.12

3 A Real Business Cycle Model with ambiguity aversion

We now embed this process of productivity growth and beliefs into a Real Business Cycle model with

ambiguity aversion and investment irreversibility to understand its quantitative implications. Section

3.1 describes preferences and production, Section 3.2 describes the social planner’s associated with

the model while Section 3.3 describes its implications.

3.1 Preferences and the production technology

The economy is a standard one-sector economy where the production function of the representative

firm is given by

yt = kat (Atnt)1−a, 0 < a < 1, (3.1)

where At is the labor-augmenting technology shock as described in (2.3), kt is the beginning-of-period

capital stock and nt is total hours. The firm’s capital stock evolves as

kt+1 = (1− δ)kt + it, (3.2)

where it is gross investment and 0 < δ < 1 is the depreciation rate. To introduce real frictions into

the investment process, investment is assumed to be irreversible, it ≥ 0. In contrast to the standard

adjustment costs model, the presence of investment irreversibility leads to an endogenous cost of

adjustment that varies with uncertainty and information possessed by the firm.13

Agents’ preferences are modeled using the dynamic, recursive version of the smooth ambiguity

averse preferences developed by Klibanoff et al. (2005, 2009), denoted as KMM hereafter. This

model is based on the state space, which is the set of all observation paths emanating from an initial
12This occurs because the posterior µt is a mixture distribution (a convolution) with weights (ηt, 1− ηt). The two

components of the mixture are Gaussian distributions with different volatilities. Hence, as the weights ηt change
because of updating, the volatility of the mixture changes, i.e., posterior ambiguity changes.

13See Demers et al. (2003) for a further discussion.
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state s0. Thus, the state at date t is denoted st = (s0, s1, · · · , st), where st ∈ Υt. Agents choose

consumption/investment plans f , each of which associates a payoff to the node st in the event tree.

The agent is uncertain about the stochastic process governing the probabilities on the event tree. This

uncertainty is indexed by the parameter θ ∈ Θ, which denotes the set of unobservable parameters.

The probability that the next observation will be st+1, given that the node st has been reached on

the event tree, is given by πθ(st+1|st). The agent further has a prior µ(θ) for θ ∈ Θ.

Using the representation in KMM, the recursive smooth ambiguity preferences over plans f at

the node st are updated and represented as

Vst(f) = u(f(st)) + βφ−1
[∫

Θ
φ

(∫
Υt+1

V(st,st+1)(f)dπθ(st+1|st)
)
dµ(θ|st)

]
, (3.3)

where Vst(f) is a recursively defined direct value function, u(·) characterizes attitudes towards risk, β

is a discount factor, φ(·) is a function characterizing the agent’s ambiguity attitude, and µ(·|st) denotes

the Bayesian posterior. The model does not, in general, allow a reduction between the second-order

beliefs µ and the first-order probabilities denotes by πθ in terms of the predictive distribution for st+1,

given θ; such a reduction occurs only in the case of a linear φ which represents an ambiguity neutral

Bayesian expected utility maximizer. Klibanoff et al. (2005) show that ambiguity aversion is defined

as an aversion to mean preserving spreads in the distribution of expected utilities induced by agent’s

prior beliefs under a specific action, which corresponds to −φ′′(x)x/φ′(x); hence, a concave function,

φ, characterizes ambiguity aversion. Risk aversion, as usual, is inferred from the properties of the

function, u(·). An alternative specification of ambiguous preferences is provided by the maxmin

expected utility framework of Gilboa and Schmeidler (1989). According to this specification, agents

act as if they evaluate plans using a worst case probability drawn from a set of multiple beliefs. In

the static case, Klibanoff et al. (2005) show that the maxmin expected utility model, minπ∈ΠEΠu(C),

is a limiting case of the smooth ambiguity model, Eµφ (Eπu(C)), when ambiguity aversion goes to

infinity. An important advantage of the smooth ambiguity model over other models of ambiguity is

that comparative statics regarding ambiguity attitudes can be analyzed using the φ function, holding

ambiguity fixed. This is in contrast to the multiple priors framework where the set of priors Π in
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that model characterizes ambiguity and ambiguity attitudes.

On the other hand, the smooth ambiguity model cannot separately identify attitudes towards

risk aversion, intertemporal substitution, and ambiguity aversion. Following Kreps and Porteus

(1978) and Epstein and Zin (1989), Ju and Miao (2012) propose the generalized recursive ambiguity

utility model that allows for a three-way separation among risk aversion, ambiguity aversion, and

intertemporal substitution.14 In Sections 4 and 5, we discuss the role of risk aversion, intertemporal

substitution and ambiguity aversion for cyclical quantities and prices and present the implications of

the smooth ambiguity model relative to the model with maxmin expected utility for business cycle

fluctuations .

3.2 The social planner’s problem

Given the stochastic growth in the technology shock, the state variables for the social planner’s

problem consist of the initial capital kt, initial beliefs µt and the level of the technology shock, At.

Define the value function for the generic social planner’s problem by J(kt, µt, At).

In what follows, we assume that the current-period utility function, u, and the ambiguity aversion

function, φ, are described by the power-power specification as u(c, l) = (cν l1−ν)1−γ/(1− γ), γ ≥ 0,

0 ≤ ν ≤ 1 and φ(x) = x1−α/(1 − α), α ≥ 0.15 Define {ĉt, ît, k̂t, ŷt} = {ct/At, it/At, kt/At, yt/At}.

Under stationarity-inducing transformation, the value function for the social planner’s problem may

be expressed as J(kt, µt, At) = Ĵ(k̂, µt)A(1−γ)ν
t .

Using this relation, the indirect value function for the transformed problem is given by

Ĵ(k̂t, µt) = max
ĉt,nt ,̂it

{
(ĉνt l1−νt )1−γ

1− γ + β

1− γ

[
Eµt

(
Ext Ĵ(k̂t+1, µt+1) exp(ν(1− γ)gA,t+1)

)1−α
] 1

1−α
}

subject to ĉt + ît ≤ k̂at n
1−a
t , exp(gA,t+1)k̂t+1 = (1 − δ)k̂t + ît, lt + nt ≤ 1, ît ≥ 0 and the law of

motion for beliefs. In this specification, we restrict 0 < γ < 1 and α > γ, which ensures ambiguity
14Strzalecki (2013) shows that there is interdependence between ambiguity and the timing of the resolution of

uncertainty in models of ambiguity aversion, and that a quantitative assessment is required to disentangle the
importance of two effects, which may depend on the calibrated parameters in applications such as ours.

15This facilitates the implementation of a stationarity inducing transformation, which exists in the power-power and
log-exponential cases. See Ju and Miao (2007) and Section A of the Supplementary Material.
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aversion.16,17

The social planner’s problem may be written in an alternative by noting that the initial beliefs

of the agent are given by the tuple µt = (x̂l,t, x̂h,t, ηt)′. To describe the evolution of future beliefs,

denote by x̂(i)
k,t+1, i = l, h and k = l, h, the agent’s forecast for the one-period ahead update using a

Kalman filter which takes the model with ρ = ρk as the data generating process, when the data is

actually generated by the ρ = ρi process. Correspondingly, η(l)
t+1 (respectively, η(h)

t+1) is the posterior

probability that the low persistence process is the correct model when the low (high) persistence

process is the data generating process. Using this representation of beliefs, the indirect value function

may be expressed as

Ĵ(k̂t, x̂l,t, x̂h,t, ηt) = max
ĉt,nt ,̂it

{
(ĉνt l1−νt )1−γ

1− γ +

β

[
ηtEx̂l,t

(
Exl,t Ĵ(k̂(l)

t+1, x̂
(l)
h,t+1, x̂

(l)
l,t+1, η

(l)
t+1) exp((1− γ)gAl,t+1)

)1−α
+

(1− ηt)Ex̂h,t
(
Exh,t Ĵ(k̂(h)

t+1, x̂
(h)
h,t+1, x̂

(h)
l,t+1, η

(h)
t+1) exp((1− γ)gAh,t+1)

)1−α
] 1

1−α
}

(3.4)

subject to ĉt + ît ≤ k̂at n
1−a
t , exp(gA,t+1)k̂t+1 = (1− δ)k̂t + ît, lt + nt ≤ 1, and ît ≥ 0 and given the

laws of motion for beliefs x(i)
k,t+1 and the condition determining the evolution of η(i)

t+1 for i = l, h.18

16The case with γ > 1 is not defined for the power-power specification, as the indirect value function becomes negative
in this case. However, as the parameter γ corresponds to the inverse of the intertemporal elasticity of substitution
(IES) for deterministic consumption paths, the IES is typically assumed to be greater than one in most business cycle
studies, as we discuss in the next section.

17It is possible to replicate the solution to the social planner’s problem in a recursive competitive equilibrium where
the representative consumer makes consumption and labor supply choices and holds shares and bonds in the firm while
all production and capital accumulation decisions are made by value-maximizing firms; see Altug and Labadie (2008),
Ch. 10 for a discussion. Also see Kaltenbrunner and Lochstoer (2010) for a similar decentralization scheme in the
context of an economy with non-expected utility preferences.

18See Section B of the Supplementary Material.
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3.3 The role of endogenous pessimism

To further understand the distortions inherent in the model with ambiguity and ambiguity aversion,

define the quantities Λt and ξi,t as

Λt =

∑
i=l,h

η
(i)
t Ex̂i,t

(
Exi,t Ĵ(k̂(i)

t+1, x̂
(i)
h,t+1, x̂

(i)
l,t+1, η

(i)
t+1) exp(ν(1− γ)gAi,t+1)

)−α÷
∑
i=l,h

η
(i)
t Ex̂i,t

(
Exi,t Ĵ((k̂(i)

t+1, x̂
(i)
h,t+1, x̂

(i)
l,t+1, η

(i)
t+1) exp(ν(1− γ)gAi,t+1)

)1−α


−α
1−α

(3.5)

and

ξi,t =
[(
Exi,t Ĵ(k̂(i)

t+1, x̂
(i)
h,t+1, x̂

(i)
l,t+1, η

(i)
t+1) exp(ν(1− γ)gAi,t+1)

)−α]
÷

∑
i=l,h

η
(i)
t Ex̂i,t

(
Exi,t Ĵ((k̂(i)

t+1, x̂
(i)
h,t+1, x̂

(i)
l,t+1, η

(i)
t+1) exp(ν(1− γ)gAi,t+1)

)−α . (3.6)

Let λt denote the Lagrange multiplier on the aggregate resource constraint and ϕt the multiplier

on the irreversibility constraint. Using the expressions for Λt and ξk,t, the first-order conditions can

be combined to yield the optimality conditions that characterize the choice of ct, lt and it as

1− ν
ν

ĉt
lt

= (1− a)k̂at n−at , (3.7)

λt − ϕt = Λt
∑
i=l,h

η
(i)
t

[
ξi,tExi,t

(
Ĵ1(k̂(i)

t+1, x̂
(i)
h,t+1, x̂

(i)
l,t+1, η

(i)
t+1) exp((ν(1− γ)− 1)gA,t+1)

)]
. (3.8)

Finally, the envelope condition is given by

Ĵ1(k̂t, x̂l,t, x̂h,t, ηt) = λtak̂
a−1
t n1−a

t + (1− δ)(λt − ϕt). (3.9)

The conditions in (3.7) and (3.8) require that at the optimum, the marginal rate of substitution

between consumption and leisure equals the real wage and that optimal investment is determined by

equating the cost of investment today to its expected marginal benefit tomorrow, after accounting for

the irreversibility constraint. Here λt denotes the marginal utility of consumption at the optimum.
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Given a solution for ĉt as a function of the current state variables (k̂t, x̂ht, x̂lt, ηt), the condition in

(3.7) can be solved for current nt for the current state variables as well.19

To further understand the determinants of optimal investment, define Λ0
t+1 (Λ1

t+1) and ξji,t+1

(ξ1
i,t+1) by the relevant expressions evaluated at the values of ît+1 = 0 (̂it+1 > 0). Using the first-order

conditions and the envelope condition that holds at the consumer’s optimum, the envelope condition

that holds at time t+ 1 may be written as

Ĵ1(k̂t+1, x̂h,t+1, x̂l,t+1, ηt+1) = λt+1ak̂
a−1
t+1 n

1−a
t+1 + (1− δ) min (λt+1,

Λ0
t+1

∑
i=l,h

η
(i)
t+1

ξ0
i,t+1Exi,t+1

 Ĵ1((1− δ)k̂(i)
t+1, x̂

(i)
h,t+2, x̂

(i)
l,t+2, η

(i)
t+2) exp((ν(1− γ)− 1)gAi,t+2)

λt+1


The envelope condition provides an expression for the marginal value of capital next period, which

affects the current investment decision today. In the presence of an irreversibility constraint, the

marginal value of capital depends on whether the irreversibility constraint is binding or not next

period. This occurs when λt+1 is greater than the expected value of the marginal value of capital

next period, where the expectation reflects the existence of the distortions implied by the presence

of ambiguity and ambiguity aversion. Thus, the existence of the irreversibility constraint leads to

an endogenous risk premium or an option value to wait and creates a non-linear mechanism for the

transmission of technology shocks in a simple Real Business Cycle framework.

Now consider the conditions describing the optimal choice of investment at time t.

λt = Λ1
t

∑
i=l,h

ηi,t
[
ξ1
i,tExi,t

(
Ĵ1(k̂(i)

t+1, x̂
(i)
h,t+1, x̂

(i)
l,t+1, η

(i)
t+1) exp((ν(1− γ)− 1)gAi,t+1)

)]
if ît > 0, (3.10)

λt > Λ0
t

∑
i=l,h

ηi,t
[
ξ0
i,tExi,t

(
Ĵ1((1− δ)k̂t, x̂(i)

h,t+1, x̂
(i)
l,t+1, η

(i)
t+1) exp((ν(1− γ)− 1)gAi,t+1)

)]
if ît = 0, (3.11)

In our framework, ambiguity arises from the nature of the processes that generate TFP growth which,
19This solution is used in the numerical solution procedure together with the expression for the indirect value function

in (3.4) to obtain the decision rules for it and nt.
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combined with the ambiguity averse preferences, leads to an endogenous tilting or distortion of the

posterior distributions that signify agent’s subjective beliefs about the validity of a given process

describing the external environment.

To understand the role of ambiguity and ambiguity aversion in shaping these functions, consider

two special cases:

• ηt → 1. In this case, the agent knows with probability one that the true process generating

observations on the latent component of productivity is the low persistence process. Notice,

though that even if the agent were to know the value of of the persistence parameter ρ (i.e.,

η = 1 or 0), there is still ambiguity, since xt is still unknown. However, once ρ is fixed, the

ambiguity is fixed too, since the volatility of a degenerate mixture distribution is a given

constant. In this case, both Λt and ξt are different from one and the parameter α represents

the uncertainty aversion by the consumer.20 If, in addition, xt is observed, then both Λt and ξt

are one and the consumer’s problem is an expected utility maximization problem.

• α → 0. This corresponds to the case of ambiguity neutral preferences where, from equation

(3.4), the agent now behaves as a pure Bayesian decision-maker who is uncertain about the

temporary component of TFP growth xt, and has beliefs that are just a mixture of the

probability distributions for xit, i = l, h. In this case, the distortion functions Λt and ξt just

converge to one.

To further understand these results, note that Λt does not affect the second-order distributions

appearing in the optimality conditions (3.10-3.11). In these expressions, ξi,t depends on expectations

that are taken with respect to the distribution of xi,t, conditional on information of the history

the technology shock (gA,t, gA,t−1, · · · , gA,0) and, hence, is random from the view of the agent’s

subjective beliefs at date t. Thus, the functions ξi,t may be viewed as the factor that creates the

endogenous tilting or distortion in agents’ beliefs due to ambiguity and ambiguity aversion. In the

case of ambiguity aversion with α > γ > 0, the distortion puts greater weight (relative to a pure

Bayesian decision-maker) on the probability distributions of the xi,t that are associated with lower
20For a similar setup, see Backus et al. (2015).
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expected continuation values, Exi,t Ĵ(k̂(i)
t+1, x̂

(i)
h,t+1, x̂

(i)
l,t+1, η

(i)
t+1) for i = l, h. Thus, we may view the

impact of the ξi,t as shaping the “as if” beliefs of the agent, that is, the (probabilistic) belief that

supports the action chosen in equilibrium. The quantitative findings that follow discuss how such

endogenous pessimism affects the cyclical dynamics of the endogenous variables in the model.

4 Quantitative findings

In this section, we present simulations of the smooth ambiguity model under different parameter

values and with varying degrees of prior ambiguity, or alternatively, “confidence”. These provide a

benchmark to compare against the results from simulating the model by Ilut and Schneider (2014) in

Section 5.

4.1 Business cycle moments

Table 2 presents the unconditional business cycle moments for the full sample between 1947:1-2015:4

and the restricted sample between 1978:1-2015:4 in . All series are Hodrick-Prescott filtered versions

of the original series. The data on output, consumption, investment, and hours worked are obtained

from the Federal Reserve Bank of St. Louis database (FRED). The output, y, consumption, c, and

investment, i series are seasonally adjusted and measured in chained 2009 dollars. Investment refers

to total private investment and the hours worked series is an index of total hours worked in the

nonfarm business sector, seasonally adjusted with the 2009 value equal to 100.

Table 2 shows the standard business cycle facts regarding postwar US cyclical fluctuations. There

are differences between the results for the full sample and the restricted sample, in line with the

“Great Moderation” hypothesis that we alluded to earlier; see, for example, Stock and Watson (2002).

In what follows, we seek to understand how well the Real Business Cycle model with ambiguity and

ambiguity aversion and the New Keynesian model with maxmin expected utility can account for

these facts.
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Table 2: Unconditional business cycle moments

Full Sample - 1947:1-2015:4 Restricted Sample - 1978:1-2015:4
Investment-Output Ratio, i/y: 0.143 Investment-Output Ratio, i/y: 0.157

Standard deviations
y c i h p y c i h p

1.624 1.262 7.442 1.925 0.934 1.294 1.076 6.284 1.783 0.930
Correlations

y c i h p y c i h p
y 1.000 0.774 0.841 0.886 -0.064 1.000 0.866 0.913 0.865 -0.266
c 1.000 0.694 0.658 -0.068 1.000 0.730 0.768 -0.267
i 1.000 0.762 -0.100 1.000 0.817 -0.296
h 1.000 -0.539 1.000 -0.715
p 1.000 1.000

Note: This table shows the average investment-output ratio and the unconditional second
moments of the HP-filtered series on output, y, consumption, c, investment, i, hours
worked, h, and labor productivity, p.

4.2 Simulation approach

The unconditional moments for all of the series are computed by randomly drawing a sample of shocks

from the high and low persistence processes to generate a pseudo observation on the growth rate of

technology, gA,t+1, at each date. However, the agent does not know which process the realization

of the technological growth shock is coming from and must make inferences from observations on

the growth rate of technology about the nature of the process from which such observations are

drawn. Given initial conditions k̂0 = ks, x̂l,0 = 0, x̂h,0 = 0, η0 = 0.5, the laws of motion for the capital

together with the Kalman filter are used to determine the evolution of the capital stock and beliefs

along the agent’s optimal path. These constitute the endogenous state variables for the model.21

Given the simulated values of ît, nt and gA,t+1, output and consumption today together with next

period’s capital stock are obtained from the production function, the resource constraint and the law

of motion for capital. To generate next period’s beliefs which will form next period’s state vector,

current beliefs (x̂l,t, x̂h,t, ηt) are updated given the new observation gA,t+1 using the Kalman filter.

The simulated solutions for the transformed problem are used to generate levels for the nonsta-
21The decision rules used to simulate the response of investment and hours to different shock processes are obtained

as grids of values as part of the solution for the indirect value function Ĵ , which are then projected on the Chebyshev
polynomials evaluated at the current state (k̂t, x̂l,t, x̂h,t, ηt).
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Table 3: Parameter Values
β Subjective discount factor 0.988
γ Coefficient of risk aversion 0.5, 0.8
α Coefficient of ambiguity aversion 0.8, 5
a Capital share 0.3
δ Depreciation rate 0.025
Note: This table reports parameter choices used in the simulations of the models. The
calibration is at the quarterly frequency. The share of leisure is implicitly computed from the
intratemporal marginal rate of substitution between consumption and leisure, assuming a
steady value of hours worked nss = 1/3.

tionary series, which are then detrended using a Hodrick-Prescott filter for quarterly series. The

simulated moments are based on 1,000 simulations of 400 periods, with a burn-in sample of 200

periods. In these simulations, the estimates of the technology shock processes are obtained by using

uninformative priors as reported in Table 1. In our model solution, the decision rules for optimal

investment and hours depend nonlinearly on the latent beliefs (x̂ht, x̂lt, ηt). Hence, to prevent any

specific shock sequence from affecting the simulations, the same set of shocks are used for all of the

simulations reported in the paper.

4.3 Baseline results

The parameter values used in the simulations are standard to the business cycle literature. Specifically,

the capital share is set at 0.3 and the depreciation rate at the quarterly frequency at 0.025. The

share of leisure in preferences denoted by the parameter ν is given by 0.3663. This is based on the

steady state values of the model where the share of working time is set at 1/3, consistent with the

finding that households spend one-third of their time working. The discount rate is set at β = 0.988,

which is slightly lower than the value assumed by Prescott (1986) and implies an annual interest rate

of around 4.8%. The estimation results provided in Table 1 imply that the average growth rate of

the technology shock at the quarterly frequency is 0.47%, which is slightly higher but consistent with

the average growth rate of technology based on the model reported in Jahan-Parvar and Liu (2014)

as well as earlier estimates in Kaltenbrunner and Lochstoer (2010) and Croce (2014).

In the smooth model of ambiguity, ambiguity aversion is modeled by the concavity of the function
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φ(·), and is measured by the parameter α while risk aversion, as usual, is inferred from the properties

of the u(·), and is measured by the parameter γ. However, the specification of preferences employed

here does not allow for a separation of risk aversion and the intertemporal elasticity of substitution

(IES). In other recent analyses which allow for the separation of risk aversion and intertemporal

substitution, the intertemporal elasticity of substitution (IES) is typically set to be greater than

one.22 An IES greater than one corresponds to a value of γ less than one in our specification. In

our initial quantitative analysis, we employ the values of (γ = 0.5, α = 0.8), which allows for an IES

greater than unity and satisfies the restriction that γ < α.

Table 4 displays the results shows the simulation results for alternative parameter values. While the

simulations are conducted separately for the low persistence/high variance and high persistence/low

variance processes by drawing realizations of the shocks from these processes, the agent is assumed

not to know which process the relazations are coming from. The results in Table 4 show that the

standard business cycle facts hold in our model. Here (i) the volatility of investment is nearly three

times that of output, (ii) output growth is more variable than consumption, and (iii) the magnitudes

of the simulated standard deviations match the standard deviations of the actual series for the

post-1980’s sample period. However, the model does much more poorly in matching the variability of

hours, which is a standard result in the business cycle literature; see Hansen (1985) or Altug (1989).

It also understates the volatility of consumption observed in the data.

A second experiment might involve altering the value of the ambiguity aversion parameter, α,

holding constant the value of γ at 0.5. In the literature, a variety of values have been assumed for the

ambiguity aversion parameter in models with smooth ambiguity; for example, Ju and Miao (2012) use

thought experiments in a specification that allows for a three-way separation between risk aversion,

intertemporal substitution and ambiguity aversion to set the ambiguity aversion parameter at 8.864

together with an IES equal to 1.5. In other studies, the ambiguity aversion parameter is chosen

to match certain moments in the data. As examples, Collard et al. (2018) choose the ambiguity

aversion parameter to match the risk-free rate of 1.5%, averaged over the period 1978-2011 while Liu

and Zhang (2018) match the mean equity premium in the data by setting the ambiguity aversion
22For evidence on this point, see Vissing-Jørgensen and Attanasio (2003), though the evidence is mixed.

21



parameter at 45 together with an IES of 1.5 and a coefficient of relative risk aversion of 5.

In a purely business cycle context, Tallarini (2000) and Backus et al. (2015) have shown that

impact of uncertainty/ambiguity aversion on quantities in real business cycle models of the type

studied here is minor compared to its impact on prices and in particular, on the risk-free interest

rate.23 To examine this hypothesis numerically, we simulated the model for alternative values of α

ranging from 5 to 50 for a value of γ = 0.5. For the baseline model, we found small effects on the

simulated moments for values of α around 50. As a counterfactual exercise, we also simulated the

model using the TFP series for a specific industry that displays significant idiosyncratic uncertainty,

namely, Petroleum Mining. There the impact of ambiguity aversion is picked up for values of α as

low as 5. Backus et al. (2015) also find that changing the ambiguity aversion parameter in a business

cycle model with risk and ambiguity has minimal effects; see their Tables 2 and 3.24 Despite its

minor effects, increasing the value of α reduces the volatility and increases the persistence of the

quantity series without changing the overall magnitudes significantly compared to the case with

γ = 0.5, α = 0.8. To enable agents to smooth their responses to shocks, the impact of greater

ambiguity aversion is to increase the optimal level of investment and hours worked.25

Hence, as a conservative estimate, we consider a value of α as 5. The second panel of Table 4

increases the value of γ to 0.8 after setting the value of α to 5, which ensures that γ < α. In this

case, there is a substantial decline in the volatility of output, investment and hours, and an increase

in the comovement of the different series. Since the ambiguity aversion parameter has minor effects

on these moments, this finding may be attributed to an increase in risk aversion and a decline in

intertemporal substitution. To the extent that an increase in γ reflects the decline in the willingness

of consumers to substitute consumption across periods, the volatility of all of the key macroeconomic

aggregates declines and their co-movement increases.

It might be helpful to compare, at an intuitive level, the mechanisms underlying the move toward

precautionary saving (alternatively, the increase in demand for the risk free asset) under risk aversion
23This result is known to follow from the complete markets assumption that underlies the allocations of the social

planning problem and the precautionary saving motives that it induces.
24Similar findings about the minor impact of changes in the ambiguity aversion parameter are reported by Jahan-Parvar

and Liu (2014) and Liu and Zhang (2018).
25See also Cagetti et al. (2002), who show that a robust motive for precautionary saving increases the capital stock

in a one-sector optimal growth model.
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Table 4: Simulation Results: Ambiguity about the Persistence/Volatility of the
Unobserved Component of TFP Growth

γ = 0.5, α = 0.8 γ = 0.8, α = 5
Simulations conditional on ρk = 0.85

Standard deviations
y c i n p y c i n p

1.362 0.601 6.398 0.715 0.775 1.233 0.596 5.093 0.528 0.775
Correlations

y c i h p y c i h p
y 1.000 0.663 0.939 0.906 0.921 1.000 0.858 0.952 0.920 0.964
c 1.000 0.368 0.283 0.902 1.000 0.662 0.588 0.964
i 1.000 0.994 0.733 1.000 0.994 0.837
h 1.000 0.669 1.000 0.783
p 1.000 1.000
i/y 0.1758 0.1715

Simulations conditional on ρk = 0.30
Standard deviations

y c i n p y c i n p
1.343 0.592 6.315 0.706 0.764 1.222 0.589 5.058 0.524 0.767

Correlations
y c i h p y c i h p

y 1.000 0.661 0.939 0.907 0.921 1.000 0.858 0.953 0.921 0.964
c 1.000 0.368 0.283 0.900 1.000 0.664 0.590 0.964
i 1.000 0.994 0.735 1.000 0.994 0.839
n 1.000 0.670 1.000 0.784
p 1.000 1.000
i/y 0.1756 0.1676

Note: The model is simulated based on the decision rules for the main model with ambiguity
where the agent cannot distinguish perfectly between two processes with persistence ρl = 0.30 and
ρh = 0.85. The parameters characterizing the shock processes are derived from the estimates in
Table 1 and assume that ḡh = 0.00469 and ρh = 0.85, σAh = 0.00952, σxh = 0.0004 for the high
persistence process and ρl = 0.30, σAl = 0.00946, σxl = 0.00044 for the low persistence process.
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with that under ambiguity aversion. As argued, an increase in ambiguity aversion (α) works through

a distortion of the effective probability distribution, which arises through the effect of the functions

ξit, i = l, h described in Section 3.3. Such a distortion increases the weights on those future states of

the world where incomes are lower. Since the agent is risk averse, marginal utility in such states are

greater and so she will shift consumption to those states. Increasing (precautionary) demand for the

risk free asset allows her to do this, leading to a lower risk free rate in equilibrium.

An increase in risk aversion (γ) increases the marginal utility in states of the world where incomes

are lower, pushing the agent to shift consumption to those states. However, unlike the case of increase

in α, there is a countervailing effect. Given that expected growth is positive, the agent is relatively

poorer today compared to the expected income tomorrow. Thus an increase in γ also prompts the

agent to consume more today. This explains the absence of intertemporal consumption smoothing at

higher values of γ, which also leads to the lower volatility and greater persistence of the quantity

series for γ = 0.8 as opposed to γ = 0.5.

Section D of the Supplementary Material examines the behavior of risk free rate to quantitatively

illustrate the effects of precautionary saving motive. As we discussed, ambiguity and ambiguity

aversion affect the risk-free through the distortion functions ξi,t for i = l, h. There are two mechanisms

through which this occurs. The first is through the endogenous doubt and pessimism induced by

these distortion functions. The second is through learning about the persistence of the underlying

TFP process, which occurs because such learning leads to time-varying uncertainty.26

Finally, the behavior of the investment-output ratio provides another gauge of the impact of the

different features of the model. This is close to the value reported for the data, and suggests that

the model is able to reconcile the average value of 0.157 for the post-1980 period. Having explained

the impact of the different parameters in generating the cyclical dynamics of key macroeconomic

aggregates, the next section now turns to a discussion of the effects of changes in ambiguity directly

on such moments.
26For the aggregate TFP process, the results in Section D of the Supplementary Material show that such time-varying

uncertainty is small, leading to lower distortions and hence, a smaller precautionary saving effect coupled with a
relatively high risk-free rate. For an industry such as Petroleum Mining where idiosyncratic time-varying uncertainty
is high, there are greater distortions under ambiguity and ambiguity aversion, leading to a lower risk-free rate in
equilibrium.
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4.4 The role of changes in initial ambiguity or “confidence”

How do changes in ambiguity or “confidence” affect the business cycle moments? This section asks

how the conclusions would change if there is a lower degree of ambiguity compared to the baseline

model. In the model proposed by Ilut and Schneider (2014), agents have belief sets that describe

confidence about the evolution of future TFP, and they are assumed to gather intangible information

about the ambiguous component of TFP. In their framework, shocks to confidence are modeled as

exogenous changes in ambiguity. In their empirical analysis, these authors bound agents’ belief sets

regarding the mean of aggregate TFP using data from the Survey of Professional Forecasters (SPF)

on forecast dispersion. Other papers that use survey data to identify agents’ beliefs include Bhandari

et al. (2016), who consider the robust preference model of Hansen and Sargent (2001) and extend

the model to allow agents to be exposed to shocks about their ambiguity concerns or Rossi et al.

(2016), who discuss empirical approaches for constructing aggregate measures of ambiguity/Knightian

uncertainty. Bhandari et al. (2016) use household forecasts of key macroeconomic variables from the

University of Michigan Surveys of Consumers relative to the SPF forecasts as belief wedges while

Rossi et al. (2016) use measures of the forecast density from the SPF. This section provides a measure

of confidence based on changes in the initial prior beliefs of agents.

The effect of ambiguity evolves endogenously in our model as a function of the distorted beliefs

ξi,t for i = l, h introduced in Section 3.3. This is in contrast to other frameworks where changes in

ambiguity are exogenously determined. Nevertheless, it is possible to specify a notion of changes in

initial ambiguity through the initial prior beliefs of agents. In our model, agents’ beliefs about the

first-order distribution characterizing the transitory component of the productivity process depend

on parameter values such as the persistence or the volatility of the unknown latent process governing

TFP growth, xt. As the agent is a Bayesian learner, more informative prior beliefs/distributions

on such model parameters may potentially help to reduce the agent’s (second-order) uncertainty

about the specific data generating process. Hence, initial priors that increase the signal-to-noise

ratio (computed by the ratio of the variances of transitory and permanent components, σ2
x/σ

2
g) could

improve the agent’s inference on the transitory component. The increasing informativeness of the

transitory process, in turn, could increase the ability of the agent to discriminate between the low and
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high persistent processes. We may thus view such changes in initial priors as a measure of changes in

initial ambiguity by agents regarding the true data generating process.

Table 5 provides simulation results regarding the role of changes in initial ambiguity or varying

degrees of confidence. To derive these results, we re-estimate the unknown TFP processes by the use

of priors that increase the signal-to-noise ratio in the data. An increase in confidence by agents is

reflected in the evolution of the beliefs ηt approaching to values closer to unity.27 The new decision

rules are calculated under the assumption that agents face unknown TFP processes estimated under

the more informative priors. However, these decision rules are simulated under the original TFP

process as the actual data generating process.28 The parameters γ = 0.5, α = 0.8 are used in all the

simulations.

Table 5 shows that lower initial ambiguity, or put differently, a higher level of confidence, about

the process governing the cyclical component of TFP reduces the volatility of optimal investment

and hours choices. Considering the Panel B estimates in Table 5, the volatility of investment

decreases by nearly 10% and the volatility of hours decreases by over 11%. Output and consumption

volatility also decrease but by smaller amounts on the order of 4% (2%), respectively.29 In all cases,

greater informativeness about the underlying TFP process also increases the co-movement among

the different series. Another way to understand these results is that they reflect the impact of

learning under greater information. More informative initial priors in the estimation of the temporary

component of the underlying TFP process lead to larger standard deviations for the shocks to the

unknown cyclical component of the technological growth xk,t, σk, for k = l, h, in Table 5 compared

the standard deviations for the same shocks in Table 4. Thus, agents are better able to infer the

unknown temporary component of technology growth and to act on this knowledge to smooth their

optimal investment and hours choices.30 These results imply that changes in confidence coupled with
27See Figure C.1 in the Supplementary Material. The details of the different prior settings and the resulting evolution

of beliefs, ηt are displayed in the Supplementary Material, Section C.
28This experiment considers the estimates of the shock processes displayed in Panels B and E of Table C.1 in the

Supplementary Material as examples of estimates based on progressively more informative priors.
29The Panel E estimates imply larger effects, with the volatility of output decreasing by 9% and the volatility of

investment and hours worked falling by 20% and 26%, respectively. In this case, there is a slight increase in consumption
volatility compared to the Panel B estimates, which arises from the lessening of the precautionary motive in saving
under lower ambiguity.

30In these experiments, since we keep the nature of the underlying TFP process used in the simulations constant, the
effects on the business cycle moments are typically arising from the changes in the behavior of agents due to lower
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Table 5: Simulation Results: Informative Priors about the Persistence/Volatility
of the Unobserved Component of TFP

Panel B Panel E
Simulations conditional on ρk = 0.85

Standard deviations
y c i n p y c i n p

1.310 0.590 5.781 0.635 0.774 1.154 0.609 4.001 0.405 0.779
Correlations

y c i h p y c i h p

y 1.000 0.756 0.946 0.913 0.943 1.000 0.951 0.975 0.951 0.987
c 1.000 0.507 0.431 0.931 1.000 0.859 0.809 0.988
i 1.000 0.994 0.785 1.000 0.995 0.926
n 1.000 0.725 1.000 0.889
p 1.000 1.000
i/y 0.1756 0.1755

Simulations conditional on ρk = 0.30
Standard deviations

y c i n p y c i n p

1.293 0.581 5.728 0.630 0.763 1.144 0.598 4.020 0.409 0.767
Correlations

y c i h p y c i h p

y 1.000 0.753 0.947 0.913 0.942 1.000 0.946 0.974 0.950 0.986
c 1.000 0.502 0.420 0.930 1.000 0.849 0.798 0.987
i 1.000 0.995 0.782 1.000 0.995 0.924
n 1.000 0.723 1.000 0.883
p 1.000 1.00
i/y 0.1755 0.1754

Note: The model is simulated based on the decision rules for the main model with ambiguity
where the agent cannot distinguish perfectly between two processes with persistence ρl = 0.30
and ρh = 0.85. In Panel B, the parameters of the technology shock process are set so that
ρh = 0.85, σAh = 0.00936, σxh = 0.00139 for the high persistence process and ρl = 0.30,
σAl = 0.00905, σxl = 0.00237 for the low persistence process. In Panel E, the parameters of
the technology shock process are set so that ḡh = 0.00469 and ρh = 0.85, σAh = 0.00915,
σxh = 0.00283 for the high persistence process and ρl = 0.30, σAl = 0.00819, σxl = 0.00467
for the low persistence process.
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learning dynamics can have significant effects on the business cycle moments implied by the model,

suggesting a link with other models that study similar effects.

5 A New Keynesian model with maxmin expected utility

Our analysis so far shows the key role that the evolution of beliefs and changes in confidence play in

the Real Business Cycle model with ambiguity aversion. In an influential article, Ilut and Schneider

(2014) present a New Keynesian model with maxmin expected utility that incorporates shocks to

confidence. Such shocks to confidence are viewed as changes in ambiguity. The New Keynesian

business cycle model that the authors use has been widely studied in the literature; see Christiano

and Eichenabum (1992) or Smets and Wouters (2007).31

In this section, we compare the quantitative implications of our model with those from the model

with worst case beliefs presented by Ilut and Schneider (2014). The interest in comparing the results

from this model with ours is that the maxmin expected utility model is a limiting case of the smooth

ambiguity model as ambiguity aversion goes to infinity. Since the Ilut and Schneider (2014) model

incorporates a variety of real and nominal frictions, our analysis will also allow us to compare the

role that such frictions play in propagating ambiguity shocks.

5.1 Belief sets and uncertainty shocks

In their framework, Ilut and Schneider (2014) assume that the TFP shock follows a persistent AR(1)

process as log(Zt+1) = ρ log(Zt) + µ∗t + ut+1. They further assume that each innovation to TFP,

zxt+1 = log(Zt+1) − ρ log(Zt), consists of two components defined as ut, which is an i.i.d. normal

sequence of innovations with mean zero and variance σ2
u and µ∗t , which is a deterministic sequence.32

The conditional mean µ∗t represents uncertainty in this model: even given large amounts of data,

it is impossible to disentangle the effects of µ∗t and the shocks sequence ut. Hence, agents respond

ambiguity, not changes in the data generating process.
31The model features nominal rigidities in that consumers set wages for their specialized labor and intermediate goods

producers set prices for their goods. Capital accumulation is subject to adjustment costs, and households experience
disutility from working. Finally, the monetary policy authority sets the nominal interest rate according to a Taylor rule.

32The long-run behavior of µ∗
t is restricted so that its empirical moments converge to those of an i.i.d. normal

stochastic process that has mean zero and variance σ2
z − σ2

u > 0 and that is independent of ut.
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to such uncertainty by treating the parameter µ∗ as ambiguous. Furthermore, their perception of

ambiguity changes over time with the arrival of new information.

The belief set of agents is parameterized by an interval of means centered around zero

log(Zt+1) = ρ log(Zt) + µt + ut+1, µt ∈ [−at,−at + 2|at|]. (5.1)

To complete this specification of beliefs, the variable at is assumed to be an exogenous persistent

process, interpreted as the cumulative effect of news that affect confidence, and it follows an AR(1)

process as

at+1 − ā = ρa(at − ā) + σaε
a
t+1, (5.2)

where ε∗t+1 is a standard normal i.i.d. innovation.

In this framework, ambiguity is the agent’s uncertainty about the probability distribution governing

the productivity process, which is represented by (2.4) in our setup. Here, the agent knows the

distribution takes the form in (5.1); but, like our agent, does not know the mean of the distribution.

The agent’s uncertainty about this mean is the ambiguity: corresponding to the framework of the

maxmin expected utility model, the ambiguity is expressed by making the mean interval-valued rather

than a precise point value (there is no second-order distribution over the mean as in the smooth

model). By exogenously changing the size of the interval (of values of the mean), it is possible to

trace out comparative static exercises of changes in ambiguity. Ambiguity aversion is expressed here

by evaluating policies by the worst case distribution, i.e., the distribution corresponding to minimum

value in the considered interval of values of the mean.

5.2 Simulation results

We now consider the impact of such beliefs on a key set of aggregate variables in a New Keynesian

Model with nominal and real frictions. In their analysis, Ilut and Schneider (2014) examine the

behavior of growth rates of hours, consumption, investment, inflation, the nominal interest rate and a

measure of dispersion for the period 1985:I-2011:I. The paper infers the dynamics of confidence from
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data on forecast dispersion available from the Survey of Professional Forecasters and uses linearized

decision rules around a “zero risk steady state” that corrects for the fact that, from the perspective

of the agent’s worst case beliefs at time t− 1, the average innovations to TFP are not zero at time t.

They estimate the process for the ambiguity shock at by assuming that average ambiguity is less

than the total uncertainty about the process Zt+1.33

The analysis below considers several different versions of the New Keynesian model in Ilut and

Schneider (2014) with TFP and confidence shocks.34 The first one literally takes the parameters as

estimated at the mode. The second one re-scales, uniformly, the volatility of both the TFP and the

ambiguity shock such that the model replicates the volatility of output while a third specification

re-scales the volatility of TFP to match the data. For each model, we consider three different versions.

The first one, labeled as Benchmark, corresponds to Ilut and Schneider’s full model. The second

version shuts down nominal rigidities and therefore allows for a more fair comparison to our model.

The last version shuts down real rigidities (adjustment costs, imperfect competition distortion) and

makes the model directly comparable to ours. To make their results comparable to ours, we generate

Hodrick-Prescott filtered versions of their series using the solution for growth rates from their model.

The results in Table 6 suggest that their Benchmark model is relatively successful at explaining the

volatility of consumption and hours. This finding is based on a comparison of their model-generated

moments with those in the data for the reduced sample in Table 2. However, the volatility of output

and investment is too low relative to the data in their framework.35 By contrast, our baseline

framework reported in Table 4 matches the observed volatility of output and investment regardless

of the parametrization that is considered. One reason why our model does better in matching output

and investment volatility may be that we consider intertemporal elasticities of substitution (IES) to

be greater than one for deterministic consumption paths whereas Ilut and Schneider (2014) assume a

log utility function, which implies an IES is equal to unity. However, our model does more poorly in

matching the volatility of consumption and more importantly, hours worked.
33Specifically, ā = nσz and σa = σnσz, where σz is the standard deviation of the innovations to productivity. In

their Bayesian estimation, they assume beta distributions for n and ρa and an inverse gamma for σ2
n.

34The authors also formulate a version of their model with shocks to the disutility of labor and TFP but this model
is not of interest to our analysis.

35As an example, the ratio of output (investment) volatility from their model and the data is 0.923/1.294=0.713
(2.568/6.284=0.409).
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Strikingly, we find that removing the different types of frictions in their model has non-negligible

effects on their results. When the nominal rigidities are eliminated, the results from the Benchmark

model deteriorate considerably. In particular, the volatility of consumption, output, and investment

fall by 35%, 47% and 60%, respectively, and the volatility of hours worked nearly collapses. In the

New Keynesian model with nominal price rigidities, the precautionary savings effects due to an

increase in ambiguity do not lead to a decline in prices, implying that consumption volatility remains

higher than with flexible prices. The volatility in hours arises from the aggregate demand effects of

ambiguity: when ambiguity increases, prices do not adjust to take account the lower productivity.

Hence, aggregate demand must fall to accommodate the higher prices, which leads to larger declines

in hour worked and increases the volatility of hours. These effects explain the relatively high volatility

of consumption and hours in their Benchmark specification.

More importantly, a version of their model without nominal and real frictions which corresponds

more closely to our RBC framework has limited ability at matching the moments for the quantity

variables with the exception of investment. This series becomes more variable due to the absence of

adjustment costs which is present in the other two specifications.36 When the volatility of TFP and

ambiguity shocks are re-scaled to replicate the volatility of output, the volatility of the different series

are more in line with the volatility of the series for the full sample reported in Table 2. Nevertheless,

removing the nominal or real rigidities makes the performance of the model worse. Finally, considering

a version of their model in which the volatility of TFP is re-scaled to match the data, the Benchmark

model performs best in terms of explaining the volatility of hours worked, attesting to the role of

the New Keynesian model rigidities in generating cyclical variation in this series. When these are

removed as in the middle panel of Table 6, the performance of the model deteriorates on almost all

dimensions.

36While there are some differences in the degree of the intertemporal elasticity of substitution (IES) that we assume,
the differences in the business cycle moments when we change the parameter γ are not large enough to account for the
differences between our results and those of Ilut and Schneider (2014) without any frictions.
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Table 6: Business Cycle Moments in the Ilut and Schneider Model
Original Model

Benchmark No Nominal Rigidities Frictionless
Standard Deviations

y c i n p y c i n p y c i n p
0.923 0.862 2.568 0.886 0.576 0.487 0.558 1.051 0.108 0.550 0.654 0.219 2.892 0.252 0.422

Correlations
y 1.000 0.899 0.893 0.792 0.376 1.000 0.938 0.826 -0.516 0.986 1.000 0.677 0.986 0.953 0.984
c 1.000 0.607 0.753 0.277 1.000 0.579 -0.781 0.982 1.000 0.544 0.424 0.799
i 1.000 0.666 0.397 1.000 0.054 0.721 1.000 0.990 0.939
n 1.000 -0.261 1.000 -0.651 1.000 0.883
p 1.000 1.000 1.000

Re-scaled Model to match st. deviation of y
Standard Deviations

y c i n p y c i n p y c i n p
1.624 1.512 4.439 1.628 0.805 0.669 0.766 1.446 0.148 0.755 0.902 0.328 4.049 0.359 0.579

Correlations
y 1.000 0.910 0.901 0.874 0.244 1.000 0.937 0.825 -0.513 0.986 1.000 0.582 0.980 0.936 0.976
c 1.000 0.641 0.827 0.159 1.000 0.576 -0.780 0.982 1.000 0.408 0.260 0.745
i 1.000 0.754 0.285 1.000 0.059 0.719 1.000 0.988 0.913
n 1.000 -0.252 1.000 -0.649 1.000 0.837
p 1.000 1.000 1.000

Re-scaled Model to match st. deviation of TFP
Standard Deviations

y c i n p y c i n p y c i n p
0.988 0.923 2.742 0.954 0.600 0.507 0.580 1.093 0.112 0.572 0.681 0.229 3.014 0.263 0.439

Correlations
y 1.000 0.901 0.894 0.804 0.359 1.000 0.937 0.826 -0.516 0.986 1.000 0.667 0.985 0.951 0.983
c 1.000 0.612 0.764 0.263 1.000 0.579 -0.781 0.982 1.000 0.530 0.407 0.793
i 1.000 0.679 0.383 1.000 0.054 0.721 1.000 0.990 0.936
n 1.000 -0.259 1.000 -0.651 1.000 0.878
p 1.000 1.000 1.000

Note: All model time series are HP-filtered. The original model uses the mode parameters of the Ilut-Schneider’s model as reported in the paper. The first
re-scaled model re-scales uniformly the volatility of the TFP and the ambiguity shock such that the Benchmark model reproduces the volatility of output
in the data. The second re-scaled model re-scales uniformly the volatility of the TFP and the ambiguity shock such that the Benchmark model reproduces
the volatility of TFP in the data.
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These results may be understood by noting that in the maxmin expected utility framework, agents

make decisions based on the worst case distribution characterizing the TFP process. By contrast,

agents in our framework have endogenously distorted beliefs represented by the factor ξi,t for i = l, h

described in Section 3.3 that depend on the properties of the unknown distributions characterizing

TFP growth. Evidently, the worst case scenario instills too much caution on the part of agents, who

end up excessively reducing their response to shocks from the estimated TFP process. Since the

multiple priors utility model is obtained as a limiting case of the smooth ambiguity model when the

ambiguity aversion parameter goes to infinity, this comparison may be thought of as an experiment

that arbitrarily increases ambiguity aversion by agents.37 Hence, in the absence of rigidities deriving

from monopolistic competition in goods and labor supply and for price and wage setting by firms of

intermediate goods and by households, respectively, the worst case beliefs that underlie their model

specification lead to very low implied volatility in all of the quantity variables (with the possible

exception of investment). By contrast, the endogenous distortions induced by our smooth model of

ambiguity prove more capable of capturing most business cycle moments except for hours worked.

This last result is due to the lack of any mechanism in our standard RBC model to capture the

volatility in hours such as indivisible labor or search frictions.

6 Other related models

Other related models have also considered the role of ambiguity and ambiguity aversion in generating

the cyclical variation of observed series.Bidder and Smith (2012) examine a Real Business Cycle

model with multiplier preferences that reflect the agent’s desire for robust policies following Hansen

and Sargent (2008) and time-varying stochastic volatility shocks. In a robust decision-making

problem framework where the agent seeks to minimize the distributions that twist continuation

values towards outcomes that are painful to the agent, the minimization in a recursive representation

of the problem yields a version of the log-exponential representation of the smooth ambiguity model

that we discussed earlier. In their analysis, Bidder and Smith (2012) simulate the decision rules from
37Following Ju and Miao (2012), this result can be shown for log-exponential preferences studied in Section A of the

Supplementary Material when α→∞, which is from the class of preferences that displays constant absolute ambiguity
aversion.
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the robust problem using the worst case distributions that account for the distortions arising from

the agent’s aversion to mis-specification. In our analysis, ambiguity is modeled in terms of the nature

of the possible distributions for TFP growth that agents may face. Its effects are then determined

from the optimal solution to an ambiguity averse agent’s decision problem. Bidder and Smith (2012)

find, among other results, that the model incorporating only shocks to time-varying volatility which

is the source of endogenous pessimism in their framework is able to explain 1%-16% of the variability

of such series as output, consumption, investment and hours compared to the full stochastic model

that contains both volatility and technology shocks.

Bhandari et al. (2016) make use of the multiplier preferences that lead agents to make decisions

on the basis of endogenously distorted pessimistic beliefs together with survey-based measures of

ambiguity to account for labor market phenomena in a New Keynesian model with frictional labor

markets. Their goal is to quantify the impact of ambiguity shocks on the joint dynamics of output,

unemployment, inflation and interest rates as well as the households’ belief wedges associated with

these variables.38 They argue that their model can explain substantial variation in labor market

variables such as the hiring rate as well as meaningful amount of common variation (up to 22%)

in the survey answers. Thus, their approach assumes that the agent and the econometrician use

different sources of information in that households’ survey responses are assumed to reflect their

worst case beliefs. By contrast, our approach uses data on observed TFP and provides an analysis in

which the agent and the econometrician have the same information in generating estimates of the

true TFP process.

Leduc and Zheng (2016) consider a New Keynesian model with search and matching frictions in

which the technology shocks display time-varying volatility. The distinguishing feature of their model

is an option-value of a job match that arises from the irreversible nature of the employment that it

represents. Higher uncertainty increases this option value and leads to an increase in unemployment

as firms post fewer vacancies. By contrast, in the Real Business Cycle framework that we consider,

an increase in uncertainty/ambiguity leads to an increase in precautionary saving, which reduces
38In their analysis, the theoretical versions of belief wedges are defined as the difference between survey responses

from the Michigan Surveys of Consumers and model-based rational forecasts of future inflation and the unemployment
rate. The authors measure belief wedges under the assumption that households provide answers regarding economic
forecasts using the endogenous worst case probability distribution.
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both consumption and the real interest rate. In a model without search frictions, the option value

effect on employment is absent, explaining why the standard RBC model cannot account adequately

for the behavior of aggregate hours worked.

7 Conclusion

In this paper, we adopt the smooth ambiguity preferences of Klibanoff et al. (2005, 2009) to study

the cyclical dynamics of a Real Business Cycle model with investment irreversibility and labor

augmenting technology shocks. In comparison to recent papers that study very related questions,

we seek to clarify the effect of changes in ambiguity and/or ambiguity aversion on dynamics of real

variables in a neoclassical environment that is very minimally, if at all, perturbed by frictions, to

better understand the effect of ambiguity in and of itself.

The recent literature on the impact of uncertainty and ambiguity has considered alternative

forms of preferences to capture agents’ aversion to bad outcomes in terms of worst case beliefs or

preferences that lead to endogenously twisted beliefs weighing negative future outcomes more heavily.

Such preferences have been embedded in standard Real Business Cycle frameworks or New Keynesian

models with nominal and real rigidities and labor market frictions. Our analysis shows that the

smooth ambiguity preferences proposed by Klibanoff et al. (2005, 2009) together with the endogenous

sources of pessimism that this framework generates are able to account for the cyclical dynamics of

key quantity variables that a model with worst case beliefs cannot capture. In earlier work, Collard

et al. (2018) have shown how this framework may be used to rationalize the behavior of the historical

equity premium. In this paper, we have further elucidated the transmission mechanisms inherent in

this model and how they relate to other models of cyclical fluctuations under uncertainty/ambiguity.

While our model lacks features such as labor market frictions that can account for labor market

dynamics, our analysis shows that the use of smooth ambiguity preferences in a Real Business Cycle

Model provides a flexible framework for accounting for many key stylized facts.

There are several ways in which this research could be extended in the future. First, the literature

on accounting for business cycle phenomena with uncertainty/ambiguity has not explicitly tackled
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how various forms of market incompleteness may work towards generating a greater role for ambiguity

and ambiguity aversion. As we argued above, the complete markets assumption is key to some

of the results that are derived from this literature, including the strong precautionary savings

effects of an increase in uncertainty/ambiguity. Second, an environment that considers individual

heterogeneity may be more likely to capture the impact of such uncertainty/ambiguity aversion

and allow considerations of such issues as ambiguity trading. A third issue has to do with the

measurement of TFP shocks in order to gauge their influence on business cycles. As we have shown

above, time-varying uncertainty in TFP shocks is a key feature for uncovering the effects of ambiguity

and ambiguity aversion. Hence, using more disaggregated measures of productivity at the firm or

industry level which show more idiosyncratic variation (as in Bloom et al. (2018)) may provide a more

useful approach to understanding the diffusion of endogenous pessimism in a general equilibrium

economy with multiple sectors. We leave exploring these avenues for future work.
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A The stationarity inducing transformations

In the following discussion, we consider generating stationarity-inducing transformations under alter-

native parameterizations for smooth ambiguity preferences proposed by Klibanoff et al. (2005, 2009)

(KMM herafter). These include the power-power and log-exponential pairings for the current utility

and ambiguity functions, u(·) and φ(·), respectively. These specifications are similar to the cases

considered by Ju and Miao (2007). We make use of the generic social planner’s problem described in

Section 3.1 of the paper. It is worth noting that in the untransformed version of the problem, beliefs

refer to beliefs about the level of the future technology shock, At+1. By contrast, in the transformed

version of the problem, beliefs refer to beliefs about the stationary growth rate of the technology

shock, gAk,t+1, and its components. In this appendix, we are not explicit about the belief structure

but merely note the distinction by using “unhatted” versus “hatted” versions of the belief vector, µt

(or µ̂t).

Case (i)

In this case, u(c, l) = (cν l1−ν)1−γ

(1−γ) , γ ≥ 0, 0 ≤ ν ≤ 1 and φ(x) = x1−α

(1−α) , α ≥ 0. Using y = φ(x), we

can show that

φ−1(y) = [(1− α)y]
1

1−α .

Substitute for u(·), φ(·), φ−1(·) into the generic representation for the indirect value function J as

follows.

J(kt, µt, At) = max
ct,it,nt

{
(cνt l

1−ν
t )1−γ

1− γ
+ β

[
(1− α)Eµt

(
[ExtJ(kt+1, µt+1, At+1)]1−α

1− α

)] 1
1−α
}
.

We argue that the stationarity inducing transformation is defined in terms of the transformed vari-

ables of the model as{
ĉt, ît, k̂t, ŷt

}
=

{
ct
At
,
it
At
,
kt
At
,
yt
At

}
,

and that the indirect value function will satisfy the relation

J(kt, µt, At) = Ĵ(k̂t, µ̂t)A
ν(1−γ)
t . (A.1)
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This representation assumes that Jt is homogeneous of degree ν(1− γ) in kt and µt.

Using this relationship, dividing both sides of the indirect function by A1−γ
t and the constraints

by At, we obtain

Ĵ(k̂t, µt) = max
ct,it,nt

 (cνt l
1−ν
t )1−γ

(1− γ)A
ν(1−γ)
t

+ β

Eµt
[Ext Ĵ(k̂t+1, µt+1)A

ν(1−γ)
t+1

A
ν(1−γ)
t

]1−α 1
1−α


subject to

ct
At

+
it
At
≤ kat (Atnt)

1−a

At
,

kt+1

At
= (1− δ) kt

At
+

it
At
,

it
At
≥ 0,

Hence, the transformed value function satisfies

Ĵ(k̂t+1, µt) = max
ĉt ,̂it,nt

{
(ĉνt l

1−ν
t )1−γ

1− γ
+ β

[
Eµt

([
Ext

(
Ĵ(k̂t+1, µt+1)

)
(exp(ν(1− γ)gA,t+1)

]1−α
)] 1

1−α
}

subject to the constraints

ĉt + ît ≤ k̂at n1−a
t ,

exp(gA,t+1)k̂t+1 = (1− δ)k̂t + ît,

ît ≥ 0.

Case (ii)

In this case, u(c, l) = ln(c) + ln(l) and φ(x) = − exp(−αx)
α . Again substitute for u(·), φ(·), φ−1(·) into

the generic representation for the indirect value function J as follows.

φ−1(x) = − 1

α
ln(−αy)

J(kt, µt, At) = max
ct,it,nt

{
ln(ct) + ln(lt)−

β

α
ln [Eµt (exp(−αExtJ(kt+1, µt+1, At+1)))]

}
We argue that the following transformation will be stationarity inducing:{

ĉt, ît, ŷt, k̂t

}
=

{
ct
At
, ,
it
At
,
yt
At
,
kt
At

}
,
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where

J(kt, µt, At) = Ĵt(k̂t, µt) +
ln(At)

1− β
.

Making these substitutions for Jt and Ĵt yields

Ĵ(k̂t, µt) = max
ct,it,nt

{
ln(ct) + ln(lt)−

ln(At)

1− β
− β

α
ln [Eµt (exp (−αExtJ(kt+1, µt+1)))]

}

= max
ct,it,nt

{
ln(ĉt) + ln(lt)−

β

α

(
ln

[
Eµt

(
exp

(
−αExt

(
Ĵ(k̂t+1, µt+1) +

ln(At+1)

1− β

)))]
+
α ln(At)

1− β

)}

= max
ct,it,nt

{
ln(ĉt) + ln(lt)−

β

α
ln

[
Eµt

(
exp

(
−αExt

(
Ĵ(k̂t+1, µt+1) +

ln(At+1)

1− β

)
·A

α
1−β
t

))]}
.

Therefore, the transformed problem using the guess function for Ĵ(k̂t, µ̂t) that we specified above is

expressed as

Ĵ(k̂t), µt) = max
ct,it,nt

{
ln(ĉt) + ln(lt)−

β

α
ln

[
Eµt

(
exp

(
−αExt

(
Ĵ(k̂t+1, µt+1) +

gA,t+1

1− β

)))]}
(A.2)

subject to the constraints defined above.

B Numerical solution approach

We now describe how to numerically solve the social planner’s problem described in Section 3.1..

Our task is to determine the function Ĵ(k̂t, x̂l,t, x̂h,t, ηt) for all values of the normalized capital stock,

k̂t, and for the variables specifying beliefs, (x̂l,t, x̂h,t, ηt). Unlike Collard et al. (2018) who consider

an endowment economy, we also need to calculate the optimal investment and hours policies as

part of the numerical solution for the indirect value function. Notice that the optimization routine

needs to account for the inequality constraint on the choice of ît.
1 We use the method of value

iteration with Chebyshev interpolation, which involves approximating the function Ĵ(k̂t, x̂l,t, x̂h,t, ηt)

by a parametric function whose coefficients are determined according to a minimum residual method;

see Judd (1998) for details.

1For details of the solution procedure, see Ju and Miao (2012), Jahan-Parvar and Liu (2014), Collard et al. (2018),
and Liu and Zhang (2018), among others.
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We begin by explicitly writing the expectations that appear in this formulation as

Ĵ(k̂t, x̂l,t, x̂h,t, ηt) = max
ĉt,nt ,̂it

{
((ĉt

ν l1−νt )1−γ

1− γ
+

β

[
ηt

(∫ ∞
−∞

(∫ ∫ ∞
−∞

Ĵ(k̂
(l)
t+1, x̂

(l)
h,t+1, x̂

(l)
l,t+1, η

(l)
t+1) exp(ν(1− γ)gAl,t+1)dF (εl,t+1)

)1−α
dF (xl,t)

)
+

(1− ηt)

(∫ ∞
−∞

(∫ ∫ ∞
−∞

Ĵ(k̂
(h)
t+1, x̂

(h)
h,t+1, x̂

(h)
l,t+1, η

(h)
t+1) exp(ν(1− γ)gAh,t+1)dF (εh,t+1)

)1−α
dF (xh,t)

)] 1
1−α
 .

subject to ĉt + ît ≤ k̂at n
1−a
t , exp(gA,t+1)k̂t+1 = (1 − δ)k̂t + ît, lt + nt ≤ 1, and ît ≥ 0. Here

x̂
(i)
h,t+1, x̂

(i)
l,t+1, η

(i)
t+1 are functions of εi,t+1 = (εxi,t+1, εAi,t+1)′, i = l, h, which is a 2 by 1 vector standard

normal shocks and η
(l)
t+1 is the posterior probability at time t+1 that the model with ρl is the true data

generating process. F (εi,t+1), i = l, h are both bivariate independent standard normal distributions

while F (xk,t), k = l, h is a normal distribution with mean x̂k,t and variance Ωk, which is defined

below.

The updates for x̂
(i)
k,t+1 are obtained using the Kalman filter algorithm as follows:

x̂
(l)
l,t+1(εl,t+1) = ρlx̂l,t +Klν

(l)
l,t+1,

x̂
(l)
h,t+1(εl,t+1) = ρhx̂h,t +Khν

(l)
h,t+1,

x̂
(h)
l,t+1(εh,t+1) = ρlx̂l,t +Klν

(h)
l,t+1,

x̂
(h)
h,t+1(εh,t+1) = ρhx̂h,t +Khν

(h)
h,t+1,

where ν
(i)
k,t+1, (i) = l, h, k = l, h are the “surprises”. For example, when the DGP is (i) = l and the

filter uses ρk, k = h, the surprise is defined as

ν
(l)
h,t+1 = gAl,t+1 − ḡ − ρhx̂h,t

= ḡ − ḡ + ρlxl,t − ρhx̂h,t + σxlεxl,t+1 + σAlεAl,t+1

= ρlxl,t − ρhx̂h,t + σxlεxl,t+1 + σAlεAl,t+1.

The Kalman gain parameters, Kk, k = l, h, depending on whether the low or high persistence model
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is assumed to be the true model, respectively, are

Kk = ρkΩkf
−1
k , fk = Ωk + σ2

Ak
,

where fk = E[(gAk,t+1 − E(gAk,t+1))2|gA,1, . . . , gA,t], and Ωk = E[(xk,t+1 − x̂k,t+1)2|gA,1, . . . , gA,t],

k = l, h are defined as the solution to Ωk = ρ2
kΩk − ρ2

kΩ
2
kf
−1
k + σ2

xk
.2 The Bayes update of ηt is

obtained as follows:

η
(l)
t+1(εl,t+1) =

ηtL(ν
(l)
l,t+1, fl)

ηtL(ν
(l)
l,t+1, fl) + (1− ηt)L(ν

(l)
h,t+1, fh)

,

η
(h)
t+1(εh,t+1) =

ηtL(ν
(h)
l,t+1, fl)

ηtL(ν
(h)
l,t+1, fl) + (1− ηt)L(ν

(h)
h,t+1, fh)

,

where the likelihood is

L(ν
(i)
j,t+1, fj) =

1

2π
√
fj

exp

(
−

(ν
(i)
j,t+1)2

2fj

)
.

B.1 The numerical algorithm

Following the recent literature (see, e.g. Richter et al. (2014), we approximate the indirect value

function Ĵ(k̂t, x̂l,t, x̂h,t, ηt) by a parametric function of the form

Φ(Xt) = exp

 ∑
ik,ii,ih,iη∈Υ

cik,il,ih,iηTik(k̂t)Til(x̂l,t)Tih(x̂h,t)Tiη(η̂t)

 , (B.1)

where Xt = (k̂t, x̂l,t, x̂h,t, η̂t) denotes the vector of state variables. Notice that in the full information

case, the vector of state variables is given by Xt = (k̂t, xt) where xt is temporary component of

the technology shock. In this expression, the set of indices is defined as Υ = {iz = 1, . . . , nz; z ∈

{k, l, h, η}|ik + il + ih + iη ≤ max(nk, nl, nh, nη)}. This definition assumes that we are considering a

complete basis of polynomials. In this expression Tn(·) is the Chebyshev functions T (·) are defined

2These results are obtained by applying the Kalman filter algorithm to the state and measurement equations as

xk,t+1 = ρkxk,t + σxkεxk,t+1, k = l, h,

gAk,t+1 − ḡ = xk,t+1 + σAkεAk,t+1, k = l, h.

The expression for the gain parameters Kk and the variances of the filtered estimates of xk,t denoted Ωk are obtained
as a direct application of the Kalman filter algorithm. A similar application of the Kalman filter yields the expressions
for x

(i)
k,t+1 and the surprises ν

(i)
k,t+1 for k = l, h and i = l, h. See Anderson and Moore (1979), Ch. 3.
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as the unique polynomials satisfying Tn(x) = cos(n arccosx), or equivalently, Tn(cos(ν)) = cos(nν).

Using a recursive formulation, we have T0(x) = 1, T1(x) = x and Tn+1(x) = 2xTn(x) − Tn−1(x).

Using the definition that cos
(
(2k + 1)π2

)
= 0, it is possible to show that the roots of Tn are

xk = cos

(
2k − 1

2n
π

)
, k = 1, . . . , n.

The roots of the Chebyshev polynomial are also called Chebyshev nodes because they are used

as nodes in polynomial interpolation. The orders of the Chebyshev functions Tiz ,n+1(x) are set

as (nk, nxh , nxl , nη) = (4, 2, 2, 2), and 8 nodes each are used to evaluate the Chebyshev functions,

yielding a total of 4096 nodes

Next, define the functions

κl(xl,t) =
(
Exl,tΦ(X

(l)
t+1) exp((1− γ)gAl,t+1)

)1−α

=

(∫ ∞
∞

∫ ∞
∞

Φ(X
(l)
t+1) exp((1− γ)gAl,t+1)dF (εl,t+1)

)1−α
(B.2)

and

κh(xh,t) =
(
Exl,tΦ(X

(h)
t+1) exp((1− γ)gAh,t+1)

)1−α

=

(∫ ∞
∞

∫ ∞
∞

Φ(X
(h)
t+1) exp((1− γ)gAh,t+1)dF (εh,t+1)

)1−α
(B.3)

Notice that the indirect value function can be expressed as

Ĵ(k̂t, x̂l,t, x̂h,t, ηt) = max
ît

{
((k̂at n

1−a
t − ît)νn1−ν

t )1−γ

1− γ
+
[
ηtEx̂l,tκl(xl,t) + (1− ηt)Ex̂h,tκh(xh,t)

] 1
1−α

}
.

To be able to evaluate the value function, we also need to approximate the integrals that appear

in this expression using numerical integration procedures.

� Gauss-Hermite quadrature: In the case of uni-dimensional integrals (as in the outer integral

involved in the computation of expectations such as (B.4)), a Gauss Hermitian quadrature

approach. Specifically, consider the expectations of the form Ex̂k,t [Kk(xk,t)], k = l, h. Since

xk,t is distributed as normal with mean x̂k,t and variance Ωk, we apply a change of variables
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zk,t = (xk,t − x̂k,t)/
√

2Ωk to write the Guass-Hermite quadrature rule as

Ex̂k,t [κk(xk,t)] = π−1/2

∫ ∞
−∞

κk(
√

2Ωk(zl,t + x̂k,t))dF (xk,t),

≈ π−1/2
n∑
i=1

ωiκk(
√

2Ωk(zk,t + x̂k,t))

where ωi = 2n+1n!
√
π[Hn+1(xi)]

−2 and Hn+1 is the Hermite polynomial of order n.

� The monomial approach: In the case of multi-dimensional integrals such as (B.2) or (B.3),

Collard et al. (2018) use a monomial approach; see Judd (1998), p. 271-276) with 5 degree

rule for an integrand on an unbounded range weighted by the standard normal. Specifically,

we approximate the multi-dimensional integral∫ ∞
∞

∫ ∞
∞

Φ(X
(k)
t+1) exp((1− γ)gAk,t+1))dF (εk,t+1)

by a 5 degree rule using 2d+ 1 points with d = 2 as

a0Φ(0) + a1

d∑
i=1

(Φ(rei) + Φ(−rei)) + a2

d−1∑
i=1

d∑
j=1

(
Φ(±sei +±sej)

)
, (B.4)

where ei denotes the ith column vector of the identity matrix of order d = 2, and

r =

√
1 +

1

2
d, s =

√
1

2
+
d

4
, v = πd/2,

a0 =
2

d+ 2
v, a1 =

4− d
2(d+ 2)2

, a2 =
v

(d+ 2)2
.

Suppose we obtain an approximation to the indirect value function at the τ ’th iteration using

these steps. This will be based on the Chebyshev coefficients at the τ ’th stage of the algorithm, cτ .

Denote the approximation obtained by using these coefficients by Ĵ (τ)(Xt). Also define the vector of

future state variables by X
(i)
t+1 = (k̂

(i)
t+1, x̂

(i)
h,t+1, x̂

(i)
l,t+1, η

(i)
t+1), i = l, h. The value function and optimal
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investment policy functions, Ĵ∗(Xt) and î∗t = g(Xt), are obtained as the solution to

Ĵ∗(Xt) = max
ît

{
((k̂at n

1−a
t − ît)νn1−ν

t )1−γ

1− γ
+ β

[
ηtEx̂l,t

(
Exl,tJ

(τ)(X
(l)
t+1) exp(ν(1− γ)gAl,t+1)

)1−α

+(1− ηt)Ex̂h,t
(
Exh,tJ

(τ)(X
(h)
t+1) exp(ν(1− γ)gAh,t+1)

)1−α
] 1

1−α
}
.

subject to exp(gA,t+1)k̂t+1 = (1 − δ)k̂t + ît, ît ≥ 0 and the optimality condition for nt given by

(1 − ν)ĉt = (1 − a)k̂at n
−a
t (ν(1 − nt)). Now, at the end of the τ ’th iteration, the new value function

Ĵ∗(Xt) is used to update the coefficients of the Chebyshev polynomials, and to obtain Ĵ (τ+1)(Xt) as

we describe below.

Denote by cτ , cτ+1 as the set of coefficients entering (B.1) at the τ ’th and τ + 1’th stages,

respectively. We determine the set of coefficients, cτ+1 at the τ + 1’th stage, using a minimum

weighted residual method. Recall that the indirect value function depends on the coefficients from

the τ ’th stage as J∗(Xt; c
τ ) while the new approximation for the indirect value function depends

on cτ+1. The residual function associated with the new set of Chebyshev coefficients is given by

R(Xt; c
τ+1), where R(Xt; c

τ+1) = Φ(Xt; c
τ+1)− Ĵ∗(Xt; c

τ ). This involves solving the problem

min
c

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

(Φ(Xt; c
τ+1)− Ĵ∗(Xt; c

τ ))2ω(Xt)dXt, ,

where ω(X) is a multi-dimensional weighting function. The first-order conditions for this problem

with respect to elements of ciz , iz ∈ Υ are∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

(Φ(Xt; c
τ+1)− Ĵ∗(Xt; c

τ ))Tik(k̂t)Til(x̂l,t)Tih(x̂h,t)Tiη(ηt)ω(Xt)dXt = 0. (B.5)

If we assume that the weighting function is the product of the weights for z ∈ {k, l, h, η} defined as

ωiz(yz) =
Tiz(yz)√

1− y2
z

, iz = 1, . . . , nz, iz ∈ Υ,

where y ∈ {k̂, x̂l, x̂h, η}), the integral in the orthogonality conditions can be solved using Gauss-

Chebyshev quadrature. For integrals of this form, the quadrature nodes and the (constant) quadra-

ture weights are given by

yjz = cos

(
2jz − 1

2nz
π

)
and ωjz = π/nz, jz = 1, . . . ,mz.
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Hence, the integral in (B.5) is written as

∑
jk,ji,jh,jη

R(yjk , yjl , yjh , yjη ; cτ+1)Tik(yjkTil(yjl)Tih(yjh)Tiη(yjη) = 0 (B.6)

for iz = 1, . . . , nz, z ∈ {k, l, h, η}, iz ∈ Υ. Define the product of the Chebyshev polynomials for z ∈

{k, l, h, η} evaluated at the Chebyshev nodes (yjk , yjl , yjh , yjη) as Ti(yj) ≡ Ti,k(yjk)Ti,l(yjl)Ti,h(yjh)Ti,η(yjη),

and define J as the updated solution of the Bellman equation in (B.5) as

J (cτ ) =


Ĵ∗(y1k , y1l , y1h , y1η ; cτ )

...

Ĵ∗(ymk , yml , ymh , ymη ; cτ ).

 .
We will write these conditions in matrix form as

T =


T0(y1) . . .T0(ymz)

... . . .
...

Tnz(y1) . . .Tnz(ymz)

 .
Using these definitions, we can write the orthogonality conditions in (B.5) in matrix form as T T ′cτ+1 =

T J (cτ ), which implies a new estimate of the Chebyshev coefficients cτ+1 as a function of the coef-

ficients cτ as

cτ+1 =
(
T T ′

)−1 T J (cτ ). (B.7)

C Simulation-based Bayesian inference of the TFP processes

Given the underlying model described in the text, we assume that the agent cannot infer on the

true data generating process but she assumes that it can be either a model with low persistence

or a high persistence. Since identification is the major challenge and plays a central role in our

model and in agents’ behavior, we use simulation-based Bayesian inference with noninformative

priors to estimate the model parameters. Specifically, we use Gibbs sampling together with data

augmentation (see Geman and Geman, 1984; Tanner and Wong, 1987) to obtain posterior results.

Since the model is a special case of the unobserved components model with Gaussian distributions,

we use the Kalman filter together with a simulation smoother. For the simulation smoother, we use

the smoother proposed in Carter and Kohn (1994) and Frühwirth-Schnatter (1994). The resulting

10



simulation scheme at the mth step is as follows.

1. Sample ρ from p(ρ|x(m−1)
0:T , σ2

y , σ
2
x, ḡ).

2. Sample σ2
y from p(ρ|x(m−1)

0:T , ρ(m), σ
2,(m−1)
x , ḡ(m−1)).

3. Sample σ2
x from p(ρ|x(m−1)

0:T , ρ(m), σ
2,(m)
y , ḡ(m−1)).

4. Sample ḡ from p(ρ|x(m−1)
0:T , ρ(m), σ

2,(m)
x , σ

2,(m)
y ).

5. Sample x0:T , from p(x0:T |ρ(m), σ
2,(m)
y , σ

2,(m)
x , ḡ(m)) using Kalman filter and a simulation smoother.

While using noninformative priors reduces the posterior results to be identical with a pure like-

lihood based inference, it also provides us with the entire distribution of the model parameters.

Examining the distribution of, most notably, the persistence parameter is an integral part of the

approach followed in this paper in the sense that it provides a rational for agent’s ignorance regard-

ing the persistence of the TFP growth process. To evaluate the model, we use both the maximum

likelihood and marginal likelihood values. The marginal likelihood can be computed as

p(y1:T |M) =

∫
θ
p(y1:T |θ)p(θ)dθ (C.1)

where θ = (ρ, σ2
y , σ

2
x, ḡ). As the marginal likelihood is computed by integrating out the (prior)

parameter distributions, it provides a robust way of computing a performance measure of the model.

To compute the integral we use the modified harmonic mean estimator of Geweke (1999).

C.1 Informative priors

To have a more refined view of the impact of information and learning, we also generate estimates

of the TFP process using more informative priors to improve the signal-to-noise ratio. We may view

more informative prior distributions as a measure of the agent’s “confidence” regarding the nature

of the underlying TFP process as the informative content of the transitory component has increased.

We assume a conjugate prior of an inverted Gamma function with two parameters as degrees of

freedom (dof) and the scale. The results of the estimation are displayed in Table C.1. The results

in Panel A through Panel F of this table are generated by assuming progressively more informative

priors, and therefore an increasing signal-to-noise ratio compared to the uninformative prior case

underlying the results in Table 4 in the text.
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Table C.1: Posterior results for the model using TFP for different values of ρ
using the sample of 1947-2 : 1977-4.

Prior Posterior
ρ: 0.300 ρ: 0.850

PANEL A
ḡ – 0.466 (0.083) 0.466 (0.084)
σA IG(dof:2.1, Scale/dof:0.01) 0.925 (0.072) 0.940 (0.062)
σx IG(dof:2.1, Scale/dof:0.01) 0.159 (0.109) 0.100 (0.037)
Maximum Likelihood -167.40 -167.52
Marginal Likelihood -170.08 -170.55

PANEL B
ḡ – 0.466 (0.083) 0.466 (0.081)
σA IG(dof:2.1, Scale/dof:0.03) 0.905 (0.081) 0.936 (0.062)
σx IG(dof:2.1, Scale/dof:0.03) 0.237 (0.127) 0.139 (0.037)
Maximum Likelihood -167.41 -167.71
Marginal Likelihood -170.23 -171.39

PANEL C
ḡ – 0.466 (0.078) 0.466 (0.084)
σA IG(dof:2.1, Scale/dof:0.05) 0.891 (0.089) 0.933 (0.063)
σx IG(dof:2.1, Scale/dof:0.05) 0.282 (0.135) 0.162 (0.044)

Maximum Likelihood -167.42 -167.86
Marginal Likelihood -170.34 -172.02

PANEL D
ḡ – 0.466 (0.078) 0.466 (0.083)
σA IG(dof:2.1, Scale/dof:0.10) 0.867 (0.098) 0.928 (0.064)
σx IG(dof:2.1, Scale/dof:0.10) 0.349 (0.139) 0.201 (0.049)
Maximum Likelihood -167.43 -168.16
Marginal Likelihood -170.50 -173.10

PANEL E
ḡ – 0.467 (0.074) 0.466 (0.082)
σA IG(dof:2.1, Scale/dof:0.30) 0.819 (0.105) 0.915 (0.067)
σx IG(dof:2.1, Scale/dof:0.30) 0.467 (0.134) 0.283 (0.057)
Maximum Likelihood -167.51 -169.08
Marginal Likelihood -170.67 -175.54

PANEL F
ḡ – 0.467 (0.072) 0.466 (0.082)
σA IG(dof:2.1, Scale/dof:0.50) 0.796 (0.105) 0.907 (0.068)
σx IG(dof:2.1, Scale/dof:0.50) 0.522 (0.126) 0.333 (0.061)
Maximum Likelihood -167.56 -169.79
Marginal Likelihood -170.78 -177.06

Note: The results show the posterior means and posterior standard deviations (in parenthesis) of
the model parameters in the state space model displayed by equation (2.1-2.2) as burn-in sample.
We kept every 5th draw, which yields a sample of 10,000 draws from the ergodic distribution. IG
stands for the inverted Gamma distribution with the parameters of degrees of freedom (dof) and
scale.
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Figure C.1: Evolution of the agent’s beliefs for the low persistence model to be the true DGP over
the sample 1978-1:2015-4.

PANEL A: Estimated x̂t and ηt for prior distribution IG(dof:2.1, Scale/dof:0.01)
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PANEL B: Estimated x̂t and ηt for prior distribution IG(dof:2.1, Scale/dof:0.03)
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PANEL C: Estimated x̂t and ηt for prior distribution IG(dof:2.1, Scale/dof:0.05)
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PANEL D: Estimated x̂t and ηt for prior distribution IG(dof:2.1, Scale/dof:0.10)
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PANEL E: Estimated x̂t and ηt for prior distribution IG(dof:2.1, Scale/dof:0.30)
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PANEL F: Estimated x̂t and ηt for prior distribution IG(dof:2.1, Scale/dof:0.50)
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C.2 Industry results

In this section we present posterior results for 2 representative industries based on the data set from

Bloom et al. (2018). The data are from the replication file (stata data file) of the Bloom et al. (2018)

paper. The data span 1971-2009 with annual frequency, and the estimates are based on TFP data

expressed in percent.

Table C.2: Posterior results for the model using data on sectoral TFP
for selected industries using the sample of 1947-2:1977-4

2911 3519
Petroleum mining Internal combustion engines

0.30 0.85 0.30 0.85
ḡ -0.449 (0.095) -0.449 (0.099) -0.536 (0.093) -0.536 (0.100)
σg 4.830 (1.826) 5.667 (0.717) 3.919 (1.841) 5.148 (0.662)
σx 2.033 (2.066) 0.808 (0.694) 2.351 (1.991) 0.730 (0.705)

Max. -123.24 -123.24 -119.14 -119.15
Mar. -125.16 -125.22 -120.91 -121.93

Note: The results show the posterior means and posterior standard deviations
(in parenthesis) of the model parameters in the state space equation for the
TFP growth process (evaluated in percentage terms). The inference was carried
out with 60,000 draws where the first 10,000 are used as burn-in sample. We
kept every 5th draw, which yields a sample of 10,000 draws from the ergodic
distribution.

D Additional diagnostics

In this section, we provide some additional diagnostics regarding the behavior of our model as a

way of understanding the impact of the distortions caused by ambiguity and ambiguity aversion

on agent’s beliefs and the precautionary saving effects that they induce. These include simulations

characterizing the risk-free rate and and the mean and standard deviation of “as if” or distorted

beliefs that are implied by the smooth ambiguity model. We also discuss the notion of time-varying

uncertainty that is generated by learning in our smooth ambiguity model.
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D.1 The risk-free rate

Using the notation in Section 3.2 in the text, the (gross) risk-free rateRf for the model with ambiguity

aversion satisfies

1 = βRfΛtEµt

{
ξtExt

[
exp(((1− γ)ν − 1)gA,t+1)

(
λt+1

λt

)]}
, (D.2)

where Λt and ξt are defined by equations (3.6) and (3.7) in the text and λt = ν(ĉνt l
1−ν
t )−γ(ĉt/lt)

ν−1.

Recall that µt accounts for the second-order beliefs of agents. We can re-write this by making explicit

use of the second-order distribution as

1 = βRfΛt

{
ηtEx̂l,t

[
ξ

(l)
t Exl,t

(
exp(((1− γ)ν − 1)gAl,t+1)

λ
(l)
t+1

λt

)]

+(1− ηt)Ex̂h,t

[
ξ

(h)
t Exh,t

(
exp(((1− γ)ν − 1)gAh,t+1)

λ
(h)
t+1

λt

)]}
. (D.3)

D.2 A log-linear approximation

In what follows, we derive a log-linear approximation to the risk-free interest rate under the as-

sumptions in Collard et al. (2018), first, by considering the case with known persistence (ηt = 0)

for the growth rate of the TFP process and second, by treating the distorted or “as if” posterior

µ̃t ≡ ξt(xt)⊗N(x̂t,Ω), where the distortion arises from the role of ambiguity aversion, as a normal

density with the same variance as Ω but a different mean, x̃t Using the assumptions, let Et ≡ Ex̂tExt
and Ẽt ≡ Eµ̃tExt ≡ Ex̃tExt . Also, Ṽ art(xt) = V arµ̃t(xt) = Ω and V art(xt) = V arµt(xt) = Ω

and all ε terms have expectation zero under both Ẽt and Et since the terms have expectation zero

conditional on xt.
3

3The expressions for the distorted mean and variance in the general case are

x̃t = ηt

∫ ∞
−∞

(xl,t)ξ
(l)
t dF (xl,t)dxl,t + (1 − ηt)

∫ ∞
−∞

(xh,t)ξ
(h)
t dF (xh,t)dxh,t, (D.4)

Ṽ art(xt) = ηt

∫ ∞
−∞

(x2l,t)ξ
(l)
t dF (xl,t)dxl,t + (1 − ηt)

∫ ∞
−∞

(x2h,t)ξ
(h)
t dF (xh,t)dxh,t − x̃2t . (D.5)
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Under these assumptions, the expression for the risk-free rate becomes

1 = βRfΛtẼt [exp (log(λt+1/λt) + ((1− γ)ν − 1)(ḡ + ρx̃t + σxεx,t+1 + σAεA,t+1))]

= βRfΛt exp

[
Ẽt (log(λt+1/λt)) +

Ṽ art (log(λt+1/λt))

2
+ ((1− γ)ν − 1)(ḡ + ρx̃t)

+
((1− γ)ν − 1)2

2
(σ2
x + σ2

A) +
((1− γ)ν − 1)2ρ2

2
Ṽ art(xt)

]
,

which implies

rf = − log(β)− log(Λt)−

[
Ẽt (log(λt+1/λt)) +

Ṽ art (log(λt+1/λt))

2
+ (((1− γ)ν)− 1)(ḡ + ρx̃t)

+
((1− γ)ν − 1)2

2
(σ2
x + σ2

A) +
((1− γ)ν − 1)2ρ2

2
Ṽ art(xt)

]
,

where rf = log(Rf ). Now

log(Λt) = log Ẽt

(
Ĵ(k̂t+1, x̂t+1) exp(ν(1− γ)gA,t+1)

)−α
+

α

1− α
log Ẽt

(
Ĵ(k̂t+1, x̂t+1) exp(ν(1− γ)gA,t+1)

)1−α

= −αẼt
(

log(Ĵ(k̂t+1, x̂t+1)) + (ν(1− γ)gA,t+1)
)

+αẼt

(
log(Ĵ(k̂t+1, x̂t+1)) + (ν(1− γ)gA,t+1)

)
+ variance terms,

so that the direct effect of α on the risk-free interest rate cancels out.4 Based on these rules, we

rewrite the risk-free rate as

rf = − log(β)−

[
Ẽt (log(λt+1/λt)) +

Ṽ art (log(λt+1/λt))

2
+ ((1− γ)ν − 1)(ḡ + ρx̃t)

+
((1− γ)ν − 1)2

2
(σ2
x + σ2

A) +
((1− γ)ν − 1)2ρ2

2
Ṽ art(xt)

]
+ extra variance terms

To understand the impact of ambiguity aversion on the risk-free rate, we note that the log-linear

rule for the risk-free interest implies that rf depends positively on the distorted posterior mean, x̃t,

and negatively on the distorted posterior variance, Ṽ art(xt).
5 From the definition of ξt, since the

distorted posterior mean declines with increases in α due to the endogenous tilting of beliefs under

4For a similar effect of the decision rules for the quantity variables, see Backus et al. (2015).
5Notice that the term ((1 − γ)ν − 1) is negative for all values of γ ≤ 1 since 0 < ν < 1.
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Table D.3: Simulation Results for the Risk-free Rate, Quarterly Rate

Model Risk-free rate rf X̃ SD(X̃)

Baseline model 1.55 9.00e-05 0.063

Panel B 1.54 -2.43e-03 0.25

Petroleum mining (Ind 2911) 1.07 4.76e-04 0.41

Internal combustion engines (Ind 3519) 1.05 4.21e-03 0.39

Note: The model is simulated based on the decision rules for the main model with
ambiguity where the agent cannot distinguish perfectly between two processes
with persistence ρl = 0.30 and ρh = 0.85. The riskfree interest rate is simulated
for the full sample of 1947:i-2015:IV but the simulated values for the period 1947:I-
1978:IV are discarded as part of the burn-in sample. The distorted means, X̃, and
the distorted standard deviations, SD(X̃), are computed according to formulas
above and are evaluated in percentage terms, as is the risk-free rate.

ambiguity aversion while the distorted posterior variance increases with α, we expect that an increase

in ambiguity aversion will tend to reduce the risk-free rate. This may be interpreted as reflecting

the increased demand for risk-free assets in an environment with endogenous doubt and pessimism.

D.3 Simulations

In this section, we report the average quarterly interest rate and the mean and standard deviation

of “as if” or distorted beliefs that are implied by the smooth ambiguity model. This is done for the

baseline model with uninformative priors as well as the case with the Panel B estimates, displayed in

Table 5 in the text, for the aggregate TFP process. As a counterfactual exercise, we also re-estimate

TFP growth processes using annual sectoral TFP measures provided by Bloom et al. (2018) for two

4-digit manufacturing industries. The reason for choosing these industries is that their TFP growth

displays considerable time-varying uncertainty in a way that will be made precise below.

We use the numerical solution method and numerical integration to evaluate these expressions.

Table D.3 shows that the risk-free interest rates implied under the baseline specification in Table

4 and the Panel B estimates of Table 5 are estimated to be close and large, reflecting the low

variation in the distorted beliefs under these estimates. Thus, the precautionary saving effect under

ambiguity aversion is not strongly manifested in these specifications. By contrast, the distortions

induced by ambiguity and ambiguity aversion are relatively large (as shown by the low distorted

mean and large standard deviation of x̃t) for Industries such as Petroleum Mining and Internal
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Combustion Engines. As a consequence, the implied values for the risk-free rate are also lower for

these industries. We simulate 100 different economies of 275 observations each corresponding to

the sample period 1947:I-2015:IV, and report values after discarding the burn-in sample of 1947:I-

1978:IV. As in our other simulations exercises, we implement the simulations under the assumption

that the TFP shocks are drawn from the high persistence/low variability versus low persistence/high

variability processes.6 However, since the results did not change significantly across the processes

with high or low persistence, we only report the values for the high persistence process. We also

consider the case of γ = 0.5, α = 0.8 throughout the simulations.7

D.4 Filtered beliefs

To help understand these findings, Figure D.2 displays the filtered means x̂lt and x̂ht for the different

processes.8 Figure D.2 shows that for the estimates based on aggregate TFP, the values of both

x̂lt and x̂ht are very small, and there is very little variation in either of these measures. Hence, any

exacerbation of such time-varying uncertainty by ambiguity aversion through the distortion functions

ξit, i = l, , h introduced in Section 3.3 is also likely to be to minor. With a more informative prior

on the low persistence process, as in the Panel B model, the filtered means display more variability

but this is still relatively minor. Turning to the sectoral results, the variability of the filtered means

increase significantly, as does the incidence of cases when x̂ht < x̂lt.

Another way of understanding the impact of ambiguity is to note that an ambiguity-averse agent

endogenously behaves as if the uncertainty is more persistent and severe following negative shocks

than in normal times. Figure D.2 shows that for an industry such as Petroleum Mining, the mean

of the high persistence process tends display significant drops, and to fall below the mean of the

6In this section, we do not report the business cycle moments implied under the sectoral TFP estimates, though they
are available upon request. Nevertheless, we choose industries for which the relative volatility of output, consumption
and investment are comparable to the aggregate TFP estimates, although the overall volatility may differ across different
industries.

7It is also possible to use a higher value of β = 0.9926 (see, for example, Christiano and Eichenabum (1992)), which
will tend to reduce the risk-free rate further but our focus here is on understanding the role of ambiguity.

8As Collard et al. (2018) note, learning about the process driving the latent component of TFP growth provides a
measure of time-varying uncertainty for the smooth ambiguity model. In particular, learning may be represented in
terms of a mixture distribution with mean and variance as

x̂t = ηtx̂lt + (1 − ηt(x̂ht,

V art(xt) = ηtΩl + (1 − ηt)Ωh + ηt(1 − ηt)(x̂ht − x̂lt)
2,

where Ωk, k = l, h shows steady state variance based on the Kalman filter for ρ = ρk. In the smooth ambiguity model,
such time-varying uncertainty is amplified by ambiguity aversion through “as if” beliefs of agents.
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Figure D.2: Filtered Beliefs - Aggregate TFP and Industry Results
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low persistence process. Since ambiguity-averse agents forecast TFP growth by putting more weight

on the “worst case persistence”, in situations with negative shocks where x̂ht < x̂lt, the worst case

persistence is ρh, suggesting that the economy will remain in the bad state for a long time. This

tends to increase the endogenous distortions and to lead to greater ambiguity compared to situations

for which x̂ht does not fall systematically below x̂lt. This also has the effect of increasing the impact

of the ambiguity aversion parameter on the business cycle moments, as is the case for the Petroleum

Mining industry (see Section 4.3 of the text).
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