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Abstract

In this thesis we propose a bottom-up approach for modelling instrumental gestures

and techniques, using piano pedalling as a case study. Pedalling gestures play a vital

role in expressive piano performance. They can be categorised into different pedalling

techniques. We propose several methods for the indirect acquisition of sustain-pedal

techniques using audio signal analyses, complemented by the direct measurement of

gestures with sensors.

A novel measurement system is first developed to synchronously collect pedalling gestures

and piano sound. Recognition of pedalling techniques starts by using the gesture data.

This yields high accuracy and facilitates the construction of a ground truth dataset for

evaluating the audio-based pedalling detection algorithms.

Studies in the audio domain rely on the knowledge of piano acoustics and physics.

New audio features are designed through the analysis of isolated notes with different

pedal effects. The features associated with a measure of sympathetic resonance are used

together with a machine learning classifier to detect the presence of legato-pedal onset in

the recordings from a specific piano. To generalise the detection, deep learning methods

are proposed and investigated. Deep Neural Networks are trained using a large syn-

thesised dataset obtained through a physical-modelling synthesiser for feature learning.

Trained models serve as feature extractors for frame-wise sustain-pedal detection from

acoustic piano recordings in a proposed transfer learning framework.

Overall, this thesis demonstrates that recognising sustain-pedal techniques is possible to

a high degree of accuracy using sensors and also from audio recordings alone. As the first

study that undertakes pedalling technique detection in real-world piano performance, it

complements piano transcription methods. Moreover, the underlying relations between

pedalling gestures, piano acoustics and audio features are identified. The varying effec-

tiveness of the presented features and models can also be explained by differences in

pedal use between composers and musical eras.
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Chapter 1

Introduction

1.1 Scope and Motivation

Music performance is not only the realisation of categorical information presented in the

score, such as pitch and note duration. It also involves interpretation by the player,

leading to expressive performance. During a music performance, the performer can

express a musical idea using a sequence of gestures that control the instrument, which

in turn, produces sound. Accordingly, the musical idea is transformed into different

representation domains: the score, the gesture and the sound domain. In the field of

sound and music computing, the translation from score or/and gesture to sound is known

as sound synthesis, and the other way round is often referred to as music information

retrieval (MIR).

The scope of this thesis is the transcription aspect of MIR, which helps to reveal

secrets of artistic expressions from recordings of virtuoso performances. We explore meth-

ods for acquiring instrumental gestures, which are regarded as the performer’s gestures

involved in the sound production process. Instrumental gestures are typically continu-

ous. They can be categorised into discrete playing techniques. An accurate acquisition

method should be able to reflect the intention of composers written in the score and the
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interpretation of performers, for instance, the use of pedals in piano performances.

Understanding instrumental gestures is essential as they serve as an integral part of

both synthesis and transcription of music. Study on instrumental gestures inevitably

requires an interdisciplinary approach with contributions from various fields including

biomechanics and human motor control, auditory and visual perception, music perfor-

mance analysis, music theory, music technology, robotics, human-computer interaction

and so on [1]. In the meantime, the sound rendering of instrumental gestures correlates

with the physics and acoustics of music instruments. A set of instrumental gestures is

usually associated with music instruments of the same category. It could be completely

different from another category. The interest of this thesis is narrowed into the study of

instrumental gestures on the piano, which is one of the most important instruments in

Western music due to its complexity and versatility. In particular, pedalling gestures in

classical piano performances are investigated.

The interest in piano pedalling comes from the fact that the author of this thesis is

a pianist. Studies on piano performances have abounded in the analysis of hand and

finger movements, and recognition of basic units of music such as pitch and note onset.

Little work has been done on piano pedalling even if it is regarded as “the soul of the

piano” by the great 19th-century keyboard virtuoso Anton Rubinstein. To approach

physics-based piano synthesis, acoustic effects of the sustain pedal on piano tones have

been studied in [2] when the pedal is fully pressed, and in [3] when the half-pedalling

technique is used. Yet, the full spectrum of pedalling as an instrumental gesture to

convey different timbral nuances has not been adequately and quantitatively explored.

Pedalling techniques were even considered “almost impossible to gain from the audio

domain” in [4]. These challenges set barriers to a full transcription of piano music,

which can benefit applications in piano pedagogy, audio-score alignment, musicology

and many related domains.

Furthermore, learning to use the piano pedals strongly relies on listening to nuances

in the sound. To develop critical listening, merely experimenting with different pedalling
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techniques can be time consuming and less effective. Instructions with respect to when

the pedal should be pressed and for what duration are required. Therefore the main

motivation of this thesis is to facilitate the learning process by developing methods of

automatic pedalling technique detection either directly from the pedalling gestures or

indirectly from audio recordings.

With a deeper understanding of instrumental gestures and piano pedalling introduced

in the next two sections, we can break down the motivation into the following research

questions, which will be addressed in this thesis:

1. What are the pros and cons of the existing methods for measuring instrumental ges-

tures and detecting the corresponding playing techniques in piano performances?

2. How to design a non-intrusive measurement system that could accurately record

how the piano sound is modulated by pedalling?

3. What features can represent different pedalling techniques in order to facilitate

audio-based detection?

4. Can automatic detection of piano pedalling be improved by considering acoustics

and physics of the piano?

5. How to incorporate all the knowledge to generalise the pedalling technique detec-

tion so it performs well on any pianos?

1.2 Instrumental Gestures and Techniques

The term gesture can be varied in definitions with respect to research fields. Accord-

ingly, it can be approached from very different perspectives. Zooming into the musical

domain, the gesture is considered equivalent to human movements [5]. This is because

many musical activities, such as performance, conducting and dancing, involve body

movements that evoke meaning, and therefore these movements are called gestures [6].
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Musical gestures can be regarded as human movements that go along with sounding

music. In a study on the musical gestures of the pianist Glenn Gould, they are divided

into three levels “from purely functional to purely symbolic” [7]. Gestures of the sym-

bolic level relate to an image of a physical gesture and are perceived by the audience

subjectively. In the light of the works in [8–10], the first functional level can be further

divided into four categories based on the functions of musical gestures in [6]:

• Sound-producing gestures are the ones that are effective in producing sound. They

are called instrumental gestures in [9], and effective gestures in [7]. Based on the

typology in [9], excitation and modification are the two subcategories1.

• Communicative gestures are mainly intended for communication between per-

former and performer or performer and perceiver. They are called semiotic gestures

in [11].

• Sound-facilitating gestures are the ones that support the sound-producing gestures,

but not directly involved in sound production. They are called accompanying

gestures in [7], non-obvious performer gestures in [12], and ancillary gestures in

[10].

• Sound-accompanying gestures are not ancillary to sound production, but intended

to follow the music, for instance, tracing the melody of a song or mimicking the

sound-producing gestures in the air.

It is noted that the above categories are not mutually exclusive. Multiple functions

can simultaneously exist in musical gestures. For example, releasing the sustain pedal in

piano performances can be seen as both instrumental and communicative gestures. This

is because it can not only mute the current sounding notes, but also indicate the end

of a music phrase to other performers. The scope of this thesis focuses on using piano

pedals as instrumental gestures. We can categorise the continuous pedalling gestures

1These terms presented in [6], i.e., excitation and modification for the subcategories of sound-producing
gestures, correspond to sound-producing gestures and sound-modifying gestures for the subcategories of
instrumental gestures in [9].
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into discrete techniques. More details on pedalling techniques in piano performance are

introduced in the following section.

1.3 Pedalling in Piano Performance

Our proposed methods for detecting pedalling techniques are informed by their associated

acoustical characteristics in piano sounds. To help understand the intuition behind these

methods, this section presents the music background of pianos and pedals. We start

with a brief introduction of modern pianos. Due to different mechanisms and acoustics

of the three standard pedals, piano sounds can be altered in different ways as introduced

in Section 1.3.1. Instrumental gestures on the sustain pedal are the most diverse and

commonly used. They can be categorised into a variety of pedalling techniques as detailed

in Section 1.3.2.

1.3.1 Mechanism and Acoustics of Modern Pianos and Pedals

As illustrated in Figure 1.1, a grand piano features keyboard, hammers, dampers, bridges,

soundboard, and strings. There are 88 keys on the keyboard of a modern piano, covering

a range of notes from A0 to C8. When a key is struck, a complex mechanism transmits

this motion to the hammer. The hammer strikes a number of strings, depending on the

played note. Most notes have three strings, except for the bass, which ranges from one

to two. Almost at the same time of hammer strikes, dampers are lifted away from the

strings, which are free to vibrate from this moment. Vibrating strings generate the piano

tone, which consists of a fundamental tone and a number of the higher-pitched tones

known as partials. When the string vibrations reach the bridge, they are transmitted

to the soundboard via a complex coupling mechanism. Because of the string stiffness,

partials of piano tones occur at frequencies slightly away from the harmonic positions

(integer multiples of the fundamental frequency). This is referred to as inharmonicity.

Experiments have shown that inharmonicity contributes to the warmth [13], richness and



Chapter 1. Introduction 30

bass bridge

plate

treble strings

treble bridge

tuning pins

dampers

rim

bass strings

soundboard

damper

string

hammer key

side view

top view

Figure 1.1: Structure of a grand piano.

quality of the piano sound [14].

Due to the hammer struck, a percussive sound is produced at the attack stage of

a piano tone. The attack stage is followed by a complicated decay process because of

double decay and beating [15]. Piano tone is silenced by dampers, which fall onto the

strings when the performer’s hands are lifted from the key. It is possible to make piano

tones keep sounding if pedals are used. Pedals have existed in pianos since the 18th

century when Cristofori introduced a forerunner of the modern soft pedal. It took many
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decades before piano designers settled on the standardisation of three pedals, following

the configuration standardised by Steinway and Sons in the late nineteenth century [16].

From left to right, the three pedals are commonly referred to as the una corda pedal, the

sostenuto pedal and the sustain pedal2.

The una corda pedal of grand pianos functions by shifting the keyboard and hammers

to the right such that one less string would be struck. Piano loudness can be decreased

when the una corda pedal is pressed. Due to the changes in coupling between the strings,

a more significant effect is the change in timbre. Unlike the grand piano, the una corda

pedal of upright pianos makes the output sound softer by moving the hammer closer to

the strings.

The function of the sostenuto pedal can vary with different pianos. In most modern

grand pianos, the sostenuto pedal only sustains dampers that are lifted when the pedal

is engaged. This effect leads to an impression of a third hand, because the sostenuto

pedal keeps the chosen notes sounding while performers can freely use their hands to

play other notes. In some upright pianos, the tone is softened with a piece of felt which is

lowered between the hammers and the strings. This makes the pedal act as a “practice”

pedal [18] because the loudness is greatly decreased.

Because of the varieties of pedalling techniques on the sustain pedal, it is the most

frequently used one among the three standard piano pedals. All dampers are lifted off

the strings when the sustain pedal is pressed. This mechanism helps to sustain the

current sounding notes and allows strings associated with other notes to vibrate due to

coupling via the bridge. A phenomenon known as sympathetic resonance [19] is thereby

enhanced and embraced by pianists to create a “dreamy” sound effect. In this thesis,

we focus on the sustain pedal and investigate its techniques which are detailed in the

following section.

2The una corda pedal is also known as the soft pedal. The sustain pedal is also called damper pedal,
loud pedal, or open pedal [17].
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1.3.2 Pedalling Techniques and Notations

Mirroring the development of the pedals themselves, the notations used for indicating

pedalling techniques have likewise changed over the centuries. The use of the pedals

was not marked in music scores before the 1790s [20]. Composers like Chopin and Liszt

marked pedal onset and offset times actively in their compositions. In contrast, Debussy

and Scriabin rarely notated pedalling despite its importance in the interpretation of their

works. Yet, they as well as later composers continued to find new sounds through the

assumed use of pedals [21]. In general, pedalling techniques can be varied in timing

with respect to note onsets and the depth of pedal press [20]. This is especially the case

for the sustain pedal. Pianists apply various pedalling techniques on the sustain pedal

to colour the resonance subtly, leading to expressive performance. In the rest of this

section, pedalling techniques refer to the ones applied on the sustain pedal.

There are three main pedalling techniques related to pedal onset time, i.e., when the

pedal should be pressed. Anticipatory pedalling can only be applied after silence and

before the notes are played. This is primarily used by pianists to produce greater reso-

nance at the commencement of the sound. Rhythmic pedalling corresponds to pressing

the pedal at the same time as the note onset. This technique supports metrical accen-

tuation, which is an important aspect of Classical-era3 performance. Pressing the pedal

immediately after the note attack is called legato pedalling. This enables the performer

to produce seamless legato while avoiding blurring the sound with previous sonorities.

Legato pedalling is more commonly used than the other two timing-related techniques.

Figure 1.2 presents three music excerpts usually played with the three pedalling tech-

niques mentioned above, respectively. The notations under the bar of the music score in

Figure 1.2(a) and 1.2(c) can roughly suggest when the sustain pedal should be pressed

and released. The actual timing is dependent on the interpretation of performers. In

Figure 1.2(b), pedalling notations are not given, but the sforzando symbol indicates that

it should be played along with rhythmic pedalling for a forceful accent at every beat.

3Classical-era extends roughly from the late 18th century to the mid 19th century.
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(a)

(b)

(c)

Figure 1.2: Examples of three timing-related pedalling techniques in music excerpts,
including (a) anticipatory pedalling in Chopin’s Polonaise in A-flat major, Op. 53, (b)
rhythmic pedalling in Beethoven’s Sonata No. 32 in C minor, Op. 111, and (c) legato
pedalling in Chopin’s Nocturne Op. 9 No. 2.

As seen in Figure 1.2, “pressed” and “released” are the two conventional positions of

the sustain pedal. It is also possible to use the pedal in intermediate positions. When

the pedal is kept in an intermediate position, the dampers allow the strings to vibrate

to some extent but prevent the strings from vibrating freely. Thus a tone can be heard

in full strength while the key is held down. When the key is released, the volume will be

reduced but some sound remains. As presented in [22], the German word Nachklang can

refer to this remainder of sound. The volume of the Nachklang depends on the position

of the dampers. Scarcely any Nachklang remains when the dampers are nearly touching

the strings, while practically the full volume of sound remains when the dampers are
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almost completely removed from the strings. All gradations can be obtained by moving

the pedal between these two positions. They are known as part-pedalling techniques

that change as a function of the depth of the sustain pedal.

Apart from full pedal, pianist Schnabel defined another three levels of part-pedalling,

which are referred to as quarter pedal, half pedal and three-quarter pedal [22]. It should be

noted that these terms do not refer to specific positions of the pedal, nor even to specific

positions of the dampers, but only to the amount of sound which remains when the keys

are released. As Schnabel discussed, the only way to distinguish between these pedals or

to judge whether they are performed correctly is by hearing the effect created. To test

whether a certain position of the pedal produces the effect of quarter pedal accurately,

play a scale or a succession of different harmonies: there should be no blurring until the

last note has been played; play the same passage again without pedal: there should be

a significant difference in sound. To test half pedal, play single staccato notes or chords:

they should sound staccato; play a scale or succession of different harmonies: there should

be some blurring. To test three-quarter pedal, play a chord and then release the keys:

it should sound as if the chord were held out; play and releases the same chord again

using full pedal: there should be a marked difference in sound. Many special effects can

be created by changing directly from one intermediate position to another or between

intermediate and full pedal. For example, a rapid diminuendo in a harmonic passage can

be achieved by releasing the pedal gradually, thereby passing all intermediate positions.

Throughout the twentieth century, composers became increasingly more precise in

providing pedalling instructions to performers. For example, more explicit pedalling

notations are presented in Figure 1.3, which denotes pressing the sustain pedal halfway,

and then fully before releasing it back to halfway for a moment, and finally keeping it

fully pressed until it is released. Even if the pedal notations are given, experts agree

that pedalling in the same piano passage can be executed in many different ways [23].

This is influenced by the performer’s sense of tempo, dynamics, textural balance, and

the settings or milieu in which the performance takes place [21].
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Figure 1.3: Example of explicit pedalling notations in the music excerpt from Stock-
hausen’s Klavierstück IX.

In this thesis, our main focus is to develop automatic methods for detecting pedal

onset times and localising the portions with the sustain pedal pressed. A portion between

a pedal onset and its corresponding offset is hereafter referred to as pedalled segment.

1.4 Thesis Outline and Contributions

With a deeper understanding of instrumental gestures and piano pedalling introduced in

Section 1.2 and 1.3, the main contributions of this thesis are made in pedalling technique

detection on the sustain pedal. The emphasis of each chapter and relationships between

different chapters are intuitively illustrated in Figure 1.4. In detail, the rest of this thesis

is outlined as follows.

Chapter 2 presents the technical background of this thesis and reviews related works

with an emphasis on piano performance. It starts by introducing three strategies for cap-

turing the instrumental gestures and techniques: direct acquisition, indirect acquisition

and multimodal modelling. These strategies are applied to the pedalling technique detec-

tion, which is introduced in Chapter 3, 5, 6 and 7. Methods for evaluating the detection

performance are also surveyed.

Chapter 3 presents a dedicated system for direct acquisition. The system enables
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Figure 1.4: Outline of the thesis.

recording the pedalling gesture of performers and the piano sound under normal play-

ing conditions. Using the collected gesture data, the task of classifying these data by

pedalling techniques is undertaken using signal processing methods and machine learn-

ing classifiers. Results can be visualised in an audio-based score following application

to show pedalling together with the performer’s position in the score. The proposed
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system obtains high accuracy in classification tasks and can be easily installed on any

piano pedals. This allows wider participation compared to other systems, which are

often restricted for use in laboratory environments.

Chapter 4 is focused on the three datasets we designed for evaluating indirect acqui-

sition algorithms in this thesis. Using the dedicated system introduced in Chapter 3,

how the sustain pedal is played in a piano performance can be automatically annotated.

This provides the ground truth for a dataset consisting of acoustic piano recordings.

The other two datasets are developed based on MIDI playback under a more controlled

recording setup. One is produced using Disklavier to discover the effects of pedals on

piano tones. The other one is generated using Pianoteq, providing a large dataset to

train deep learning models. These datasets complement the existing piano datasets that

are devoted to pitch estimation.

Chapter 5, 6 and 7 propose indirect acquisition methods, which aim to detect

pedalling techniques from audio alone. We start with isolated piano tones played with

different pedalling techniques. Their spectral and temporal characteristics are discussed

and modelled in Chapter 5. Especially the characteristics in the residuals (after the

partial components are removed from the original signal) inform us to design features

representing sympathetic resonance. These features can be used to indicate the pres-

ence of legato pedalling. Therefore legato-pedal onsets become possible to detect in

polyphonic piano music using the method proposed in Chapter 6. To facilitate such

detection, deep learning models are trained to localise audio frames corresponding to

pedalled segments in Chapter 7. The knowledge encoded in the trained models can be

further transferred to detect pedalling techniques from audio recorded using other pianos

or recording setup.

Chapter 8 concludes this thesis and identifies some directions for future work.
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Chapter 2

Background and Related Works

2.1 Introduction

This chapter reviews the background, state-of-the-art methods, applications and eval-

uation approaches for acquiring instrumental gestures and techniques from music per-

formances or audio recordings. Basically we can distinguish two different strategies for

data acquisition. We first introduce direct acquisition of instrumental gestures in Sec-

tion 2.2. The gestures can be captured by various measurement devices and encoded

into dedicated formats. The other way is known as indirect acquisition, which is to

detect instrumental techniques from the recorded audio signal. This can be approached

by signal processing, machine learning and deep learning methods as introduced in Sec-

tion 2.3. These two strategies can be complementary to each other. In Section 2.4, how

to do instrumental technique detection by jointly analysing the sensor and audio data in

a multimodal modelling framework is surveyed. Evaluation metrics used for related tasks

are introduced in Section 2.4. Finally in Section 2.6, we summarise how the background

and related works inform our works in the other chapters of this thesis.

40
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2.2 Direct Acquisition of Instrumental Gestures

2.2.1 Definitions and Applications

Direct acquisition of instrumental gestures involves tracking the main control param-

eters of an instrument during a music performance, for instance, bow force in violin

performance and key velocity in piano performance. These parameters can be directly

accessed by digital measurement devices as introduced in Section 2.2.2. Another com-

mon approach detailed in Section 2.2.3 is to sense instrumental gestures with hyper-

instruments, which are “traditional” musical instruments enhanced with sensors [24].

Typically sensor output needs to be further processed in an embedded system. Multiple

streams of instrumental gesture data would arise during the acquisition process. How

to represent the gesture data in combination with the musical information is introduced

in Section 2.2.4. Direct acquisition of instrumental gestures is essential for applications

including:

• Gesture-sound mappings for interactive music performance. The New

Interfaces for Musical Expression (NIME) community1 has been advancing this

research to aid real-time computer music performance through mapping the ges-

tural data to sound synthesis algorithms [10, 25]. A number of hyperinstruments

grow out of the development of gesture-sound mappings. Some representative

examples include the E-Sitar [26], the overtone violin [27] and the magnetic res-

onator piano [28].

• Quantitative analysis of music performance. Most musical sounds are the

result of the performer’s instrumental gestures. Quantitatively assessing these

gestures helps to investigate expressiveness in music performance. Overviews of

performance analysis techniques with a focus on the quantitative methods can be

found in [4, 29–31].

1http://www.nime.org

http://www.nime.org
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• Construction of a ground truth dataset for evaluating the indirect acqui-

sition algorithms. The idea of using the direct acquisition to train models for

the indirect acquisition was proposed in [32]. The successfully trained model can

serve as a “surrogate” sensor that provides gesture information or detects playing

techniques from audio signals without using the original sensors, which could be

intrusive to the performer to some extent.

The scope of this thesis adopts the idea in the third application for piano pedalling

technique detection. In the following sections, we place the emphasis on the direct

acquisition of instrumental gestures in piano performances (see [33, 34] for a review of

literature on piano touch).

2.2.2 Digital Measurement Devices

The most accurate and commonly used devices for gesture measurement are optoelec-

tronic motion capture systems, such as Vicon and Optotrak. These systems are based on

fixed cameras and markers. The motion of the markers can be tracked by the cameras

within their capture volume. This has been used to understand mechanisms responsible

for motor controls of pianists. Studies are typically performed on finger, hand and arm

gestures in piano playing. For instance, temporal control was examined using finger

tactile feedback [35], finger motion [36], distinct inter-joint coordination [37], finger kine-

matics [38] and hand movement efficiency [39]. From the captured gestures, the main

differences between concert pianists, piano teachers, and students can be found in the

amount of kinetic energy that is used for tone production and extraneous movements [40].

Findings from these gesture analyses also help to raise concerns of overuse syndrome in

musicians [41].

Cost and accessibility of the above motion capture systems remain barriers to be used

in a more general scenario such as in instrumental lessons. A more affordable option of

motion capture is Kinect, which is not restricted to use in laboratory environments.
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Kinect can capture pianist movements based on depth sensing. It is markerless but not

as accurate as Vicon or Optotrak. Relevant body landmarks such as hand and shoulder

positions in piano playing were able to be detected in [42]. This is useful to point out

potentially harmful hand postures [43] and help students to correct posture mistakes in

virtual piano tutoring [44].

In piano performance, the instrument itself featuring recording and playback func-

tionality also enables instrumental gestures to be captured. Yamaha Disklavier and

Bösendorfer CEUS pianos can register key onset/offset, onset velocity, release velocity

and movement of three pedals. With this information, pianists’ individuality in the

performance of five timbral nuances was investigated in [45]. More importantly, the

two pianos can provide a fully-automatic and reliable annotation for the generation of

datasets, which are needed to develop and evaluate the algorithms for automatic piano

transcription. Such datasets include SMD (Saarland Music Data) [46], MAPS (MIDI

Aligned Piano Sounds) [47] and MAESTRO (MIDI and Audio Edited for Synchronous

TRacks and Organization) [48]. A comparison of the two pianos on their recording and

reproducing accuracy can be found in [49].

Since we focus on the pedalling gestures, it is not ideal to use motion capture systems

because the infrared light may be blocked by the performer’s upper body or the piano.

Reflections on the piano surface can introduce more noise into the system. Pedalling

gestures are therefore not accurately measured. We opted for a Yamaha Disklavier

grand piano to create a dataset in order to investigate different effects of pedals on piano

tones (see Section 4.3 for the dataset construction process). Given that many strict

specifications that cannot be played by performers are able to be encoded in MIDI files,

Disklavier has the ability to playback these MIDI files and help the creation of audio

datasets under very controlled settings. There is still a need for the development of a

measurement system that can be used on any acoustic pianos and dedicated to pedalling

gestures sensing in a non-intrusive way. The following section introduces sensors and

embedded systems to facilitate such development.



Chapter 2. Background and Related Works 44

2.2.3 Sensors and Embedded Systems

Through a comprehensive review of sensors that can measure user interaction in digi-

tal musical instruments (DMI), the use of specialised sensors is shown as a significant

determinant of classifying musical gestures, allowing for different mappings according to

the gesture being performed [50]. Measurements of the key movements using sensors

can be traced back to the late 19th century. Binet and Courtier used a rubber tube

under the piano keys to determine a continuous key position based on air compression

variations [51]. Ortmann reported a more systematic investigation on piano key motion

in [52]. Specific velocity profiles of the key can be captured with the help of a tuning fork

mounted onto a key. These profiles could be classified into two types of touch: percussive

and non-percussive [53].

With the development of integrated circuits, many other sensor modalities have been

used to measure piano performance. Inertial sensors, which incorporate accelerometers

and gyroscopes, were mounted on pianists’ wrists to track arm motion in [54]. With the

wearable sensors introduced in [55], the force from hand, wrist, and arm can be measured.

However, wearing sensors can be intrusive to pianists, resulting in more or less unrealistic

estimates from the music performance. An alternative solution is to augment the piano

itself. For example, multi-touch capacitive sensors were added to the surface of each key

in order to track the location of finger-key contact in [56].

Minimally intrusive solutions with maximal ecological validity could be optical-based

sensing. A Moog PianoBar was modified in [57] to read continuous key position using

near-field optical reflectance sensing. This system can be combined with the monocu-

lar image-processing based system detailed in [58]. Accordingly, an integrated system

enabling the measurement of the small-scale motion of fingers and large-scale movement

of hands and arms was developed in [59].

It is noted that none of the above projects considered the inclusion of pedalling

techniques as part of gesture sensing. Existing pedal sensing is discrete and only provides
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on/off information. These problems have motivated us to develop a system that can

be portable, self-contained, low-cost and non-intrusive to measure continuous pedalling

gesture on any pianos.

To connect multiple sensors and register their data, there have been a number of

commercial single-board computers available to use. According to their reliability, per-

formance, and reproducibility, a suitable platform can be selected. Especially for the

creation of DMI, the platform should not only provide connectivity to analogue and dig-

ital sensors, but also allow on-board audio processing. This is necessary for our pedalling

measurement system to synchronously record both the audio and the gesture data. A

noteworthy platform is Arduino2, which has the ability to add expansion boards, enabling

fast prototyping. It benefits the applications in music education [60, 61] and the devel-

opment of hyperinstruments such as the Electrumpet [62] and the Kalichord [63]. How-

ever, Arduino is not capable to run audio processing due to its limited central processing

unit (CPU). Since Arduino usually handles sensor input communicating via USB-serial,

latency and jitter appear because of the serial connection. Raspberry Pi3 is another

popular embedded device with a more powerful CPU. It can be configured to support

the audio-oriented environment by the Satellite CCRMA distribution [64]. Latency still

exists because the Linux kernel of Raspberry Pi doesn’t support real-time processing.

This can be addressed by BeagleBone4, which features a programmable real-time unit

(PRU).

Based on a BeagleBone Black with an expansion “cape”, Bela5 was developed with

more robust audio performance, which is suitable for building a stand-alone instrument

or measurement system. It provides stereo audio input and output, plus several I/O

channels with 16-bit analogue-to-digital converters (ADC) and 16-bit digital-to-analogue

converters (DAC) for attaching sensors and/or actuators. It combines the resources and

advantages of embedded Linux systems with the performance and timing guarantees

2https://www.arduino.cc
3https://www.raspberrypi.org
4https://beagleboard.org/bone
5https://bela.io

https://www.arduino.cc
https://www.raspberrypi.org
https://beagleboard.org/bone
https://bela.io
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typically available only in dedicated digital signal processing chips and microcontrollers.

Consequently, Bela integrates audio processing and sensor connectivity in a single high-

performance package for our use. This allows for sampling both digital and analogue

input at audio rate, providing jitter-free alignment between audio and sensors. Full

technical details can be found in [65, 66]. For these reasons, we integrated Bela into

the pedalling measurement system as detailed in Section 3.2, rather than other hybrid

microcontroller-plus-computer systems, which typically impose limited sensor bandwidth

and may introduce jitter between sensor and audio samples.

2.2.4 Gesture Data Representations

Different gesture data representations have been proposed for storage purposes. There

are several motion capture formats that are designed to accompany specific motion cap-

ture hardware and focused on full-body motion-capture streams. They are not able to

synchronously store other types of data using different resolutions and sampling rates.

For a more generic purpose, the Gesture and Motion Signal (GMS) format has been

developed for virtual reality multisensory applications in [67]. It provides a binary for-

mat for storing low-level sensor data such as position and force. To simultaneously han-

dle a higher level of data such as gesture descriptors, Gesture Description Interchange

Format (GDIF) [68] was proposed inspired by Sound Description Interchange Format

(SDIF) [69], which was designed to describe properties of audio signals. It is based on

existing formats and protocols including XML, Open Sound Control (OSC) and so on.

Ideally, GDIF should be possible to store all sorts of data from various systems. A sum-

mary of the existing formats representing music-related movement and gesture data can

be found in [70].

In the thesis, pedal movement can be represented as a time series, indicating the

changes in pedal depth. Considering the simple nature of time series, another two formats

instead of the above gesture data formats were used to encode the use of pedals. The

two formats are comma-separated values (CSV) and Musical Instrument Digital Interface
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Figure 2.1: Different pedal representations of the same note played without (the first
note) or with (the second note) the sustain pedal, including music score, sensor data
stored in a CSV file and messages from a MIDI file.

(MIDI). For the pedal movement captured by our measurement system in Chapter 3, it is

stored as CSV. Given that the measurement system records the sensor signal at an audio-

sample rate using the same master clock, the captured pedal movement can be stored in

alignment with audio signals, which are saved in standard pulse code modulation wave

files. If pianists perform on Yamaha Disklavier or other pianos with an integrated high-

precision MIDI capture and playback system, note events and pedal positions can be

recorded as different messages, which are stored in MIDI files. Especially for the sustain

pedal, it is handled with the control change message, which consists of a control number

of 64 and a control value parameter in the range of [0, 127].

The proposed formats representing the use of pedals can serve as ground truth to

evaluate audio-based algorithms of pedalling technique detection. According to a music

score with sustain-pedal notations, Figure 2.1 illustrates the corresponding pedal data

in CSV and MIDI formats if the performer follows the score.
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2.3 Indirect Acquisition for Instrumental Technique Detec-

tion

2.3.1 Definitions and Applications

As seen in the previous section, drawbacks arise in developing direct acquisition systems.

Certain sensors or devices are required for the system, which could be difficult to develop

due to the cost or setup time. The trade-off between accuracy and ecological validity of

the system adds more barriers to wider adaptation. Even if an ideal direct acquisition

system is developed, usually there is only one version available. This is a common

problem in the creation of hyperinstruments, which benefit only one performer who

uses the hyperinstrument to acquire data. These problems have motivated researchers

to work on indirect acquisition, which is approached by extracting performance-related

data from audio signal.

The MIR community has focused on tasks of note-event-related information retrieval,

for instance, note onset detection [71], pitch estimation [72], melody extraction [73] and so

on. These tasks help to achieve a fully automatic music transcription (AMT) [74] for con-

verting a musical recording into a symbolic representation such as MIDI or music sheet.

However, music performance also involves expressive interpretation by the player. Stud-

ies on the identification of instrumental playing techniques (IPT) are relatively sparse.

IPT can characterise the continuous instrumental gestures which obtain different time-

frequency patterns at various scales. Observable patterns that span a certain duration

in the time-frequency plot can inform feature design using signal processing methods

as introduced in Section 2.3.2. Features that represent IPT characteristics can be used

to decide the existence of an IPT by a decision-making mechanism. Machine learning

methods are commonly used at this stage. We detail the machine learning algorithms for

classification in Section 2.3.3 with a focus on the algorithms used in this thesis. In recent

years, deep learning methods have been used to boost the performance for audio-based
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Figure 2.2: Diagrams of feature engineering and deep learning approaches.

music classification and tagging [75]. Compared to feature engineering, deep learning

allows end-to-end learning with multiple layers combined with nonlinear activations.

More technical backgrounds of deep learning are introduced in Section 2.3.4. Figure 2.2

illustrates the main differences in using the above three methods for IPT detection from

audio signals.

Automatic identification of IPT is considered as the next milestone in musical instru-

ment recognition in [76]. Recent research has attempted to transcribe IPT on drum [77],

erhu [78], guitar [79, 80] and violin [78, 81, 82]. The following sections introduce more

details on this literature with respect to the above three methods. We also emphasise

the algorithms used for indirect acquisition of piano pedalling techniques in this thesis.

2.3.2 Signal Processing Methods

A number of signal processing techniques can be used for the design of audio features

which characterise the time or frequency contexts when an IPT appears. This usually

starts with the frequency analysis of an audio signal over time to obtain a time-frequency

(TF) representation of the signal. Such two-dimensional representation was initially

introduced in [83], where the author demonstrated each point in the representation

corresponds to both a limited interval of time and a limited interval of frequency. In

computational music analysis, two forms of TF representations are commonly used:

spectrogram and Mel-spectrogram. They provide a visually intuitive content of the input

audio signal.
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Figure 2.3: Spectrogram (linear frequency) and Mel-spectrogram (Mel-scaled frequency)
of the same piano tone played without or with the sustain pedal.

Spectrogram can be obtained by the energy of the short-time Fourier transform

(STFT), i.e., its squared modulus. STFT yields frequency information at different frames

of a signal. Each frame corresponds to a small section centred around a time instant.

This is obtained by multiplying the original signal with a window function. By shifting

the window function across time, we can obtain successive frames. Their corresponding

frequency information can be computed by the Fourier transform (FT). Therefore the

STFT is dependent on not only the signal itself but also the selected window function.

A larger size of the window can lead to a better frequency resolution, while reducing

the temporal resolution. Considering that the perception of tones in ensemble music

is accurate to only 30 to 50 ms [84], the window size is usually set to 5 to 50 ms for

analysing music signals. Bell-shaped instead of rectangular window functions such as

Hann window (also known as Hanning window) are typically used to reduce the ripple

artefacts in the FT of the windowed signal.

There are many variations in visualising a spectrogram to enhance its qualitative

properties. In the case of spectrograms for audio signals, the amplitude values are
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commonly visualised using a decibel scale. This corresponds to the nonlinearity of our

ears in sensing sound. Human auditory perception also inspired the design of Mel-

spectrogram. The frequency axis of Mel-spectrogram uses Mel-frequencies as calculated

in Equation 2.1:

fmel = 2595 log10(1 + fHz/700), (2.1)

where fHz is frequency in hertz. Compared to spectrogram, Mel-spectrogram is more

efficient in size by preserving the most perceptually salient aspects. For this reason, Mel-

spectrogram has been widely used for efficient training in deep-learning-based MIR tasks

such as music tagging [85] and classification [86]. Figure 2.3 respectively presents the

spectrogram and Mel-spectrogram of the same audio signal, which recorded a piano tone

played normally and then with the sustain pedal. Similar auditory TF representations

include Constant-Q Transform (CQT) [87] and Gammatonegram [88].

As seen in Figure 2.3, TF representations of sounds from pitched instruments mainly

consists of sinusoidal and residual components. Sinusoidal components are usually har-

monic. Ideally, their frequencies are integer multiples of the fundamental frequency.

Residual components contain the energy produced by non-periodic vibration, for instance,

from the excitation mechanisms. Therefore the sounds from pitched instruments can be

modelled as a sum of a set of sinusoids plus residuals. This musically useful approach

was proposed in [89] and the model is denoted as sinusoids plus noise (SpN) model. For

the sounds from a specific instrument, physics and acoustics can be taken into account

to determine the sinusoidal components. In the case of the piano, sinusoidal compo-

nents are inharmonic due to the string stiffness. In Chapter 5, we use SpN model to

decompose the piano tones played with different pedalling techniques. Audio features

can be designed from the sinusoidal and residual components separately to characterise

the effects of pedals on piano tones.

Alternatively, models based on non-negative matrix factorisation (NMF) [90] have

been applied to the decomposition tasks. NMF has shown comparable performance in

automatic music transcription [91–94] and therefore dominated this task during the last
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two decades. In the context of automatic piano transcription, NMF decomposes the input

spectrogram into a product of two non-negative matrices: a dictionary containing the

spectral templates that represent spectral energy distribution of 88 notes respectively,

and an activation matrix similar to the piano-roll representation that encodes when

and how intensely each note is played over time. If the transcription is aimed at a

specific piano, the dictionary design can be complemented by different subsets of spectral

templates, which represents the attack and decay parts of a piano note, respectively. This

further increases the transcription performance as shown in [95, 96]. In Chapter 6, we

use the piano transcription method proposed in [96] as an intermediate step to measure

the sympathetic resonance based on the residuals.

At this stage, the TF representation after decomposition can emphasise the sinusoidal

components only in order to track fundamental frequencies with better performance.

The resulting pitch contour can be used as features for the detection of vibrato in violin

music [78, 81] plus bend, hammer-on, pull-off and slide in electric guitar music [80].

For IPT produced by percussive instruments, features extracted from NMF-based acti-

vation functions can be used to identify strike, buzz roll, flam and drag from drum

music [97]. Moreover, low-level temporal/spectral features are usually in combination

with the hand-crafted features to form feature vectors (see [98] for an overview of audio

features). Finally, the presence of an IPT can be decided with the help of machine-

learning classifiers as introduced in the following section.

2.3.3 Machine Learning Methods

With machine learning methods, models can be developed based on sample data (which

is known as training data) to capture the patterns in order to effectively make decisions

or predictions without using explicit instructions. In the training data, a set of data

points is denoted as {x1,x2, ...,xi} and xi ∈ Rn where n corresponds to the dimension

of a data point. The associated set of outcomes is denoted as {y1, y2, ..., yi}. Models

trained with supervised learning scheme can infer a function to predict y from x. While
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for unsupervised learning, training data consists of data points without any target values.

The goal becomes to find hidden patterns by clustering or density estimation.

In this thesis, only supervised learning is used in classification tasks, which aim to

assign each input feature vector to one of a finite number of discrete categories. An

introduction of the main machine learning methods for classification including Logistic

Regression, Support Vector Machine (SVM), Decision Tree (DT) and hidden Markov

Model (HMM) is included here as a reference for the following chapters. Because of

the scope of this thesis, there are many other classification algorithms such as K-Nearest

Neighbours (KNN, first introduced in [99]) and Gaussian naive Bayes (GNB, an extension

of naive Bayes [100]) that are not introduced here. A review of classification techniques

in the supervised machine learning framework can be found in [101]. When dealing

with multi-dimension features, SVM tends to perform better. This is the main reason

why SVM is used in different chapters in the thesis. In Chapter 3, SVM also shows its

discriminative ability in a multi-class classification task. It obtains better performance

compared to HMM, KNN, GNB, DT and Random Forest (RF).

2.3.3.1 Logistic Regression

Logistic Regression is a straightforward method for binary classification problems, which

target to label the input with one of the two classes. The core of logistic regression is

the sigmoid function. The function adds nonlinearity to the logistic regression and has

the ability to map the input value into the range of [0, 1] using Equation 2.2:

g(z) =
1

1 + e−z
, (2.2)

which is used in logistic regression as Equation 2.3:

hθ(x) = g(θᵀx) =
1

1 + e−θ
ᵀx
, (2.3)
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where hθ(x) is the predicted output, θ is the coefficient for the input x. The coefficient

can be estimated from the training data with an objective of minimising the cost function

J(.). During the training process, θ is iteratively updated to decrease the value of J(θ).

An optimal θ has been obtained when the value of J(θ) corresponds to its minimum.

This error correcting concept is also shared in updating the parameters of deep learning

models. For logistic regression, its cost function can be expressed as Equation 2.4 if

cross-entropy loss is used:

J(θ) = −1

I

I∑
i=1

[yi log hθ(xi) + (1− yi) log(1− hθ(xi))], (2.4)

where I is the number of the training data points, and yi is the actual outcome of the

i-th input, i.e., xi. To minimise the cost, gradient descent optimisation algorithms can

be used (see [102] for an overview of optimisation algorithms). At this point, learning

rate is a hyper-parameter we need to determine with caution. It controls how much we

should adjust the coefficient of our model with respect to the loss gradient.

When the training is completed, the resulting logistic regression model can output

predicted probabilities when a new input is given. The final step is to assign class labels

(0 or 1) to the predicted probabilities using a decision boundary. It can be adjusted

according to the objective of the prediction, for example, a higher precision or recall (see

Section 2.5 for the explanations of the two terms). We use a trained logistic regression

model as a binary classifier to determine the existence of piano legato-pedal onset in

Chapter 6.

2.3.3.2 Support Vector Machine

Support Vector Machine (SVM) has been introduced for solving pattern recognition

problems [103]. It has gained wide popularity as a machine learning method for multi-

class classification and regression tasks. This is mainly because of its discriminative

ability compared to other machine learning classifiers in many applications.
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Figure 2.4: A schematic example of SVM and related concepts.

In the training phase, SVM should find a set of hyperplanes that separate the different

classes of the training data with the largest distance to the nearest training data points

of any class. The distance is known as margin (ω) and these nearest data points are

Support Vectors. Hence SVM is also known as Maximum Margin Classifier. Figure 2.4

illustrates these concepts using a two-group classification by SVM. If a data point xi

belongs to a group, then yi = −1. Otherwise yi is equal to 1. The optimal margin

classifier h is formulated as Equation 2.5:

h(x) = sign(ωᵀx+ b), (2.5)

where ω ∈ Rn and the bias term b ∈ R are the solutions of the optimisation problem in

Equation 2.6: {
minimise

ω,b

1

2
‖ω‖2

subject to yi(ω
ᵀxi + b) > 1

(2.6)

In the cases that data points are linearly non-separable but nonlinearly separable,

SVM can use a kernel function Ksvm(x, z) = φ(x)ᵀφ(z), for example, Radial Basis

Function (RBF). By the mapping φ, data points can be mapped into a higher dimensional

space, where the data points become linearly separable. However, data points may be

still not completely separated by SVM. For solving this, the optimisation problem is
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reformulated using Equation 2.7:

{
minimise

ω,b,ξ

1

2
‖ω‖2 + C

I∑
i+1

γi

subject to yi(ω
ᵀφ(xi) + b) > 1− γi,

(2.7)

where C > 0 is the regularisation parameter that trades off correct classification of

training data against maximisation of the margin, and γi > 0 defines how far the influence

of a single training data point reaches. C and γ are the hyper-parameters of RBF-SVM

and can be adjusted by cross-validation. SVM was used to classify the IPTs of acoustic

guitar [79], electric guitar [80], violin [81] and drum [97]. In this thesis, we use SVM

with linear or RBF kernel in Chapter 3, 5 and 7.

2.3.3.3 Decision Tree

Decision Tree (DT) was proposed in [104] and known as Classification and Regression

Trees (CART). It also provides a foundation of other algorithms such as Random Forest

(RF). DT consists of nodes and branches in a recursive hierarchical structure. With this

structure, the correct classification of the training data can be maximised according to

the data attributes. Each attribute can be represented as an internal node, which is

associated with a test relevant for classification. Classes are represented as leaf nodes.

DT branches correspond to each of the possible results. In the testing phase, a new data

point can be classified following the nodes and branches to verify the data attributes

until it reaches a leaf node. DT has been used to support vibrato detection in [78]

using the frequency and amplitude information as two attributes produced by erhu and

violin. However, DT is usually not robust to classify input data with a large number of

attributes, i.e., high-dimensional data. In Chapter 5, we combine DT with SVM to solve

this issue in a multi-class classification task.
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2.3.3.4 Hidden Markov Model

Hidden Markov Model (HMM) was initially introduced as a statistical model of a sequence

in [105]. It can represent probability distributions over a sequence of observations

O = {O1, O2, ..., OT }. Each observation (Ot) is dependent on emission probabilities

of the state (Qt), which is hidden from the observer. Each state in the sequence

Q = {Q1, Q2, ..., QT } also has a set of transition probabilities, indicating the probability

of moving to another state.

There are three fundamental problems that have been approached by HMM6:

1. Given observation sequence O, how to compute P (O|ξ), the probability of the

observation sequence for the given model with parameters ξ?

2. How to determine the best state sequence Q for the given observation sequence O?

3. How to adjust model parameters ξ to maximise the probability of the observation

sequence, i.e., maximising P (O|ξ)?

Training HMM as a classifier involves the problem 3. This can be solved by an

iterative Expectation-Maximisation (EM) algorithm [106], which is also known as the

Baum-Welch algorithm. Model parameters are iteratively re-estimated until P (O|ξ)

reaches its local maximum likelihood. Optimal values of state transition and emission

probabilities can be obtained.

Using the trained HMM for prediction is in accordance with solving the problem 2.

Since different state sequences can produce the sameO, the best one should obtain a max-

imum likelihood. This requires finding the maximum over all possible state sequences.

The Viterbi algorithm [107] provides an efficient solution to decode the given O into the

optimal Q. This solution to the problem 2 has been successfully in automatic speech

recognition, where the audio signal is regarded as O and a string of text is the Q (see [108]

6The idea of solving three fundamental problems by HMM was introduced by Jack Ferguson of
Institute for Defence Analysis in lectures and writing.
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for a tutorial). In Chapter 3, we compare HMM with SVM in the task of recognising

pedalling techniques from the gesture data.

2.3.4 Deep Learning Methods

As seen in the previous sections, machine learning methods involve feature design and

classifier selection. Feature design requires careful engineering and domain knowledge

to design a feature extractor able to transform the raw input into a suitable representa-

tion. The selected classifier can then detect the patterns in the representation in order to

categorise the raw input. To automatically discover the representations needed for classi-

fication, deep learning methods have been making major advances by composing multiple

layers. These layers gradually obtain representation at a higher and more abstract level.

Deep learning has turned out to be very effective in discovering complex structures in

high-dimensional data. It has been successfully applied as the state-of-the-art method

in speech recognition, visual object recognition, and many other domains [109]. In this

section, we use a feedforward neural network (FNN), the first and simplest type of deep

learning model [110], as an example to explain the terminologies used for designing and

training deep learning models. An introduction of the convolutional neural network

(CNN), one particular type of FNN, and transfer learning framework is also included

here as a reference for Chapter 7.

2.3.4.1 Feedforward Neural Network

With the FNN architecture, the trained model can map a fixed-size input to a fixed-size

output. In the case of IPT classification, the input can be waveform or TF representations

of audio excerpts, and the output can be a probability for each of several categories. Using

the architecture and symbols illustrated in Figure 2.5, the forward pass in a neural net
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Figure 2.5: A schematic example of FNN with two hidden layers.

with two hidden layers can be computed using Equation 2.8:

yj = g(zj), zj =
∑
i

wijxi, i ∈ Input

yk = g(zk), zk =
∑
j

wjkyj , j ∈ H1

yl = g(zl), zl =
∑
k

wklyk, k ∈ H2

(2.8)

where z is the total input to each unit, y is the outputs of the units, and g(.) is the

activation function applied to z to get the corresponding y. Bias terms for obtaining z

is omitted here for simplicity.

The activation function is analogous to the activation of biological neurons. It is

non-linear, enabling the network to learn more intricate patterns. The sigmoid function

as previously introduced in logistic regression was used as the activation function in

early neural network works. With an increasing number of layers, an issue known as

“gradient vanishing” appears [111]. To solve this problem, the Rectified Linear Unit

(ReLU) [112] was introduced as an alternative activation function. It can be formulated

using Equation 2.9:

g(z) = max(0, z) (2.9)
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It is noted that the activation function for the output layer should have the same output

range to the range of the ground truth. For instance, if the ground truth corresponds

to a probability, the sigmoid function is suitable because its output is in the range of [0,

1]. If the outputs of a network need to be interpretable as posterior probabilities for a

categorical target variable, softmax function is preferred because those outputs can not

only range in [0, 1] but also sum to one (see [113, p. 184] for details of softmax used as

an activation function).

After designing the FNN, we can train the FNN by adjusting the weights w over

multiple layers using backpropagation [114]. This is an iterative process that involves

computing the gradient of the loss function with respect to the units in multiple lay-

ers using the chain rule. The loss function is decided by the difference between the

ground-truth output and the predicted output with respect to the current weights. The

goal is to minimise the absolute of difference such that optimal weights are obtained.

Furthermore, there are a number of optimisation methods to improve the convergence

of backpropagation which suffers from a slow convergence rate and yields suboptimal

solutions. For instance, Adam optimiser [115] is proposed to compute adaptive learning

rates for each parameter.

2.3.4.2 Convolutional Neural Network

Convolutional Neural Network (CNN) is also known as convolutional networks proposed

in [116]. It is a particular type of deep FNN that uses convolution in place of general

matrix multiplication in the hidden units. The convolution operation is typically denoted

using Equation 2.10:

convolution(t) = (x ∗ w)(t), (2.10)

where the function x is referred to as the input, the weighting function w as the kernel

and the output as the feature map in convolutional network terminology. Compared to

FNN, CNN is easier to train and generalises better in computer vision tasks. This is
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Figure 2.6: Typical components in a layer of spectrogram-based CNN (each stage can
be also regarded as a layer).

mainly because the properties of natural signals shed light on the ideas behind CNN,

i.e., local connections, shared weights, pooling and the use of many layers. Accordingly,

the components of a typical CNN are a series of two types of layers: convolutional layers

and pooling layers.

For spectrogram-based CNN in audio-related tasks, Figure 2.6 presents the compo-

nents as different stages in a typical layer of a CNN with specifications using Keras7-style

grammar for the sake of clarity. TF representations are commonly used as 2D inputs to

layer. Then the convolutional stage is specified by the number of channels (c) and the

2D kernel denoted by its lengths in the frequency (mc) and time (nc) axes. This stage

performs convolutions in parallel such that a set of linear activations are produced. In

the detector stage, each activation is passed through a non-linearity such as a ReLU. In

the pooling stage, the output is modified by merging semantically similar features into

one. Max-pooling [117] is a common operation that computes the maximum within a

neighbourhood. For spectrogram-based CNN, the neighbourhood can be specified by

its length in frequency (mp) and time (np). Thereby the representation is reduced in

dimension and invariant to small shifts or distortions.

A complete CNN should include a stack of the above three stages, followed by one

or more fully-connected layers. Backpropagation with optimisers through the complete

CNN is as simple as through an FNN. All the weights are updated, resulting in a trained

7https://keras.io

https://keras.io
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CNN. CNN has become the most widely used model for music classification and tagging

tasks [75]. It is used in Chapter 7 to train a binary classifier for distinguishing the music

excerpts with the sustain-pedal effect.

2.3.4.3 Transfer Learning

FNN, CNN and other deep learning models trained by supervised learning can achieve

good performance on many tasks. However, the training process requires extremely large

labelled datasets. Meanwhile, test data usually obtain the same feature space and the

same distribution as the training data. In real-world scenarios, these conditions may

not hold. If a model trained from one domain of interest could be adapted to a new

task in another domain of interest, performance of the new task would be maintained

by adjusting the pre-trained model. This has motivated the development of transfer

learning, which was defined in [118] as “the improvement of learning in a new task

through the transfer of knowledge from a related task that has already been learned”.

Here the related task that has been learned is denoted as source task, and the new task

as target task. According to different situations between the source and target domains

and tasks, there are different categories of transfer learning techniques (see [119] for a

survey on transfer learning).

In the field of deep learning, it is more common to tune the pre-trained model from

the source task to solve the target task. This is effective because the source task usually

used a large corpus to train the model, allowing to make accurate predictions on a large

number of classes. The pre-trained model can learn hierarchical feature representations.

In other words, features are more generic in the early layers of the pre-trained model

and more dependent on the source-task dataset in later layers. Therefore tuning the

pre-trained model involves adjusting the weights of the later layers only. This transfer

learning technique has been successfully implemented for image classification [120].

Alternatively, as proposed in [121], features can be extracted from a CNN model,
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which was trained for music tagging in the source task. These features were then used to

train SVMs as classifiers, which solved many target tasks, such as genre and vocal/non-

vocal classification. For our thesis, we believe the transfer learning strategy is suited

to the challenges in detecting the sustain pedal from polyphonic piano music recorded

in different acoustic and recording conditions. In Chapter 7, it is used to transfer the

knowledge learned from a large synthesised dataset for the sustain-pedal detection from

acoustic piano recordings.

2.4 Multimodal Modelling Strategy

Given the fact that music is largely distributed through audio formats, music analysis

predominantly focuses on audio signals. However, music performance is multimodal,

leading to multifaceted music content existing in different representations [122, 123].

In recent years, with the development of deep learning techniques for action recogni-

tion in video, audiovisual analysis of music performances becomes an emerging area to

the music signal processing community (see [124] for an overview). Integrating visual

modality contributes to extracting the information that is challenging to retrieve from

the audio alone. Studies have shown that audiovisual analysis benefits the tasks such as

automatic music transcription from string ensembles [125], vibrato detection from string

instruments [126] and audio source separation [127]. Apart from video, a huge amount

of other music-related data is available, including sheet music, album covers and so on.

Due to the rapid growth of music data, there is a need for cross-modal music retrieval

and applications to bridge the gap between various music representations (see [128] for

an overview of key methodologies).

For the studies on instrumental gestures and techniques, multifaceted content that

appears in music performances promotes the development of systems that allows for

multimodal recordings. Both direct and indirect acquisitions as discussed in the previ-

ous sections are used in order to capture comprehensive parameters, such as timing and



Chapter 2. Background and Related Works 64

dynamics in music performance. For instance, a complete set of bowing parameters in

violin performance was extracted in [129]. The parameters were obtained by combin-

ing motion capture system, dedicated sensors and recorded sound. This allows detailed

studies of musically relevant aspects of bow control and coordination of bowing param-

eters. A similar combination strategy enables real-time estimates for pitch and bowing

technique detection during violin performance as discussed in [130]. This multimodal

method has also facilitated the creation of DMI through decoupling the synthesis of an

instrument’s sound from the instrumental gestures [131] [132].

In this thesis, our datasets detailed in Chapter 4 are composed of three modalities:

MIDI data, sensor signals, and audio signals. Inspired by the methods proposed in [32,

82], we propose indirect acquisition methods for pedalling technique detection based on

the training of models with a previously recorded dataset of piano performances, which

contains synchronised streams of piano audio signals and pedal controls measured with

sensors or MIDI devices.

2.5 Evaluation Methods

2.5.1 Evaluation Metrics

To evaluate the performance of our proposed detection methods for the sustain pedal,

we use classification evaluation metrics which have been universally used to assess event

detection algorithms. Both the ground-truth annotations (yi) and the estimations (ŷi)

are typically binarised with label “0” or “1” to represent if the i-th frame is played

without or with the sustain pedal. By default only the positive label is evaluated using
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precision (P1), recall (R1) and F-measure (F1). They are defined as:

P1 =
Ntp

Ntp +Nfp
,

R1 =
Ntp

Ntp +Nfn
,

F1 = 2× P1 ×R1

P1 +R1
,

(2.11)

where Ntp, Nfp and Nfn are the numbers of true positives (TP), false positives (FP) and

false negatives (FN), respectively. A TP is an outcome where the prediction correctly

returns the positive class, i.e., ŷi = yi = 1. A FP is an outcome where the prediction

incorrectly returns the positive class, i.e., ŷi = 1 while yi = 0. Similarly, a FN is an

outcome where the prediction incorrectly returns the negative class, i.e., ŷi = 0 while

yi = 1.

F-measure is a harmonic mean of precision and recall with respect to the positive

label. If we also consider the negative label or extend the above binary metrics to multi-

class problems, there are a number of ways to average binary metric calculations across

the set of classes. Macro-averaged F-measure (Fmacro) is computed as an arithmetic

mean of the per-class F-measures. Macro-averaging gives equal weight to each class.

Since our datasets obtain imbalanced occurrence counts of the labels, micro-averaged F-

measure (Fmicro) provides a better overview of the performance. This is because Fmicro

assigns each sample-class pair an equal contribution to the overall metric by counting the

total TP, FP and FN across different classes. In this thesis, Fmicro is opted to represent

the overall performance using Equation 2.12:

Pmicro =

∑
κN

κ
tp∑

κN
κ
tp +

∑
κN

κ
fp

,

Rmicro =

∑
κN

κ
tp∑

κN
κ
tp +

∑
κN

κ
fn

,

Fmicro = 2× Pmicro ×Rmicro
Pmicro +Rmicro

,

(2.12)

where κ is the class index.
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Apart from classification evaluation metrics that compare the annotations and esti-

mations frame by frame, boundary detection metrics [133] can be used to evaluate the

detection of pedalled segment boundaries. This regards an estimated boundary as cor-

rectly detecting a ground-truth boundary if it is within a tolerance window, i.e., reason-

ably temporal distance away from the closest annotated boundary. Each ground-truth

boundary can be detected by at most one estimated boundary. Boundary detection

performance can be then measured with standard precision, recall, and F-measure.

For the purpose of model comparison, the machine learning community commonly

uses AUC-ROC score (or simply AUC, representing area under the receiver operating

characteristic curve) [134]. A ROC curve can present the binary classification perfor-

mance of the models at all classification thresholds based on their corresponding precision

and recall. It is plotted with the TP rate on the y-axis against the FP rate on the x-axis.

The entire area underneath the ROC curve provides an aggregate measure of performance

across all possible classification thresholds. Hence AUC is equal to the probability that

a classifier will rank a randomly chosen positive instance higher than a randomly chosen

negative one. We opt for AUC scores to compare the CNN models which are trained

with balanced datasets in Chapter 7. The model with the highest AUC score based on

the validation set obtains the best discriminative ability to decide the presence of the

sustain pedal.

2.5.2 Cross-Validation

To prepare data for the experiments on machine/deep learning models, a straightforward

split is to separate the dataset into training and test set. Then we can fit the model on

the training set and measure the model performance on the test set using the evaluation

metrics introduced in the previous section. Due to a simple training/test split, the model

could be biased to the characteristics of the data points within the training set, leading

to over-fitting problems. In this case, we cannot simply assess the quality of the model

based on its performance on the test set.



Chapter 2. Background and Related Works 67

Dataset

Training Test

3-Fold Cross-Validation

Test

Test

Test

iteration 1

iteration 2

iteration 3

Figure 2.7: Visualisation of the differences between a straightforward train/test split and
three-fold cross-validation.

A more robust method for evaluating models is cross-validation. It involves splitting

the dataset into k folds of approximately equal size. For each unique fold, it is regarded

as a test set. Then the model is trained on the remaining k − 1 folds and evaluated

on the test set. This procedure is known as k-fold cross-validation. We can obtain k

samples of model evaluation metrics in the end. The average score across the evaluation

metrics from each validation fold can be used as a performance measure of the model.

Figure 2.7 presents the behaviour differences between a straightforward train/test split

and a three-fold cross-validation. It is noted that if the data in the test set has never

been used in cross-validation, the test set is also known as a holdout dataset.

In practice, there are a number of variations on the k-fold cross-validation procedure.

One commonly used variation is stratified shuffle split, where folds are formed by preserv-

ing the percentage of samples for each class. Therefore stratified randomised folds are

returned. Another variation we used in this thesis is leave-k-group-out cross-validation,

where dataset is split into groups according to a domain. For instance, samples can be

grouped by which music piece they are associated with. Consequently, each training set

consists of all the samples except the ones related to k specific groups.
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2.6 Summary

This chapter presented the technical background for this thesis. It first introduced direct

acquisition of instrumental gestures with an emphasis on the ones in piano performances.

An introduction of some commonly used devices, sensors, embedded systems, and gesture

data representations was provided to inform the development of our dedicated system for

pedalling gesture measurement in Chapter 3. It also contributed to the construction of

the datasets detailed in Chapter 4. In terms of the indirect acquisition, we summarised

the existing works on IPT detection and presented signal processing, machine learning

and deep learning methods that can be used for pedalling technique detection from audio

signals. Multimodal modelling strategy was introduced as a way of jointly using the

data of different modalities to improve the performance of indirect acquisition. Finally,

we introduced evaluation methods for pedalling technique detection tasks including the

metrics and cross-validation schemes.



Chapter 3

Dedicated System for Direct

Acquisition

3.1 Introduction

This chapter introduces a novel measurement system dedicated to the direct acquisition

of pedalling data. Pedalling gestures can be captured by the measurement system devel-

oped in Section 3.2, where the sensor data can be simultaneously recorded alongside

the piano sound under normal playing conditions. Using the collected gesture data, a

reliable method for pedalling techniques recognition is devised in Section 3.3. This com-

prises of two separate tasks: pedal onset/offset detection and classification by pedalling

techniques. We compared Support Vector Machines (SVM), hidden Markov models

(HMM) and other common classification models for the classification task. The recog-

nition results can be represented using novel pedalling notations and visualised in an

audio-based score following application described in Section 3.4.

The proposed measurement system can be used to annotate how the sustain pedal

is used during piano performance. Thereby the ground truth for a dataset consisting of

piano recordings is obtained. This contributes the dataset construction introduced in the

69
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following Chapter 4. This chapter incorporates material from our publications: “Piano

Pedaller: A Measurement System for Classification and Visualisation of Piano Pedalling

Techniques” published in NIME [135], “Recognition of Piano Pedalling Techniques Using

Gesture Data” published in Audio Mostly Conference [136] and “Measurement, Recogni-

tion and Visualisation of Piano Pedalling Gestures and Techniques” published in Journal

of the Audio Engineering Society [137].

3.2 Measurement System Development

The proposed measurement system synchronously records the pedalling gestures and

the piano sound at an audio sampling rate and a high resolution, with the ability to be

deployed on common acoustic pianos. Figure 3.1 illustrates the schematic overview of

the system, consisting of a sensor and circuit system to collect pedal depth data, as well

as an audio recorder and a portable single-board computer to capture both data sources

simultaneously.

Near-field optical sensing was used to measure the continuous pedal position with the

help of a reflective photomicrosensor (Omron EE-SY12001). This includes an LED and

a phototransistor in a compact package. The sensor was mounted in the pedal bearing

block, pointing down towards the sustain pedal. This configuration avoids interference

with pianists. One of the major considerations in selecting this optical sensor is that

its response curve is monotonic within the optimal sensing distance (0.7mm to 5mm)

shown in Figure 3.2. As the sustain pedal is pressed so that the pedal-sensor distance

is increased, the pedal reflects less of the optical beam projected by the sensor emitter,

thus decreasing the amount of optical energy reaching the detector. However, when the

sustain pedal is too close to the sensor, the current will drop off. We ensured that the

measurement made use of the linear region of the sensor and remained in the optimal

sensing range. This was calibrated by measuring the distance between the sensor and

1Detailed specifications of Omron EE-SY1200 can be found in https://omronfs.omron.com/en_US/

ecb/products/pdf/en-ee_sy1200.pdf.

https://omronfs.omron.com/en_US/ecb/products/pdf/en-ee_sy1200.pdf
https://omronfs.omron.com/en_US/ecb/products/pdf/en-ee_sy1200.pdf
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Figure 3.1: Schematic overview of the dedicated measurement system.

the pedal. Then the output voltage of the sensor was amplified and scaled to a suitable

range through a custom-built Printed Circuit Board (PCB) which employed a modified

version of the circuit described in [57]. Another consideration is the reflectivity of the

object being measured. A removable white sticker was affixed on the top of the sustain

pedal in order to reflect enough light for the measurement to be robust.

Figure 3.3 shows an overall schematic of the photomicrosensor and PCB circuits. The

collector of the phototransistor in the photomicrosensor OPTO1 attaches directly to the

inverting input of an operational amplifier IC1A. The voltage at this point is fixed by

IC1A feedback at Vref , which is equal to 3V produced by resistors R2 and R3. This helps

to mitigate the effects of parasitic capacitance in the transistor. R4 and R5 set the resting

voltage Vref − (5V − Vref )R5/R4 = 0.33V . C1 filters high-frequency noise and ensures

stability. With this configuration, the output voltage of the circuit is proportional to the

incoming light and roughly follows the inverse square of the pedal-sensor distance.
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Figure 3.2: Voltage output response curves for EESY1200 using its official datasheet as
a reference.

Figure 3.3: Overall schematic of the photomicrosensor and PCB circuits.

The output of the circuit was then recorded using the analogue input of Bela2, which

is an open-source embedded system based on the BeagleBone Black single-board com-

puter [138] (see Section 2.2.3 for more details). We opted for using Bela because of the

need to synchronously capture audio and sensor data using a high sampling rate with-

2http://bela.io

http://bela.io
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out any jitter. The sensor was therefore recorded at 22.05KHz. The piano sound was

simultaneously recorded at 44.1kHz on the recorder with high quality and then fed to

the audio input of Bela. Finally, both the sensor and audio data were captured with the

same master clock and logged into the internal memory of Bela.

3.3 Sensor-Based Recognition

Given the gesture data from the measurement system, methods for pedalling techniques

recognition are examined by the dataset introduced in Section 3.3.1. The recognition

consists of when and which technique is employed. “When” refers to the pedal onset and

offset times, which can be detected using signal processing algorithms in Section 3.3.2.

“Which” refers to the level or class of pedal depth in Section 3.3.3. We aim to classify

this into the quarter, half, three-quarter or full pedalling technique. As we mentioned

in Section 1.3.2, pianists vary their use of pedalling techniques with the music piece, the

acoustics and physics or the piano, and the room acoustics of the performance venue.

When any of the above conditions are changed, an automatic adaptation of pedalling

techniques is required. Manually setting the thresholds to classify the level of part-

pedalling is therefore inefficient. We decided to use supervised learning methods to train

SVM or HMM classifiers in a data-driven manner. We employed the Scikit-learn [139]

and hmmlearn3 libraries to construct our SVM and HMM separately. The performance

of these two classifiers are presented in Section 3.3.4.

3.3.1 Dataset

The measurement system was deployed on the sustain pedal of a Yamaha baby grand

piano situated in the studios at Queen Mary University of London. Ten well-known

passages of Chopin’s piano music were selected to form our dataset. These pieces were

chosen because of the expressive nature of Chopin’s compositions, as well as because

3http://hmmlearn.readthedocs.org

http://hmmlearn.readthedocs.org
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Table 3-A: The number of pedalling instances annotated in the 10 selected passages from
Chopin’s music.

Music Passages
Pedalling Techniques

1/4 1/2 3/4 Full Pedal

Op.10 No.3 14 13 7 5

Op.23 No.1 7 17 8 29

Op.28 No.4 17 24 5 24

Op.28 No.6 9 27 5 17

Op.28 No.7 2 10 3 1

Op.28 No.15 7 34 4 22

Op.28 No.20 9 12 11 17

Op.66 6 21 10 11

Op.69 No.2 2 15 10 24

B.49 3 51 8 17

Sums 76 224 71 167

Chopin was among the first composers to consistently call for the use of pedals in piano

pieces.

The author4 performed the passages using music scores which had been annotated

with pedalling techniques by the author in advance. Pedal onset and offset times were

marked in several versions of Chopin’s published scores. We adopted the version that

most publishers accept. In these scores the pedal markings always coincide with the

phrase markings. When the sustain pedal is pressed, the suggested pedal depth was also

notated. This was roughly in accordance with the dynamics changes and metric accents,

since more notes will remain sounding when the key is released in case the sustain pedal

is pressed to a deeper level. We provided an annotated Chopin’s score as an example in

Appendix A.1. Because different techniques may not be used in equal proportion in real

world performances, there was no intended coverage of the four different levels of pedal

depth. Consequently the number of instances of each pedalling technique in the music

passages we recorded remains unbalanced as can be observed in Table 3-A.

The gesture data were labelled every 0.02 seconds according to the notated scores

to obtain a basic ground truth dataset. In order to evaluate to what extent the author

4The author is an active expert pianist with more than 15 years of classical piano training.
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Figure 3.4: Distribution of normalised pedal data within segments labelled with different
pedalling techniques.

followed the instructions provided in the scores, we computed descriptive statistics, visu-

alised the data and examined how well it matches the notation. We first grouped the

gesture data that were consecutively labelled with the same pedalling technique into one

segment. To visualise the data distribution, the gesture data within a segment were

normalised to a range of [0, 1]. As seen in Figure 3.4, distribution of the normalised data

in segments with the same label of pedalling technique has similar ranges of mean and

standard deviation. Therefore mean and standard deviation were extracted to charac-

terise the pedalling technique used within each segment. Figure 3.5 presents the value

of the parameters calculated from actual sensor data of each pedalling instance. We can

observe fairly well-defined clusters within the data with respect to pedal markings, and

also notice that the clusters are approximately linearly separable with some exceptions

of half and quarter pedal. We also visually examined the consistency of pedal use with

the markings and confirmed that the interpretation of the author was largely consistent

with the pedalling notations provided in the notated scores.

The dataset was developed using ten passages played by one pianist on the same

piano under the same recording configuration. It was limited in the diversification of
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Figure 3.5: Scatter plot of the value of parameters calculated from actual sensor data of
each pedalling instance.

data sources. Yet, there are 558 pedalling instances in total to examine the performance

of our proposed methods. A good result can indicate that the measurement system is

useful to automatically characterise a pianist’s pedalling techniques given a specific piano

performance environment. For the reproducibility of this study, we made the dataset

available online5, including the annotated scores, associated audio recordings and gesture

data, as well as their corresponding labels of pedalling techniques.

3.3.2 Onset and Offset Detection

Figure 3.6 presents the process of segmenting the pedal data using the detected onset

and offset times. The value of raw gesture data corresponds to the movement trajectory

of the sustain pedal. The smaller the value, the deeper the pedal was pressed. The

Savitzky-Golay filter was used to smooth the raw data. It is a particular type of low-

pass filter well-adapted for smoothing noisy time series data [140]. The Savitzky-Golay

5http://doi.org/10.5281/zenodo.3237929

http://doi.org/10.5281/zenodo.3237929
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Figure 3.6: Process of pedal onset and offset detection using gesture data.

filter has the advantages of preserving the features of the distribution such as maxima

and minima, which are often flattened by other smoothing techniques such as moving

average or simple low-pass filtering. Thus it is often used to process time series data

collected from sensors such as electrocardiogram processing [141]. Furthermore, filtering

could avoid spurious peaks in the signal, which would lead to the false detection of

pedalling onsets or offsets.

Using the filtered data, pedalling onset and offset times were detected by comparing

the data with a threshold (horizontal dashed line in Figure 3.6). This threshold is selected
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by choosing the minimum value from a peak detection algorithm, i.e., the smallest peak

(represented by the triangle in Figure 3.6). Peaks are selected from local maxima in the

the filtered data. The smallest peak implies the pedal depth that can distinguish pedal-

on/off state by the performer. The moment when the value of data crosses the threshold

with a negative slope is considered as the onset time, while a positive slope indicates

the offset time. In this manner, each pedalled segment was defined by the gesture data

between the onset time and its corresponding offset time. For example, there are 16

segments detected in Figure 3.6. However, the robustness of this method is dependent

on the parameter settings used in peak-picking. With a less optimal parameter setting,

more false positives of peaks could be returned, leading to an inaccurate selection of the

threshold.

3.3.3 Feature Extraction and Classification

Figure 3.7 illustrates the overall classification procedure. After we defined the pedalled

segments by the gesture data between the detected onset and offset times, Gaussian

parameters were extracted from every segment to aid classification. This was motivated

by the observation that the data in each segment largely fits the normal distribution as

discussed in Section 3.3.1. Using statistical aggregates as features can not only reduce

the dataset size and improve computational efficiency, but also enables a focus on higher

level information that represents each instance of pedal use. The statistical features

used as input to the classifier were computed based on the Gaussian assumption and

parameterised by Equation 3.1, where µ is mean of the distribution and σ is standard

deviation.

D(x) =
1

σ
√

2π
e−(x−µ)

2/2σ2
(3.1)

To classify the segments using their extracted features, a subset of our dataset was

used to train the classifiers. The training data consists of gesture data of pedalled

segments with labels of pedalling techniques. Labels 1 to 4 respectively corresponds to
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Figure 3.7: Process of classifying the gesture data within segments into 4 pedalling
techniques.

the quarter, half, three-quarter and full pedalling technique. Although the pedal position

is measured in a continuous space, classification of pedalling as discrete events coincides

with the interpretation by pianists and may benefit applications such as transcription

and visualisation, where discrete symbols corresponding to a recognised technique are

easier to read than a continuous pedal depth curve. The recognition results remained

synchronised with the audio data. These were then used as the inputs of our visualisation

application presented in Section 3.4.

In terms of classifiers, the SVM algorithm was chosen because it was originally devised

for classification problems which involve finding the maximum margin hyperplane that

separates two classes of data [142]. If the data in the feature space are not linearly separa-

ble, they can be projected into a higher dimensional space and converted into a separable
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problem. More technical backgrounds about SVM were presented in the previous Sec-

tion 2.3.3.2. For our SVM-based classification, we compared SVMs with different kernels

and parameters in order to select one with the best discriminative capacity to categorise

the extracted aggregate statistical features into pedalling techniques. SVM essentially

learns an optimal threshold for classification from the features in training data, avoiding

the use of heuristic threshold and may also account for possible non-linearity in the data.

The second method we employed was an HMM-based classification. As introduced

in Section 2.3.3.4, HMM is a statistical model that can be used to describe the sequence

of observable events that depend on hidden states which are not directly observable.

In our framework, the observations are the features from gesture data and the hidden

states are the four pedalling techniques to be classified. In our dataset which consists of

Chopin’s music, the levels of pedal depth among the segments were changed constantly.

We assumed that learning the transition probability of the hidden states could reveal

musicological meanings in terms of the extensive use of part-pedalling techniques for an

expressive performance. The structure of our HMM was designed as a fully connected

model with four states, where states may exhibit self-transition or transition into any of

the three other states. Gaussian emissions were used to train the probabilistic param-

eters. Our HMM-based classification was done by finding the optimal state sequence

associated with the given observation sequence. The hidden state sequence that was

most probable to have produced a given observation sequence can be computed using

Viterbi decoding.

3.3.4 Evaluation Results

Our ground truth dataset introduced in Section 3.3.1 contains labels for the pedal depth

denoting the pedalling technique employed within each segment where the pedal is used.

The performance of the classifiers was compared using this dataset by conducting leave-

one-group-out cross-validation 2.5.2.
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Figure 3.8: Average F-measure score from the leave-one-group-out cross-validation using
SVM classifiers with different kernels (RBF and linear) and parameters (γ and C).

Table 3-B: F-measure scores of SVM and HMM from each validation.

Music passages HMM F-score SVM F-score

Op.10 No.3 0.744 0.969

Op.23 No.1 0.902 0.924

Op.28 No.4 0.914 0.976

Op.28 No.6 0.759 0.959

Op.28 No.7 0.688 0.893

Op.28 No.15 0.627 0.943

Op.28 No.20 0.816 0.906

Op.66 0.938 0.970

Op.69 No.2 0.804 0.881

B.49 0.823 0.879

Mean 0.801 0.930

In the leave-one-group-out scheme, samples were grouped in terms of music passages.

Classifiers were validated in each music passage where the data need to be classified,

while the rest of the passages constitute the training set. Figure 3.8 presents the average

F-measure scores for SVM classifiers with different kernels and parameters. The highest

score was achieved by a linear-kernel SVM with the regularisation parameter C = 1000.

This largely confirms that the pedalling data for most pieces are linearly separable

in the feature space we employed. We adopted this SVM model and compared it with

HMM. Table 3-B shows the F-measure scores of the evaluation. We can observe that
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Table 3-C: Average F-measure scores from two cross-validation strategies using different
machine learning techniques.

KNN GNB DT RF SVM

LTGO 0.916 0.910 0.905 0.910 0.925

SSS 0.941 0.926 0.930 0.944 0.945

SVM outperformed HMM in every music passage, while a mean F-measure score of 0.801

and 0.930 was obtained for the HMM and SVM respectively.

We hypothesise that the lower score of the HMM is resulting from the fact that it

was trained in a non-discriminative manner. The HMM parameters were estimated by

applying the maximum likelihood approach using the samples from the training set and

disregarding the rival classes.

Furthermore, one pedalling technique being followed by a certain another one may be

unnecessary or adds very little value when the individual pedal events are separated from

each other by long offset phases. For this reason, the learning criterion was not related

to factors that may yield improvement of the recognition accuracy directly. While this

does not allow us to dismiss potential dependencies between pedalling techniques, our

simple HMM model was not able to capture and exploit such dependencies. The reported

results can possibly be improved using the hidden Markov SVM proposed in [143] as a

discriminative learning technique for labelling sequences based on the combination of the

two learning algorithms. An alternative or richer parametrisation of the data instead of

Gaussian parameters may also benefit the classification.

To take a detailed look at the SVM-based classification, we present a confusion matrix

showing the cross-validation results with the highest average F-measure score in Fig-

ure 3.9. It can be observed that the ambiguities between adjacent pedalling techniques

can lead to misclassification. In most cases, however, pedalling techniques can be dis-

criminated from one another well.

To avoid a potential over-fitting problem that the leave-one-group-out scheme may

cause, we checked the results with two other cross-validation strategies, namely, leave-
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Figure 3.9: Normalised confusion matrix according to the cross-validation results using
SVM.

three-group-out (LTGO) and 10-iteration stratified shuffle split (SSS). Introduction of

different cross-validation strategies can be seen in the previous Section 2.5.2. For this,

the test size was set to 0.3. The SVM model shows a mean F-measure score of 0.925 and

0.945 for these two strategies separately. To confirm SVM’s classification ability, we also

compared it with a range of common machine learning classifiers, including K-Nearest

Neighbours (KNN), Gaussian naive Bayes (GNB), decision tree (DT) and random forest

(RF)6. The average F-measure scores of these classifiers obtained from the LTGO and

SSS cross-validation are presented in Table 3-C. SVM still obtains the highest scores.

3.4 Visualisation Application

In order to demonstrate a practical application of our study, a piano pedalling visualisa-

tion application was developed that can present the recognition results in the context of

music scores. This may be useful for piano pedagogy or practice as well as musicological

6Given the scope of our thesis, not all the machine learning techniques we tested were detailed here.
Technical backgrounds of the main techniques were introduced in Section 2.3.3. A review of classification
techniques in the supervised machine learning framework can be found in [101].
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Figure 3.10: Screenshot of the visualisation system.

performance studies. We devised a simple notation system for pedalling that indicates

pedal depth and timing. The application employed a score following implementation

[144] implemented in Matlab, which aligns the music score with the audio recording

of the same piece. Asynchronies between the piano melody and the accompaniment

were handled by a multi-dimensional variant of the dynamic time warping (DTW) algo-

rithm [145] in order to obtain better alignments. We extended this implementation to

align the pedalling recognition results of the same piece, given the detected onset and

offset times and the classified pedalling technique.

A screenshot of this system is shown in Figure 3.10. The graphical user interface

(GUI) allows the user to select a music score first. After importing the audio recording

and the corresponding pedalling recognition results, they can be displayed by clicking

the Play/Pause button. The GUI used the following markups for display purposes: blue

circles show what notes in the score are sounding aligned with the audio; stars indicate

pedal onsets while squares indicate pedal offset. Four different levels of colour saturation

plus the vertical location of the star delineate the four pedalling techniques. The levels
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are increased with the recognised pedal depth class.

The recognition and the score alignment are completed offline so that our visualisation

application allows the player to review the pedalling techniques used in a recording. This

could be used in music education, for instance guiding students on how to use the pedals

in practice after class. We obtained only informal feedback on the application so far. It

was suggested that the visualisation should be implemented as a real-time application

to enable its use during live piano performance. This could also be used to trigger

other visual effects in the performance, as pedalling is partly related to music phrasing.

Because of the relatively high latency of the Matlab GUI, it was also recommended to

implement our application using another platform.

3.5 Summary

This chapter presents a novel measurement system which was designed to directly capture

the pedalling gestures along with the piano sound. The temporal locations of pedalling

events were identified using onset and offset detection through signal processing meth-

ods. The employed pedalling technique was then recognised using supervised machine

learning based classification. SVM- and HMM-based classifiers were trained and com-

pared to assess how well we can separate the data into quarter, half, three-quarter or full

pedalling techniques. In our evaluation, SVM outperformed the HMM-based method

and achieved an average F-measure score of 0.930. A practical use case was exemplified

by our visualisation application, where the recognition results are presented together

with the corresponding piano recording in a score following system. Since the system

can track how the pedalling techniques were used in a piano recording, it can be used

to build a dataset with ground truth in order to facilitate the algorithm design for the

detection from audio alone.



Chapter 4

Datasets Construction for

Indirect Acquisition

4.1 Introduction

Detection of pedalling techniques from audio recordings is necessary in the cases where

installing sensors on the piano is not practical. To evaluate such detection methods pre-

sented in the following chapters, this chapter presents the evaluation datasets. Most pub-

lic annotated piano datasets are constructed for research on multi-pitch estimation [146]

or lack isolated-note recordings from the same piano [46]. We therefore built our own

datasets, which are constructed using different pianos and motivated by various detection

strategies.

The measurement system proposed in the previous Chapter 3 is used to annotate

how the sustain pedal is used during piano performance. Accordingly, the ground truth

for a dataset consisting of ten well-known passages of Chopin’s music is produced in

Section 4.2. This dataset is used to evaluate the audio-based detection algorithms,

which are regarded as the indirect acquisition of pedalling techniques. To facilitate the

design of indirect acquisition algorithms, two other datasets are created from a more

86
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top view front view

Figure 4.1: Top and front views of microphone positions kept constant during the record-
ing.

controlled recording setting. They are based on MIDI rendering using Disklavier and

Pianoteq presented in Section 4.3 and Section 4.4, respectively.

4.2 Acoustic Piano Recording

The same ten passages used in Section 3.3.1 were selected and recorded using better

equipment. The author played the passages by her own interpretation instead of using

the music scores with specific pedalling annotations provided in advance. This can

include a wider range of pedalling techniques. Ten passages were performed using a

Yamaha baby grand piano situated in the studios at Queen Mary University of London.

The audio was recorded at 44.1 kHz and 24 bits using the spaced-pair stereo microphone

technique. A pair of Earthworks QTC40 omnidirectional condenser microphones were

positioned about 50 cm above the strings as illustrated in Figure 4.1. The positions were

kept constant during the recording.

Meanwhile, movement of the sustain pedal was recorded along with the audio with

the help of the measurement system proposed in Chapter 3. After the pedal onset

and offset detection for each passage, audio data between the pedal onset time and its
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Table 4-A: Occurrence counts of label on and off at every 0.1 seconds obtained from the
ground truth of the dataset consisting of acoustic piano recordings.

Music Passages
Occurrence Counts

on off

Op.10 No.3 849 268

Op.23 No.1 722 355

Op.28 No.4 995 322

Op.28 No.6 788 289

Op.28 No.7 291 66

Op.28 No.15 611 306

Op.28 No.20 783 274

Op.66 660 197

Op.69 No.2 591 186

B.49 1111 441

Average 740 270

corresponding offset time were annotated with on. The rest of the audio data were

labelled as off. We can accordingly obtain audio data with on or off labels representing

the sustain pedal was pressed or released during the piano performance.

Since it is uncommon to press the sustain pedal for less than 0.1 seconds, audio data

were annotated every 0.1 seconds. At this annotation resolution, occurrence counts of

label on and off for each passage are presented in Table 4-A. We can observe that the

sustain pedal is widely used for the interpretation of Chopin’s music. This dataset is used

to evaluate the performance of a transfer learning method using pre-trained deep learning

models in the task of localising the pedalled segments from acoustic piano recordings (see

Section 7.4.2 for details). We made the dataset available online1, including music scores

of the ten passages, their associated audio data and pedalling annotations.

4.3 Disklavier Rendering

To exploit the piano acoustics with different sustain-pedal effects, a dataset across dif-

ferent tones and velocities is required. It is unrealistic to ask pianists to play tones

1http://doi.org/10.5281/zenodo.3243529

http://doi.org/10.5281/zenodo.3243529
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with various pedalling techniques, while keeping the velocity constant, or vice versa. We

encoded specifications for notes with different pedalling conditions in standard MIDI

files. A Disklavier, introduced in Section 2.2.2, was used to playback these MIDI files

and generate required audio data.

As we discussed in Section 1.3.2, pedalling techniques on the sustain pedal can be

varied by pedal-onset timing and pedal depth. The dataset includes ten categories of

notes: piano notes played normally without pedal (denoted as normal hereafter), notes

played with three pedal-onset timings in conjunction with three possible pedal depths

(anticipatory + full, anticipatory + three-quarter, anticipatory + half, rhythmic + full,

rhythmic + three-quarter, rhythmic + half, legato + full, legato + three-quarter, legato +

half ). Hence we have three by three conditions for notes played with pedal in addition to

the normal case. The quarter pedal was not included here because the Disklavier pedal

was unstable when rendering notes with the quarter-pedal effect. We recorded individual

notes from low to high frequency range of the instrument (from note E1 to #G7 ) at the

velocity of piano, mezzo-forte and forte respectively. The interval between each note is

four semitones and each note was played for 2 seconds in the ten configurations described

above. This leads to 600 notes in total. Individual recording of each note has note onset

time at 0.5 seconds and note offset time at 2.5 seconds.

For notes with the pedal effects, the pedal onset time for anticipatory, rhythmic and

legato pedalling techniques is set to 0.5 seconds before, the same time as, and 0.5 seconds

after the note onset, respectively. The sounds of repeated notes (same note played

repeatedly with an accelerated speed), trills (rapid alternation between two adjacent

notes), chords and arpeggio (a group of notes from a chord played one after the other in

an ascending/descending order) with different pedalling techniques are also provided in

the dataset. Detailed MIDI specifications for rendering the above sounds are presented

in Appendix A.2.

The individual note recordings are used in Chapter 5 to design audio features that

characterise different pedalling techniques. For the detection of pedalling techniques in
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Table 4-B: The number of legato-pedal onsets and duration of each piece.

Piece #Pedal Onset Duration (minutes:seconds)

Beethoven Op.31 No.2-3 84 06:50

Chopin Op.10 No.3 108 04:57

Brahms Op.10 No.1 110 05:08

Ravel Jeux d’eau 88 05:24

Total Number 390 22:19

polyphonic music, we used the same Disklavier to render MIDI files of music pieces.

Using the same instrument was informed by the performance improvement in the piano

transcription task where a specific piano was used to employ knowledge about the physics

and acoustics of the instrument [147]. We believe having access to the recordings of a

specific piano’s tones is a reasonable assumption for many performance scenarios. Here

four well-known piano pieces by different composers were selected, including the third

movement of the Piano Sonata No. 17 (Op. 31 No. 2-3) composed by Beethoven in

1801-02, Étude Op. 10 No. 3 composed by Chopin in 1832, the Ballades Op. 10 No. 1

composed by Brahms in 1854, and Jeux d’eau composed by Ravel in 1901. The SMD

dataset [46] already had the MIDI files of these four pieces, which were performed by

professional pianists on a Disklavier. We used the Disklavier that had been used to

render piano tones with different pedalling techniques to obtain audio rendering of the

selected four MIDI files.

Audio data of the four pieces are used in Chapter 6 to evaluate the onset detection of

legato pedalling. Ground truth can be directly obtained from the corresponding MIDI

file. As we introduced in Section 2.2.4, movement of the sustain pedal is represented

by integers (0-127) in controller number 64 in MIDI data. We define the sustain-pedal

onset happens as the controller value changes from less than 64 to equal to or more than

64. If the sustain pedal is pressed immediately after playing a note, legato pedalling is

used and its onset is denoted as legato-pedal onset. Table 4-B lists the number of the

legato-pedal onset and duration of each piece.

The recording was carried out at the Yamaha recording studio in Milton Keynes,
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United Kingdom, in March 2017. The instrument was a Yamaha Disklavier grand piano

which was tuned directly prior to the recording session. The audio of the piano tones

and the four pieces were recorded at a sampling rate of 44.1 kHz and a resolution of 24

bits, using the same microphone setup presented in Section 4.2. Both the MIDI files and

their corresponding recordings of Disklavier rendering are available online2.

4.4 Pianoteq Rendering

In Chapter 7, to train deep learning models, a large dataset is required to capture the

acoustic nuances when the sustain pedal is pressed. A dataset consisting of pedal and no-

pedal versions of same music excerpts was constructed. This can facilitate the learning

of pedalling-related features that are invariant to note event changes.

To prepare excerpts in pairs, 1567 MIDI files publicly available from the Minnesota

International Piano-e-Competition website were downloaded from the competition year

2002, 2004, 2006, 2008, 2009 and 20113. They were recorded using a Yamaha Disklavier

piano from the performance of skilled competitors. Considering the amount of MIDI

data, to obtain the corresponding high-quality audio in an efficient way, Pianoteq 6

PRO4 was used instead of recording the Disklavier MIDI playback. It is a physically

modelled virtual instrument approved by Steinway & Sons. Audio can be exported

with different settings in Pianoteq. We employed the Steinway Model D grand piano

instrument and the close-miking recording mode, which is similar to the microphone

technique used for our physical recordings5. Audio with or without sustain-pedal effect

was then generated with a sampling rate of 44.1 kHz and a resolution of 24 bits through

preserving or removing the sustain-pedal message in the MIDI.

2http://doi.org/10.5281/zenodo.3242149
3By the time the author built this dataset, only the MIDI files from these six years were available

online (http://www.piano-e-competition.com). By June 2019, MIDI files of the year 2013, 2014, 2015,
2017 and 2018 were added to the website.

4https://www.pianoteq.com/pianoteq6
5Models for Yamaha pianos are not provided in Pianoteq. Detailed configurations of the close-miking

recording mode, such as how far the microphone is away from the piano in centimetres, are not specified
in Pianoteq. Therefore we inferred that “similar” microphone technique was applied.

http://doi.org/10.5281/zenodo.3242149
http://www.piano-e-competition.com
https://www.pianoteq.com/pianoteq6
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We used audio data generated from the year 2011 Competition as the test set, which

includes 175 pieces by 28 different composers from Baroque to Modern period. Data from

other years of the competition were used to form the train/validation set, which covers

1392 pieces by 84 different composers. The process of clipping paired excerpts from

audio data in the train/validation set are detailed in Section 7.2.1. We use the paired

excerpts to train deep learning models as binary classifiers, which can distinguish pedal

versus no-pedal excerpts in the experiments presented in Section 7.3. The trained model

can be used to complete the frame-wise detection in Section 7.4, which was evaluated

using the pieces in the test set and the dataset introduced in the previous Section 4.2.

In total, over 300 gigabytes of audio data were generated from the MIDI files. Since

it is difficult to download this amount of data from online storage, we provide a guide

to generate the dataset by Pianoteq in Appendix A.3.

4.5 Summary

This chapter presents three evaluation datasets for the audio-based pedalling technique

detection tasks investigated in the following chapters. The first dataset consists of record-

ings of 10 passages of Chopin’s music. These recordings were annotated with on or off

labels, indicating the sustain pedal is pressed or released at every 0.1 seconds.

The other two datasets with paired audio and MIDI recordings were constructed in

a more controlled setting. The two datasets help to develop detection methods based

on signal processing and deep learning respectively. The first one contains recordings of

isolated notes with various pedalling techniques and four pieces by different composers,

using the MIDI capture and playback system of a Yamaha Disklavier grand piano. This

dataset is designed for discovering the effects of pedals on piano tones in Chapter 5,

which informs the methods of pedal onset detection in polyphonic music presented in

Chapter 6. The second contains a large number of music pieces in pedal/no-pedal versions

generated by MIDI rendering using a commercial virtual instrument. This dataset is
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used for training convolutional neural networks to localise the audio frames played with

the sustain pedal in Chapter 7. The trained models can be used to extract features

adapted to the acoustic characteristics of a real piano in order to enhance the detection

performance. This is examined using the 10-passage dataset of Chopin’s music.



Chapter 5

Effects of Pedals on Piano Tones

5.1 Introduction

As seen in Section 1.3.2, pedalling techniques can vary in the timing and depth of pedal

press. This is especially the case for the sustain pedal. In this chapter, we investigate

effects of different pedalling techniques on piano tones. This serves as a starting point

for more complex use cases, such as pedalling technique detection in polyphonic piano

music.

For the purpose of physics-based piano sound synthesis, there have been studies on the

analysis of isolated notes when the sustain pedal is fully pressed. The main features of the

sustain-pedal effect were outlined in [2]. They are the decay time, amplitude beating and

energy of the residuals, which are obtained through removing the sinusoidal components

from the note. The values of these features are increased when the note is played with

the sustain pedal. Similarly, the decay of piano tones when half pedalling is used was

analysed in [3]. Energy of the residuals was used in [148] to separate notes played with

or without the sustain pedal through autoregressive modelling of the estimated residuals

and then selecting a threshold to define the two classes.

94
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However, the works mentioned above didn’t consider the full spectrum of pedalling

techniques, for instance, the effect of pedal timing (see Section 1.3.2 for the details of

timing-related techniques). Inspired by the observations in the existing works, we design

and exploit audio features based on the analysis of both the partials and residuals of iso-

lated notes without or with different pedalling techniques. To examine the effectiveness

of the proposed features, they are used in decision-tree-based support vector machines

(DT-SVMs) to classify the notes by pedalling techniques of different timing and depth

when the sustain pedal is pressed.

This chapter is organised as follows. The dataset used in this chapter is introduced

in Section 5.2. Signal analysis to design audio features and machine learning methods to

address the problem of pedalling technique detection on isolated notes are presented in

Section 5.3. Experiment is introduced in Section 5.4, including the evaluation results and

discussions. Finally, we summarise this chapter in Section 5.5. This chapter incorporates

material from “Detection of Piano Pedalling Techniques on the Sustain Pedal” by Liang,

Fazekas and Sandler originally published in Proceedings of the 143rd Audio Engineering

Society Convention [149].

5.2 Dataset

Audio recordings of isolated notes played with different pedalling techniques are used in

this chapter. They are from the dataset created using Disklavier as introduced in Sec-

tion 4.3. The pedalling techniques encoded in the MIDI data for Disklavier to playback

represent nine categories, which include three timings (anticipatory, rhythmic and legato)

in conjunction with three possible depths (half, three-quarter and full). By observing the

temporal and spectral characteristics of these recordings, representative audio features

can be designed to distinguish various pedalling techniques.

Because of the physical mechanism of Disklavier itself, audio rendering is not able

to accurately reflect all the specifications encoded in the input MIDI files. Both three-
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Table 5-A: Description of the pedalling techniques considered in this chapter.

Label Techniques Descriptions #Notes

N normal Notes played without the sustain pedal. 33

NLOH
non-legato
over-half

Fully or three-quarterly depress the sustain
pedal before or at the same time as the note
attack.

132

NLH non-legato half Halfway depress the sustain pedal before or
at the same time as the note attack.

66

LOH legato over-half Fully or three-quarterly depress the sustain
pedal after the note attack.

66

LH legato half Halfway depress the sustain pedal after the
note attack.

33

quarter and full pedalling lift the damper high enough to prevent it from interacting with

the strings. This leads to the same effects of pedal depth on the isolated notes. Hence we

consider three-quarter and full pedalling as the same category designated as over-half.

Similarly, anticipatory and rhythmic pedalling have nearly the same timing effects on

the notes. We designate anticipatory and rhythmic pedalling collectively as non-legato.

Therefore four instead of nine categories of pedalling techniques are obtained.

Meanwhile, the bass strings are attached to a separate bridge, which inhibits the

energy from leaking to the middle and treble strings. Thus the bass tones are not

altered substantially when they are played with the sustain pedal, compared to the

situation where the sustain pedal is not engaged. Likewise, this happens to a part of

the treble region. This is because the strings associated with notes higher than G6 are

always free to vibrate because there are no more dampers above these strings. Strings

in the middle region are more likely to be affected by pedalling techniques. We therefore

focus on modelling the pedal effects of tones from the middle region. These physical

configurations and mechanism of the sustain pedal are usually consistent across modern

grand pianos. Representative results should be obtained, although tones of one grand

piano are used for this study. We believe it is possible to apply our proposed method on

other grand pianos.

From the original dataset, 330 recordings representing the notes from the middle
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Figure 5.1: Schematic overview of the proposed method for pedalling technique detection
informed by the effects of pedals on piano tones.

region of piano (from C3 to E6 ) are used to form the dataset. They all have the same

note onset time at 0.5 seconds and offset time at 2.5 seconds. Table 5-A lists the four

pedalling techniques plus notes played without the sustain pedal that are considered in

this chapter.

5.3 Methods

Figure 5.1 illustrates the overview of the proposed method which has three main stages.

The first stage is decomposition using sinusoids plus noise (SpN) model as introduced in

Section 2.3.2. To obtain the sinusoidal components (partials), we first find the frequen-

cies of partials of each note, taking inharmonicity into account. Then the residuals are

obtained by subtracting the partials from the original sound. The next stage is feature
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extraction. We design features through modelling variation in partials and residuals due

to pedal use. Finally, DT-SVM is used to classify notes by pedalling techniques. Per-

formance of the classification task can indicate the discriminative power of the proposed

features. More details about each step are provided in the following sections.

5.3.1 Partials Plus Residuals Decomposition

5.3.1.1 Partials Estimation

Perfect harmony is characterised by all partial frequencies being integer multiples of

the fundamental frequency. Due to string stiffness, partials of piano notes occur at

frequencies higher than the expected harmonics. The theoretical partial frequencies can

be computed using Equation 5.1:

fp = pF0

√
1 +Bp2, p ∈ N (5.1)

where p is the partial index and fp is the corresponding frequency, F0 is the fundamental

frequency and B is the inharmonicity coefficient. The values of F0 and B are varied

from note to note [13]. To estimate F0 and B, we implemented the method proposed in

[150] with Python code available online1. We opted for this method since it compares

favourably with some other existing algorithms, such as ones proposed in [151] and [152].

This method has been used to help model the decay of piano sound in [153].

The estimation method employs a non-negative matrix factorisation (NMF) frame-

work as introduced in Section 2.3.2. Each partial of a piano tone is represented using

the main lobe magnitude spectrum of a Hanning window. Partials form the spectrum

of each note. Such representation serves as a model that is iteratively updated to fit the

observed spectrum. The cost function is defined by using the Kullback-Leibler diver-

gence [154]. Moreover, it incorporates inharmonicity into the regularisation term, which

1https://github.com/beiciliang/estimate-f0-inharmonicity

https://github.com/beiciliang/estimate-f0-inharmonicity
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Figure 5.2: First 30 estimated partial frequencies of note C4 (the fundamental frequency
is around 262Hz).
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Figure 5.3: Inharmonicity coefficient along the piano compass estimated for the 11 nor-
mal notes played at the mezzo-forte velocity.

is defined as a sum of the mean square error between the estimated partial frequencies

from the model and these given by the inharmonicity relation in Equation 5.1. Finally,

the central frequency of each partial fp can be optimised. All of the updated partial

frequencies are used to update the inharmonicity coefficient B of the note.

In practice, to avoid most of the potential outliers during the partial selection, there

was a pre-processing stage that estimated the noise level adaptive to the magnitude
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spectrum. This can separate spectral peaks corresponding to the partials from noise.

We used the noise level estimation method proposed in [155], which assumes that the

noise is generated by a filtered white Gaussian noise. Accordingly, the noise spectral

magnitude in a given narrow band should follow a Rayleigh distribution. Parameters of

the distribution were decided using a 300Hz median filtering on the magnitude spectrum.

Then only partials above the noise level were tracked and optimised. For instance, the

dash line in Figure 5.2 represents the estimated adaptive noise level. Finally, the detected

frequencies of the first 30 partials of the note C4 are indicated using black dots, while

the fundamental frequency (around 262Hz) is highlighted using a red dot. In Figure 5.3,

the estimated inharmonicity coefficient along the piano compass (11 normal notes played

at the velocity of mezzo-forte) is presented.

Based on the above estimation methods, we can obtain a set of partials for each

note. We set the value of maximum fp up to fs/3 where fs is the sampling frequency

(44100Hz). Ideally fs/3 can cover 11 partials of note E6, which is the highest pitch in

our dataset. Therefore the frequencies of at least 10 partials are obtained for each note

in the dataset.

5.3.1.2 Decomposition

As introduced in Section 2.3.2, an efficient modelling technique for music sounds is the

sinusoids plus noise (SpN) model [89], which can separate the signal into a sum of a

set of sinusoids (partials) plus noise (residuals). A music signal is commonly segmented

into short-time frames for analysis due to the time-varying frequencies, amplitudes and

phases of the sinusoids. It is also based on the assumption that the sinusoids are constant

in a single analysis frame. The SpN model for s[n], the n-th frame of a piano tone signal

s, can be formulated as:

s[n] =
∑
p

ap[n] cos(2πfp[n]n+ θp[n]) + r[n], (5.2)
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where ap[n], fp[n], and θp[n] are the amplitude, frequency, and initial phase of the p-

th sinusoid, respectively. These parameters are considered to be fixed within the n-th

frame. r[n] is the residual component.

According to the properties of piano tones introduced in Section 1.3.1, the frequencies

of the partials for a single piano note are stable. This leads to the partial frequencies

can be fixed across frames between the note onset (non) and corresponding offset (noff ).

This has been used to facilitate the sinusoidal modelling of piano tones in [156]. We can

reformulate Equation 5.2 as:

s[n] =
∑
p

ap[n] cos(2πfpn+ θp[n]) + r[n], n ∈ [non, noff ] (5.3)

Separation driven by partial frequency estimation is typically faster and more robust

than the joint estimation of the SpN parameters. Based on this strategy, methods have

been proposed for the separation of harmonic sounds in [157] and [158]. In our case,

partial frequencies for each note have been estimated in the previous Section 5.3.1.1,

which takes the piano inharmonicity into account. Accordingly, the amplitudes and

phases for the given frequencies can be estimated from the STFT of the signal s.

Given the estimations of the partial frequencies, amplitudes and phases, the sinusoidal

component of a piano tone, i.e.,
∑

p ap[n] cos(2πfpn+θp[n]), can be derived. The residual

component r[n] is obtained by subtracting the sinusoids from the original piano tone.

5.3.1.3 Observations

To design effective features for the detection of different pedalling techniques, we observe

the evolution of the decomposed partials and residuals separately, using note C4 played

at the same forte velocity as an example. For the partials of a piano signal, changes

in the first partial are the most representative. Evolution of the first partial can be

represented by tracking its amplitude (a1[n]) along the time axis. Figure 5.4 shows the
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Figure 5.4: Evolution of the amplitude of the first partial for note C4 played with
different pedalling techniques.

evolution of the amplitude of the first partial for note C4 played with different pedalling

techniques from the note onset time (0.5 seconds) to the offset time (2.5 seconds).

As seen in Figure 5.4, only the note played normally gradually decays (the blue line).

Amplitude beating appears immediately after the pedal is pressed. For instance, notes

played with legato over-half pedalling (the red line) and legato half pedalling (the purple

line) obtain a linear decay similar to the blue line during the first 0.5 seconds, and then

decay with more beatings after the legato-pedal onset which takes place at 1.0 seconds.

For note played with non-legato over-half pedalling (the orange line) and non-legato half

pedalling (the green line), amplitude beating start to appear at the beginning. If we

fit the evolution of the first partial using a linear or double decay model, the amount

of variability in the model outcomes can reflect the extent of amplitude beatings. This

motivates us to design features that can distinguish the note played normally versus

played with a pedalling technique.

Residuals of a piano sound mainly consist of the strike of the hammers on the strings
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Figure 5.5: Evolution of the normalised RMS energy of the residuals for note C4 played
with different pedalling techniques.

due to the note onset, the interaction between the dampers and the strings, and the

resonance of the sound board. This can be reflected on the evolution of the residuals,

which is obtained by measuring the root-mean-square (RMS) energy of residuals for each

frame using Equation 5.4:

RMSE(r[n]) =

√
1

L

∑
l

|rn[l]|2, l = 0, ..., L− 1, (5.4)

where L is the frame length, and l is the sample index within the current n-th frame.

Figure 5.5 shows the evolution of residuals when different pedalling techniques are

used to play note C4. Each evolution was normalised to the range of [0,1]. The first

spike is due to the note onset at 0.5 seconds. Other spikes are led by legato-pedal onset

at 1.0 seconds, and by half pedalling that results in more frequent frictions between

the dampers and the strings. The evolution after the note onset is roughly subject

to exponential decay, which the parameters can be also used to characterise pedalling

techniques.
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According to the above observations, we can extract features from the evolution of

partials and residuals separately in the following section.

5.3.2 Feature Extraction

As introduced in Section 1.3.1, vibrations of the strings result in a variety of decay pat-

terns of piano notes. The decay of partials can be classified into three types: linear decay,

double decay and curve decay. For the notes in the middle region of the piano played

normally, the decay of the first partial largely fits the type of linear or double decay.

To model these two types of decay, we used the multivariate adaptive regression splines

algorithm proposed in [159], which combines recursive partitioning and spline fitting for

flexible regression. Double decay can be modelled as a two-phase linear regression using

Equation 5.5:

ypd(t) =

{
α10 + α11t, ton < t < tdp

α20 + α21t, tdp < t < toff

(5.5)

where ypd is the estimated function modelling the first-partial decay; α = {α10, α11, α20, α21}

is the vector of regression coefficients; ton and toff are the note onset time and the offset

time respectively; and tdp is the demarcation point which satisfies the linear constrain

expressed in Equation 5.6:

α10 + α11tdp = α20 + α21tdp (5.6)

To check the value of the regression fit, the coefficient of determination is a useful

statistic. It was first introduced in [160] and denoted as R2 in statistics. It quantifies

the amount of variability in the outcomes that are replicated by the regression model. A

measure of how well ypd fits the observed data can be provided: the better the model fits

the data, the closer the value of R2 is to 1. In this context, R2 is defined in Equation 5.7

as follows:

R2 = 1−
∑

n(ypd[n]− a1[n])2∑
n(a1[n]− ā1)2

, (5.7)
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where ypd[n] is the modelled outcome at the n-th frame and ā1 is the mean of the

observations a1[n]. We calculated R2 using ypd that models the first partial evolution as

a linear and a double decay respectively, and then retained the R2 with a larger value.

More amplitude beatings occur when a note is played with the sustain pedal as indicated

in Figure 5.4. This leads to a lower value of R2 compared to the value obtained using

the note played without the sustain pedal. Therefore R2 is applied as one of the features

to distinguish notes played with or without the sustain pedal.

For the residual components, feature extraction starts with modelling the evolution

of RMSE(r[n]) between the note onset and offset time as an exponential decay using

Equation 5.8:

yrd(t) = arde
−λt + brd, ton < t < toff (5.8)

where yrd is the estimated function modelling the residual decay; ard, λ and brd are the

coefficients obtained using non-linear least-squares fitting [161]. The value of λ and brd

can be changed significantly with various pedalling techniques as indicated in Figure 5.5.

They were thereby selected as features. The chi-square statistic χ2
rd was calculated to

measure the goodness of the exponential-decay fit by Equation 5.9:

χ2
rd =

∑
n

(RMSE(r[n]− yrd[n]))2

yrd[n]
(5.9)

The value of χ2
rd is larger in the cases of notes played with half or legato pedalling, which

reveals more spikes in the evolution of RMSE(r[n]). Therefore χ2
rd can be useful for

detecting the non-legato over-half pedalling technique.

At this point, more features should be extracted to refine the detection of the pedalling

techniques including non-legato half, legato half and legato over-half. For this purpose,

the differences between the fitted exponential decay model and the observed data of

residuals were used. A peak detection algorithm employed the differences to obtain the

number of peaks Npeak, which aims to facilitate the detection of legato pedalling. This is

based on the evident spike led by the legato-pedal onset shown as the red line around 1.0
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seconds in Figure 5.5. A fast Fourier transform (FFT) algorithm also operated on the

differences, from which the value of the frequency Fdiff with the maximum amplitude was

used to promote the detection of half pedalling. This is effective because more frequent

frictions between piano dampers and strings appear when half pedalling is used, resulting

in more oscillations in the differences and the increasing value of Fdiff .

To sum up, six features (R2, λ, brd, χ
2
rd, Npeak, Fdiff ) can be extracted from each

note. They are used for detecting whether a note is played normally or not initially.

If so, the data of a1[n] during the first 500ms, i.e., before the legato-pedal onset time,

will be saved as aref1 . This could inform the pedalling detection for rest instances of the

same pitch by calculating the chi-squared χ2
a1 between their observed data a1[0 : 500ms]

and aref1 . In the case of legato pedalling, a1[0 : 500ms] are more similar with the aref1

compared with the cases of non-legato pedalling according to the evolution before the

legato-pedal onset in Figure 5.4. Thus the value of χ2
a1 is smaller for the notes played

with legato pedalling. After the normal notes are distinguished, χ2
a1 is added as an

additional feature for further pedalling technique detection.

5.3.3 Decision-Tree-Based Support Vector Machines

As introduced in Chapter 2, decision tree (DT) is a non-parametric supervised learning

method which can be used for classification. Its goal is to create a tree-like model that

predicts the value of a target variable by learning simple decision rules inferred from the

data features [162]. Support vector machines (SVMs) were originally designed for binary

classification [163]. For multi-class problems, k classes are separated through building

k one-versus-rest classifiers. This leads to the existence of unclassifiable regions. For

example, the shaded regions in Figure 5.6 cannot be classified into any of the three

classes using the decision function fk(x) learned from SVMs, where k = 1, ...,K.

We can combine DT and SVMs to create decision-tree-based support vector machines

(DT-SVMs) for solving multi-class problems. DT-SVMs have been proved to effectively
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Figure 5.6: The existence of unclassifiable regions using SVMs.

resolve the existence of unclassifiable regions and obtain a higher generalisation capacity

than using conventional SVMs or DT in [164]. The structure of DT-SVMs also fits our

proposed idea of recursively separating a pedalling technique from others. The classes

that are easily bifurcated need to be split at the upper node of the decision tree. In

our case, we firstly determined the hyperplane that separates normal notes from the

notes played with the sustain pedal in the feature space. If multiple classes of pedalling

techniques are in the separated subspace, another hyperplane that separates the classes

will be determined. This procedure is repeated until there is only one class remains in

the separated region. Figure 5.7(a) shows a hypothetical division of the feature space for

our pedalling technique classification, and Figure 5.7(b) expresses this using the decision

tree.

5.4 Experiments

In the experiment, assessment of the devised features is presented and the proposed DT-

SVM model is compared with different classifiers in the pedalling technique classification

task. We first detail the configurations to set up the experiment, then present and discuss

the experiment results.



Chapter 5. Effects of Pedals on Piano Tones 108

normal

non-legato
over-half

legato
over-half

non-legato
half

legato
half

f1(x) = 0

f2
(x

) =
 0

f3(x) = 0

f4(x) = 0

(a)

f1(x) = 0

f2(x) = 0

f3(x) = 0

f4(x) = 0

{normal, non-legato over-half, non-legato half, legato over-half, legato half}

{normal}

{non-legato over-half, non-legato half, 
legato over-half, legato half}+ -

{non-legato over-half}

{non-legato half, legato 
over-half, legato half} +-

{legato over-half, legato half}

{non-legato half}

+ -

{legato over-half} {legato half}

+ -

(b)

Figure 5.7: Schematic structure of the proposed DT-SVMs, including (a) hypothetical
division of the feature space and (b) expression by the decision tree.
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Table 5-B: The number of note instances in mid-lower and mid-upper regions for cross-
validation and testing.

Split
Regions

mid-lower mid-upper

Train 45 45
Valid 15 15
Test 30 15

Note: the number of note instances in the train/valid split here
is referred to as the partition for each fold in the cross-validation.

5.4.1 Experimental Setup

Based on the physical structure of the Disklavier piano, the stress bar between the

note B4 and C5 can separate middle-register notes into two regions (see Figure 1.1 as

a reference). The two regions are denoted as mid-lower (from note C3 to B4 ) and

mid-upper (from note C5 to E6 ). Using the dataset introduced in Section 5.2, the

total number of note instances in the two regions is 180 and 150, respectively. Various

pedalling techniques can lead to subtle acoustic differences between the two regions.

Accordingly, extracted features that represent effects of pedals on piano tones of mid-

lower region are unlike the ones from the mid-upper region. We constructed classifiers

for the two regions respectively.

To present the effectiveness of our proposed DT-SVM classifier, we considered a multi-

class SVM [165] with Radial Basis Function (RBF) kernel (designated as C-SVM) and a

DT for comparison. An eight-fold cross-validation scheme was adopted for the evaluation

of these classifiers (see Section 2.5.2 for more details on k-fold cross-validation). During

the testing phase, the learned classifier selected from the one with the best validation

performance can output the detected pedalling technique for the new notes. We used

the Scikit-learn library [139] to construct the classifiers. All features were scaled into

the range of [0, 1] using the standard min-max scaling approach.

As seen in Table 5-A, the number of note instances are unequal between different

labels. To balance the distribution of notes over the key velocity and the labels, Table 5-B
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Figure 5.8: Comparison of the F-measure of different classifiers from the eight-fold cross-
validation trails.

presents the number of note instances used for cross-validation and testing with respect

to the mid-lower and mid-upper region, respectively. For each split in a region, note

instances with the same label (N, NLOH, NLH, LOH or LH) contributed the same

number of instances. Moreover, key velocities of the instances in each split obtain a

ratio of 1:1:1 for piano:mezzo-forte:forte. For instance, the 30 note instances for the

mid-lower test set consist of 6 instances with label N, every two of which were played at

the same velocity, and likewise 6× 4 instances with the other four labels (NLOH, NLH,

LOH and LH). Because note instances with label N, NLH, LOH and LH are less than the

ones with label NLOH, some of them were repeatedly used in the training sets between

folds for cross-validation.

5.4.2 Results and Discussions

The performance of each classifier from the cross-validation trails is presented as a box

plot in Figure 5.8. An average score of F-measure over the 8 trails can represent the over-

all performance of a classifier used for multi-class classification tasks (see Section 2.5.1

for the details of F-measure). For pedalling technique detection on notes in both mid-
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Table 5-C: Normalised confusion matrices of pedalling technique detection of piano notes
in mid-lower region.

Predicted Label
N NLOH NLH LOH LH

A
c
tu

a
l

L
a
b

e
l

N 1.00 0 0 0 0

NLOH 0 1.00 0 0 0

NLH 0 0 0.83 0.17 0

LOH 0 0 0 1.00 0

LH 0 0 0 0.33 0.67

Table 5-D: Normalised confusion matrices of pedalling technique detection of piano notes
in mid-upper region.

Predicted Label
N NLOH NLH LOH LH

A
c
tu

a
l

L
a
b

e
l

N 0.67 0 0 0 0.33

NLOH 0 1.00 0 0 0

NLH 0 0.17 0.83 0 0

LOH 0 0 0 1.00 0

LH 0 0 0 0.67 0.33

lower and mid-upper regions, our DT-SVM achieves the highest average F-measure score

reported as 0.867 and 0.875 respectively. This yields a performance improvement, out-

performing the DT and the C-SVM by 0.109 and 0.084 respectively at the mid-lower

region, as well as 0.15 and 0.025 at the mid-upper region.

To take a detailed look at the performance of the trained DT-SVM in the testing

phase, Table 5-C and Table 5-D display the confusion matrices corresponding to the

test using notes in the mid-lower and the mid-upper region respectively. The confusion

matrices are normalised by the number of elements in each class. Labels representing

the pedalling techniques in these two tables are identical to the ones listed in Table

5-A. The F-measure from the test result is 0.933 for the mid-lower region and 0.867 for

the mid-upper region. Based on the confusion matrices, NLH (non-legato half ) and LH

(legato half ) pedalling are more easily confused with other pedalling techniques. One
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possible explanation is that the effects of half pedalling were not thoroughly characterised

using the limited note instances in the training set. More frequent interactions between

strings and dampers are introduced by half pedalling technique. The interaction is also

dependent on key velocity. A more comprehensive modelling on piano tones with half

pedalling should take key velocity into consideration. Moreover, we observe ambiguities

in the spectrogram between notes with legato pedalling techniques that are different in

pedal depth, i.e., LOH (legato over-half ) versus LH (legato half ). This is vaguer on

the spectrograms of notes in the mid-upper region. The normalised confusion matrix in

Table 5-D also shows that notes with LH were falsely classified into LOH. All of these

issues indicate that more specialised features should be developed.

To sum up, experiment results present the effectiveness of the designed features in

differentiating categories of pedalling techniques. With these features, the trained classi-

fiers (DT, C-SVM and DT-SVM) all achieved averaged F-measure higher than 0.7 in the

cross-validation. The proposed DT-SVM obtained the best performance. For DT-SVM,

the more the data are misclassified at the upper node of the decision tree, the worse the

classification performance becomes. Hence it is important to determine the structure of

the DT-SVM to minimise the classification error. We separated notes played normally

versus notes played with the pedal at the first node of the decision tree. Such structure

for detecting pedalling techniques from notes in the mid-upper region is prone to the

misclassification between N and LH at the first node, leading to more errors in detecting

the LH pedalling at other nodes. This structure is more effective on the detection from

notes in the mid-lower region. There are possibilities to gain better test results using a

different structure of DT-SVM.

5.5 Summary

This chapter investigated the effects of pedals on piano tones, which informed our pri-

mary study on piano pedalling technique detection from the audio domain. We first
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observed the evolution of partials and corresponding residuals respectively from isolated

notes played with pedalling techniques, which are different in pedal depth and in onset

time with respect to note attack time. Features were designed and extracted from the

partials and the residuals based on their evolution. A model using decision-tree-based

support vector machines was trained to classify the notes into normal, non-legato over-

half, non-legato half, legato over-half and legato half pedalling techniques. Effectiveness

of the model was demonstrated using cross-validation. A mean F-measure score of 0.867

and 0.875 was obtained for classification of notes in mid-lower and mid-upper region

separately. The results indicate that the proposed features are able to characterise the

effects of pedalling techniques on isolated notes in the middle register of the piano.

Although good performance measurements were obtained from the pedalling tech-

nique classification task, there are strong assumptions about the ability to extract clean

features from isolated notes, which may not apply in more generic cases, such as contin-

uous piano playing. For this reason, more sophisticated approaches should be developed

in order to solve pedalling detection in polyphonic piano music. Such approaches are

required to deal with feature extraction in the presence of overlapping partials when

different notes are sounding. To this end, we start with the detection of the legato-pedal

onset in the next chapter, using features from the residual component that correlate with

the acoustic characteristics when legato pedalling is played.



Chapter 6

A Sympathetic Resonance

Measure for Legato-Pedal Onset

Detection

6.1 Introduction

As mentioned in Section 1.3, the sustain pedal is frequently used in expressive piano per-

formances to colour the timbre. Besides sustaining the sounding notes, the sustain pedal

also allows strings associated with other keys to vibrate due to coupling via the bridge.

This phenomenon is known as sympathetic resonance and is defined in the Dictionary

of Acoustics as “resonant or near-resonant response of a mechanical or acoustical sys-

tem excited by energy from an adjoining system in steady-state vibration” [19]. Pianists

usually embrace the phenomenon to produce seamless legato through a technique called

legato pedalling [166]. A key element of employing this technique is when to press the

pedal, i.e., legato-pedal onset time, which helps to sustain the intended notes and avoid

enriching unwanted sonority from the prior notes. In this chapter, we focus on the detec-

tion of legato-pedal onset time. As introduced in Chapter 5, features from the residuals

114
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can be used to distinguish piano tones played with legato pedalling. This informs us to

develop more dedicated features from the residuals for legato-pedal onset detection in

the context of polyphonic piano music.

This chapter is organised as follows. In Section 6.2, we design a sympathetic reso-

nance measure based on the residuals obtained by removing the partials from the orig-

inal sound. The partials are derived using a piano transcription technique. Given that

modelling the specific instrument being transcribed can efficiently improve transcription

performance [147], a specific piano was used to build the dataset. It is also a reasonable

assumption that model parameters of a specific piano are accessible for many perfor-

mance scenarios. Next, we extract features from the sympathetic resonance measure

and consider the legato-pedal onset detection as a binary classification problem, i.e.,

presence/absence of the onset. Our proposed method is evaluated and discussed in Sec-

tion 6.3. Finally, we summarise this chapter in Section 6.4. This chapter incorporates

material from “Piano Legato-Pedal Onset Detection Based on a Sympathetic Resonance

Measure” by Liang, Fazekas and Sandler originally published in Proceedings of the 26th

European Signal Processing Conference (EUSIPCO) [167]. All code used in this chapter

is made publicly available1.

6.2 Methods

6.2.1 Intuitions and Framework

To illustrate the effect of legato pedalling, especially the resulting sympathetic resonance,

idealised spectrograms of two successive chords played with or without the sustain pedal

are presented in Figure 6.1. For the pedalled case, the sustain pedal is pressed to

prolong the first Cmaj chord, while the fingers are still holding down the keys. When

the fingers are lifted to reach for the Fmaj chord, the Cmaj chord is sustained because

1https://github.com/beiciliang/eusipco2018-legatopedal

https://github.com/beiciliang/eusipco2018-legatopedal
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Pedal
Legato-Pedal Onset

Figure 6.1: Idealised spectrograms of two successive chords respectively played with and
without the sustain pedal.

the pedal prevents the dampers from falling onto the strings. Immediately after the

Fmaj chord onset, the pedal is released to avoid blurring effect caused by the overlap

of the two sonorities. The dampers stop the vibrations in all strings whose keys are

not currently pressed. Then, the pedal is pressed again to sustain the Fmaj chord,

lifting dampers off the strings. This can slightly co-excite the damped strings associated

with the previous Cmaj chord with the playing Fmaj chord (shown as the horizontal

dashed line in Figure 6.1). A detailed study of such an indirect excitation on piano

tones is introduced in [15]. We proposed to measure the sympathetic resonance using

the weak co-excitation of damped notes, which is due to the legato pedalling technique.

Features characterising the sympathetic resonance are expected to facilitate the detection

of legato-pedal onset.

To this end, a framework describing the detection process is illustrated in Figure 6.2.

We first obtain the note events through a state-of-the-art specific piano transcription

method proposed in [96]. Isolated notes of the same piano are used to form the templates
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Figure 6.2: Framework of the legato-pedal onset detection method.

for the transcription. Their partial frequencies are estimated using the method proposed

in [150], which was also used and introduced in the previous Section 5.3.1.1. Partial

components are determined by the partial frequencies of the notes from their onset

to offset times based on the transcription results. We then obtain the residuals by

subtracting the partial components from the original sound. Features are extracted

from residuals using a sympathetic resonance measure, which is the main contribution of

this chapter. Finally, the existence of legato-pedal onset is determined via a classification

mechanism. Each step is explained in the following sections.

6.2.2 Transcription for Specific Piano

Note-level piano transcription converts audio into a set of note events, each consisting of

pitch, onset and offset times. Note dynamics and other expressive techniques are rarely

transcribed. A dominant algorithm in automatic music transcription for the last two

decades is non-negative matrix factorisation (NMF) [74]. NMF can factorise a spectro-

gram of a piano recording into 88 spectral bases and corresponding activations. Each

spectral base is associated with a piano note. The corresponding activation represents
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when and how intensely that note is played over time. With NMF, the magnitude

spectrogram of the sound to be transcribed can be represented using:

Vmn =
∑
ρ

WmρHρn, (6.1)

where V is the reconstructed spectrogram, W is the note template, and H is the note

activation. m ∈ [1,M ] is the frequency bin, n ∈ [1, N ] is the time frame, and ρ ∈ [1, 88]

is the pitch index.

For a specific piano, transcription performance can be improved by modelling piano

acoustical features. In the case of supervised NMF, this is done by pre-computing and

fixing the template using recordings that each contains only a single note from the same

piano. Considering the different spectral and temporal characteristics at the attack and

decay phases of a piano note, these two phases can be reconstructed individually to form

the template. This was proposed in [96], which performed as a state-of-the-art method

for specific piano transcription by the time we conducted this study. We employed the

methods in [96] and reformulated Equation 6.1 into:

Vmn =
∑
ρ

W a
mρH

a
ρn +

∑
ρ

W d
mρH

d
ρn, (6.2)

where W a and Ha are the template and the activation for the attack phase, respectively,

and W d and Hd are the ones for the decay phase.

According to the piano acoustics, the attack activations can be formulated as a con-

volution of spike-shaped note activations Hs and a transient pattern P t decided by the

amplitude attack envelope. Accordingly, Ha are formulated as:

Ha
ρn =

n+Na∑
τ=n−Na

Hs
ρτP

t(n− τ), (6.3)

where Na is set to the ratio of the window size and frame hop size for computing the
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spectrogram2. For the decay phase, since piano notes roughly follow an exponential

decay, the decay activations can be generated by:

Hd
ρn =

n∑
τ=1

Hs
ρτe
−(n−τ)λρ , (6.4)

where λρ is the decay rate for pitch ρ. Therefore the complete NMF model is formulated

as follows:

Vmn =
∑
ρ

W a
mρ

n+Na∑
τ=n−Na

Hs
ρτP

t(n− τ) +
∑
ρ

W d
mρ

n∑
τ=1

Hs
ρτe
−(n−τ)λρ , (6.5)

Given that isolated-note recordings have the same note onset time at 0.5 seconds,

activations Hs are fixed in order to update W a, W d, P t and α in the training stage. In

the transcription stage, Hs are updated with the trained templates, transient patterns

and decay rates. The updated Hs are then used to detect the onset and offset times

for each pitch. All these parameters are estimated by minimising the Kullback-Leibler

divergence between the original spectrogram S and the reconstructed spectrogram V .

A detailed derivation can be found in [168], with our Python implementation available

online3.

Given the estimated Hs, the actual transient patterns of notes can be obtained by

attack activations, i.e., Ha using Equation 6.3. Note onset can be detected from Ha

by peak picking. Only peaks that exceed smoothed attack activations by a threshold

are considered as onset candidates. Here, the smoothed attack activations are computed

using a moving average filter with a window of 20 bins. The threshold is adapted to each

piece using the Equation 6.6:

Thre = δmax(Ha
ρn), (6.6)

2We applied the same setup for Na as in [96] such that the range of the transient pattern is determined
by the overlap in the spectrogram.

3https://github.com/beiciliang/modelAttackDecay-for-piano-transcription

https://github.com/beiciliang/modelAttackDecay-for-piano-transcription
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where δ is a hyperparameter which has an impact on the piano transcription results.

As seen in the transcription experiments in [168], comparable performance was achieved

when the value of δ was around -30dB. Hence δ was set to -30dB for our study. After

thresholding, double peaks which are close to each other may be returned. They are

merged into one peak if their intervals are smaller than the minimum interval, which are

set to 0.1 seconds. A weighted average of the indices of the two peaks determines the

index of the merged peak. Here the weight is decided by the amplitude of the two peaks.

The amplitude of the merged peak is the sum of that of the two peaks. This process was

iteratively applied in [168] to remove multiple peaks.

For the offset detection, a method proposed in [169] was used. The state sequence for

each pitch consists of 0 or 1, denoting the state as off or on respectively. The optimal

state sequence for each pitch can be derived by applying dynamic programming on the

normalised costs of the two states, which sum to 1 in every frames. The normalised costs

are defined as follows:

Jρ(state, n) =


∑M

m=1DKL(Xmn, Vmn − V ρ
mn), state = 0∑M

m=1DKL(Xmn, Vmn), state = 1

(6.7)

J̃ρ(state, n) = Jρ(state, n)/
∑
˜state

Jρ( ˜state, n), (6.8)

where V −V ρ is the reconstruction excluding pitch ρ, and DKL is the Kullback-Leibler

divergence. More details on the offset detection can be found in [169] and [96].

Results of the specific piano transcription help to obtain the partial and residual

components using the partials estimated from isolated-note recordings of the same piano.

The transcription results can also inform which notes are damped, based on which the

sympathetic resonance is measured from the residuals.
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6.2.3 Sympathetic Resonance Measure Based on Residuals

When a legato pedalling is played, the effect of sympathetic resonance is enhanced by

string coupling via the bridge. This transfers energy from string vibrations of a played

tone to unstruck strings of the other tones. The core idea of sympathetic resonance

measure is to track the excitation of unstruck strings in order to detect the legato-pedal

onset. Such excitation can be reflected on the magnitude changes on the damped-note

partials as indicated in the spectrogram in Figure 6.1.

To exclude the effects of the sounding notes, a method of partials plus residuals

decomposition as mentioned in Section 5.3.1 was applied. Given that isolated recordings

of the piano we wish to transcribe are available, partial frequencies of each note can

be estimated using the methods introduced in Section 5.3.1.1. Values of the partial

frequencies are fairly fixed between the note onset and offset times. For a piece with

transcription results, the partial components can be obtained by tracking the amplitude

and phase of the transcribed notes’ partial frequencies from their detected onsets until

offsets. Residuals were thus obtained by subtracting the partial components from the

original sound.

At this stage, the residuals mainly consist of background noise, the percussive sound

of hammer-string strikes from note attacks, and the effect of sympathetic resonance. To

minimise the influence of percussive components, harmonic percussive source separation

(HPSS) using a median-filtering technique proposed in [170] was applied to filter out the

percussive sound from the residuals. In order to detect the energy changes induced by

legato pedalling and exclude the influence of residual components other than sympathetic

resonance, only the energy of unstruck strings was measured. Notes associated with

unstruck strings were determined by the preceding notes that are beyond the time range

between their detected onset and offset times. For instance, damped notes after the

second-chord onset in Figure 6.1 are the notes of the preceding chord, i.e., C4, E4 and

G4. Partials of the damped notes were informed by the partial frequencies estimated
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Figure 6.3: Illustration of the difference between detected note onset and fused onset
that is used to determine the segments, from which the existence of legato-pedal onset
is decided.

from isolated notes (see Section 5.3.1.1 for the details of partials estimation). According

to Parseval’s theorem, the energy of these selected partials in the frequency domain can

be used to represent the energy of unstruck strings in the time domain. This energy

is related to the extent of sympathetic resonance and therefore used to indicate the

existence of legato-pedal onset. It is measured by the root-mean-square (RMS) energy

using Equation 6.9:

SRM(r[n]) = RMSE(R[n, SPn]) =

√√√√∑
msp

| |R[n]|[msp]

Msp[n]
|2, (6.9)

where SRM(r[n]) denotes the sympathetic resonance measure of r[n], which is the resid-

ual components at the n-th time frame, and R[n] is the associated residual spectrum.

RMSE(R[n, SPn]) denotes the RMS energy of the selected partials (SP ) of the damped

notes in R[n]. The frequency bins corresponding to the selected partials are designated

as msp, where sp is the element in the list SPn. The amplitude in each selected fre-

quency bin can be then obtained from R[n] and denoted as |R[n]|[msp]. Msp[n] is the

total number of selected partials in the current frame.
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Due to the nature of legato pedalling, its onset happens between two note onsets. We

can define segments as the frames between two successive note onsets and then detect

legato-pedal onset from each segment. To determine the segments, we fused the detected

note onsets that are within a fixed temporal tolerance window of an estimated 16th note

duration. This is because multiple onsets may be detected for the notes played as a single

chord, and it is not possible to change the pedal with every note [22]. Frames between

every two successive onsets after fusing were defined as a segment. Figure 6.3 illustrates

how a segment is determined using the fused note onsets based on the transcribed note

events from the first three bars of Chopin’s Op. 10 No.3. The existence of legato-pedal

onset can be decided from every segment using the proposed sympathetic resonance

measure.

The whole procedure of measuring the sympathetic resonance from every segment

is illustrated by Algorithm 1, where P [i], ON [i] and OFF [i] refer to the pitch index,

onset and offset time frames of the i-th transcribed note event (i ∈ [1, I]). PF [P [i]]

is the frequency bins corresponding to the estimated partials of the P [i]. Finally the

sympathetic resonance measure for a piece is saved as a vector SRM .

Algorithm 1 Sympathetic resonance measure

Require: τ : estimated duration of a 16th note in frames; m: frequency bin and m ∈ [1,M ]; n:
time frame and n ∈ [1, N ]
procedure Measure(P, ON, OFF, PF, R)

SRM← zeros(N)
for all j ∈ [1 : I − 1] do

if ON[j + 1]−ON[j] > τ then
n← ON[j]
SPn ← empty list
for all i ∈ [1 : I] do

if ON[i] < n < OFF[i] then
SPn ← append(SPn,PF[P[i]])

SRM[ON [j] : ON [j + 1]]← RMSE(R[ON [j], SPn] : R[ON [j + 1], SPn])

return SRM
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Figure 6.4: Idealised changes of sympathetic resonance measure and the extracted fea-
tures in a segment with the existence of legato-pedal onset.

6.2.4 Feature Extraction and Binary Classification

In the ideal case as illustrated in Figure 6.4, the value of SRM in a segment is increased

at the moment of legato-pedal onset, and then gradually decreased. SRM should stay

stable in the segments without legato-pedal onset. We can extract features to characterise

such SRM changes in order to determine the existence of legato-pedal onset in a segment.

This can turn the legato-pedal onset detection into a binary classification problem, where

the decision can be made using a machine learning method. Results from the segment-

level detection can be interpreted as which group of notes is played with the legato

pedalling technique. We didn’t set the detection at every frame because exact times of

legato-pedal onsets are not necessary for the pianist to perform a piano piece. It is also

observed in most music scores that notation for an intended legato-pedal onset is always

aligned with a group of note onsets.

As observed in Figure 6.4, a peak with the maximum value of a segment appears when

the SRM is enhanced by the legato-pedal onset. The maximum value was extracted as a

feature per segment and recorded on both linear and decibel scale (denoted as Maxlinear

and MaxdB respectively). Using the decibel scale can approximate how humans perceive

the extent of sympathetic resonance. We assess which scale is more effective in distinguish

segment with/without legato-pedal onset in the experiments presented in Section 6.3.3

such that feature representing the maximum SRM can be selected. Moreover, because

legato pedalling is used after note onsets, the peak location with respect to the number
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of frames away from the note onset, i.e., starting point of the segment, was also extracted

and denoted as Peakloc. Finally, Peakloc and maximum SRM using the selected scale

were concatenated together as a 2D feature characterising SRM for each segment.

Since binary classifier selection is not the main focus in this study, logistic regression,

as one of the most common methods for binary classification problems, was chosen to

model the probability of the existence of legato-pedal onset per segment using the input

features. In the training stage, a threshold value from the probability can be obtained

to discriminate the presence or absence of legato-pedal onset. Then in the testing stage,

the trained logistic regression model can be used as a binary classifier.

6.3 Experiments

In this section the proposed method is evaluated in the legato-pedal onset detection task.

We first describe the dataset and detail the experimental setup. A logistic regression

model with the selected features are trained into a binary classifier. Presence or absence

of legato-pedal onset can be determined. Finally we present and discuss the testing

results.

6.3.1 Dataset

Existing public annotated piano datasets were developed for research on multi-pitch

estimation. For piano pedalling technique detection, we built our dedicated dataset

using Disklavier rendering as introduced in Section 4.3. Recordings of 88 isolated notes

played with mezzo-forte dynamics on the same Disklavier are available. They were used

to train the NMF templates and to estimate the partial frequencies. Recordings of four

well-known pieces from different music eras were obtained using the same piano. They

were labelled with pedal onset times in seconds according to the input MIDI data.

Using the proposed method, legato-pedal onset times are detected at a segment level.
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Table 6-A: The number of labels and total segments in each piece.

Piece #Label 0 #Label 1 #Segments

Beethoven Op.31 No.2-3 1113 84 1197

Chopin Op.10 No.3 438 108 546

Brahms Op.10 No.1 161 110 271

Ravel Jeux d’eau 710 88 798

Total Number 2422 390 2812

Accordingly, the method was evaluated using another ground truth, which annotates

the existence of legato-pedal onset per segment. To prepare this ground truth, each

audio signal was segmented as discussed in Section 6.2.3 based on the transcribed note

onsets. Each segment was then labelled “1” to denote the presence of legato-pedal onset,

otherwise segments were labelled “0”. Table 6-A lists the number of segments annotated

using “0” or “1” in each piece. The current dataset is limited in the number of music

pieces, however there are almost 3000 segments in total to be classified.

6.3.2 Experimental Setup

The input signals were divided into frames using 2048-sample Hanning window (hop size

= 512) to compute the spectrogram. Given the transcription results and the estimated

partial frequencies, partials can be tracked and then removed in order to obtain the resid-

uals. The sympathetic resonance was measured from the residuals and then segmented.

The proposed features were extracted from the calculated sympathetic resonance mea-

sure in every segment.

To evaluate the model, data in each piece was separated into two halves, one for

training and the other one for testing. This piece-level evaluation was selected because

the overall tempo and dynamics in a piece affect the attributes of the trained model.

Moreover, models were trained with weighted classes in the Beethoven and Ravel pieces,

which exhibit very unbalanced data as seen in Table 6-A. Their ratio of segments with-

/without legato-pedal onset is around 7.55% and 12.39% respectively. Given the test

results for every piece, we then calculated precision (P1), recall (R1) and F-measure (F1)
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Table 6-B: AIC results of logistic models with different features.

Features AIC

Maxlinear 2555.36

MaxdB 2507.39

MaxdB + Peakloc 2361.35

with respect to label “1”. In addition, we show the overall performance using micro-

averaged F-measure (Fmicro) due to the imbalance of two labels. Details on calculating

P1, R1, F1 and Fmicro were introduced in Section 2.5.1. We used Scikit-learn [139] to

construct the model and compute the performance metrics.

6.3.3 Feature Selection

As we introduced in Section 6.2.4, Maxlinear and MaxdB in every segment were extracted

as features. To determine which one better represents the maximum value of segments,

data from the training set were used. We evaluated logistic regression models with

the two features separately, using the Akaike information criterion (AIC) [171]. AIC

estimates the relative amount of information lost by a given model. A logistic regression

model with a more effective feature should yield a smaller value of AIC.

Table 6-B presents the AIC values corresponding to the logistic regression model with

different features. To determine the feature representing the maximum value of SRM in

a segment, MaxdB was selected because it returns a smaller AIC value of 2507.39 than

2555.36 by Maxlinear. We also evaluated the logistic regression model with 2-dimension

features consisting of MaxdB and Peakloc. This was chosen as the final feature to train

the logistic model because it gives the smallest AIC value of 2361.35.

6.3.4 Results and Discussions

Table 6-C presents the model performances for each piece. The overall results indicate

that our method extracts relevant features to represent the effect of sympathetic reso-
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Table 6-C: Test results of legato-pedal onset detection in each piece.

Piece P1 R1 F1 Fmicro
Beethoven Op.31 No.2-3 0.13 0.38 0.20 0.80

Chopin Op.10 No.3 0.69 0.69 0.69 0.88

Brahms Op.10 No.1 0.56 0.58 0.57 0.62

Ravel Jeux d’eau 0.23 0.87 0.36 0.71

Table 6-D: Percentage of segments with label 1 and mode of segment duration in seconds
in each piece.

Piece Label 1 %
Mode of Segment

Duration (Seconds)

Beethoven Op.31 No.2-3 7.02 0.1

Chopin Op.10 No.3 19.78 0.5

Brahms Op.10 No.1 40.59 0.2

Ravel Jeux d’eau 11.03 0.1

nance and helps to detect legato-pedal onsets from audio. In terms of the performance

metric for label “1” (indicating legato-pedal onset exists in a segment), a higher value

of R1 than P1 is obtained in general. However, given that most segments are labelled as

“0”, a bias towards “0” can be introduced in the training process. The trained model

can result in more false positives and therefore decrease the P1. This also reflects on the

classification performance of music pieces with more imbalance in their data. According

to the ground truth data, percentage of the segments with the label “1” with respect

to each piece is presented in Table 6-D. With a higher percentage, the trained model

can detect legato-pedal onset with higher P1. Accordingly, detection on the Chopin and

Brahms piece achieve better P1 and F1 than those of the Beethoven and Ravel piece.

Moreover, we assume the segment duration, i.e., the time interval between two suc-

cessive note onsets, can have an effect on the proposed detection method. We calculated

the mode value of segment duration in the four pieces respectively based on their ground

truth data. As presented in Table 6-D, pieces with more segments of longer duration

tend to obtain better performance. Given that our features were extracted per segment,

in the segment with a short duration, features can be masked by the note transients.

They are hence less representative as an indicator of legato-pedal onset which leads to
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poor classification performance in the Beethoven and Ravel pieces.

Differences in pedal use between composers and musical eras also contribute to

explaining our evaluation results. The highly unbalanced training data in the Beethoven

piece is due to the fact that legato pedalling was rarely used in Beethoven’s time. This

results in poor P1, R1 and F1 in the Beethoven piece. On the contrary, it is well acknowl-

edged that legato pedalling is an essential ingredient to create contrast between pedalled

and unpedalled notes in Chopin’s works. This helps to yield cleaner features and conse-

quently the best performance in the Chopin piece. If the piece itself has cross-rhythms

and dense harmonic structure, which Brahms’ music is firmly rooted in, the extent of

sympathetic resonance may not be significantly changed by legato-pedal onset. In this

case, our features are less discriminative. Similarly, other playing techniques that are

correlated with the effect of sympathetic resonance may degrade classification perfor-

mance. This is observed in the Ravel piece, which puts emphasis on timbral nuances,

expanding the keyboard and pedalling techniques more than the use of legato pedalling.

6.4 Summary

This chapter presented a method for detecting legato-pedal onsets of a known piano

based on a measure of sympathetic resonance. The intuition behind this method is that

the energy of unstruck strings can represent the extent of sympathetic resonance which

changes with the legato pedalling technique. It is noted that our method is the first to

detect pedalling technique in polyphonic piano music.

In the proposed method, residuals were obtained using piano transcription and partial

estimation. Sympathetic resonance was measured from the residuals and segmented. In

each segment, the maximum value in the decibel scale and peak location were extracted

as features. The existence of legato-pedal onset per segment was determined using a

logistic regression classifier trained on the features. The overall performance shows that

the trained model can be used as an indicator of legato-pedal onset, especially in the
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music pieces with more instances of legato pedalling techniques and longer time intervals

between note onsets.

From a practical perspective, the specific piano transcription technique, which was

used as an intermediate step in our method, would affect the residual acquisition and

segmentation due to the errors in the transcribed note events. In addition, because of

the different nature of music pieces, data from part of a piece were required for training

the machine learning models in order to facilitate the detection in the rest part of the

piece. How to generalise the detection for any music piece without this training strategy

remains a question. To address these issues, deep learning algorithms are proposed in

the following Chapter 7 to design more accurate and general methods for detecting piano

pedalling techniques, which are not limited to legato pedalling.



Chapter 7

Deep Learning Methods for

Sustain-Pedal Detection

7.1 Introduction

Pedalling techniques change very specific acoustic features, which can be observed from

their spectral and temporal characteristics on isolated notes as seen in Chapter 5. How-

ever, their effects are typically obscured by the variations in pitch, dynamics and other

elements in polyphonic music. Automatic detection of pedalling techniques using hand-

crafted features becomes a challenging problem as discussed in Chapter 6. Given enough

labelled data, deep learning models have shown the ability of learning hierarchical fea-

tures. If these features are able to represent characteristics corresponding to pedalling

techniques, the model can serve as a detector.

In this chapter, we focus on detecting the technique of the sustain pedal from audio

recordings using deep learning methods. According to piano acoustics and the observa-

tions in the previous chapters, musical features can be different at the start (pedal onset)

versus during the pedalled segment. We propose to train the deep learning models for

pedal onset and pedalled segment separately to better localise the audio frames played

131
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with the sustain pedal. The models are designed through exploiting the knowledge of

piano acoustics and physics in Section 7.2. Experiments on distinguishing excerpts with

or without the sustain-pedal effect using the trained models are presented in Section 7.3.

Here the excerpts are arranged in pairs (pedal versus no-pedal versions). They were

clipped from the paired audio of music pieces in the dataset introduced in Section 4.4.

For the frame-wise detection on music pieces, two strategies with the help of the

trained models are presented in Section 7.4. One is to apply decision fusion [172] to the

outputs of the two trained models from sliding windows over the music piece in order to

decide the portions played with the sustain pedal. The other one is based on transfer

learning techniques [113]. This allows the trained model to be adapted to the target

task, where the recording instrument and room acoustics are different. Given that our

deep learning models are trained using synthesised data, transfer learning is expected to

obtain a better feature representation for the data consisting of acoustic piano recordings.

Hence better performance on frame-wise detection can be achieved by transfer learning.

This is examined through cross-validation using 10 passages of Chopin’s music, which

were recorded in a real scenario as introduced in Section 4.2.

This chapter incorporates materials from “Piano Sustain-Pedal Detection Using Con-

volutional Neural Networks” and “Transfer Learning for Piano Sustain-Pedal Detection”

by Liang, Fazekas and Sandler originally published in Proceedings of the 44th Inter-

national Conference on Acoustics, Speech, and Signal Processing (ICASSP) [173] and

Proceedings of the International Joint Conference on Neural Networks (IJCNN) [174],

respectively. All code used in this chapter is made publicly available1.

7.2 Training Convolutional Neural Networks

Convolutional Neural Networks (CNNs, see Section 2.3.4.2 for technical background)

have been used to boost the performance in MIR tasks, with the ability to efficiently

1https://github.com/beiciliang/sustain-pedal-detection

https://github.com/beiciliang/sustain-pedal-detection
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Figure 7.1: Process of generating excerpts in pairs based on Pianoteq rendering.

model temporal features [175] and timbre representations [176]. We chose CNNs to

learn time-frequency contexts related to the sustain pedal, using synthesised excerpts

in pairs, which correspond to the pedal and no-pedal versions of audio data with the

same note events. Using this method, contexts that are invariant to large pitch and

dynamics changes can be learned by the CNN models (collectively denoted by convnet

hereafter). Preparation of excerpts in pairs is detailed in Section 7.2.1. The input and

output representations for training the convnet are presented in Section 7.2.2. How to

incorporate knowledge of piano acoustics and physics for the convnet design is discussed

in Section 7.2.3. The models were separately trained for two binary classification tasks,

which have the same goal of differentiating the pedal case from the no-pedal one. One task

is focused on pedal onset detection, from which the trained model is denoted as convnet-

onset. The other task is to determine the pedalled segment. The corresponding trained

model is designated as convnet-segment.

7.2.1 Preparation of Music Excerpts in Pairs

The preparation process of excerpts in pairs for training and validating convnet-onset

and convnet-segment is illustrated in Figure 7.1. MIDI files and the associated two
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versions of Pianoteq-rendered pieces were provided by the dataset introduced in Sec-

tion 4.4. Ground-truth annotations for each piece consist of binary labels (on and off )

indicating the sustain pedal is pressed or released at every frame. They were obtained by

thresholding the sustain-pedal MIDI message in the range [0,127] at 64. A pedal onset

is determined to have happened during a frame where the pedal state changes from off

to on. A pedalled segment is determined to start at a pedal onset and finish when the

state returns to off.

According to the distribution of pedalled-segment duration calculated from all the

MIDI files, the sustain pedal is commonly pressed for between 0.3 and 2.3 seconds. To

prepare fixed-length excerpts for training convnet-onset, we clipped 0.5-second excerpts

around every pedal onset. Each excerpt starts from 0.2 seconds before a pedal onset

time and ends at 0.3 seconds after the pedal onset time. Excerpts for training convnet-

segment were clipped from pedalled segments which are more than 0.3-second long,

and then processed to obtain 2 seconds in length through repeating/trimming the ped-

alled segments shorter/longer than 2 seconds. The start and end times of these pedal

excerpts were also used to obtain no-pedal excerpts from audio without sustain-pedal

effect. Therefore excerpts were obtained in pairs.

As introduced in Section 4.4, the train and validation sets were formed by paired

excerpts clipped from pieces of the competition year 2002, 2004, 2006, 2008 and 2009.

To compare convnet-onset and convnet-segment of different architectures in a more

efficient way, we created a smaller train/validation set to reduce the training time. This

was done by randomly taking a thousand samples from the excerpts of each composer.

Since there are less than a thousand excerpts for some of the composers, 67540 excerpts

were formed for convnet-onset, and 62424 for convnet-segment. The excerpts were

sampled in pairs such that the ratio of pedal and no-pedal excerpts was kept as 1:1. They

were then split into 80%/20% as the train/validation set.

Table 7-A contains aggregate statistics of the original dataset presented in Section 4.4

and the paired excerpts we prepared. We aim to train convnet-onset and convnet-
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Table 7-A: Statistics of the Pianoteq-rendering dataset.

Split
Excerpts (small version for efficient training)

Pieces Composers
convnet-onset convnet-segment

Train 54004 49908
1392 84

Valid 13536 12516

Test not applicable 175 28

Sum 67540 62424 1567 90

segment to distinguish excerpts with pedal onset and pedalled segment respectively from

their associated no-pedal excerpts. The trained two models can be used as detectors in

short-time analysis using overlapping windows to obtain local information in the test

pieces with various lengths.

7.2.2 Input and Output Representations

Training CNNs to solve MIR problems is computationally intensive, therefore optimisa-

tion is necessary. Optimisation can be done by selecting an input representation which

can provide audio data in an effective form. Meanwhile, training a network starting

from the raw audio signal instead of its two-dimensional representations requires a larger

dataset. Accordingly, 2D representations of the audio are preferred as an effective and

efficient input data.

Given a large training data set consisting of 2D representations of audio excerpts in

pairs, convnet models are expected to learn the nuances in sound played with/without

the sustain pedal, while invariant to other musical elements such as pitch and loudness.

Considering that the use of the sustain pedal can have effects on every piano string, this

could lead to changes that affect the entire spectrum, i.e., take place at a global level.

Therefore representations that reveal finer details such as short-time Fourier transform

(STFT), may be redundant and inefficient for training. Mel-spectrogram is a 2D repre-

sentation that approximates human auditory perception through compressing STFT in

the frequency axis. This computationally efficient input has been shown to be more suc-

cessful than STFT in MIR tasks such as music tagging [85]. For our case, we present the
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Figure 7.2: Details of the convnet architecture for binary classification tasks.

effect of input representations on the performance of binary classification tasks in Sec-

tion 7.3. This shows Mel-spectrogram is an adequate input representation and obtains

better performance than using STFT for our tasks.

The target outputs we used to train the model are one-hot vectors which encode the

two labels, i.e., pedal and no-pedal. To classify a new excerpt, the trained model can

output a likelihood score for each label. The label with a higher value will be assigned

to the excerpt as its classification result.

7.2.3 Models

Inspired by Vggnet [177] which has been found to be effective in music classification

[86], our convnet model uses a similar architecture with fewer trainable parameters to

learn the differences in time-frequency patterns in pedal versus no-pedal cases. The

model consists of a series of convolutional and max-pooling layers, which are followed by

one fully-connected layer with two softmax outputs. The architecture we proposed to

start with and related hyperparameters are summarised in Figure 7.2, where (c, (mc, nc))

corresponds to (channel, (kernel lengths in frequency, time)) specifying the convolutional
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layers. Pooling layer is specified by (pooling length in frequency, time).

It was noted in [176] that designing filter shapes within the first layer can be moti-

vated by domain knowledge in order to efficiently learn musically relevant time-frequency

contexts with spectrogram-based CNNs. To decide (mc, nc) of the first layer with the

best representational power, we selected their values motivated by piano acoustics and

physics which can substantially change the sustain-pedal effect. Performance of con-

vnet with different filter shapes within the first layer were evaluated using the validation

set as discussed in Section 7.3. Apart from the common small-square filter shape, the

shapes we experimented with are either wider rectangles in the time domain to model

short time-scale patterns, or in the frequency domain to fit the spectral context. To

be specific, according to the time-frequency transformation used in this chapter, models

with the following (mc, nc) were trained:

• As a baseline: (3, 3) (denoted the model by convnet-baseline).

• For modelling larger frequency contexts: (6, 3), (15, 3), (36, 3) for STFT input,

which are roughly equivalent to (9, 3), (20, 3), (45, 3) for Mel-spectrogram input

(collectively denoted by convnet-frequency). These values of kernel length in

frequency were motivated by the piano acoustics and physical structure, which

fundamentally decide how the sustain-pedal effect sounds at notes of different reg-

isters. A frequency range from 0 to 283 Hz can be covered by 6 frequency bins

of STFT. This corresponds to 9 Mel bands in our case when Mel-spectrogram

was used as the input representation. 283 Hz approximately corresponds to the

frequency of note C4, which is a split point between bass and treble for piano.

Accordingly, (15, 3) and (36, 3), i.e., (20, 3) and (45, 3) for the Mel scale, can

be separately mapped to note D5 and G6. The stress bar near the strings of D5

separates the piano frame into different regions. The strings associated with notes

higher than G6 are always free to vibrate because there are no more dampers above

these strings.
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• For modelling larger time contexts: (3, 10), (3, 20), (3, 30), covering 100, 200 and

300 ms respectively (collectively denoted by convnet-time).

The number of channels (c) was set to 21 for all the convolutional layers as a starting

point. According to the best performance measurements of convnet-frequency and

convnet-time respectively, we selected the corresponding (mc, nc) along with (3, 3) to

create another model with multiple filter shapes (designated as convnet-multi). Out-

puts of the first convolutional layer were then concatenated together along the channel

dimension. The rest of the convnet-multi architecture remained the same as the other

convnet models.

In all the convolutional layers, batch normalisation was used to accelerate conver-

gence. The output was then passed through a Rectified Linear Unit (ReLU) [112], fol-

lowed by a max-pooling layer to prevent the network from over-fitting and to be invariant

to small shifts in time-frequency. To further minimise over-fitting, global average pooling

was used before the final fully-connected layer. The final layer used softmax activation

in order to map the output to the range [0,1], which can be interpreted as a likelihood

score of the presence of the sustain pedal in the input. We trained convnet with the

Adam optimiser [115] to minimise binary cross entropy.

There are possibilities that simpler model architecture, i.e., with fewer channels or

convolutional layers, would be sufficient for our binary classification tasks using reduced

parameters. We explored the effect of the number of channels and layers in Section 7.3.

With the above configurations, models dedicated to the detection of pedal onset and

pedalled segment were trained using their associated excerpts in order to decide the best

configuration for convnet-onset and convnet-segment, respectively.
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7.3 Binary Classification Experiments

In this section, we examined whether the convnet models with various input represen-

tations and architectures can perform differently on discriminating pedal versus no-pedal

excerpts. We first describe the experimental setup. The performance of binary classifica-

tion for pedal onset and pedalled segment detection are separately presented. Finally we

conduct visual analysis on convolutional layers of the trained convnet models to discuss

what the models have learned.

7.3.1 Experimental Setup

For the input, STFT was performed using 1024-point FFT with a hop size of 441 samples

(10 ms). The corresponding Mel-spectrogram was obtained using 128 Mel bands. These

time-frequency transformations were done in real-time on the GPU using Kapre [178],

which can simplify audio preprocessing and save storage. Keras [179] and Tensorflow

[180] frameworks were used for the implementation.

As presented in Section 7.2.1, excerpts in pairs were split into 80%/20% to form the

training/validation set, which is 54004/13536 for convnet-onset and 49908/12516 for

convnet-segment. Models were trained until the accuracy no longer improved for 10

epochs. Batch size was set to 128 examples. To examine which convnet model can best

discriminate pedal versus no-pedal excerpts, we compared AUC-ROC (or simply AUC,

representing Area Under Curve - Receiver Operating Characteristic) scores of the models

using the validation set.

7.3.2 Pedal Onset Detection

To decide the hyperparameters of convnet-onset for differentiating the excerpts with

or without the existence of pedal onset, we trained convnet models with different con-

figurations proposed in Section 7.2.3. Table 7-B and Table 7-C present the model perfor-
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Table 7-B: Performance of different models using spectrogram input for pedal onset
detection.

Model (m, n) Accuracy AUC

convnet-baseline (3, 3) 0.8976 0.9678

convnet-frequency

(6, 3) 0.8863 0.9670
(15, 3) 0.9141 0.9735
(36, 3) 0.9209 0.9774

convnet-time

(3, 10) 0.9248 0.9790
(3, 20) 0.9307 0.9817
(3, 30) 0.9167 0.9749

convnet-multi - 0.9304 0.9801

Average - 0.9152 0.9752

Table 7-C: Performance of different models using Mel-spectrogram input for pedal onset
detection.

Model (m, n) Accuracy AUC

convnet-baseline (3, 3) 0.9198 0.9766

convnet-frequency

(9, 3) 0.9093 0.9702
(20, 3) 0.9236 0.9758
(45, 3) 0.9169 0.9740

convnet-time

(3, 10) 0.9346 0.9827
(3, 20) 0.9261 0.9799
(3, 30) 0.9198 0.9748

convnet-multi - 0.9170 0.9755

Average - 0.9209 0.9762

mance using spectrogram and Mel-spectrogram as the input representation, respectively.

According to the AUC scores obtained by different (mc, nc) in convnet-frequency and

in convnet-time, we selected the corresponding (mc, nc) with the highest score along

with (3, 3) to create convnet-multi. To be specific, the first convolutional layer of

convnet-multi consisted of (7, (36, 3)), (7, (3, 20)) and (7, (3, 3)) when spectrogram

input was used. These values were (7, (20, 3)), (7, (3, 10)) and (7, (3, 3)) when Mel-

spectrogram input was used. The above selected (mc, nc) were highlighted in the two

tables.

According to the average of accuracy and AUC, Mel-spectrogram input can result

in a slightly higher value. Mel-spectrogram is therefore an adequate input representa-

tion. The highest AUC of 0.9827 was also obtained using Mel-spectrogram input in the
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Table 7-D: Performance of different models based on convnet-time (mc = 3, nc = 10)
using Mel-spectrogram input for pedal onset detection.

convnet-time c lc Accuracy AUC

Models with Reduced
Parameters

3 2 0.7702 0.8500
12 2 0.8398 0.9128
21 2 0.8325 0.9095
3 3 0.8036 0.8846
12 3 0.8405 0.9184
21 3 0.8957 0.9630
3 4 0.8548 0.9321
12 4 0.9171 0.9752

Original Model 21 4 0.9346 0.9827

Models with More Layers
21 5 0.9258 0.9808
21 6 0.9301 0.9811

Models with More Chan-
nels

30 4 0.9357 0.9837
39 4 0.9383 0.9848

Note: lc denotes the number of convolutional layers.

convnet-time with mc = 3 and nc = 10 as shown in Table 7-C. Besides, better per-

formance was obtained by convnet-time than convnet-frequency in general. We can

infer that pedal onset can bring up more temporal dependencies than timbral features.

To examine the effects of the number of channels and layers, we experimented on

the convnet-time model where mc = 3, nc = 10 and input representation was Mel-

spectrogram. This was selected because the model’s AUC is numerically better than the

other models. From the results presented in Table 7-D, model performance decreased

with fewer channels or layers. When the number of channels and layers were set to a

larger value than the original model, the performance was more dependent on the effect

of the number of channels. Models with more layers could cause overfitting problem such

that the corresponding AUC based on the validation set obtained a slightly lower value.

However, models with more channels obtained a higher value of AUC.

The best performing model among all the above models we experimented with is the

convnet-time model where mc = 3, nc = 10, c = 39, lc = 4 and input representation

was Mel-spectrogram. The corresponding accuracy and AUC were highlighted in red in

Table 7-D. This model was selected as the final convnet-onset, which was used as one
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Table 7-E: Performance of different models using spectrogram input for pedalled segment
detection.

Model (mc, nc) Accuracy AUC

convnet-baseline (3, 3) 0.9545 0.9925

convnet-frequency

(6, 3) 0.9589 0.9953
(15, 3) 0.9714 0.9969
(36, 3) 0.9697 0.9945

convnet-time

(3, 10) 0.9807 0.9978
(3, 20) 0.9845 0.9980
(3, 30) 0.9753 0.9964

convnet-multi - 0.9808 0.9980

Average - 0.9720 0.9962

Table 7-F: Performance of different models using Mel-spectrogram input for pedalled
segment detection.

Model (mc, nc) Accuracy AUC

convnet-baseline (3, 3) 0.9755 0.9963

convnet-frequency

(9, 3) 0.9630 0.9905
(20, 3) 0.9751 0.9956
(45, 3) 0.9747 0.9968

convnet-time

(3, 10) 0.9815 0.9973
(3, 20) 0.9787 0.9972
(3, 30) 0.9816 0.9971

convnet-multi - 0.9837 0.9983

Average - 0.9762 0.9961

of the “pre-trained” models for frame-wise detection in Section 7.4.

7.3.3 Pedalled Segment Detection

Similar to how we compared different models for pedal onset detection, we trained con-

vnet models with different configurations proposed in Section 7.2.3 in order to decide

the hyperparameters of convnet-segment for distinguishing the pedalled segment. The

performance of convnet-baseline, convnet-frequency, convnet-time and convnet-

multi when the input representation was spectrogram versus Mel-spectrogram were

separately presented in Table 7-E and Table 7-F. It is noted that the first convolutional

layer of convnet-multi consisted of multiple filter shapes. In the case of spectrogram

input, it consisted of (7, (15, 3)), (7, (3, 20)) and (7, (3, 3)). When Mel-spectrogram
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Table 7-G: Performance of different models based on convnet-multi using Mel-
spectrogram input for pedalled segment detection.

convnet-multi c lc Accuracy AUC

Models with Reduced
Parameters

3 2 0.8781 0.9486
12 2 0.9389 0.9804
21 2 0.9552 0.9890
3 3 0.9436 0.9849
12 3 0.9708 0.9948
21 3 0.9741 0.9960
3 4 0.9513 0.9870
12 4 0.9762 0.9964

Original Model 21 4 0.9837 0.9983

Note: lc denotes the number of convolutional layers.

Table 7-H: Performance of fewer-layer models based on convnet-multi using Mel-
spectrogram input for pedalled segment detection.

convnet-multi c lc Accuracy AUC

Models with More Chan-
nels and Fewer Layers

30 2 0.9522 0.9893
39 2 0.9419 0.9929

Original Model 21 4 0.9837 0.9983

Note: lc denotes the number of convolutional layers.

input was used, it consisted of (7, (45, 3)), (7, (3, 10)) and (7, (3, 3)). These values of

(mc, nc) were decided because their corresponding model achieved the highest value of

AUC within convnet-frequency and within convnet-time as highlighted in the two

tables.

According to the AUC scores presented in Table 7-E and Table 7-F, there is not much

difference between using spectrogram or Mel-spectrogram as the input to the models.

AUC scores are all higher than 0.99. This informed us again that Mel-spectrogram is

an adequate input representation for our detection tasks. The highest one is 0.9983

obtained by the convnet-multi model where mc = 3, nc = 10 and input representation

was Mel-spectrogram. This model was selected to be trained with fewer channels and

convolutional layers to examine if the same level of performance can be obtained with

reduced trainable parameters.

Table 7-G presents the performance of different models based on the selected convnet-
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Figure 7.3: Visual analysis of music excerpts in pairs by deconvolving the layers in
convnet-onset. The deconvolved Mel-spectrogram corresponding to the 20th kernel in
layer lc is designated by layerlc-20.

multi using Mel-spectrogram input. We noticed that the model with 2 layers and 21

channels can already obtain an AUC score of almost 0.99. The performance seems to

be more dependent on the effect of the number of channels. Therefore we also trained

the model with 2 layers but more channels and presented the associated performance in

Table 7-H. The AUC scores increased with the number of channels and achieved a value

of more than 0.99 with 39 channels.

The best accuracy and AUC scores in this experiment were achieved by the selected

convnet-multi, i.e., 0.9837 and 0.9983 as highlighted in red in Table 7-H. This model

was selected as the final convnet-segment, which is used as a “pre-trained” model for

frame-wise detection in Section 7.4.

7.3.4 Discussions

To understand our convnet models, one effective way is to visualise what the models

have learned by deconvolution. This enables us to observe which parts of the input 2D

representation are focused on by each kernel. Visualisation of CNN was first introduced
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(a) Deconvolution based on convnet-frequency(mc = 45, nc = 3, c = 21).

(b) Deconvolution based on convnet-time(mc = 3, nc = 10, c = 21).

Figure 7.4: Visual analysis of music excerpts in pairs by deconvolving 4 layers in convnet

models for pedalled segment. The deconvolved Mel-spectrogram corresponding to the
first kernel in layer lc is designated by layerlc-1.

in the field of computer vision [181] to facilitate an intuitive explanation of how the

shapes that kernels represent have evolved. For instance, kernels can capture simple

lines in the first layer, certain shapes in the intermediate layers and finally the outlines

of the target objects. In our case, we conducted a visual analysis of the deconvolved Mel-

spectrogram of music excerpts in pairs, which have the same note event, but differently

labelled (pedal versus no-pedal).

Given the trained convnet-onset with 39 kernels in each layer, it can determine

the existence of pedal onset in an excerpt of 0.5 seconds at high accuracy and AUC as
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presented in Section 7.3.2. Visualisation results of each convolutional layer using the

20th kernel as an example are shown in Figure 7.3, where the ground-truth pedal onset

takes place at the 0.2 seconds. From the first to the fourth layer, we can observe kernels

tend to focus on the frequency bands with larger magnitude within the frames around

the pedal onset time. We could infer that the transient brought by the pedal onset has

more effects on these frequency bands. This can be captured by convnet-onset for the

detection.

For convnet models dedicated to capturing the acoustic characteristics when the

sustain pedal stays pressed, the models with 4 layers can all obtain an AUC score higher

than 0.99 as shown in Table 7-E and Table 7-F. We assume that pressing the sustain

pedal could result in acoustic characteristics that significantly change the patterns in

both frequency and time. Thereby the convnet-frequency and convnet-time can be

both comparably favourable. Their associated first kernel in each convolutional layer

that responds to what part in the Mel-spectrogram is presented in Figure 7.4. From

layer 1 to 3, the two models both focus on the time-frequency contexts centred around

the fundamental frequency and their partials. More contexts in the higher frequency

bands can be learned by the convnet-frequency. In the fourth layer, only the first

half of Mel-spectrograms are emphasised. We could infer the sustain-pedal effect is

more significant on the notes which the pedal just started to play with. Meanwhile,

main differences between pedal and no-pedal excerpts lie in the lower frequency bands

indicated by the convnet-time. Considering a slightly lower accuracy score was obtained

by convnet-frequency, dependencies within the higher frequency range could be a

redundant knowledge to learn.

Through inspecting the detection results and the learned filters, we can extend our

understanding of the convnet models in music. In the following section, the trained

models are applied to music pieces in order to point our which frames were played with

the sustain pedal.
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Figure 7.5: Framework of the proposed decision fusion method.

7.4 Frame-Wise Detection

In this section, we proposed two methods of frame-wise detection to identify how the sus-

tain pedal was used in a recording of piano piece. Based on the performance measurement

of the investigated models, we can decide convnet-onset and convnet-segment, which

obtained the highest AUC score presented in Section 7.3.2 and Section 7.3.3, respectively.

The two models can be used as detectors to jointly decide the pedal frames in a piano

piece using heuristics. This detection strategy is known as “decision fusion”, which is

presented in the following Section 7.4.1. Given that our convnet models were trained

from the synthesised data, adapting the learned knowledge encoded in the convnet to

the detection task where the recording instruments and room acoustics are different is

essential to guarantee the performance. We can approach this using transfer learning in

Section 7.4.2.

7.4.1 Decision Fusion

7.4.1.1 Method

The concept of fusion has been adopted in MIR tasks such as note onset detection [182].

Fusion can take place at different stages during the detection process. It can either

combine different features to better represent the signal or combine the results from
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multiple detectors. The latter strategy is known as “decision fusion”. In our case, we

opted for decision fusion to combine the pedal onset detected by convnet-onset and

the pedalled segment detected by convnet-segment in order to refine the pedal portions

in a piano recording. This framework is illustrated in Figure 7.5, where the final results

express a partitioning of the input audio data into intervals played with the sustain

pedal.

We first used convnet-onset and convnet-segment as detectors in short-time anal-

ysis using overlapping windows to obtain the corresponding local information in a piece.

Since we trained the convnet models using softmax activation at the last layer, the local

information is a likelihood score of the presence of the pedal onset or pedalled segment

at the current frame. A binary decision can be made by thresholding the score at a

value, which is equal to 0.5 by default. The threshold value can also be informed by the

average value of the scores from excerpts correctly classified as pedal in the validation

set of the binary classification experiments in the previous Section 7.3. This is expected

to make a binary decision at higher precision. We examine the effects of the threshold

value in the following experiment.

Detection was then reinforced by decreasing the rate of false positives through fusion,

which is described by Algorithm 2. The underlying hypothesis is that the inferences made

by convnet-segment can be assured by convnet-onset, because the starting point of

an interval played with the sustain pedal should have a pedal onset detected. Let STseg

be the lists of pedal-segment starting times in second produced by the convnet-segment

detector, ETseg be the associated ending times, and Tons be the list of pedal-onset times

in second produced by the convnet-onset detector. STpedal and ETpedal are the lists of

final detection results that respectively imply the onset and offset times of the sustain

pedal.

According to the ground-truth annotation, we can evaluate the performance of the

decision fusion method by two criteria: classification evaluation metrics and boundary

detection metrics. More details on evaluation metrics for structural segmentation were
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Algorithm 2 Decision fusion

Require: τ : the tolerance time window
procedure Fusion(STseg, ETseg, Tons)

for all j ∈ {0, ..., len(STseg)− 1} do
for all i ∈ {0, ..., len(Tons)− 1} do

if abs(Tons[i]− STseg[j]) < τ then
STpedal ← append(Tons[i])
ETpedal ← append(ETseg[j])

return STpedal, ETpedal

introduced in Section 2.5.

7.4.1.2 Experiment

As introduced in Section 4.4, the test set includes 173 pieces, which were rendered by

Pianoteq using the same settings for generating the excerpts in the train/validation set.

We applied sliding windows to a test piece in order to get outputs of the two trained

models separately at every frame. The window for convnet-onset covers a duration

of 0.5 seconds, with a hop size equivalent to 0.01 seconds. For convnet-segment, the

window corresponds to 0.3 seconds with a hop size of 0.1 seconds. Then the 0.3-second

samples were tiled to 2 seconds such that the input size was coherent with the one in

the training phase.

Binary decisions (pedal/no-pedal) were made by thresholding the outputs of convnet-

onset and convnet-segment at Threonset and Thresegment, respectively. It is tempting

to assume that the decision threshold should always be 0.5, but thresholds are problem-

dependent. In our case, mistakenly labelling a pedal-off frame as pedal-on is undesirable,

given the fact that overusing the sustain pedal can mix up all the notes and blur the

sonorities in a performance. On the contrary, failing to identify a frame as pedal-on

is unpleasant, but the intended effect is still possible to obtain. We set Threonset and

Thresegment to 0.98, which is the average value of the softmax output from excerpts

accurately classified as pedal in the validation stage in Section 7.3.

Following the decision fusion policy in Algorithm 2, we first located portions that
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had more than three frames continuously considered as pedal by convnet-segment. If

convnet-onset also returned pedal within 0.1 second around the beginning of a portion,

the sustain pedal was detected as on in the frames within this portion. The rest of the

frames were assigned to off. We finally obtained frame-wise on/off results for a piece.

We used classification evaluation metrics that include pairwise precision, recall and F-

measure scores with respect to label on to evaluate our method (designated as P1, R1

and F1). Considering the imbalanced occurrence counts of the two labels, micro-averaged

F-measure (Fmicro) was selected to represent the overall performance.

Moreover, frame-wise results can be processed into intervals. Each interval indicates

the start and end time of a pedal event. This can be evaluated by the boundary detec-

tion metrics [183], including boundary detection precision, recall and F-measure scores

(designated as Pb, Rb and Fb). An estimated boundary is considered correct if it falls

within a window around a reference boundary. The window was decided by the esti-

mated global tempo in each piece. Its average value from the 173 test pieces corresponds

to 0.48 seconds.

The proposed decision-fusion-based detection method was evaluated on every piece in

the test set using the classification evaluation metrics and boundary detection metrics.

We compared the results when Threonset and Thresegment were set to 0.5 versus 0.98.

Another experiment without fusion was conducted by using the convnet-segment output

only to obtain frame-wise on/off. This can inform us that the fusion strategy could

facilitate our sustain-pedal detection task to what extent.

7.4.1.3 Result and Discussion

We obtained the evaluation measures for every piece in the test set using the method

based on fusion and convnet-segment, respectively. The average scores over the 173

pieces are presented in Table 7-I. If we consider structure annotation metrics, directly

applying the pre-trained convnet-segment by thresholding its output at 0.98 can lead
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Table 7-I: Average performance of the proposed decision-fusion-based detection method
versus the method using convnet-segment only.

Metrics
Fusion (Threonset, Thresegment) convnet-segment Thresegment

(0.5, 0.5) (0.98, 0.98) 0.5 0.98

P1 0.7373 0.8572 0.7350 0.7813

R1 0.9485 0.6655 0.9748 0.9267

F1 0.8092 0.7422 0.8150 0.8328

Fmicro 0.7928 0.7361 0.8021 0.8197

Pb 0.7738 0.7988 0.7664 0.8018

Rb 0.3557 0.5237 0.3624 0.4869

Fb 0.4301 0.6164 0.4300 0.5701

to a frame-wise binary decision with the highest average scores of F1 and Fmicro. The

decision fusion method can achieve a comparable Fmicro when the default value of the

decision threshold was used. When we set the threshold value to 0.98, the continuity of

each individual pedal event can be enforced. The highest P1 but a significantly decreased

R1 were obtained. This fusion strategy doesn’t result in favourable pairwise measures,

however, produces superior performance when boundary detection metrics are used for

evaluation. This suggests decision fusion can serve as a post-filtering method, which

is useful to reduce fragmentation caused by false positives. Its pairwise performance is

possible to be increased if a fine-tuned threshold value is used.

Bi
rth
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Baroque 18711732 1810Classical Romantic Modern 1970

Figure 7.6: Composers arrangement in a chronological order based on their birth year.

To take a detailed look at how the two methods perform on the pieces by different

composers, we presented Fmicro, F1 and Fb as box plot annotated with their associated

median value. The composers are arranged in a chronological order based on their

birth year as shown in Figure 7.6. According to the average performance in Table 7-

I, we selected the box plots corresponding to the methods with a threshold value of

0.98 to discuss. Figure 7.7 and Figure 7.8 present the performance using the decision-

fusion-based and convnet-segment-based method, respectively. The percentage of the

on frames according to the ground truth and the number of pieces associated with each
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composer are also shown.

In general, both methods work best for the pieces around the Romantic era (from

Chopin to Scriabin), when modern pedalling techniques appear to have been established

and widely used by pianists. The convnet-segment-based method inclines to detect a

frame as on. Accordingly, it obtained higher pairwise F1 than the decision-fusion-based

method, especially on the pieces with a larger percentage of frames played with the

sustain pedal. However, it also leads to increased false positive rate, which has more

negative effects on the pieces that rely less on the sustain pedal in performance. For

these pieces such as the ones by Bach and Mozart, the overall pairwise performance

measured by micro-F1 obtains a higher score by the decision-fusion-based method. This

method also commonly obtains a higher F1 score in pedal boundary detection, i.e., Fb,

except on a few pieces by composers in the Modern era.

To sum up, our proposed fusion method can effectively reduce the false positive rate.

This benefit the sustain-pedal detection on the pieces in the Baroque era, when pedalling

techniques are rarely used. For the pieces commonly played with the sustain pedal, such

as the ones in the post-Classical and Romantic era, the fusion strategy should be adjusted

in order to obtain a comparable pairwise performance by the convnet-segment-based

method.

7.4.2 Transfer Learning

7.4.2.1 Method

To apply a convnet trained from the synthesised data into the context of real recordings,

we can use transfer learning as illustrated in Figure 7.9. Transfer learning exploits the

knowledge gained during training on a source task and applies this to a target task [119]

(see Section 2.3.4.3 for technical background). This is crucial for our case, where the

target-task data is obtained from recordings of a different piano, therefore it is difficult to
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Figure 7.9: Framework of the proposed transfer learning method.

learn a “good” representation due to mechanical and acoustical deviations. The source

task is to train a convnet model which can distinguish synthesised music excerpts with

or without the sustain-pedal effect. This has been completed in Section 7.3. Then

in the target task, we can use the learnt representations from the trained convnet as

features, which are extracted from every frame of a real piano recording. These features

help to train a dedicated classifier adapted to the actual acoustics of the piano and

the performance venue used in the recording. With the new feature representation, the

proposed transfer learning method is expected to better identify frames played with the

sustain pedal.

Given that the target-task data consists of ten well-known passages of Chopin’s piano

music as introduced in Section 4.2, the convnet-segment was selected as the pre-trained

model. This is because the convnet-segment-based method obtains a superior perfor-

mance in the sustain-pedal detection task on the synthesised pieces by the Romantic-era

composers in the previous Section 7.4.1. The hierarchical features from the pre-trained

convnet-segment represent acoustic characteristics when the sustain pedal of a virtual

piano is played in a certain recording environment. We can use the following two meth-

ods of feature representation transfer to facilitate the target task, i.e., sustain-pedal
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Figure 7.10: A schematic of transfer learning by fine-tuning the last fully-connected
layer.

softmax output
fully-connected layer

global average pooling
batch normalization - ReLU activation

conv2d & max-pooling   (21, (3, 3)) & (4, 4)
batch normalization - ReLU activation

conv2d & max-pooling   (21, (3, 3)) & (2, 2)
batch normalization - ReLU activation

conv2d & max-pooling   (21, (3, 3)) & (2, 2)
batch normalization - ReLU activation

conv2d & max-pooling   (7, (45, 3)) + (7, (3, 10)) + (7, (3, 3)) & (2, 2)
melspectrogram input in pairs

21

+

+

+

=

transfer
learning

average pooling

extract convnet features to train SVM
spr

e-
tr

ai
ne

d 
 c

on
vn

et
-s

eg
m

en
t m

od
el

Figure 7.11: A schematic of feature extraction procedures for transfer learning with
SVMs.

detection of a specific piano in a real scenario:

1. The convnet-segment model can be fine-tuned by retraining the last fully-connected

layer only, which is commonly considered a basic transfer learning technique. This

was used as a baseline method as illustrated in Figure 7.10.

2. The activations of each intermediate layers of convnet-segment can be subsam-

pled using average pooling and then concatenated into features as illustrated in

Figure 7.11. Here average pooling can summarise the global statistics and reduce

the size of feature maps to a vector of length associated with the number of chan-
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nels. In the end, a 21 × 4 dimensional feature vector was generated since there

are 4 convolutional layers in the convnet-segment. SVMs were then trained with

these features into a detector using a supervised learning method. We opted for

SVMs first because the features extracted from the carefully-trained model in the

source task should be representative and separable. Second, the SVM algorithm

was originally devised for classification problems, involving finding the maximum

margin hyperplane that separates two classes of data [142].

In the target task, outputs of the above methods were obtained from short-time slid-

ing windows over the Mel-spectrogram of a passage. The output of each audio frame

corresponds to an estimated pedal state (on or off ). This can be evaluated according

to the frame-wise ground truth. As shown in the following sections, the proposed trans-

fer learning method with SVMs overall outperformed using the pre-trained convnet-

segment with a fine-tuned last layer.

7.4.2.2 Experiment

Similar to the experimental settings in Section 7.4.1, Mel-spectrograms with 128 Mel

bands were extracted from excerpts to serve as input to the network, The processing was

done in real-time on the GPU using Kapre [178], which can simplify audio preprocessing

and saves storage. Time-frequency transformation was performed using 1024-point FFT

with a hop size of 441 samples (10 ms). Keras [179] and Tensorflow [180] frameworks

were used for the implementation.

The source task was identical to the CNN training in Section 7.2. The convnet-

segment trained in Section 7.3.3 was chosen as the pre-trained model. In the target

task, a sliding window was applied to the acoustic piano recordings in order to extract

features of the pre-trained model at every frame. The window covers a duration of 0.3

seconds with a hop size equivalent to 0.1 seconds. The 0.3-second samples were then

tiled to 2 seconds and transformed into Mel-spectrogram such that the input size was
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coherent with the one in the source task. For our proposed transfer learning method

with SVM, the extracted features were used to train the SVM constructed by Scikit-learn

[139].

The experiment was done by conducting leave-one-group-out cross-validation, where

samples were grouped in terms of music passages. The performance of the proposed

transfer learning method was validated in each music passage where the frame-wise

features need to be classified by the SVM into pedal on or off, while the rest of the

passages constitute the training set. The SVM parameters were optimised using grid-

search based on the validation results. The radial kernel was used, and the parameters

were selected from the ranges below:

• γ: [1/23, 1/25, 1/27, 1/29, 1/211, 1/213, 1/feature vector dimension]

• C: [0.1, 2.0, 8.0, 32.0]

We compared the proposed transfer learning method with the detection using a fine-

tuned convnet-segment model, which can serve as a baseline classifier. Within each

cross-validation fold, the fully-connected layer was updated until the accuracy stopped

increasing for 10 epochs. Then we obtained the fine-tuned convnet-segment outputs

from short-time sliding windows over the Mel-spectrogram of the validation passage.

Given the frame-wise on/off results for every music passage, we calculated precision

(P1), recall (R1) and F-measure (F1) with respect to the label on. We also compared

the overall performance of the two methods along with directly using the pre-trained

convnet-segment. Considering the imbalanced occurrence counts of the two labels, the

micro-averaged F-measure (Fmicro) was selected to evaluate the overall performance,

because it calculates metrics globally by counting the total true positives, false positives

and false negatives with respect to both labels of on and off.
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Table 7-J: Performance of the two transfer learning methods in the target task.

Passages
Retrain Last Layer Only Transfer Learning with SVM
P1 R1 F1 P1 R1 F1

Op.10 No.3 0.7615 0.9965 0.8633 0.8457 0.9941 0.9139

Op.23 No.1 0.6670 0.8573 0.7503 0.8643 0.9349 0.8982

Op.28 No.4 0.7569 0.9698 0.8502 0.8148 0.9859 0.8922

Op.28 No.6 0.7357 0.9607 0.8332 0.8178 0.9569 0.8819

Op.28 No.7 0.8217 0.8866 0.8529 0.8971 0.8385 0.8668

Op.28 No.15 0.6659 0.9329 0.7771 0.8412 0.9624 0.8977

Op.28 No.20 0.7405 0.9949 0.8490 0.7849 0.9974 0.8785

Op.66 0.7720 0.9439 0.8494 0.9425 0.9439 0.9432

Op.69 No.2 0.7622 0.9272 0.8366 0.9649 0.7902 0.8688

B.49 0.7091 0.9172 0.7998 0.8175 0.9919 0.8963

Average 0.7392 0.9387 0.8262 0.8591 0.9396 0.8938

7.4.2.3 Result and Discussion

Table 7-J presents the performance measurement of the two transfer learning methods

respectively for every validation passage in the cross-validation fold. In general, our

proposed transfer learning method with SVM obtains better performance. The asso-

ciated average value of P1, R1 and F1 are 11.99%, 0.9% and 6.76% higher than using

the transfer learning method with the fine-tuned convnet-segment. We also compared

the two methods with directly using the pre-trained convnet-segment model. Their F1

and the overall performance (Fmicro) are presented passage by passage in Figure 7.12.

We can observe that the transfer learning method with SVM presents the best over-

all performance with more than 10% higher than the Fmicro obtained by the other two

methods. Moreover, methods based on fine-tuning versus directly applying the convnet-

segment yield comparable performance. This implies our pre-trained model successfully

captures sustain-pedal-related acoustic characteristics that are shared across virtual and

real pianos. However, relying on the output from the pre-trained model only can be

inadequate when the sustain-pedal detection aims at real piano recordings.

To gain a straightforward insight into the pros and cons of the transfer learning

method with SVM, we visualised the detection results in the passage of Op. 66, which
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Figure 7.13: Visualisation of the ground truth (top row) and the detection result (bottom
row) in Op. 66. Audio frames that are annotated/detected as pedal on are highlighted
in orange/green.

obtained the highest score of F1 and Fmicro. Figure 7.13 presents the last 15 seconds of

the passage as an example, where the portions highlighted in orange/green correspond

to the audio frames annotated/detected as pedal on. Most of the frames were correctly

identified. Yet, there were false positives and false negatives around the true sustain-

pedal onset and offset times. One possible solution is to use the fusion method as

proposed in Section 7.4.1 in order to localise the pedal boundary with better precision.

However, as also pointed out in Section 7.4.1, the fusion strategy should be carefully-

designed to guarantee the recall. How to better deal with the transients introduced by

the pedal changes remains a question here. Moreover, more audio data including pieces

by other composers and using various recording conditions should be tested to verify the

robustness of the proposed transfer learning methods. This also constitutes our future

works.

7.5 Summary

In this chapter, deep learning methods were applied to help detecting sustain-pedal

techniques in polyphonic piano music. We first took advantage of CNNs to learn the time-

frequency contexts corresponding to acoustic characteristics of the sustain pedal, instead
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of larger variations introduced by other musical elements. The CNN can be designed

through exploiting the knowledge of piano acoustics and physics in Section 7.2, and

trained as binary classifiers using excerpts in pairs (pedal versus no-pedal) in Section 7.3.

The resulting models of convnet-onset and convnet-segment can capture the nuances

of two phases of pressing the sustain pedal, i.e., at the start versus in the process of a

pedal event.

To answer the question: “Can a computer point out pedalling techniques when a

piano recording from a virtuoso performance is given?”, we used the pre-trained models

to facilitate the frame-wise detection in Section 7.4. We first proposed a decision-fusion-

based method, which is useful for indicating onset and offset times of the sustain pedal.

However, this method was implemented on a synthesised dataset. The reduced acous-

tic complexity may lead to generalisation issues on detecting the sustain pedal from

real piano recordings. We therefore proposed to adapt the pre-trained models to the

real-world scenarios using transfer learning. Features with more representation power

dedicated to the sustain-pedal effect of an acoustic piano can be extracted from the

intermediate layers of convnet-segment. SVMs trained with these features can iden-

tify frame-wise pedal on/off state in each test piece at higher precision. Thus better

performance was obtained compared to fine-tuning or directly applying the pre-trained

convnet-segment model.



Chapter 8

Conclusions

8.1 Achievements

This thesis presented an in-depth analysis of the acquisition of pedalling gestures and

techniques in piano performances. We emphasised the gestures on the sustain pedal,

which is commonly used by pianist for seamless legato and the enrichment of sound.

The gestures are categorised into pedalling techniques in terms of their onset time and

depth of the sustain pedal. These pedalling techniques along with note dynamics and

timing constitute the main control parameters for expressive piano performances. It has

been shown that professional pianists adapt their performance controls to different room

acoustics and pianos [184, 185]. Automatic retrieval of control parameters can therefore

reveal the secrets of virtuoso performances. It is noted that pedalling techniques lead to

rather subtle nuances in sound and are considered challenging to be detected from audio

alone. This thesis is the first study that achieves sustain-pedal detection from polyphonic

piano audio recordings. Such indirect acquisition methods are evaluated by the datasets

detailed in Chapter 4. In our datasets, pedalling techniques can be annotated by direct

acquisition systems.

Apart from using specific reproducing pianos like Disklavier or virtual pianos like

163
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Pianoteq to form our dataset, a dedicated direct acquisition system was designed for

dataset construction using any acoustic piano in Chapter 3. The system used near-

field optical reflectance sensing, enabling the pedalling gesture to be captured in a

non-intrusive way. Pedalling techniques can be directly detected using the captured

gesture data. Detection results feature the temporal locations of pedalling events and

the employed technique within each event. Among the common supervised learning clas-

sifiers, SVM was trained with the best classification performance. It can categorise the

continuous gesture data in each pedalling event into four pedalling techniques related to

pedal depth: quarter pedal, half pedal, three-quarter pedal and full pedal. They are the

four levels widely used to detail the part-pedalling technique. Our visualisation applica-

tion can present the detection results together with the corresponding audio recording in

a score following system. Here, the audio recording was simultaneously recorded with the

gesture data into the embedded platform of the system. This dedicated system can there-

fore be used to form another dataset consisting of acoustic piano recordings to examine

the performance of deep learning models originally trained on Pianoteq-generated data

in Chapter 7.

To develop indirect acquisition methods, Chapter 5 presented a study using iso-

lated piano tones as a starting point. Each tone can be decomposed into sinusoidal

and corresponding residual components. Especially the method modelling the sinusoidal

components was informed by piano acoustics, which took inharmonicity into considera-

tion. Different pedalling techniques alter the decay patterns of these two components,

respectively. We modelled their decay patterns and used the resulting coefficients to

form a feature vector as a representation of a tone played normally or with a pedalling

technique. Decision-tree-based SVM was trained with the extracted features to classify

the tones into normal, non-legato over-half, non-legato half, legato over-half and legato

half pedalling techniques. The cross-validation experiments obtained good performance,

indicating the effectiveness of the proposed features and classifier. It can be observed

from the results that notes played with half pedalling obtain a faster decay rate of the
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first partial than the ones with full pedalling. The moment when the sustain pedal is

pressed leads to a transient which can be seen in the magnitude evolution of residuals.

Such transient happens more often when half pedalling is used. Although most features

are extracted from isolated tones and hence too clean to be applied in a more generic

case, the most significant peak in the residual decay when the legato pedalling technique

was used inspired our study on legato-pedal onset detection from polyphonic music.

Accordingly, a method for detecting legato-pedal onset was proposed based on a

measure of sympathetic resonance from the residuals in Chapter 6. This is because

sympathetic resonance is suddenly enhanced at the moment when the legato pedalling

technique is used. The extent of sympathetic resonance is associated with the energy of

unstruck strings. To decide which strings were unstruck, the sounding strings were first

identified using NMF-based piano transcription, in which the templates were obtained

using the 88 tones of the same piano. These templates also returned a more accurate

partial estimation for each tone. By combining the results from piano transcription and

partial estimation, residuals were obtained by removing the partials of the transcribed

notes from their detected onset until offset times. Residuals were divided into segments

according to the detected note onset times. In a segment, notes associated with unstruck

strings were determined by the preceding notes that are beyond the time range between

their detected onset and offset times. Sympathetic resonance can be measured by the

root-mean-square energy of these notes. The existence of legato-pedal onset per segment

was determined using a logistic regression classifier trained on two features based on

the sympathetic resonance measure. One feature is the maximum energy of the current

segment; the other one represents the distance between the maximum-energy location

and the segment starting point. Segment-wise results indicate whether a note onset was

followed by a legato-pedal onset or not.

Yet, the proposed method using the sympathetic resonance measure was only aimed at

the detection of legato-pedal onset, which is essential but served as one specific technique

on the sustain pedal. Moreover, this method relied on piano transcription, which is still
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considered a challenging and open problem in the literature [74]. The hand-crafted

features tended to be less representative to determine the presence of legato-pedal onset

in the segment with a shorter duration. These issues set barriers to generalise this

method to a new piece recorded using different recording conditions or pianos.

In Chapter 7, to facilitate a more accurate estimation on onset times of any pedalling

techniques on the sustain pedal, we took advantages of CNN. This aims to model the

temporal and spectral contexts by setting up the CNN’s first layer with different filter

shapes. To train the CNN with a focus on the nuances produced by pedal onset instead

of larger variations introduced by other musical elements, the inputs were time-frequency

representations of music excerpts in pairs. The only difference in such paired excerpts

was the presence or absence of pedal onset. Likewise, another CNN was trained to

distinguish an excerpt played with the sustain pedal that was kept pressed from the

associated no-pedal version of the excerpt. These two CNN models (convnet-onset and

convnet-segment) were trained separately due to the different acoustic characteristics

at the start (pedal onset) versus during the pedalled segment. We experimented with

different input representations, hyper-parameters and structures of CNN models based

on the knowledge of piano acoustics and physics. The two CNNs with the highest AUC

score in the corresponding binary classification task were selected for the pedal and no-

pedal detection on a test piece. Sliding windows were applied to the test piece in order

to get decision outputs from the two trained models separately at every frame. The

frame-wise decision outputs were fused to locate segments played with the sustain pedal

with better performance on boundary detection.

The dataset for training and testing the above CNN-based methods consists of audio

data generated from MIDI data using Pianoteq. Such dedicated dataset reduced acoustic

complexity which could lead to generalisation issues on commercial recordings. To apply

the sustain-pedal detection on real acoustic recordings, the pre-trained CNN model can

be employed as a feature extractor to obtain a better representation of the sustain-pedal

effect in the recordings. In this way, knowledge learned from the synthesised recordings
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were transferred. This approach was evaluated on ten passages of Chopin’s music, which

were recorded using an acoustic grand piano under normal playing condition and syn-

chronously annotated with sustain-pedal movement measured by our direct acquisition

system. Better performance was obtained compared to fine-tuning or directly applying

the pre-trained CNN models. This shows that the investigated transfer learning method

can adapt the detection to acoustic piano recordings, which are sometimes not able to

provide enough data to train deep learning models.

From the evaluation experiments, the proposed deep learning methods are effective

in learning hierarchical features that represent acoustic characteristics corresponding to

pedalling techniques on the sustain pedal. Better performance was obtained for the

detection on music pieces around the Romantic era when modern pedalling techniques

appeared to have been established and widely used. This gives an affirmative answer to

our research question: “Can a computer point out when the sustain pedal is pressed or

released if a piano recording from a virtuoso performance is given?” Moreover, to better

understand the “black box” of deep neural networks, we conducted visual analysis on

the convolutional layers using deconvolution. It was observed from the deconvolved Mel-

spectrogram that the first few layers had similar focuses and the last layer narrowed

down the differences between pedal versus no-pedal excerpts to lower frequency bands.

More efficient training can be achieved by decreasing the number of convolutional layers.

This was reflected in the comparable performance of CNN models with fewer layers but

more channels.

To sum up, we recall the research questions presented in Chapter 1 and briefly give

the corresponding answers as follows:

1. What are the pros and cons of the existing methods for measuring instrumental

gestures and detecting the corresponding playing techniques in piano performances?

Pros and cons of the existing methods for measuring instrumental gestures and

detecting the corresponding playing techniques are surveyed in Chapter 2. The
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pros are that different representations of music content are used. The detection

task can be approached from three perspectives: direct acquisition by measure-

ment devices, sensors and embedded systems; indirect acquisition from the audio

domain using signal processing, machine learning and deep learning methods; and

multimodal modelling strategy. The cons are that research on piano pedalling

is underdeveloped despite its importance in expressive piano performances. This

thesis is the first to achieve a bottom-up study for piano pedalling detection using

indirect, direct and multimodal methods.

2. How to design a non-intrusive measurement system that could accurately record

how the piano sound is modulated by pedalling?

A non-intrusive measurement system was designed in Chapter 3. How the piano

sound is modulated by pedalling can be recorded directly. The system can also

categorise the pedalling gestures into pedalling techniques. This enabled the system

to provide a dataset with ground truth automatically annotated, which constituted

one of the datasets detailed in Chapter 4.

3. What features can represent different pedalling techniques in order to facilitate

audio-based detection?

By exploring the effects of different pedalling techniques on isolated piano tones

in Chapter 5, decay patterns of the first partial and the residuals were separately

modelled to characterise the effects. The transient that appears in the residual

components inspired us to design features representing the sympathetic resonance,

which was used to detect the presence of legato-pedal onset in Chapter 6.

4. Can automatic detection of piano pedalling be improved by considering acoustics

and physics of the piano?

Yes, the acoustics and physics of the piano were used not only in the design of sym-

pathetic resonance measure, but also the configurations for deep learning models
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in Chapter 7. The latter one efficiently facilitated the training process in order to

effectively detect the audio frames played with or without the sustain pedal.

5. How to incorporate all the knowledge to generalise the pedalling technique detection

so it performs well on any pianos?

Given a large dataset, deep learning methods were investigated for incorporating

acoustical characteristics when the sustain pedal is used. Since the deep learning

models were trained on synthesised data, a transfer learning strategy was proposed

to adapt the models into real-world scenarios. This was examined by the dataset

consisting of acoustic piano recordings annotated by our non-intrusive measure-

ment system.

8.2 Future Perspectives

8.2.1 Methods for Other Pedalling Techniques

Methods presented in this thesis aimed to detect instrumental gestures and techniques of

the sustain pedal, which is more essential and commonly used than the other two pedals,

i.e., the sostenuto pedal and the una corda pedal. The sustain pedal is occasionally used

in combination with the other two pedals. This is embraced by pianists and composers

to deliver new sound effects. With the help of our dedicated measurement system, move-

ments on either pedal are easy to capture directly. In terms of indirect acquisition from

audio signals, a future direction is to develop new audio features to better characterise

the acoustical properties when the other pedals are used. Given enough training data,

audio-based detection can be also approached using deep learning methods.

For the study of the sustain pedal itself, there are pedalling techniques that need

to be further investigated for indirect acquisition. This is especially the case for part-

pedalling techniques. Regardless of the fact that continuous pedalling gesture data can
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be obtained, the collection of “ground truth” labels that categorise the gesture into

part-pedalling techniques remains a particularly challenging problem. This is due to the

nature of part-pedalling techniques as introduced in Section 1.3. There are no absolute

pedal positions to define levels of part-pedalling techniques. Pianists have different

understandings of the levels, which are dependent on pianos, the acoustics of performance

venues and so on. In future work, one can start with one pianist using a specific piano in

a studio scenario. If a full spectrum of piano pedalling techniques can be detected, it is

possible to achieve a full transcription of piano music with the help of the state-of-the-art

note event detection.

8.2.2 Adaptation to Other Pianos

Our datasets were developed using a limited number of pianos with similar recording

configurations. Data from one specific grand piano was used to train the proposed

models, which may fail to be implemented on the data from another piano. For instance,

upright piano obtains different acoustics and physics from the grand one.

A transfer learning strategy was investigated in Section 7.4.2, which was suited to

adapt the pre-trained models in detecting the sustain pedal from polyphonic music

recorded in another different acoustic and recording conditions. We aim to generalise

and examine the detection methods across a wider range of pianos and recording config-

urations in the future.

8.2.3 Modelling Other Instrumental Gestures and Techniques

Pedalling gestures and techniques were analysed as a case study in this thesis. The

acoustics and physics of pianos performed a key role in developing both the direct and

indirect acquisition systems. Meanwhile, the direct measurement system can facilitate

indirect detection methods by providing automatic-annotated datasets. This motivates

us to apply our approach to modelling the instrumental gestures and techniques of other
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instruments as a future direction. We expect it is feasible on instruments with similar

acoustical features, such as struck-string or plucked-string instruments.

Followed by our bottom-up approach, the bottom-level sensor signals representing

instrumental gestures can track how they modulate the audio signals. Once a model

is trained for a specific instrument using feature engineering or deep learning methods,

the high-level playing techniques can be estimated from audio signals without the need

for the sensors any more. Successful automatic detection of playing techniques across

different instruments can not only reveal the secrets of expressive performance, but also

benefit music pedagogy and musicology studies. Development of practical applications

will constitute our future works as well.



Appendix A

Datasets Details

A.1 Example of the Notated Score

In Chapter 3, we notated the music scores of ten well-known passages of Chopin’s piano

music with pedalling techniques. For instance, annotations for the passage from Op.

20 No. 4 are shown in Figure B.1. Different colours of annotations represent pedalling

techniques varied in sustain-pedal depth, which is also indicated by the distance between

the annotation and stave. Pedalling annotations for the music scores of all the ten

passages and their corresponding audio and gesture data can be downloaded from:

http://doi.org/10.5281/zenodo.3237929.

A.2 MIDI Specifications for Disklavier Rendering

In Section 4.3, specifications with different conditions of pedalling techniques and piano

touch were encoded in MIDI files, which were used to render audio using a Yamaha

Disklavier grand piano. MIDI specifications for rendering isolated notes played with

pedalling techniques on the sustain pedal include:
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Figure B.1: Pedalling annotations for passage of Chopin’s Op. 20 No. 4.

• pedal timing: anticipatory, rhythmic, legato;

• pedal depth: 127 (full pedal), 96 (three-quarter pedal), 64 (half pedal);
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• note velocity: 96 (forte), 84 (mezzo-forte), 49 (piano);

• pitch: MIDI note value in [28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84,

88, 92, 96, 100, 104].

The above specifications on note velocity and pitch were used to render normally

played isolated notes. To estimate partial frequencies and train NMF template in Chap-

ter 6, we generated all the 88 notes played at the mezzo-forte velocity without any

pedalling technique.

Apart from isolated notes, repeated notes (same note played repeatedly with an

accelerated speed) and trills (rapid alternation between two adjacent notes) at three

note velocities played without or with three depths of the anticipatory pedal were gener-

ated. Similar specifications were used to render chords and arpeggios (a group of notes

from a chord played one after the other in an ascending/descending order). However,

specifications on the pitch were different:

• for chords: major, minor, diminished and augmented triad chord with the MIDI

value of root note in [36, 48, 60, 72, 84, 96];

• for arpeggios: notes in C major chord going up two octaves, including four arpeg-

gios that correspond to MIDI note value in [[36, 40, 43, 48, 52, 55, 60], [48, 52, 55,

60, 64, 67, 72], [60, 64, 67, 72, 76, 79, 84], [72, 76, 79, 84, 88, 91, 96]].

The same Disklavier piano was also used to playback MIDI files of four well-known

pieces. The generated audio data were used in Chapter 6. All the MIDI files and their

associated audio recordings presented in this section can be downloaded from:

http://doi.org/10.5281/zenodo.3242149.

http://doi.org/10.5281/zenodo.3242149
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Figure B.2: Pianoteq settings for generating pedal -version audio.

A.3 Guide to Generating Large Dataset by Pianoteq

For the reproducibility of the study on deep learning in Chapter 7, here we provide

a guide to generating large dataset using the MIDI-file playback function in Pianoteq.

Given a MIDI file as input, Pianoteq can export the corresponding pedal and no-pedal

versions of the audio data, which forms the dataset presented in Section 4.4.

Pianoteq is a commercial software and offers physically modelled virtual instruments

approved by Steinway & Sons. Its GUI allows to playback a single MIDI file with

selected piano model and recording setup. For our dataset, we used the “Steinway D

Close Mic Classical” preset provided in Pianoteq. To generate pedal -version audio, we

calibrated “Pedal” in the output setting as shown in Figure B.2 such that the sustain
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pedal is pressed when its MIDI value exceeds 63. For the no-pedal version, we simply

let Pianoteq ignore the pedal messages in the MIDI file. To automatically generate both

versions based on all the MIDI files within a directory, a bash script is provided to drive

Pianoteq in a macOS system as follows:

1 #!/ bin /bash

2 for d i r in ”$@” ; do

3 for f i l e in ” $d i r ” / ∗ . [Mm] [ I i ] [ Dd ] ; do

4 wav f i l e=”${ f i l e %.mid}”

5 wav f i l e=”${wav f i l e%.MID}”

6 wav f i l ep=”${wav f i l e}−p . wav”

7 wavf i l enp=”${wav f i l e}−np . wav”

8 ”/App l i ca t i on s /Pianoteq 6/Pianoteq 6 . app/Contents /MacOS/Pianoteq 6” −−

head l e s s −−pr e s e t ”/ Pre s e t s /Steinway D Close Mic C l a s s i c a l (4

synth ) ” −−midi ” $ f i l e ” −−wav ” $wavf i l ep ”

9 ”/App l i ca t i on s /Pianoteq 6/Pianoteq 6 . app/Contents /MacOS/Pianoteq 6” −−

head l e s s −−pr e s e t ”/ Pre s e t s /Steinway D Close Mic C l a s s i c a l (4

synth−np) ” −−midi ” $ f i l e ” −−wav ” $wavf i l enp ”

10 done

11 done

where Steinway D Close Mic Classical (4synth) and Steinway D Close Mic Clas-

sical (4synth-np) are the calibrated presets for generating pedal and no-pedal versions

of audio, respectively. Presets were saved as fxp files. To run the above script, we can

use command line bash script.sh DIRECTORY, where DIRECTORY should be the path of

a folder which includes MIDI files for rendering.
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[6] A. R. Jensenius and M. M. Wanderley, “Musical Gestures: Concepts and Methods

in Research,” in Musical Gestures. Routledge, 2010, pp. 24–47.

[7] F. Delalande, “La gestique de Gould: éléments pour une sémiologie du geste musi-
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