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Abstract

This thesis examines contagion in networks in two settings: narratives infection in social

networks and default contagion in �nancial networks. In the �rst chapter, we consider the

choice of a politician of the timing of disclosure of a narrative, to maximise its adoption at a

given deadline. Voters update their opinions following a variation of the average-based De

Groot learning concept. With a certain probability a voter adopts an alternative narrative,

and the politician faces a trade-o� between early and late disclosure. We �nd the optimal

timing of disclosure for disconnected and connected voters in certain networks. Finally, we

consider the impact of homophily on timing of disclosure and explore comparative statics.

Chapter two presents a model of default in �nancial networks where the decision by

one agent on whether or not to default impacts the incentives of other agents to escape

default. Agents' payo�s are determined by the clearing mechanism introduced by the

seminal contribution of Eisenberg and Noe (2001). We �rst show the existence of a Nash

equilibrium of this default game. Next, we develop an algorithm to �nd all Nash equilibria

that relies on the �nancial network structure. Finally, we explore some policy implications

to achieve e�cient coordination.

In the last chapter, we extend the model of exposure of �nancial institutions through

liabilities linkages introduced by Eisenberg and Noe (2001), and we explore a second chan-

nel of exposure through credit lines or promised payments. While the liabilities create

direct risk of default, credit lines can cause the default of their potential receivers. We

prove the existence of a unique payment equilibrium and establish a �ctitious default al-

gorithm that computes the payment equilibrium and the chain of defaults. Finally, we

investigate approaches to mitigate risks through multilateral netting and central clearing

and by targeting banks with cash injections.
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Introduction

Individual and institutional interactions impact several economic and social phenomena

that range from learning, opinion formation, technology adoption, spread of diseases and

epidemics up to trade of goods and services and �nancial risks. Being interconnected,

agents and entities in�uence and get in�uenced by each other continuously and repeatedly

in many di�erent ways. In this context, the study of social and economic networks, which

relies on graph theory, has been an instructive method to investigate the di�usion of

ideas, information and risks through links and connections. In this thesis, we study two

frameworks of economic networks and investigate contagion among di�erent agents and

institutions: the di�usion of narratives in social networks, and the contagion of the risk of

default in �nancial networks.

Narrative adoption and strategic timing of disclosure

Chapter 1 investigates narrative adoption and opinion formation in social networks. A

politician strategically chooses the timing to disclose a narrative in order to maximise its

adoption by voters at an exogenously given deadline � for instance, an election. After

disclosure, a voter can be in�uenced, with some probability, by an alternative narrative

opposing the politician's. A voter updates his opinion by repeatedly averaging the politi-

cian's narrative, the alternative narrative and his neighbours' beliefs, as well as his own

beliefs, in a De Groot learning manner. We determine the optimal timing of disclosure

for the cases of one voter and a group of voters. We also examine connections among

voters over symmetric networks. We consider two types of voters � supporters who are not

in�uenced by the alternative narrative, and non-supporters, who switch their attention

from the politician to the alternative narrative with a strictly positive probability. We

show that as the number of supporters increases, the optimal number of learning periods

(that is equivalently the length of the learning phase) increases, and the optimal timing of

disclosure is earlier. Next, we study the impact of homophily: the phenomenon of having

agents more connected to agents of their own type. We �nd that with higher homophily,

the narrative adoption of the supporter is higher and that of the non-supporter is lower.
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Introduction

Moreover, we show that the optimal number of learning periods increases with the weight

that the politician assigns to the supporter's opinion. Conversely, the optimal number

of learning periods decreases with the probability of rejecting the politician's narrative.

We conclude by illustrating our �ndings in a particular symmetric network � which is the

circle.

Default and coordination in �nancial networks

In Chapter 2, we introduce strategic interactions in �nancial networks and consider a

default coordination game. We model a �nancial system where agents are linked to each

other through liabilities, and where the decision of a given agent on defaulting (or not) is

a�ected by the corresponding decisions of other agents. As a result of complementarities

and interdependencies of payments, the setting will generate a coordination game. The

liabilities repayments are determined following the model of Eisenberg and Noe (2001).

We prove the existence of a pure-strategy Nash equilibrium of the default game, and we

show that the multiplicity of equilibria, which is a general feature of coordination games,

is connected in our setting to the presence of cyclical obligations. Next, we establish an

algorithm that computes all Nash equilibria, based on the network structure. An important

issue that arises in coordination games is ine�cient coordination, which results in our

setting in a suboptimal number of agents defaulting. We de�ne the best equilibrium as the

Nash equilibrium with the smallest number of defaults. In this regard, we investigate the

introduction of a central clearing counterparty as a policy to reach e�cient coordination

and the implementation of the best equilibrium.

Credit lines contagion in �nancial networks

Systemic risk, or the extent of contagion via domino e�ect and its impact on �nancial

stability, has been the subject of ongoing interest given its signi�cant spillover e�ects

on the entire economy, generating long periods of low growth rates, unemployment and

excessive levels of accumulated debts. In Chapter 3, we consider a �nancial system in which

banks are connected via two exposure channels: liabilities, which are the obligations they

owe to each other; and credit lines which take the form of payments they have promised

to make in the future, or the debt they have promised to issue. We assume that liabilities

and credit lines under consideration, have the same maturity date, and we examine the

risk of default of di�erent institutions. We extend the approach introduced by the seminal

work of Eisenberg and Noe (2001) and use a �xed-point argument to prove the existence of

a unique payment equilibrium. Afterwards, we present an algorithm that can compute the

2



Introduction

payment equilibrium and the possible chains of defaults. We also consider possible policy

implications in order to mitigate the risk of default. One way is multilateral netting, which

can be achieved through a central clearing counterparty that operates in the credit lines

network or in the liabilities network or in both. A second approach is the intervention

of a regulator and cash injections to particular banks in order to increase the interbank

payments across the �nancial system.

3
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Narrative adoption and strategic

timing of disclosure
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Narrative adoption and strategic timing of disclosure

1.1 Introduction

How do people form their opinions and how can communication strategies a�ect public

opinion? These questions have been important for policymakers in choosing how to dis-

close their policies, marketing managers in deciding when to advertise a new product and

researchers in understanding learning dynamics, along with many other contexts.

In politics, the choice of adequate communication and persuasion strategies has always

been a key issue. Furthermore, the interest in narratives, stories and fake news has spiked

in recent years, especially with the role that social media outlets have been playing in

channelling them. In this chapter, we consider a model of adoption of narratives with naive

average-based learning in an electoral framework. A group of non-strategic agents, voters,

tend to adopt a narrative proposed by a strategic politician. Starting with a benchmark of

one politician and one voter, the results are later generalised to a large number of voters.

Understandably, this setting is not limited to an election or a political framework and can

rather be applied to a variety of frameworks where one or more agents try to convey their

opinion to a group of people or to persuade the group of people to believe something or

take a certain action. The results can be naturally generalised to any context with an

in�uencer and followers, an instructor and learners, and many similar situations where one

agent is conveying a story or an idea to a group of individuals.

The main novelty in our model is that it explores learning while focusing on the timing in

a �nite framework. Often, in many real-life situations, there is a deadline for the opinion

formation process, and the public opinion matters most at a particular point in time. For

instance, opinions regarding political issues generally matter most at the time of an election

from the politician's point of view. Broadly, the aim is to focus on two aspects. First,

the communication strategies of politicians ahead of an election are not always based

on promoting well-de�ned policies. Instead, there is evidence that electoral campaigns

can revolve around advancing a certain opinion, narrative or story. Second, most of the

opinion formation models focus on in�nite learning processes and look at the convergence of

opinions. However, in practice, there is a time horizon a deadline determined exogenously

by several possible factors. An election is one example.

We study a setting in �nite time where a given politician has a certain �xed opinion or

story that he aims to convey to the voters, by a deadline that is for instance the date

of an election. Nevertheless, after the politician's announcement of his opinion, the voter

can replace the announcement with an alternative opinion, and abandon the politician's.

In particular, we investigate the case where with some positive probability, the voter can

abandon, disbelieve or move away from the narrative. This is similar to epidemics mod-

5
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els, which generally model susceptible agents who can be infected with a certain positive

probability, and recover afterwards with a positive probability. Here, we allow for partial

infection. In other words, a voter can accept the narrative only partially. Consequently,

the politician encounters a trade-o�: disclosing his narrative early and bringing the voter

closer, or disclosing later to avoid the narrative being replaced by the alternative.

We also explore social interactions through a network of voters. Networks have been

studied and applied to di�erent concepts in economics. Furthermore, it has been well

established that the network structure and the distribution of social ties a�ect the opinion

formation process. Individuals are in�uenced by their neighbours, peers, families and

friends in various decisions they make in their life, from what they consume to their political

inclination and opinions regarding speci�c issues. Here, a given individual learns about

the narrative not only from the sender or the source of the narrative (who, in our model, is

the politician), but also from friends, family, neighbours and colleagues � in other words,

people who form his social network. We investigate how narrative adoption can be a�ected

by their social network, and how this will impact the average opinion at the end of the

learning process, and consequently the disclosure strategy of the politician.

1.1.1 Discussion: assumptions and motivation

Narratives There exist several de�nitions for narratives, which essentially agree that

a narrative is a story that is told, but di�er on the purposes for which that story is

told and how it is presented. For instance, Bruner (1991) discusses how narratives not

only represent, but also construct reality. In his paper on narrative economics, Shiller

(2017) de�nes a narrative as a simple story, which explains events that are brought up

in conversation between people and on news and social media. Furthermore, in his book

(2019), he adds that �a story may also be a song, joke, theory, explanation, or plan that

has emotional resonance and that can easily be conveyed in casual conversation�. On the

other hand, Benabou, Falk and Tirole (2018) describe narratives as arguments that people

share to justify moral actions. Here, we use a generic de�nition: a narrative is a story, an

idea or an argument used to explain facts, which can be but is not necessarily true, and

which people discuss and might fully or partially adopt or reject.

It is discussed that narratives in societies date back to centuries ago. They have im-

pacted the way people have thought about various phenomena throughout history, and

they have also been present in economics as well as in sociology, history, political science

and many other �elds. In economics, for instance, they were widely used to provide reas-

ons for economic crises from the Great Depression up until the recent European debt crisis.

6
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Epidemics of narratives As suggested by Shiller (2017), the contagion of narratives

can be approached using an epidemics model, in particular the seminal work by Kermack-

McKendrick (1927), which introduced the SIR model, whereby they split a given population

into three categories: susceptibles, infected and recovered. In our model, we start with

a population of susceptible individuals at the time of disclosure of the narrative, where

each individual becomes �infected� with some probability. Infection here means including

the narrative in part of the individual's opinion of the next period. In other words, an

individual can be partially infected by the narrative. Thereupon, the individual recovers

with a positive probability, replacing the politician's narrative with another one, or with

his initial opinion. When plotting the opinion of an individual over time, we observe that

it will have a bell shape similar to the shape of the curve of the number of infected and

contagious over time, in an epidemic, increasing then decreasing.

Average-based naive learning Social interaction generally comprises repeated sharing

of ideas, information and opinions among connected individuals who form complex net-

works. That is mainly why the setting adopted in this chapter has the sense of the De

Groot naive learning model based on imitation and repeated averaging of beliefs of neigh-

bours. Golub and Jackson (2010) study when agents using simple updating rules, such as

De Groot updating, correctly aggregate information and reach the true state of the world,

in a similar way to the fully rational learning processes.

Jadbabaie, Molavi, Sandroni and Tahbaz-Salehi (2012) investigate a model where indi-

viduals communicate with their neighbours about a certain parameter via a simple updat-

ing rule and show that they aggregate information correctly if they consider their personal

signals in a Bayesian way. Molavi, Tahbaz-Salehi and Jadbabaie (2018) provide behavioural

foundations for non-Bayesian models of learning on social networks.

Types of voters A voter can be characterised by several features: his initial opinion, his

network connections and weights on his neighbours, his attention and the weight he places

on the politician, i.e. the probability of accepting the narrative of the politician, and the

probability of recovery of the narrative. Notably, the attention can be regarded as the trust

a given voter has in the politician's narrative or in the alternative narrative. Consequently,

with some probability, the voter switches his attention, and replaces the politician's opinion

with an alternative one. We consider the case where the alternative narrative is equivalent

to the initial opinion of the voter. With this assumption, the probability of replacing the

politician's narrative would represent the probability of rejecting the politician's narrative

and moving back to the initial opinion.

7
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Types of politicians Politicians can have di�erent objectives, which in turn determine

their strategy and choices when campaigning and addressing the people. A politician who

worships an ideology and principles has naturally a di�erent objective from a politician who

cares about winning an election or reaching o�ce. While the former focuses on citizens and

voters who adopt or have a tendency to adopt the same political principles, who are known

as �core voters�, the latter directs his attention and action towards �swing� or �median�

voters, who are less politically inclined. These are two extreme examples of politicians:

ideology-motivated versus o�ce-motivated. Nevertheless, in real life, politicians have both

objectives and care about winning elections as well as having their principles adopted, but

not equally. We look at di�erent types of politicians and explore how the objective of the

politician a�ects the timing of disclosure and the narrative adoption.

Homophily Individuals are generally inclined to associate and connect with others of

similar types, whether that is in relation to their profession, age, gender, race, religion

or any other characteristic. This favouritism towards similar individuals is known as ho-

mophily, and it is a common feature of social networks. With the emergence of social

media outlets, homophily has become more observable and measurable and the interest

in studying it has increased accordingly. Halberstam and Knight (2016) use data on con-

nections between Twitter users and �nd that they are exposed to like-minded information

disproportionately.

1.1.2 Results

First, we examine a benchmark model with one politician and only one voter. The voter

updates his opinion in discrete time periods, by splitting his attention between his own

opinion and an external opinion. This external opinion is the politician's narrative at the

time of disclosure, but can be replaced after disclosure with an alternative narrative with

some positive probability. The deadline T ∈ N+, which can be for instance an election, is

equivalently the maximal number of learning periods. The politician's main objective is

to choose a strategy that guarantees the voter's opinion at time T to be the closest to her

proposed narrative.

We determine an optimal strategy for the timing of disclosure of the narrative, which is a

function of the voter's attention to the politician and of the probability of replacing the

narrative of the politician. We extend the setting to include more voters, and we �nd the

optimal time of disclosure for the case of n disconnected voters, and for special networks

such as networks with symmetric connections, the circle and the complete network. We

also explore the existence of di�erent types of voters (supporters and non-supporters), and
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the impact of homophily on the dynamics of opinions.

We examine the case of a balanced network, which we de�ne as a network represented by

a double-stochastic matrix. We show that in this case if the politician targets the average

opinion and weights the voters equally, the network has no e�ect on the optimal timing

of disclosure. Moreover, we show that as the number of supporters increases, the average

opinion and the optimal number of learning periods increase.

One main result is relating networks with symmetric structures, where we consider a

network of two groups of voters, connected with an equal number of links to voters of the

same type and with an equal number of links to voters of the other type. We show that

when the politician targets the weighted average opinion, the belief of a supporter increases

with a higher level of homophily, while that of a non-supporter decreases. Furthermore, the

weighted average opinion increases with the weight assigned to supporters, and decreases

with the probability of a non-supporter replacing the politician's narrative. Consequently,

if the politician assigns a larger weight to the supporters' opinions, the optimal number of

learning periods increases as homophily increases, and the politician's strategy would be

to disclose earlier.

The chapter is organised as follows: Section 1.2 is dedicated to the literature review.

We present the model and investigate the one voter benchmark in Section 1.3. We study

the settings with n disconnected and connected voters in Sections 1.4 and 1.5 and Section

1.6. Iterations and computations of opinions are gathered in Appendix A, while proofs are

in Appendix B.

1.2 Related literature

The chapter builds mainly on two strands of literature: narratives and average-based

learning in networks.

Narratives have become a topic of interest in several �elds of study. Shiller (2017) in-

vestigates how economic �uctuations are a�ected by narrative epidemics, in contrast to

imperatives. He shows how several major economic events were considered to be the result

of popular narratives at di�erent times. He suggests that many narratives are either based

on false ideas or have no factual basis, yet still propagate widely. Moreover, he suggests

that the prominent model introduced by Kermack and McKendrick (1927) and known as

the SIR model, which divides a population into susceptibles, infected and recovered in-

dividuals, can be applied to the contagion of narratives: an �infected� individual, who is

convinced by a narrative, can infect a susceptible individual, who in turn would be infected

after being exposed to a certain number of other infected individuals. While adopting a
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somewhat di�erent de�nition for narratives than the one we present here, Benabou, Falk

and Tirole (2018) study narratives as justi�cations for moral behaviour.

We introduce here a model of average-based learning of networks. The seminal paper

by De Groot (1974) provided a foundation for average-based learning. He established a

model where a group of individuals, each having a certain probability distribution, interact

to estimate some parameter. His main result was providing conditions for convergence to

a consensus among agents. This model has been examined, developed and extended by a

large number of research papers, which applied it to di�erent settings and frameworks.

DeMarzo, Vayanos and Zwiebel (2003) introduce a phenomenon in opinion formation that

they call persuasion bias and de�ne as the failure of individuals to consider repeated

information that they receive. They investigate two implications of persuasion bias: social

in�uence, which is the importance of connections in communication networks in shaping

group opinions; and unidimensional opinions, where they show that in the case of a set

of issues, individuals' opinions converge to one opinion on the �left-right� spectrum. They

also present some empirical applications. Golub and Jackson (2007) study networks with

homophily and the dynamics of learning in a model where agents use simple updating rules

such as De Groot updating. They show that agents correctly aggregate information and

reach the true state of the world, in a similar way to the fully rational learning processes.

They also identify networks where beliefs fail to converge to the rational limit. Acemoglu

and Ozdaglar (2011) discuss the literature on opinion dynamics in networks. Golub and

Jackson (2012) study average-based learning in networks characterised by homophily. They

explore learning dynamics and measure speed of convergence to a consensus and how it

relates to the degree of homophily in the network.

Jadbabaie, Molavi and Tahbaz-Salehi (2018) provide behavioural foundations for non-

Bayesian models of learning on social networks.

Grabisch et al. (2018) investigate a model with two strategic agents aiming to in�uence

non-strategic agents who update their options following De Groot learning. Each strategic

agent's strategy consists of forming a link with one non-strategic agent in order to alter

the average opinion. They provide a characterisation of the equilibrium that underlines

in�uenceability of targets and their centrality, and they also introduce a new centrality

measure. Moreover, they show that in the case of strategic agents with similar impact,

the equilibria are symmetric. Rusinowska and Taalaibekova (2019) extend this model and

introduce a third centrist persuader. They discuss the e�ect of the centrist persuader on

the consensus and equilibria.

Finally, we also investigate timing in �nite learning. In this regard, there are few papers

that have focused on the timing in opinion formation. Gratton, Holden and Kolotilin (2018)
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study release of information of a sender about her private type and show that in equilibrium

a bad sender releases later than a good sender. They also �nd empirical evidence to their

prediction using data from U.S. presidential elections and timing of scandals.

1.3 Benchmark: one Voter

1.3.1 Two narratives

De�ne a setting with a politician (she) and a voter (he). Let xP be the politician's narrative

and x0 the initial opinion of the voter such that xP and x0 belong to R+, and assuming

xP is su�ciently larger than x0. We call td the time of disclosure of the narrative � that is,

the decision variable of the politician. On the other hand, the number of learning periods

k � that is, the di�erence between the date of the election T and the time of disclosure td is

the length of the learning process: k := T − td. Consequently, the problem of determining

the optimal timing of disclosure td is equivalent to determining the length of the opinion

formation process k.

The expected belief of the voter at a given time t is x(t), and for all t ≤ td it is assumed

to be equal to the initial opinion x0. This belief will correspond to the level of adoption or

acceptance of the narrative by the voter. At the time of disclosure, the voter observes the

narrative and weighs it in his opinion by splitting his attention between the narrative of

the politician and his own opinion (from the previous period) respectively, such that (1−θ)

is the weight he assigns to the politician's narrative. After that, with a probability (1−p),

the voter rejects the narrative and adopts instead an alternative narrative xC in R+ while

keeping the same weight (1 − θ) on the new narrative, which can be identical to, or less

than, x0 (for now xC ≤ x0). The main assumption in this setting is that the two narratives

are not symmetrically weighted in the opinion updating rule the voter is following. Once a

voter turns his attention (1−θ) towards the alternative narrative instead of the politician's,

he never looks back and updates with the alternative as the only external source.

The decision of the politician regarding the optimal time of disclosure corresponds therefore

to the optimal length of the opinion formation process, and more precisely the number of

learning periods. Let x(k) denote the expectation of the opinion of the voter at td + k,

k periods after the time of disclosure td. The politician's objective is to determine the

optimal number of periods k. The law of motion of the voter's opinion1 over three learning

1In the case of a standard De Groot updating, where a voter observes both narratives and updates
accordingly, weighting p(1−θ) and (1−p)(1−θ) as the politician's and the alternative narrative respectively,
the updating rule will be such that x(k) = p(1 − θ)xP + (1 − p)(1 − θ)xC + θx(k − 1) = (1 − θk)(pxP +
(1 − p)xC) + θkx0 which converges to pxP + (1 − p)xC as k goes to in�nity.
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0
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(1− θ)xP + θx0

(1− θ)xC + θx(1) (1− θ)xP + θx(1)

(1− θ)xC + θx(2) (1− θ)xC + θx(2) (1− θ)xP + θx(2)

1− p p

1− p p

Figure 1.3.1: Learning process over three periods

periods is illustrated in Figure 1.3.1 and can be formally (shown in Appendix A) written

for k ≥ 2, as

x (k) = (1− pk−1)(1− θ)xC + pk−1(1− θ)xP + θx (k − 1) (1.3.1)

Assuming θ 6= p and following a series of iterations, it can be rewritten as a function of

the parameters θ, p, xCand xP :

x (k) =

(
1− θk−1 − pk−1 − θk−1

p− θ
p(1− θ)

)
xC +

pk − θk

p− θ
(1− θ)xP + θkx0

Lemma 1.1. As the number of learning periods k goes to in�nity, the expected opinion of

the voter converges to the alternative narrative xC with strictly positive (1 − p). In other

words, if the politician discloses very early, before the election, the voter will adopt the

alternative narrative, if he has a positive probability of replacing the politician's narrative.

Proof. The proof of this lemma as well as all other proofs will be provided in Appendix

B.

The updating rule stated in equation 1.3.1 is an averaging rule where coe�cients sum

up to one, and where some of them are time-dependent. The weights the voter assigns

to the politician's narrative and to the alternative narrative change with the number of

learning periods. More speci�cally, if p is strictly less than one, meaning that with some

strictly positive probability the voter will switch to xC , or in other words the voter assigns

a strictly positive weight to the alternative narrative, then as k increases, the weight on

xC increases and the weight on xP decreases. Subsequently, the voter's opinion converges

to xC .
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1.3.2 Absence of alternative narrative: standard De Groot updating

Here we suppose that the politician is the only source of in�uence and the probability

of abandoning the narrative (1 − p) is equal to zero. This setting is equivalent to the

regular average-based model by De Groot, with two agents (politician and voter), where

the politician strategically observes only her opinion xP and thus her opinion is �xed, while

the voter updates by averaging between xP weighting (1−θ) and his own opinion weighting

θ. The opinion updating rule can be amended2 as x(k) = (1 − θ)xP + θx(k − 1). Using

recursion, the expected opinion of the voter k periods after disclosure can be rewritten as:

x(k) =
∑k−1

l=0 θ
l(1− θ)xP + θkx0 = (1− θk)xP + θkx0. A similar convergence result to the

one in the standard De Groot is present here. More precisely, we show that in this case, it

is optimal for the politician to disclose her narrative as early as possible to maximise its

adoption by the voter.

By considering the limit when k goes to in�nity, the voter's opinion converges to the

politician's narrative xP : limk→∞
[
(1− θk)xP + θkx0

]
= xP . On the other hand, if we

suppose that the initial opinion is x0 = 0 and xp is su�ciently large, the politician's

objective will be to maximise x(k) =
(
1− θk

)
xP .

Lemma 1.2. When the probability of replacing the politician's narrative is null, it is op-

timal for the politician to disclose as early as possible to maximise the voter's narrative

adoption.

Proof. See Appendix B.

1.3.3 Narrative adoption

In what follows, we assume that, after disclosure, instead of adopting an alternative nar-

rative with a certain probability, the voter abandons the politician's narrative and moves

back to his initial opinion x0 with a positive probability. More precisely, one period after

disclosure, with a probability (1−p), the voter rejects the narrative and moves back closer

to his initial opinion. This is slightly similar to the SIR epidemics (Susceptible-Infected-

Recovered) models, where the voter gets �infected� by the narrative with probability (1−θ),

and then �recovers� afterwards with probability (1− p), in a De Groot learning setting. In

other words, the opinion of a given voter, after k learning periods, depicts the degree to

which the voter is infected by the narrative of the politician, and how close his opinion is

to xP . This can be formally written, as shown in Appendix A:

x (k) = x0 + (pk − θk)1− θ
p− θ

(
xP − x0

)
2Noting here that the coe�cients in the updating rule are not time-varying.
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Next, and for the remainder of the chapter, we assume that the initial opinion is equal to

0. The problem of the politician can be reduced thereafter to maximising the expectation

of the voter's belief after k periods from disclosure, as follows:

max
k

x (k) = (pk − θk)1− θ
p− θ

xP

Figure 1.3.2: Opinion as a function of learning periods in the case of one voter, with
θ = 0.55 and p = 0.7

Proposition 1.1. For p 6= θ and 0 < θ, p < 1, the optimal number of learning periods that

maximises the opinion of the voter is k =
ln
(

ln θ
ln p

)
ln p
θ

.

Proof. See Appendix B.

We examine now how the optimal number of learning periods k in the benchmark case

of one voter changes with the level of attention to the politician (1 − θ), and with the

change of probability of narrative rejection (1 − p). To this end, we check the sign of the

derivatives of k with respect to θ and p. The sign of these derivatives will dictate how k

changes as θ or p increase. Conversely, k will change in the opposite direction as (1 − θ)

or (1− p) increase.

Proposition 1.2. (Comparative Statics) For θ 6= p, the optimal number of learning periods

k increases with p and with θ. Equivalently, k decreases with the probability of rejecting

the narrative (1− p) and with the attention to the politician (1− θ).

Proof. See Appendix B.
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Non-zero initial opinion We examine here the case where there is an alternative nar-

rative xS = 0 that is di�erent from the initial opinion x0 6= 0. Here, the voter's initial

opinion is between the alternative narrative (from the left) and the politician's narrative.

The opinion updating process becomes:

x (k) = (pk − θk)1− θ
p− θ

xP + θkx0

xC = 0 x0 xP

Corollary 1.1. For p 6= θ and 0 < θ, p < 1, for a su�ciently large narrative xP , alternative

zero narrative xC = 0 and a non-zero initial opinion x0 6= 0, the optimal number of learning

periods to maximise the politician's narrative adoption is given by

k =
ln
[

ln θ
ln p

(
1 + θ−p

1−θ
x0

xP

)]
ln p

θ

Proof. Appendix B.

Comparing the optimal timing of disclosure between the case where the alternative

narrative is the initial opinion and the case where they are di�erent, we get kcx0 6=0 ≥ kcx0=0

whenever θ > p. This is true whenever 1 − θ < 1 − p, meaning that the weight assigned

to the narrative (�rst the politician's and then the alternative narrative with probability

1− p) must be smaller than the probability of replacing the politician's narrative.

1.4 Case of n disconnected voters

We generalise the setting to N = {1, 2, ..., n} voters with θi, voter i's attention to his

opinion �and his neighbours' opinions if he is part of a network �, (1− pi) the probability

of rejecting the politician's narrative and x0
i , i's initial opinion. The politician's objective

remains maximising the adoption of her narrative by the voters. We consider two possible

objective functions for the politician. One is the average opinion x̄(k) :=
∑
i xi(k)
n , k periods

after disclosure, which assumes that she values the opinions of all voters equally. Another

possibility is a weighted average opinion x̃(k) :=
∑

i aixi(k) where ai ∈ [0, 1] is the weight

the politician assigns to the opinion of voter i, such that
∑

i ai = 1.

In what follows, we will adopt a simplifying assumption that attention levels are

identical among voters such that θi = θ and pi = p for all i ∈ N . We will also look

at a particular setting with two types of voters: supporters and non-supporters.
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De�nition 1.1. A voter is a supporter if his probability of rejecting the politician's nar-

rative is null such that pi = 1. He is a non-supporters if he rejects the politician's narrative

with a strictly positive probability and has pi = p strictly less than one.

We de�ne accordingly the sets of supporters and non-supporters as S = {i ∈ N | pi = 1}

and N \ S = {i ∈ N | pi = p < 1} respectively, with s = |S|. The main advantage of

these assumptions is that they will allow us to have a tractable and solvable model, and

to achieve some comparative statics.

In this section we investigate the case where voters are disconnected and do not in�uence

each other's opinions, whereas in the section after we examine networks of voters.

1.4.1 Di�erent initial opinions

We consider here a case of voters with distinct initial opinions x0
i , all strictly positive,

while there is an alternative narrative xC = 0 and xP is assumed to be su�ciently large,

as before. Given that the n voters do not interact nor in�uence each other's opinions, the

opinion of each voter i at k periods after disclosure is given by

xi(k) = (pk − θk)1− θ
p− θ

xP + θkx0
i (1.4.1)

Given that the in�uence of the politician and that of the alternative narrative over the

voters are identical through θ and p, this setting shows that voters follow a similar opinion

updating rule but start from di�erent initial positions.

(a) Politician targets average opinion Let the average initial opinion be x̄0 =
∑
i x

0
i

n .

Supposing that the politician targets the average opinion x̄(k), we determine the optimal

time of disclosure that will be a function of θ, p, xP and the average initial opinion x̄0. The

approach and the result are similar to the case of one voter with an initial opinion di�erent

from zero (as in Corollary 1.1), with the average initial opinion instead of the voter's initial

opinion.

Lemma 1.3. In the case of n disconnected voters with di�erent initial opinions, the optimal

number of learning periods is given by k =
ln
[

ln θ
ln p

(
1+ θ−p

1−θ
x̄0

xP

)]
ln p
θ

.

Proof. See Appendix B.

(b) Politician targets weighted average opinion Let x̃0 =
∑

i aix
0
i be weighted

average opinion, the politician maximises x̃(k) =
∑

i ai

(
(pk − θk)1−θ

p−θx
P + θkx0

i

)
= (pk −

θk)1−θ
p−θx

P +θkx̃0. Following a similar reasoning to the case where the politician targets the
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average opinion, as in Lemma 1.3, the optimal time of disclosure is k =
ln
[

ln θ
ln p

(
1+ θ−p

1−θ
x̃0

xP

)]
ln p
θ

which is a function of x̃0. The result is also similar to the one voter framework in Corollary

1.1.

1.4.2 Same initial opinions, di�erent types

Here we look at the case where the alternative narrative is identical to the voter's initial

opinion xC = x0
i = 0 for every i ∈ N . Assuming all voters have the same attention to their

own opinion θ, the opinions after k learning periods of a supporter and a non-supporter

respectively will be :

xs (k) = (1− θk)xP

xm (k) = (pk − θk)1− θ
p− θ

xP

(a) Politician targets average opinion In the general case where voters have beliefs

xi(k), attention θ and probability pi, the updating rule for each voter is given by

xi(k) = pk−1
i (1− θ)xP + θxi(k − 1)

The average opinion can be therefore written as

x̄(k) =

∑
i p
k−1
i

n
(1− θ)xP + θx̄(k − 1) (1.4.2)

In case of two types of voters, the politician's problem becomes to choose k that max-

imises x̄(k) = s
nxs(k) + n−s

n xm(k).

By substituting for xs(k) and xm(k) from the above equations, x̄(k) can be written as

x̄(k) =
s

n
(1− θk)xP +

n− s
n

pk − θk

p− θ
(1− θ)xP (1.4.3)

Lemma 1.4. In the case of n disconnected voters of two di�erent types, supporters and

non-supporters, all with initial opinions at 0, if the politician maximises the average opin-

ion, the optimal number of learning periods is k =
ln
(

ln θ
ln p

(
s(p−θ)

(n−s)(1−θ) +1
))

ln p
θ

.

Proof. Appendix B.

(b) Politician targets weighted average opinion Assuming voters are of two types,

the politician's objective is to maximise x̃(k) = axs(k) + (1− a)xm(k).

Lemma 1.5. In the case of n disconnected voters of two di�erent types, supporters and

non-supporters, all with initial opinions at 0, if the politician maximises the weighted av-
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erage opinion, the optimal number of learning periods would be k =
ln
(

ln θ
ln p

(
a(p−θ)

(1−a)(1−θ) +1
))

ln p
θ

.

Proof. See Appendix B.

1.5 Case of n connected voters

We suppose now that the voters are connected, and we de�ne γij ∈ [0; 1] as the weight

i assigns to j's opinion such that
∑

j∈N γij = 1.γij is equally the in�uence of voter j's

opinion on voter i's opinion. We assume that the network is exogenous and time-invariant,

with Γ the corresponding n× n adjacency matrix.

Given x0
i the initial opinion of i, xP the politician's narrative and xC the alternative

narrative, the updating rule of opinions can be written for k ≥ 1 as

xi(k) = xC(1− pk−1
i )(1− θi) + xP pk−1

i (1− θi) + θi
∑
j∈N

γijxj(k − 1)

(see Appendix A). Figure 1.5.1 illustrates the learning process of an individual i over three

periods.

More generally, this can be written in matrix notation:

x(k) = (I−Θ)(1− p(k−1))xC + (I−Θ)p(k−1)xP + ΘΓx(k − 1) (1.5.1)

where x(k) is the vector of opinions k periods after disclosure, Θ is the diagonal matrix

with entries Θii = θi∀i, I is the identity matrix, 1 is the vector with all elements equal to

1 and p(k−1) is the probabilities vector with elements pk−1
i .

0

1

2

3

k

x0i

(1− θi)xP + θi
∑

j γijx
0
j

(1− θi)xC + θi
∑

j γijxj(1) (1− θi)xP + θi
∑

j γijxj(1)

(1− θi)xC + θi
∑

j γijxj(2) (1− θi)xC + θi
∑

j γijxj(2) (1− θi)xP + θi
∑

j γijxj(2)

1− p p

1− p p

Figure 1.5.1: Learning process over three periods in the case of n connected voters

Grabisch et al. (2018) investigate a framework where the weights do not vary with time,

and they prove that the opinions converge to a certain steady state that they determine.
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De�ne two vectors α(k−1) = (I−Θ)p(k−1) and β(k−1) = (I−Θ)(1(n) − p(k−1)), and a

matrix

M(k−1) =


1 0 0

0 1 0

α(k−1) β(k−1) ΘΓ

 .

M(k−1) is the augmented updating matrix and is row-stochastic, time-varying and of size

(n + 2) × (n + 2). Let the augmented opinion vector be the opinion vector including the

voters, the politician and the alternative narrative source, which is formally de�ned as

X(t) =


xP

xC

x(t)


noting that xP and xC are �xed over time and not updated. The augmented updating rule

can be written as:

X(k) = M(k−1)X(k − 1)

X(k) = M(k−1)M(k−2)X(k − 2) = M(k−1)M(k−2)...M(1)X(1)

= Πk−1
l=0 M(l)X(0)

DeMarzo, Vayanos and Zwiebel (2003) study a similar framework, and de�ne the in�uence

of j over i after k periods of communication as
[
Πk−1
l=0 M(l)

]
ij
. They prove that if the adja-

cency matrix of the network is strongly connected and assuming that the time-dependent

weights (common to all agents) sum up to in�nity, beliefs converge to a consensus. These

conditions do not apply to our setting here for two main reasons. First, the adjacency

matrix is not strongly connected, since the politician and the source of the alternative

narrative are isolated and have �xed opinions. Second, the time-varying weights ( pk−1
i for

every i) are di�erent for di�erent voters.

We de�ne an n×2 matrix Λ(k−1) whose columns are the two vectors α(k−1) and β(k−1);

the augmented updating matrix can therefore be written as

M(k−1) =

 I 0

Λ(k−1) ΘΓ


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The product of the two matrices M(k−1) and M(k−2) is given by

M(k−1)M(k−2) =

 I 0

Λ(k−1) ΘΓ

 I 0

Λ(k−2) ΘΓ

 =

 I 0

Λ(k−1) + ΘΓΛ(k−2 (ΘΓ)2


Moreover, the product Πk−1

l=0 M(l) can be written as

Πk−1
l=0 M(l) =

 I 0∑k−1
l=0 (ΘΓ)lΛ(k−1−l) (ΘΓ)k−1


The updating rule becomes:

X(k) =

 I 0∑k−1
l=0 (ΘΓ)lΛ(k−1−l) (ΘΓ)k−1

X(0) (1.5.2)

We show next that if the learning process has no time limit and no deadline, the beliefs

of the voters converge eventually.

Proposition 1.3. As the number of learning periods k goes to in�nity, the beliefs of the

voters converge.

Proof. See Appendix B.

Politician's objectives If the politician targets the average opinion x̄(k), her maxim-

isation problem is

max
k

x̄(k) =
1

n

∑
i∈N

(1− pk−1
i )(1− θi)xC + pk−1

i (1− θi)xP + θi
∑
j∈N

γijxj(k − 1)


In what follows, we consider speci�c well-behaved networks with two groups of voters

S and N \S , in cases where the politician targets the average opinion x̄(k) or the weighted

average opinion x̃(k) = axs(k) + (1− a)xm(k).

1.5.1 Balanced network

We suppose that the alternative narrative and the initial opinions of the voters are such as

xC = x0 = 0, and that the voters have the same level of attention θ but di�erent pi's. We

de�ne below a speci�c type of network, which we call a balanced network, as a directed

network where the sum of weights assigned to every agent by the others is equal to 1. The

corresponding adjacency matrix will be column-stochastic with the sum of the entries of

every column of the equal to 1, as well as row-stochastic. Several networks with symmetries
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have this property, such as the complete network and the circle, which we will investigate

later on.

De�nition 1.2. A balanced network is one that is described by an adjacency matrix that

is double stochastic (column and row stochastic). Formally, for every i, j ∈ N , it holds

that
∑

j∈N γij =
∑

i∈N γij = 1.

We show below that for this simple type of network, if the politician targets the average

opinion, then her problem in this case is identical to the case where voters are disconnected.

Proposition 1.4. If the network is balanced, the optimal time of disclosure that maximises

the average opinion is identical to the case of a disconnected setting where the network is not

present; in other words, the network has no role in shaping the average narrative adoption.

Proof. See Appendix B.

Proposition 1.4 implies that x̄(k) in case of a balanced network will be as stated in equation

1.4.2 .

For tractability, we consider again the case of two types of voters � supporters in S ⊂ N

whose pi = 1, and non-supporters in N \ S ⊂ N who reject the narrative with a positive

probability (1 − pi) � such that pi = p < 1 and the average opinion will be, similarly to

equation 1.4.3

x̄(k) =
s

n
(1− θk)xP +

n− s
n

pk − θk

p− θ
(1− θ)xP

Consequently, the optimal number of learning periods that maximises narrative adoption

at the deadline is k =
ln
(

lnθ
lnp

(
n−s−nθ+sp
(n−s)(1−θ)

))
ln( p

θ
)

.

Next, we examine how k varies as the number of supporters increases. Intuitively,

given that supporters do not replace the politician's narrative with an alternative one,

their level of adopting it, and consequently their opinion, should be higher than that of

a non-supporter. Moreover, the trade-o� the politician faces in regard to the timing of

disclosure can be associated with the types of voters: supporters drive early disclosure and

a longer learning period, while non-supporters push in the opposite direction given that

they might replace xP . A higher number of supporters implies a higher impact of the

supporters' opinions on the weighted average opinion and dictates an earlier disclosure.

Proposition 1.5. In a balanced network with s supporters and n− s non-supporters, the

optimal number of learning periods increases with the number of supporters.

Proof. See Appendix B.
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1.5.2 Complete network

A complete network is a network where every node is connected to every other node. In

particular, Jackson (2010) de�nes the complete network as �one where all possible links

are present� between di�erent nodes.

Given here that our model includes the self-loop, we consider a slight variation of the

complete network which allows the voter to update including his own opinion. Each voter

updates his opinion by averaging opinions of the other n− 1 voters and his own. We look

at an undirected unweighted graph, such that the degree of each voter will be equal to n

including the n− 1 other voters and a self-loop. The opinion of a given voter i is therefore

given by

xi(k) = pk−1
i (1− θ)xP +

θ
∑

j∈N xj(k − 1)

n

which is equivalent to

xi(k) = pk−1
i (1− θ)xP + θx̄(k − 1) (1.5.3)

The opinion of each individual at a time t is therefore a function of the average opinion of

the network in the previous period.

(a) Politician targets average opinion The average opinion at each point in time is

as follows:

x̄(k) =

∑
i p
k−1
i (1− θ)xP

n
+

∑
i θx̄(k − 1)

n
=

∑
i p
k−1
i (1− θ)xP

n
+ θx̄(k − 1)

Reiterating, we can rewrite it as:

x̄(k) =
1

n

k−1∑
l=0

∑
i

pk−1−l
i θl(1− θ)xP =

1

n

∑
i

pki − θk

pi − θ
(1− θ)xP

By taking the derivative with respect to k, we get

∂x̄(k)

∂k
=

1

n

∑
i

pki ln p− θk ln θ

pi − θ
(1− θ)xP = 0

which is a transcendental3 equation that does not have a closed-form solution but can be

solved numerically. Instead, if we consider the case of two types of voters de�ned above,

3A transcendental equation is an equation that contains a transcendental function that cannot be
analytically expressed using algebraic operations; such as the logarithmic and exponential functions and
the trigonometric functions (see Chapter 11 in Bashirov (2014)).
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we can solve for k:

x̄(k) =
1

n

k−1∑
l=0

(
s+ (n− s)pk−1−l

)
θl(1− θ)xP

=
s

n

1− θk

1− θ
(1− θ)xP +

n− s
n

(1− θ)xP
1−

(
θ
p

)k
1− θ

p

pk−1

x̄(k) =
1− θ
n

xP
[
s(1− θk)

1− θ
+ (n− s)p

k − θk

p− θ

]
(1.5.4)

The corresponding �rst-order condition is:

1− θ
n

xP
[
−sθk ln θ

1− θ
+ (n− s)p

k ln p− θk ln θ

p− θ

]
= 0

⇐⇒ n− s
p− θ

pk ln p = (
n− s
p− θ

+
s

1− θ
)θk ln θ

⇐⇒
(p
θ

)k
=

ln θ

ln p

n−s
p−θ + s

1−θ
n−s
p−θ

=
ln θ

ln p

(
1 +

s(p− θ)
(n− s)(1− θ)

)

k =
ln
[

ln θ
ln p

(
1 + s(p−θ)

(n−s)(1−θ)

)]
ln p

θ

Given that the complete network is a balanced network as per de�nition 1.2, the result

obtained here is identical to the optimal timing of disclosure reached in the case of balanced

network.

(b) Politician targets weighted average opinion Consider the complete network

with the same two types of voters de�ned above, such that every voter is linked to every

other voter, and the updating rule follows equation 1.5.3. The politician targets the

weighted average opinion that can be written as4:

x̃(k) =
(
a+ (1− a)pk−1

)
(1− θ)xP + θx̄(k − 1).

Using equation 1.5.4, we substitute for x̄(k − 1) and write

x̃(k) =
(
a+ (1− a)pk−1

)
(1− θ)xP + θ

1− θ
n

xP
[
s(1− θk−1)

1− θ
+ (n− s)p

k−1 − θk−1

p− θ

]
(1.5.5)

4x̃(k) = axs + (1 − a)xm = (a + (1 − a)pk−1)(1 − θ)xP +
θ
n

[asxs(k − 1) + a(n− s)xm(k − 1) + (1 − a)sxs(k − 1) + (1 − a)(n− s)xm(k − 1)]
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Taking the �rst-order condition, we �nd the optimal k:

pk

θk
=
p

n

s
1−θ + n−s

p−θ

1− a+ θ(n−s)
n(p−θ)

ln θ

ln p

⇐⇒ k =

ln

(
p
n

s
1−θ+n−s

p−θ

1−a+
θ(n−s)
n(p−θ)

ln θ
ln p

)
ln
(p
θ

)
1.5.3 Networks with symmetric structures

We examine in this section a symmetric network with two groups, representing each type

of voter. Letting Ni be the set of neighbours of i and di = |Ni| the degree of i, we de�ne

an equitable partition as follows.

De�nition 1.3. An equitable partition (see Powers and Sulaiman (1982)) is a partition of

a set N composed of non-empty and pairwise disjoint groups G1, ..., GH such that H ≥ 2,

and if any i and j belong to the same group Gh then |Ni ∩Gl| = |Nj ∩Gl| ∀l = 1, ...,H.

In such networks, agents will all have a similar number of links to agents of similar type, and

a similar number of links to agents of di�erent types. We consider here an equitable parti-

tion of N , formed of two groups S and N \ S, supporters and non-supporters respectively,

such that a given voter has q links (including himself) with the same type, and r links with

the other type. Equivalently, for i ∈ S and j ∈ N\S, we have |Ni ∩ S| = |Nj ∩ (N \ S)| = q

and |Ni ∩ (N \ S)| = |Nj ∩ S| = r. It follows that each voter i will have a degree di = q+r.

Further, assuming the network is undirected and unweighted, the weight a given voter puts

on each of her neighbours is 1
q+r . Say Gi is the group a voter i belongs to and G−i is the

other group; the opinion updating rule of a voter of group i is:

xi(k) = pk−1
i (1− θ)xP +

θ

q + r
[qxi(k − 1) + rx−i(k − 1)]

where xi(t) and x−i(t) are the opinions of a voter of group i and a voter of the other group

−i respectively.

Speci�cally, the beliefs of a supporter and of a non-supporter, xs(k) and xm(k) respectively,

are given by:

xs(k) = (1− θ)xP +
θq

q + r
xs(k − 1) +

θr

q + r
xm(k − 1)

xm(k) = pk−1(1− θ)xP +
θq

q + r
xm(k − 1) +

θr

q + r
xs(k − 1)

A network where voters have more links with voters of his own type than with voters

of the other type, exhibits homophily and has q > r. Homophily is generally de�ned as the
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tendency of individuals to connect more to individuals of their own type, which can be their

age, race, gender, profession, political preferences, etc. In this context, homophily is the

tendency of supporters to connect more and assign more weight to their fellow supporters

rather than non-supporters, and vice versa. De�ne ρ := q
r as the ratio of links within the

same type over links across types; ρ will depict homophily in the network. A network with

homophily has therefore q > r and ρ > 1. This modi�es the updating processes5 such that

xs(k) = (1− θ)xP +
θρ

ρ+ 1
xs(k − 1) +

θ

ρ+ 1
xm(k − 1) (1.5.6)

xm(k) = pk−1(1− θ)xP +
θρ

ρ+ 1
xm(k − 1) +

θ

ρ+ 1
xs(k − 1) (1.5.7)

(a) Politician targets average opinion Assuming the two groups are of the same

size, the objective function of the politician becomes:

x̄(k) =
xs(k) + xm(k)

2
=

1 + pk−1

2
(1− θ)xP + θ

xs(k − 1) + xm(k − 1)

2

The network here will be a balanced network, and if the politician maximises the average

opinion, the optimal number of learning periods is identical to the one in that case, with

s
n = n−s

n = 1
2 such that

k =
ln
(

ln θ
ln p

1−2θ+p
1−θ

)
ln p

θ

An illustration of a network with equitable partition with two types of voters is in Figure

1.5.2. In Figure 1.5.2a, each voter has q = 3 links to the same type (including the self-loop)

and r = 1 link to a voter of another type, while in �gure 1.5.2b, q = 3 and r = 2. There is

higher homophily in the network (a) on the left, and there are more inter-type connections

in the network (b) on the right.

(a) Case of ρ = 3 (b) Case of ρ = 3
2

Figure 1.5.2: Network with equitable partition with n = 6 and s = 3

5q = ρr and q + r = q(ρ+1)
ρ
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(b) Politician targets weighted average opinion We look here at the case of a

population split equally between groups of individuals of two types, represented by a

network with equitable partition. The opinions of a supporter or a non-supporter are

given respectively by equations 1.5.6 and 1.5.7.

The weighted average can be written as

x̃(k) = C0 + C1p
k−1 − C2θ

k−1 + (1− C0 − C1 + C2)

(
θ(ρ− 1)

ρ+ 1

)k−1

(1.5.8)

where C0, C1 and C2 are constants and de�ned as C0 := (1−θ)xP ρ+1
ρ+1−θ(ρ−1)

(
a+ θ

(ρ+1)(1−θ)

)
,

C1 := (1− θ)xP p(ρ+1)
p(ρ+1)−θ(ρ−1)

(
1− a+ θ

(p−θ)(ρ+1)

)
and C2 := (1− θ)xP θ2

(
p+1−2θ

(1−θ)(p−θ)

)
.

The �rst-order condition is given by:

∂x̃(k)

∂k
= 0 = C1p

k−1 ln p−C2θ
k−1 ln θ+ (1−C0−C1 +C2)

(
θ(ρ− 1)

ρ+ 1

)k−1

ln

(
θ(ρ− 1)

ρ+ 1

)

This equation is transcendental and has no closed form solution for k which can be de-

termined numerically.

In what follows, we examine the change of x̃(k) with the degree of homophily ρ. First,

we show that the opinion of a supporter xs(k) is larger than the opinion of a non-supporter

xm(k). In particular, the two opinions are equal for k = 0 and 1, whereas for any k > 1,

xs(k) is strictly greater than xm(k).

Proposition 1.6. For a given level of homophily ρ, the belief (adoption of the narrative)

is higher for a supporter than for a non-supporter: xs(k) ≥ xm(k).

Proof. See Appendix B.

Proposition 1.7. In a network with equitable partition where voters are equally split

between supporters and non-supporters, the belief of a supporter (non-supporter) increases

(decreases) with homophily ρ.

Proof. See Appendix B.

Proposition 1.7 reveals that an increase in the level of homophily has opposite e�ects

on the opinions of supporters and non-supporters; the former increases while the latter de-

creases. This will have direct implications for the politician's strategy regarding the timing

of disclosure, which depends on the weight she assigns to each type. This is investigated

further in Proposition 1.8.

Proposition 1.8. (Comparative Statics) The weighted average opinion x̃(k) increases as

the weight the politician places on the supporters' opinion increases, and as the probability of

a non-supporter replacing the narrative decreases. Consequently, in both cases, the optimal

number of learning periods k∗ increases, and the timing of disclosure is earlier.
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Proof. See Appendix B.

Proposition 1.9. (Convergence) As k goes to in�nity, the opinions of a supporter and a

non-supporter and the weighted average opinion converge to 1+ρ(1−θ)
1+θ+ρ(1−θ)x

P , θ
1+θ+ρ(1−θ)x

P

and a(1−θ+ρ(1−θ))+θ
1+θ+ρ(1−θ) respectively.

Proof. See Appendix B.

Notably, when considering the opinions of supporters and non-supporters as the number

of learning periods k goes to in�nity, we conclude that they converge to di�erent beliefs,

and no consensus is reached. The limiting level of narrative adoption of the supporter is

always higher than that of a supporter. Furthermore, the belief of the supporter is smaller

than xP in contrast to the case where he does not communicate with non-supporters.

Illustration We consider an illustration of a network with equitable partition of support-

ers and non-supporters. We suppose that the parameters are given by xP = 9, θ = 0.8, 0.9

and p = 0.9, 0.7. In each �gure, we plot the weighted average opinion x̃(k) with respect to

the number of learning periods k, for two levels of homophily ρ = 8 and ρ = 0.5. Figures

1.5.3 and 1.5.5 illustrate the case of a politician who assigns more weight to supporters

such that a = 0.9; while Figures 1.5.4 and 1.5.6 illustrate the case of a politician who

assigns more weight to non-supporters such that a = 0.1. As predicted by Propositions

1.7 and 1.8, the weighted average opinion with more weight on the supporters' opinion

(a = 0.9), is higher for higher homophily ρ = 0.8; whereas when more weight is assigned

to non-supporters, the weighted average opinion is lower for higher homophily.

Figure 1.5.3: Weighted average opinion over time with θ = 0.8, p = 0.9 and a = 0.9
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Figure 1.5.4: Weighted average opinion over time with θ = 0.8, p = 0.9 and a = 0.1

Figure 1.5.5: Weighted average opinion over time with θ = 0.9, p = 0.7 and a = 0.9

Extreme types of politicians: ideology versus o�ce motivated We consider here

two speci�c types of politicians with extreme motivations and objectives. Whether a

politician cares about the ideology of her supporters or about the beliefs of the entire

population will dictate her objective function and consequently her choice of timing of

disclosure. Assume here that voters update their opinions following equations 1.5.6 and

1.5.7 in a similar way to the case of two unequal groups. The two objective functions of

the politician considered here are the weighted average opinions with two possible extreme

weights: a = 1, assigning all the weight to the opinion of the supporters; and a = 0,

assigning all the weight to the opinion of the non-supporters.

In the �rst case, a politician, who is solely motivated by ideology, aims to convey her

narrative and maximise its adoption by a subgroup of supporters. Formally, the politician

maximises x̃(k) at a = 1: maxk x̃(k)ca=1 = xs(k).

In contrast to the ideology-motivated politician, an o�ce-motivated politician cares about
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Figure 1.5.6: Weighted average opinion over time with θ = 0.9, p = 0.7 and a = 0.1

winning an election by getting the maximum possible adoption of her narrative by all of the

population. In particular, we assume that this type of politician considers that supporters

will choose her for o�ce in any situation, and consequently targets only the non-supporters.

Here, the politician maximises x̃(k) at a = 0: maxk x̃(k)ca=0 = xm(k).

Proposition 1.8 shows that with a higher a, the weighted average opinion increases and so

does the optimal number of learning periods k, while the timing of disclosure is earlier.

Therefore, we can notice that these two types of politicians represent the two opposing

extremes. The ideology-motivated politician with a = 1 will have the earliest optimal

timing of disclosure, while the o�ce-motivated politician will have the latest.

1.5.4 Circle

A circle is a network that is formed of one cycle, such that every node has two neighbours.

In order to include the self-loop, we consider a variation of the standard circle network

where n voters are placed on an undirected unweighted circle, such that each is connected

to three voters (two neighbours and a self-loop), as illustrated in �gure 1.5.7. A formal

de�nition of the circle is given by the n× n adjacency matrix

Γ =



1 1 0 ... 0 1

1 1 1 0 ... 0

0 1 1 1 ... 0
... 0

...
...

...
...

0
... ... 1 1 1

1 0 ... 0 1 1


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Each voter i has a degree di = 3 and a probability of replacing the narrative of (1− pi).

1

2

...n-1

n

Figure 1.5.7: Undirected unweighted circle

(a) Politician targets average opinion Starting with the initial condition xi(td) = 0

and xi(1) = (1 − θ)xP for every i ∈ N , we can write the average opinion in the circle

(Appendix A) as

x̄(k) = (1− θ)x
P

n

(
nθk−1 +

k−2∑
l=0

θl
n∑
i=1

pk−1−l
i

)

In this unweighted circle, every voter listens to three other voters and in�uences three other

voters as well. Hence, it is a balanced network as per de�nition 1.2. The optimal timing of

disclosure that maximises the average opinion will be similarly k = 1
ln p
θ

ln
(

lnθ
lnp

sp−nθ+(n−s)
(n−s)(1−θ)

)
.

(b) Politician targets weighted average opinion A circle network with an even

number of nodes is a speci�c network where each voter has three links: the self-loop and

two others. It would be a network with equitable partition if we assume that the two types

of voters behave symmetrically and have the same size; each has two links (including his)

to the same type q = 2 and one to the other type r = 1 (case A), or the other way around

q = 1 and r = 2 (case B), as in Figure 1.5.8. Consequently we compare between ρ = 2 and

ρ = 1
2 .

Case A ρ = 2 When the network is characterised with homophily then ρ = 2 (Figure

1.5.8a) � that is, the weight on one's own type is double that on the other type, the opinions

of a supporter and of a non-supporter are given by

xs(k) = (1− θ)xP +
2θ

3
xs(k − 1) +

θ

3
xm(k − 1)

xm(k) = pk−1(1− θ)xP +
2θ

3
xm(k − 1) +

θ

3
xs(k − 1)
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s

s

...m

m

(a) Case A: ρ = 2

s

m

...s

m

(b) Case B: ρ = 1
2

Figure 1.5.8: Two types of circle network

The weighted average opinion can be written as (Appendix A)

x̃(k) = (1− θ)xP
[
C0 + C1p

k − C2θ
k−1 + (1− C0 − C1 + C2)

(
θ

3

)k−1
]

where C0 = 3
3−θ

(
a+ θ

3(1−θ)

)
, C1 =

(
1− a+ θ

3(p−θ)

)
3

3p−θ and C2 = p+1−2θ
2(1−θ)(p−θ)θ.

The �rst-order condition:

∂x̃(k)

∂k
= 0 = (1− C0 − C1 + C2)

(
θ

3

)k−1

ln
θ

3
+ C1p

k ln p− C2θ
k−1 ln θ

This is a transcendental equation that can be solved numerically.

Case B ρ = 1
2 This case represents a circle where each voter is connected to two other

voters of opposite type, which results in only one-third of the weight being assigned to his

own opinion and type (�gure 1.5.8b). It is an illustration of non-homophily. The opinions

of supporters and non-supporters are

xs(k) = (1− θ)xP +
θ

3
xs(k − 1) +

2θ

3
xm(k − 1)

xm(k) = pk−1(1− θ)xP +
θ

3
xm(k − 1) +

2θ

3
xs(k − 1)

The weighted average opinion can be written as

x̃(k) = (1− θ)xP
[
C0 + C1p

k − C2θ
k−1 + (1− C0 − C1 + C2)

(
−θ

3

)k−1
]

where C0 =
(
a+ 2θ

3(1−θ)

)
3

3+θ , C1 =
(

1− a+ 1
p−θ

)
3

3p+θ and C2 = p+1−2θ
(1−p)(p−θ)

3
4 .

The �rst-order condition is given by

∂x̃(k)

∂k
= 0 = (1− C0 − C1 + C2)

(
−θ

3

)k−1

ln
θ

3
+ C1p

k ln p− C2θ
k−1 ln θ
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How does time of disclosure change with homophily in the circle? In order to

determine how the optimal number of periods k changes with the degree of homophily ρ,

we start by looking at how xs(k) and xm(k) change with ρ.

Let ∆xs(k) := xs(k)cρ=2 − xs(k)cρ= 1
2
and ∆xm(k) = xm(k)cρ=2 − xm(k)cρ= 1

2
.

Proposition 1.10. In the circle, the opinion of a supporter (non-supporter) k periods

after disclosure xs(k) (xm(k)) is higher (lower) for a degree of homophily ρ = 2 than for

ρ = 1
2 .

Proof. See Appendix B.

We show next that if the politician is ideology-motivated and cares about the support-

ers, for higher ρ = 2, it is optimal to disclose earlier than for ρ = 1
2 . If, on the other hand,

he is o�ce-motivated and cares only about the non-supporters, it is optimal to disclose

later for higher ρ.

Proposition 1.11. In the circle, the number of periods that maximises the belief of a

supporter xs(k) is higher when for degree of homophily ρ = 2 than for ρ = 1
2 . Conversely,

k that maximises the belief of a non-supporter xm(k) is lower for ρ = 2 than for ρ = 1
2 .

Proof. See Appendix B.

Corollary 1.2. In the case of a circle, a politician whose objective is to maximise x̃(k)

discloses earlier (later) for higher homophily ρ = 2 than for ρ = 1
2 if he puts more weight

on the supporter a > 1
2 (non-supporter 1− a > 1

2).

Proof. See Appendix B.

1.5.5 Two unequal groups

We investigate here the case of two groups of voters (supporters and non-supporters) that

are of di�erent sizes. Assuming that voters update their opinions following equations 1.5.6

and 1.5.7, the politician's problem changes according to s, n− s the number of each type

of voters.

(a) Politician targets average opinion The average opinion here can be de�ned as:

x̄(k) = sxs(k)+(n−s)xm(k)
n . Substituting for xs(k) and xm(k), we get: x̄(k) = s+(n−s)pk−1

n (1−

θ)xP + θ
ρ+1(ρs+ n− s)xs(k − 1) + θ

ρ+1(s+ ρ(n− s))xm(k − 1).

(b) Politician targets weighted average opinion Consider a network of voters who

belong to two distinct groups of di�erent sizes, supporters and non-supporters. As before,

we assume that every voter i has q links with voters of the same type and r of those of a
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di�erent type, and that the degree of homophily is ρ = q
r . The opinions of the voters will

update following equations (1.5.6) and (1.5.7). If the politician's objective is to maximise

the weighted average opinion, the weight on the opinion of the supporter a ∈ [0; 1] will

represent the weight on the group of supporters, and the same will apply for the non-

supporters. Accordingly, if s is the number of supporters, de�ne σs as the weight that the

politician puts on the opinion of each supporter such that σs = a
s . For the n − s non-

supporters, the weight the politician puts on each of them will be σm de�ned as σm = 1−a
n−s .

Note that it holds that sσs + (n − s)σm = 1, and consequently, σm can be written as

σm = 1−σss
n−s . The weighted average opinion is therefore

x̃(k) = sσsxs(k) + (n− s)σmxm(k)

An evident implication6 is the e�ect of the group sizes and weights on x̃(k) and con-

sequently on the optimal timing of disclosure k
∗
. The latter will increase (decrease) with

the number of supporters s (non-supporters n− s), and it will increase (decrease) with the

σs (σm).

1.6 Conclusion

In this chapter, we have presented a model of narrative adoption in an election setting where

voters update following a variation of De Groot average-based learning. The voters, who

have a certain initial opinion, split their attention between their network and a narrative

proposed by a politician, which they replace later on, with some probability, with an

alternative narrative or with their initial opinion. The objective of the politician, the

strategic agent in this model, is to maximise the adoption of this narrative at a given,

exogenous, time limit or deadline, which we assume here to be an election. For this

purpose, the politician chooses strategically the optimal timing to disclose her narrative.

We suppose that the politician either targets the average opinion, viewing all the voters

as equal, or targets a weighted average opinion, assigning di�erent weights to di�erent

voters or types of voters. We solve this problem for a benchmark with one voter, n

disconnected voters and n voters connected over networks with particular structures.

We also investigate homophily and its e�ects on opinions and timing of disclosure. In

the case of two types of voters � supporters who do not reject the politician's narrative, and

non-supporters who do with a positive probability � such that the two types are equally

sized with symmetric connections (the case of a network with equitable partition), the belief

6Taking the derivatives w.r.t. s and σs:
∂x̃(k)
∂s

= σsxs(k) − 1−sσs−1+nσs
n−s xm(k) =

σs (xs(k − 1) − xm(k − 1)) ≥ 0; ∂x̃(k)
∂σs

= s (xs(k − 1) − xm(k − 1)) ≥ 0.
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of a supporter increases with homophily, whereas the belief of a non-supporter decreases.

Furthermore, the optimal timing of disclosure is earlier and the weighted average opinion

increases as the weight that the politician assigns to the opinion of supporters increases

and as the probability of a non-supporter replacing the narrative decreases.

This setting can be extended to more general and inclusive situations. One possibility

is considering other types of voters, notably voters who oppose the politician and update

their opinions without paying any attention to her. However, a voter of this type can

still be exposed to the politician's narrative indirectly through his neighbours, which will

consequently a�ect the politician's strategy. Another extension is the presence of other

strategic politicians, advocating di�erent narratives. In political competition, as well as in

marketing competition and other in�uence situations, a considerable number of strategic

agents compete in order to convince and to gain the support of non-strategic agents. Adding

more strategic agents to our approach would constitute an interesting aspect to consider

and would provide more explanations for the decisions of politicians regarding narrative

disclosure.
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Appendices

Appendix 1.A Computations

Opinion of one voter in presence of an alternative narrative xC

The initial opinion of the voter at the time of disclosure of the narrative is given by

x(0) = x0, it evolves such that

x (1) = (1− θ)xP + θx0

x (2) = (1− p)
[
(1− θ)xC + θx (1)

]
+ p

[
(1− θ)xP + θx (1)

]
= (1− p)(1− θ)xC + p(1− θ)xP + θx(1)

x(3) = (1− p)(1− θ)xC + p(1− p)(1− θ)xC + p2(1− θ)xP + θx(2)

...

x (k) =

k−2∑
l=0

pl(1− p)(1− θ)xC + pk−1(1− θ)xP + θx (k − 1)

= (1− θ)xC + pk−1(1− θ)(xP − xC) + θx (k − 1)

By solving recursively, this expression can be rewritten as a function of xC , xP and x0:

x(k) =
k−1∑
l=0

θl(1− θ)xC +
k−1∑
l=0

θlpk−1−l(1− θ)(xP − xC) + θkx0

Solving for the geometric series we get

x (k) =

(
1− θk−1 − pk−1 − θk−1

p− θ
p(1− θ)

)
xC +

pk − θk

p− θ
(1− θ)xP + θkx0
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Opinion of one voter in the case of narrative infection

x(0) = x0

x (1) = (1− θ)xP + θx0

x (2) = (1− p)
[
(1− θ)x0 + θx (td + 1)

]
+ p

[
(1− θ)xP + θx (1)

]
= (1− p)(1− θ)x0 + p(1− θ)xP + θx(1)

x (k) =

k−2∑
l=0

pl(1− p)(1− θ)x0 + pk−1(1− θ)xP + θx (k − 1)

= (1− θ)x0 + pk−1(1− θ)(xP − x0) + θx (k − 1)

Computing recursively as above:

x (k) = (1− θk)x0 + (pk − θk)1− θ
p− θ

(
xP − x0

)
+ θkx0

= x0 + (pk − θk)1− θ
p− θ

(
xP − x0

)
Opinions of n voters in an arbitrary network

xi(0) = x0
i

xi (1) = θix
P + (1− θi)

∑
j∈N

γijxj(0)

xi (2) = p

θixC + (1− θi)
∑
j∈N

γijxj(1)

+ (1− p)

θixP + (1− θi)
∑
j∈N

γijxj(1)


xi (k) =

k−2∑
l=0

(1− p)lpθixC + (1− p)k−1θix
P + (1− θi)

∑
j∈N

γijxj(k − 1)

= θix
C + (1− p)k−1θi(x

P − xC) + (1− θi)
∑
j∈N

γijxj(k − 1)

Networks with symmetric structures, x̃(k)

The weighted average opinion of n voters is given by

x̃(k) = axs(k) + (1− a)xm(k)

=
[
a+ (1− a)pk−1

]
(1− θ)xP +

θ

ρ+ 1
[(aρ+ 1− a)xs(k − 1) + (a+ ρ(1− a))xm(k − 1)]
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(See footnote 7)

=
[
a+ (1− a)pk−1

]
(1− θ)xP +

θ

ρ+ 1
[2x̄(k − 1) + (ρ− 1)x̃(k − 1)]

Iterating and using x̄(k) =
(

1−θk
1−θ + pk−θk

p−θ

)
1−θ

2 xP , we get

= (1− θ)xP
[
k−1∑
l=0

(
a+ (1− a)pk−1−l

)(θ(ρ− 1)

ρ+ 1

)l

+
θ

ρ+ 1

k−2∑
l=0

(
θ(ρ− 1)

ρ+ 1

)l (1− θk−1−l

1− θ
+
pk−1−l − θk−1−l

p− θ

)]

= (1− θ)xP
{

ρ+ 1

ρ+ 1− θ(ρ− 1)

(
a+

θ

(ρ+ 1)(1− θ)

)

+

(
θ(ρ− 1)

ρ+ 1

)k−1 [
1− ρ+ 1

ρ+ 1− θ(ρ− 1)

(
a+

θ

(ρ+ 1)(1− θ)

)

− p(ρ+ 1)

p(ρ+ 1)− θ(ρ− 1)

(
1− a+

θ

(p− θ)(ρ+ 1)

)
+
θ

2

p+ 1− 2θ

(1− θ)(p− θ)

]

+
p(ρ+ 1)

p(ρ+ 1)− θ(ρ− 1)

(
1− a+

θ

(p− θ)(ρ+ 1)

)
pk−1 − θ

2

(
p+ 1− 2θ

(1− θ)(p− θ)

)
θk−1

}

= C0 + C1p
k−1 − C2θ

k−1 + (1− C0 − C1 + C2)

(
θ(ρ− 1)

ρ+ 1

)k−1

where C0, C1 and C2 are constants, independent of k.

Circle with ρ = 2, x̃(k)

x̃(k) =
(
a+ (1− a)pk−1

)
(1− θ)xP

+

(
2

3
a+

1

3
(1− a)

)
θxs(k − 1) +

(
2

3
(1− a) +

1

3
a

)
θxm(k − 1)

=
(
a+ (1− a)pk−1

)
(1− θ)xP +

1

3
θ [x̃(k − 1) + 2x̄(k − 1)]

=
k−2∑
l=0

(
θ

3

)l [
a+ (1− a)pk−1−l

]
(1− θ)xP +

k−2∑
l=0

(
θ

3

)l 2θ

3
x̄(k − l − 1) +

(
θ

3

)k−1

x̃(1)

where x̃(1) = (1− θ)xP , then

x̃(k) =

k−1∑
l=0

(
θ

3

)l [
a+ (1− a)pk−1−l

]
(1− θ)xP +

2θ

3

k−2∑
l=0

(
θ

3

)l
x̄(k − l − 1)

7(aρ+ 1 − a)xs(k − 1) + (a+ ρ(1 − a))xm(k − 1) = (aρ − a)xs(k − 1) + (a − aρ)xm(k − 1) + xs(k −
1) + ρxm(k − 1) + xm(k − 1) − xm(k − 1) = a(ρ− 1)xs(k − 1) + (1 − a)(ρ− 1)xm(k − 1) + 2x̄(k).
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However, the average opinion is given by

x̄(k) =
xs(k) + xm(k)

2
=

1 + pk−1

2
(1− θ)xP + θ

xs(k − 1) + xm(k − 1)

2

=
1 + pk−1

2
(1− θ)xP + θx̄(k − 1) =

k−1∑
l=0

(1 + pk−1−l)

2
θl(1− θ)xP

=

(
1− θk

1− θ
+
pk − θk

p− θ

)
(1− θ)

2
xP

Substituting we get

x̃(k) =
k−1∑
l=0

(
θ

3

)l [
a+ (1− a)pk−1−l

]
(1− θ)xP

+
2θ

3

k−2∑
l=0

(
θ

3

)l (1− θk−1−l

1− θ
+
pk−1−l − θk−1−l

p− θ

)
(1− θ)

2
xP

= (1− θ)xP
[
a
k−1∑
l=0

(
θ

3

)l
+ (1− a)pk−1

k−1∑
l=0

(
θ

3p

)l
+

θ

3(1− θ)

k−2∑
l=0

(
θ

3

)l

− θk

3(1− θ)

k−2∑
l=0

(
1

3

)l
+

θpk−1

3(p− θ)

k−2∑
l=0

(
θ

3p

)l
− θk

3(p− θ)

k−2∑
l=0

(
1

3

)l]

= (1− θ)xP
[(

θ

3

)k−1

+

(
a+

θ

3(1− θ)

)
1−

(
θ
3

)k−1

1− θ
3

+

(
1− a+

θ

3(p− θ)

)
pk−1

1−
(
θ
3p

)k−1

1− θ
3p

−
(

1

1− θ
+

1

p− θ

)
θk

3

1−
(

1
3

)k−1

1− 1
3


= (1−θ)xP

[(
θ

3

)k−1(
1− 3

3− θ
(a+

θ

3(1− θ)
)− (1− a+

θ

3(p− θ)
)

3p

p− θ
+

p+ 1− 2θ

(1− θ)(p− θ)
θ

2

)

+
3

3− θ

(
a+

θ

3(1− θ)

)
− p+ 1− 2θ

2(1− θ)(p− θ)
θk +

(
1− a+

θ

3(p− θ)

)
3pk

3p− θ

]

= (1− θ)xP
[
C0 + C1p

k − C2θ
k + (1− C0 − C1 + C2)

(
θ

3

)k−1
]

where C0, C1 and C2 are constants that depend on the parameters of the model.

Circle with ρ = 1
2 , x̃(k)

x̃(k) =
[
a+ (1− a)pk−1

]
(1− θ)xP

+

(
1

3
a+

2

3
(1− a)

)
θxs(k − 1) +

(
2

3
a+

1

3
(1− a)

)
θxm(k − 1)
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=
[
a+ (1− a)pk−1

]
(1− θ)xP

+
θ

3
[2xs(k − 1)− axs(k − 1) + (a− 1)xm(k − 1) + 2xm(k − 1)]

=
[
a+ (1− a)pk−1

]
(1− θ)xP +

θ

3
[4x̄(k − 1)− x̃(k − 1)]

=
k−1∑
l=0

(
−θ

3

)l [
a+ (1− a)pk−1−l

]
(1− θ)xP +

k−2∑
l=0

4θ

3

(
−θ

3

)l
x̄(k − 1− l)

substituting for x̄(k − 1− l),

=

k−1∑
l=0

(
−θ

3

)l [
a+ (1− a)pk−1−l

]
(1− θ)xP

+
4θ

3

k−2∑
l=0

(
−θ

3

)l (1− θk−1−l

1− θ
+
pk−1−l − θk−1−l

p− θ

)
1− θ

2
xP

= (1− θ)xP
[
a
k−1∑
l=0

(
−θ

3

)l
+ (1− a)pk−1

k−1∑
l=0

(
− θ

3p

)l
+

2θ

3(1− θ)

k−2∑
l=0

(
−θ

3

)l

− 2θk

3(1− θ)

k−2∑
l=0

(
−1

3

)l
+

2θpk−1

3(p− θ)

k−2∑
l=0

(
− θ

3p

)l
− 2θk

3(p− θ)

k−2∑
l=0

(
−1

3

)l]

= (1− θ)xP
[(
−θ

3

)k−1

+
1−

(
− θ

3

)k−1

1 + θ
3

(
a+

2θ

3(1− θ)

)

+
1−

(
− θ

3p

)k−1

1 + θ
3p

pk−1

(
1− a+

2θ

3(p− θ)

)
−

1−
(
−1

3

)k−1

1 + 1
3

2θk

3

(
1

1− θ
+

1

p− θ

)
= (1−θ)xP

[(
−θ

3

)k−1(
1−

(
a+

2θ

3(1− θ)

)
3

3 + θ
− (1− a+

1

p− θ
)

3

3p+ θ
+

3

4

p+ 1− 2θ

(1− p)(p− θ)

)

+

(
a+

2θ

3(1− θ)

)
3

3 + θ
+

(
1− a+

1

p− θ

)
3

3p+ θ
pk − θk−1 p+ 1− 2θ

(1− p)(p− θ)
3

4

]

= (1− θ)xP
[
C0 + C1p

k − C2θ
k−1 + (1− C0 − C1 + C2)

(
−θ

3

)k−1
]

Appendix 1.B Proofs

Proof of Lemma 1.1

lim
k→∞

x(k) = lim
k→∞

(
1− θk−1 − pk−1 − θk−1

p− θ
p(1− θ)

)
xC +

pk − θk

p− θ
(1− θ)xP + θkx0 = xC
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Proof of Lemma 1.2

The �rst order condition of the politician's maximisation problem is as follows:

−θk ln θxP = 0 ⇐⇒ θk = 0

This holds when k goes to in�nity.

Proof of Proposition 1.1

The �rst order condition is:

(pk ln p− θk ln θ)
1− θ
p− θ

xP = 0 ⇐⇒
(p
θ

)k
=

ln θ

ln p

⇐⇒ k =
ln
(

ln θ
ln p

)
ln p

θ

k is well-de�ned for p 6= θ and 0 < θ, p < 1. We show below that k will always be positive.

We take the second order condition to verify that this is a maximum:

∂2x(k)

∂k2
= (pk(ln p)2 − θk(ln θ)2)

1− θ
p− θ

xP

for which the sign is the sign of

pk(ln p)2 − θk(ln θ)2

p− θ

Finding the roots:

pk(ln p)2 − θk(ln θ)2

p− θ
= 0 ⇐⇒

θk
[(p

θ

)k
ln2 p− ln2 θ

]
p− θ

= 0

substituting for
(p
θ

)k
we get:

θk
[

ln θ
ln p ln2 p− ln2 θ

]
p− θ

=
θk [ln θ(ln p− ln θ)]

p− θ
= 0

This is not de�ned at p = θ and is negative elsewhere since:

if p > θ:p− θ > 0; ln p > ln θ and ln θ < 0.

if p < θ:p− θ < 0; ln p < ln θ and ln θ < 0.

Sign of k

• For θ > p then:ln
(p
θ

)
and ln

[
ln θ
ln p

]
> 0 =⇒ k > 0.
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• For θ < p then: ln
(p
θ

)
and ln

[
ln θ
ln p

]
< 0 =⇒ k > 0

Proof of Proposition 1.2

First, derivative of k with respect to θ and p will give an opposite sign to the derivative of

k with respect to 1− θ and 1− p respectively since:

∂k

∂(1− θ)
=
∂f

∂θ

∂θ

∂(1− θ)
=
∂f

∂θ

1
∂(1−θ)
∂θ

= −∂k
∂θ

and similarly for the derivative with respect to p.

Now, taking the derivative of k with respect to p, we get:

∂k

∂p
= −

1
ln p ln p

θ + ln ln θ
ln p

p(ln p
θ )2

∴ sign

(
∂k

∂p

)
= sign

[
−
(

1

ln p
ln
p

θ
+ ln

ln θ

ln p

)]

= sign

[
−
(

1− ln θ

ln p
+ ln

ln θ

ln p

)]
= sign

(
−1 +

ln θ

ln p
− ln

ln θ

ln p

)
The function −1 + ln θ

ln p − ln ln θ
ln p has the form of the transcendental equation x − 1 − lnx

whose minimum is at x = 1 and is equal to 0. Therefore this function is non-negative and

∂k
∂p > 0 for p 6= θ. Consequently, ∂k

∂(1−p) < 0.

Finally, consider the derivative of k with respect to θ which gives:

∂k

∂θ
=

1
ln θ ln p

θ + ln ln θ
ln p

θ(ln p
θ )2

∴ sign
(
∂k
∂θ

)
= sign

(
1

ln θ ln p
θ + ln ln θ

ln p

)
= sign

(
ln p
ln θ − 1 + ln ln θ

ln p

)
= sign

(
ln p
ln θ − 1− ln ln p

ln θ

)
Similarly to the above, the function ln p

ln θ − 1 − ln ln p
ln θ is a transcendental equation of the

form x− 1− lnx. Thus, ∂k∂θ > 0 for p 6= θ and ∂k
∂(1−θ) < 0.

Proof of Corollary 1.1

First order condition:

(pk ln p− θk ln θ)
1− θ
p− θ

xP + θk ln θx0 = 0

pk ln p
1− θ
p− θ

xP = θk ln θ

(
1− θ
p− θ

xP − x0

)
(p
θ

)k
=

ln θ

ln p

(
(1−θ)xP−(p−θ)x0

p−θ

)
1−θ
p−θx

P
=

ln θ

ln p

(1− θ)xP − (p− θ)x0

(1− θ)xP
=

ln θ

ln p

(
1 +

θ − p
1− θ

x0

xP

)
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⇐⇒ k =
ln
[

ln θ
ln p

(
1 + θ−p

1−θ
x0

xP

)]
ln p

θ

The second derivative is given by ∂2x(k)
∂k2 = (pk(ln p)2−θk(ln θ)2)1−θ

p−θx
P +θk(ln θ)2x0, which

can be written as θk ln θ
(

1−θ
p−θx

P − x0
)

(ln p− ln θ) using the �rst order condition that gives(p
θ

)k
= ln θ

ln p

(
1 + θ−p

1−θ
x0

xP

)
.

• If p > θ then 1−θ
p−θ > 1 ⇐⇒ 1−θ

p−θx
P − x0 > xP − x0 > 0 and ln p − ln θ > 0 while

ln θ < 0.

• If p < θ then 1−θ
p−θx

P < 0 ⇐⇒ 1−θ
p−θx

P − x0 < 0 , ln p− ln θ < 0 and ln θ < 0.

Therefore for any p 6= θ, the second derivative is negative and k is a maximum.

Proof of Lemma 1.3

The politician maximises the average opinion x̄(k) =
∑
i xi(k)
n = (pk−θk)1−θ

p−θx
P+ θk

n

∑
i∈N x

0
i =

(pk − θk)1−θ
p−θx

P + θkx̄0. The �rst order condition is:

∂x̄(k)

∂k
= (pk ln p− θk ln θ)

1− θ
p− θ

xP + θk ln θx̄0 = 0

⇐⇒ θk ln θ

(
1− θ
p− θ

xP − x̄0

)
= pk ln p

1− θ
p− θ

xP

k =
ln ln θ

ln p

(
1− p−θ

1−θ
x̄0

xP

)
ln p

θ

Second order condition:

∂x̄2(k)

∂k2
=
(
pk(ln p)2 − θk(ln θ)2

) 1− θ
p− θ

xP + θk(ln θ)2x̄0

By substituting from the �rst order condition for pk ln p, we get

= θk ln θ

(
1− θ
p− θ

xP − x̄0

)
(ln p− ln θ)

which is negative since for p > θ, ln p− ln θ > 0 and 1− p < 1− θ =⇒ p− θ < 1− θ and
1−θ
p−θx

P − x̄0 > 0. While for p < θ, 1−θ
p−θx

P < 0 and ln p− ln θ < 0. Hence, k is a maximum.

Proof of Lemma 1.4

Solving the politician's problem:

max
k

x̄(k) =
s

n
(1− θk)xP +

n− s
n

pk − θk

p− θ
(1− θ)xP
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The �rst order condition:

∂x̄(k)

∂k
= − s

n
θk ln θxP +

n− s
n

1− θ
p− θ

pk ln pxP − n− s
n

1− θ
p− θ

θk ln θxP = 0

⇐⇒ n− s
n

1− θ
p− θ

pk ln p =

(
s

n
+
n− s
n

1− θ
p− θ

)
θk ln θ

⇐⇒ pk ln p =

(
s(p− θ)

(n− s)(1− θ)
+ 1

)
θk ln θ

⇐⇒
(p
θ

)k
=

ln θ

ln p

(
s(p− θ)

(n− s)(1− θ)
+ 1

)

k =
ln
(

ln θ
ln p

(
s(p−θ)

(n−s)(1−θ) + 1
))

ln p
θ

k exists whenever
(

s(p−θ)
(n−s)(1−θ) + 1

)
> 0, and equivalently n(1− θ)− s(1− p) > 0.

The second order condition:

∂x̄(k)2

∂k2
= − s

n
θk (ln θ)2 xP +

n− s
n

1− θ
p− θ

pk (ln p)2 xP − n− s
n

1− θ
p− θ

θk (ln θ)2 xP

Substituting for pk ln p = θk ln θ
(

s(p−θ)
(n−s)(1−θ) + 1

)
from the �rst order condition, we get

∂2x̄(k)

∂k2
= θk ln θxP

(
s

n
+
n− s
n

1− θ
p− θ

)
(ln p− ln θ)

This can be simpli�ed into

θk ln θxP

n
(s(p− θ) + (n− s)(1− θ)) (ln p− ln θ)

p− θ

=
θk ln θxP

n
(n(1− θ)− s(1− p)) (ln p− ln θ)

p− θ

Clearly, (ln p−ln θ)
p−θ is positive for any p and θ; and θk ln θxP

n < 0 due to ln θ. The second

derivative is therefore negative since n(1 − θ) − s(1 − p) > 0 for existence, and k is a

maximum.

Proof of Lemma 1.5

The �rst order condition is given by

∂x̃(k)

∂k
= −aθk ln θxP + (1− a)(pk ln p− θk ln θ)

1− θ
p− θ

xP = 0

⇐⇒ pk

θk
=

ln θ

ln p

(
a(p− θ)

(1− a)(1− θ)
+ 1

)
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k =
ln
[

ln θ
ln p

(
a(p−θ)

(1−a)(1−θ) + 1
)]

ln p
θ

This exists whenever a(p−θ)
(1−a)(1−θ) + 1 > 0, which holds for 1− θ − a(1− p) > 0.

The second derivative is

∂2x̃(k)

∂k2
= −aθk(ln θ)2xP + (1− a)

(
pk(ln p)2 − θk(ln θ)2

) 1− θ
p− θ

xP

substituting for pk ln p from the �rst order condition we get

= θk ln θxP
[
−a ln θ + ln p

(
a+ (1− a)

1− θ
p− θ

)]

= θk ln θxP
ln p− ln θ

p− θ
(1− θ − (1− p)a)

which is negative whenever k exists. Hence, k is a maximum.

Proof of Proposition 1.3

X(k) =

 I 0∑k−1
l=0 (ΘΓ)lΛ(k−1−l) (ΘΓ)k−1

X(0)

First, we show that (ΘΓ)k−1 is convergent. By de�nition, the adjacency matrix of

the voters network is row-stochastic. We de�ne θmax as the highest θi across all voters:

θmax := max {θi, i = 1, 2, ..., n}. This implies that ΘΓ ≤ θΓ.

The spectrum of ΘΓ is the set of its eigenvalues, call it spec(ΘΓ). Its spectral radius

is de�ned by ρ(ΘΓ) := max{|λ| : λ ∈ spec(ΘΓ)}. Given that Γ is row-stochastic, then

ρ(Γ) = 1 and ρ(ΘΓ) ≤ θρ(Γ) = θ < 1 (see Meyer (2000)). This implies that (ΘΓ)k−1

converges to zero as k goes to in�nity. Furthermore,
∑∞

k=0 (ΘΓ)k = (I−ΘΓ)−1.

Second, we investigate
∑k−1

l=0 (ΘΓ)lΛ(k−1−l). This can be written as

Λ(k−1) + (ΘΓ) Λ(k−2) + ...+ (ΘΓ)k−2Λ(1) + (ΘΓ)k−1Λ(0)

We can show that

Λ(k−1) = (I−Θ)


pk−1

1 1− pk−1
1

...

pk−1
n 1− pk−1

n


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=


(1− θ1) pk−1

1 (1− θ1)(1− pk−1
1 )

...

(1− θn) pk−1
n (1− θn)(1− pk−1

n )

 ≤


(1− θ1) (1− θ1)
...

(1− θn) (1− θn)



which holds for any k. Let ϕ :=


(1− θ1) (1− θ1)

...

(1− θn) (1− θn)

, then we can write

Λ(k−1) + (ΘΓ) Λ(k−2) + ...+ (ΘΓ)k−1Λ(0) ≤
[
I + (ΘΓ) + ...+ (ΘΓ)k−1

]
ϕ

As k goes to in�nity, the right-hand side converges to (I−ΘΓ)−1 ϕ. This implies that :

k−1∑
l=0

(ΘΓ)lΛ(k−1−l) ≤ (I−ΘΓ)−1 ϕ

Hence
∑k−1

l=0 (ΘΓ)lΛ(k−1−l) is convergent. Therefore, the matrix

Πk−1
l=0 M(l) =

 I 0∑k−1
l=0 (ΘΓ)lΛ(k−1−l) (ΘΓ)k−1


is also convergent.

Proof of Proposition 1.4

To show that the average opinion after k learning periods does not depend on the network,

we show that x̄(k) does not depend on γij for any i, j ∈ N .

x̄(k) =
1

n

∑
i

xi(k) where xi(k) = pk−1
i (1− θ)xP + θ

∑
j

γijxj(k − 1)

x̄(k) =
1

n

∑
i

pk−1
i (1− θ)xP + θ

∑
j

γijxj(k − 1)


=

∑
i p
k−1
i

n
(1− θ)xP +

θ

n

∑
i

∑
j

γijxj(k − 1)

=

∑
i p
k−1
i

n
(1− θ)xP +

θ

n

∑
j

(∑
i

γij

)
xj(k − 1)
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Since Γ is column stochastic
∑

i γij = 1 for all j ∈ N , hence

x̄(k) =

∑
i p
k−1
i

n
(1− θ)xP +

θ

n

∑
i

xi(k − 1)

=

∑
i p
k−1
i

n
(1− θ)xP + θx̄(k − 1)

which does not depend on γij and is identical to the average opinion when voters are

disconnected.

Proof of Proposition 1.5

Taking the derivative of k with respect to s we get:

∂k

∂s
=

ln ln θ
ln p

ln p
θ

p− θ
1− θ

n

(n− s)2
=

n(θ − p)
(n− s)(s(1− p)− n(1− θ)) ln p

θ

θ−p
ln p
θ
is always negative since if θ > p, p

θ < 1 and ln p
θ < 0, while if θ < p, θ − p < 0 and

ln p
θ > 0. Hence, sign

(
∂k
∂s

)
= −sign (s(1− p)− n(1− θ)).

s(1− p)− n(1− θ) < 0 ⇐⇒ n− s− nθ + sp > 0

which is the condition of existence for k in the balanced network. Therefore, it always

holds that ∂k
∂s > 0.

Conversely, if this condition does not hold, x̄(k) is increasing and the earliest disclosure

is optimal.

Proof of Proposition 1.6

We consider the di�erence between the belief of a supporter and that of a non-supporter

xs(k)− xm(k) =

(1− pk−1)(1− θ)xP +
θ(ρ− 1)

ρ+ 1
(xs(k − 1)− xm(k − 1))

=
k−1∑
l=0

(
θ(ρ− 1)

ρ+ 1

)l
(1− pk−1−l)(1− θ)xP

=

k−1∑
l=0

(
θ(ρ− 1)

ρ+ 1

)l
(1− θ)xP −

k−1∑
l=0

(
θ(ρ− 1)

p(ρ+ 1)

)l
pk−1(1− θ)xP
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De�ne x and y such that x := θ(ρ−1)
ρ+1 and y := θ(ρ−1)

p(ρ+1) . We notice that p = x
y and we

substitute by x and y:

=
k−1∑
l=0

xl(1− θ)xP −
k−1∑
l=0

yl
(
x

y

)k−1

(1− θ)xP

= (1− θ)xP
k−2∑
l=0

[
xl −

(
x

y

)k−1

yl

]

= (1− θ)xP
[

1 + x+ ...+ xk−1 −
(
x

y

)k−1 (
1 + y + ...+ yk−1

)]

= (1− θ)xP
[

1−
(
x

y

)k−1

+ x

(
1−

(
x

y

)k−2
)

+ ...+ xk−2

(
1− x

y

)]

= (1− θ)xP
[

1− pk−1 +
θ(ρ− 1)

ρ+ 1

(
1− pk−2

)
+ ...+

(
θ(ρ− 1)

ρ+ 1

)k−2

(1− p)

]
Comparing every two consecutive terms, we notice that their sum is positive:

1− pk−1 > 1− pk−2 and 1 >
θ(ρ− 1)

ρ+ 1
∀ρ

1− pk−3 > 1− pk−4 and

(
θ(ρ− 1)

ρ+ 1

)k−2

>

(
θ(ρ− 1)

ρ+ 1

)k−3

∀ρ

This clearly holds when the number of terms in the sum is even. While when it is odd, the(
θ(ρ−1)
ρ+1

)k−2
in the last term will have a positive power k− 2 (since in the �rst term it has

power 0), therefore it is also positive. Hence xs(k)− xm(k) > 0 for any ρ.

Proof of Proposition 1.7

First, we present the following Lemma that we will use to complete the proof of Proposition

1.7.

Lemma 1.6. The changes of beliefs of a supporter and a non-supporter with the level of

homophily ρ are such that ∂xs(k)
∂ρ + ∂xm(k)

∂ρ = 0.

Proof. ∂xs(k)
∂ρ = θ

(ρ+1)2 (xs(k − 1)− xm(k − 1)) + θρ
ρ+1

∂xs(k−1)
∂ρ + θ

ρ+1
∂xm(k−1)

∂ρ

∂xm(k)
∂ρ = θ

(ρ+1)2 (xm(k − 1)− xs(k − 1)) + θρ
ρ+1

∂xm(k−1)
∂ρ + θ

ρ+1
∂xs(k−1)

∂ρ

∂xs(k)

∂ρ
+
∂xm(k)

∂ρ
= θ

(
∂xs(k − 1)

∂ρ
+
∂xm(k − 1)

∂ρ

)

= θ2

(
∂xs(k − 2)

∂ρ
+
∂xm(k − 2)

∂ρ

)
= θk

(
∂xs(0)

∂ρ
+
∂xm(0)

∂ρ

)
= 0
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Now, we can show using the mean value theorem that, for two functions f(.) and g(.)

continuous at x0 and x1 such that x0 < x1 and f(x0) ≥ g(x0), then f ′(x) > g′(x) if and

only if f(x1) > g(x1). Suppose here that xs(k) = f(ρ) and xm(k) = g(ρ).

First, at ρ = 0, f(0) = (1− θ)xP + θxm(k− 1) and g(0) = pk−1(1− θ)xP + θxs(k− 1),

we can show that f(0) > g(0):

f(0)− g(0) =
(1− θ)xP

(
p− pk + (1− p)(−θ)k + θ(1− pk)

)
(1 + θ)(p+ θ)

This is positive since: if k is even, all terms are positive; while when k is odd p− pk +

(1− p)(−θ)k + θ(1− pk) = p(1− pk−1)− θk + pθk + θ− θpk = p(1− pk−1) + θ(1− θk−1) +

θp(θk−1 − pk−1) which is positive since p(1− pk−1) > θp(θk−1 − pk−1).

Since we have shown that f(ρ) > g(ρ), then ∂f(ρ)
∂ρ > ∂g(ρ)

∂ρ .

However we have shown that ∂f(ρ)
∂ρ + ∂g(ρ)

∂ρ = 0. This leads to ∂f(ρ)
∂ρ −

∂g(ρ)
∂ρ = 2∂f(ρ)

∂ρ >

0 =⇒ ∂f(ρ)
∂ρ > 0 and ∂g(ρ)

∂ρ < 0. Therefore ∂xs(k)
∂ρ + ∂xm(k)

∂ρ = 0 , ∂xs(k)
∂ρ > 0 and ∂xm(k)

∂ρ < 0.

Proof of Proposition 1.8

First we investigate how x̃(k) changes with a:

∂x̃(k)

∂a
= xs(k)− xm(k)

which is weakly positive.

Second, in order to �nd how the weighted average opinion changes with p, we check

how the opinions of supporters and non-supporters change with p:

∂xs(k)

∂p
=

θ

ρ+ 1

[
ρ
∂xs(k − 1)

∂p
+
∂xm(k − 1)

∂p

]

∂xm(k)

∂p
= (k − 1)pk−2(1− θ)xP +

θ

ρ+ 1

[
∂xs(k − 1)

∂p
+ ρ

∂xm(k − 1)

∂p

]
We use induction to show that both are positive. It holds for k = 38:

∂xs(3)

∂p
=

(1− θ)θxP

1 + ρ
> 0 and

∂xm(3)

∂p
=

(1− θ)xP (θρ+ 2p(1 + ρ)

1 + ρ
> 0

Assuming it holds for k − 1, then ∂xs(k)
∂p and ∂xm(k)

∂p are both positive, implying that x̃(k)

is positive as well.

8For k = 2, ∂xs(3)
∂p

= 0 and ∂xm(3)
∂p

= xP (1 − θ) > 0.
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Proof of Proposition 1.9

We take the limit of the opinions as k goes to in�nity limk→+∞ xs(k) = xP

2

{
2(1+θ+ρ−θρ)−2θ

1+θ+ρ−θρ

}
=

1+ρ(1−θ)
1+θ+ρ(1−θ)x

P

limk→+∞ xm(k) = θ
1+θ+ρ(1−θ)x

P 9

limk→∞ x̃(k) = a limk→+∞ xs(k) + (1− a) limk→+∞ xm(k) = a(1+ρ(1−θ)−θ)+θ
1+θ+ρ(1−θ)

Proof of Proposition 1.10

First, in order to complete this proof, we prove the following lemma which applies to any

network with equitable partition.

Lemma 1.7. The changes of beliefs of a supporter and a non-supporter between two levels

of homophily ρ1 > ρ2 are such that ∆xs(k) + ∆xm(k) = 0.

Proof. This can be done by induction. First, it is assumed that xs(0) = xm(0) = 0;

this implies that xs(1) = xm(1) = (1 − θ)xP . At k = 2, xs(2) = (1 + θ)(1 − θ)xP and

xm(2) = (p+ θ)(1− θ)xP . Thus, for k = 0, 1, 2, the homophily parameter does not appear

and ∆xs(k) = ∆xm(k) = 0. For k = 3, homophily has a role in the beliefs and we have:

xs(3) = (1 + θ2)(1− θ)xP + θ
ρ+ p

ρ+ 1
(1− θ)xP

and

xm(3) = (p2 + θ2)(1− θ)xP + θ
1 + ρp

ρ+ 1
(1− θ)xP

For ρ1 > ρ2,

∆xs(3) = θ(1− θ)xP
(
ρ1 + p

ρ1 + 1
− ρ2 + p

ρ2 + 1

)
= θ(1− θ)xP (1− p)(ρ1 − ρ2)

(ρ1 + 1)(ρ2 + 1)

= −θ(1− θ)xP (1− p)(ρ2 − ρ1)

(ρ1 + 1)(ρ2 + 1)
= −∆xm(3)

.

Assume this is true for k − 1: ∆xs(k − 1) + ∆xm(k − 1) = 0. Want to show that it

holds for k:

∆xs(k) + ∆xm(k)

= θ

{
1

ρ1 + 1
[ρ1xs(k − 1)cρ1 + xm(k − 1)cρ1]− 1

ρ2 + 1
[ρ2xs(k − 1)cρ2 + xm(k − 1)cρ2]

+
1

ρ1 + 1
[xs(k − 1)cρ1 + ρ1xm(k − 1)cρ1]− 1

ρ2 + 1
[xs(k − 1)cρ2 + ρ2xm(k − 1)cρ2]

}
9Both limits of xs(k) and xm(k) as k goes to in�nity are bounded below by 0 and bounded above by

xP .
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= θ [∆xs(k − 1) + ∆xm(k − 1)] = 0

Next, We prove ∆xs(k) > 0, then given that ∆xm(k) = −∆xs(k) we can deduce that

∆xm(k) < 0 .

This is done by induction. For k = 0, 1, 2, ∆xs(k) = 0.

For k = 3, ∆xs(3) = θ 2+p
3 (1− θ)xP − θ

1
2

+p
1
2

+p
(1− θ)xP = 1

3(1− p)θ(1− θ)xP > 0.

For k = 4, ∆xs(4) = 1
3(1− p2)θ(1− θ)xP > 0.

We assume that it is true for k− 1 and k, and ∆xs(k− 1),∆xs(k) > 0. Want to show that

it holds for k + 1.

From the de�nition of xs(k) we can write,

∆xs(k) = xs(k)cρ=2 − xs(k)cρ= 1
2

=
θ

3

(
∆xs(k − 1) + ∆xm(k − 1) + xs(k − 1)cρ=2 − xm(k − 1)cρ= 1

2

)
=
θ

3

[
xs(k − 1)cρ=2 − xm(k − 1)cρ= 1

2

]
> 0

as per the assumption above. This is equivalent to xs(k − 1)cρ=2 − xm(k − 1)cρ= 1
2
> 0.

At k + 1, ∆xs(k + 1) = θ
3

[
xs(k)cρ=2 − xm(k)cρ= 1

2

]

=
θ

3

{
(1− pk)(1− θ)xP +

θ

3
(2xs(k − 1)cρ=2 + xm(k − 1)cρ=2)

−2θ

3

(
xs(k − 1)cρ= 1

2
+

1

2
xm(k − 1)cρ= 1

2

)}

=
θ

3

{
(1− pk)(1− θ)xP +

θ

3
(2∆xs(k − 1) + ∆xm(k − 1))

}

=
θ

3

{
(1− pk)(1− θ)xP +

θ

3
(∆xs(k − 1))

}
> 0

Proof of Proposition 1.11

Using the mean value theorem, it can be shown that for two functions f(.) and g(.) con-

tinuous at x0 and x1 such that x0 < x1 and f(x0) ≥ g(x0), then f ′(x) > g′(x) if and

only if f(x1) > g(x1). Consider xs(k)cρ=2 = f(k) and xs(k)cρ=1 = g(k). We know that

for k = 0, 1, 2, f(k) = g(k). Since we have shown that ∆xs(k) > 0 for k > 3, then

∂xs(k)cρ=2

∂k >
∂xs(k)cρ=1

∂k . This implies that when xs(k)cρ=1 is maximised, xs(k)cρ=2 will be

positive and will reach its maximum later at a higher k.
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Proof of Corollary 1.2

Let ∆x̃(k) = x̃(k)cρ=1 − x̃(k)cρ=2. We determine �rst how the sign of ∆x̃(k) changes and

then we look at the optimal k for each degree of homophily ρ.

∆x̃(k) = axs(k)cρ1 + (1− a)xm(k)cρ1 − axs(k)cρ2 − (1− a)xm(k)cρ2

= a∆xs(k) + (1− a)∆xm(k)

= (2a− 1)∆xs(k)

which is positive whenever a > 1
2 and negative for a < 1

2 . For k = 0, 1, 2, ∆x̃(k) = 0 since

∆xs(k) = 0, and for a > 1
2 , ∆xs(3) > 0, implying that ∆x̃(3) > 0. Therefore, for a > 1

2 ,

∂x̃(k)cρ=2

∂k >
∂x̃(k)cρ=1

∂k .
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2.1 Introduction

Financial institutions carry out various transactions with each other, including risk�sharing

and insurance. The architecture of the network of transactions between institutions can

support �nancial stability because it enables them to share funding or transfer risk. But

these linkages can also facilitate the di�usion of shocks through the system, due to chains

of default and the domino e�ect. This is referred to as systemic risk. Systemic risk is

costly for individuals, institutions and economies, as demonstrated by the last �nancial

crisis. The obvious need for a stable �nancial system has led to a signi�cant interest in

policies that could reduce systemic risk and mitigate contagion.

This paper introduces a model of default in �nancial networks. We study a two-period

economy where agents have a positive endowment in each period. The endowment rep-

resents agents' cash �ows from outside the �nancial system. We assume that agents hold

each other's �nancial liabilities and that this constitutes the network between them. These

liabilities mature in the second period, and we assume that agents' second-period endow-

ments are small and deterministic, so that they face a risk of default. More speci�cally, the

liabilities structure results in cyclical payments interdependencies that are simultaneously

computed according to the clearing mechanism described in the seminal contribution of

Eisenberg and Noe (2001). The clearing vector satis�es three criteria:

• debt absolute priority, which stipulates that liabilities are paid in full in order to

have positive equity;

• limited liability, which means that the payment made by each agent cannot exceed

its in�ows;

• equal seniority of all creditors, which implies pro rata repayments.

Agents can avoid default by storing part of their �rst-period endowment. Due to comple-

mentarities in the payments, the decision taken by one agent to store part of his endowment

exerts a positive externality on the other agents to whom he is connected.1 We show that

the strategic interactions in the �nancial system modelled here can be investigated as a

coordination game, called the default game, where agents' decisions are simply whether to

default or not. It is well known in the literature that coordination games will in general

yield multiple pure�strategy Nash equilibria and that the set of pure�strategy Nash equi-

libria has a lattice structure � in particular, there are two extreme pure�strategy Nash

equilibria. In our setting, the best equilibrium is the one where the largest number of

1The non-storage in our model can be equivalently interpreted as a bank run in the in�uential Dia-
mond�Dybvig model.
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agents choose the maximal action Non-Default and the worst equilibrium is the one where

the largest number of agents choose the minimal action Default. In the paper, we relate the

multiplicity of Nash equilibria to the presence of a cycle of �nancial obligations. Then, we

develop a simple algorithm for �nding all Nash equilibria of the default game. While there

are easy algorithms for �nding the maximal and minimal equilibria and relatively easy

algorithms to compute all Nash equilibria in coordination games such as the default game

(see Echenique (2007)), the advantage of the algorithm developed in this paper is that

it relies on the �nancial network structure to inform the computation of Nash equilibria.

Algorithms that exploit the �nancial network structure such as the algorithm developed

in this paper, as well as quickly computing all Nash equilibria, provide useful information

on the strategic interactions between agents.

In this paper, we show that the problem of ine�cient coordination may arise in �n-

ancial networks. Similar to other areas in economics, the strategic complementarities of

payments due to the cyclical �nancial interconnections allow for the existence of multiple

Nash equilibria. This gives rise to the question of which one of these equilibria will be

the outcome of the underlying default game. From a policy perspective, given that inef-

�cient coordination might pose a severe economic problem, there is a need for �nancial

institutions fostering e�cient coordination of agents' decisions. Recently, central clearing

has become the cornerstone of policy reform in �nancial markets since it limits the scope

of default contagion. Our analysis shows that introducing a central clearing counterparty

(henceforth, CCP) also allows agents playing di�erent actions at di�erent Nash equilibria

to coordinate on the e�cient equilibrium at no additional cost. As a consequence, our

result reinforces the key role CCP's play in stabilising �nancial markets.

This paper is structured as follows. In Section 2.2, we go over the related literature.

Then we describe the model and show the existence of a Nash equilibrium in Section 2.3.

We develop an algorithm to �nd all Nash equilibria in Section 2.4 and Section 2.5 provides

some policy implications of central clearing. Section 2.6 concludes the paper, followed by

an appendix devoted to the proofs.

2.2 Related Literature

The impact of the �nancial network structure on economic stability has been a subject

of ongoing interest since the last �nancial crisis (of 2008). The seminal contributions of

Allen and Gale (2000) and Eisenberg and Noe (2001) were �rst to acknowledge that the

�nancial network structure determines default contagion, and would serve as a basis for

many subsequent contributions.
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Allen and Gale (2000) investigate how symmetric �nancial networks lead to contagion,

where links represent sharing agreements. Their key �nding is that incomplete �nancial

networks are less resilient and more vulnerable to contagion than their complete counter-

parts. Eisenberg and Noe (2001) develop a static model of default contagion in a �nancial

network where agents hold each other's �nancial liabilities and the activities and operations

of each agent are condensed into one value: the operational cash �ow. The repayment of

liabilities will be interdependent, since whether an agent defaults or not is a result of his

operational cash �ow as well as the payments he receives from other agents. Eisenberg and

Noe �rst prove the existence of a clearing payment vector that is unique under mild condi-

tions. They also provide an algorithm to compute the clearing vector, which is important

to predict chains of defaults.

Acemoglu, Ozdaglar and Tahbaz-Salehi (2015) extend the Eisenberg and Noe model

to accommodate agent exposure to outside shocks. They establish that up to a certain

magnitude of shocks, the more connected the �nancial network is, the more stable it is;

beyond this threshold, the connectedness of the network makes it more prone to contagion

and thus more fragile. Elliott, Golub and Jackson (2014) introduce two concepts of cross-

holdings that have distinctive and non-monotonic impact on default cascades. Integration,

which measures the dependence on counterparties, expands the extent of default contagion

but reduces the probability of the �rst failure; while diversi�cation, which measures the

heterogeneity of cross-holdings, increases the propagation of failure cascades but decreases

the exposure level among pairs of �nancial institutions. Cabrales, Gottardi and Vega-

Redondo (2017) investigate the optimal network structure that maximizes risk-sharing

bene�ts among interconnected �rms while decreasing their risk exposure. Other recent

contributions include Teteryatnikova (2014) and Csóka and Herings (2016).

Several approaches have been investigated to mitigate the domino e�ect in the �nancial

network, such as central clearing and identifying the most systemically relevant �nancial

institutions and then targeting them through cash injections. For instance, Demange

(2018), following a similar approach to Eisenberg and Noe (2001), develops a new measure,

called the threat index, which identi�es the most systemically relevant agents for optimal

targeted cash injection.

2.3 The Model

Consider a two-period (t = 1, 2) economy with N = {1, 2, ..., n} agents. Agent i's endow-

ment in the �rst period is z1
i ≥ 0 and in the second period is z2

i > 0. The endowment of

agent i in each period denotes the cash �ows arriving from outside the �nancial system.
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We assume that agents hold each other's liabilities, which mature in the second period.

More speci�cally, given two agents i, j ∈ N , let Lij ∈ R+ denote the liability that agent

i owes agent j. Then, agent i's total liabilities are Li =
∑

j∈N Lij . Meanwhile,
∑

j∈N Lji

is the total assets of agent i. Let α = (αij)i,j∈N denote the matrix of relative liabilities,

with entries αij =
Lij
Li

representing the ratio of the liability agent i owes to agent j over

the total amount of agent i's liabilities.

Each agent i can store an amount xi ∈
[
0, z1

i

]
from his �rst-period endowment and

receives an interest rate r > 0 on his storage. Given the storage strategies of agents

x = (xi)i∈N , let π
x = (πxi )i∈N denote the clearing payment vector, uniquely de�ned as in

Eisenberg and Noe (2001), such that for each agent i it holds that

πxi = min

z2
i + (1 + r)xi +

n∑
j=1

αjiπ
x
j ;Li

 .

This means that z1
i − xi denotes the equity of agent i in the �rst period and

z2
i + (1 + r)xi +

n∑
j=1

αjiπ
x
j − πxi

denotes the equity of agent i in the second period.

The utility function of agent i is Ui(e
1
i , e

2
i ) = e1

i ,+e
2
i , where e

1
i is the equity of agent i

at t = 1 and e2
i is the equity of agent i at t = 2. Therefore, the utility function of agent i,

given the storage strategies of agents x = (xi, x−i), is

Ui(z
1
i − xi, z2

i + (1 + r)xi +
n∑
j=1

αjiπ
x
j − πxi ) = z1

i + z2
i + rxi +

n∑
j=1

αjiπ
x
j − πxi .

2.4 Nash Equilibria of the Default Game

First, we investigate further the economy introduced above. Observe that each agent will

choose to store a positive amount of his �rst-period endowment if and only if he prefers

(is better o�) not to default; otherwise he will store nothing. If he prefers not to default,

since his utility is linear and the interest rate r > 0 he will store his entire �rst-period

endowment. Similarly, it is only the decision of an agent to default or not, rather than the

amount of storage, that a�ects the other agents. This is because, if he defaults, he will pay

out his total second-period equity and, if he does not default, he will pay his total liability,

neither of which is directly a�ected by his level of storage.

Therefore, the strategic interaction of agents in the economy can be investigated as a

binary coordination game with two actions (Default) = 0 and (Non-Default) = 1 among
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which agents must choose. Now, de�ne a threshold Ti (a−i) as the minimum amount agent

i must pay in the second period to avoid default, given other agents' actions a−i.

Proposition 2.1. The threshold Ti (a−i) is well-de�ned and decreasing in a−i.

Proof. The proof of Proposition 2.1, together with all our other proofs, appears in the

Appendix.

Proposition 2.1 shows that the threshold Ti (a−i) is well-de�ned. Observe that agent i

will choose to play 1 whenever

(1 + r)z1
i − Ti (a−i) ≥ z1

i .

Therefore, the best reply function of agent i can be written as follows:

Ψi (a−i) =


1 if rz1

i − Ti (a−i) ≥ 0

0 otherwise.

A pro�le of actions a∗ ∈ {0, 1}N is a Nash equilibrium if a∗i = Ψi

(
a∗−i
)
.

The default game introduced above corresponds to a binary game of strategic com-

plements. As de�ned in Topkis (1979) and Bulow, Geanakoplos and Klemperer (1985),

strategic complementarities arise if an increase in one agent's strategy increases the op-

timal strategies of the other agents.2

Theorem 2.1. There exists a pure�strategy Nash equilibrium of the default game.

Theorem 2.1 shows the existence of a pure�strategy Nash equilibrium. Understandably,

the existence of a pure�strategy Nash equilibrium follows from the strategic complement-

arities between agents' actions, since the decision of an agent not to default makes it easier

for other agents not to default too.

It is well known in the literature that a binary game of strategic complements will in

general have multiple pure�strategy Nash equilibria with a lattice structure. In particular,

this class of games has two extreme equilibria: the best equilibrium is the equilibrium

where the largest number of agents choose the maximal action (Non-Default) = 1 and the

worst equilibrium is the equilibrium where the largest number of agents choose the minimal

action (Default) = 0 .

For simplicity, for the remainder of this paper, we assume that at a Nash equilibrium

of the default game, no agent is indi�erent between (Non-Default) = 1 and (Default) = 0,

2See, Sobel (1988), Milgrom and Roberts (1990), Vives (1990), Echenique and Sabarwal (2003), Amir
(2005), Echenique (2007) and Barraquer (2013) for other economic applications of games of strategic
complements.
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which is likely to be the case.3 The following result highlights the connection between the

multiplicity of equilibria and the structure of the �nancial network.

Proposition 2.2. If the default game has multiple Nash equilibria then, the �nancial

network has cyclical obligations.

Proposition 2.2 shows that the presence of a cycle of �nancial obligations is generically

necessary for the multiplicity of Nash equilibria. Eisenberg and Noe (2001) term this

phenomenon cyclical interdependence and illustrate it as follows: �A default by Firm A

on its obligations to Firm B may lead B to default on its obligations to C. A default by C

may, in turn have a feedback e�ect on A.�
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Figure 2.4.1: Cyclical Obligations
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Figure 2.4.2: Unidirectional obligations

In the following, we will show that the close relationship between the multiplicity of

Nash equilibria and the cyclical �nancial interconnections is useful to solve for pure�strategy

Nash equilibria of the default game. More speci�cally, we will provide an algorithm to �nd

all pure�strategy Nash equilibria of the default game.

Recall that the �nancial network is strongly connected if there is a path of obligations

between all pairs of agents. A strongly connected component (henceforth, SCC) of the

�nancial network is a maximal4 strongly connected subnetwork.

3That is, this always holds except for a �nite set of �rst-period endowments.
4In the sense that it is not properly contained in a larger SCC.
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2.4.1 A �nancial network with a unique SCC

First, for simplicity, we consider the case of a �nancial network with a unique strongly

connected component. We will use the following notion of ear decomposition of a network,

which is useful given its close relationship to network connectivity. An ear decomposition

of a network is a partition of the set of agents into an ordered collection of agent-disjoint

simple paths, called ears. More precisely, an ear decomposition of a network is a partition

of the agents into E0, E1, . . . , Ep such that

• E0 = {v0} is a single agent;

• for each h = 1, . . . , p, it holds that Eh = {v1h , · · · , vkh} is a directed path such that

the endpoints of each Eh�that is, v1h and vkh�are in E1∪. . .∪Eh−1 but the internal

agents of Eh�that is, v2h , · · · , v(k−1)h�are not in E1 ∪ . . . ∪ Eh−1.
5

A �nancial network is strongly connected if and only if it has an ear decomposition. In

the following, we will re�ne further the concept of ear decomposition. Given an ear Eh,

we say a subset of consecutive internal agents Rth = {vth , · · · , vsh} is a rim of the ear if

v(t−1)h is an ear's �rst agent and vsh is either an ear's �rst agent or Eh's penultimate agent

and none of the other agents in the rim is an ear's �rst agent. Hence the internal agents of

each ear can be partitioned into a collection of rims. Observe also that the last ear always

has a unique rim. In interpretation, the concept of rim represents a useful re�nement of

the ear decomposition since the decision of agents outside a rim are a�ected only by the

last non�defaulting agent in the rim.

In the following, we will rely on this re�nement of the ear decomposition to provide

an algorithm to �nd all pure�strategy Nash equilibria of the default game of a �nancial

network with a unique SCC.

The algorithm, which we call USCCNE, goes as follows:

1. For each rim in the network, assume that each agent in the rim is the last non�defaulting

agent or that all agents in the rim are defaulting.

2. For every case in (1), start from the last ear Ep and repeat the following until reaching

the �rst ear E0: for each ear delete the internal agents and update the in�ows of the

a�ected (intercepting) agents.

3. For every case of assumed actions in (1), start from the single agent v0 in E0 and

move along all agents in every ear in the opposite direction; for each agent compute,

the optimal action while taking feedback into consideration.6

5Each Eh (h = 1, . . . , p) is called an ear.
6That is, for agent i it holds that inflowi = aiπi + bi, which vary according to the case considered.
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In interpretation, the USCCNE algorithm assumes for each rim that a particular agent

is the last non-defaulting agent or that all agents in the rim default. Then start from

the last ear and repeat the following until reaching the �rst ear: delete all the internal

agents of each ear and update the in�ows of all a�ected (intercepting) agents. Finally, the

algorithm navigates every ear in the opposite direction computing the optimal actions of

all agents. The Nash equilibria correspond to the iterations where all the assumed actions

are satis�ed.

The key feature of the USCCNE is that it exploits the fact that, in a given rim, all nodes

except the �rst one have only one in-going link. The algorithm consists of computing the

di�erent possible in�ows to each last node in every rim, by considering the di�erent actions

by the previous nodes, its debtors. For every case that represents a set of assumptions, we

compute the action of the last node, starting from the last ear Ep and moving towards E0.

After computing the actions of these nodes, we move in the opposite direction, starting

from E0 to check whether the assumptions in each case are veri�ed. When they are, it is

a Nash Equilibrium.7

The next example illustrates the default game.

Example 1. Consider an economy of ten agents connected through their ownership of

each other's liabilities, among which only the �rst nine agents are strategically relevant.

Agents' endowments in the �rst period are z1 = (25, 25, 40, 40, 60, 40, 40, 70, 24) and in the

second period are z2 = (3, 3, 3, 3, 3, 3, 3, 3, 3) and the interest rate is r = 0.1. All agents

have the same utility function Ui(e
1
i , e

2
i ) = e1

i + e2
i . The �nancial liabilities of agents to

each other are illustrated in the �nancial network in Figure 2.4.3.

This �nancial network contains a unique SCC, {1, 2, 3, 4, 5, 6, 7, 8, 9}, which has four

ears, E0 = {1} ;E1 = {1, 2, 3, 4, 5, 1};E2 = {3, 6, 7, 8, 2}; and E3 = {7, 9, 1}, and �ve rims,

R2 = {2, 3}; R4 = {4, 5}; R6 = {6, 7}; R8 = {8}; and R9 = {9}.

In order to compute the Nash equilibria, we apply the USCCNE algorithm described

above. To illustrate this for a particular case we assume that all agents in all rims are

defaulting except R4 = {4, 5}, where 5 is the last non-defaulter. Deleting the internal

agents of ear E3 and updating the in�ows of the (intercepting) agent 1 it holds that

InflowE3
1 =

1

9
π7 + 3.

Deleting the internal agents of ear E2 and updating the in�ows of the (intercepting) agents

7Observe that the USCCNE algorithm also provides a bound on the number of Nash equilibria.
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Figure 2.4.3: A �nancial network with ten agents

1 and 2 it holds that

InflowE3,E2
1 =

4

45
π3 +

11

3
and InflowE3,E2

2 = π1 +
8

45
π3 +

31

15
.

Finally, deleting the internal agents of ear E1 and updating the in�ows of the (intercepting)

agent 1 it holds that

InflowE3,E2,E1
1 =

4

37
π1 + 24.53

Since z2
1 = 3 and L1 = 35 it follows that the threshold agent 1 must at least pay in the

second period in order to avoid default is 3.68. Since rz1
1 = 2.5 < 3.68, it follows that agent

1 chooses to default and in this case

π1 = InflowE3,E2,E1
1 + z2

1 =
4

37
π1 + 27.53 = 30.86.

Repeating the same procedure, will allow us to compute the actions and the payments of

all other agents in the economy and check whether we have a Nash equilibrium.

Considering all the cases, we �nd three Nash equilibria: the best equilibrium 1, 1, 1, 1, 1, 1, 1, 1, 1,

the intermediate equilibrium 0, 0, 0, 1, 1, 0, 0, 0, 0, and the worst equilibrium 0, 0, 0, 0, 0, 0, 0, 0, 0,

which we illustrate in Figures 2.4.4-2.4.6.
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Figure 2.4.4: The best equilibrium
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Figure 2.4.5: The intermediate equilibrium
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Figure 2.4.6: The worst equilibrium

2.4.2 Arbitrary �nancial network

Now we investigate the case of an arbitrary �nancial network. Recall that an arbitrary

�nancial network can be transformed into a directed acyclic graph (henceforth, DAG)�that

is, a network with no cycles�by contracting each SCC into a single large node (see Figures

2.4.7-2.4.8).

The algorithm described here (MSCCNE) is a generalisation of USCCNE. It consists of

applying the USCCNE to each SCC in any given arbitrary network starting by the SCCs

with no incoming link from any outside node or group of nodes, which are the SCCs that

are not impacted by the other nodes in the network, and moving along the chain of SCCs.

In the following, we will rely on transitive reduction, which is a uniquely de�ned op-

eration on a DAG, to compute the pure�strategy Nash equilibria of a �nancial network

with multiple SCCs. A transitive reduction of a DAG is the network representation with

the fewest possible links that preserves the chains of default of the original �nancial net-

work(see Figure 8). It is hence constructed by removing all the links that are unnecessary

for the chain of default to be realised and only the nodes which were connected by a path

in the original network remain connected in the transitively reduced network. For instance,

if A links to B, and B links to C, then the transitive reduction removes the link from A

to C, if it exists.

Observe that, from the minimality of links in the transitive reduction, there exists a

unique partition of the set of agents W = {W1, . . . ,Wk} such that W1 corresponds to the
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SCCs with no incoming links, W2 corresponds to the SCCs with only incoming links from

W1, W3 corresponds to the SCCs with only incoming links from W1 ∪W2, and so on.

Then, the algorithm USCCNE can be easily extended to compute the Nash equilibria

with multiple SCCs. The algorithm, which we call MSCCNE, goes as follows:

1. Apply USCCNE to �nd all Nash equilibria for each SCC in W1.

2. For each product of Nash equilibria of SCCs in W1, apply USCCNE to �nd all Nash

equilibria for each SCC in W2.

3. For each product of Nash equilibria of SCCs in W1 ∪W2, apply USCCNE to �nd all

Nash equilibria for each SCC in W3.

4. Repeat the procedure until visiting all the elements of the partition W.

a1 a2

a3a4

b1

b2b3

b4b5

c1c2

c3

e1e2

e3

e4 e5

d1

Figure 2.4.7: Example of a DAG
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Figure 2.4.8: Condensation of the DAG

A B

C

ED

Figure 2.4.9: Transitive reduction of the DAG

The MSCCNE algorithm is a simple algorithm that exploits a network decomposition

technique to �nd all the pure�strategy Nash equilibria of a �nancial network. It is worth

noting that the MSCCNE algorithm can be easily adapted to compute the clearing payment

vector of Eisenberg and Noe (2001).

Corollary 2.1. Assume that the �rst-period endowment of each agent i is zero�that is,

z1
i = 0. Then the MSCCNE algorithm computes the clearing payment vector in Eisenberg

and Noe (2001).

Recall that the clearing payment vector of Eisenberg and Noe (2001) is unique under

mild conditions. Hence the existence of cyclical �nancial interconnections, while necessary

for multiple equilibria, is not su�cient.

At the heart of the seminal contribution of Eisenberg and Noe (2001) lies the elegant

�ctitious default algorithm that computes the unique clearing payment vector. The �c-

titious default algorithm goes as follows. First, determine the set of agents who cannot

ful�l their obligation, even when we assume that all agents receive their due payments.

These agents will be called the �rst wave of default. Then, assume that the agents in the
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�rst wave of default pay their liabilities pro rata and the new defaulting agents will be

called the second wave of default and so on until the algorithm terminates. In this way,

the �ctitious default algorithm produces a natural measure of systemic risk, which is the

number of waves required to induce a given agent to default.

Echenique (2007) provides the most e�cient algorithm for computing all pure�strategy

Nash equilibria in the class of games of strategic complements, of which the default game is

a special case. The algorithm elegantly checks whether there is another Nash equilibrium

once the smallest and largest pure�strategy Nash equilibria are computed from classical

algorithms (for example, Topkis (1979)).

While each of the above algorithms is clearly interesting in many aspects, arguably,

the advantage of the MSCCNE algorithm developed in this paper is that it relies on the

�nancial network architecture to compute the Nash equilibria. Generally, algorithms that

exploit the �nancial network structure such as the algorithm developed in this paper,

as well as having a clear computational advantage, provide valuable information on the

strategic interactions among agents, as we will show below.

2.5 Policy Implications of central clearing

From a policy perspective, in view of the multiplicity of Nash equilibria of the default

game, there is the central policy question of equilibrium selection. In particular, it may

be desirable to implement the best equilibrium in order to achieve �nancial stability and

minimise the cost of default.

Given the best and the worst equilibria, agents in the network can be classi�ed into

three types:8

1. agents that choose 0 in the worst equilibrium and 1 in the best equilibrium;

2. agents that choose 0 in the worst equilibrium and 0 in the best equilibrium;

3. agents that choose 1 in the worst equilibrium and 1 in the best equilibrium.

Note that agents of type (2) and (3) are not strategically relevant since they play the

same action in the worst and the best equilibrium. Actually, we could construct a reduced

�nancial network containing only agents of type (1). To do so, we �rst eliminate all

outgoing links emanating from agents of type (3) and, since none of them defaults, add

their liabilities pro rata to the cash �ow of the agents intercepting their outgoing links. As

for agents of type (2), given that they default and pay their in�ows�i.e. their cash �ow and

the payments they receive from their debtors�they can be eliminated from the network

8Obviously, it is not possible for an agent to choose 1 in the worst equilibrium and 0 in the best.
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by adding their cash �ow to the cash �ow of their creditors pro rata and by extending their

ingoing liabilities links to their creditors pro rata so that the new liabilities directly link

between their debtors and their creditors.

Recently, CCP has become increasingly the cornerstone of policy reform in �nancial

markets. Introducing a CCP in the �nancial network modi�es the structure of the �nancial

network: each liability between a debtor and a creditor is erased and replaced by two new

liabilities�one liability between the debtor and the CCP, and another one between the

CCP and the creditor. As a consequence, one of the key bene�ts of central clearing is that,

by breaking down the cyclical connections of �nancial liabilities, it reduces the aggregate

level of default exposure, which in turn reduces default contagion.

There is a growing literature which investigates the bene�ts of central clearing. Du�e

and Zhu (2011) show that CCP's reduce signi�cantly the counterparty risk even when

clearing across multiple derivative classes. Zawadowski (2013) suggests that a CCP elim-

inates ex ante own default externalities by making banks contribute to the insurance of

counterparty risk in the form of a guarantee fund. In other respect, Tirole (2011) ar-

gues that centralisation should be encouraged and CCP's enhance transparency and allow

for multilateral netting. Acharya and Bisin (2014) study how the lack of transparency

between agents sharing default risk produce counterparty risk externality and show that

this externality disappears when introducing a centralized clearing mechanism which en-

sures transparency. They prove that the main advantage of central clearing is enhancing

the aggregation of information.

The following proposition points out another potential bene�t of introducing central

clearing in �nancial markets.

Proposition 2.3. Introducing a CCP in each SCC of the reduced �nancial network achieves

the best equilibrium in the default game at no additional cost.

Proposition 2.3 shows that when a CCP intermediates the liabilities of each SCC of

the reduced �nancial network,9 the best equilibrium is achieved and the CCP is budget

neutral. As a consequence, in addition to reducing default contagion by eliminating the

cyclical �nancial interconnections, central clearing can also serve as a coordination device

that achieves the best equilibrium of the default game.

The following example illustrates this point.

Example 2 Consider an economy of six agents connected through their ownership of each

other's liabilities, among which only the �rst �ve agents are strategically relevant. Agents'

endowments in the �rst period are z1 = (22, 22, 75, 170, 100) and in the second period are

9That is, the �nancial network with only strategic relevant agents.
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Figure 2.5.1: A �nancial network with �ve agents

z2 = (3, 3, 3, 3, 3) and the interest rate is r = 0.1. All agents have the same utility function

Ui(e
1
i , e

2
i ) = e1

i + e2
i . The �nancial liabilities of agents to each other are illustrated in the

network in Figure 2.5.1.

This �nancial network contains a unique SCC {1, 2, 3, 4, 5}. To compute the Nash

equilibria, we apply the USCCNE algorithm described above. We �nd three Nash equi-

libria�the best equilibrium 1, 1, 1, 1, 1, the intermediate equilibrium 0, 0, 0, 1, 1, and the

worst equilibrium 0, 0, 0, 0, 0�which we illustrate in Figures 2.5.2-2.5.4.
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Figure 2.5.2: The best equilibrium
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Figure 2.5.3: The intermediate equilibrium
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Figure 2.5.4: The worst Equilibrium
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Adding a CCP will result in a new �nancial network as shown in Figure 2.5.5, with the

following liabilities vector:

L̃ = (5, 5, 10, 10, 10,−40) .

Given that there are no feedback e�ects in the presence of the CCP, the minimum cash

�ow for an agent i to escape default is equal to the new liability L̃i. Therefore, after the

introduction of a CCP, it is easy to check that the best equilibrium is implemented at no

additional cost since the in�ows and out�ows of CCP are equal.

1 2

3

45

6 CCP

5 5

10

1010

40

Figure 2.5.5: Adding a CCP

2.6 Conclusion

This paper shows that the introduction of a CCP allows agents playing di�erent actions

at di�erent Nash equilibria to achieve the best equilibrium at no additional cost. As

a consequence, central clearing can serve as a coordination device in �nancial markets.

While our result reinforces the key role CCP plays in �nancial markets, as highlighted

in several important contributions by Du�e and Zhu (2011), Tirole (2011), Zawadowski

(2013) and Acharya and Bisin (2014), it remains to be seen whether other policies can be

designed to minimise the number of defaults, such as identifying key agents and targeting

them through either cash injection or minimum endowment requirement.
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Appendix

Proof of Proposition 2.1

Recall that the default game corresponds to a binary coordination game with two actions

(Default) = 0 and (Non-Default) = 1 among which agents must choose.

First, for each agent i we will show that Ti (a−i) is well-de�ned given other agents'

actions a−i ∈ {0, 1}N−1. To do so, for each agent i we consider an auxiliary economy with

a modi�ed network of liabilities, where we eliminate all outgoing links emanating from agent

i and add his liabilities pro rata to the cash �ow of the agents intercepting his outgoing

links. Hence, the matrix of relative liabilities in the auxiliary economy is α̂ = (α̂kj)k,j∈N ,

where α̂kj = αkj if k 6= i and α̂kj = 0 otherwise. Moreover, the (augmented) second-period

endowment of agent j in the auxiliary economy is ẑ2
j = z2

j + αijLi.

Now, given other agents' actions a−i, let xa−i = (x
a−i
j )j∈N denote the agents' storage

strategies, where x
a−i
j = z1

j for each agent j 6= i such that aj = 1, and x
a−i
j = 0 otherwise.

Let also πxa−i
= (πx

a−i
j )j∈N denote the clearing payment vector, uniquely de�ned as in

Eisenberg and Noe (2001), such that for each agent j it holds that

πx
a−i

j = min

{
ẑ2
j + (1 + r)x

a−i
j +

n∑
k=1

α̂kjπ
xa−i
k ;Lj

}
.

Therefore, since x
a−i
i = 0 it holds that

Ti (a−i) = max

Li − z2
i −

n∑
j=1

α̂jiπ
xa−i
j ; 0

 . (2.6.1)

Hence, the threshold Ti (a−i) is well-de�ned.

Moreover, it follows from Lemma 5 in Eisenberg and Noe (2001) (see, also, Theorem

6 in Milgrom and Roberts (1990)) that πxa−i
is increasing in xa−i , which, in turn, is

increasing in a−i. Hence, it follows from (2.6.1) that the threshold Ti (a−i) is decreasing in

a−i.

Proof of Theorem 2.1

Since the threshold Ti (a−i) is decreasing in a−i it follows that the best reply function of

agent i

Ψi (a−i) =


1 if rz1

i − Ti (a−i) ≥ 0

0 otherwise
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is increasing in a−i. By the Knaster�Tarski Theorem, there exists a �xed point of the

following map:

Ψ : {0, 1}N −→ {0, 1}N

Ψ (a) = (Ψ1 (a−1) , ...,Ψn (a−n)) ,

which will be a Nash equilibrium of the default game.

Proof of Proposition 2.2

Suppose not�that is, the default game has multiple equilibria and the �nancial network

does not have cyclical obligations. Let R denote the set of agents who play 0 in the worst

Nash equilibrium and 1 in the best Nash equilibrium. Then the subnetwork induced by R

contains an agent i that does not have any ingoing link. As a consequence, the in�ow of

agent i does not change between the worst equilibrium and the best equilibrium, and as a

result agent i will not change his choice in the worst equilibrium and the best equilibrium.

This is a contradiction.

Proof of Proposition 2.3

Adding a CCP in the middle of the �nancial network will net out the liabilities and will

sort agents into two types: debtors and creditors to the CCP. Let node 0 represent the

CCP, and L̃i0 the liabilities to/from the CCP such that

L̃i0 =
∑
j∈N

Lij −
∑
j∈N

Lji.

Hence, if L̃i0 is positive (resp. negative), agent i is a debtor (resp. creditor) to the CCP.

Since the best equilibrium can be reached, it follows that whenever agent i receives all

the liabilities from his debtors, he will choose not default. Therefore, it holds that

z2
i + (1 + r) z1

i +
∑
j∈N

Lji ≥
∑
j∈N

Lij ,

which implies

z2
i + (1 + r) z1

i ≥ L̃i0.

Hence, the non-default condition is satis�ed for each agent in the network with liabilities

intermediated by the CCP and the best equilibrium is reached.
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3.1 Introduction

Financial crises, and in particular the crisis of 2008, have revealed that the composition

of the �nancial systems is of paramount importance to �nancial stability. Furthermore,

interconnections and links among di�erent �nancial institutions, such as banks (commercial

and investment banks), hedge funds, insurance and reinsurance companies, and various

�nancial intermediaries, can be conducive to the di�usion of shocks and defaults via domino

e�ect. This risk of shock-waves contagion and the possible collapse of the system, caused

by the default of one or more �nancial institutions is known as systemic risk. This kind of

failure has damaging short-term and long-term e�ects that could possibly hit the economy

as a whole. For these reasons, systemic risk has been the subject of ongoing interest for

researchers as well as policymakers.

Di�erent institutions in the �nancial sector are connected to each other through claims,

obligations and cross-holdings. Interbank markets allow banks to borrow from each other

when su�ering from liquidity shortages and negative shocks. Essentially, the value of a

bank issuing a liability depends not only on its own �nancial health, but also on the

payments it receives from its debtors, which in turn depend on the payments they receive

from their own debtors, even though the bank, when making a decision, can only assess

the situation of its immediate debtors, and not that of other institutions whose defaults

and failure to repay debts might lead to its own default. In this sense, interdependencies

within the �nancial system are key to economic and �nancial outcomes.

The aim of this chapter is to investigate the multiplicity of channels of exposure among

�nancial institutions that are part of a single �nancial network. An important channel

of systemic risk and shock contagion, albeit one that has not been investigated to the

same extent as liabilities, is credit lines � that is, promised payments or future potential

liabilities. A negative shock to an organisation will compromise its ability to honour its

commitments and to issue new obligations. The potential debtor-institutions, receivers of

credit lines, take �nancial or operational decisions based on the contingent credit lines they

were granted, and cutting back such funding opportunities would be costly for them.

The systemic importance of credit lines arises from their fragility in view of their

dependence not only on the failure of potential creditors, but also on minor shocks, contrary

to obligations, which, because of debt priority rules, are lost only in the event that the

debtor defaults. The main objective is to explore the role and to determine the payments

among banks in the network while following the standard conditions of priority of creditors

and potential debtors over shareholders, and limited liability. We also assume that banks

have equal priority � that is, no preferred creditor over others � and thus we adopt the

proportional payment mechanism. Moreover, we will drop the all-or-nothing payment

scheme: in the event that a bank fails to pay in full, it should distribute its available

resources proportionately to cover at least a part of its due payments.
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We introduce a �ctitious default algorithm analogous to the one introduced by the fun-

damental paper of Eisenberg and Noe (2001) by incorporating credit lines in the interbank

network. This algorithm aims to determine which institutions default, and is a way to

assess each institution's exposure. Furthermore, it permits us to identify the systemically

relevant organisations and to evaluate the threat they pose to the stability of the �nan-

cial network, namely the consequences of their default on the other (close and distant)

institutions.

At the level of policies that aim to reduce systemic risk and �nancial contagion, we

will explore central clearing before going over a motivation for targeting policies. First,

introducing a central clearing counterparty that executes multilateral netting of the in-

terbank liabilities and credit lines has a signi�cant impact on the �nancial network archi-

tecture. The position of every node, and the weight and direction of its due payments,

is changed and the payment mechanism, the equilibrium computation and the resulting

defaults change accordingly. With respect to targeting policies, we study granting a small

amount of cash to the systemically relevant �nancial institutions.

There is a growing literature that studies di�erent aspects and features of �nancial con-

tagion and systemic risk. Static �nancial networks have been studied using two approaches:

either by considering a regular or symmetric network structure that follows some particular

distribution, deriving general results and executing simulations to assess contagion (Nier

et al.(2007), Upper (2011)), or by examining how a given network fails and exploring its

properties (Eisenberg and Noe (2001), Cifuentes et al. (2005)). This chapter belongs to the

second category and considers a �nancial networks approach that uses graph theory and

its applications. In particular, we build on the model of Eisenberg and Noe (2001), which

introduces the notion of a clearing mechanism for the simultaneous payment of liabilities in

a static �nancial network using a �xed-point argument. Their results show that a clearing

vector always exists and is unique under mild conditions. In addition, they propose an

algorithm that computes the clearing vector and determines the chains of default.

Elliott, Golub and Jackson (2014) study how interdependencies between banks lead to

cascading defaults and failure. They establish two di�erent concepts representing two as-

pects of the interbank links and cross-holdings. The �rst one is integration, which identi�es

the dependence on the counterparties and consequently how much a �nancial institution

is susceptible to others and their risks; the second concept is diversi�cation, which repres-

ents the heterogeneity of the cross-holdings for each �nancial institution � in other words,

how many counterparties it has. These two concepts have distinctive and non-monotonic

impacts on cascades: integration expands the extent of contagion and hence defaults, but

reduces the probability of the �rst failure, while diversi�cation increases the propagation of

cascades throughout the network and at the same time decreases the exposure level among

pairs of �nancial institutions.

Acemoglu, Ozdaglar and Tahbaz-Salehi (2015) build on the model by Eisenberg and
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Noe (2001) to assess interbank exposure. They show that there is a certain threshold of

magnitude of shocks, such that below it, the increase in the connectedness in the �nancial

network makes it more stable. In contrast, when the shock exceeds this level, a higher

degree of connectedness reduces stability and makes the system weaker and more exposed

to contagion and risk.

Many papers focus on interbank liabilities as a channel of risk propagation without

analysing credit lines or other possible channels among �nancial institutions. A pertinent

paper by Muller (2006) investigates the credit lines in the Swiss interbank market as a

channel of �nancial contagion in addition to the liabilities exposure channel. Relying

on data and a simulated default situation, the �ndings indicate that both channels are

relevant and constitute a source of systemic risk. The author supposes that each bank can

have an opportunity to raise a credit line if it is short on liquidity and the corresponding

counterparties can provide it. In this way, she introduces this new channel of contagion

of defaults. In our chapter, the payment of the credit line is now enforced whenever

the potential creditor resources allow that, in contrast to Muller's assumption that the

bene�ting party can only use their credit line if they are defaulting or illiquid. We de�ne

an interbank network with two types of links, liabilities and credit lines, which both take

part in the clearing mechanism. The payment of credit lines is computed simultaneously

with the repayments of the debt, which results in one clearing vector.

The other part of the chapter examines possible policies that can be employed in order

to mitigate this domino e�ect in the �nancial network: central clearing and targeting

policies. The paper by Demange (2018) explores welfare improving policies in the interbank

liabilities network. Her approach follows Eisenberg and Noe (2001) in studying clearing

vectors and extends it by introducing a measure of the threat that a particular bank poses

to the level of repayments in the network, called the �threat index�, which identi�es the

most systemically relevant banks for which a targeted cash injection would be optimal.

This chapter also contributes to the literature studying the role of central clearing coun-

terparties (henceforth CCP) in �nancial systems. Several articles and papers published by

researchers and Central Banks have examined the e�ciency of CCPs. For instance, two pa-

pers issued by the Bank of England present a numerical approach by treating the �nancial

resources and the loss-allocation rules of a central counterparty, while other research, such

as that by Koeppl and Monnet (2010) and Du�e and Zhu (2011), has shown the theoretical

e�ciency of CCPs. Amini, Filipovic and Minca (2014) highlighted several theoretical im-

plications of the introduction of a central clearing counterparty to the network of interbank

liabilities. Their main results emphasise the positive impact of a CCP on aggregate surplus

in the network; nevertheless, its impact on systemic risk is uncertain. They provide con-

ditions on the guarantee fund of the CCP to enhance reduction of systemic risk. Acharya

and Bisin (2014) discuss the role of central clearing in improving information aggregation.

The rest of this chapter is organised as follows. We start by describing the theoretical

framework by de�ning a �nancial network for liabilities and credit lines in Section 3.2 and
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we prove the existence of a payment equilibrium. Section 3.3 describes the computation of

the payment vector using a �ctitious default algorithm. In Section 3.4 we explore central

clearing for liabilities alone, credit lines alone, and liabilities and credit lines. Section 3.5

discusses a motivation for cash injection, and Section 3.6 concludes the chapter.

3.2 The model

3.2.1 De�ning the network

Consider an economy E constituted of a setN = {1, 2, ..., n} of distinct �nancial institutions
which we call from now on banks for simplicity. The economy will be formalised by a

weighted directed network with n nodes. Each bank has a cash �ow zi that is a result of

operations conducted outside the �nancial system, which is assumed to be exogenous. We

assume that there is no external debt; in this sense, zi is non-negative and a bank does not

hold any liability outside the banking sector. Furthermore, the banks forming the �nancial

network are connected via two types of links: liabilities and credit lines. Initially, banks

exchange debt contracts within the network and make promises of providing credit lines.

We suppose that all liabilities and credit lines have the same maturity and all corresponding

payments should be o�set at the same point in time. It can also be thought of in terms

of banks signing debt contracts and promises of credit lines payments at any date prior to

the maturity date under consideration, and that this setting does not include any other

possible liabilities or credit lines maturing at future dates.

The interbank liabilities structure is represented by the n× n matrix L = (Lij) where Lij

is the magnitude of i's nominal liability to j, such that Lii = 0 ∀i. Each bank will have a

sum of their total liabilities � L̄i � that they will have to repay: L̄i =
∑

j Lij .

The relative liability is de�ned by taking the ratio of the liability from a given bank i to a

bank j over the total amount of liabilities of i to determine the proportion of i's debt to j

of i's total debt:

αij =


Lij
L̄i

if L̄i > 0

0 otherwise

with α being the corresponding n× n relative liabilities matrix .

Similarly, the interbank credit lines structure is represented by the n×n matrix C = (Cij)

where Cij is the magnitude of i's promised payment to j, and Cii = 0 ∀i.
The total amount of credit lines of bank i is C̄i =

∑
j Cij . In a similar way, we de�ne the

relative credit lines ratio for every node i as follows:

βij =


Cij
C̄i

if C̄i > 0

0 otherwise

with β the n× n relative credit lines matrix.
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Note that we have ∀i,
∑n

j=1 αij = 1 and
∑n

j=1 βij = 1. In matrix notation, it is written

as α1 = 1 and β1 = 1.

The liability and credit line structures are not symmetric. That is, Lij and Lji are not ne-

cessarily equal, and the same is true for Cij and Cji. Moreover, both can be simultaneously

positive.

While the above de�nitions of liabilities and credit lines seem similar, the two concepts are

quite di�erent. Liabilities are the debts a bank holds for other banks in the network, which,

if not settled, lead to default. Credit lines, on the other hand, are potential obligations

banks have promised to issue for other banks, which if not met, their issuers do not default.

De�nition 3.1. A �nancial network in an economy E associated with the �nancial struc-

ture
(
α, β, L̄, C̄, z

)
is a directed multi-graph with two types of links, where the nodes are

the �nancial institutions and the edges are of two types: liabilities and credit lines. A

directed edge from vertex i to j represents the debt of i to j, that is, i → j if Lij > 0, or

equivalently, αij > 0, and a dashed directed edge from vertex i to vertex j represents the

promised credit line by i to j, that is, i 99K j if Cij > 0, or equivalently, βij > 0.

Equivalently, it is a set of n nodes representing �nancial institutions and constituting two

overlapping networks, each of them de�ned by a particular type of links. Despite the fact

that a node is part of the two networks and might have positive liabilities and credit lines

simultaneously, its characteristics such as position in each network and centrality, may

di�er.

Assumptions In order to determine the clearing payment vector, we will establish the

following standard assumptions.

(i) Debt seniority. Meeting the liabilities is prior to paying the credit lines and to

distributing shareholders' equity. If a bank does not have enough resources to pay

its liabilities and credit lines in total, it should use the available resources to ful�l its

liabilities.

(ii) Equal seniority. Liabilities have the same seniority, and credit lines as well; re-

payments are proportional in case of default. For liabilities, no creditor is more

important than another: if the debtor is defaulting and is not able to repay his ob-

ligations in full, he should pay his creditors pro rata. Furthermore, for credit lines,

all the potential debtors have equal priority and are paid proportionately in case the

given bank is incapable of settling all the promised amounts.
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(iii) Credit lines seniority over equity. Credit lines must be paid before paying equity.

If a bank meets its liabilities, it pays its credit lines and then distributes equity; if

that is not feasible, it spends what is left of its in�ows to settle a part of its promised

credit lines.

(iv) Non-negative equity. The total payment made by each bank should not exceed

the in�ows the bank is receiving.

Payment vector Based on the above assumptions, each bank will pay at most the

total value of its liabilities and credit lines. Let π = (π1, π2, . . . , πn) denote the vector of

payments, where πi is the total payment made by bank i which is bounded above by the

total amount of liabilities and credit lines of i such that πi ∈
[
0, L̄i + C̄i

]
. Let πij be the

payment that i will make to j. It can include both liabilities and credit lines payments:

πij ∈ [0, Lij + Cij ] .

We de�ne fi as bank i's in�ows. They constitute all the resources available for i that can

be used to make its due payments and to distribute equity to shareholders if possible. It

will be the sum of all the payments that i receives from other banks whether in the form

of liabilities or credit lines, added to i's cash �ow:

fi = zi +
∑
j

πji

State of a bank It is possible to distinguish between three realisable states for a given

bank in this setting.

(i) Defaulter: the resources it has at hand are not enough to complete the payment

of its liabilities; hence, it defaults and repays part of them proportionately without

extending any credit lines as promised:

D =
{
i ∈ N : πi < L̄i

}
(ii) Distressed: the resources are enough to cover all liabilities debt but only a part of

the credit lines; it does not default but it is unable to meet the total amount of credit

lines:

G =
{
i ∈ N : L̄i ≤ πi < L̄i + C̄i

}
(iii) Safe: the available resources cover all the due payments for both liabilities and credit

lines:

S =
{
i ∈ N : πi = L̄i + C̄i

}
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3.2.2 Payment equilibrium

Clearing payment vector existence and uniqueness Using a �xed-point argument,

we will show the existence of a clearing payment vector π∗ = (π∗1, π2, . . . , π
∗
n) with entries:

π∗i =
∑
j

π∗ij ,∀i.

Given α the relative liabilities matrix, β the relative credit lines matrix, L̄ = (L̄1, L̄2, . . . , L̄n)

the vector of total liabilities for each node, C̄ = (C̄1, C̄2, . . . , C̄n) the vector of total credit

lines for each node and z = (z1, z2, . . . , zn) the vector of cash �ows, we de�ne the map:

Φ:
[
0 , L̄+ C̄

]
7→
[
0 , L̄+ C̄

]
by

Φ(π) ≡ ((z + πT ) ∧ (L̄+ C̄)).

The clearing payment vector π∗ = (π∗1, π
∗
2, . . . , π

∗
n), consistent with the conditions of the

payment mechanism, is a �xed point of the map Φ(·). Each bank will pay the minimum

between its in�ows fi that are constituted by its cash �ow zi and the payments it receives∑
j π
∗
ji, and the total value of its obligations and promised credit lines L̄i + C̄i.

π∗i = min
{
fi ; L̄i + C̄i

}
= min{zi +

∑
j

π∗ji ; L̄i + C̄i}

The payment made by bank i is the sum of its payments to all the other nodes in the

system could be formally written as follows:

π∗ij =


αijfi if fi ∈

[
0 ; L̄i

]
Lij + βij(fi − L̄i) if fi ∈

[
L̄i ; L̄i + C̄i

]
Lij + Cij if fi ∈

[
L̄i + C̄i ; ∞

)
In the �rst case, the bank defaults and pays all its in�ows as part of its scheduled liabilities;

whereas in the second case, the bank is distressed and despite not defaulting, it faces

trouble meeting credit lines payments. In the third case, the bank is safe and reimburses as

promised. This can be summarised in a one-vector characterisation as stated by Proposition

3.1.

Proposition 3.1. The payment made by a bank i to a bank j, which includes a liability

and/or a credit line payment, can be formally written as:

π∗ij = min{αij min{zi +
∑
j

π∗ji ; L̄i}+ βij(zi +
∑
j

π∗ji − L̄i)+ ; Lij + Cij}. (3.2.1)

Proof. See Appendix B.
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3.2.3 Characterisation of two separate payment vectors

Since liabilities and credit lines do not have the same seniority, and according to the

aforementioned assumption a bank must repay all its liabilities before starting to pay its

promised credit lines, the payment vector π is formed by two components and can be

divided into two separate vectors: one for the liabilities payment a, and one for the credit

lines payment b.

For every node i:

πi = ai + bi =
∑
j

aij +
∑
j

bij,

where ai and bi are i's liabilities and credit lines payments respectively. Here aij is the

liabilities payment from i to j; and bij is the credit line payment from i to j.

We have aij ∈ [0, Lij ]; ai ∈
[
0, L̄i

]
; bij ∈ [0, Lij ]; bi ∈

[
0, C̄i

]
.

Since the payment should be made made pro rata, then we will have: aij = αijai and

bij = βijbi.

The relationship between a and b can be depicted by the assumption of priority of liability

over credit line, which implies that if the liabilities payment for each bank i is less than

the total amount due, the credit line payment is equal to zero.

∀i such that aij ≤ Lij for some j =⇒ bij = 0,

or, equivalently,

ai ≤ L̄i =⇒ bi = 0.

The credit line payment is only positive when the owed liabilities are reimbursed in total:

bi ≥ 0 ⇐⇒ ai = L̄i.

Moreover, a defaulting node will pay the part of the obligations that it can a�ord pro rata,

and will not pay any of the credit lines.

Cash �ows to bank i can therefore be rede�ned as follows:

fi = zi +
∑
j

aji +
∑
j

bji = zi +
∑
j

αTijaj +
∑
j

βTijbj

This can be written in matrix notation: f = z + αTa+ βT b.

De�nition 3.2. The value of equity of node i, ei is de�ned to be the in�ows to i less the

payments made by i:

ei = fi − πi = zi +
∑
j

πji − πi

ei = fi − ai − bi = zi +
∑
j

αTijaj +
∑
j

βTijbj − ai − bi.

The same separation argument formerly used allows us to show that two clearing vectors

a∗ and b∗ exist, such that the payment of liabilities from i to j is determined by comparing
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the total value Lij , which is equal to αijL̄i, with i's in�ows:

a∗ij = αij
[
min

{
L̄i ; fi

}]
.

For the credit lines payment, we must compare the value of the C̄i with what is left

from the in�ows after settling the liabilities, and rule out the case when fi ≤L̄i:

b∗ij = βij
[
min

{
C̄i ; (fi − L̄i)

}]+
.

Proposition 3.2. A bank i's payment consists of a payment of liabilities

a∗i =
∑
j

a∗ij = min{L̄i ; fi} = min

L̄i ; zi +
∑
j

αTija
∗
j +

∑
j

βTijb
∗
j


and a payment of credit lines

b∗i =
∑
j

b∗ij =
[
min

{
C̄i ; fi − L̄i

}]+
= min

C̄i ; zi +
∑
j

αTija
∗
j +

∑
j

βTijb
∗
j − L̄i


+

.

Proof. See Appendix B.

The clearing payment vector is a �xed point

a∗
b∗

 of the map:

Ψ
(
., . ; α, β, L̄, C̄, z

)
:
[
0, L̄

]
×
[
0, C̄

]
7→
[
0, L̄

]
×
[
0, C̄

]
de�ned by

Ψ

a
b

 ; α, β, L̄, C̄, z

 ≡
 L̄ ∧

(
αTa+ βT b+ z

)[
C̄ ∧

(
αTa+ βT b+ z − L̄

)]
∨ 0

 .

The following results establish existence and uniqueness of a clearing payment vector.

Theorem 3.1. Given any α, β, L̄, C̄ and z,

(1) There exist a greatest and a least clearing payment vectors π+and π−.

(1') Similarly, if we consider two separate payment vectors, there exist greatest and

least clearing liabilities and credit lines payment vectors a+and a−, and b+ and

b− respectively.
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(2) Under all clearing vectors, the value of equity at each node of the �nancial system is

the same:

if

a′
b′

and
a′′
b
′′

 are two clearing vectors:

(
z + αTa′ + βT b′ − L̄− C̄

)+
=
(
z + αTa

′′
+ βT b

′′ − L̄− C̄
)+

.

Proof. See Appendix B.

Corollary 3.1. The clearing (total) payment vector π∗ is unique.

Proof. See Appendix B.

3.3 Fictitious default algorithm

3.3.1 Intuition

In this section, we present a �ctitious default algorithm that serves to compute the pay-

ments of liabilities and credit lines in the �nancial system. By adding the credit lines

contagion channel, we will study the defaults that are caused by the failure of some banks

to pay their promised credit lines. As mentioned above, there are three possible situations

for a bank: either it can fail to pay its due liabilities and hence its credit lines as well, in

which case it defaults; or it can pay all its liabilities and all its credit lines; or it is able to

pay all its liabilities and only a part of its credit lines. The last case captures the defaults

induced by the interbank credit lines: despite the fact that a bank that is paying only a

part of its credit lines does not default, it might cause the default of another bank.

The �rst step of the simulation is to assume that all the nodes pay all their due liabilities

and credit lines � that is, ∀i, πi = L̄i + C̄i. Now, for each node, take the equity value,

di�erence between what it received and what it paid: ei = zi +
∑

j πji − πi. If this equity
value is negative, compute zi +

∑
j πji − L̄i. If it is negative, then this node is defaulting.

If it is positive, this node is able to pay its liabilities and does not default, but it can pay

only part of its credit lines.

If some nodes have negative equity values, compute the values again by assuming only

the nodes that defaulted in the �rst step are now defaulting and will pay part of their

obligations pro rata, and that only the non-defaulting nodes with negative equity values

are paying part of their credit lines, also pro rata, while all the other nodes pay in full.
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This allows us to detect the new defaults caused by the defaults and the partial credit lines

payments from the �rst step. We repeat the same process until no new defaults occur.

This algorithm determines which banks default, and is a way to assess each bank's

exposure. It will also enable us to identify the systemically important banks and evaluate

the threat that they pose to the stability of the �nancial network, namely the consequences

of their default on the other banks.

3.3.2 Algorithm

The �xed-point operator Φ has a set of super-solutions S:
S =

{
π ∈

[
0 ; L̄+ S̄

]
: Φ(π) ≤ π

}
.

It is the set of the payment vectors under which some node is paying other nodes more

than its total in�ows.

We de�ne the default set D(π) under π for all π ∈ S as:

D(π) =
{
i : Φ(π)i < L̄i

}
.

We recall that if a node pays its obligations but does not pay its promised credit lines, it

does not default. The default only occurs if a node is not able to pay its total liabilities.

De�ne Λ(π) the n× n diagonal matrix such that:

Λ(π)ij =

1 i = j and i ∈ D(π)

0 otherwise
.

The matrix I − Λ(π) converts the entries corresponding to defaulting nodes under π to 0.

The non-defaulting nodes under π represented by I − Λ(π) will pay their total liabilities.

We still need to investigate their credit lines payments.

For a �xed π′, the non-defaulting nodes I −Λ(π′) will pay either L̄+ C̄ or L̄ and a part of

C̄, which will be less than L̄+ C̄.

Hence, it will be convenient to de�ne a set of nodes that are not able to pay their promised

credit lines fully but will pay their full liabilities:

G(π) =
{
i : L̄i < Φ(π)i < L̄i + C̄i

}
.

And we de�ne accordingly the n× n matrix Γ(π) such that:

Γ(π)ij =

1 i = j and i ∈ G(π)

0 otherwise
.

The matrix I − Γ(π) represents the diagonal matrix with entries 1 for the nodes that are

able to pay their liabilities and credit lines in total.

For �xed π′ ∈ S, we de�ne the map:

Fπ′ : π → Fπ′(π)
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such that

Fπ′(π) := Λ(π′)
{
αT
[
Λ(π′)π + (I − Λ(π′))

(
Γ(π′)L̄+

(
I − Γ(π′)L̄

))]
+

βT
[
Λ(π′)× 0 + (I − Λ(π′))

(
Γ(π′)

(
π − L̄

)
+ (I − Γ(π′))

)
C̄
]

+ z
}

+ (I − Λ(π′))
{

Γ(π′)
[
L̄+

(
π − L̄

)]
+ (I − Γ(π′))

[
L̄+ C̄

]}
This map shows that all defaulting nodes under π′ will pay π and it will be a liabilities

payment, while the non-defaulting ones will pay the total amount of their liabilities but

will be divided into two categories: those that will pay all their credit lines (above their

liabilities), and those that will pay all the liabilities but only part of their credit lines,

which will amount to π − L̄ . Fπ′ has a unique �xed point f(π′).

The sequence of payment vectors which represents the �ctitious default sequence is

• π0 = L̄ + C̄, since we start by assuming that all nodes pay all their liabilities and

credit lines in the �rst step.

• πj = f(πj−1).

3.4 Policy implication: central clearing

The transmission of systemic risk is costly for individuals, institutions and economies. The

interest in generating strategies and tools to reduce systemic risk has thrived due to the

need for a stable and e�cient �nancial system. Policymakers attempt to design regulations

and laws to prevent the outbreak and propagation of shocks and preserve stability. In this

context, regulators have tackled the idea of creating central counterparty clearing houses

in an e�ort to ameliorate �nancial market infrastructure. Central clearing can be thought

of as a risk-sharing or an insurance arrangement. The main functions of a central clear-

ing counterparty (CCP) are to improve the aggregate surplus by assuming the bilateral

obligations, reducing the number of obligations and guaranteeing their settlement. The

concept of CCP was applied to the interbank liabilities structure as an e�ective tool to

induce e�ciency, as shown by Du�e and Zhu (2011), Zawadowski (2013) and Acharya and

Bisin (2014). We explore the introduction of central clearing to the credit lines interbank

network structure. A central clearing institution for credit lines would clear out bilateral

credit lines and consequently reduce counterparty risk. By adding a central clearing insti-

tution to the credit lines network, we obtain a star-shaped network with the CCP as the

central node. Figure 3.4.1 illustrates the case of a network of �ve banks.

The direction of the edge between a given node and the central clearing institution

depends on the net liability between the two and more precisely on the net liabilities of a

given node � that is, on the di�erence between what it owes to others and what others owe

to it. This states whether a bank is a credit line receiver from or a payer to the CCP.
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1

2 3

4 5

CCP

Figure 3.4.1: Central clearing for a network of �ve banks

3.4.1 Motivation: numerical example

Consider the simple case of a network of liabilities, constituted of three nodes nodes �

A, B and C � having circular interdependences. Suppose the interbank liabilities are as

displayed in Figure 3.4.2. A and B are linked by LAB = 100 and LBA = 40, B and C by

LBC = 75 and LCB = 30 and C and A by LCA = 65 and LAC = 5.

A

B C

100
40

75

30

65
5

Figure 3.4.2: Over-the-counter liabilities structure

Figure 3.4.3 shows the network after bilateral netting between every pair of banks.

There is a directed link between every two nodes representing the net liability resulting

from the two-way liabilities. The liabilities structure becomes LAB = 60, LBC = 45 and

LCA = 60.

A

B C

60

45

60

Figure 3.4.3: Bilateral netting

To examine the degree of contagion in the network and the spread of defaults, we take as

an example z = (7, 10, 5) as the cash �ow vector. Following the �ctitious default algorithm

established in the preceding section, we notice that in the �rst step, C will default, since

its in�ows (after assuming that all liabilities are settled) are 5+45 = 50 < LCA = 60. And

this default will prompt A's default in the next step: its in�ows will be 50 + zA = 57 < 60.

The algorithm will end here with two defaults as a result.
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Adding a CCP Suppose now that we add at the centre of the network a central clearing

counterparty CCP that will execute a multilateral netting. A should pay 60 to B and receive

60 from C; it will have a net liability of 0 in the presence of the CCP. B has to pay 45 to

C and receive 60 from A, and thus it will owe the CCP 60 − 45 = 15; and C will have to

pay 15 to the CCP.

A

B C

CCP

0

15 15

Figure 3.4.4: Multilateral netting: adding a CCP

Comparing the two networks before and after adding the CCP (Figure 3.4.3 and Figure

3.4.4), we notice that the CCP can have an important impact on the systemic risk in the

network. If we suppose that bank A is hit by a shock that causes its default and failure

to pay its debt to B in full, this will put B at risk. Moreover, take the case where A's

payment to B added to B's cash �ow is strictly less than LBC � in this case, B also defaults

and puts C at risk. When we have central multilateral clearing, a shock hitting A does not

a�ect the other banks, and thus the propagation of the shock throughout the network is

avoided.

If we go back to the numerical example of the above �ctitious algorithm with the vector

of cash �ow z = (7, 10, 5), now with the presence of the CCP, the number of defaults in the

system is reduced: C defaults and cannot pay its debt to the CCP, but A is not a�ected.

In this way, the algorithm will terminate in one step.

On the other hand, even if a node that is supposed to make a payment to the CCP,

defaults and pays only part of this liability, the CCP can cover up using several margins

and its guarantee fund to prevent its default.

However, if the CCP fails to cover up and its reserves and funds are not su�cient,

causing it to default, its default could increase the systemic risk in the system.

This basic yet representative model can be generalised to a broader and more complic-

ated network of n �nancial institutions.

In what follows, we will apply the central clearing concept to our model: �rst by adding

a CCP to the liabilities network while keeping the credit lines network as it is; and second

by adding a CCP for both networks simultaneously.
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3.4.2 Clearing with a CCP for liabilities

Framework

Consider again the economy, E , with N = {1, 2, ..., n} distinct �nancial institutions, where
the liabilities structure is represented by the n × n matrix L = (Lij) and the credit lines

structure is represented by the n×n matrix C = (Cij). Now suppose we introduce a CCP

for liabilities.

We add a new node, denoted by 0, to the network representing the CCP.

Consider now an auxiliary economy, ECCP, with Ñ = N
⋃
{0} = {0, 1, 2, . . . , n} distinct

�nancial institutions. Each node i in {1, 2, . . . , n} has a cash �ow zi as in E , while z0

denotes the guarantee fund of the CCP. As usual, z0 is assumed to be positive, meaning

that the CCP does not hold any liability outside the banking sector.

In the auxiliary economy, ECCP, the liabilities structure is represented by the (n+1)×(n+1)

matrix LCCP = (L̃ij), de�ned as follows:

L̃ij = −L̃ji =

0 if i and j 6= 0∑n
k=1 Lik −

∑n
k=1 Lki if j = 0

.

Similarly, the interbank credit lines structure in the auxiliary economy, ECCP, is represented

by the (n+ 1)× (n+ 1) matrix CCCP = (C̃ij), de�ned as follows:

C̃ij =

0 if i or j = 0

Cij otherwise
.

The liabilities network in the auxiliary economy is a star-shaped network where the CCP

occupies the central position and the other banks are on the periphery. Each bank has

no liabilities to any other bank, while its (net) liability to the CCP corresponds to the

di�erence between the total liabilities that the node should pay and the receivable that the

node should receive. Observe that in the auxiliary economy, ECCP, the CCP's liabilities

are equal to the CCP's receivables, which simply highlights the role of the CCP of clearing

liabilities.

The credit lines network remains the same for all banks with the addition of having the

CCP as an isolated node.

We assume that in the event that the CCP defaults, the payment will be executed propor-

tionately. Hence, our approach in Section 3 above computes the clearing payment vector

of the auxiliary economy, ECCP. Indeed, after treating the CCP as a node of the network,

we can apply the preceding �ndings from Sections 2 and 3 to this network of n+ 1 nodes:

{0, 1, ..., n}.

Proposition 3.3. There exists a unique clearing payment vector π∗ = (π∗0, π
∗
1, . . . , π

∗
n).

Proof. See Appendix B.
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This proposition can be naturally extended to the settings below where the CCP is

clearing the credit lines market, and where it is clearing both markets of the liabilit-

ies and credit lines simultaneously. Here, since the liabilities network in the auxiliary

economy,ECCP, is a star-shaped network and there are no direct interbank liabilities pay-

ments anymore, then the defaults emerging from this network can be directly computed by

checking the repayments to the node 0 representing the CCP, while the contagion and the

multi-step default algorithm take place in the standard credit lines network. Consequently,

the presence of the CCP, even if its multilateral netting is restricted to the liabilities net-

work, will accelerate the convergence of the �ctitious default algorithm. As in the previous

three-nodes example, in the general case of n nodes the number of links in the network is

considerably diminished: instead of having several links (up to n− 1 links) with the other

nodes of the liabilities network, each node would have at most one link with the CCP.

This reduces the total computational load in any practical calculation, in particular the

�ctitious default algorithm.

3.4.3 Clearing with a CCP for credit lines

Framework

We examine here central clearing for credit lines only. The auxiliary economy, ECCP, is the

set Ñ = N
⋃
{0} = {0, 1, 2, . . . , n} of �nancial institutions where {0} is the CCP. Similarly

to before, each node i ∈ Ñ has a cash �ow zi as in E , while z0 denotes the guarantee fund

of the CCP. In the auxiliary economy, ECCP, the liabilities structure is represented by the

(n+ 1)× (n+ 1) matrix LCCP = (L̃ij), de�ned as follows:

L̃ij = −L̃ji =

0 if i or j = 0

Lij otherwise
.

Credit lines, meanwhile, are represented by the (n + 1) × (n + 1) matrix CCCP = (C̃ij),

de�ned by

C̃ij =

0 if i 6= 0 and j 6= 0∑
k∈N Cik −

∑
k∈N Cki if j = 0

.

In this case, the credit lines are covered by the CCP, and furthermore, they cease to

constitute a channel of default contagion. If one or more banks fail to meet their promised

credit lines, other banks do not bear the distress. If the source of risk in a given �nancial

system is at the level of the credit lines exposure channel rather than the liabilities channel,

this risk is eliminated by the introduction of the CCP. In other words, the CCP acts as

a lender of last resort when it issues new liabilities and ful�ls the credit lines that the

distressed banks failed to meet. For instance, if there is a low economic conjecture, for a

period of time, the intervention of the CCP, by extending the promised credit lines, can
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buy time for the banks and the �nancial institutions, and the economy as a whole, to

recover while avoiding default and failure of distressed institutions.

3.4.4 Clearing with a CCP for liabilities and credit lines

Understandably, default contagion may still occur even in the presence of clearing with

a CCP for liabilities, since the interbank network structure for credit lines is not cleared;

it is equally the case when a CCP is clearing the credit lines market only. This brings

about the policy question of whether to extend the role of CCP to clear both liabilities

and credit lines. We will try to investigate this case in what follows while maintaining the

assumption of priority of the liabilities over the credit lines for the CCP. Moreover, z0,

which represents the guarantee fund of the CCP, is assumed to be quite large in the way

that the CCP hardly defaults.

Example

Consider an economy of four �nancial institutions: A, B, C and D. Suppose the interbank

liabilities and credit lines network is as described in Figure 3.4.5 below.

A

B C

D

65
5

65
15

30

15
45

Figure 3.4.5: Network of four banks

Suppose the cash �ow vector is z = (5, 5, 5, 5). Following the default algorithm designed

in Section 3.3, bank C will default in the �rst step. In step two, A and B will default and

the algorithm will end.

First, we add a CCP for liabilities while keeping the credit lines network as it is (Figure

3.4.6 ).

A

B C

D

CCP

0

10 35

45

155

15

Figure 3.4.6: Central clearing for the liabilities network

After adding the CCP to liabilities, we notice that with the same cash �ow vector used
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above, C still defaults in the �rst step, while in the second step, A is not a�ected, but

B defaults due to C's default and its failure to extend its promised credit line to B. This

compels us to apply central clearing to the credit lines network as well (Figure 3.4.7).

A

B C

D

CCP

010

10
10

25
0

45

Figure 3.4.7: Central clearing for the credit lines and liabilities networks

In this case, with the same cash �ow vector as before, z = (5, 5, 5, 5), only C defaults

in the �rst step and the algorithm terminates. The contagion e�ect is therefore reduced

with the introduction of CCP to this four nodes network. The assumption that z0 is large

is important to prevent the CCP from defaulting and in this way the default algorithm

becomes trivial.

General framework

In this section, we extend our analysis to a general network of n + 1 nodes, n banks and

a CCP for credit lines and liabilities. For simplicity, we will introduce only one CCP for

both, and it will be at the centre of the two overlapping networks.

The liabilities and credit lines amounts that node i should pay to all other nodes in the

network and here to the CCP are respectively Li =
∑n

j=1 Lij and Ci =
∑n

j=1Cij .

Consider again the auxiliary economy ECCP. Also, as before, each node i in {1, 2, . . . , n}
has a cash �ow zi that is assumed to be positive as in E , while z0 denotes the guarantee

fund of the CCP.

The liabilities structure is represented by the (n+1)×(n+1) matrix LCCP = (L̃ij), de�ned

as before.

Similarly, the interbank credit lines structure in the auxiliary economy is represented by

the (n+ 1)× (n+ 1) matrix CCCP = (C̃ij), and is now de�ned as follows:

C̃ij = −C̃ji =

0 if i and j 6= 0∑n
k=1Cik −

∑n
k=1Cki if j = 0

.

In line with what was previously explained concerning central clearing in the liabilities

network, the auxiliary economy ECCP still takes the form of a star-shaped network where

the CCP is the central node. In addition, none of the banks have any liabilities or credit

lines to any other bank, while the (net) liability and the (net) credit line to the CCP

represent the di�erence between what it should be and what it should receive. As above,

the CCP's liabilities are equal to the CCP's receivables (liabilities), and the CCP's payable
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credit lines are equal to the CCP's receivable credit lines.

The existence and the uniqueness of the clearing payment vector in this framework of

the model can be promptly derived using the same mathematical methodology. It is

important to emphasise that all the payments of liabilities and credit lines occur directly

and bilaterally between each bank and the system, in contrast with the previous scenario,

where payments were done between banks themselves in a more complicated way.

With regard to the default algorithm, the number of links in the network diminishes even

more when we apply central clearing to the credit lines network: instead of having up to

n− 1 liabilities links and n− 1 credit lines links for every node, it would have at most two

links with the CCP (one liability and one credit line). Therefore, the convergence of the

�ctitious default algorithm will be even more accelerated.

3.5 Policy implication: cash injection

Our analysis may also pave the way for policy intervention, which may take the form

of either funds redistribution or cash injection, in order to trigger increases in debt reim-

bursement, credit line payment and the net cash �ow in the network. Understandably, such

interventions may potentially involve designing incentive-compatible solidarity policies to

transfer funds from safe organisations to risky organisations, which would prevent them

from defaulting and as a consequence the whole network from bearing the costs of such

defaults.

In the following, we will discuss the possibility of cash injection which can be regarded

as a positive increase in the cash �ow of the banks receiving it. For this purpose, we suppose

that the objective is to maximise the total payments in the �nancial system subject to the

constraints of limited liability, and the payment of every bank i not exceeding its total due

payments. This problem can be formally stated as

P : max
∑
i

πi

s.t. πi ∈
[
0, L̄i + C̄i

]
for all i

and πi ≤
∑
j

πji + zi for all i

3.5.1 Examples

An evident example of the e�ectiveness of cash injection policies and the importance of

targeting the right nodes is the star network � also known as the core-periphery network

(Figure 3.5.1).
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Figure 3.5.1: Star network

Suppose a shock hits the central node and as a result does not pay promised credit

lines to the peripheries, which may result in the default of some of them. The question

here is: should cash injection target the central node or defaulting nodes?

An extension of the star network, which is also representative of the contagion e�ect,

is the tree (Figure 3.5.2).

0

1 2

3 4 5 6

....................................................

Figure 3.5.2: Tree

3.5.2 Motivation

A regulator has a certain amount of cash which she can provide to some banks in order to

increase the payments in the �nancial system.

Cash injection to safe banks that are already paying their entire debt and promised

credit would not a�ect the overall payments in the network unless it is stipulated that cash

injection is compounded with a matching rate m > 0 for credit lines. That is, the target

bank receiving the cash injection is forced to increase its credit lines by (1 +m). This may

have a di�erent policy e�ect, as an increase in the cash in�ows would improve the rate of

reimbursement of liabilities and the extension of credit lines in the �nancial network.

However, here we consider that a cash injection targets either defaulting or distressed

banks.
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Suppose that distressed banks are targeted by an injection of a small amount of cash,

ε ∈ R+ . First, let πD, πG and πS be the payment vectors of the defaulters, distressed

banks and safe banks respectively. Accordingly, let αA,B be the matrix of relative liabilities

from banks in set A to banks in set B such that A,B ∈ {D,G, S}. Moreover, LD, LGand

LS are the corresponding liabilities vectors. De�ne βA,B and CS in a similar way.

After the cash injection, the payment of distressed banks increases as follows: πGi =

min{zi+ ε+
∑

j∈D αjiπ
D
j +

∑
j∈N\D αjiL̄j +

∑
j∈G βji(fj− L̄j)+

∑
j∈S βjiC̄j ; L̄i+ C̄i}. We

suppose that ε is small enough such that it is still insu�cient for i to ful�l all its promised

credit lines C̄i and

πGi = zi + ε+
∑
j∈D

αjiπ
D
j +

∑
j∈N\D

αjiL̄j +
∑
j∈S

βjiC̄j +
∑
j∈G

βji(fj − L̄j)

A cash injection to bank i ∈ G has two e�ects on the payments in the network and on i

in particular: initially, it directly increases the payment made by i and the in�ows to the

receivers of i's credit lines; additionally, it increases the in�ows to i if i is on a cycle of

defaulters or receivers of credit lines. If for instance a bank i ∈ G receives a cash injection,

and j is such that Cij > 0 and there is a bank k such that Ljk, j ∈ D and/or Cjk > 0, j ∈ G

and Lki, k ∈ D and/or Cki > 0, k ∈ G, then in�ows to i from k increase as i's credit line

payment increases.

In matrix notation:

πG = z + ε+ αD,GπD + αG,GLG + αS,GLS + βG,G(f − LG) + βS,GCS

In order to assess the impact that an increase in credit lines payment has on the overall

system, we consider the two separate payment vectors approach, with a and b being the

payment vectors of liabilities and credit lines respectively. After injecting a small amount

ε to i ∈ G, such that i remains in G after receiving the cash, the credit lines payment of

i ∈ G becomes:

bεi = zi + ε+
∑
j∈D

αjiaj +
∑

j∈N\D

αjiL̄j +
∑
j∈G

βjiC̄j +
∑
j∈G

βjib
ε
j − L̄i

In matrix notation:

bG,ε = zG + ε1G + αD,GaD + αG,GLG + αS,GLS + βS,GCS + βG,GbG,ε

such that bG,ε is the g×1 vector of credit lines payments of distressed banks after injecting

an amount ε into each of them, zG the g × 1 vector of cash �ows of distressed banks, 1G
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the g × 1 vector with entries 1, αD,G, αG,G and αS,G the relative liabilities matrices from

defaulting (d× g), distressed (g × g) and safe ((n− d− g)× g) banks to distressed banks

respectively, βS,Gand βG,G the corresponding relative credit lines matrices, aD the d × 1

liabilities payment vector of defaulting banks, LG and LS the liabilities vectors of banks

in G and S, and CS the credit lines vector of banks in S.

3.5.3 Cash injection

When considering two channels of systemic risk contagion, a given bank faces two types

of risks: the risk of defaulting as a consequence of not receiving promised credit lines,

and the risk of defaulting as a consequence of its debtors not paying their due liabilities.

Equivalently, the two types of banks that are perturbed are defaulters as well as distressed.

Demange (2018) de�nes a threat index that takes into account the spillover e�ects of a

defaulting bank and shows that a cash injection would be optimal if the receivers have the

largest threat indices whenever the set of defaulting banks is kept unchanged, meaning that

no defaulting bank escapes default after the injection. She also proves that cash injection

for the banks that have a higher probability of defaulting might be suboptimal.

We extend this result here and apply it to our setting with two channels of defaults. We

de�ne two threat indices: the �rst one is that of defaulters, which takes into consideration

spillover e�ects that emerge via the liabilities channel, while the second index is that of

distressed banks, which accounts for spillover e�ects through the credit lines channel.

More precisely, the maximisation problem P, stated at the beginning of Section 3.5, can

be split into to problems each to maximise one type of payments as follows. If a regulator's

objective is to maximise the payments of liabilities

Pa : max
∑
i

ai

s.t. ai ∈
[
0, L̄i

]
for all i

and ai ≤
∑
j

αjiaj +
∑

βjibj + zi for all i

Whereas if the regulator targets the payments of credit lines, the problem solved would be

Pb : max
∑
i

bi

s.t. bi ∈
[
L̄i, L̄i + C̄i

]
for all i

and bi ≤
∑
j

αjiaj +
∑

βjibj + zi − L̄i for all i
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Accordingly, and following Demange's (2018) de�nition of threat index, we de�ne µ as

the vector of liabilities threat indices such that for every i ∈ N \D, µi = 0 and for i ∈ D,

µi = 1 +
∑

j∈D αijµj ; and we de�ne δ as the vector of credit lines threat indices such that

for every i ∈ N \ G, δi = 0 and for i ∈ G, δi = 1 +
∑

j∈D βijδj . These indices will be

the Lagrange multipliers connected to the second constraint in each problem, which stands

for limited liability. The multipliers capture the sensitivity of the objective function, the

sum of payments, to changes in these constraints. We assume that the cash injection is

small enough that it does not change the state of the bank, that is it does not reduce the

multiplier to 0, and the constraint is still binding. In other words, the sets S,G and D are

unchanged. However, with the increase in cash received which increases the in�ows of the

receiver, the limited liability constrained is less binding, and the repayments increase. We

can show that an optimal cash injection that maximises the total payments would be one

that targets the highest threat index among liabilities and credit lines.

Proposition 3.4. An injection of a small amount of cash, that does not change the states

of the banks, is optimal, if it targets the bank with the highest liabilities threat index in case

the objective is to maximise liabilities repayments, and the bank with the highest credit lines

threat index in case the objective is to maximise credit lines payments.

Proof. See Appendix B.

3.6 Conclusion

In this chapter, we explored two channels of contagion of �nancial risk of default, credit

lines and liabilities. We built on Eisenberg and Noe's model by extending the proof of

existence of a unique payment equilibrium and establishing a �ctitious default algorithm.

The introduction of a central clearing counterparty for the network of interbank liabilities

alone, the network of credit lines alone and the networks of liabilities and credit lines

together, was investigated and proved to have important impacts. More work can be

done on this topic, especially regarding the regulations and management of the CCP and

its guarantee funds. Another type of policy intervention that has been motivated here

is targeting policies and cash injection. This can be further investigated in many ways.

In particular, one can explore the optimal strategies for a regulator or a policymaker,

regarding the choice of which channel of exposure to target and which type of banks at

risk to save.
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Appendix 3.A Basic Notions

We recall some basic notions and concepts from lattice theory that we use along with other

de�nitions and theorems.

A lattice is a partially ordered set such that every two elements have a least upper

bound and a greatest lower bound. For any two vectors x and y ∈ Rn such that x =

(x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), the lattice operations are de�ned as follows:

The meet, or greatest lower bound (in�mum) which is the greatest element of Rn lying

below both x and y:

x ∧ y ≡ (min {x1, y1} ,min {x2, y2} , . . . ,min {xn, yn}) .

The join, or least upper bound (supremum) which is the least element of Rn lying above

both x and y:

x ∨ y ≡ (max {x1, y1} ,max {x2, y2} , . . . ,max {xn, yn}) .

We also de�ne the vector x+:

x+ ≡ (max {x1, 0} ,max {x2, 0} , . . . ,max {xn, 0}) .

And ordering any two vectors x and y:

x ≤ y ⇐⇒ xi ≤ yi for all i = 1, . . . , n.

Also, ∀x ∈ Rn, l1-norm on Rn

‖x‖ ≡
n∑
i=1

|xi|.
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Tarski's �xed point theorem

Let (L,≤) be any complete lattice. Suppose the map f : L 7→ L is monotone increasing

i.e. ∀x, y ∈ L, x ≤ y =⇒ f(x) ≤ f(y). Then the set of �xed points of f , denoted by

F = {x ∈ L | f(x) = x}, is a complete lattice with respect to ≤. Consequently, f has a

greatest �xed point ū and a least �xed point u. Moreover, ∀x ∈ L, x ≤ f(x) =⇒ x ≤
ū while f(x) ≤ x =⇒ u ≤ x.

Appendix 3.B Proofs

Proof of Proposition 3.1

Since the payment depends on the in�ows fi to i, we must consider the three following

possible cases for fi.

1. In�ows do not cover the total liabilities of i, fi ∈
[
0, L̄i

]
and i defaults. Then fi−L̄i ≤

0 =⇒ (fi − L̄i)+ = max
{

(fi − L̄i) ; 0
}

= 0 and min
{
fi ; L̄i

}
= fi ≤L̄i ≤ L̄i + C̄i.

Therefore:

π∗ij = min {αijfi ; Lij + Cij} = αijfi

since αijfi ≤ Lij ≤ Lij + Cij . Thus, i pays only part of the liabilities on a pro rata

basis and i ∈ D.

2. The in�ows cover the liabilities but not the credit lines, fi ∈
[
L̄i, L̄i + C̄i

]
. This

implies that fi − L̄i ≥ 0 and (fi − L̄i)+ = fi − L̄i. Also min
{
fi ; L̄i

}
= L̄i. But

fi ≤L̄i + C̄i =⇒ fi − L̄i ≤ C̄i =⇒ βij(fi − L̄i) ≤ Cij , therefore:

π∗ij = αijL̄i + βij(fi − L̄i) = Lij + βij(fi − L̄i).

In this case, i will pay their total amount of liability and will not default, but will

pay part of their promised credit lines pro rata following the priority of liabilities

over credit lines; i ∈ T .

3. In�ows are enough to cover all due payments: fi ∈
[
L̄i + C̄i,∞

)
. This implies

that min
{
fi ; L̄i

}
= L̄i and fi − L̄i ≥ 0. Since fi ≥L̄i + C̄i thus fi − L̄i ≥C̄i

=⇒ βij(fi − L̄i) ≥ Cij . Therefore:

π∗ij = Lij + Cij .

i will pay the total amount of liabilities and credit lines for every j; i ∈ S.
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Proof of Proposition 3.2

Take each of the three possible cases of bank i's in�ows fi.

1. Defaulter: fi ∈
[
0 ; L̄i

]
Since liabilities are prioritised over credit lines and credit lines over equity, and the

in�ows are not enough to pay all the liabilities, then i will default and will pay the

in�ows for its debtors pro rata.

a∗i = fi = zi +
∑
j

αTija
∗
j +

∑
j

βTijb
∗
j and b

∗
i = 0.

2. Distressed: fi ∈
[
L̄i ; L̄i + C̄i

]
Bank i will pay all its liabilities L̄i and then a part of its promised credit lines pro

rata.

a∗i = L̄i and b
∗
i = (fi − L̄i)+ = fi − L̄i > 0.

3. Safe: fi ∈
[
L̄i + C̄i ; ∞

)
This is the trivial case where i will pay all its due amounts:

a∗i = L̄i and b
∗
i = C̄i

since fi ≥L̄i + C̄i.

Proof of Theorem 3.1

The proofs of Theorem 3.1 and of the following Corollary 3.1 generalise the proofs of

existence and uniqueness of the clearing vector in Eisenberg and Noe (2001) to our setting

that incorporates credit lines.

First, we must prove that the map Φ positive, increasing, concave and non expansive.

Positivity and monotonicity and concavity follow from the fact that the map is a compos-

ition of two maps: the map q → qT + z which is positive, increasing and a�ne, and the

map q → qT ∧
(
L̄+ C̄

)
which is positive, increasing, and concave .

As for non-expansiveness, we �rst recall the following de�nition. A map Φ : Rn → Rn is

l1-non-expansive if ∀x ∈ Rn, ‖ Φ(x)− Φ(y) ‖≤‖ x− y ‖.
Also:

∀x, y, and z, ‖x ∧ z − y ∧ z‖ ≤ ‖x− y‖
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Thus:∥∥Φ(π)− Φ(π′)
∥∥ =

∥∥(πT + z
)
∧
(
L̄+ C̄

)
−
(
π′T + z

)
∧
(
L̄+ C̄

)∥∥ ≤ ∥∥πT − π′T∥∥
Let F (Φ) be the set of �xed points of Φ. Since Φ is increasing, Φ(0) ≥ 0 and Φ(L̄+ C̄) ≤
L̄+ C̄, then by Tarski �xed point theorem F (Φ) is non-empty and has a greatest and least

element. (1) is proved and (1') follows immediately.

(2) can be proved following the same proof proposed by Eisenberg and Noe (2001).

Proof of Corollary 3.1

First we de�ne a surplus set S ⊂ N as the set of nodes that have no liability or credit

line to any node outside the set and it has a positive cash �ows. Precisely, if SC is the

complement of S,

∀ (i, j) ∈ S × SC , αij = 0, βij = 0 and
∑
i∈S

zi > 0

which is equivalent to

⇐⇒ Lij = 0, Cij = 0 and
∑
i∈S

zi > 0

Lemma 3.1. If π∗ is a clearing vector, then it is not possible for all nodes in a surplus

set to have zero equity value.

Proof. Let S be a surplus set and P+
i be the sum of payments received by a node i ∈ S

from nodes outside S such that P+
i =

∑
j∈SC πji.

Since S is a surplus set, then nodes in S make no payments to nodes in SC . Next, suppose

that all nodes in S have equity value = 0 then for every i ∈ S it holds that

fi − πi = 0

⇐⇒ zi +
∑
j∈N

πji − πi = 0

⇐⇒ zi +
∑
j∈S

πji +
∑
j∈SC

πji − πi = 0

⇐⇒ πi = zi +
∑
j∈S

πji + P+
i

Summing over all the nodes in S, we get

∑
i∈S

πi =
∑
i∈S

zi +
∑
i∈S

∑
j∈S

πji

+
∑
i∈S

P+
i =

∑
j∈S

(∑
i∈S

πji

)
+
∑
i∈S

[
zi + P+

i

]
However, the sum of payments of nodes in S can be written as∑

i∈S
πji =

∑
i∈N

πji −
∑
i∈SC

πji = πj −
∑
i∈SC

πji
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When summing over j:∑
j∈S

(∑
i∈S

πji

)
=
∑
j∈S

πj −∑
i∈SC

πji

 =
∑
j∈S

πj −
∑
j∈S

∑
i∈SC

πji

Since S is a surplus set, then ∀j ∈ S, we have
∑

i∈SC πji = 0 and therefore:∑
j∈S

∑
i∈SC

πji = 0

This implies ∑
i∈S

πi =
∑
j∈S

πj +
∑
i∈S

[
zi + P+

i

]
⇐⇒

∑
i∈S

[
zi + P+

i

]
= 0

Contradiction with the assumption
∑

i∈S zi > 0.

Now de�ne the Risk Orbit of a node as the set of all nodes connected to it through a

directed path whether through liabilities edges or credit lines.

o(i) = {j ∈ N : ∃ a directed path from i to j} = {j ∈ N : Lij > 0 and/or Cij > 0}

Lemma 3.2. Let π∗be a clearing vector for
(
α, β, L̄, C̄, z

)
and let o(i) be a risk orbit such

that
∑

j∈o(i) zj > 0, then under π∗at least one node of o(i) has positive equity value

∃j ∈ o(i) such that L̄j + C̄j < zj +
∑
k

π∗kj

Proof. We will show that o(i) is a surplus set.

Suppose it is not. Let k ∈ o(i) such that k owed something to j ∈ o(i)C .Take the path

from i to k and add to it the edge from k to j. We get a path from i to j.Thus j ∈ o(i) =⇒

j /∈ o(i)C .
Contradiction. Thus o(i) is a surplus set.

By lemma 3.1, every surplus set contains a node with positive equity.

De�ne a �nancial system as regular if every orbit o(i) is a surplus set. Then, if the �nancial

system is regular, the greatest and the least clearing vectors are the same π+ = π−implying

the clearing vector is unique by Theorem 2 proved by Eisenberg and Noe (2001).
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Proof of Proposition 3.3

The �nancial network in the auxiliary economy with the CCP, is a special case of the

general network before central clearing. Here, the number of links is smaller, such that the

liabilities network is star-shaped with the CCP at the core. Thus, existence and uniqueness

of a payment clearing vector in this economy are proved by Theorem 3.1 and Corollary

3.1.

Proof of Proposition 3.4

First given the assumption that the cash injection keeps the state of banks unchanged,

we can state that the choice of the regulator of the objective function, and problem to

solve will determine a targeted set of banks. In particular, if the regulator maximises the

liabilities payments and solves problem Pa, given that µN\D = µG = µS = 0, the targeted

banks are defaulters. In this case, the result proved by Demange (2018) can be trivially

applied. In case the regulator targets the credit lines payments and solves problem Pb, the

threat indices which represent the impact of an increase or a decrease in payment of a given

bank, are null for defaulters and safe banks. That is because an increase in in�ows, that

does not change the state of the receiver, will not change the payment of credit lines by

a defaulter which remains null, nor that by a safe banks which pays in full. The targeted

set are the distressed bank, and the previous result can be extended.
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