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Abstract 

COVID-19 testing strategies are primarily driven by medical need - focusing on people already 

hospitalized with significant symptoms or on people most at risk. However, such testing is 

highly biased because it fails to identify the extent to which COVID-19 is present in people 

with mild or no symptoms.  If we wish to understand the true rate of COVID-19 infection and 

death, we need to take full account of the causal explanations for the resulting data to avoid 

highly misleading conclusions about infection and death rates. We describe how causal 

(Bayesian network) models can provide such explanations and the need to combine these 

with more random testing in order to achieve reliable data and predictions for the both policy 

makers and the public.  

  



3 
 

Misleading death rates 

Suppose we wanted to estimate how many car owners there are in the UK and how many of 

those own a Ford Fiesta, but we only have sampled data on those people who visited Ford 

Car Showrooms in the last year. If 9% of the showroom visitors owned a Fiesta then, because 

of this selection bias in the sampled data, this would certainly overestimate the proportion of 

Ford Fiesta owners in the country. Estimating death rates for people with COVID-19 is 

currently undertaken largely along the same lines. 

Take the UK as an example, here all testing of COVID-19 is performed on people already 

hospitalized with COVID-19 symptoms. At the time of writing1, there were - according to the 

official NHS reporting figures - 33,722 confirmed COVID-19 cases (analogous to car owners 

visiting a showroom) of whom 2,921 have died (Ford Fiesta owners who visited a showroom). 

Concluding that the death rate from COVID-19 is on average 9% (2,921 out of 33,722) ignores 

the many people with COVID-19 who are not hospitalized and have not died (analogous to 

car owners who did not visit a Ford showroom and who do not own a Ford Fiesta). It is 

therefore equivalent to making the mistake of concluding that 9% of all car owners own a 

Ford Fiesta.  

There are many prominent examples of this sort of erroneous conclusion. The Oxford COVID-

19 Evidence Service (Oke & Heneghan, 2020) have undertaken a thorough statistical analysis. 

They acknowledge potential selection bias, but for them ‘uncertainty’ takes the form of 

confidence bounds around the (potentially highly misleading) proportion of deaths among 

confirmed COVID-19 patients. They also note various factors that can result in wide national 

differences, such as different demographic factors and differences in the way deaths are 

reported. The latter clearly may be a critical factor in explaining why a country like the UK’s 

 
1 https://experience.arcgis.com/experience/685d0ace521648f8a5beeeee1b9125cd 
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9% (mean) ‘death rate’ is so high compared to Germany’s 0.74%. We know that in the UK 

currently everybody who dies with COVID-19 is recorded as a COVID-19 death, even if the 

disease was not the actual cause of death; but it is also possible that people may die from the 

virus without actually having been diagnosed with COVID-19 (Henriques, 2020). 

The fact that all the uncertainty around the death rates remains l anchored around one 

statistic, reported deaths per confirmed cases, is awkward. It fails to incorporate explicit 

causal explanations that might enable us to make more meaningful inferences from the 

available data, including data on virus testing. To do this we need explicit causal/graphical 

models (Pearl & Mackenzie, 2018). 

The need for a causal model 

Figure 1 is an example of a causal model, represented by a graph (called a Bayesian network), 

that might be applicable to any given country and its population. It shows that the COVID-19 

death rate is as much a function of sampling methods, testing and reporting, as it is 

determined by the underlying rate of infection in a vulnerable population.  
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Figure 1 Causal Bayesian network model for learning population COVID-19 infected and death 

rates. This is a single time slice. It is can be updated daily and so enables us also to learn the 

true rate of spread of the infection. ‘With symptoms’ means serious symptoms. 

The links between the variables in the model (nodes in graph) show how they are dependent 

on each other. For example, the “population proportion with COVID-19 who die” is dependent 

on “population demographics and environmental factors” as well as “Quality of healthcare” 

(which might cover factors such as intensive care unit capacity etc). Note that the model 

carefully distinguishes between whether or not a person really has COVID-19 and whether 

the person is classified as having COVID-19 (i.e. the model takes account of the potential for 

false positive and false negative test results). So, for example, the variable “Number of 

reported COVID-19 positive reported as died” (which is the official figure of ‘COVID-19 deaths 



6 
 

reported) is dependent on the actual “Population proportion with COVID-19 who die”, the 

“Death Reporting Policy” as well as several other variables including “Number tested positive 

with symptoms who do not have COVID-19”.  

The strength of each dependency, as well as the uncertainty associated with these is captured 

using probabilities and statistical distributions. When observed data is entered into the model 

for specific variables that are subsequently observed all of the probabilities for, as yet, 

unknown variable are updated using an AI algorithm called Bayesian inference. The model in 

Figure 1 is more accurately called a (causal) Bayesian network (Fenton & Neil, 2018), because 

it explains the underlying process by which the observed data might be generated. We have 

developed such models for many similar problems and are currently gathering the data 

needed to determine this causal model. 

Therefore, while clinical, demographic and environmental factors can lead to genuine 

differences in death rates shown across different countries, very large differences may be 

likely to be caused by the application of different sampling strategies and reporting policies 

(Binnicker, 2020; FindX, 2020) and not necessarily because they are managing the virus any 

better or that the virus has infected fewer or more people. With a causal model that explains 

the data generating process we might better account for these differences between countries 

and more accurately learn the underlying true population infection and death rates from the 

observed data.  

 

The need for more random testing 

In the absence of community-wide testing, only random testing, applied throughout the 

population, will help us learn the number of people with COVID-19 who are asymptomatic or 

have already recovered, and hence also estimate the underlying infection and death rates. It 

will also help us learn the accuracy of the testing undertaken (false positive, and false negative 
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rates). Random testing remains the most effective strategy to avoid selection bias and reduce 

the distortions in reported statistics, but it also needs to be combined with a causal model in 

order to better determine the prevalence, severity, and ultimately societal impact of COVID-

19.  

Currently it seems there are no state-wide protocols in place in any country for randomised 

community testing of citizens for COVID-19. Spain did attempt it, but that involved purchasing 

large volumes of rapid COVID-19 tests, and they soon discovered that some Chinese-sourced 

tests had poor validity and reliability delivering only 30% accuracy – resulting in high numbers 

of false positives. Countries like Norway have proposed introducing such tests, but there is 

uncertainty around how to legislatively compel citizens to test – and what might constitute 

an appropriate randomisation protocol. In Iceland, they have voluntary sampling which has 

covered 3% of the population, but this isn’t random. Some countries with large scale testing, 

like South Korea, might get closer to being random. 

The reason it is so hard to achieve random testing is that you have to account for several 

practical and psychological factors. How does one collect samples randomly? Gathering 

samples from volunteers may not be sufficient as it does not prevent self-selection bias. 

During the H1N1 influenza pandemic of 2009–2010, there was a lot of anxiety about the 

disease that created “mass psychogenic illness” (Wheaton, Abramowitz, Berman, Fabricant, 

& Olatunji, 2012). This is when hypersensitivity to particular symptoms leads to healthy 

people self-diagnosing as having a virus – meaning they would be highly incentivised to get 

tested. This could, in part, further contribute to false positive rates if the sensitivity and 

specificity of the tests are not fully understood. 

While self-selection bias is not going to be eliminated, it could be reduced by running field 

tests. This could involve asking the public to volunteer samples in locations where, even in a 

lockdown state, they might be expected to attend and also from those in self-imposed 
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isolation or quarantine. In any event, when statistics are communicated at press conferences 

or in the media, their limitations should be explained and any relevance to the individual or 

population should be properly delineated. It is this which we contend is lacking in the current 

crisis. 
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