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Theories of bounded rationality often assume a rich dataset of choices from many
overlapping menus, limiting their practical applicability. In contrast, we study the prob-
lem of identifying the distribution of cognitive characteristics in a population of agents
from a minimal dataset that consists of aggregate choice shares from a single menu, and
includes no observable covariates of any kind. With homogeneous preferences, we find
that “consideration capacity” and “consideration probability” distributions can both
be recovered effectively if the menu is sufficiently large. This remains true generically
when tastes are heterogeneous with a known distribution. When the taste distribution
is unknown, we show that joint choice share data from three “occasions” are generically
sufficient for full identification of the cognitive distribution, and also provide substan-
tial information about tastes.

KEYWORDS: Attention, bounded rationality, consideration set, stochastic choice.

1. INTRODUCTION

1.1. Motivation

CLASSICAL REVEALED PREFERENCE ANALYSIS has yielded a fine-grained understanding
of the relationship between unobserved tastes and observed choices, and of how to infer
the former from the latter. More recently, theoretical work on bounded rationality has
extended this methodology to incorporate a range of cognitive factors that may affect
decision making.1 One drawback of such theories is that they typically presume access
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1This literature examines cognitive factors such as computational constraints, norms and heuristics, ref-
erence points and other framing effects, and various conceptions of attention. Contributions include those of
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to a very rich dataset—comprising a single individual’s choices from a large number of
different overlapping menus—that can be used to identify the latent components of the
cognitive model of interest. For instance, Aguiar, Boccardi, Kashaev, and Kim (2018),
Cattaneo, Ma, Masatlioglu, and Suleymanov (2017), Gibbard (2019), and Masatlioglu,
Nakajima, and Ozbay (2012) require data for all possible menus drawn from a universal
set of alternatives; Manzini and Mariotti (2014) impose a stringent “richness” assump-
tion on their dataset; and Caplin and Dean (2015) postulate the observability of state-
dependent stochastic choice data.2

Identification results developed using such assumptions on the choice domain are of-
ten formally elegant, and can be particularly useful for designing and interpreting exper-
iments (as in Aguiar et al. (2018) and Caplin and Dean (2015)). They are less obviously
relevant to field data, however, especially when the type of decision arises rarely (e.g.,
choice of hospital provider for elective surgery) or the menu is slow to change (e.g., choice
of daily newspaper). Indeed, in settings with such features many characterization results
from the literature on boundedly rational choice may appear implausibly data-hungry. In
practice, there may be insufficient menu variation to infer the model components of in-
terest, and for this reason it is desirable to devise approaches to identification that create
a more direct link between theory and what is feasible empirically.

In this paper, we focus on models of limited attention in which agents consider only
a subset of the available alternatives, known as the “consideration set.”3 To address the
data-voracity issue noted above, we propose a novel framework that postulates a minimal
dataset comprising (in its basic version) a single, fixed menu from which we observe only
the aggregate choice shares of a population of decision makers.4 Members of the popu-
lation may (or may not) differ in their preferences over the alternatives, and they may
also differ in cognitive characteristics that affect the allocation of attention. The latter
“cognitive heterogeneity” is taken to be unobserved, and our principal goal is to infer the
distribution of these characteristics from the aggregate choice shares.

We stress that this paper examines the extent to which the cognitive distribution is
identified by a given model of bounded rationality per se—once it has been stripped of the
richness of menu variation—and prior to any ancillary econometric specification that may
include covariates for the individuals or the alternatives. In this respect, our primitives and
objectives remain typical of those in conventional abstract choice theory, and this is one
way that our contribution differs from recent work in which identification is facilitated
by access to observable covariates (see, e.g., Abaluck and Adams (2017), Barseghyan,

Apesteguia and Ballester (2013), Baigent and Gaertner (1996), Caplin, Dean, and Martin (2011), Cherepanov,
Feddersen, and Sandroni (2013), de Oliveira, Denti, Mihm, and Ozbek (2017), Echenique, Saito, and Tseren-
jigmid (2018), Manzini and Mariotti (2007), Masatlioglu and Nakajima (2013), Ok, Ortoleva, and Riella
(2015), Salant and Rubinstein (2008), and Tyson (2008, 2013), among numerous others.

2Even stronger assumptions about data availability are commonplace in the theory of choice under uncer-
tainty, where the decision maker is typically imagined to express preferences over a highly structured mathe-
matical space specifically designed to facilitate identification.

3This usage follows the marketing literature; see, for example, Roberts and Lattin (1997) and Shocker, Ben-
Akiva, Boccara, and Nedungadi (1991). While we view the consideration set as a manifestation of bounded
rationality, other interpretations are possible: Alternatives may fail to be considered due to habit formation,
search costs, or other forms of rational inattention (see, e.g., Caplin and Dean (2015) and Sims (2003)).

4Alternatively, the framework could model a single individual choosing repeatedly from the same menu
in different attentional states, where the variation may arise, for example, from a merchandising strategy of
the retailer designed to manipulate customers’ consideration sets. In Section 4.2, we extend this framework to
allow for richer “multioccasion” choice data, but only after the informational value of our basic dataset has
been completely exhausted.
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Coughlin, Molinari, and Teitelbaum (2019), and Barseghyan, Molinari, and Thirkettle
(2019)). Our model can be extended and tailored to specific applications by introducing
such covariates, as is often done when decision-theoretic models are brought to bear on
data.5 Although such extensions and specializations must be left for future work, at places
we will note how the presence of additional data could aid our identification exercise.

1.2. Cognitive Models

In our general framework, each agent has a cognitive type parameter θ ∈ Θ ⊂ � that
is distributed in the population according to a cumulative distribution function F . Given
preferences over the menu, an individual of type θ will choose alternative x with prob-
ability pθ(x), and the corresponding aggregate choice share will be p(x) = ∫

Θ
pθ(x)dF .

When the cognitive type is used to capture some form of bounded rationality, the individ-
ual choice distribution will not generally assign all probability to the best available option,
and neither will the aggregate distribution even when the population has homogeneous
tastes. Indeed, the fact that suboptimal alternatives will sometimes be chosen is what will
enable us to infer features of the cognitive distribution F from the observed aggregate
shares.6

As already noted, we study bounded rationality in the form of limited attention. Here,
the cognitive parameter θ influences the formation of the decision maker’s consideration
set, and more specifically the number of alternatives that are considered. In the “consid-
eration capacity” model, the parameter γ ∈ {0�1�2� � � �} controls the maximum cardinality
of the consideration set and is interpreted as a limit on the number of alternatives that
the agent can actively investigate at any one time. We also examine in detail an impor-
tant special case, the “consideration probability” model, in which the parameter ρ ∈ [0�1]
controls the likelihood that each option is considered and is interpreted as the decision
maker’s general awareness of the choice environment. We hypothesize that preferences
are maximized over the consideration set, and full rationality can be restored by letting
γ→ ∞ or ρ= 1, as appropriate.7

1.3. Preview of Results

We begin by assuming that the population has homogeneous tastes. In this case, pref-
erence identification is not challenging (Proposition 1), which enables us to concentrate
entirely on the cognitive identification problem. Here, our attention model is fully identi-
fied by a small number of observed choice shares under several natural functional forms

5For example, the Luce (1959) model of probabilistic choice is formulated in terms of abstract utilities, but
is implemented empirically as the multinomial or conditional logit model in which utilities are linear functions
of observable characteristics of the agents or alternatives.

6Note that our framework has similarities to mixed models in the discrete choice literature, where θ would
be a taste parameter such as the agent’s unobserved marginal utility of some observed characteristic. (See Train
(2009) and McFadden (2001).) However, since we shall use θ to control cognition instead of tastes, our setting
calls for different functional-form assumptions. In particular, pθ will not have a logit specification (see Luce
(1959)), as typically assumed in relation to tastes.

7Variants of the consideration capacity model are used by Barseghyan et al. (2019) and Barseghyan, Moli-
nari, and Thirkettle (2019) to study discrete choice with heterogeneous consideration sets, and by de Clippel,
Eliaz, and Rozen (2014) to study price competition in a setting where consumers exhibit limited attention.
The consideration probability model employed here is the one sketched in Manzini and Mariotti (2014, Sec-
tion 7.2).
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for F (see Appendix A.1). But even without a parametric specification, the cognitive dis-
tribution can for practical purposes be fully recovered if the menu of alternatives is large
enough. In the context of the consideration capacity model, the aggregate choice shares
identify the probabilities of all capacities less than the cardinality n of the menu (Propo-
sition 2). Similarly, for the consideration probability model the choice shares identify the
first n raw moments of F (Proposition 3), which—using maximum entropy methods and
results from sparsity theory—can be exploited to reconstruct or to closely approximate the
cognitive distribution itself (Propositions 4–5). In each context, identification follows from
the system of equations that define the choice shares being recursive and linear in the rel-
evant quantities (namely, the capacity probabilities or raw moments), so that closed-form
expressions for these quantities can be obtained by inverting an (anti)triangular matrix.

Turning to the case of heterogeneous preferences, we first note that our identification
results continue to hold generically if the taste distribution is known (Propositions 6–7).
For heterogeneous and unknown tastes, we extend our dataset to include the joint distri-
bution of choices by the same population of agents on at least three distinct “occasions.”
Here, we employ a powerful mathematical result on the uniqueness of tensor decompo-
sitions, which to our knowledge has not previously been used in the bounded rationality
literature. (This methodology may be of independent interest, since its potential extends
well beyond the specific models studied in the present paper.) In the context of the consid-
eration capacity model, we show that joint choice share data are generically sufficient for
full identification of the cognitive distribution, and also provide substantial information
about the taste distribution (Proposition 8).

1.4. Related Empirical Literature

While remaining entirely theoretical in orientation, this paper contributes to a growing
literature on estimating consideration-set models from consumer demand or other choice
data, reviewed briefly in this section.

Abaluck and Adams (2017) constructed a general econometric framework in which
product characteristics are observable (unlike our setting), and exploit asymmetries in
cross-characteristic choice probability responses to identify consideration sets. For choice
under risk, Barseghyan et al. (2019) studied preferences and attention in an extremely
general model, with minimal assumptions about the process of consideration-set forma-
tion; targeting partial identification of its components.

Cattaneo et al. (2017) postulated “monotonic attention,” a constraint on how stochastic
consideration sets can change across menus, and use this assumption to derive testable re-
strictions on choice probabilities. Aguiar et al. (2018) tested random consideration models
at the population level in a large scale online experiment, finding support for a specifi-
cation with heterogeneous preferences and logit attention. Both of these contributions,
however, depend on substantial menu variation.

Crawford, Griffith, and Iaria (2020) devised a model-free identification strategy based
on reducing the menu to a “sufficient set” of alternatives that are certain to be considered.
Gaynor, Propper, and Seiler (2016) exploited institutional changes to identify considera-
tion sets in hospital choice, while Honka, Hortaçsu, and Vitorino (2017) exemplified the
approach of treating consideration sets as the outcome of a search process.8

8The search literature typically deals with datasets that include information about the composition of a
consumer’s consideration set, although there are exceptions. For example, in Hastings, Hortaçsu, and Syverson
(2017) exposure to a sales force influences the probability that financial products are considered.
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Lu (2019) developed a methodology for estimating multinomial choice models that
employs known upper and lower bounds on the consideration set. Sovinsky Goeree (2008)
studied the impact of marketing on consideration, using advertising data and observable
product characteristics to separate the utility and attentional components of demand.
Van Nierop, Bronnenberg, Paap, Wedel, and Franses (2010) proposed a specific model of
brand choice accommodating both stated and revealed consideration-set data, which they
apply to an experiment on merchandising strategies.

The paper that relates most closely to our contribution is Barseghyan, Molinari, and
Thirkettle (2019), which uses the attention allocation process that we refer to as the “con-
sideration capacity model.” But here again their identification strategy relies upon ob-
servable covariates—a basic difference from our methodology.

1.5. Outline

The remainder of the paper is structured as follows. Section 2 describes our framework
and sets out both the consideration capacity model and the special case of the consid-
eration probability model. Section 3 pursues cognitive inference under the simplifying
assumption of homogeneous tastes. Section 4 extends the analysis to allow for taste het-
erogeneity, and Section 5 concludes.

2. COGNITIVE HETEROGENEITY AND CONSIDERATION-SET MODELS

2.1. General Framework

LetX denote the (finite) universal set of alternatives. A menu is any nonemptyA⊂X ,
with which is associated a default outcome dA /∈A. When presented with the menuA, an
agent either chooses exactly one of the available alternatives or chooses none and accepts
dA. For example, we could have that:

(i) The menu contains retailers selling (identical versions of) a product, and the de-
fault is not to buy.

(ii) The menu contains banks offering fixed deposits, and the default is to hold cash.
(iii) The menu contains risky lotteries, and the default is a risk-free payment.
When deriving our main theoretical results (in Sections 2–3), we shall assume that all

agents share the same linear order preferences � over X . This assumption (relaxed in
Section 4) can be interpreted as using the average utilities of the alternatives in the popu-
lation, ignoring individual variation. In this sense, our approach complements the classical
stochastic-choice literature in economics, where preferences are allowed to vary but cog-
nitive capabilities are (implicitly) assumed to be uniform. Note that homogeneous tastes
are plausible in examples (i) and (ii) above, where preferences will be determined largely
by price and interest rate comparisons, as well as in example (iii) provided all agents are
approximately risk neutral over the relevant stakes.

When imposing homogeneous tastes, we number the alternatives so that a higher po-
sition in the preference order implies a lower index. We thus write kA for the kth best
option on A, and the full menu appears as A= {1A�2A� � � � � nA}, where nA = |A|.

We introduce cognitive heterogeneity by assigning each agent a cognitive type θ ∈Θ⊂
�, drawn independently across agents from the distribution F . We write pθ(kA) for the
probability that type θ chooses alternative kA, and p(kA)= ∫

Θ
pθ(kA)dF for the overall

share in the population. Similarly, we write pθ(dA) for the probability that type θ accepts
the default, and p(dA)= ∫

Θ
pθ(dA)dF for the population share. For each θ ∈Θ, we have

[∑nA
k=1pθ(kA)] +pθ(dA)= 1, and in aggregate we likewise have [∑nA

k=1p(kA)] +p(dA)=
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1. If wishing to emphasize the role of the type distribution in determining the choice
probabilities, we write p(kA;F) and p(dA;F).

The basic scenario of interest involves a large population choosing from a fixed menuM
with |M| = nM ≥ 2. The analyst observes the aggregate choice shares, but knows neither
the common preference order nor the distribution of cognitive types. In this context we
shall generally suppress dependence on M , writing pθ(k) and pθ(d) for the type-specific
frequencies, p(k) and p(d) for the population shares, and n= nM for the cardinality of
the menu. Our goal is then to deduce information about the cognitive distribution F from
the data in 〈p(1)�p(2)� � � � �p(n)�p(d)〉.

We proceed now to specialize this framework to a more concrete model in which the
cognitive heterogeneity relates to limited attention. Each agent will consider (i.e., pay
attention to) a subset of the alternatives, and among those considered will choose the
best option according to the common preference order. If the preference-maximizing
alternative is not in the consideration set, this will result in a suboptimal decision.

2.2. The Consideration Capacity Model

Let γ ∈ {0�1�2� � � �} =Θ denote a limit on the cardinality of the agent’s consideration
set; that is, the consideration capacity. When 1 ≤ γ < n, we assume that the agent is equally
likely to consider each �⊂M with |�| = γ, and when γ ≥ n we know with certainty that
the entire menu M will be considered. In the former case, there are

(
n

γ

)
candidate sets, of

which
(
n−k
γ−1

)
contain alternative k and do not contain any superior alternative 	 < k. For

1 ≤ γ < n, the probability of k being chosen is thus
(
n−k
γ−1

)
/
(
n

γ

)
. Note that this probability is

0 for k > n− γ + 1, since here there are fewer than γ − 1 alternatives inferior to k that
can populate the consideration set in order to allow k to be chosen. Of course, whenever
the full menu is considered we know that alternative 1 will be chosen regardless of the
value of γ ≥ n.9

The type-conditional choice frequencies can now be expressed as

pγ(k)=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
n− k
n− 1

)
if γ ≥ n�(

n− k
γ− 1

)/(
n

γ

)
if 1 ≤ γ < n�

0 if γ = 0;

pγ(d)=
{

0 if γ > 0�
1 if γ = 0�

(1)

Defining the probability masses

π(0)= F(0)�
9We have assumed that the common preference relation � is a linear order; that is, that no two distinct

alternatives are indifferent. If we allow for indifference then, defining ωk(R) = |{j : jRk}|, for 1 ≤ γ < n the
probability of option k being chosen is

[(
ωk(�)
γ

) − (
ωk(�)
γ

)][(
n
γ

)[ωk(�) − ωk(�)]
]−1

(with equations (1), (2),
and (10) below modified accordingly). While this generalization causes no significant difficulty for the deriva-
tion of choice shares, we shall nevertheless maintain the linear ordering assumption so as to avoid our main
objective of cognitive identification being hampered by a feature of preferences alone. We also view the prohi-
bition on indifference as relatively innocuous in the present, finite-menu setting.
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∀γ ∈ {1�2� � � � � n− 1}: π(γ)= F(γ)− F(γ− 1)�

π(n)= 1 − F(n− 1);
the corresponding aggregate shares are then

p(k)=
n−k+1∑
γ=1

pγ(k)π(γ)=
n−k+1∑
γ=1

(
n− k
γ− 1

)
(
n
γ

) π(γ)� (2)

p(d)= π(0)� (3)

Observe that for 1 ≤ k< n we can use equation (2) to compute

p(k)−p(k+ 1)= π(n− k+ 1)(
n

n− k+ 1

) +
n−k∑
γ=2

(
n− k− 1
γ− 2

)
(
n
γ

) π(γ)� (4)

This relation shows that, when we move one ordinal step up the preference scale, the
aggregate choice share increases for two reasons: First, the kth best alternative can be
chosen when γ = n − k + 1, unlike the next best option. And second, for values of γ
smaller than this the better alternative is chosen more frequently, since there are more
ways of populating the rest of the consideration set with inferior options.

Note also that setting k= n in equation (2) yields p(n)= π(1)/n, and hence

π(1)= np(n)� (5)

Similarly, setting k= n− 1 in equation (4) yields p(n− 1)−p(n)= 2π(2)
n[n−1] , and hence

π(2)= n[n− 1]
2

[
p(n− 1)−p(n)]� (6)

Equations (5)–(6) prefigure the recursive method employed in Section 3 to identify the
cognitive type distribution, in which the probabilities π(1)� � � � �π(n − 1) are deduced
sequentially, with one additional choice share used at each step.

Finally, using equation (5), we can write equation (4) in terms of probability ratios as

p(k)−p(k+ 1)
p(n)

= n(
n

n− k+ 1

) π(n− k+ 1)
π(1)

+ n
n−k∑
γ=2

(
n− k− 1
γ− 2

)
(
n
γ

) π(γ)

π(1)
� (7)

For instance, when k= n− 1 we find that the probability mass ratio

π(2)
π(1)

= n− 1
2

[
p(n− 1)
p(n)

− 1
]

(8)

between the two smallest (nonzero) values of the consideration capacity depends only on
the aggregate choice share ratio between the two worst alternatives on the menu.



1276 DARDANONI, MANZINI, MARIOTTI, AND TYSON

2.3. A Special Case: The Consideration Probability Model

One special case of the consideration capacity model is a version of the consideration
probability model studied by Manzini and Mariotti (2014) that emphasizes the interpre-
tation of attention as general awareness of the choice environment. Denote by ρ ∈ [0�1]
the probability that the agent considers each alternative on the menu, with consideration
independent across agents and alternatives. Since the same consideration probability ap-
plies independently to each alternative, all subsets of the menu of a given size are equally
likely to be the consideration set. Moreover, the probability of a consideration set of size
γ ≤ n is

π(γ)=
(
n
γ

)∫ 1

0
ργ[1 − ρ]n−γ dF� (9)

and clearly π(γ)= 0 for γ > n. Adapting equations (2)–(3) to this special case, we obtain
the aggregate choice shares

p(k)=
n−k+1∑
γ=1

(
n− k
γ− 1

)∫ 1

0
ργ[1 − ρ]n−γ dF =

∫ 1

0
ρ[1 − ρ]k−1 dF� (10)

p(d)=
∫ 1

0
[1 − ρ]n dF;

for the consideration probability model. As in the general case, alternative k’s choice
share is the probability that this option and nothing better is considered, and the share of
the default outcome is the probability that nothing at all is considered.

3. INFERENCE FROM AGGREGATE CHOICES

3.1. Preference Identification

In the context of our limited attention model, the agents’ common preferences over the
alternatives are fully revealed by the observed choice shares under weak conditions. To
see that revelation is not automatic, observe that each alternative’s total choice proba-
bility aggregates the probability of being chosen conditional on each cognitive type, and
the various types contribute for different members of M . In the extreme case where the
population consists entirely of (fully rational) types γ ≥ n, only the best alternative would
be revealed; a population containing types γ ≥ n− 1 would reveal the best two alterna-
tives; and so on. Since γ = 2 alone makes a contribution for every member of M , without
this type the common preference between at least one pair of alternatives would not be
identified.

PROPOSITION 1: For the consideration capacity model, with 1 ≤ k< n:
(i) p(k)≥ p(k+ 1).

(ii)
∑n−k+1

γ=2 π(γ) > 0 if and only if p(k) > p(k+ 1).
(iii) π(2) > 0 if and only if p(1) > p(2) > · · ·>p(n).
Here, (i) holds since each term on the right-hand side of equation (4) is nonnegative,

and (ii) follows since each such term is zero only if the relevant capacity probability is
zero. Moreover, π(2) appears in equation (4) for all 1 ≤ k < n, and thus strict positivity
of this single probability suffices for full revelation of preferences. This fact, recorded in
(iii), can also be specialized to the consideration probability model using equation (9).
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COROLLARY 1: For the consideration probability model, if the support of F intersects (0�1)
then p(1) > p(2) > · · ·>p(n).

We conclude that, under the homogeneous tastes assumption, preferences are for prac-
tical purposes fully revealed by aggregate choice data, and efforts can be focused squarely
on the cognitive identification problem. For the remainder of Section 3, we assume tacitly
that π(2) > 0, ensuring that the choice shares p(1) > p(2) > · · ·>p(n) faithfully reflect
the underlying preference order.

3.2. Cognitive Identification

3.2.1. The Nonparametric Inference Problem

When the cognitive type distribution has a known functional form, its parameters can
often be deduced from a few appropriately selected choice-share observations. (This is
demonstrated in Appendix A.1 by means of four examples that highlight nonobvious
ways that aggregate choices can convey information about F .) Yet even in the absence
of functional-form assumptions, identification of the type distribution remains highly
tractable for the consideration capacity model. This is because the choice shares are lin-
ear functions of the probability masses π(γ), which are in turn linear functions of the mo-
ments mj of F when we specialize to the consideration probability model. What’s more,
each linear system has a simple triangular structure that enables us to solve it recursively,
using one additional choice share at each step.

In view of these features of the inference problem, we can decode the information
about the cognitive capacity distribution encoded in the choice share data by inverting
a triangular n × n matrix. This will yield the probability of each capacity value strictly
less than n, and adding one more option to the menu will give us knowledge of one ad-
ditional probability mass. In the consideration-probability setting, we can then invert a
second triangular n× n matrix to deduce the first n raw moments of F from the capacity
probabilities. Finally, well established tools (specifically, sparse matrix theory and maxi-
mum entropy methods) will permit us to approximate F from its moments with increasing
precision as the size of the menu grows (see Section 3.3).

3.2.2. Recovering n Probability Masses

Absent parametric assumptions, the aggregate choice shares are given by equation (2).
These relations can be written together in matrix form as

⎡⎢⎢⎢⎢⎢⎣
p(1)
���

p(k)
���

p(n)

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

p

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1/n · · · γ/n · · · 1
���

���
���

1/n · · ·
(
n− k
γ− 1

)/(
n
γ

)
· · · 0

���
���

���
1/n · · · 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

C

⎡⎢⎢⎢⎢⎢⎣
π(1)
���

π(γ)
���

π(n)

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

π

� (11)
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The upper antitriangular and left-stochastic matrix C has a lower antitriangular inverse,
allowing us to write π = C−1p.10 Accordingly, we can calculate the components of π as

π(γ)=
(
n
γ

) n∑
k=n−γ+1

[−1][γ−1]−[n−k]
(
γ− 1
n− k

)
p(k)� (12)

and of course π(0)= p(d)= 1 −∑n

k=1p(k). Observe that since π(n)= 1 −F(n− 1), it is
in fact the probabilities of the capacities γ = 0�1� � � � � n− 1 that are revealed; and γ = n
cannot be disambiguated from higher values. Indeed, all capacities greater than or equal
to the number of alternatives will always be behaviorally indistinguishable. We summarize
our conclusions as follows.

PROPOSITION 2: In the consideration capacity model, the probability masses π are
uniquely determined by the aggregate choice shares p.

As an aside, note that the key features of the model for Proposition 2 are that C is
known and invertible. These do not require the assumption that the agent is equally likely
to consider each �⊂M with |�| = γ, which we have imposed for simplicity as a point of
departure. This observation is illustrated by the following example.

EXAMPLE 1—Salience weights: Let n= 3; assign to each alternative k a weight wk > 0,
assumed to be known to the researcher; and define the polynomials W1 = w1 + w2 + w3

andW2 =w1w2 +w1w3 +w2w3. Conditional on γ = 1, let �= {k} with probability wk/W1;
and conditional on γ = 2, let �= {j�k} (for j 
= k) with probability wjwk/W2. In this case
the analog of equation (11) is⎡⎣p(1)p(2)

p(3)

⎤⎦
︸ ︷︷ ︸

p

=
⎡⎣w1/W1 [w1w2 +w1w3]/W2 1
w2/W1 w2w3/W2 0
w3/W1 0 0

⎤⎦
︸ ︷︷ ︸

C(w1�w2�w3)

⎡⎣π(1)π(2)
π(3)

⎤⎦
︸ ︷︷ ︸

π

�

For instance, if w1 = 1, w2 = 2, and w3 = 4, then p= C(1�2�4)π and we can compute⎡⎣π(1)π(2)
π(3)

⎤⎦=π =C(1�2�4)−1p= 1
8

⎡⎣ 14p(3)
14p(2)− 7p(3)

8p(1)− 6p(2)+p(3)

⎤⎦ �
Here, the matrix C(w1�w2�w3) remains known, upper antitriangular, and invertible

for any salience weights. If salience is severely misaligned with the agents’ tastes, then
it is possible that the choice shares will no longer directly reveal the preference order.
But note that the degree of misalignment embodied in C(1�2�4), together with the de-
cidedly adverse capacity distribution π = 〈1/2�1/3�1/6〉, is not enough to generate this
phenomenon. (The resulting shares are p = 〈8/21�7/21�6/21〉.) In any case, we shall re-
turn to this issue in Section 4, where we consider the prospects for preference revelation
in a much more general setting that allows for taste heterogeneity.

10A matrix is left (resp., right) stochastic if all entries are nonnegative and all columns (resp., all rows) sum
to one.
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3.2.3. Consideration Probability: Recovering n Moments

Returning to the special case of the consideration probability model, let us write the jth
raw moment of the type distribution as mj = ∫ 1

0 ρ
j dF . The binomial in equation (9) can

then be expanded to yield

π(γ)=
(
n
γ

)∫ 1

0
ργ

[
n−γ∑
i=0

(
n− γ
i

)
[−ρ]i

]
dF =

(
n
γ

) n∑
j=γ

(
n− γ
j − γ

)
[−1]j−γmj�

In matrix form, these relations appear as

⎡⎢⎢⎢⎢⎢⎣
π(1)
���

π(γ)
���

π(n)

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

π

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n · · · n

(
n− 1
j − 1

)
[−1]j−1 · · · n[−1]n−1

���
���

���

0 · · ·
(
n
γ

)(
n− γ
j − γ

)
[−1]j−γ · · ·

(
n
γ

)
[−1]n−γ

���
���

���
0 · · · 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

Q

⎡⎢⎢⎢⎢⎢⎣
m1
���
mj

���
mn

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

m

�

The upper triangular matrix Q has an upper triangular inverse, so we have

m =Q−1π = Q−1[C−1p
]= [CQ]−1p� (13)

Performing this calculation, the raw moments are given explicitly by

mj =
j∑

k=1

[−1]k−1

(
j − 1
k− 1

)
p(k)� (14)

We summarize our conclusions for the special case as follows.

PROPOSITION 3: In the consideration probability model, the raw moments m are uniquely
determined by the aggregate choice shares p.

3.3. Consideration Probability: Beyond Moments

3.3.1. From Moments to Distributions

Continuing to focus on the consideration probability model, we now investigate what
can be learned about F itself from the information supplied by Proposition 3. To this
end, throughout Section 3.3 we shall treat as known a finite number of raw moments of
the cognitive distribution. It is intuitive that this information constrains the shape of any
sufficiently well-behaved F , with more moments known generating tighter constraints.
However, two distributions that share certain raw moments could in principle have differ-
ences that are relevant for questions we may wish to study. For instance, we might hope
to measure the fraction of agents with very low or very high values of ρ, or to reveal the
cognitive type of a particularly small subpopulation. For such purposes, we may want to
have confidence that the raw moment information can be turned into a distribution that
matches or closely approximates F over the entire range of possible ρ-values.
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We now proceed to outline two different strategies for ensuring that the moment infor-
mation adequately captures the cognitive type distribution. The first will rely on discrete-
ness of the distribution and ensure a unique characterization of F , while the second will
rely on the existence of a density and guarantee convergence to F in the limit as n→ ∞.

3.3.2. Discrete Type Distributions

Suppose that F is a discrete distribution, with the consideration probability ρ taking on
the list of values 〈ρ1�ρ2� � � � � ρL〉. The number L of cognitive types is known, though the
values themselves may be unknown. We assume, however, that the values are located on
a (known) finite grid of admissible points in [0�1], which can be as fine as desired.

The realized values of ρ have probabilities 〈ξ(ρ1)�ξ(ρ2)� � � � � ξ(ρL)〉, each strictly posi-
tive and together summing to one, so that the jth raw moment of F appears as

mj =
L∑
	=1

ξ(ρ	)ρ
j
	� (15)

Treating the first n moments as known, equation (15) supplies a system of n equalities in
2L unknowns; namely, the values ρ	 and their associated probabilities ξ(ρ	). This system
can be solved for n sufficiently large, but it is not obvious that the solution will be unique.

Assume that the grid of admissible values for ρ is 〈0�1/N�2/N� � � � �1〉, with the fineness
parameter N large relative to L.11 Then F is a discrete distribution defined entirely by
the probability masses 〈ξ(	/N)〉N	=0, of which exactly L�N are nonzero. Recovering the
distribution thus amounts to finding a solution ξ of the system⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
m1
���
mj

���
mn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

〈1�m〉

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1 · · · 1
0 1/N · · · 	/N · · · 1
���

���
���

���
0 [1/N]j · · · [	/N]j · · · 1
���

���
���

���
0 [1/N]n · · · [	/N]n · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

V

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ξ(0)
ξ(1/N)
���

ξ(	/N)
���

ξ(1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

ξ

� (16)

with each component ξ(	/N) weakly positive and exactly L components strictly posi-
tive. Here, V is a Vandermonde matrix with many more columns (i.e., grid points) than
rows (known moments), implying an underdetermined system.12 But the number L of grid
points actually used could in principle be larger or smaller than n.

A result of Cohen and Yeredor (2011, Theorem 1) applies to precisely this situation,
stating that equation (16) has a unique solution if n≥ 2L. We conclude the following.

PROPOSITION 4: In the consideration probability model, if F is a discrete distribution over
L admissible types, with n≥ 2L, then F is uniquely determined by the aggregate choice shares
p.

11For notational simplicity, we use an evenly spaced grid of admissible values, but this is not essential for
our conclusions.

12See, for example, Macon and Spitzbart (1958) for the definition and properties of Vandermonde matrices.
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This result means that in practice any discrete distribution for the consideration prob-
ability ρ can be fully recovered from aggregate choice share data provided the number of
alternatives is large relative to the number of cognitive types.

3.3.3. Type Distributions With a Density

Now suppose that the cognitive type distribution F admits a density f . In this case, we
will clearly not be able to recover F fully from a finite number n of moments. Instead,
we aim to ensure that the known moments yield a reliable approximation of the true
distribution.

Our method relies on standard techniques from the “Hausdorff moment problem” for
distributions on a closed interval. Adopting a maximum entropy approach, define the nth
approximating density f̂n as the solution to the optimization problem

max
fn

∫ 1

0

[− log fn(ρ)
]
fn(ρ)dρ

subject to the (jth-moment) constraint∫ 1

0
ρjfn(ρ)dρ=mj (17)

for j = 0�1� � � � � n. Mead and Papanicolaou (1984, Theorem 2) show that such a solution
exists and is unique;13 and that for each bounded, continuous ψ : [0�1] → � we have

lim
n→∞

∫ 1

0
ψ(ρ)f̂n(ρ)dρ=

∫ 1

0
ψ(ρ)f (ρ)dρ�

Write F̂n for the distribution function associated with the approximating density f̂n. For
any menu A and each k≤ min{n� |A|}, we now have that

p(kA; F̂n)= p(kM; F̂n)= p(kM;F)= p(kA;F)� (18)

Here, the first and third equalities follow from the observation that in the consideration
probability model an alternative’s choice share depends only on its rank on the menu
according to the preference order. Moreover, in this model we have p = CQm and the
shares of the n best alternatives are determined by the first n moments. The constraints
in equation (17) guarantee that these moments coincide for F̂n and F , yielding the second
equality in equation (18). We summarize our findings as follows.

PROPOSITION 5: In the consideration probability model, if F admits a density then there
exists a map m �→ F̂n such that:

(i) The sequence 〈F̂n〉∞
n=1 converges weakly to F .

(ii) For any menu A and each k≤ min{n� |A|}, we have p(kA; F̂n)= p(kA;F).

13The solution takes the form f̂n(ρ)= exp[−∑n
j=0 λjρ

j], where the quantities 〈λj〉nj=0 are the Lagrange mul-
tipliers on the constraints in equation (17).
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As already noted, the constraints in equation (17) require each approximation F̂n to
be observationally indistinguishable from the true distribution F in the sense that they
generate the same first n moments, and hence the same aggregate choice shares over
menu M . Proposition 5 reinforces this by guaranteeing that the cognitive heterogeneity
in the population is reflected in two additional ways: First, as the size of the observed
menu increases, our approximation approaches (in the sense of weak convergence) the
true distribution of the consideration probability. And second, each approximation Fn
matches the true F not just over M , but also over the n best alternatives on any other
menu A about which we may wish to make predictions.

3.4. Unobserved Default Outcome

3.4.1. Conditional Choice Shares

In this section, we examine the feasibility of cognitive identification when the default
outcome is unobserved. Under this assumption, our data set consists of the aggregate
shares p(k) = p(k)/[1 − p(d)] conditional on an active choice being made. Of course,
any ratio of aggregate shares of the form p̃(k� 	)= p(k)/p(	)= p(k)/p(	) is unaffected
by the conditioning, and so equations (7)–(8) remain valid when restated in terms of the
conditional shares and the associated probability masses π(γ)= π(γ)/[1 −π(0)].

3.4.2. Recovering n− 1 Probability Mass Ratios

As in the basic model, several natural functional forms for the type distribution permit
identification of their parameters even when the default outcome is unobserved. (See Ap-
pendix A.2 for examples.) In the nonparametric setting, it is simple to adapt equation (12)
to this case. Indeed, for each γ = 2�3� � � � � n we have that

π(γ)

π(1)
=

(
n
γ

)
n

n∑
k=n−γ+1

[−1][γ−1]−[n−k]
(
γ− 1
n− k

)
p(k)

p(n)

=

(
n
γ

)
n

n∑
k=n−γ+1

[−1][γ−1]−[n−k]
(
γ− 1
n− k

)
p(k)

p(n)
�

Thus we can use the conditional choice shares to recover n − 1 probability mass ratios,
though without knowledge of the default share p(d) = π(0) we are of course unable to
determine the masses themselves.

3.4.3. Consideration Probability: Recovering n− 1 Moment Ratios

For the special case of the consideration probability model, equation (14) can likewise
be adapted to the unobserved default scenario. Here, for each j = 2�3� � � � � n, we have

mj

m1
=

j∑
k=1

[−1]k−1

(
j − 1
k− 1

)
p(k)

p(1)
=

j∑
k=1

[−1]k−1

(
j − 1
k− 1

)
p(k)

p(1)
�
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This yields n− 1 raw-moment ratios, and we could proceed to use methods such as those
in Section 3.3 to approximate the shape of the type distribution F (the mean m1 of which
would remain undetermined without knowledge of the default share).14

4. PREFERENCE HETEROGENEITY

4.1. Known Taste Distribution

Section 3 has studied the identification properties of our model of consideration
set formation under the assumption that preferences are homogeneous. We now aim
to show that the preceding analysis can be extended to allow for heterogeneous
preferences, provided the taste distribution is known and statistically independent of
the cognitive type distribution.15 We then proceed (in Section 4.2) to investigate the
prospects for identification when both the taste and cognitive distributions are un-
known.

To incorporate preference heterogeneity into the present framework, we order the al-
ternatives arbitrarily as M = {1�2� � � � � n} and write ϕ : M → {1�2� � � � � n} for the map
that associates each option with its preference rank.16 We enumerate the possible rank-
ings as 〈ϕh〉n!h=1, write τh for the probability of ϕh, and denote by P (h) the n× n permu-
tation matrix corresponding to ϕh.17 With preference heterogeneity equation (11) then
becomes

p =
n!∑
h=1

τh
[
P (h)C

]
π =

[
n!∑
h=1

τhP (h)

]
︸ ︷︷ ︸

B

Cπ� (19)

where C is the known, invertible matrix defined in Section 3.2.2.
Equation (19) differs from equation (11) only in that the right-hand side vector Cπ is

premultiplied by B, which we refer to as the “average preference permutation matrix.” A
typical entry Bkr =∑

h:ϕh(k)=r τh of this matrix is the total probability of alternative k being
placed in position r, computed as the sum of the probabilities of all rankings ϕh that make
this assignment. Provided B is invertible, we have π = [BC]−1p from equation (19), and
similarly equation (13) becomes m = [BCQ]−1p for the special case of the consideration
probability model. We conclude that in the present context the aggregate choice shares
can still be used to find the probability masses in π and the raw moments in m, as long as
the known taste distribution yields a nonsingular B.

14Horan (2019) considered an unobserved default outcome in the context of a dataset with choices from
multiple menus, showing that the identification properties of the independent random consideration model in
Manzini and Mariotti (2014) remain largely intact.

15The distribution of taste parameters—such as discount factors or risk-aversion coefficients—may be
treated as known for our purposes if these characteristics can be elicited from agents separately, in a set-
ting (e.g., a laboratory experiment) where limited attention is thought to be irrelevant or controllable to an
acceptable degree.

16This formulation maintains the assumption of linear order preferences imposed in Section 2.
17More explicitly, the permutation matrix P (h) translates the kth row of an n× n target matrix A into the

ϕh(k)th row of the product P (h)A. Similarly, post-multiplying by P (h) permutes the columns of A.
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The matrix B is a convex combination of permutation matrices, and must therefore be
bistochastic.18 Of course, there exist taste distributions τ = 〈τh〉n!h=1 for which B is nonin-
vertible; for example, the uniform distribution (with each τh = 1/n!) yields a singular B
with each entry equal to 1/n. However, invertibility is clearly the generic situation here.
In fact, det(B) is a polynomial function of τ ∈ �n!, and we know that any real-valued
polynomial function on a Euclidean space is either identically zero or nonzero almost ev-
erywhere (see, e.g., Caron and Traynor (2005)). Since det(B) is nonzero for the case of
homogeneous preferences, it is not identically zero, and thus B is generically invertible.
This allows us to extend Propositions 2–3 as follows.

PROPOSITION 6: In the consideration capacity model with known preference heterogeneity,
for almost all taste distributions τ the probability masses π are uniquely determined by the
aggregate choice shares p.

PROPOSITION 7: In the consideration probability model with known preference hetero-
geneity, for almost all taste distributions τ the raw moments m are uniquely determined by the
aggregate choice shares p.

The following example illustrates the handling of known preference heterogeneity in
the context of the consideration capacity model.

EXAMPLE 2—Exploded logit: Let n= 3 and u(k)= logk, and suppose that the distri-
bution of tastes is determined by an exploded logit based on u. In this case, the average
preference permutation matrix is

B=
n!∑
h=1

τhP (h)= 1
3

⎡⎣0 0 1
0 1 0
1 0 0

⎤⎦
︸ ︷︷ ︸

ϕ1:3�2�1

+1
4

⎡⎣0 1 0
0 0 1
1 0 0

⎤⎦
︸ ︷︷ ︸

ϕ2:2�3�1

+1
6

⎡⎣0 0 1
1 0 0
0 1 0

⎤⎦
︸ ︷︷ ︸

ϕ3:3�1�2

· · ·

+ 1
10

⎡⎣1 0 0
0 0 1
0 1 0

⎤⎦
︸ ︷︷ ︸

ϕ4:1�3�2

+ 1
12

⎡⎣0 1 0
1 0 0
0 0 1

⎤⎦
︸ ︷︷ ︸

ϕ5:2�1�3

+ 1
15

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦
︸ ︷︷ ︸

ϕ6:1�2�3

= 1
60

⎡⎣10 20 30
15 24 21
35 16 9

⎤⎦ ; (20)

where, for instance, the probability of the ranking ϕ2 is calculated as

τ2 = eu(2)

eu(1) + eu(2) + eu(3) × eu(3)

eu(1) + eu(3) × eu(1)

eu(1)

= 2
6

× 3
4

× 1
1

= 1
4
�

18A matrix is bistochastic if it is both left and right stochastic. The Birkhoff/von-Neumann theorem states
that the class of n× n bistochastic matrices is the convex hull of the set of n× n permutation matrices.
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The matrix in equation (20) is nonsingular (with det(B) = −1/30), whereupon we can
compute ⎡⎣π(1)π(2)

π(3)

⎤⎦= π = [BC]−1p = 1
2

⎡⎣ 30p(1)− 27p(2)+ 3p(3)
−60p(1)+ 75p(2)− 15p(3)
32p(1)− 46p(2)+ 14p(3)

⎤⎦ �
and as always π(0)= p(d).19

4.2. Unknown Taste Distribution

4.2.1. The Multiple Occasion Framework

Continuing to allow for heterogeneous preferences, we next consider the problem of
identifying the cognitive distribution when the taste distribution too is unknown. Here,
the information in a single observation of aggregate choices is clearly insufficient to re-
veal both distributions nonparametrically. Indeed, Propositions 2–3 already consume all
n degrees of freedom in order to infer probability masses or raw moments of F . The
impracticality of deducing cognition and tastes simultaneously from our basic dataset is
illustrated in the following simple example.

EXAMPLE 3—Identification failure: Let n= 2 and ϕ1(1)= 1, so that τ1 is the probabil-
ity of the ranking 1 � 2. Equation (19) then takes the form[

p(1)
p(2)

]
= p = [BC]π =

[
1/2 τ1

1/2 τ2

][
π(1)
π(2)

]
�

an underdetermined system in which the cognitive distribution 〈π(1)�π(2)〉 and the taste
distribution τ1 = 1 − τ2 cannot be disambiguated.

To gain some leverage on the unknown tastes scenario, it will be necessary to relax the
stringent assumption that our dataset consists of aggregate choice shares from a single
menu, and a variety of relaxations are possible.20 The approach we shall adopt here is to
suppose that the researcher has access to choice data from the same population of agents
on multiple “occasions” across which the cognitive distribution is stable. While we assume
for notational simplicity that the size of the menu is constant, the alternatives themselves
need not be identical across occasions. For instance, the objects of choice could be inter-
preted as the same physical items at time-varying prices; the current model of a product
offered in successive periods by a fixed set of suppliers; or the options available in an
experiment with multiple rounds or treatments.

19Note that the invertibility of B in this example is not an accident. For any u :M → �, it can be shown that

det(B)= eu(1) − eu(2)
eu(1) + eu(2) × eu(1) − eu(3)

eu(1) + eu(3) × eu(2) − eu(3)
eu(2) + eu(3) �

and hence det(B) 
= 0 if and only if the function u is one-to-one.
20One strategy would be to supply the researcher with aggregate data on choices from multiple subsets of the

menu (cf. Aguiar et al. (2018) and Geng and Ozbay (2018)), while assuming stable tastes. Another strategy—
explored in an earlier version of this paper—would be to supplement the dataset with covariates and estimate
a random utility model of preference determination.
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We assume further that our dataset consists of the joint distribution of choices across
occasions; as arising, for example, from discrete choice panel data or from a sequence
of discrete choice experiments. Although such joint choice shares comprise “aggregate”
data only from a somewhat literalist point of view, the agents in the population can re-
main anonymous in the sense that no observations on individuals will be required for our
analysis other than their observed choice patterns.21

The advantage of this new multioccasion setting is that it will allow us to deploy a pow-
erful mathematical result on tensor decompositions to determine the cognitive distribu-
tion even in the context of unknown and possibly changing tastes. We shall find (in Propo-
sition 8) that joint choice share data from as few as three occasions is generically sufficient
to infer the consideration capacity distribution in full as well as substantial information
about the distribution of tastes.

Formally, we index the occasions by i= 1� � � � � I and suppose that on each occasion our
population of agents chooses from a menu M = {1� � � � � n} with default d /∈ M . Here,
neither k ∈ M nor the default d need represent the same economic outcome on dif-
ferent occasions, but the cardinality n of the menu is constant (see footnote 26). The
taste distribution on occasion i is denoted by τ i = 〈τih〉n!h=1, and agents are assumed to re-
tain their cognitive types across occasions so that the distribution F is stable. We write
pθ(k1 · · ·kI) for the joint probability that on each occasion i an individual of type θ
chooses alternative ki. Our dataset then consists of the corresponding population shares
p(k1 · · ·kI)= ∫

Θ
pθ(k1 · · ·kI)dF , and as before our objective is to use this data to deduce

information about the underlying cognitive distribution F .

4.2.2. Joint Choice Shares in the Consideration Capacity Model

In the context of the consideration capacity model, we assume that the realizations of
the consideration set � and the preference ranking ϕh are independent across occasions
conditional on the type γ. The analog of equation (1) is then

pγ(k1 · · ·kI)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I∏
i=1

∑
h:ϕh(ki)=1

τih if γ ≥ n�

I∏
i=1

n−γ+1∑
r=1

(
n− r
γ− 1

)
(
n

γ

) ∑
h:ϕh(ki)=r

τih if 1 ≤ γ < n�

0 if γ = 0;
where (for 1 ≤ γ < n) the product is over the various occasions i, the outer sum is over
the possible ranking positions r of the chosen alternative ki, and the inner sum is over the
rankings that place ki in position r. Now the analog of equation (2) appears as

p(k1 · · ·kI)=
n∑
γ=1

π(γ)pγ(k1 · · ·kI)=
n∑
γ=1

π(γ)

I∏
i=1

n−γ+1∑
r=1

(
n− r
γ− 1

)
(
n
γ

) ∑
h:ϕh(ki)=r

τih� (21)

21With I occasions and n alternatives, a single agent’s joint choice can be described by a unit vector in nI -
dimensional space. The aggregate choice frequencies for the population are then given by the sum of these
vectors, which is equivalent to the aggregate joint distribution of choices in our dataset.
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demonstrating how the population choice shares are determined by the cognitive type
distribution π in conjunction with the taste distributions 〈τ i〉Ii=1.

The following example illustrates the multioccasion framework and shows how joint
choice share data can be used to infer the cognitive and taste distributions.

EXAMPLE 4—Three occasions: Let n = 2 and I = 3, and for each occasion i let
τi1 ∈ (0�1) denote the probability of 1i �i 2i. In other words, on each occasion we let
the first ranking be the one that prefers the first alternative (according to the arbitrary
initial ordering ofM) to the second. Conditioning on γ > 0, as in Section 3.4, let S denote
the 2 × 2 × 2 array describing the joint distribution of choices on the three occasions. This
array can be represented explicitly as

S=
⎡⎣⎡⎣k3 = 1 k2 = 1 k2 = 2 k3 = 2 k2 = 1 k2 = 2
k1 = 1 p(111) p(121) k1 = 1 p(112) p(122)
k1 = 2 p(211) p(221) k1 = 2 p(212) p(222)

⎤⎦⎤⎦ � (22)

Our goal is to use the eight joint choice shares p(k1k2k3) to deduce both the cognitive
distribution π(1) and the three occasion-specific taste distributions τi1.22

In equation (22), consider the top row (associated with k1 = 1) of each 2 × 2 subarray.
Agents of type γ = 1 choose the two options with equal probability on each occasion,
and so p1(111) = p1(121) = p1(112) = p1(122) = 1/8. In contrast, agents of type γ ≥
2 choose alternative 1 with probability τi1 and alternative 2 with probability τi2 = 1 −
τi1 on occasion i, so we obtain the expressions p2(111) = τ11τ21τ31, p2(121) = τ11τ22τ31,
p2(112) = τ11τ21τ32, and p2(122) = τ11τ22τ32. Equation (21) can then be specialized to
each of these four joint choice shares as

p(111)= π(1) · [1/8] +π(2) · τ11τ21τ31� (23)

p(121)= π(1) · [1/8] +π(2) · τ11τ22τ31� (24)

p(112)= π(1) · [1/8] +π(2) · τ11τ21τ32� (25)

p(122)= π(1) · [1/8] +π(2) · τ11τ22τ32� (26)

To recover the cognitive distribution, we combine equations (23)–(26) to establish that

8p(111)−π(1)
8p(112)−π(1) = τ31

τ32
= 8p(121)−π(1)

8p(122)−π(1) �

We can then solve for

π(1)= 8
[
p(111)p(122)−p(112)p(121)

]
p(111)−p(112)−p(121)+p(122)

�

and of course π(2)= 1 −π(1) since n= 2.

22Here, π(γ)= π(γ)/[1 − π(0)], as before, and we define p(k1 · · ·kI)= p(k1 · · ·kI)/[1 − p(d · · ·d)] anal-
ogously with our notation for the single-occasion setting.
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Next, to recover the taste distributions, we define the univariate marginals

G1(k)= p(k11)+p(k12)+p(k21)+p(k22)�

G2(k)= p(1k1)+p(1k2)+p(2k1)+p(2k2)�

G3(k)= p(11k)+p(12k)+p(21k)+p(22k)�

Adding equations (23)–(26) yields G1(1) = π(1) · [1/2] + π(2) · τ11, and more generally
for each occasion i we have Gi(1)= π(1) · [1/2] +π(2) · τi1. We can then express each

τi1 = 2Gi(1)−π(1)
2π(2)

in terms of known functions of the array S, as desired.

4.2.3. Cognitive Identification From Three Occasions

We proceed now to establish that the cognitive identification seen in Example 4 is a
generic feature of the multioccasion setting. Once again conditioning on the event γ > 0,
we represent our dataset as a tensor S of order I with dimensions n× · · · × n,23 having
typical entry

Sk1�����kI = p(k1 · · ·kI)= p(k1 · · ·kI)
1 −p(d · · ·d)�

Writing Bi =∑n!
h=1 τihP (h) for the average preference permutation matrix on occasion i,

we can then express equation (21) more compactly as

S=
n∑
γ=1

π(γ)

I⊗
i=1

[BiC]1γ� (27)

where ⊗ is the outer product operator and 1γ denotes the unit vector for component γ
(which here extracts the γth column of the matrix BiC).24 To illustrate this notation, we
pause to revisit the preceding example.

EXAMPLE 5—Three occasions; continued from Example 4: For each occasion i =
1�2�3, we have

BiC=
[

1/2 τi1
1/2 τi2

]
�

and so equation (27) takes the form

S= π(1)
3⊗
i=1

[
1/2
1/2

]
+π(2)

3⊗
i=1

[
τi1
τi2

]

23A tensor is a multidimensional array that generalizes the concept of a matrix to allow for an arbitrary
number of indices—this number being the order of the tensor. The dimensions of a tensor indicate the number
of possible values of each index, generalizing the number of rows and columns of a matrix.

24Recall that the outer product of a pair of vectors is the first multiplied by the transpose of the second, and
similarly each further outer product operation adds another dimension to the resulting array.
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= π(1)
[[

1/8 1/8 1/8 1/8
1/8 1/8 1/8 1/8

]]
· · ·

+π(2)
[[
τ11τ21τ31 τ11τ22τ31 τ11τ21τ32 τ11τ22τ32

τ12τ21τ31 τ12τ22τ31 τ12τ21τ32 τ12τ22τ32

]]
� (28)

Here, [BiC]11 = 〈1/2�1/2〉 is the choice distribution of cognitive type γ = 1 on occa-
sion i; namely, uniform randomization between the two alternatives. Likewise, [BiC]12 =
〈τi1� τi2〉 is the choice distribution of type γ = 2, which simply reproduces the taste dis-
tribution on occasion i since the full-consideration type always chooses optimally. Note
further that equation (28) contains the four joint choice shares in equations (23)–(26), as
expected.

Finally—anticipating our formal result for the multioccasion setting—we can bring the
capacity probabilities π(γ) into the outer products by defining matrices

Z1 = [B1C]
[
π(1) 0

0 π(2)

]
�

Z2 = B2C, and Z3 =B3C; and by writing equation (28) as S=⊗3
i=1 Zi11 +⊗3

i=1 Zi12.

As illustrated in Example 5, equation (27) decomposes the joint choice share tensor
S into a linear combination of n rank-1 tensors.25 The advantage of this representation
is that the uniqueness properties of such decompositions have been studied extensively,
with Kruskal (1977, Theorem 4a) supplying a fundamental theorem that has been further
refined by Sidiropoulos and Bro (2000) and Allman, Matias, and Rhodes (2009), among
others. We shall use a corollary of the theorem due to Rhodes (2010), adapted for our
setting as follows.

LEMMA 1—Kruskal; Rhodes: Given any triad 〈Z1�Z2�Z3〉 of invertible n×nmatrices, the
tensor T = ∑n

γ=1[Z11γ ⊗ Z21γ ⊗ Z31γ] uniquely determines each Zi up to column rescaling
and permutation. That is, for any 〈Ẑ1� Ẑ2� Ẑ3〉 such that

∑n

γ=1[Ẑ11γ ⊗ Ẑ21γ ⊗ Ẑ31γ] = T ,
there exist invertible diagonal matrices 〈D1�D2�D3〉 and a permutation matrix P such that
D1D2D3 = In and each Ẑi = ZiDiP ; where In is the n× n identity matrix.26

Setting I = 3 and applying Lemma 1 to the tensor S, we can show generic cognitive
identification in the multioccasion environment.27

25A tensor is said to be of rank 1 if it is an outer product of vectors. See the Online Supplemental Material
Appendix B (Dardanoni, Manzini, Mariotti, and Tyson (2020)) for a primer on tensor decompositions of the
sort studied in Section 4.2.

26The result in Rhodes (2010, Corollary 2) is in fact substantially more general than this, since it allows
the Zi matrices to have different numbers of rows and one of them to have linearly dependent columns. This
necessitates a restriction on the “Kruskal rank” (Rhodes (2010, p. 1819)) of the latter matrix—a hypothesis
that is trivially satisfied in the square, full-rank case. In view of Example 4, different numbers of rows in the Zi
matrices will correspond to different numbers of alternatives across the choice occasions, and so relaxing the
assumption of constant menu cardinality is within the scope of our approach to cognitive identification. We
do not pursue this extension at present, since it is tangential to our main purpose and would complicate our
notation considerably.

27Since our goal is to infer cognitive heterogeneity from minimal data, we limit our agent’s choices to the
three occasions needed to apply Lemma 1. Data from additional occasions will neither help nor hinder cogni-
tive identification in this context, since extensions of Kruskal’s theorem to tensors of order higher than three
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PROPOSITION 8: In the consideration capacity model with unknown preference hetero-
geneity and three occasions, if π � 0 then for almost all taste distributions 〈τ1�τ2�τ3〉 the
probability masses π and average preference permutation matrices 〈B1�B2�B3〉 are uniquely
determined by the joint choice shares p(k1k2k3) for 1 ≤ k1�k2�k3 ≤ n.

PROOF: Write D(π) for the diagonal matrix with entries π = 〈π(γ)〉nγ=1 � 0. Following
Allman, Matias, and Rhodes (2009, p. 3118) and Example 5 above, set Z1 = [B1C]D(π),
Z2 =B2C, and Z3 = B3C. We then have

n∑
γ=1

[Z11γ ⊗Z21γ ⊗Z31γ] =
n∑
γ=1

π(γ)

3⊗
i=1

[BiC]1γ = S�

As argued in connection with Proposition 6, each matrix BiC has full rank for almost all
distributions τ i, and since π � 0 it follows that each Zi is generically invertible.

Suppose now that there exists a set of duplicate parameters 〈B̂1� B̂2� B̂3〉 and π̂ � 0
such that the corresponding

∑n

γ=1[Ẑ11γ ⊗ Ẑ21γ ⊗ Ẑ31γ] = S. By Lemma 1, there then exist
rescalings 〈D1�D2�D3〉 and a permutation P such that

[B̂1C]D(π̂)= Ẑ1 = Z1D1P = [B1C]D(π)D1P � (29)

B̂2C= Ẑ2 = Z2D2P = [B2C]D2P � (30)

B̂3C= Ẑ3 = Z3D3P = [B3C]D3P � (31)

Writing 1 for the vector of ones (and 1� for its transpose), from equations (30)–(31), we
have 1�B̂iC = 1�[BiC]DiP for each i = 2�3. Since Bi and B̂i are bistochastic and C is
left stochastic, it follows that 1� = 1�DiP , and thus 1� = 1�P� = 1�Di. We conclude that
D2 =D3 = In and, therefore, D1 = [D2D3]−1 = In as well.28

Similarly, we have π̂
� = 1�D(π̂) = 1�D(π)P = π�P from equation (29), and hence

π̂ = P�π. It follows that D(π̂) = D(P�π) = P�D(π)P , so that equation (29) yields
[B̂1C]P�D(π)P = [B1C]D(π)P and [B̂1C]P� = B1C. Together with equations (30)–(31),
this shows that B̂iC = [BiC]P for all i= 1�2�3. The duplicate parameters 〈B̂1� B̂2� B̂3〉 and
π̂ are thus seen to result from label swapping; i.e., a garbling of the cognitive type distri-
bution π via the permutation P�. This garbling is reversed by swapping labels in the BiC

matrices, carried out by the transformations B̂i = Bi[CPC−1]. When labels are assigned
correctly, we have P = In, π̂ =π, and each B̂i =Bi, as desired. Q.E.D.

4.2.4. Partial Preference Identification

In connection with Proposition 8, it is important to note that joint choice share data do
not fully pin down the taste distributions 〈τ1�τ2�τ3〉. On the contrary, factorial explosion
of the number of rankings of n alternatives makes it clear that such identification cannot
be possible in general. In relation to tastes, what the joint choice shares determine are
the average preference permutation matrices 〈B1�B2�B3〉. Recall that, for each occasion

are available (see, e.g., Sidiropoulos and Bro (2000, Theorem 3)). On the other hand, two occasions are in-
adequate, with Allman, Matias, and Rhodes (2009, p. 3108) noting that “[t]his nonidentifiability is intimately
related to the nonuniqueness of certain matrix factorizations.” (See also Kruskal (1977, p. 122).)

28In other words, while Lemma 1 allows for rescaling of columns, our framework rules this out.
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i, these matrices record the overall probability of each alternative ki being assigned each
rank position r. The kth entry in the rth column of Bi is given by

∑
h:ϕh(ki)=r τih, which is the

total probability of all preference rankings that make this assignment. Hence preferences
are less than fully identified only to the extent that the taste distribution can be changed
without affecting these rank-position probabilities.

For instance, when n= 3 we have six preference orders, resulting in average preference
permutation matrices of the form

Bi = τi1
⎡⎣1 0 0

0 1 0
0 0 1

⎤⎦+ τi2
⎡⎣1 0 0

0 0 1
0 1 0

⎤⎦+ τi3
⎡⎣0 1 0

1 0 0
0 0 1

⎤⎦+ τi4
⎡⎣0 1 0

0 0 1
1 0 0

⎤⎦ · · ·

+ τi5
⎡⎣0 0 1

1 0 0
0 1 0

⎤⎦+ τi6
⎡⎣0 0 1

0 1 0
1 0 0

⎤⎦
=
⎡⎣τi1 + τi2 τi3 + τi4 τi5 + τi6
τi3 + τi5 τi1 + τi6 τi2 + τi4
τi4 + τi6 τi2 + τi5 τi1 + τi3

⎤⎦ �
Here, the perturbed taste distribution τ̂ i = τ i + ε〈1�−1�−1�1�1�−1〉 yields B̂i = Bi, an
unchanged average preference permutation matrix, and it follows that τ i and τ̂ i cannot
be distinguished using our methods.

Proposition 8 achieves identification of the cognitive distribution and the average pref-
erence permutation matrices with no parametric assumptions on the primitives of the con-
sideration capacity model. Introducing such assumptions may enable us to refine our con-
clusions about 〈τ1�τ2�τ3〉 beyond the rank-position probabilities recorded in 〈B1�B2�B3〉,
a task that is greatly simplified by knowledge of F . In fact, since the type-conditional
choice distributions have already been recovered, we could focus on the behavior of
full-attention types (with γ ≥ n) and apply known techniques to elicit the distribution
of preferences on each occasion. We could, for example, assume that the type-conditional
choices result from a random utility model (RUM) with a given error distribution, or by
a single-crossing RUM as defined in Apesteguia, Ballester, and Lu (2017). In any event,
such parametric assumptions are unrelated to the limited-attention aspects of our model
and unnecessary to achieve our primary goal in this section, which is to identify the cogni-
tive distribution F in the presence of unknown taste heterogeneity.

5. CONCLUSION

The main contribution of this paper is to show how aggregate choice shares can identify
the distribution of cognitive characteristics in a population of agents who exhibit limited
attention. A central advantage of our approach is that it requires minimal data: With
homogeneous (or known) tastes, we use choices shares from a single menu, and with het-
erogeneous (and unknown) tastes we use joint choice shares from three “occasions.” In
this respect, our methodology differs from prior theoretical work on bounded rational-
ity, much of which uses individual choice data from a rich family of overlapping menus.
At the same time, it contrasts with the more applied, econometrically oriented literature
on this topic, where identification is typically facilitated by the presence of observable
covariates—an assumption that we deliberately eschew. Notwithstanding the parsimo-
nious nature of our datasets, we find that aggregate choice shares can encode substantial
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information about the distribution of attention characteristics in the population. In partic-
ular, they can reveal the distribution of the consideration capacity γ up to the cardinality
of the menu, and from this we can deduce the same number of raw moments of ρ in the
special case of the consideration probability model.

There are numerous ways that we could build upon the work reported in this paper
(some of which have been mentioned in passing; see footnotes 20 and 26). We could,
for instance, attempt to tighten the identification of preferences in the multiple occa-
sion environment by postulating access to additional data. Alternatively, we could seek to
bring other forms of bounded rationality—such as framing effects or satisficing—into the
present setting. A third variety of extension would be to weaken the assumptions needed
to derive our main results, and in order to illustrate this possibility let us return briefly to
the assumption of conditionally uniform consideration sets.

For n = 3, Example 1 outlines a generalized consideration capacity model in which
salience weights w = 〈w1�w2�w3〉 for the alternatives affect the relative probabilities of
different consideration sets of the same size. Allowing for preference heterogeneity, a
typical ranking ϕh permutes the salience weights to P (h)w, and the transition from π to
p is then governed by the matrix P (h)C(P (h)w). Averaging over rankings yields the full
transition matrix T = ∑6

h=1 τh[P (h)C(P (h)w)], and the analog of equation (19) for this
scenario can be written explicitly as⎡⎣p(1)p(2)

p(3)

⎤⎦
︸ ︷︷ ︸

p

=
⎡⎣w1/W1 [τ1 + τ2 + τ5]w1w2/W2 + [τ1 + τ2 + τ3]w1w3/W2 τ1 + τ2

w2/W1 [τ3 + τ4 + τ6]w1w2/W2 + [τ1 + τ3 + τ4]w2w3/W2 τ3 + τ4

w3/W1 [τ4 + τ5 + τ6]w1w3/W2 + [τ2 + τ5 + τ6]w2w3/W2 τ5 + τ6

⎤⎦
︸ ︷︷ ︸

T

· · ·

×
⎡⎣π(1)π(2)
π(3)

⎤⎦
︸ ︷︷ ︸

π

�

Extending this generalized model to the multioccasion setting, with I = 3 and

T i =
⎡⎣w1/W1 [τi1 + τi2 + τi5]w1w2/W2 + [τi1 + τi2 + τi3]w1w3/W2 τi1 + τi2
w2/W1 [τi3 + τi4 + τi6]w1w2/W2 + [τi1 + τi3 + τi4]w2w3/W2 τi3 + τi4
w3/W1 [τi4 + τi5 + τi6]w1w3/W2 + [τi2 + τi5 + τi6]w2w3/W2 τi5 + τi6

⎤⎦ �
equation (27) becomes S =∑3

γ=1π(γ)
⊗3

i=1 T i1γ . As previously, we can use Lemma 1 to
show that the probability masses π and transition matrices 〈T 1�T 2�T 3〉 are uniquely de-
termined by the joint choice shares p(k1k2k3). The attention distribution therefore con-
tinues to be identified by our multioccasion dataset, as are the relative salience weights
(supplied by the first column of T i) when these are taken to be unknown to the researcher.
In fact, all of this would remain true even if the salience weights were to depend on the
occasion—a useful formulation if, for instance, each weight was defined as a function of
characteristics of the corresponding alternative. Carrying through such a broad general-
ization of our attention model goes well beyond the scope of the present paper. However,
its apparent feasibility serves to emphasize that our results on cognitive identification are
robust to quite substantial extensions of the framework, including the sort of modifica-
tions that may be needed to use our contribution as the basis for fully fledged empirical
applications.
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APPENDIX A: PARAMETRIC IDENTIFICATION

A.1. Basic Models

Both for the consideration capacity model and for the special case of the consideration
probability model, we consider simple one- and two-parameter functional forms for F .

EXAMPLE 6—Poisson γ: For μ > 0, let the consideration capacity γ have the Poisson
distribution π(γ) = [μγ/γ!]e−μ for 0 ≤ γ < n. In this case, equation (3) yields default
share p(d)= π(0)= e−μ, and thus μ= − logp(d). Alternatively, equation (8) yields

n− 1
2

[
p(n− 1)
p(n)

− 1
]

= π(2)
π(1)

= μ

2
�

and so μ= [n− 1][p(n− 1)/p(n)− 1].

EXAMPLE 7—Pascal γ: For r ∈ {1�2�3� � � �} and q ∈ (0�1), let the consideration capac-
ity γ have the Pascal (or “negative binomial”) distribution π(γ) = (

γ+r−1
γ

)[1 − q]rqγ for
0 ≤ γ < n. Equation (8) then yields

n− 1
2

[
p(n− 1)
p(n)

− 1
]

= π(2)
π(1)

= q[r + 1]
2

� (32)

We have also
np(n)

p(d)
= π(1)
π(0)

= qr� (33)

and equations (32)–(33) can be solved simultaneously for the parameters

q= [n− 1]
[
p(n− 1)
p(n)

− 1
]

− np(n)

p(d)
�

r = np(n)2

p(d)[n− 1][p(n− 1)−p(n)]− np(n)2 �

EXAMPLE 8—Uniform ρ: For ρmin ∈ [0�1), let the consideration probability ρ be dis-
tributed uniformly on [ρmin�1]. Since F(ρ)= [ρ−ρmin]/[1 −ρmin], equation (10) becomes

p(k)= 1
1 − ρmin

∫ 1

ρmin

ρ[1 − ρ]k−1 dρ� (34)

The first choice share is then p(1)= [1+ρmin]/2, yielding the parameter ρmin = 2p(1)−1.

EXAMPLE 9—Beta ρ: For a�b > 0, let the consideration probability have the Beta dis-
tribution F(ρ)= B(a�b)−1

∫ ρ
0 t

a−1[1 − t]b−1 dt (where B is the Beta function). Here, equa-
tion (10) appears as

p(k)= B(a�b)−1

∫ 1

0
ρa[1 − ρ]b+k−2 dρ= B(a+ 1� b+ k− 1)

B(a�b)
�
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The first two choice shares are

p(1)= B(a+ 1� b)
B(a�b)

= a

a+ b� (35)

p(2)= B(a+ 1� b+ 1)
B(a�b)

= ab

[a+ b][a+ b+ 1] ; (36)

and we can solve for the parameters

a= p(1)p(2)
p(1)

[
1 −p(1)]−p(2)�

b=
[
1 −p(1)]p(2)

p(1)
[
1 −p(1)]−p(2) �

Observe that for parameterizations of the consideration capacity γ we have used the
choice shares p(n) and p(n − 1), corresponding to the least attractive alternatives, to
elicit information about the cognitive type distribution. In contrast, for parameterizations
of the consideration probability ρ we have used p(1) and p(2), corresponding to the most
attractive alternatives. This mirrors our elicitation procedure in Section 3.2, where each
mass π(γ) is seen to depend on the choice shares of a group of sufficiently unattractive
options (cf., equation (12)), and each moment of the ρ-distribution is seen to depend on
the shares of a sufficiently attractive group (cf., equation (14)).

A.2. Unobserved Default

Here, we adapt each of the parametric examples in Section A.1 to the unobserved de-
fault scenario.

EXAMPLE 10—Poisson γ; continued from Example 6: Here, μ= [n− 1][p̃(n− 1� n)−
1], as above.

EXAMPLE 11—Pascal γ; continued from Example 7: Equation (32) can be written as
p̃(n− 1� n)= q[r + 1]/[n− 1] + 1, and similarly from equation (7) we obtain

p̃(n− 2� n)− p̃(n− 1� n)= 2
n− 1

[
π(2)
π(1)

+ 3
n− 2

π(3)
π(1)

]
= q[r + 1]

n− 1

[
1 + q[r + 2]

n− 2

]
�

These equations can be solved simultaneously for the parameters

q= 2p̃(n− 1� n)− [n− 1]p̃(n− 1� n)2 + [n− 2]p̃(n− 2� n)− 1
p̃(n− 1� n)− 1

�

r = 2np̃(n− 1� n)− 2[n− 1]p̃(n− 1� n)2 + [n− 2]p̃(n− 2� n)− n
−2p̃(n− 1� n)+ [n− 1]p̃(n− 1� n)2 − [n− 2]p̃(n− 2� n)+ 1

�

EXAMPLE 12—Uniform ρ; continued from Example 8: From equation (34), we have
both p(1)= [1 + ρmin]/2 and p(2)= [2ρmin + 1][1 − ρmin]/6. Hence

p̃(1�2)= 3[1 + ρmin]
[2ρmin + 1][1 − ρmin] �
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and it follows that

ρmin =
p̃(1�2)− 3 +

√
3
[
3p̃(1�2)− 1

][
p̃(1�2)− 3

]
4p̃(1�2)

�

EXAMPLE 13—Beta ρ; continued from Example 9: Equations (35)–(36) yield p̃(2�1)=
b/[a+ b+ 1], and likewise we can compute p̃(3�2)= [b+ 1]/[a+ b+ 2]. Solving for the
parameters, we obtain

a= 1 − 2p̃(3�2)+ p̃(3�1)
p̃(3�2)− p̃(2�1)

�

b= p̃(2�1)
[
1 − p̃(3�2)

]
p̃(3�2)− p̃(2�1)

�
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